Science.gov

Sample records for citrus sinensis leaf

  1. Citrus essential oil of Nigeria. Part V: Volatile constituents of sweet orange leaf oil (Citrus sinensis).

    PubMed

    Kasali, Adeleke A; Lawal, Oladipupo A; Eshilokun, Adeolu O; Olaniyan, Abayomi A; Opoku, Andy R; Setzer, William N

    2011-06-01

    The volatile oils extracted from leaves of eight cultivars of Citrus sinensis (L) Osbeck were comprehensively analysed by a combination of GC and GC-MS. Fifty four constituents accounting for 82.3-98.2% were identified. Sabinene (20.9-49.1%), delta-3-carene (0.3-14.3%), (E)-beta-ocimene (4.4-12.6%), linalool (3.7-11.1%) and terpinen-4-ol (1.7-12.5%) were the major constituents that are common to all the volatile oils. In addition, a cluster analysis was carried out and indicated at least four different chemotypes for the C. sinensis cultivars.

  2. Metal Analysis in Citrus Sinensis Fruit Peel and Psidium Guajava Leaf

    PubMed Central

    Dhiman, Anju; Nanda, Arun; Ahmad, Sayeed

    2011-01-01

    The determination of metal traces is very important because they are involved in biological cycles and indicate high toxicity. The objective of the present study is to measure the levels of heavy metals and mineral ions in medicinally important plant species, Citrus sinensis and Psidium guajava. This study investigates the accumulation of Copper (Cu), Zinc (Zn), Cadmium (Cd), Aluminum (Al), Mercury (Hg), Arsenic (As), Selenium (Se) and inorganic minerals like Calcium (Ca) and Magnesium (Mg) in C. sinensis (sweet orange) fruit peel and P. guajava (guava) leaf, to measure the levels of heavy metal contamination. Dried powdered samples of the plants were digested using wet digestion method and elemental determination was done by atomic absorption spectrophotometer. Results are expressed as mean ± standard deviation and analysed by student's ‘t’ test. Values are considered significant at P < 0.05. The results were compared with suitable safety standards and the levels of Cu, Zn, Cd, Mg and Ca in C. sinensis fruit peel and P. guajava leaves were within the acceptable limits for human consumption. The order of concentration of elements in both the samples showed the following trend: Mg > Ca > Al > Zn > Cu > Cd > Hg = As = Se. The content of Hg, As and Se in C. sinensis fruit peel and P. guajava leaves was significantly low and below detection limit. The content of toxic metals in tested plant samples was found to be low when compared with the limits prescribed by various authorities (World Health Organization, WHO; International Centre for Materials Research, ICMR; American Public Health Association, APHA). The content of Hg, As and Se in C. sinensis fruit peel and P. guajava leaves was not detectable and met the appropriate safety standards. In conclusion, the tested plant parts taken in the present study were found to be safe. PMID:21976824

  3. Identification of differentially expressed genes in a spontaneous altered leaf shape mutant of the navel orange [Citrus sinensis (L.) Osbeck].

    PubMed

    Da, Xinlei; Yu, Keqin; Shen, Shihui; Zhang, Yajian; Wu, Juxun; Yi, Hualin

    2012-07-01

    Most of the economically important citrus cultivars have originated from bud mutations. Leaf shape and structure are important factors that impact plant photosynthesis. We found a spontaneous bud mutant exhibiting a narrow leaf phenotype in navel orange [Citrus sinensis (L.) Osbeck]. To identify and characterize the genes involved in the formation of this trait, we performed suppression subtractive hybridization (SSH) and macroarray analysis. A total of 221 non-redundant differentially expressed transcripts were obtained. These transcripts included cell wall- and microtubule-related genes and two transcription factor-encoding genes, yabby and wox, which are crucial for leaf morphogenesis. Many highly redundant transcripts were associated with stress responses, while others, encoding caffeic acid 3-O-methyltransferase (EC 2.1.1.68) and a myb-like transcription factor, might be involved in the lignin pathway, which produces a component of secondary walls. Furthermore, real-time quantitative RT-PCR was performed for selected genes to validate the quality of the expressed sequence tags (ESTs) from the SSH libraries. This study represents an attempt to investigate the molecular mechanism associated with a leaf shape mutation, and its results provide new clues for understanding leaf shape mutations in citrus.

  4. Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L.

    PubMed Central

    Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita

    2012-01-01

    Objective To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). Methods The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. Results The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7–11 times more irritable as compared with the control paper. Conclusions The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control. PMID:23569887

  5. Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L.

    PubMed

    Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita

    2012-02-01

    To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7-11 times more irritable as compared with the control paper. The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control.

  6. Cytotoxicity and anti-Leishmania amazonensis activity of Citrus sinensis leaf extracts.

    PubMed

    Garcia, Andreza R; Amaral, Ana Claudia F; Azevedo, Mariana M B; Corte-Real, Suzana; Lopes, Rosana C; Alviano, Celuta S; Pinheiro, Anderson S; Vermelho, Alane B; Rodrigues, Igor A

    2017-12-01

    Leishmania amazonensis is the main agent of diffuse cutaneous leishmaniasis, a disease characterized by lesional polymorphism and the commitment of skin surface. Previous reports demonstrated that the Citrus genus possess antimicrobial activity. This study evaluated the anti-L. amazonensis activity of Citrus sinensis (L.) Osbeck (Rutaceae) extracts. Citrus sinensis dried leaves were subjected to maceration with hexane (CH), ethyl acetate (CEA), dichloromethane/ethanol (CD/Et - 1:1) or ethanol/water (CEt/W - 7:3). Leishmania amazonensis promastigotes were treated with C. sinensis extracts (1-525 μg/mL) for 120 h at 27 °C. Ultrastructure alterations of treated parasites were evaluated by transmission electron microscopy. Cytotoxicity of the extracts was assessed on RAW 264.7 and J774.G8 macrophages after 48-h treatment at 37 °C using the tetrazolium assay. In addition, Leishmania-infected macrophages were treated with CH and CD/Et (10-80 μg/mL). CH, CD/Et and CEA displayed antileishmanial activity with 50% inhibitory activity (IC50) of 25.91 ± 4.87, 54.23 ± 3.78 and 62.74 ± 5.04 μg/mL, respectively. Parasites treated with CD/Et (131.2 μg/mL) presented severe alterations including mitochondrial swelling, lipid body formation and intense cytoplasmic vacuolization. CH and CD/Et demonstrated cytotoxic effects similar to that of amphotericin B in the anti-amastigote assays (SI of 2.16, 1.98 and 1.35, respectively). Triterpene amyrins were the main substances in CH and CD/Et extracts. In addition, 80 μg/mL of CD/Et reduced the number of intracellular amastigotes and the percentage of infected macrophages in 63% and 36%, respectively. The results presented here highlight C. sinensis as a promising source of antileishmanial agents.

  7. Ethylene-enhanced catabolism of ( sup 14 C)indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues. [Citrus sinensis

    SciTech Connect

    Sagee, O.; Riov, J.; Goren, J. )

    1990-01-01

    Exogenous ({sup 14}C)indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of ({sup 14}C)IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene endogenous IAA levels.

  8. Leaf-disc grafting for the transmission of Candidatus Liberibacter asiaticus in citrus (Citrus sinensis; Rutaceae) seedlings1

    PubMed Central

    Tabay Zambon, Flavia; Plant, Karen; Etxeberria, Ed

    2017-01-01

    Premise of the study: The search for resistance/tolerance to the devastating citrus huanglongbing disease (syn. HLB or citrus greening) is generating an increasing number of new plants of diverse genetic makeup. As the increasing number of new plants require more space, resources, and time, the need for faster and more efficient HLB screening tests becomes crucial. Methods and Results: The leaf-disc grafting system described here consists in replacing a disc of leaf tissue with a similar disc from an infected plant. This can be performed in young seedlings not yet big enough to endure other types of grafting. Graft success and infection rates average approximately 80%. Conclusions: We describe the successful adaptation of leaf-disc grafting as a powerful screening tool for HLB. The system requires minimal plant material and can be performed in seedlings at a very young age with increased efficiency in terms of time, space, and resources. PMID:28090406

  9. Leaf-disc grafting for the transmission of Candidatus Liberibacter asiaticus in citrus (Citrus sinensis; Rutaceae) seedlings.

    PubMed

    Tabay Zambon, Flavia; Plant, Karen; Etxeberria, Ed

    2017-01-01

    The search for resistance/tolerance to the devastating citrus huanglongbing disease (syn. HLB or citrus greening) is generating an increasing number of new plants of diverse genetic makeup. As the increasing number of new plants require more space, resources, and time, the need for faster and more efficient HLB screening tests becomes crucial. The leaf-disc grafting system described here consists in replacing a disc of leaf tissue with a similar disc from an infected plant. This can be performed in young seedlings not yet big enough to endure other types of grafting. Graft success and infection rates average approximately 80%. We describe the successful adaptation of leaf-disc grafting as a powerful screening tool for HLB. The system requires minimal plant material and can be performed in seedlings at a very young age with increased efficiency in terms of time, space, and resources.

  10. CsPLDα1 and CsPLDγ1 are differentially induced during leaf and fruit abscission and diurnally regulated in Citrus sinensis

    PubMed Central

    Malladi, Anish; Burns, Jacqueline K.

    2008-01-01

    Understanding leaf and fruit abscission is essential in order to develop strategies for controlling the process in fruit crops. Mechanisms involved in signalling leaf and fruit abscission upon induction by abscission agents were investigated in Citrus sinensis cv. ‘Valencia’. Previous studies have suggested a role for phospholipid signalling; hence, two phospholipase D cDNA sequences, CsPLDα1 and CsPLDγ1, were isolated and their role was examined. CsPLDα1 expression was reduced in leaves but unaltered in fruit peel tissue treated with an ethylene-releasing compound (ethephon), or a fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP). By contrast, CsPLDγ1 expression was up-regulated within 6 h (leaves) and 24 h (fruit peel) after treatment with ethephon or CMNP, respectively. CsPLDα1 expression was diurnally regulated in leaf blade but not fruit peel. CsPLDγ1 exhibited strong diurnal oscillation in expression in leaves and fruit peel with peak expression around midday. While diurnal fluctuation in CsPLDα1 expression appeared to be light-entrained in leaves, CsPLDγ1 expression was regulated by light and the circadian clock. The diurnal expression of both genes was modulated by ethylene-signalling. The ethephon-induced leaf abscission and the ethephon- and CMNP-induced decrease in fruit detachment force were enhanced by application during rising diurnal expression of CsPLDγ1. The results indicate differential regulation of CsPLDα1 and CsPLDγ1 in leaves and fruit, and suggest possible roles for PLD-dependent signalling in regulating abscission responses in citrus. PMID:18799715

  11. Antihyperlipidemic effects of Citrus sinensis, Citrus paradisi, and their combinations.

    PubMed

    Mallick, Neelam; Khan, Rafeeq Alam

    2016-01-01

    Hyperlipidemia, extensively contributes in the progression of coronary heart diseases and atherosclerosis, but may be managed through alterations in the nutritional pattern. Several studies show that diet rich in polyphenols and antioxidants have antiatherogenic effects. Citrus sinensis and Citrus paradisi are widely known for health benefits and have found to produce antioxidant, anti-inflammatory, and hypolipidemic effects, hence current research was planned to determine the hypolipidemic effects of C. sinensis and C. paradisi in rats receiving diet rich in cholesterol. All rats were divided into 11 groups each comprising 10 animals: Normal control group and hyperlipidemic control. C. sinensis treated three groups, C. paradisi treated three groups, C. sinensis and C. paradisi combination treated two groups, and group treated atorvastatin. All rats in the respective groups were treated orally with sterile water, juices, and standard drug for 8 weeks and lipid profile was estimated at the end of dosing. Cholesterol, triglycerides (TGs), and low-density lipoprotein (LDL) were decreased at all the three doses of C. sinensis and C. paradisi but rise in high-density lipoprotein (HDL) was only significant at 8 ml/kg, and 0.3 ml/kg, respectively. Animals received the combination doses of C. sinensis and C. paradisi also showed a highly significant fall in cholesterol, LDL, and TGs, however HDL level was significantly elevated by SPJ-2 combination. Results suggest that C. sinensis and C. paradisi possess antihyperlipidemic activity due to phytochemicals and other essential nutrients, hence may serve as cardioprotective by preventing thrombosis.

  12. Chemistry and Pharmacology of Citrus sinensis.

    PubMed

    Favela-Hernández, Juan Manuel J; González-Santiago, Omar; Ramírez-Cabrera, Mónica A; Esquivel-Ferriño, Patricia C; Camacho-Corona, María del Rayo

    2016-02-22

    Presently the search for new drugs from natural resources is of growing interest to the pharmaceutical industry. Natural products have been the source of new drugs since ancient times. Plants are a good source of secondary metabolites which have been found to have beneficial properties. The present study is a review of the chemistry and pharmacology of Citrus sinensis. This review reveals the therapeutic potential of C. sinensis as a source of natural compounds with important activities that are beneficial for human health that could be used to develop new drugs.

  13. Chemistry and Pharmacology of Citrus sinensis.

    PubMed

    Favela-Hernández, Juan Manuel J; González-Santiago, Omar; Ramírez-Cabrera, Mónica A; Esquivel-Ferriño, Patricia C; Camacho-Corona, María del Rayo

    2016-02-22

    Presently the search for new drugs from natural resources is of growing interest to the pharmaceutical industry. Natural products have been the source of new drugs since ancient times. Plants are a good source of secondary metabolites which have been found to have beneficial properties. The present study is a review of the chemistry and pharmacology of Citrus sinensis. This review reveals the therapeutic potential of C. sinensis as a source of natural compounds with important activities that are beneficial for human health that could be used to develop new drugs.

  14. Metabolomic comparative analysis of the phloem sap of curry leaf tree (Bergera koenegii), orange jasmine (Murraya paniculata), and Valencia sweet orange (Citrus sinensis) supports their differential responses to Huanglongbing.

    PubMed

    Killiny, Nabil

    2016-11-01

    Orange jasmine, Murraya paniculata and curry leaf tree, Bergera koenegii are alternative hosts for Diaphorina citri, the vector of Candidatus Liberibacter asiaticus (CLas), the pathogen of huanglongbing (HLB) in citrus. D. citri feeds on the phloem sap where CLas grows. It has been shown that orange jasmine was a better host than curry leaf tree to D. citri. In addition, CLas can infect orange jasmine but not curry leaf tree. Here, we compared the phloem sap composition of these 2 plants to the main host, Valencia sweet orange, Citrus sinensis. Phloem sap was analyzed by gas chromatography-mass spectrometry after trimethylsilyl derivatization. Orange jasmine was the highest in proteinogenic, non-proteinogenic amino acids, organic acids, as well as total metabolites. Valencia was the highest in mono- and disaccharides, and sugar alcohols. Curry leaf tree was the lowest in most of the metabolites as well as total metabolites. Interestingly, malic acid was high in Valencia and orange jasmine but was not detected in the curry leaf. On the other hand, tartaric acid which can prevent the formation of malic acid in Krebs cycle was high in curry leaf. The nutrient inadequacy of the phloem sap in curry leaf tree, especially the amino acids could be the reason behind the longer life cycle and the low survival of D. citri and the limitation of CLas growth on this host. Information obtained from this study may help in cultivation of CLas and development of artificial diet for rearing of D. citri.

  15. Antihyperlipidemic effects of Citrus sinensis, Citrus paradisi, and their combinations

    PubMed Central

    Mallick, Neelam; Khan, Rafeeq Alam

    2016-01-01

    Objective: Hyperlipidemia, extensively contributes in the progression of coronary heart diseases and atherosclerosis, but may be managed through alterations in the nutritional pattern. Several studies show that diet rich in polyphenols and antioxidants have antiatherogenic effects. Citrus sinensis and Citrus paradisi are widely known for health benefits and have found to produce antioxidant, anti-inflammatory, and hypolipidemic effects, hence current research was planned to determine the hypolipidemic effects of C. sinensis and C. paradisi in rats receiving diet rich in cholesterol. Materials and Methods: All rats were divided into 11 groups each comprising 10 animals: Normal control group and hyperlipidemic control. C. sinensis treated three groups, C. paradisi treated three groups, C. sinensis and C. paradisi combination treated two groups, and group treated atorvastatin. All rats in the respective groups were treated orally with sterile water, juices, and standard drug for 8 weeks and lipid profile was estimated at the end of dosing. Results: Cholesterol, triglycerides (TGs), and low-density lipoprotein (LDL) were decreased at all the three doses of C. sinensis and C. paradisi but rise in high-density lipoprotein (HDL) was only significant at 8 ml/kg, and 0.3 ml/kg, respectively. Animals received the combination doses of C. sinensis and C. paradisi also showed a highly significant fall in cholesterol, LDL, and TGs, however HDL level was significantly elevated by SPJ-2 combination. Conclusion: Results suggest that C. sinensis and C. paradisi possess antihyperlipidemic activity due to phytochemicals and other essential nutrients, hence may serve as cardioprotective by preventing thrombosis. PMID:27134462

  16. Bioavailable Citrus sinensis Extract: Polyphenolic Composition and Biological Activity.

    PubMed

    Pepe, Giacomo; Pagano, Francesco; Adesso, Simona; Sommella, Eduardo; Ostacolo, Carmine; Manfra, Michele; Chieppa, Marcello; Sala, Marina; Russo, Mariateresa; Marzocco, Stefania; Campiglia, Pietro

    2017-04-15

    Citrus plants contain large amounts of flavonoids with beneficial effects on human health. In the present study, the antioxidant and anti-inflammatory potential of bioavailable polyphenols from Citrus sinensis was evaluated in vitro and ex vivo, using the murine macrophages cell line J774A.1 and primary peritoneal macrophages. Following simulated gastro-intestinal digestion, the in vitro bioavailability of Citrus sinensis polyphenolic extract was assessed using the human cell line Caco-2 grown as monolayers on a transwell membrane. Data demonstrated a relative permeation of its compounds (8.3%). Thus, the antioxidant and anti-inflammatory effect of polyphenolic Citrus sinensis fraction (Cs) was compared to the bioavailable one (CsB). Results revealed that Citrus extract were able to reduce macrophages pro-inflammatory mediators, including nitric oxide, iNOS, COX-2 and different cytokines. Moreover, the effect of Citrus sinensis polyphenols was associated with antioxidant effects, such as a reduction of reactive oxygen species (ROS) and heme-oxygenase-1 (HO-1) increased expression. Our results provide evidence that the bioavailable polyphenolic constituents of the Citrussinensis extract accumulate prevalently at intestinal level and could reach systemic circulation exerting their effect. The bioavailable fraction showed a higher anti-inflammatory and antioxidant potential compared to the initial extract, thus highlighting its potential nutraceutical value.

  17. Phytochemical analysis and radical scavenging profile of juices of Citrus sinensis, Citrus anrantifolia, and Citrus limonum.

    PubMed

    Rauf, Abdur; Uddin, Ghias; Ali, Jawad

    2014-01-01

    The aim of the current investigation was to identify bioactive secondary metabolites including phenols, tannins, flavonoids, terpinedes, and steroids and compare the phytochemical analysis and antioxidant profile of the juice extracted from the fruits of Citrus sinensis, Citrus anrantifolia, and Citrus limonum. Phytochemical screening is important for the isolation of new, novel, and rare secondary metabolites before bulk extraction. Phytochemical analysis of the desired plant fruits of family Rutaceae revealed the presence of phenols, flavonoids, reducing sugars, steroids, terpinedes and tannins. The fruits of C. sinensis and C. anrantifolia exhibited the presence of phenols, flavonoids, reducing sugars, steroids, terpinedes and tannins, while the fruits of C. limonum indicated the presence of phenols, flavonoids, reducing sugars, terpinedes, and tannins. The fruits of selected plants were also subjected to antioxidant potential by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay against ascorbic acid at various concentrations. Among the tested plants, C. sinensis showed promising antiradical effect (84.81%) which was followed by C. Anrantifolia (80.05%) at 100 μg/ml against ascorbic acid (96.36%). The C. limonum showed low antioxidant activity among the three selected plants of family Rutaceae. The current finding is baseline information in the use of the fruits of selected plants as food supplement which may be due to the presence of antioxidant molecules in the family Rutaceae. Further research is needed in this area to isolate the phenolic constituents which possess ideal antiradical potential.

  18. Phytochemical analysis and radical scavenging profile of juices of Citrus sinensis, Citrus anrantifolia, and Citrus limonum

    PubMed Central

    2014-01-01

    Background The aim of the current investigation was to identify bioactive secondary metabolites including phenols, tannins, flavonoids, terpinedes, and steroids and compare the phytochemical analysis and antioxidant profile of the juice extracted from the fruits of Citrus sinensis, Citrus anrantifolia, and Citrus limonum. Results Phytochemical screening is important for the isolation of new, novel, and rare secondary metabolites before bulk extraction. Phytochemical analysis of the desired plant fruits of family Rutaceae revealed the presence of phenols, flavonoids, reducing sugars, steroids, terpinedes and tannins. The fruits of C. sinensis and C. anrantifolia exhibited the presence of phenols, flavonoids, reducing sugars, steroids, terpinedes and tannins, while the fruits of C. limonum indicated the presence of phenols, flavonoids, reducing sugars, terpinedes, and tannins. The fruits of selected plants were also subjected to antioxidant potential by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay against ascorbic acid at various concentrations. Among the tested plants, C. sinensis showed promising antiradical effect (84.81%) which was followed by C. Anrantifolia (80.05%) at 100 μg/ml against ascorbic acid (96.36%). The C. limonum showed low antioxidant activity among the three selected plants of family Rutaceae. Conclusions The current finding is baseline information in the use of the fruits of selected plants as food supplement which may be due to the presence of antioxidant molecules in the family Rutaceae. Further research is needed in this area to isolate the phenolic constituents which possess ideal antiradical potential. PMID:25024932

  19. Alernaria undulata, a new species from Citrus sinensis

    USDA-ARS?s Scientific Manuscript database

    A new species belonging to the Alternaria infectoria species-group, A undulata, is described from imported fruit of Citrus sinensis (navel Orange). A. undulata was associated with visible lesions that appeared to originate from the peduncular scars of several fruits purchased from a retail display ...

  20. Citrus Functional Genomics and Molecular Modeling in Relation to Citrus sinensis (Sweet Orange) Infection with Xylella fastidiosa (Citrus Variegated Chlorosis).

    PubMed

    Dwivedi, Upendra N; Tiwari, Sameeksha; Prasanna, Pragya; Awasthi, Manika; Singh, Swati; Pandey, Veda P

    2016-08-01

    Citrus are among the economically most important fruit tree crops in the world. Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa infection, is a serious disease limiting citrus production at a global scale. With availability of citrus genomic resources, it is now possible to compare citrus expressed sequence tag (EST) data sets and identify single-nucleotide polymorphisms (SNPs) within and among different citrus cultivars that can be exploited for citrus resistance to infections, citrus breeding, among others. We report here, for the first time, SNPs in the EST data sets of X. fastidiosa-infected Citrus sinensis (sweet orange) and their functional annotation that revealed the involvement of eight C. sinensis candidate genes in CVC pathogenesis. Among these genes were xyloglucan endotransglycosylase, myo-inositol-1-phosphate synthase, and peroxidase were found to be involved in plant cell wall metabolism. These have been further investigated by molecular modeling for their role in CVC infection and defense. Molecular docking analyses of the wild and the mutant (SNP containing) types of the selected three enzymes with their respective substrates revealed a significant decrease in the binding affinity of substrates for the mutant enzymes, thus suggesting a decrease in the catalytic efficiency of these enzymes during infection, thereby facilitating a favorable condition for infection by the pathogen. These findings offer novel agrigenomics insights in developing future molecular targets and strategies for citrus fruit cultivation in ways that are resistant to X. fastidiosa infection, and by extension, with greater harvesting efficiency and economic value.

  1. The draft genome of sweet orange (Citrus sinensis).

    PubMed

    Xu, Qiang; Chen, Ling-Ling; Ruan, Xiaoan; Chen, Dijun; Zhu, Andan; Chen, Chunli; Bertrand, Denis; Jiao, Wen-Biao; Hao, Bao-Hai; Lyon, Matthew P; Chen, Jiongjiong; Gao, Song; Xing, Feng; Lan, Hong; Chang, Ji-Wei; Ge, Xianhong; Lei, Yang; Hu, Qun; Miao, Yin; Wang, Lun; Xiao, Shixin; Biswas, Manosh Kumar; Zeng, Wenfang; Guo, Fei; Cao, Hongbo; Yang, Xiaoming; Xu, Xi-Wen; Cheng, Yun-Jiang; Xu, Juan; Liu, Ji-Hong; Luo, Oscar Junhong; Tang, Zhonghui; Guo, Wen-Wu; Kuang, Hanhui; Zhang, Hong-Yu; Roose, Mikeal L; Nagarajan, Niranjan; Deng, Xiu-Xin; Ruan, Yijun

    2013-01-01

    Oranges are an important nutritional source for human health and have immense economic value. Here we present a comprehensive analysis of the draft genome of sweet orange (Citrus sinensis). The assembled sequence covers 87.3% of the estimated orange genome, which is relatively compact, as 20% is composed of repetitive elements. We predicted 29,445 protein-coding genes, half of which are in the heterozygous state. With additional sequencing of two more citrus species and comparative analyses of seven citrus genomes, we present evidence to suggest that sweet orange originated from a backcross hybrid between pummelo and mandarin. Focused analysis on genes involved in vitamin C metabolism showed that GalUR, encoding the rate-limiting enzyme of the galacturonate pathway, is significantly upregulated in orange fruit, and the recent expansion of this gene family may provide a genomic basis. This draft genome represents a valuable resource for understanding and improving many important citrus traits in the future.

  2. Antimycotic Activity and Genotoxic Evaluation of Citrus sinensis and Citrus latifolia Essential Oils.

    PubMed

    Ruiz-Pérez, Nancy J; González-Ávila, Marisela; Sánchez-Navarrete, Jaime; Toscano-Garibay, Julia D; Moreno-Eutimio, Mario A; Sandoval-Hernández, Teresa; Arriaga-Alba, Myriam

    2016-05-03

    The aim of this study was to evaluate the antifungal activity of essential oils (EOs) of Citrus sinensis (C. sinensis) and Citrus latifolia (C. latifolia) against five Candida species: Candida albicans, Candida tropicalis, Candida glabrata, Candida lusitaniae and Candida guilliermondii; and perform its genotoxic evaluation. The EOs of C. sinensis and C. latifolia were obtained from the peel by hydro-distillation. The major components determined by GC-MS were in C. sinensis, d-limonene (96%) and α-myrcene (2.79%); and in C. latifolia, d-limonene (51.64%), β-thujene (14.85%), β-pinene (12.79%) and γ-terpinene (12.8%). Antifungal properties were studied by agar diffusion method, where C. sinensis presented low activity and C. latifolia essential oil was effective to inhibit growing of C. lusitaniae and C. guilliermondii with IC50 of 6.90 and 2.92 μg respectively. The minimum inhibitory concentrations (MIC) for C. sinensis were in a range of 0.42-3.71 μg and for C. latifolia of 0.22-1.30 μg. Genotoxic evaluation was done by Ames test where none of the oils induced point mutations. Flow cytometry was used to measure toxicity in human oral epithelial cells, C. sinensis was not cytotoxic and C. latifolia was toxic at 21.8 μg. These properties might bestow different odontological applications to each essential oil.

  3. Response of sweet orange (Citrus sinensis) to 'Candidatus Liberibacter asiaticus' infection: microscopy and microarray analyses.

    PubMed

    Kim, Jeong-Soon; Sagaram, Uma Shankar; Burns, Jacqueline K; Li, Jian-Liang; Wang, Nian

    2009-01-01

    Citrus greening or huanglongbing (HLB) is a devastating disease of citrus. HLB is associated with the phloem-limited fastidious prokaryotic alpha-proteobacterium 'Candidatus Liberibacter spp.' In this report, we used sweet orange (Citrus sinensis) leaf tissue infected with 'Ca. Liberibacter asiaticus' and compared this with healthy controls. Investigation of the host response was examined with citrus microarray hybridization based on 33,879 expressed sequence tag sequences from several citrus species and hybrids. The microarray analysis indicated that HLB infection significantly affected expression of 624 genes whose encoded proteins were categorized according to function. The categories included genes associated with sugar metabolism, plant defense, phytohormone, and cell wall metabolism, as well as 14 other gene categories. The anatomical analyses indicated that HLB bacterium infection caused phloem disruption, sucrose accumulation, and plugged sieve pores. The up-regulation of three key starch biosynthetic genes including ADP-glucose pyrophosphorylase, starch synthase, granule-bound starch synthase and starch debranching enzyme likely contributed to accumulation of starch in HLB-affected leaves. The HLB-associated phloem blockage resulted from the plugged sieve pores rather than the HLB bacterial aggregates since 'Ca. Liberibacter asiaticus' does not form aggregate in citrus. The up-regulation of pp2 gene is related to callose deposition to plug the sieve pores in HLB-affected plants.

  4. Chemical Examination of Citrus sinensis Flavedo Variety Pineapple

    PubMed Central

    Rani, Geeta; Yadav, Lalita; Kalidhar, S. B.

    2009-01-01

    Phytochemical examination of Citrus sinensis flavedo var. Pineapple resulted in the isolation of six compounds characterized as tetracosane, ethyl pentacosanoate, tetratriacontanoic acid, tangertin, β-sitosteryl-β-D-glucoside and 3,5,4'-trihydroxy-7,3'-dimethoxy flavanone 3-O-β-glucoside. Of these 3,5,4'-trihydroxy-7,3'-dimethoxy flavanone 3-O-β-glucoside is a hitherto unreported compound. PMID:20376223

  5. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization

    NASA Astrophysics Data System (ADS)

    Sujitha, Mohanan V.; Kannan, Soundarapandian

    2013-02-01

    This study reports the biological synthesis of gold nanoparticles by the reduction of HAuCl4 by using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) juice extract as the reducing and stabilizing agent. A various shape and size of gold nanoparticles were formed when the ratio of the reactants were altered with respect to 1.0 mM chloroauric acid solution. The gold nanoparticles obtained were characterized by UV-visible spectra, transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM studies showed the particles to be of various shapes and sizes and particle size ranges from 15 to 80 nm. Selected-area electron diffraction (SAED) pattern confirmed fcc phase and crystallinity of the particles. The X-ray diffraction analysis revealed the distinctive facets (1 1 1, 2 0 0, 2 2 0 and 2 2 2 planes) of gold nanoparticles. Dynamic light scattering (DLS) studies revealed that the average size for colloid gp3 of C. limon, C. reticulata and C. sinensis are 32.2 nm, 43.4 nm and 56.7 nm respectively. The DLS graph showed that the particles size was larger and more polydispersed compared to the one observed by TEM due to the fact that the measured size also includes the bio-organic compounds enveloping the core of the Au NPs. Zeta potential value for gold nanoparticles obtained from colloid gp3 of C. limon, C. reticulata and C. sinensis are -45.9, -37.9 and -31.4 respectively indicating the stability of the synthesized nanoparticles. Herein we propose a novel, previously unexploited method for the biological syntheses of polymorphic gold nanoparticles with potent biological applications.

  6. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization.

    PubMed

    Sujitha, Mohanan V; Kannan, Soundarapandian

    2013-02-01

    This study reports the biological synthesis of gold nanoparticles by the reduction of HAuCl(4) by using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) juice extract as the reducing and stabilizing agent. A various shape and size of gold nanoparticles were formed when the ratio of the reactants were altered with respect to 1.0mM chloroauric acid solution. The gold nanoparticles obtained were characterized by UV-visible spectra, transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM studies showed the particles to be of various shapes and sizes and particle size ranges from 15 to 80 nm. Selected-area electron diffraction (SAED) pattern confirmed fcc phase and crystallinity of the particles. The X-ray diffraction analysis revealed the distinctive facets (111, 200, 220 and 222 planes) of gold nanoparticles. Dynamic light scattering (DLS) studies revealed that the average size for colloid gp(3) of C. limon, C. reticulata and C. sinensis are 32.2 nm, 43.4 nm and 56.7 nm respectively. The DLS graph showed that the particles size was larger and more polydispersed compared to the one observed by TEM due to the fact that the measured size also includes the bio-organic compounds enveloping the core of the Au NPs. Zeta potential value for gold nanoparticles obtained from colloid gp(3) of C. limon, C. reticulata and C. sinensis are -45.9, -37.9 and -31.4 respectively indicating the stability of the synthesized nanoparticles. Herein we propose a novel, previously unexploited method for the biological syntheses of polymorphic gold nanoparticles with potent biological applications.

  7. Antimycotic Activity and Genotoxic Evaluation of Citrus sinensis and Citrus latifolia Essential Oils

    PubMed Central

    Ruiz-Pérez, Nancy J.; González-Ávila, Marisela; Sánchez-Navarrete, Jaime; Toscano-Garibay, Julia D.; Moreno-Eutimio, Mario A.; Sandoval-Hernández, Teresa; Arriaga-Alba, Myriam

    2016-01-01

    The aim of this study was to evaluate the antifungal activity of essential oils (EOs) of Citrus sinensis (C. sinensis) and Citrus latifolia (C. latifolia) against five Candida species: Candida albicans, Candida tropicalis, Candida glabrata, Candida lusitaniae and Candida guilliermondii; and perform its genotoxic evaluation. The EOs of C. sinensis and C. latifolia were obtained from the peel by hydro-distillation. The major components determined by GC-MS were in C. sinensis, d-limonene (96%) and α-myrcene (2.79%); and in C. latifolia, d-limonene (51.64%), β-thujene (14.85%), β-pinene (12.79%) and γ-terpinene (12.8%). Antifungal properties were studied by agar diffusion method, where C. sinensis presented low activity and C. latifolia essential oil was effective to inhibit growing of C. lusitaniae and C. guilliermondii with IC50 of 6.90 and 2.92 μg respectively. The minimum inhibitory concentrations (MIC) for C. sinensis were in a range of 0.42–3.71 μg and for C. latifolia of 0.22–1.30 μg. Genotoxic evaluation was done by Ames test where none of the oils induced point mutations. Flow cytometry was used to measure toxicity in human oral epithelial cells, C. sinensis was not cytotoxic and C. latifolia was toxic at 21.8 μg. These properties might bestow different odontological applications to each essential oil. PMID:27137128

  8. Freezing Tolerance of Citrus, Spinach, and Petunia Leaf Tissue 1

    PubMed Central

    Yelenosky, George; Guy, Charles L.

    1989-01-01

    Seasonal variations in freezing tolerance, water content, water and osmotic potential, and levels of soluble sugars of leaves of field-grown Valencia orange (Citrus sinensis) trees were studied to determine the ability of citrus trees to cold acclimate under natural conditions. Controlled environmental studies of young potted citrus trees, spinach (Spinacia pleracea), and petunia (Petunia hybrids) were carried out to study the water relations during cold acclimation under less variable conditions. During the coolest weeks of the winter, leaf water content and osmotic potential of field-grown trees decreased about 20 to 25%, while soluble sugars increased by 100%. At the same time, freezing tolerance increased from lethal temperature for 50% (LT50) of −2.8 to −3.8°C. In contrast, citrus leaves cold acclimated at a constant 10°C in growth chambers were freezing tolerant to about −6°C. The calculated freezing induced cellular dehydration at the LT50 remained relatively constant for field-grown leaves throughout the year, but increased for leaves of plants cold acclimated at 10°C in a controlled environment. Spinach leaves cold acclimated at 5°C tolerated increased cellular dehydration compared to nonacclimated leaves. Cold acclimated petunia leaves increased in freezing tolerance by decreasing osmotic potential, but had no capacity to change cellular dehydration sensitivity. The result suggest that two cold acclimation mechanisms are involved in both citrus and spinach leaves and only one in petunia leaves. The common mechanism in all three species tested was a minor increase in tolerance (about −1°C) resulting from low temperature induced osmotic adjustment, and the second in citrus and spinach was a noncolligative mechanism that increased the cellular resistance to freeze hydration. PMID:16666563

  9. Effects of Citrus sinensis juice on blood pressure.

    PubMed

    Asgary, Sedigheh; Keshvari, Mahtab

    2013-01-01

    Citrus sinensis juice (CSJ) is a rich source of dietary flavonoids which reduce the risk of adverse cardiovascular events. This study aimed to examine the effects of four-week intake of natural and commercial orange (Citrus sinensis) juice on blood pressure in healthy volunteers. In this single-blind randomized crossover study, 22 healthy subjects (age: 18-59 years old) were included and randomly divided into two groups of 11. Group A consumed commercial CSJ during the first four-week period. After a two-week washout period, they consumed natural CSJ for another four weeks. The procedure was reversed in group B. The participants were asked to drink 500 ml/day of either natural or commercial CSJ twice a day with breakfast and dinner. The effects of orange juice on blood pressure were evaluated. After drinking commercial CSJ, diastolic and systolic blood pressure were significantly decreased (5.13%; P = 0.03 and -5.91%; P = 0.003, respectively). However, consumption of natural CSJ did not have significant effects on either diastolic or systolic blood pressure. Commercial CSJ significantly decreased blood pressure. Higher flavonoid, pectin, and essential oils content of concentrated products compared to natural juice might have been responsible for this finding. Nevertheless, further studies to focus on dose-response effects are recommended.

  10. Anti-inflammatory effects of Citrus sinensis L., Citrus paradisi L. and their combinations.

    PubMed

    Khan, Rafeeq Alam; Mallick, Neelam; Feroz, Zeeshan

    2016-05-01

    Citrus bioflavonoids embrace a wide group of phenolic compounds effecting the production and scavenging of reactive oxygen species and the processes relating free radical-mediated injury. Keeping in view of the antioxidant and anti-inflammatory properties of Citrus sinensis and Citrus paradisi, present study was undertaken to explore the effects of C. sinensis (orange juice) and C. paradisi (grapefruit juice) at three different doses alone and their two combinations with the objective to examine the effects of these compounds in an experimental model of rat colitis induced by trinitrobenzenesulphonic acid (TNBS). Hence biochemical parameters e.g. myeloperoxidase, alkaline phosphatase, C-reactive protein (CRP) and glutathione were assessed. Data entry and analysis was accomplished by Statistical Package for the Social Sciences version 17 and was presented as mean ± S.E.M with 95% confidence interval. Present result shows that these juices, mainly C. paradisi, may be efficacious for the management of inflammatory bowel disease. In acute colitis model, C. paradise encouraged a decrease in the extension of the lesion escorted by a decrease in the occurrence of diarrhea and reinstatement of the glutathione content. Related effects were produced by the administration of C. sinensis, which also prevented the myeloperoxidase and alkaline phosphatase actions in acute intestinal inflammatory process. The effect of the citrus juices on the inflammatory process may be associated to their antioxidant and anti-inflammatory properties, as revealed in present investigation. The favorable effects exerted were demonstrated both by histological and biochemical changes and were related with a progress in the colonic oxidative status.

  11. Antimutagenic and antioxidant activity of the essential oils of Citrus sinensis and Citrus latifolia.

    PubMed

    Toscano-Garibay, J D; Arriaga-Alba, M; Sánchez-Navarrete, J; Mendoza-García, M; Flores-Estrada, J J; Moreno-Eutimio, M A; Espinosa-Aguirre, J J; González-Ávila, M; Ruiz-Pérez, N J

    2017-09-13

    The essential oils of Citrus sinensis and Citrus latifolia showed antimycotic activity against Candida spp. isolated from the oral cavity; they are neither mutagenic on the Ames test nor cytotoxic. Their main components are R-(+)-limonene, β-thujene, α-myrcene and γ-terpinene. The aim of this work was to evaluate their antimutagenic and antioxidant capacities. Antimutagenic properties were evaluated against MNNG and ENNG on S. typhimurium TA100; against 2AA on strain TA98 and in front of 4NQO and NOR on strain TA102. Both were antimutagenic against MNNG (p < 0.001) but only C. latifolia was antimutagenic against ENNG (p < 0.001). Both presented antimutagenic activity against 2AA (p < 0.001). They were antioxidant against the ROS-generating compound 4NQO (p < 0.001) and the antibiotic NOR (p < 0.001). In the antioxidant evaluation, the activity in DPPH assay was in a range of 6-23% for C. sinensis and of 22-71% for C. latifolia. Both were antioxidant compared with BHT in β-carotene bleaching assay and were able to decreased apoptosis in HaCat cells stimulated with H2O2. The levels of intracellular superoxide ion were lower in the presence of both oils. In conclusion, the essential oils of C. sinensis and C. latifolia are antimutagenic against at least three types of mutagens and have antioxidants properties.

  12. Selection of reference genes for expression analyses of red-fleshed sweet orange (Citrus sinensis).

    PubMed

    Pinheiro, T T; Nishimura, D S; De Nadai, F B; Figueira, A; Latado, R R

    2015-12-28

    Red-fleshed oranges (Citrus sinensis) contain high levels of carotenoids and lycopene. The growing consumer demand for products with health benefits has increased interest in these types of Citrus cultivars as a potential source of nutraceuticals. However, little is known about the physiology of these cultivars under Brazilian conditions. Transcriptome and gene expression analyses are important tools in the breeding and management of red-fleshed sweet orange cultivars. Reverse transcription quantitative polymerase chain reaction is a method of quantifying gene expression, but various standardizations are required to obtain precise, accurate, and specific results. Among the standardizations required, the choice of suitable stable reference genes is fundamental. The objective of this study was to evaluate the stability of 11 candidate genes using various tissue and organ samples from healthy plants or leaves from citrus greening disease (Huanglongbing)-symptomatic plants of a Brazilian red-fleshed cultivar ('Sanguínea de Mombuca'), in order to select the most suitable reference gene for investigating gene expression under these conditions. geNorm and NormFinder identified genes that encoded translation initiation factor 3, ribosomal protein L35, and translation initiation factor 5A as the most stable genes under the biological conditions tested, and genes coding actin (ACT) and the subunit of the PSI reaction center subunit III were the least stable. Phosphatase, malate dehydrogenase, and ACT were the most stable genes in the leaf samples of infected plants.

  13. Effect of Nigerian citrus (Citrus sinensis Osbeck) honey on ethanol metabolism.

    PubMed

    Onyesom, I

    2004-12-01

    The effect of Nigerian citrus (Citrus sinensis Osbeck) honey on ethanol metabolism was tested using 45 consenting individuals in apparent good health and between the ages of 25 and 35 years. The subjects were moderate social drinkers matched in terms of body weight and build. The results obtained showed that on average, honey significantly (p < 0.05) increased the blood ethanol clearance rate by 68% and decreased the intoxication period by 43%, but insignificantly (p > 0.05) reduced the degree of intoxication by 9%. Honey could be a promising anti-intoxicating agent, but its long-term biochemical evaluation, possibly as a complement in the management of alcohol intoxication, deserves further study.

  14. Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves.

    PubMed

    Lu, Yi-Bin; Qi, Yi-Ping; Yang, Lin-Tong; Guo, Peng; Li, Yan; Chen, Li-Song

    2015-11-04

    MicroRNAs play important roles in the adaptive responses of plants to nutrient deficiencies. Most research, however, has focused on nitrogen (N), phosphorus (P), sulfur (S), copper (Cu) and iron (Fe) deficiencies, limited data are available on the differential expression of miRNAs and their target genes in response to deficiencies of other nutrient elements. In this study, we identified the known and novel miRNAs as well as the boron (B)-deficiency-responsive miRNAs from citrus leaves in order to obtain the potential miRNAs related to the tolerance of citrus to B-deficiency. Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were supplied every other day with B-deficient (0 μM H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. Thereafter, we sequenced two small RNA libraries from B-deficient and -sufficient (control) citrus leaves, respectively, using Illumina sequencing. Ninety one (83 known and 8 novel) up- and 81 (75 known and 6 novel) down-regulated miRNAs were isolated from B-deficient leaves. The great alteration of miRNA expression might contribute to the tolerance of citrus to B-deficiency. The adaptive responses of miRNAs to B-deficiency might related to several aspects: (a) attenuation of plant growth and development by repressing auxin signaling due to decreased TIR1 level and ARF-mediated gene expression by altering the expression of miR393, miR160 and miR3946; (b) maintaining leaf phenotype and enhancing the stress tolerance by up-regulating NACs targeted by miR159, miR782, miR3946 and miR7539; (c) activation of the stress responses and antioxidant system through down-regulating the expression of miR164, miR6260, miR5929, miR6214, miR3946 and miR3446; (d) decreasing the expression of major facilitator superfamily protein genes targeted by miR5037, thus lowering B export from plants. Also, B-deficiency-induced down-regulation of miR408 might play a role in plant tolerance to B-deficiency by regulating Cu homeostasis and enhancing

  15. Light controls phospholipase A2α and β gene expression in Citrus sinensis

    PubMed Central

    Liao, Hui-Ling; Burns, Jacqueline K.

    2010-01-01

    The low-molecular weight secretory phospholipase A2α (CssPLA2α) and β (CsPLA2β) cloned in this study exhibited diurnal rhythmicity in leaf tissue of Citrus sinensis. Only CssPLA2α displayed distinct diurnal patterns in fruit tissues. CssPLA2α and CsPLA2β diurnal expression exhibited periods of approximately 24 h; CssPLA2α amplitude averaged 990-fold in the leaf blades from field-grown trees, whereas CsPLA2β amplitude averaged 6.4-fold. Diurnal oscillation of CssPLA2α and CsPLA2β gene expression in the growth chamber experiments was markedly dampened 24 h after transfer to continuous light or dark conditions. CssPLA2α and CsPLA2β expressions were redundantly mediated by blue, green, red and red/far-red light, but blue light was a major factor affecting CssPLA2α and CsPLA2β expression. Total and low molecular weight CsPLA2 enzyme activity closely followed diurnal changes in CssPLA2α transcript expression in leaf blades of seedlings treated with low intensity blue light (24 μmol m−2 s−1). Compared with CssPLA2α basal expression, CsPLA2β expression was at least 10-fold higher. Diurnal fluctuation and light regulation of PLA2 gene expression and enzyme activity in citrus leaf and fruit tissues suggests that accompanying diurnal changes in lipophilic second messengers participate in the regulation of physiological processes associated with phospholipase A2 action. PMID:20388744

  16. Light controls phospholipase A2alpha and beta gene expression in Citrus sinensis.

    PubMed

    Liao, Hui-Ling; Burns, Jacqueline K

    2010-05-01

    The low-molecular weight secretory phospholipase A2alpha (CssPLA2alpha) and beta (CsPLA2beta) cloned in this study exhibited diurnal rhythmicity in leaf tissue of Citrus sinensis. Only CssPLA2alpha displayed distinct diurnal patterns in fruit tissues. CssPLA2alpha and CsPLA2beta diurnal expression exhibited periods of approximately 24 h; CssPLA2alpha amplitude averaged 990-fold in the leaf blades from field-grown trees, whereas CsPLA2beta amplitude averaged 6.4-fold. Diurnal oscillation of CssPLA2alpha and CsPLA2beta gene expression in the growth chamber experiments was markedly dampened 24 h after transfer to continuous light or dark conditions. CssPLA2alpha and CsPLA2beta expressions were redundantly mediated by blue, green, red and red/far-red light, but blue light was a major factor affecting CssPLA2alpha and CsPLA2beta expression. Total and low molecular weight CsPLA2 enzyme activity closely followed diurnal changes in CssPLA2alpha transcript expression in leaf blades of seedlings treated with low intensity blue light (24 micromol m(-2) s(-1)). Compared with CssPLA2alpha basal expression, CsPLA2beta expression was at least 10-fold higher. Diurnal fluctuation and light regulation of PLA2 gene expression and enzyme activity in citrus leaf and fruit tissues suggests that accompanying diurnal changes in lipophilic second messengers participate in the regulation of physiological processes associated with phospholipase A2 action.

  17. Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. [Poncirus trifoliata L. Raf. x Citrus sinensis L. Osbeck; Glomus intraradices Schenk and Smith

    SciTech Connect

    Douds, D.D. Jr.; Johnson, C.R.; Koch, K.E. )

    1988-02-01

    Translocation of {sup 14}C-photosynthates to mycorrhizal (++), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata (L.) Raf. {times} Citrus sinensis (L.) Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to {sup 14}CO{sub 2} for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves were colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (++) versus (00) plants. In low nutrient media, roots of (0+) and (++) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (++) plants. Root systems of (++) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the {sup 14}C-photosynthate to the mycorrhiza as did (0+) root systems.

  18. Characterization of three terpenoid glycosyltransferase genes in 'Valencia' sweet orange (Citrus sinensis L. Osbeck).

    PubMed

    Fan, Jing; Chen, Chunxian; Yu, Qibin; Li, Zheng-Guo; Gmitter, Frederick G

    2010-10-01

    Three putative terpenoid UDP-glycosyltransferase (UGT) genes, designated CsUGT1, CsUGT2, and CsUGT3, were isolated and characterized in 'Valencia' sweet orange (Citrus sinensis L. Osbeck). CsUGT1 consisted of 1493 nucleotides with an open reading frame encoding 492 amino acids, CsUGT2 consisted of 1727 nucleotides encoding 504 amino acids, and CsUGT3 consisted of 1705 nucleotides encoding 468 amino acids. CsUGT3 had a 145 bp intron at 730-874, whereas CsUGT1 and CsUGT2 had none. The three deduced glycosyltransferase proteins had a highly conserved plant secondary product glycosyltransferase motif in the C terminus. Phylogenetic analysis showed that CsUGT1 and CsUGT3 were classified into group L of glycosyltransferase family 1, and CsUGT2 was classified into group D. Through Southern blotting analysis, CsUGT1 was found to have two copies in the sweet orange genome, whereas CsUGT2 and CsUGT3 had at least seven and nine copies, respectively. CsUGT1, CsUGT2, and CsUGT3 were constitutively expressed in leaf, flower, and fruit tissues. The results facilitate further investigation of the function of terpenoid glycosyltransferases in citrus and the biosynthesis of terpenoid glycosides in vitro.

  19. [Identification of different Citrus sinensis (L.) Osbeck trees varieties using Fourier transform infrared spectroscopy and hierarchical cluster analysis].

    PubMed

    Yi, Shi-Lai; Deng, Lie; He, Shao-Lan; Shi, You-Ming; Zheng, Yong-Qiang; Lu, Qiang; Xie, Rang-Jin; Wei, Xian-Guoi; Li, Song-Wei; Jian, Shui-Xian

    2012-11-01

    Researched on diversity of the spring leaf samples of seven different Citrus sinensis (L.) Osbeck varieties by Fourier transform infrared (FTIR) spectroscopy technology, the results showed that the Fourier transform infrared spectra of seven varieties leaves was composited by the absorption band of cellulose and polysaccharide mainly, the wave number of characteristics absorption peaks were similar at their FTIR spectra. However, there were some differences in shape of peaks and relatively absorption intensity. The conspicuous difference was presented at the region between 1 500 and 700 cm(-1) by second derivative spectra. Through the hierarchical cluster analysis (HCA) of second derivative spectra between 1 500 and 700 cm(-1), the results showed that the clustering of the different varieties of Citrus sinensis (L.) Osbeck varieties was classification according to genetic relationship. The results showed that FTIR spectroscopy combined with hierarchical cluster analysis could be used to identify and classify of citrus varieties rapidly, it was an extension method to study on early leaves of varieties orange seedlings.

  20. Antioxidant activity of oils extracted from orange (Citrus sinensis) seeds.

    PubMed

    Jorge, Neuza; Silva, Ana Carolina da; Aranha, Caroline P M

    2016-05-31

    Due to the increasing production of food in the world with consequent increase of the production of waste, the importance of developing researches for its use is noticed. Thus, the interest in vegetable oils with bioactive compounds, such as the ones extracted from fruit seeds, is growing. Therefore, the present study aims to characterize the oils extracted from seeds of Hamlin, Natal, Pera-rio and Valencia orange varieties (Citrus sinensis), as to the levels of total carotenoids, total phenolic compounds, tocopherols and phytosterols, as well as to determine their antioxidant activity. The orange seed oils presented important content of total carotenoids (19.01 mg/kg), total phenolic compounds (4.43 g/kg), α-tocopherol (135.65 mg/kg) and phytosterols (1304.2 mg/kg). The antioxidant activity ranged from 56.0% (Natal) to 70.2% (Pera-rio). According to the results it is possible to conclude that the orange seed oils can be used as specialty oils in diet, since they contain considerable amounts of bioactive compounds and antioxidants.

  1. Characterization of Abscisic Acid-Induced Ethylene Production in Citrus Leaf and Tomato Fruit Tissues 1

    PubMed Central

    Riov, Joseph; Dagan, Eliahu; Goren, Raphael; Yang, Shang Fa

    1990-01-01

    Abscisic acid (ABA) significantly stimulated ethylene production in citrus (Citrus sinensis [L.] Osbeck, cv Shamouti orange) leaf discs. The extent of stimulation was dependent upon the concentration of ABA (0.1-1 milimolar) and the duration of treatment (15-300 minutes). Aging the discs before applying ABA increased ABA-induced ethylene production due to enhancement of both ethylene-forming enzyme activity and the responsiveness of ABA. Discs excised from mature leaves were much more responsive to ABA than discs excised from young or senescing leaves. ABA stimulated ethylene production shortly after application, suggesting that ABA does not enhance ethylene production via the acceleration of senescence. The stimulating effect of ABA on ethylene production resulted mainly from the enhancement of 1-aminocylopropane-1-carboxylic acid synthesis. Stimulation of ethylene production by ABA in intact citrus leaves and tomato (Lycopersicon esculentum Mill., cv Castlemart) fruit was small but could be increased by various forms of wounding. PMID:16667264

  2. Juice components of a new pigmented citrus hybrid Citrus sinensis (L.) Osbeck x Citrus clementina Hort. ex Tan.

    PubMed

    Rapisarda, Paolo; Pannuzzo, Paolo; Romano, Gabriella; Russo, Giuseppe

    2003-03-12

    Fruit juice of a new pigmented citrus hybrid named Omo-31 and those of its parents clementine cv. Oroval (Citrus clementina Hort. ex Tan.) and Moro orange [Citrus sinensis (L.) Osbeck] were analyzed during fruit maturation to determine juice yield, total soluble solids (TSS), total acidity (TA), TSS/TA ratio (classical parameters of quality), and potential health beneficial components, such as vitamin C, flavanones, anthocyanins, and phenolic acids. Results showed that juice yield, TA, TSS, and TSS/TA ratio values of Omo-31 were similar to those of the Moro orange. Vitamin C content of the new hybrid was slightly higher than that of clementine and lower than that of the Moro orange, but at maturity stage no differences were observed among the three genotypes. The phenolic compounds content of the new hybrid and those of the parents and their evolution during maturation were studied. At maturity stage the amount of anthocyanins, flavanones, and hydroxycinnamic acids in Omo-31 was found to be notably higher than those of the parents. The high level of antioxidant substances makes this new fruit important for its nutritional benefits.

  3. Citrus sinensis annotation project (CAP): a comprehensive database for sweet orange genome.

    PubMed

    Wang, Jia; Chen, Dijun; Lei, Yang; Chang, Ji-Wei; Hao, Bao-Hai; Xing, Feng; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Chen, Ling-Ling

    2014-01-01

    Citrus is one of the most important and widely grown fruit crop with global production ranking firstly among all the fruit crops in the world. Sweet orange accounts for more than half of the Citrus production both in fresh fruit and processed juice. We have sequenced the draft genome of a double-haploid sweet orange (C. sinensis cv. Valencia), and constructed the Citrus sinensis annotation project (CAP) to store and visualize the sequenced genomic and transcriptome data. CAP provides GBrowse-based organization of sweet orange genomic data, which integrates ab initio gene prediction, EST, RNA-seq and RNA-paired end tag (RNA-PET) evidence-based gene annotation. Furthermore, we provide a user-friendly web interface to show the predicted protein-protein interactions (PPIs) and metabolic pathways in sweet orange. CAP provides comprehensive information beneficial to the researchers of sweet orange and other woody plants, which is freely available at http://citrus.hzau.edu.cn/.

  4. New excised-leaf assay method to test inoculativity of Asian citrus psyllid (Hemiptera: Psyllidae) with Candidatus Liberibacter asiaticus associated with citrus huanglongbing disease.

    PubMed

    Ammar, El-Desouky; Walter, Abigail J; Hall, David G

    2013-02-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the primary vector of Candidatus Liberibacter asiaticus (Las) associated with huanglongbing, or citrus greening, the most devastating citrus (Citrus spp.) disease worldwide. Here, we developed a new "excised-leaf assay" that can speed up Las-inoculativity tests on Asian citrus psyllid from the current 3-12 mo (when using whole citrus seedlings for inoculation) to only 2-3 wk. Young adults of Asian citrus psyllid that had been reared on Las-infected plants were caged on excised healthy sweet orange [Citrus sinensis (L.) Osbeck] leaves for a 1-2-wk inoculation access periods (IAP), and then both psyllids and leaves were tested later by quantitative polymerase chain reaction (PCR). When single adults were tested per leaf, percentages of Las-positive leaves averaged 2-6% by using HLBaspr primers and 10-20% by using the more sensitive LJ900 primers. Higher proportions of Las-positive leaves were obtained with 1) higher densities of inoculating psyllids (5-10 adults per leaf), 2) longer IAPs, and 3) incubation of leaves for 1 wk postinoculation before PCR. Logistic regression analysis indicated a positive correlation between Las titer in Asian citrus psyllid adults tested singly and the probability of detecting Las in the inoculated leaves, correlations that can be very useful in epidemiological studies. Comparison between excised leaves and whole seedlings, inoculated consecutively for 1 wk each by one or a group of psyllids, indicated no significant difference between Las detection in excised leaves or whole plants. This new excised-leaf assay method saves considerable time, materials, and greenhouse space, and it may enhance vector relation and epidemiological studies on Las and potentially other Liberibacter spp. associated with huanglongbing disease.

  5. Draft Genome Sequence of Methylobacterium mesophilicum Strain SR1.6/6, Isolated from Citrus sinensis

    PubMed Central

    Marinho Almeida, Diogo; Dini-Andreote, Francisco; Camargo Neves, Aline Aparecida; Jucá Ramos, Rommel Thiago; Andreote, Fernando Dini; Carneiro, Adriana Ribeiro; Oliveira de Souza Lima, André; Caracciolo Gomes de Sá, Pablo Henrique; Ribeiro Barbosa, Maria Silvanira

    2013-01-01

    Methylobacterium mesophilicum strain SR1.6/6 is an endophytic bacterium isolated from a surface-sterilized Citrus sinensis branch. Ecological and biotechnological aspects of this bacterium, such as the genes involved in its association with the host plant and the primary oxidation of methanol, were annotated in the draft genome. PMID:23788544

  6. Antimicrobial effects of Citrus sinensis peel extracts against dental caries bacteria: An in vitro study

    PubMed Central

    Shetty, Sapna B.; Mahin-Syed-Ismail, Prabu; Varghese, Shaji; Thomas-George, Bibin; Kandathil- Thajuraj, Pathinettam; Baby, Deepak; Haleem, Shaista; Sreedhar, Sreeja

    2016-01-01

    Background Ethnomedicine is gaining admiration since years but still there is abundant medicinal flora which is unrevealed through research. The study was conducted to assess the in vitro antimicrobial potential and also determine the minimum inhibitory concentration (MIC) of Citrus sinensis peel extracts with a view of searching a novel extract as a remedy for dental caries pathogens. Material and Methods Aqueous and ethanol (cold and hot) extracts prepared from peel of Citrus sinensis were screened for in vitro antimicrobial activity against Streptococcus mutans and Lactobacillus acidophilus, using agar well diffusion method. The lowest concentration of every extract considered as the minimal inhibitory concentration (MIC) values were determined for both test organisms. One way ANOVA with Post Hoc Bonferroni test was applied for statistical analysis. Confidence level and level of significance were set at 95% and 5% respectively. Results Dental caries pathogens were inhibited most by hot ethanolic extract of Citrus sinensispeel followed by cold ethanolic extract. Aqueous extracts were effective at very high concentrations. Minimum inhibitory concentration of hot and cold ethanolic extracts of Citrus sinensis peel ranged between 12-15 mg/ml against both the dental caries pathogens. Conclusions Citrus sinensispeels extract was found to be effective against dental caries pathogens and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy. Key words:Agar well diffusion, antimicrobial activity, dental caries, Streptococcus mutans, Lactobacillus acidophilus. PMID:26855710

  7. Antimicrobial effects of Citrus sinensis peel extracts against dental caries bacteria: An in vitro study.

    PubMed

    Shetty, Sapna B; Mahin-Syed-Ismail, Prabu; Varghese, Shaji; Thomas-George, Bibin; Kandathil-Thajuraj, Pathinettam; Baby, Deepak; Haleem, Shaista; Sreedhar, Sreeja; Devang-Divakar, Darshan

    2016-02-01

    Ethnomedicine is gaining admiration since years but still there is abundant medicinal flora which is unrevealed through research. The study was conducted to assess the in vitro antimicrobial potential and also determine the minimum inhibitory concentration (MIC) of Citrus sinensis peel extracts with a view of searching a novel extract as a remedy for dental caries pathogens. Aqueous and ethanol (cold and hot) extracts prepared from peel of Citrus sinensis were screened for in vitro antimicrobial activity against Streptococcus mutans and Lactobacillus acidophilus, using agar well diffusion method. The lowest concentration of every extract considered as the minimal inhibitory concentration (MIC) values were determined for both test organisms. One way ANOVA with Post Hoc Bonferroni test was applied for statistical analysis. Confidence level and level of significance were set at 95% and 5% respectively. Dental caries pathogens were inhibited most by hot ethanolic extract of Citrus sinensispeel followed by cold ethanolic extract. Aqueous extracts were effective at very high concentrations. Minimum inhibitory concentration of hot and cold ethanolic extracts of Citrus sinensis peel ranged between 12-15 mg/ml against both the dental caries pathogens. Citrus sinensispeels extract was found to be effective against dental caries pathogens and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy. Agar well diffusion, antimicrobial activity, dental caries, Streptococcus mutans, Lactobacillus acidophilus.

  8. Huanglongbing increases Diplodia Stem End Rot in Citrus sinensis

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB), one of the most devastating diseases of citrus is caused by the a-Proteobacteria Candidatus Liberibacter. Diplodia natalensis Pole-Evans is a fungal pathogen which has been known to cause a postharvest stem-end rot of citrus, the pathogen infects citrus fruit under the calyx, an...

  9. Does citrus leaf miner impair hydraulics and fitness of citrus host plants?

    PubMed

    Raimondo, Fabio; Trifilò, Patrizia; Gullo, Maria A Lo

    2013-12-01

    Gas exchange and hydraulic features were measured in leaves of three different Citrus species (Citrus aurantium L., Citrus limon L., Citrus  ×  paradisii Macfad) infested by Phyllocnistis citrella Staiton, with the aim to quantify the impact of this pest on leaf hydraulics and, ultimately, on plant fitness. Infested leaves were characterized by the presence on the leaf blade of typical snake-shaped mines and, in some cases, of a crumpled leaf blade. Light microscopy showed that leaf crumpling was induced by damage to the cuticular layer. In all three Citrus species examined: (a) the degree of infestation did not exceed 10% of the total surface area of infested plants; (b) control and infested leaves showed similar values of minimum diurnal leaf water potential, leaf hydraulic conductance and functional vein density; and (c) maximum diurnal values of stomatal conductance to water vapour, transpiration rate and photosynthetic rate (An) were similar in both control leaves and the green areas of infested leaves. A strong reduction of An was recorded only in mined leaf areas. Our data suggest that infestation with P. citrella does not cause conspicuous plant productivity reductions in young Citrus plants, at least not in the three Citrus species studied here.

  10. Genome Wide Characterization of Short Tandem Repeat Markers in Sweet Orange (Citrus sinensis)

    PubMed Central

    Biswas, Manosh Kumar; Xu, Qiang; Mayer, Christoph; Deng, Xiuxin

    2014-01-01

    Sweet orange (Citrus sinensis) is one of the major cultivated and most-consumed citrus species. With the goal of enhancing the genomic resources in citrus, we surveyed, developed and characterized microsatellite markers in the ≈347 Mb sequence assembly of the sweet orange genome. A total of 50,846 SSRs were identified with a frequency of 146.4 SSRs/Mbp. Dinucleotide repeats are the most frequent repeat class and the highest density of SSRs was found in chromosome 4. SSRs are non-randomly distributed in the genome and most of the SSRs (62.02%) are located in the intergenic regions. We found that AT-rich SSRs are more frequent than GC-rich SSRs. A total number of 21,248 SSR primers were successfully developed, which represents 89 SSR markers per Mb of the genome. A subset of 950 developed SSR primer pairs were synthesized and tested by wet lab experiments on a set of 16 citrus accessions. In total we identified 534 (56.21%) polymorphic SSR markers that will be useful in citrus improvement. The number of amplified alleles ranges from 2 to 12 with an average of 4 alleles per marker and an average PIC value of 0.75. The newly developed sweet orange primer sequences, their in silico PCR products, exact position in the genome assembly and putative function are made publicly available. We present the largest number of SSR markers ever developed for a citrus species. Almost two thirds of the markers are transferable to 16 citrus relatives and may be used for constructing a high density linkage map. In addition, they are valuable for marker-assisted selection studies, population structure analyses and comparative genomic studies of C. sinensis with other citrus related species. Altogether, these markers provide a significant contribution to the citrus research community. PMID:25148383

  11. Genome wide characterization of short tandem repeat markers in sweet orange (Citrus sinensis).

    PubMed

    Biswas, Manosh Kumar; Xu, Qiang; Mayer, Christoph; Deng, Xiuxin

    2014-01-01

    Sweet orange (Citrus sinensis) is one of the major cultivated and most-consumed citrus species. With the goal of enhancing the genomic resources in citrus, we surveyed, developed and characterized microsatellite markers in the ≈347 Mb sequence assembly of the sweet orange genome. A total of 50,846 SSRs were identified with a frequency of 146.4 SSRs/Mbp. Dinucleotide repeats are the most frequent repeat class and the highest density of SSRs was found in chromosome 4. SSRs are non-randomly distributed in the genome and most of the SSRs (62.02%) are located in the intergenic regions. We found that AT-rich SSRs are more frequent than GC-rich SSRs. A total number of 21,248 SSR primers were successfully developed, which represents 89 SSR markers per Mb of the genome. A subset of 950 developed SSR primer pairs were synthesized and tested by wet lab experiments on a set of 16 citrus accessions. In total we identified 534 (56.21%) polymorphic SSR markers that will be useful in citrus improvement. The number of amplified alleles ranges from 2 to 12 with an average of 4 alleles per marker and an average PIC value of 0.75. The newly developed sweet orange primer sequences, their in silico PCR products, exact position in the genome assembly and putative function are made publicly available. We present the largest number of SSR markers ever developed for a citrus species. Almost two thirds of the markers are transferable to 16 citrus relatives and may be used for constructing a high density linkage map. In addition, they are valuable for marker-assisted selection studies, population structure analyses and comparative genomic studies of C. sinensis with other citrus related species. Altogether, these markers provide a significant contribution to the citrus research community.

  12. Proteomic analysis of Citrus sinensis roots and leaves in response to long-term magnesium-deficiency.

    PubMed

    Peng, Hao-Yang; Qi, Yi-Ping; Lee, Jinwook; Yang, Lin-Tong; Guo, Peng; Jiang, Huan-Xin; Chen, Li-Song

    2015-03-31

    Magnesium (Mg)-deficiency is frequently observed in Citrus plantations and is responsible for the loss of productivity and poor fruit quality. Knowledge on the effects of Mg-deficiency on upstream targets is scarce. Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were irrigated with Mg-deficient (0 mM MgSO4) or Mg-sufficient (1 mM MgSO4) nutrient solution for 16 weeks. Thereafter, we first investigated the proteomic responses of C. sinensis roots and leaves to Mg-deficiency using two-dimensional electrophoresis (2-DE) in order to (a) enrich our understanding of the molecular mechanisms of plants to deal with Mg-deficiency and (b) understand the molecular mechanisms by which Mg-deficiency lead to a decrease in photosynthesis. Fifty-nine upregulated and 31 downregulated protein spots were isolated in Mg-deficient leaves, while only 19 upregulated and 12 downregulated protein spots in Mg-deficient roots. Many Mg-deficiency-responsive proteins were involved in carbohydrate and energy metabolism, followed by protein metabolism, stress responses, nucleic acid metabolism, cell wall and cytoskeleton metabolism, lipid metabolism and cell transport. The larger changes in leaf proteome versus root one in response to Mg-deficiency was further supported by our observation that total soluble protein concentration was decreased by Mg-deficiency in leaves, but unaffected in roots. Mg-deficiency had decreased levels of proteins [i.e. ribulose-1,5-bisphosphate carboxylase (Rubisco), rubisco activase, oxygen evolving enhancer protein 1, photosynthetic electron transfer-like protein, ferredoxin-NADP reductase (FNR), aldolase] involved in photosynthesis, thus decreasing leaf photosynthesis. To cope with Mg-deficiency, C. sinensis leaves and roots might respond adaptively to Mg-deficiency through: improving leaf respiration and lowering root respiration, but increasing (decreasing) the levels of proteins related to ATP synthase in roots (leaves); enhancing the levels of proteins

  13. Structural characterization of the thermally-tolerant pectin methylesterase purified from Citrus sinensis fruit and its gene sequence

    USDA-ARS?s Scientific Manuscript database

    Despite the longstanding importance for the thermally-tolerant pectin methylesterase (TT-PME) activity in citrus juice processing and product quality, unequivocal identification of the protein and its corresponding gene has remained elusive. We purified TT-PME from sweet orange [Citrus sinensis (L.)...

  14. Alternative oxidase (AOX) constitutes a small family of proteins in Citrus clementina and Citrus sinensis L. Osb.

    PubMed

    Araújo Castro, Jacqueline; Gomes Ferreira, Monique Drielle; Santana Silva, Raner José; Andrade, Bruno Silva; Micheli, Fabienne

    2017-01-01

    The alternative oxidase (AOX) protein is present in plants, fungi, protozoa and some invertebrates. It is involved in the mitochondrial respiratory chain, providing an alternative route for the transport of electrons, leading to the reduction of oxygen to form water. The present study aimed to characterize the family of AOX genes in mandarin (Citrus clementina) and sweet orange (Citrus sinensis) at nucleotide and protein levels, including promoter analysis, phylogenetic analysis and C. sinensis gene expression. This study also aimed to do the homology modeling of one AOX isoform (CcAOXd). Moreover, the molecular docking of the CcAOXd protein with the ubiquinone (UQ) was performed. Four AOX genes were identified in each citrus species. These genes have an open reading frame (ORF) ranging from 852 bp to 1150 bp and a number of exons ranging from 4 to 9. The 1500 bp-upstream region of each AOX gene contained regulatory cis-elements related to internal and external response factors. CsAOX genes showed a differential expression in citrus tissues. All AOX proteins were predicted to be located in mitochondria. They contained the conserved motifs LET, NERMHL, LEEEA and RADE-H as well as several putative post-translational modification sites. The CcAOXd protein was modeled by homology to the AOX of Trypanosona brucei (45% of identity). The 3-D structure of CcAOXd showed the presence of two hydrophobic helices that could be involved in the anchoring of the protein in the inner mitochondrial membrane. The active site of the protein is located in a hydrophobic environment deep inside the AOX structure and contains a diiron center. The molecular docking of CcAOXd with UQ showed that the binding site is a recessed pocket formed by the helices and submerged in the membrane. These data are important for future functional studies of citrus AOX genes and/or proteins, as well as for biotechnological approaches leading to AOX inhibition using UQ homologs.

  15. Alternative oxidase (AOX) constitutes a small family of proteins in Citrus clementina and Citrus sinensis L. Osb

    PubMed Central

    Araújo Castro, Jacqueline; Gomes Ferreira, Monique Drielle; Santana Silva, Raner José; Andrade, Bruno Silva

    2017-01-01

    The alternative oxidase (AOX) protein is present in plants, fungi, protozoa and some invertebrates. It is involved in the mitochondrial respiratory chain, providing an alternative route for the transport of electrons, leading to the reduction of oxygen to form water. The present study aimed to characterize the family of AOX genes in mandarin (Citrus clementina) and sweet orange (Citrus sinensis) at nucleotide and protein levels, including promoter analysis, phylogenetic analysis and C. sinensis gene expression. This study also aimed to do the homology modeling of one AOX isoform (CcAOXd). Moreover, the molecular docking of the CcAOXd protein with the ubiquinone (UQ) was performed. Four AOX genes were identified in each citrus species. These genes have an open reading frame (ORF) ranging from 852 bp to 1150 bp and a number of exons ranging from 4 to 9. The 1500 bp-upstream region of each AOX gene contained regulatory cis-elements related to internal and external response factors. CsAOX genes showed a differential expression in citrus tissues. All AOX proteins were predicted to be located in mitochondria. They contained the conserved motifs LET, NERMHL, LEEEA and RADE-H as well as several putative post-translational modification sites. The CcAOXd protein was modeled by homology to the AOX of Trypanosona brucei (45% of identity). The 3-D structure of CcAOXd showed the presence of two hydrophobic helices that could be involved in the anchoring of the protein in the inner mitochondrial membrane. The active site of the protein is located in a hydrophobic environment deep inside the AOX structure and contains a diiron center. The molecular docking of CcAOXd with UQ showed that the binding site is a recessed pocket formed by the helices and submerged in the membrane. These data are important for future functional studies of citrus AOX genes and/or proteins, as well as for biotechnological approaches leading to AOX inhibition using UQ homologs. PMID:28459876

  16. Antimicrobial effects of citrus sinensis peel extracts against periodontopathic bacteria: an in vitro study.

    PubMed

    Hussain, Khaja Amjad; Tarakji, Bassel; Kandy, Binu Purushothaman Panar; John, Jacob; Mathews, Jacob; Ramphul, Vandana; Divakar, Darshan Devang

    2015-01-01

    Use of plant extracts and phytochemicals with known antimicrobial properties may have great significance in therapeutic treatments. To assess the in vitro antimicrobial potential and also determine the minimum inhibitory concentration (MIC) of Citrus sinensis peel extracts with a view of searching a novel extract as a remedy for periodontal pathogens. Aqueous and ethanol (cold and hot) extracts prepared from peel of Citrus sinensis were screened for in vitro antimicrobial activity against Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia, using agar well diffusion method. The lowest concentration of every extract considered as the minimal inhibitory concentration (MIC) values were determined for both test organisms. Confidence level and level of significance were set at 95% and 5% respectively. Prevotella intermedia and Porphyromonas gingivalis were resistant to aqueous extracts while Aggregatibacter actinomycetemcomitans was inhibited at very high cncentrations. Hot ethanolic extracts showed significantly higher zone of inhibition than cold ethanolic extract. Minimum inhibitory concentration of hot and cold ethanolic extracts of Citrus sinensis peel ranged between 12-15 mg/ml against all three periodontal pathogens. Both extracts were found sensitive and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy.

  17. Expression patterns of flowering genes in leaves of 'Pineapple' sweet orange [Citrus sinensis (L.) Osbeck] and pummelo (Citrus grandis Osbeck).

    PubMed

    Pajon, Melanie; Febres, Vicente J; Moore, Gloria A

    2017-08-30

    In citrus the transition from juvenility to mature phase is marked by the capability of a tree to flower and fruit consistently. The long period of juvenility in citrus severely impedes the use of genetic based strategies to improve fruit quality, disease resistance, and responses to abiotic environmental factors. One of the genes whose expression signals flower development in many plant species is FLOWERING LOCUS T (FT). In this study, gene expression levels of flowering genes CiFT1, CiFT2 and CiFT3 were determined using reverse-transcription quantitative real-time PCR in citrus trees over a 1 year period in Florida. Distinct genotypes of citrus trees of different ages were used. In mature trees of pummelo (Citrus grandis Osbeck) and 'Pineapple' sweet orange (Citrus sinensis (L.) Osbeck) the expression of all three CiFT genes was coordinated and significantly higher in April, after flowering was over, regardless of whether they were in the greenhouse or in the field. Interestingly, immature 'Pineapple' seedlings showed significantly high levels of CiFT3 expression in April and June, while CiFT1 and CiFT2 were highest in June, and hence their expression induction was not simultaneous as in mature plants. In mature citrus trees the induction of CiFTs expression in leaves occurs at the end of spring and after flowering has taken place suggesting it is not associated with dormancy interruption and further flower bud development but is probably involved with shoot apex differentiation and flower bud determination. CiFTs were also seasonally induced in immature seedlings, indicating that additional factors must be suppressing flowering induction and their expression has other functions.

  18. Validation and characterization of Citrus sinensis microRNAs and their target genes.

    PubMed

    Song, Changnian; Yu, Mingliang; Han, Jian; Wang, Chen; Liu, Hong; Zhang, Yanping; Fang, Jinggui

    2012-05-15

    MicroRNAs play vital role in plant growth and development by changeable expression of their target genes with most plant microRNAs having perfect or near-perfect complementarities with their target genes but miRNAs in Citrus sinensis (csi-miRNAs) and their function have not been widely studied. In this study, 15 potential microRNAs in Citrus sinensis (csi-miRNAs) were identified and bioinformatically validated using miR-RACE, a newly developed method for determination of miRNAs prediction computationally. The expression of these fifteen C. sinensis miRNAs can be detected in leaves, stems, flowers and fruits of C. sinensis by QRT-PCR with some of them showed tissue-specific expression. Six potential target genes were identified for six csi-miRNAs and also experimentally verified by Poly (A) polymerase -mediated 3' rapid amplification of cDNA ends (PPM-RACE) and RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-RACE) which mapped the cleavage site of target mRNAs and detected expression patterns of cleaved fragments that indicate the regulatory function of the miRNAs on their target genes. Our results confirm that small RNA-mediated regulation whereby all csi-miRNAs regulate their target genes by degradation.

  19. Citrus sinensis Annotation Project (CAP): A Comprehensive Database for Sweet Orange Genome

    PubMed Central

    Chang, Ji-Wei; Hao, Bao-Hai; Xing, Feng; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Chen, Ling-Ling

    2014-01-01

    Citrus is one of the most important and widely grown fruit crop with global production ranking firstly among all the fruit crops in the world. Sweet orange accounts for more than half of the Citrus production both in fresh fruit and processed juice. We have sequenced the draft genome of a double-haploid sweet orange (C. sinensis cv. Valencia), and constructed the Citrus sinensis annotation project (CAP) to store and visualize the sequenced genomic and transcriptome data. CAP provides GBrowse-based organization of sweet orange genomic data, which integrates ab initio gene prediction, EST, RNA-seq and RNA-paired end tag (RNA-PET) evidence-based gene annotation. Furthermore, we provide a user-friendly web interface to show the predicted protein-protein interactions (PPIs) and metabolic pathways in sweet orange. CAP provides comprehensive information beneficial to the researchers of sweet orange and other woody plants, which is freely available at http://citrus.hzau.edu.cn/. PMID:24489955

  20. Evaluation of resistance to asiatic citrus canker among selections of pera sweet orange (Citrus sinensis)

    USDA-ARS?s Scientific Manuscript database

    Asiatic citrus canker (ACC, caused by the bacterium Xanthomonas citri subsp. citri) is a destructive disease of citrus in Brazil and in several other citrus-producing countries. ACC management is problematic, and bactericides such as copper can be reasonably efficacious but do not completely control...

  1. Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel.

    PubMed

    Li, Shiming; Lo, Chih-Yu; Ho, Chi-Tang

    2006-06-14

    Polymethoxyflavones (PMFs) from citrus genus have been of particular interest because of their broad spectrum of biological activities, including antiinflammatory, anticarcinogenic, and antiatherogenic properties. There have been increasing interests in the exploration of health beneficial properties of PMFs in citrus fruits. Therefore, the isolation and characterization of PMFs from sweet orange (Citrus sinensis) peel will lead to new applications of the byproducts from orange juice processes and other orange consumption in nutraceutical and pharmaceutical products. In our study, eight hydroxylated PMFs, six PMFs, one polymethoxyflavanone, one hydroxylated polymethoxyflavanone, and two hydroxylated polymethoxychalcones were isolated from sweet orange peel and their structures were elucidated by various MS, UV, and different NMR techniques. Some of the hydroxylated PMFs and chalcones are newly isolated from sweet orange peel.

  2. MicroRNA Regulatory Mechanisms on Citrus sinensis leaves to Magnesium-Deficiency

    PubMed Central

    Ma, Cui-Lan; Qi, Yi-Ping; Liang, Wei-Wei; Yang, Lin-Tong; Lu, Yi-Bin; Guo, Peng; Ye, Xin; Chen, Li-Song

    2016-01-01

    Magnesium (Mg)-deficiency, which affects crop productivity and quality, widespreadly exists in many agricultural crops, including citrus. However, very limited data are available on Mg-deficiency-responsive microRNAs (miRNAs) in higher plants. Using Illumina sequencing, we isolated 75 (73 known and 2 novel) up- and 71 (64 known and 7 novel) down-regulated miRNAs from Mg-deficient Citrus sinensis leaves. In addition to the remarkable metabolic flexibility as indicated by the great alteration of miRNA expression, the adaptive responses of leaf miRNAs to Mg-deficiency might also involve the following several aspects: (a) up-regulating stress-related genes by down-regulating miR164, miR7812, miR5742, miR3946, and miR5158; (b) enhancing cell transport due to decreased expression of miR3946 and miR5158 and increased expression of miR395, miR1077, miR1160, and miR8019; (c) activating lipid metabolism-related genes by repressing miR158, miR5256, and miR3946; (d) inducing cell wall-related gene expansin 8A by repressing miR779; and (e) down-regulating the expression of genes involved in the maintenance of S, K and Cu by up-regulating miR395 and miR6426. To conclude, we isolated some new known miRNAs (i.e., miR7812, miR8019, miR6218, miR1533, miR6426, miR5256, miR5742, miR5561, miR5158, and miR5818) responsive to nutrient deficiencies and found some candidate miRNAs that might contribute to Mg-deficiency tolerance. Therefore, our results not only provide novel information about the responses of plant to Mg-deficiency, but also are useful for obtaining the key miRNAs for plant Mg-deficiency tolerance. PMID:26973661

  3. Genome-wide comparative analysis reveals similar types of NBS genes in hybrid Citrus sinensis genome and original Citrus clementine genome and provides new insights into non-TIR NBS genes

    USDA-ARS?s Scientific Manuscript database

    In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approxima...

  4. Genome-wide identification and expression analysis of the polyamine oxidase gene family in sweet orange (Citrus sinensis).

    PubMed

    Wang, Wei; Liu, Ji-Hong

    2015-01-25

    Polyamine oxidases (PAOs) are FAD-dependent enzymes associated with polyamine catabolism. In plants, increasing evidences support that PAO genes play essential roles in abiotic and biotic stresses response. In this study, six putative PAO genes (CsPAO1-CsPAO6) were unraveled in sweet orange (Citrus sinensis) using the released citrus genome sequences. A total of 203 putative cis-regulatory elements involved in hormone and stress response were predicted in 1.5-kb promoter regions at the upstream of CsPAOs. The CsPAOs can be divided into four major groups, with similar organizations with their counterparts of Arabidopsis thaliana. Transcripts of CsPAOs were detected in leaf, stem, cotyledon, and root, with the highest levels detected in the roots. The CsPAOs displayed various responses to exogenous treatments with polyamines and ABA and were differentially altered by abiotic stresses, including cold, salt, and mannitol. Overexpression of CsPAO3 in tobacco demonstrated that spermidine and spermine were decreased in the transgenic line, while putrescine was significantly enhanced, implying a potential role of this gene in polyamine back conversion. These data provide valuable knowledge for understanding the roles of the PAO genes in the future.

  5. Characterization of Pectin from Citrus sinensis (Sweet Orange) Juice

    USDA-ARS?s Scientific Manuscript database

    Pectin is a structurally diverse polysaccharide synthesized in plants. Its core element is a backbone of a-(1,4)-galacturonic acid residues, which may be interspersed with rhamnose residues, esterified, and decorated with a variety of glycan chains. In citrus juice, pectin comprises the majority o...

  6. Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck).

    PubMed

    Pan, Zhiyong; Guan, Rui; Zhu, Shiping; Deng, Xiuxin

    2009-02-01

    Two dimensional gel electrophoresis combined with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed to study the somatic embryogenesis (SE) in Valencia sweet orange (Citrus sinensis Osbeck). Twenty-four differentially expressed proteins were identified at five time points of citrus SE (0, 1, 2, 3, 4 weeks after embryo initiation) covering globular, heart/torpedo and cotyledon-shaped embryo stages. The general expression patterns for these proteins were consistent with those appeared at 4 weeks of citrus SE. The most striking feature of our study was that five proteins were predicted to be involved in glutathione (GSH) metabolism and anti-oxidative stress, and they exhibited different expression patterns during SE. Based on that oxidative stress has been validated to enhance SE, the preferential representation for anti-oxidative proteins suggests that they could have a developmental role in citrus SE. Some proteins involved in cell division, photosynthesis and detoxification were also identified, and their possible roles in citrus SE were discussed.

  7. Comparative effect of Citrus sinensis and carbimazole on serum T4, T3 and TSH levels

    PubMed Central

    Uduak, Okon Akpan; Ani, Elemi John; Etoh, Emmauel Columba Inyang; Macstephen, Adienbo Ologbagno

    2014-01-01

    Background: There are previous independent reports on the anti-thyroid property of Citrus sinensis. This isoflavones and phenolic acid-rich natural agent is widely consumed as dietary supplement, thus the need to investigate its comparative effect with a standard anti-thyroid drug on T4, T3 and thyroid stimulating hormone (TSH) levels. Objective: To compare the effect of Citrus sinensis and carbimazole (CARB) on blood levels of thyroid hormones (T4 and T3) and TSH. Materials and Methods: Male wistar albino rats weighing 100-150 g were employed in this research. The rats were randomly assigned to four groups of seven rats per group. Group I served as control and were administered distilled water while groups II-IV were administered with 1500 mg/kg of Citrus sinensis (fresh orange juice; FOJ), 0.1 μg/g of levothyroxine (LVT) and 0.01 mg/g of CARB, respectively, per oral once daily for 28 days. The animals were sacrificed under chloroform anaesthesia and blood sample collected by cardiac puncture and processed by standard method to obtain serum. TSH, T4 and T3 were assayed with the serum using ARIA II automated radioimmunoassay instrument. Results: The results showed that TSH level was significantly (P < 0.05) decreased in LVT treated group compared with the FOJ group. T4 was significantly (P < 0.05) decreased in the FOJ and CARB groups compared with the control and LVT groups. LVT significantly increased T4 when compared with FOJ group. T3 was significantly (P < 0.05) decreased in the CARB group compared with the control. Conclusion: These findings suggest that FOJ alters thyroid hormones metabolism to reduce their serum levels with a compensatory elevations of TSH level in a direction similar to CARB. PMID:25013255

  8. Comparative effect of Citrus sinensis and carbimazole on serum T4, T3 and TSH levels.

    PubMed

    Uduak, Okon Akpan; Ani, Elemi John; Etoh, Emmauel Columba Inyang; Macstephen, Adienbo Ologbagno

    2014-05-01

    There are previous independent reports on the anti-thyroid property of Citrus sinensis. This isoflavones and phenolic acid-rich natural agent is widely consumed as dietary supplement, thus the need to investigate its comparative effect with a standard anti-thyroid drug on T4, T3 and thyroid stimulating hormone (TSH) levels. To compare the effect of Citrus sinensis and carbimazole (CARB) on blood levels of thyroid hormones (T4 and T3) and TSH. Male wistar albino rats weighing 100-150 g were employed in this research. The rats were randomly assigned to four groups of seven rats per group. Group I served as control and were administered distilled water while groups II-IV were administered with 1500 mg/kg of Citrus sinensis (fresh orange juice; FOJ), 0.1 μg/g of levothyroxine (LVT) and 0.01 mg/g of CARB, respectively, per oral once daily for 28 days. The animals were sacrificed under chloroform anaesthesia and blood sample collected by cardiac puncture and processed by standard method to obtain serum. TSH, T4 and T3 were assayed with the serum using ARIA II automated radioimmunoassay instrument. The results showed that TSH level was significantly (P < 0.05) decreased in LVT treated group compared with the FOJ group. T4 was significantly (P < 0.05) decreased in the FOJ and CARB groups compared with the control and LVT groups. LVT significantly increased T4 when compared with FOJ group. T3 was significantly (P < 0.05) decreased in the CARB group compared with the control. These findings suggest that FOJ alters thyroid hormones metabolism to reduce their serum levels with a compensatory elevations of TSH level in a direction similar to CARB.

  9. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K.

    2011-08-01

    Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25 °C) and 60 °C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent.

  10. [Chemical composition and bioactive compounds of flour of orange (Citrus sinensis), tangerine (Citrus reticulata) and grapefruit (Citrus paradisi) peels cultivated in Venezuela].

    PubMed

    Rincón, Alicia M; Vásquez, A Marina; Padilla, Fanny C

    2005-09-01

    The purpose of this research was to evaluate the chemical composition and some bioactive compounds in the peel's flour of some of the most consumed citrus fruits cultivated in Venezuela. Chemical composition as well as some trace elements, ascorbic acid, carotenoids dietary fiber, total polyphenols and their antiradical efficiency, using the 2,2-diphenyl-1-picrylhidracyl (DPPH) were assessed in the dried peels of orange (Citrus sinensis), tangerine (Citrus reticulata) and white grapefruit (Citrus paradisi). Moisture, fat, protein and ash content for all samples showed statistical differences (p < 0.05). Tangerine's peel showed the highest magnesium and carotenoid content, while highest ascorbic acid and carotenoid content was found in the grapefruit's peel. Dietary fiber content presented significant high value in the tangerine peel. All samples presented high content of extractable polyphenols (4.33; 7.6 and 5.1 g/100g). The highest antiradical efficiency was shown by the tangerine's peel, value which correlates with the polyphenol content. These results suggest that tangerine peel should be the most suitable, to reduce risk of some diseases such as cardiovascular and some associated to lipid oxidation. Studied samples are good sources of dietary fiber and phenolic compounds, whose use could be useful in the formulation of functional foods, taking advantage of the presence of dietary fiber and antioxidant compounds in only one ingredient.

  11. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    PubMed Central

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays. PMID:28883829

  12. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis.

    PubMed

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.

  13. Metabolomic Response to Huanglongbing: Role of Carboxylic Compounds in Citrus sinensis Response to 'Candidatus Liberibacter asiaticus' and Its Vector, Diaphorina citri.

    PubMed

    Killiny, Nabil; Nehela, Yasser

    2017-08-01

    Huanglongbing, a destructive disease of citrus, is caused by the fastidious bacterium 'Candidatus Liberibacter asiaticus' and transmitted by Asian citrus psyllid, Diaphorina citri. The impact of 'Ca. L. asiaticus' infection or D. citri infestation on Valencia sweet orange (Citrus sinensis) leaf metabolites was investigated using gas chromatography mass spectrometry, followed by gene expression analysis for 37 genes involved in jasmonic acid (JA), salicylic acid (SA), and proline-glutamine pathways. The total amino acid abundance increased after 'Ca. L. asiaticus' infection, while the total fatty acids increased dramatically after infestation with D. citri, compared with control plants. Seven amino acids (glycine, l-isoleucine, l-phenylalanine, l-proline, l-serine, l-threonine, and l-tryptophan) and five organic acids (benzoic acid, citric acid, fumaric acid, SA, and succinic acid) increased in 'Ca. L. asiaticus'-infected plants. On the other hand, the abundance of trans-JA and its precursor α-linolenic increased in D. citri-infested plants. Surprisingly, the double attack of both D. citri infestation and 'Ca. L. asiaticus' infection moderated the metabolic changes in all chemical classes studied. In addition, the gene expression analysis supported these results. Based on these findings, we suggest that, although amino acids such as phenylalanine are involved in citrus defense against 'Ca. L. asiaticus' infection through the activation of an SA-mediated pathway, fatty acids, especially α-linolenic acid, are involved in defense against D. citri infestation via the induction of a JA-mediated pathway.

  14. Performance of 'Valencia' Orange (Citrus sinensis [L.] Osbeck) on 17 rootstocks in a trial severely affected by huanglongbing

    USDA-ARS?s Scientific Manuscript database

    Valencia orange (Citrus sinensis L. Osbeck) was grown on 17 rootstocks through seven years of age and the first four harvest seasons in a central Florida field trial severely affected by huanglongbing (HLB) disease. All trees in the trial had huanglongbing symptoms and were shown by Polymerase chain...

  15. Short communication: in vitro assessment of antioxidant, antibacterial and phytochemical analysis of peel of Citrus sinensis.

    PubMed

    Mehmood, Basharat; Dar, Kamran Khurshid; Ali, Shaukat; Awan, Uzma Azeem; Nayyer, Abdul Qayyum; Ghous, Tahseen; Andleeb, Saiqa

    2015-01-01

    Antibacterial effect of Citrus sinensis peel extracts was evaluated against several pathogenic bacteria associated with human and fish infections viz., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus pyogenes, Staphylococcus epidermidis, Serratia marcesnces, Shigella flexneri, Enterobacter amnigenus, Salmonella Typhimurium and Serratia odorifera. Methanol, ethanol, chloroform and diethyl ether solvents were used for extraction. In vitro antibacterial activity was analyzed by agar well and agar disc diffusion methods. It was found that ethanol extract showed highly significant inhibition of E. coli and K. pneumonia (12.6±0.94 mm and 11.6±1.2 mm) whereas methanol extract of C. sinensis also showed high zone of inhibition of S. odorifera (10.0±2.16 mm). The potential activity of active extracts was assessed and also compared with standard antibiotics through activity index formulation. The order of antioxidant activity through ABTS·+ and DPPH free radical scavenging activity was ethanol>methanol>chloroform>diethyl ether. Phytochemical screening of all solvents had determined the presence of terpenoids, alkaloids, steroids, glycosides and flavonoids. It was also found that Chloroform/Methanol (5:5) and Butanol/Ethanol/Water (4:1:2.2) solvent systems showed significant separation of active phytochemical constituents. These findings reveal the potential use of C. sinensis peel to treat infectious diseases, which are being caused by microorganisms.

  16. Leaf cDNA-AFLP analysis of two citrus species differing in manganese tolerance in response to long-term manganese-toxicity.

    PubMed

    Zhou, Chen-Ping; Qi, Yi-Ping; You, Xiang; Yang, Lin-Tong; Guo, Peng; Ye, Xin; Zhou, Xin-Xing; Ke, Feng-Jiao; Chen, Li-Song

    2013-09-14

    Very little is known about manganese (Mn)-toxicity-responsive genes in citrus plants. Seedlings of 'Xuegan' (Citrus sinensis) and 'Sour pummelo' (Citrus grandis) were irrigated for 17 weeks with nutrient solution containing 2 μM (control) or 600 μM (Mn-toxicity) MnSO₄. The objectives of this study were to understand the mechanisms of citrus Mn-tolerance and to identify differentially expressed genes, which might be involved in Mn-tolerance. Under Mn-toxicity, the majority of Mn in seedlings was retained in the roots; C. sinensis seedlings accumulated more Mn in roots and less Mn in shoots (leaves) than C. grandis ones and Mn concentration was lower in Mn-toxicity C. sinensis leaves compared to Mn-toxicity C. grandis ones. Mn-toxicity affected C. grandis seedling growth, leaf CO₂ assimilation, total soluble concentration, phosphorus (P) and magenisum (Mg) more than C. sinensis. Using cDNA-AFLP, we isolated 42 up-regulated and 80 down-regulated genes in Mn-toxicity C. grandis leaves. They were grouped into the following functional categories: biological regulation and signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein metabolism, lipid metabolism, cell wall metabolism, stress responses and cell transport. However, only 7 up-regulated and 8 down-regulated genes were identified in Mn-toxicity C. sinensis ones. The responses of C. grandis leaves to Mn-toxicity might include following several aspects: (1) accelerating leaf senescence; (2) activating the metabolic pathway related to ATPase synthesis and reducing power production; (3) decreasing cell transport; (4) inhibiting protein and nucleic acid metabolisms; (5) impairing the formation of cell wall; and (6) triggering multiple signal transduction pathways. We also identified many new Mn-toxicity-responsive genes involved in biological and signal transduction, carbohydrate and protein metabolisms, stress responses and cell transport. Our results demonstrated that C. sinensis

  17. Leaf cDNA-AFLP analysis of two citrus species differing in manganese tolerance in response to long-term manganese-toxicity

    PubMed Central

    2013-01-01

    Background Very little is known about manganese (Mn)-toxicity-responsive genes in citrus plants. Seedlings of ‘Xuegan’ (Citrus sinensis) and ‘Sour pummelo’ (Citrus grandis) were irrigated for 17 weeks with nutrient solution containing 2 μM (control) or 600 μM (Mn-toxicity) MnSO4. The objectives of this study were to understand the mechanisms of citrus Mn-tolerance and to identify differentially expressed genes, which might be involved in Mn-tolerance. Results Under Mn-toxicity, the majority of Mn in seedlings was retained in the roots; C. sinensis seedlings accumulated more Mn in roots and less Mn in shoots (leaves) than C. grandis ones and Mn concentration was lower in Mn-toxicity C. sinensis leaves compared to Mn-toxicity C. grandis ones. Mn-toxicity affected C. grandis seedling growth, leaf CO2 assimilation, total soluble concentration, phosphorus (P) and magenisum (Mg) more than C. sinensis. Using cDNA-AFLP, we isolated 42 up-regulated and 80 down-regulated genes in Mn-toxicity C. grandis leaves. They were grouped into the following functional categories: biological regulation and signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein metabolism, lipid metabolism, cell wall metabolism, stress responses and cell transport. However, only 7 up-regulated and 8 down-regulated genes were identified in Mn-toxicity C. sinensis ones. The responses of C. grandis leaves to Mn-toxicity might include following several aspects: (1) accelerating leaf senescence; (2) activating the metabolic pathway related to ATPase synthesis and reducing power production; (3) decreasing cell transport; (4) inhibiting protein and nucleic acid metabolisms; (5) impairing the formation of cell wall; and (6) triggering multiple signal transduction pathways. We also identified many new Mn-toxicity-responsive genes involved in biological and signal transduction, carbohydrate and protein metabolisms, stress responses and cell transport. Conclusions Our

  18. Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck).

    PubMed

    Wang, Yin; Liu, Ji-Hong

    2012-08-15

    Citrus canker caused by Xanthomonas axonopodis pv. citri (Xac) is a devastating bacterial disease threatening the citrus industry. Salicylic acid (SA) plays a key role in plant defense response to biotic stress, but information is scarce concerning the application of SA to enhancing Xac resistance. In the present research attempts were made to investigate how exogenous application of SA influenced canker disease outbreak in navel orange (Citrus sinensis). Exogenously applied SA at 0.25 mM significantly enhanced the endogenous free and bound SA, particularly the latter. Upon exposure to Xac, lower disease incidence rate and smaller lesion sites were observed in the samples pre-treated with SA, accompanied by repression of bacterial growth at the lesion sites. Concurrent with the augmented disease resistance, SA-treated leaves had higher H₂O₂ level and smaller stomata apertures before or after Xac infection when compared with their counterparts pre-treated with water (control). SA treatment elevated the activities of phenylalanine ammonia-lyase and β-1,3-glucanase, but only the latter was higher in the SA-treated samples after Xac infection. In addition, mRNA levels of two pathogenesis-related genes, CsCHI and CsPR4A, were higher in the SA-treated samples relative to the control. Taken together, our results strongly suggest that the exogenously applied SA has evoked a cascade of physiological and molecular events that function singly or in concert to confer resistance to Xac invasion. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Resistance evaluation of Pera (Citrus sinensis) genotypes to citrus canker in greenhouse conditions

    USDA-ARS?s Scientific Manuscript database

    Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri results in serious yield losses and phytoregulation penalties. The use of resistant genotypes is recognized as an important tool to facilitate control of the pathogen. Studies have show that artificial inoculation results in typic...

  20. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development.

    PubMed

    Liu, Qing; Zhu, Andan; Chai, Lijun; Zhou, Wenjing; Yu, Keqin; Ding, Jian; Xu, Juan; Deng, Xiuxin

    2009-01-01

    Bud mutations often arise in citrus. The selection of mutants is one of the most important breeding channels in citrus. However, the molecular basis of bud mutation has rarely been studied. To identify differentially expressed genes in a spontaneous sweet orange [C. sinensis (L.) Osbeck] bud mutation which causes lycopene accumulation, low citric acid, and high sucrose in fruit, suppression subtractive hybridization and microarray analysis were performed to decipher this bud mutation during fruit development. After sequencing of the differentially expressed clones, a total of 267 non-redundant transcripts were obtained and 182 (68.2%) of them shared homology (E-value < or = 1x10(-10)) with known gene products. Few genes were constitutively up- or down-regulated (fold change > or = 2) in the bud mutation during fruit development. Self-organizing tree algorithm analysis results showed that 95.1% of the differentially expressed genes were extensively coordinated with the initiation of lycopene accumulation. Metabolic process, cellular process, establishment of localization, response to stimulus, and biological regulation-related transcripts were among the most regulated genes. These genes were involved in many biological processes such as organic acid metabolism, lipid metabolism, transport, and pyruvate metabolism, etc. Moreover, 13 genes which were differentially regulated at 170 d after flowering shared homology with previously described signal transduction or transcription factors. The information generated in this study provides new clues to aid in the understanding of bud mutation in citrus.

  1. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development

    PubMed Central

    Liu, Qing; Zhu, Andan; Chai, Lijun; Zhou, Wenjing; Yu, Keqin; Ding, Jian; Xu, Juan; Deng, Xiuxin

    2009-01-01

    Bud mutations often arise in citrus. The selection of mutants is one of the most important breeding channels in citrus. However, the molecular basis of bud mutation has rarely been studied. To identify differentially expressed genes in a spontaneous sweet orange [C. sinensis (L.) Osbeck] bud mutation which causes lycopene accumulation, low citric acid, and high sucrose in fruit, suppression subtractive hybridization and microarray analysis were performed to decipher this bud mutation during fruit development. After sequencing of the differentially expressed clones, a total of 267 non-redundant transcripts were obtained and 182 (68.2%) of them shared homology (E-value ≤1×10−10) with known gene products. Few genes were constitutively up- or down-regulated (fold change ≥2) in the bud mutation during fruit development. Self-organizing tree algorithm analysis results showed that 95.1% of the differentially expressed genes were extensively coordinated with the initiation of lycopene accumulation. Metabolic process, cellular process, establishment of localization, response to stimulus, and biological regulation-related transcripts were among the most regulated genes. These genes were involved in many biological processes such as organic acid metabolism, lipid metabolism, transport, and pyruvate metabolism, etc. Moreover, 13 genes which were differentially regulated at 170 d after flowering shared homology with previously described signal transduction or transcription factors. The information generated in this study provides new clues to aid in the understanding of bud mutation in citrus. PMID:19218315

  2. Biochemical properties of alpha-amylase from peel of Citrus sinensis cv. Abosora.

    PubMed

    Mohamed, Saleh Ahmed; Drees, Ehab A; El-Badry, Mohamed O; Fahmy, Afaf S

    2010-04-01

    alpha-Amylase activity was screened in the peel, as waste fruit, of 13 species and cultivars of Egyptian citrus. The species Citrus sinensis cv. Abosora had the highest activity. alpha-Amylase AI from Abosora peel was purified to homogeneity using anion and cation-exchange, and gel filtration chromatographies. Molecular weight of alpha-amylase AI was found to be 42 kDa. The hydrolysis properties of alpha-amylase AI toward different substrates indicated that corn starch is the best substrate. The alpha-amylase had the highest activity toward glycogen compared with amylopectin and dextrin. Potato starch had low affinity toward alpha-amylase AI but it did not hydrolyze beta-cyclodextrin and dextran. Apparent Km for alpha-amylase AI was 5 mg (0.5%) starch/ml. alpha-Amylase AI showed optimum activity at pH 5.6 and 40 degrees C. The enzyme was thermally stable up to 40 degrees C and inactivated at 70 degrees C. The effect of mono and divalent metal ions were tested for the alpha-amylase AI. Ba2+ was found to have activating effect, where as Li+ had negligible effect on activity. The other metals caused inhibition effect. Activity of the alpha-amylase AI was increased one and half in the presence of 4 mM Ca2+ and was found to be partially inactivated at 10 mM Ca2+. The reduction of starch viscosity indicated that the enzyme is endoamylase. The results suggested that, in addition to citrus peel is a rich source of pectins and flavanoids, alpha-amylase AI from orange peel could be involved in the development and ripening of citrus fruit and may be used for juice processing.

  3. Bacterial brown leaf spot of citrus, a new disease caused by Burkholderia andropogonis

    USDA-ARS?s Scientific Manuscript database

    A new bacterial disease of citrus was recently identified in Florida and named as bacterial brown leaf spot (BBLS) of citrus. BBLS-infected citrus displayed flat, circular and brownish lesions with water-soaked margins surrounded by a chlorotic halo on leaves. Based on Biolog carbon source metabolic...

  4. First report of citrus leaf blotch virus in lemon in China

    USDA-ARS?s Scientific Manuscript database

    Citrus leaf blotch virus (CLBV) is a species of genus Citrivirus in the family Betaflexiviridae. The virus infects several species of the genus Citrus spp., but has not been previously reported from Lemon [Citrus limon (L.)]. The virus was identified in a lemon tree displaying yellow vein clearing i...

  5. Characterization of Citrus sinensis transcription factors closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria.

    PubMed

    Daurelio, Lucas D; Romero, María S; Petrocelli, Silvana; Merelo, Paz; Cortadi, Adriana A; Talón, Manuel; Tadeo, Francisco R; Orellano, Elena G

    2013-07-01

    Plants, when exposed to certain pathogens, may display a form of genotype-independent resistance, known as non-host response. In this study, the response of Citrus sinensis (sweet orange) leaves to Xanthomonas campestris pv. vesicatoria (Xcv), a pepper and tomato pathogenic bacterium, was analyzed through biochemical assays and cDNA microarray hybridization and compared with Asiatic citrus canker infection caused by Xanthomonas citri subsp. citri. Citrus leaves exposed to the non-host bacterium Xcv showed hypersensitive response (HR) symptoms (cell death), a defense mechanism common in plants but poorly understood in citrus. The HR response was accompanied by differentially expressed genes that are associated with biotic stress and cell death. Moreover, 58 transcription factors (TFs) were differentially regulated by Xcv in citrus leaves, including 26 TFs from the stress-associated families AP2-EREBP, bZip, Myb and WRKY. Remarkably, in silico analysis of the distribution of expressed sequence tags revealed that 10 of the 58 TFs, belonging to C2C2-GATA, C2H2, CCAAT, HSF, NAC and WRKY gene families, were specifically over-represented in citrus stress cDNA libraries. This study identified candidate TF genes for the regulation of key steps during the citrus non-host HR. Furthermore, these TFs might be useful in future strategies of molecular breeding for citrus disease resistance. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. The use of laser light to enhance the uptake of foliar-applied substances into citrus (Citrus sinensis) leaves1

    PubMed Central

    Etxeberria, Ed; Gonzalez, Pedro; Fanton Borges, Ana; Brodersen, Craig

    2016-01-01

    Premise of the study: Uptake of foliar-applied substances across the leaf cuticle is central to world food production as well as for physiological investigations into phloem structure and function. Yet, despite the presence of stomata, foliar application as a delivery system can be extremely inefficient due to the low permeability of leaf surfaces to polar compounds. Methods: Using laser light to generate microscopic perforations in the leaf cuticle, we tested the penetration of several substances into the leaf, their uptake into the phloem, and their subsequent movement through the phloem tissue. Substances varied in their size, charge, and Stokes radius. Results: The phloem-mobile compounds 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG), lysine, Biocillin, adenosine triphosphate (ATP), trehalose, carboxyfluorescein-SE, and poly(amidomine) (PAMAM) dendrimer G-4 nanoparticles (4.5 nm in size) showed a high degree of mobility and were able to penetrate and be transported in the phloem. Discussion: Our investigation demonstrated the effectiveness of laser light technology in enhancing the penetration of foliar-applied substances into citrus leaves. The technology is also applicable to the study of phloem mobility of substances by providing a less invasive, highly repeatable, and more quantifiable delivery method. The implied superficial lesions to the leaf can be mitigated by applying a waxy coating. PMID:26819863

  7. Physicochemical and sensory quality of yogurt incorporated with pectin from peel of Citrus sinensis.

    PubMed

    Arioui, Fatiha; Ait Saada, Djamel; Cheriguene, Abderrahim

    2017-03-01

    Industrial by-product like orange peel plays an important role in pectin manufacture. The objective of this article was to extract pectin from peel of Citrus sinensis and to study the effect of its incorporation on the quality of yogurt during the period of fermentation and postacidification. Physicochemical, organoleptic, and rheological properties of yogurt prepared with pectin were studied in order to determine the best preparation depending on the rate of pectin. The extraction pectin yield was estimated to more than 24%. The viscosity and acidity were increased with increasing of the pectin rate. The best viscosity value was obtained with 0.6% of pectin. Furthermore, the effect of the rate of pectin incorporation in the fermented milks was clearly observed on the number of Streptococcus thermophilus and Lactobacillus bulgaricus, the cohesiveness, the adhesiveness, the taste, and the whey exudation.

  8. Aluminum Toxicity-Induced Alterations of Leaf Proteome in Two Citrus Species Differing in Aluminum Tolerance

    PubMed Central

    Li, Huan; Yang, Lin-Tong; Qi, Yi-Ping; Guo, Peng; Lu, Yi-Bin; Chen, Li-Song

    2016-01-01

    Seedlings of aluminum-tolerant ‘Xuegan’ (Citrus sinensis) and Al-intolerant ‘sour pummelo’ (Citrus grandis) were fertigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl3·6H2O. Al toxicity-induced inhibition of photosynthesis and the decrease of total soluble protein only occurred in C. grandis leaves, demonstrating that C. sinensis had higher Al tolerance than C. grandis. Using isobaric tags for relative and absolute quantification (iTRAQ), we obtained more Al toxicity-responsive proteins from C. sinensis than from C. grandis leaves, which might be responsible for the higher Al tolerance of C. sinensis. The following aspects might contribute to the Al tolerance of C. sinensis: (a) better maintenance of photosynthesis and energy balance via inducing photosynthesis and energy-related proteins; (b) less increased requirement for the detoxification of reactive oxygen species and other toxic compounds, such as aldehydes, and great improvement of the total ability of detoxification; and (c) upregulation of low-phosphorus-responsive proteins. Al toxicity-responsive proteins related to RNA regulation, protein metabolism, cellular transport and signal transduction might also play key roles in the higher Al tolerance of C. sinensis. We present the global picture of Al toxicity-induced alterations of protein profiles in citrus leaves, and identify some new Al toxicity-responsive proteins related to various biological processes. Our results provide some novel clues about plant Al tolerance. PMID:27455238

  9. Aluminum Toxicity-Induced Alterations of Leaf Proteome in Two Citrus Species Differing in Aluminum Tolerance.

    PubMed

    Li, Huan; Yang, Lin-Tong; Qi, Yi-Ping; Guo, Peng; Lu, Yi-Bin; Chen, Li-Song

    2016-07-21

    Seedlings of aluminum-tolerant 'Xuegan' (Citrus sinensis) and Al-intolerant 'sour pummelo' (Citrus grandis) were fertigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl₃·6H₂O. Al toxicity-induced inhibition of photosynthesis and the decrease of total soluble protein only occurred in C. grandis leaves, demonstrating that C. sinensis had higher Al tolerance than C. grandis. Using isobaric tags for relative and absolute quantification (iTRAQ), we obtained more Al toxicity-responsive proteins from C. sinensis than from C. grandis leaves, which might be responsible for the higher Al tolerance of C. sinensis. The following aspects might contribute to the Al tolerance of C. sinensis: (a) better maintenance of photosynthesis and energy balance via inducing photosynthesis and energy-related proteins; (b) less increased requirement for the detoxification of reactive oxygen species and other toxic compounds, such as aldehydes, and great improvement of the total ability of detoxification; and (c) upregulation of low-phosphorus-responsive proteins. Al toxicity-responsive proteins related to RNA regulation, protein metabolism, cellular transport and signal transduction might also play key roles in the higher Al tolerance of C. sinensis. We present the global picture of Al toxicity-induced alterations of protein profiles in citrus leaves, and identify some new Al toxicity-responsive proteins related to various biological processes. Our results provide some novel clues about plant Al tolerance.

  10. Characterization of Citrus sinensis type 1 mitochondrial alternative oxidase and expression analysis in biotic stress.

    PubMed

    Daurelio, Lucas Damián; Checa, Susana Karina; Barrio, Jorgelina Morán; Ottado, Jorgelina; Orellano, Elena Graciela

    2009-10-09

    The higher plant mitochondrial electron transport chain contains an alternative pathway that ends with the AOX (alternative oxidase). The AOX proteins are encoded by a small gene family composed of two discrete gene subfamilies. Aox1 is present in both monocot and eudicot plants, whereas Aox2 is only present in eudicot plants. We isolated a genomic clone from Citrus sinensis containing the Aox1a gene. The orange Aox1a consists of four exons interrupted by three introns and its promoter harbours diverse putative stress-specific regulatory motifs including pathogen response elements. The role of the Aox1a gene was evaluated during the compatible interaction between C. sinensis and Xanthomonas axonopodis pv. citri and no induction of the Aox1a at the transcriptional level was observed. On the other hand, Aox1a was studied in orange plants during non-host interactions with Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria, which result in hypersensitive response. Both phytopathogens produced a strong induction of Aox1a, reaching a maximum at 8 h post-infiltration. Exogenous application of salicylic acid produced a slight increase in the steady-state level of Aox1a, whereas the application of fungi elicitors showed the highest induction. These results suggest that AOX1a plays a role during biotic stress in non-host plant pathogen interaction.

  11. Citrus leaf blotch virus invades meristematic regions in Nicotiana benthamiana and citrus.

    PubMed

    Agüero, Jesús; Vives, María Carmen; Velázquez, Karelia; Ruiz-Ruiz, Susana; Juárez, Jose; Navarro, Luis; Moreno, Pedro; Guerri, José

    2013-08-01

    To invade systemically host plants, viruses need to replicate in the infected cells, spread to neighbouring cells through plasmodesmata and move to distal parts of the plant via sieve tubes to start new infection foci. To monitor the infection of Nicotiana benthamiana plants by Citrus leaf blotch virus (CLBV), leaves were agroinoculated with an infectious cDNA clone of the CLBV genomic RNA expressing green fluorescent protein (GFP) under the transcriptional control of a duplicate promoter of the coat protein subgenomic RNA. Fluorescent spots first appeared in agroinfiltrated leaves 11-12 days after infiltration, indicating CLBV replication. Then, after entering the phloem vascular system, CLBV was unloaded in the upper parts of the plant and invaded all tissues, including flower organs and meristems. GFP fluorescence was not visible in citrus plants infected with CLBV-GFP. Therefore, to detect CLBV in meristematic regions, Mexican lime (Citrus aurantifolia) plants were graft inoculated with CLBV, with Citrus tristeza virus (CTV), a virus readily eliminated by shoot-tip grafting in vitro, or with both simultaneously. Although CLBV was detected by hybridization and real-time reverse transcription-polymerase chain reaction (RT-PCR) in 0.2-mm shoot tips in all CLBV-inoculated plants, CTV was not detected. These results explain the difficulty in eliminating CLBV by shoot-tip grafting in vitro. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  12. Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development.

    PubMed

    Liu, Xiao; Guo, Ling-Xia; Jin, Long-Fei; Liu, Yong-Zhong; Liu, Tao; Fan, Yu-Hua; Peng, Shu-Ang

    2016-10-01

    Growth-regulating factor (GRF) is an important protein in GA-mediated response, with key roles in plant growth and development. However, it is not known whether or how the GRF proteins in citrus to regulate organ size. In this study, nine citrus GRF genes (CsGRF1-9) were validated from the 'Anliu' sweet orange (AL, Citrus sinensis cv. Anliu) by PCR amplification. They all contain two conserved motifs (QLQ and WRC) and have 3-4 exons. The transcript levels of genes were detected by qRT-PCR. Transcript analysis showed that (1) CsGRF 1, 2, 5, 6, 7, and 9 expressed predominantly in young leaf, CsGRF 3 and 4 expressed predominantly in fruit immature juice sacs and CsGRF 8 expressed predominantly in root; (2) all citrus GRF genes had significantly higher expression in young leaves than mature leaf; (3) in juice sacs, the transcript levels of CsGRF1, 4, 5, 6, and 8 increased significantly while the transcript levels of CsGRF2, 3, 7, and 9 had no significant change from 80 DAF to 100 DAF. Besides, GA3 treatment did not affect the transcript levels of CsGRF5 and CsGRF6 but significantly increased the transcript levels of the other seven CsGRF genes in young leaves. These results suggested that all CsGRF genes involve in the leaf development, CsGRF1, 4, 5, 6, and 8 act developmentally whilst CsGRF2, 3, 7, and 9 play fundamental roles in fruit cell enlargement, which may be through GA pathway or GA-independent pathway.

  13. Biolistic transformation of Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.).

    PubMed

    Wu, Hao; Acanda, Yosvanis; Jia, Hongge; Wang, Nian; Zale, Janice

    2016-09-01

    The development of transgenic citrus plants by the biolistic method. A protocol for the biolistic transformation of epicotyl explants and transgenic shoot regeneration of immature citrange rootstock, cv. Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) and plant regeneration is described. Immature epicotyl explants were bombarded with a vector containing the nptII selectable marker and the gfp reporter. The number of independent, stably transformed tissues/total number of explants, recorded by monitoring GFP fluorescence 4 weeks after bombardment was substantial at 18.4 %, and some fluorescing tissues regenerated into shoots. Fluorescing GFP, putative transgenic shoots were micro-grafted onto immature Carrizo rootstocks in vitro, confirmed by PCR amplification of nptII and gfp coding regions, followed by secondary grafting onto older rootstocks grown in soil. Southern blot analysis indicated that all the fluorescing shoots were transgenic. Multiple and single copies of nptII integrations were confirmed in five regenerated transgenic lines. There is potential to develop a higher throughput biolistics transformation system by optimizing the tissue culture medium to improve shoot regeneration and narrowing the window for plant sampling. This system will be appropriate for transformation with minimal cassettes.

  14. Assessment of genetic diversity of Tunisian orange, Citrus sinensis (L.) Osbeck using microsatellite (SSR) markers.

    PubMed

    Mahjbi, A; Oueslati, A; Baraket, G; Salhi-Hannachi, A; Zehdi Azouzi, S

    2016-05-20

    Citrus are one of the most cultivated crops in the world. Economically, they are very important fruit trees in Tunisia. Little is known about the genetic diversity of the Tunisian Citrus germplasm. Exploring this diversity is a prerequisite for the identification and characterization of the local germplasm to circumvent and controlling genetic erosion caused by biotic and abiotic stress to aid its conservation and use. In the present study, we explored the genetic diversity of 20 Tunisian orange cultivars [Citrus sinensis (L.) Osbeck] and established their relationships by using seven simple sequence repeat (SSR) loci. In total, 37 alleles and 44 genotypes were scored. The sizes of alleles ranged from 90 to 280 bp. The number of alleles per locus was from 4 to 7, with an average of 5.28. Polymorphic information content value changed from 0.599 to 0.769 with an average of 0.675. Analysis of the genotypes revealed a heterozygote deficiency across all the genotypes. The observed heterozygosity varied from 0 to 1 (average of 0.671). Cluster analysis showed that three groups could be distinguished and the polymorphism occurred independently of the geographical origin of the studied orange cultivars. The detected SSR genotypes allowed the establishment of an identification key with a discriminating power of 100%. Multivariate analysis and the neighbor-joining phylogenetic tree indicated a narrow genetic base for the orange cultivars. The usefulness of SSR markers for orange fingerprinting and evaluation of the genetic diversity in the Tunisian germplasm are discussed in this paper.

  15. Comparison of two DNA extraction protocols from leave samples of Cotinus coggygria, Citrus sinensis and Genus juglans.

    PubMed

    Fallah, F; Minaei Chenar, H; Amiri, H; Omodipour, S; Shirbande Ghods, F; Kahrizi, D; Sohrabi, M; Ghorbani, T; Kazemi, E

    2017-02-28

    High quality DNA is essential for molecular research. Secondary metabolites can affect the quantity and quality DNA. In current research two DNA isolation methods including CTAB and Delaporta (protocols 1 & 2 respectively) were applied in three leave samples from Cotinus coggygria, Citrus sinensis and Genus juglans that their leaves are rich of secondary metabolites. We successfully isolated DNA from C. coggygria, C. sinensis and Genus Juglans using the two protocols described above. Good quality DNA was isolated from C. coggygria, C. sinensis and Genus Juglans using protocol 1, while protocol 2 failed to produce usable DNA from these sources. The highest amount of DNA (1.3-1.6) was obtained from them using protocol 1. As we discovered, procedure 1 may work better for plants with secondary metabolites.

  16. Spasmolytic and Antibacterial Activity of Two Citrus sinensis Osbeck Varieties Cultivated in Mexico

    PubMed Central

    Sánchez-Recillas, Amanda; Arroyo-Herrera, Ana Ly; Araujo-León, Jesús Alfredo; Hernández Núñez, Emanuel

    2017-01-01

    Antibacterial activity on ATCC strains of Escherichia coli, Salmonella enterica, Salmonella enteritidis, and Salmonella choleraesuis and spasmolytic effect on contraction on rat ileum trips were determinate. Eight organic extracts (hexanic and methanolic) of albedo (mesocarp) and flavedo (pericarp) of two varieties (Valencian and National) of Citrus sinensis (L.) Osbeck of Yucatán, México, were studied. Additionally, chromatographic fingerprints were obtained and correlated with their pharmacological effects. MAN, MAV, and HFN extract caused inhibition against S. choleraesuis (MIC: 1000 µg/mL) and S. enteritidis (MIC: 1000 µg/mL). Regarding the spasmolytic effect, the Valencian extracts variety was more efficient on spontaneous contraction, HAV (Emax = 51.98 ± 1.98%), MAV (Emax = 35.98 ± 1.42%), HFV (Emax = 68.91 ± 4.14%), and MFV (Emax = 51.28 ± 2.59%), versus National variety, HAN (Emax = 43.80 ± 6.32%), MAN (Emax = 14.62 ± 1.69%), HFN (Emax = 64.87 ± 3.04%), and MFN (Emax = 31.01 ± 3.92%). Chromatographic fingerprints of HFV and HFN were found to have some similar signals that belong to monoterpenes, whereas for HAN and HAV similar signals were found belonging to fatty acids and triterpenoids. Methanolic extracts showed signals of (1) furfural, (2) furfural acetone (3) furfuraldehyde and (4) β–sitosterol compounds. Flavedo portion of C. sinensis possessed spasmolytic effect on rat ileum strips and antibacterial activity against Salmonella strains. This species is source for obtaining bioactive compounds with therapeutic potential in the treatment of infectious diarrhea. PMID:28356916

  17. Evaluation of the anti-proliferative and cytostatic effect of Citrus sinensis (orange) fruit juice

    PubMed Central

    Chinedu, Enegide; Arome, David; Ameh, Solomon F; Ameh, Gift E

    2014-01-01

    Aim: This work has been designed to evaluate the anti-proliferative and cytostatic effects of Citrus sinensis (orange) fruit juice on rapidly proliferating cells. Materials and Methods: The study was carried out on the seeds of Sorghum bicolor for 72 h. The mean radicle length (mm) of the seeds was taken at 48 and 72 h. Result: The result showed that when compared with the control, methotrexate, the standard drug showed a significant (P < 0.001) anti-proliferative effect throughout the experiment. The inhibition of the radicle growth was more after 72 h (87.42%). At a dose of 5% (v/v), the juice showed a slightly significant (P < 0.05) effect affect after 72 h; however, there was no significant effect at 48 h. The juice at doses of 10% and 20% (v/v) showed a highly significant (P < 0.001) anti-proliferative effect throughout the experiment; however, the percentage inhibitions were higher at 72 h. At 72 h, the percentage inhibition for juice at 10% (v/v) was 72.37% and at 20% (v/v) was 91.96%. The concentrations of 40% and 60% (v/v) showed cytostatic effects as no appreciable growth of the radicles of the seeds was observed throughout the experiment. The percentage inhibition for 40% (v/v) was 100% and 99.72% for 48 and 72 h, respectively, while that for the juice concentration of 60% (v/v) was 100% throughout the study. Conclusion: The experiment has shown that C. sinensis fruit juice has a potential for causing both anti-proliferative and cytostatic effects on fast proliferating cells and hence cancerous cells. PMID:25298937

  18. Spasmolytic and Antibacterial Activity of Two Citrus sinensis Osbeck Varieties Cultivated in Mexico.

    PubMed

    Sánchez-Recillas, Amanda; Arroyo-Herrera, Ana Ly; Araujo-León, Jesús Alfredo; Hernández Núñez, Emanuel; Ortiz Andrade, Rolffy

    2017-01-01

    Antibacterial activity on ATCC strains of Escherichia coli, Salmonella enterica, Salmonella enteritidis, and Salmonella choleraesuis and spasmolytic effect on contraction on rat ileum trips were determinate. Eight organic extracts (hexanic and methanolic) of albedo (mesocarp) and flavedo (pericarp) of two varieties (Valencian and National) of Citrus sinensis (L.) Osbeck of Yucatán, México, were studied. Additionally, chromatographic fingerprints were obtained and correlated with their pharmacological effects. MAN, MAV, and HFN extract caused inhibition against S. choleraesuis (MIC: 1000 µg/mL) and S. enteritidis (MIC: 1000 µg/mL). Regarding the spasmolytic effect, the Valencian extracts variety was more efficient on spontaneous contraction, HAV (Emax = 51.98 ± 1.98%), MAV (Emax = 35.98 ± 1.42%), HFV (Emax = 68.91 ± 4.14%), and MFV (Emax = 51.28 ± 2.59%), versus National variety, HAN (Emax = 43.80 ± 6.32%), MAN (Emax = 14.62 ± 1.69%), HFN (Emax = 64.87 ± 3.04%), and MFN (Emax = 31.01 ± 3.92%). Chromatographic fingerprints of HFV and HFN were found to have some similar signals that belong to monoterpenes, whereas for HAN and HAV similar signals were found belonging to fatty acids and triterpenoids. Methanolic extracts showed signals of (1) furfural, (2) furfural acetone (3) furfuraldehyde and (4) β-sitosterol compounds. Flavedo portion of C. sinensis possessed spasmolytic effect on rat ileum strips and antibacterial activity against Salmonella strains. This species is source for obtaining bioactive compounds with therapeutic potential in the treatment of infectious diarrhea.

  19. Evaluation of the anti-proliferative and cytostatic effect of Citrus sinensis (orange) fruit juice.

    PubMed

    Chinedu, Enegide; Arome, David; Ameh, Solomon F; Ameh, Gift E

    2014-09-01

    This work has been designed to evaluate the anti-proliferative and cytostatic effects of Citrus sinensis (orange) fruit juice on rapidly proliferating cells. The study was carried out on the seeds of Sorghum bicolor for 72 h. The mean radicle length (mm) of the seeds was taken at 48 and 72 h. The result showed that when compared with the control, methotrexate, the standard drug showed a significant (P < 0.001) anti-proliferative effect throughout the experiment. The inhibition of the radicle growth was more after 72 h (87.42%). At a dose of 5% (v/v), the juice showed a slightly significant (P < 0.05) effect affect after 72 h; however, there was no significant effect at 48 h. The juice at doses of 10% and 20% (v/v) showed a highly significant (P < 0.001) anti-proliferative effect throughout the experiment; however, the percentage inhibitions were higher at 72 h. At 72 h, the percentage inhibition for juice at 10% (v/v) was 72.37% and at 20% (v/v) was 91.96%. The concentrations of 40% and 60% (v/v) showed cytostatic effects as no appreciable growth of the radicles of the seeds was observed throughout the experiment. The percentage inhibition for 40% (v/v) was 100% and 99.72% for 48 and 72 h, respectively, while that for the juice concentration of 60% (v/v) was 100% throughout the study. The experiment has shown that C. sinensis fruit juice has a potential for causing both anti-proliferative and cytostatic effects on fast proliferating cells and hence cancerous cells.

  20. Effects of boron deficiency on major metabolites, key enzymes and gas exchange in leaves and roots of Citrus sinensis seedlings.

    PubMed

    Lu, Yi-Bin; Yang, Lin-Tong; Li, Yan; Xu, Jing; Liao, Tian-Tai; Chen, Yan-Bin; Chen, Li-Song

    2014-06-01

    Boron (B) deficiency is a widespread problem in many crops, including Citrus. The effects of B-deficiency on gas exchange, carbohydrates, organic acids, amino acids, total soluble proteins and phenolics, and the activities of key enzymes involved in organic acid and amino acid metabolism in 'Xuegan' [Citrus sinensis (L.) Osbeck] leaves and roots were investigated. Boron-deficient leaves displayed excessive accumulation of nonstructural carbohydrates and much lower CO2 assimilation, demonstrating feedback inhibition of photosynthesis. Dark respiration, concentrations of most organic acids [i.e., malate, citrate, oxaloacetate (OAA), pyruvate and phosphoenolpyruvate] and activities of enzymes [i.e., phosphoenolpyruvate carboxylase (PEPC), NAD-malate dehydrogenase, NAD-malic enzyme (NAD-ME), NADP-ME, pyruvate kinase (PK), phosphoenolpyruvate phosphatase (PEPP), citrate synthase (CS), aconitase (ACO), NADP-isocitrate dehydrogenase (NADP-IDH) and hexokinase] involved in glycolysis, the tricarboxylic acid (TCA) cycle and the anapleurotic reaction were higher in B-deficient leaves than in controls. Also, total free amino acid (TFAA) concentration and related enzyme [i.e., NADH-dependent glutamate 2-oxoglutarate aminotransferase (NADH-GOGAT) and glutamate OAA transaminase (GOT)] activities were enhanced in B-deficient leaves. By contrast, respiration, concentrations of nonstructural carbohydrates and three organic acids (malate, citrate and pyruvate), and activities of most enzymes [i.e., PEPC, NADP-ME, PK, PEPP, CS, ACO, NAD-isocitrate dehydrogenase, NADP-IDH and hexokinase] involved in glycolysis, the TCA cycle and the anapleurotic reaction, as well as concentration of TFAA and activities of related enzymes (i.e., nitrate reductase, NADH-GOGAT, glutamate pyruvate transaminase and glutamine synthetase) were lower in B-deficient roots than in controls. Interestingly, leaf and root concentration of total phenolics increased, whereas that of total soluble protein decreased

  1. [Spider diversity in cultures of Citrus sinensis (Rutaceae) in Corrientes province, Argentina].

    PubMed

    Avalos, Gilberto; Bar, Maria Esther; Oscherov, Elena Beatriz; González, Alda

    2013-09-01

    Spiders are predators that reduce insect pest populations in agroecosystems. In spite that the presence of spider assemblages has been described in different crop plants, no reports have been done for Citrus species in Argentina. We studied the spider community associated with cultures of Citrus sinensis in the province of Corrientes, Argentina, in two plots (AM1 irrigated and AM2 unirrigated) of 0.82 hectares each. Spiders were collected monthly by using pitfall traps, hand capture, agitation of foliage and sieving of soil litter. A total of 7174 specimens were collected (33 families, 44 genera and 200 species/morphospecies). The AM1 recorded 3811 individuals (33 families, 179 species/morphospecies) and AM2 3363 individuals (31 families, 174 species/morphospecies). November, December and January showed the highest abundance in both plots. A total of 70% of collected spiders were juveniles. Eight families were the most abundant and represented 75% of spiders collected in both plots, the largest being Lycosidae. We identified eight guilds in both plots, for which the ground runners resulted the most abundant (AM1 n = 1341, s=39, n=999 AM2, s = 33), followed by orb weavers (AM1 n = 637, s = 36; AM2 n = 552, s = 33), the stalkers (AM1 n = 471, s = 43, AM2 n = 453, s = 47) and the space web-builders (AM1 n = 446, s = 23; AM2 n = 342, s = 25). The analysis of alpha diversity in both plots (AM1H' = 4.161, J' = 0.802; AM2 H' = 4.184, J' = 0.811) showed no significant differences (t = 1.083 p = 0.279). The linear dependences model was the one with the best fit results, where the species observed were more than estimated. Clench model estimated 90.9% of the spiders observed in the unit with irrigation and 90.6% in the unit without irrigation.

  2. Genome-Wide Comparative Analysis Reveals Similar Types of NBS Genes in Hybrid Citrus sinensis Genome and Original Citrus clementine Genome and Provides New Insights into Non-TIR NBS Genes

    PubMed Central

    Wang, Yunsheng; Zhou, Lijuan; Li, Dazhi; Dai, Liangying; Lawton-Rauh, Amy; Srimani, Pradip K.; Duan, Yongping; Luo, Feng

    2015-01-01

    In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approximately evenly numbered groups: one group contains the Toll-Interleukin receptor (TIR) domain and two different Non-TIR groups in which most of proteins contain the Coiled Coil (CC) domain. Motif analysis confirmed that the two groups of CC-containing NBS genes are from different evolutionary origins. We partitioned NBS genes into clades using NBS domain sequence distances and found most clades include NBS genes from all three Citrus genomes. This suggests that three Citrus genomes have similar numbers and types of NBS genes. We also mapped the re-sequenced reads of three pomelo and three mandarin genomes onto the C. sinensis genome. We found that most NBS genes of the hybrid C. sinensis genome have corresponding homologous genes in both pomelo and mandarin genomes. The homologous NBS genes in pomelo and mandarin suggest that the parental species of C. sinensis may contain similar types of NBS genes. This explains why the hybrid C. sinensis and original C. clementina have similar types of NBS genes in this study. Furthermore, we found that sequence variation amongst Citrus NBS genes were shaped by multiple independent and shared accelerated mutation accumulation events among different groups of NBS genes and in different Citrus genomes. Our comparative analyses yield valuable insight into the structure, organization and evolution of NBS genes in Citrus genomes. Furthermore, our comprehensive analysis showed that the non-TIR NBS genes can be divided into two groups that come from different evolutionary origins. This provides new insights into non-TIR genes, which have not received much attention. PMID:25811466

  3. Genome-wide comparative analysis reveals similar types of NBS genes in hybrid Citrus sinensis genome and original Citrus clementine genome and provides new insights into non-TIR NBS genes.

    PubMed

    Wang, Yunsheng; Zhou, Lijuan; Li, Dazhi; Dai, Liangying; Lawton-Rauh, Amy; Srimani, Pradip K; Duan, Yongping; Luo, Feng

    2015-01-01

    In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approximately evenly numbered groups: one group contains the Toll-Interleukin receptor (TIR) domain and two different Non-TIR groups in which most of proteins contain the Coiled Coil (CC) domain. Motif analysis confirmed that the two groups of CC-containing NBS genes are from different evolutionary origins. We partitioned NBS genes into clades using NBS domain sequence distances and found most clades include NBS genes from all three Citrus genomes. This suggests that three Citrus genomes have similar numbers and types of NBS genes. We also mapped the re-sequenced reads of three pomelo and three mandarin genomes onto the C. sinensis genome. We found that most NBS genes of the hybrid C. sinensis genome have corresponding homologous genes in both pomelo and mandarin genomes. The homologous NBS genes in pomelo and mandarin suggest that the parental species of C. sinensis may contain similar types of NBS genes. This explains why the hybrid C. sinensis and original C. clementina have similar types of NBS genes in this study. Furthermore, we found that sequence variation amongst Citrus NBS genes were shaped by multiple independent and shared accelerated mutation accumulation events among different groups of NBS genes and in different Citrus genomes. Our comparative analyses yield valuable insight into the structure, organization and evolution of NBS genes in Citrus genomes. Furthermore, our comprehensive analysis showed that the non-TIR NBS genes can be divided into two groups that come from different evolutionary origins. This provides new insights into non-TIR genes, which have not received much attention.

  4. Antimicrobial Nanoemulsion Formulation with Improved Penetration of Foliar Spray through Citrus Leaf Cuticles to Control Citrus Huanglongbing

    PubMed Central

    Yang, Chuanyu; Powell, Charles A.; Duan, Yongping; Shatters, Robert; Zhang, Muqing

    2015-01-01

    Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 ± 0.04 nm and 94 ± 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB. PMID:26207823

  5. Antimicrobial Nanoemulsion Formulation with Improved Penetration of Foliar Spray through Citrus Leaf Cuticles to Control Citrus Huanglongbing.

    PubMed

    Yang, Chuanyu; Powell, Charles A; Duan, Yongping; Shatters, Robert; Zhang, Muqing

    2015-01-01

    Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 ± 0.04 nm and 94 ± 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB.

  6. GC-FID/MS Profiling of Supercritical CO2 Extracts of Peels from Citrus aurantium, C. sinensis cv. Washington navel, C. sinensis cv. Tarocco and C. sinensis cv. Doppio Sanguigno from Dubrovnik Area (Croatia).

    PubMed

    Jerković, Igor; Drulžić, Jasmina; Marijanović, Zvonimir; Gugić, Mirko; Jokić, Stela; Roje, Marin

    2015-07-01

    The peels of Citrus aurantium L. and Citrus sinensis Osbeck cultivars from the Dubrovnik region (south Croatia) were extracted by supercritical CO2 at 40 degrees C and 10 MPa at 1.76 kg/h to obtain enriched extracts in comparison with simple pressing of the peels. The extracts were analyzed in detail by gas chromatography and mass spectrometry (GC-FID/MS). Relevant similarities among the peel oil compositions of C. aurantium and C. sinensis cultivars were found with limonene predominance (up to 54.3%). The principal oxygenated monoterpenes were linalool (3.0%-5.9%), α-terpineol (0.7%-2.4%), linalyl acetate (0.0%-5.0%), geranyl acetate (0.0%-0.4%), (Z)-citral (0.0%-1.8%) and (E)-citral (0.0%-1.9%). Several sesquiterpenes were found with minor percentages. Coumarin derivatives were identified in all the samples among the relevant compounds. Isogeijerin dominated in the peels of C. sinensis cv. Tarocco (15.3%) and C. aurantium (11.2%). Scoparone ranged from 0.1% to 0.5% in all the samples. Bergapten (up to 1.4%), osthole (up to 1.1%) and 7-methoxy-8-(2-formylpropyl)coumarin (up to 1.1%) were found mostly in C. sinensis cv. Doppio Sanguigno. It was possible to indicate a few other differences among the extracts such as higher percentage of linalool, linalyl and geranyl acetates, as well as the abundance of sabinene and isogeijerin in C. aurantium or the occurrence of β-sinensal in C. sinensis cultivars.

  7. Metabolic changes in Citrus leaf volatiles in response to environmental stress.

    PubMed

    Asai, Tomonori; Matsukawa, Tetsuya; Kajiyama, Shin'ichiro

    2016-02-01

    Citrus plants are well known as a rich source of VOCs, and several have important roles in defense responses. However, how VOCs are regulated in response to environmental stress is not yet well understood. In this study, we investigated dynamic changes of VOCs present in leaves of seven Citrus species (Citrus sinensis, C. limon, C. paradisi, C. unshiu, C. kinokuni, C. grandis, and C. hassaku) in response to mechanical wounding, jasmonic acid (JA), and salicylic acid (SA) as determined by gas chromatography/mass spectrometric analysis followed by multivariate analysis (principal component analysis, PCA, and orthogonal partial least squares-discriminant analysis, OPLS-DA). PCA and OPLS-DA suggested that changes in VOC profiles against stress stimuli were much diverse among Citrus species. OPLS-DA showed that C6 volatiles, such as hexanal and trans-2-hexenal, were induced in response to JA and SA stimuli in C. sinensis and C. grandis, while the other VOCs were decreased under all tested stress conditions. α-Farnesene was induced in all species except C. hassaku after wounding or JA treatment. In addition, α-farnesene was also induced in response to SA stimuli in C. unshiu and C. kinokuni. Therefore these volatiles can be candidates of the common stress biomarkers in Citrus. Our results will give a new insight into defense mechanisms in Citrus species.

  8. Cloning, characterization and localization of CHS gene from blood orange, Citrus sinensis (L.) Osbeck cv. Ruby.

    PubMed

    Lu, Xu; Zhou, Wei; Gao, Feng

    2009-09-01

    Chalcone synthase (CHS) is involved in the biosynthesis of anthocyanin. In this study, a full-length DNA of CHS gene (named as CsCHS-bo) was cloned from the blood orange, Citrus sinensis (L.) Osbeck cv. Ruby. The gene was 1,512 bp in size containing an open reading frame (1,176 bp) encoding 391 amino acids. Comparative and bioinformatic analyses revealed that the deduced protein of CsCHS-bo was highly homologous to CHS from other plant species. The protein of CsCHS-bo had four CHS-specific conserved motifs and a CHS-family signature sequence GFGPG. Phylogenetic analysis indicated that the protein of CsCHS-bo was in a subgroup with CHS of Ruta Palmatum. The CsCHS-bo was localized to the chromosomes 2p, 4p and 6p by an improved fluorescence in situ hybridization technique, indicating that at least three copies of CsCHS-bo were present in the genome.

  9. Clinical evaluation of Moro (Citrus sinensis (L.) Osbeck) orange juice supplementation for the weight management.

    PubMed

    Cardile, Venera; Graziano, Adriana Carol Eleonora; Venditti, Alessandro

    2015-01-01

    In the last years, several studies have recently evaluated the beneficial effects of red orange juice (Citrus sinensis (L.) Osbeck) and its active components in weight management and obesity. Moro orange is a cultivar of red orange, particularly rich in active compounds such as anthocyanins, hydroxycinnamic acids, flavone glycosides and ascorbic acid, which displays anti-obesity effects in in vitro and in vivo studies. In this clinical study, the effect of a Moro juice extract (Morosil(®), 400 mg/die) supplementation was evaluated in overweight healthy human volunteers for 12 weeks. Results showed that Moro juice extract intake was able to induce a significant reduction in body mass index (BMI) after 4 weeks of treatment (p < 0.05). Moreover, in subjects treated with Moro extract, body weight, BMI, waist and hip circumference were significantly different from the placebo group (p < 0.05). In conclusion, it could be suggested that the active compounds contained in Moro juice have a synergistic effect on fat accumulation in humans and Moro juice extract can be used in weight management and in the prevention of human obesity.

  10. Variety and Harvesting Season Effects on Antioxidant Activity and Vitamins Content of Citrus sinensis Macfad.

    PubMed

    Cardeñosa, Vanessa; Barreira, João C M; Barros, Lillian; Arenas-Arenas, Francisco J; Moreno-Rojas, José M; Ferreira, Isabel C F R

    2015-05-07

    Five sweet orange (Citrus sinensis Osbeck) varieties cultivated in Huelva (Spain) and picked at two seasons during two consecutive years, were characterized for their antioxidant activity (free radicals scavenging activity, reducing power and lipid peroxidation inhibition) and vitamin content (vitamin E and vitamin C). The effects induced by sweet orange variety and stage of maturity were comprehensively compared by applying 2-way ANOVA and linear discriminant analysis. The results indicated higher differences in antioxidant activity and vitamin contents in response to the effect of the harvesting season, when compared to the effect of sweet orange variety. Nevertheless, the results observed in 2012 showed less marked differences among the assayed sweet orange varieties. Either way, it might be concluded that oranges sampled in January show the highest antioxidant activity and vitamin contents. Furthermore, concerning the properties evaluated in this work, all sweet orange varieties represent good alternatives, except for Rhode Summer, which would not be the preferable choice as a target to enhance sweet orange overall characteristics.

  11. Biochemical basis of color as an aesthetic quality in Citrus sinensis.

    PubMed

    Oberholster, R; Cowan, A K; Molnár, P; Tóth, G

    2001-01-01

    The biochemical basis of color as an aesthetic quality in mature fruit of navel and Valencia orange (Citrus sinensis) was determined. Saponification of the two major color-imparting components resolved by thin-layer chromatography, followed by reversed-phase high-performance liquid chromatography, revealed that these comprised acyl esters of (9Z)-violaxanthin and beta-citraurin. Identification of the chromophores was based on cochromatography and online spectral analysis. The color quality of flavedo of mature fruit was dependent on the content and relative amounts of (9Z)-violaxanthin and beta-citraurin. Quantitative results revealed that increased color intensity was associated with a decline in the (9Z)-violaxanthin:beta-citraurin ratio from greater than 50 to below 10, an increase in flavedo (9Z)-violaxanthin and beta-citraurin content, and that measurement of the mass and ratio of these carotenoids can be used to accurately color-grade orange fruit for local and export markets.

  12. Chemical composition and selected functional properties of sweet orange (Citrus sinensis) seed flour.

    PubMed

    Akpata, M I; Akubor, P I

    1999-01-01

    Flour samples were prepared from dehulled and undehulled sweet orange (Citrus sinensis) seeds. The flour samples were evaluated for proximate composition, mineral content and selected functional properties. Proximate analysis showed a composition of 54.2% fat, 28.5% carbohydrate, 5.5% crude fiber, 3.1% crude protein and 2.5% ash for the dehulled orange seed flour (dry weight). Mineral analyses showed high levels of calcium and potassium in flour samples. Partially defatted and undefatted flour samples prepared from dehulled orange seeds had least gelation concentrations of 10 and 12% (w/v), respectively. Water absorption capacity for the defatted and undefatted dehulled flour samples were 240 and 220%, respectively. Defatting improved oil absorption capacity of the orange seed flour by 84%. Emulsion activity, emulsion stability and foaming capacity decreased following defatting of flour. Foam prepared from defatted flour was less stable than that from full-fat flour. Incorporation of NaCl up to 0.2 M improved the foaming capacity of orange seed flour.

  13. Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis.

    PubMed

    Morehouse, Benjamin R; Kumar, Ramasamy P; Matos, Jason O; Olsen, Sarah Naomi; Entova, Sonya; Oprian, Daniel D

    2017-03-28

    Terpenes make up the largest and most diverse class of natural compounds and have important commercial and medical applications. Limonene is a cyclic monoterpene (C10) present in nature as two enantiomers, (+) and (-), which are produced by different enzymes. The mechanism of production of the (-)-enantiomer has been studied in great detail, but to understand how enantiomeric selectivity is achieved in this class of enzymes, it is important to develop a thorough biochemical description of enzymes that generate (+)-limonene, as well. Here we report the first cloning and biochemical characterization of a (+)-limonene synthase from navel orange (Citrus sinensis). The enzyme obeys classical Michaelis-Menten kinetics and produces exclusively the (+)-enantiomer. We have determined the crystal structure of the apoprotein in an "open" conformation at 2.3 Å resolution. Comparison with the structure of (-)-limonene synthase (Mentha spicata), which is representative of a fully closed conformation (Protein Data Bank entry 2ONG ), reveals that the short H-α1 helix moves nearly 5 Å inward upon substrate binding, and a conserved Tyr flips to point its hydroxyl group into the active site.

  14. Fluorescent carbon nanoparticles from Citrus sinensis as efficient sorbents for pollutant dyes.

    PubMed

    Adedokun, Oluwaseun; Roy, Anurag; Awodugba, Ayodeji O; Devi, P Sujatha

    2017-02-01

    Here, we report a simple, green and economic process for the synthesis of highly fluorescent carbon nanoparticles (CPs) through low-temperature carbonization of a fruit waste, Citrus sinensis peel. This approach allows the large-scale production of aqueous CPs dispersions without any additives and post-treatment processes. The as-prepared CPs were of small particle size, exhibited bright blue fluorescence under UV irradiation (λmax  = 365 nm) with excellent colloidal stability in water. The chemical composition, structure and morphology of the as-prepared CPs were analyzed using various spectroscopic techniques such as X-ray diffraction, transmission electron microscopy and raman spectroscopy. The formed CPs were turbostratic in nature, with a large number of functional groups on the surface. We explored the adsorption characteristics of the formed CPs for wastewater treatment. Because of the negative surface of the CPs, as evident from the zeta value, it is possible to use them for selective adsorption of the cationic dye methylene blue from a mixture of dyes. The equilibrium adsorption isotherm revealed that the Langmuir model better describes the adsorption process than the Freundlich model. As-prepared CPs rapidly adsorbed ~84% of the methylene blue within 1 min and can be regenerated and used repeatedly. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress.

    PubMed

    Chen, Zong-Tsi; Chu, Heuy-Ling; Chyau, Charng-Cherng; Chu, Chin-Chen; Duh, Pin-Der

    2012-12-15

    Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress were investigated. According to HPLC-DAD and HPLC-MS/MS analysis, hesperidin (HD), hesperetin (HT), nobiletin (NT), and tangeretin (TT) were present in water extracts of sweet orange peel (WESP). The cytotoxic effect in 0.2mM t-BHP-induced HepG2 cells was inhibited by WESP and their bioactive compounds. The protective effect of WESP and their bioactive compounds in 0.2mM t-BHP-induced HepG2 cells may be associated with positive regulation of GSH levels and antioxidant enzymes, decrease in ROS formation and TBARS generation, increase in the mitochondria membrane potential and Bcl-2/Bax ratio, as well as decrease in caspase-3 activation. Overall, WESP displayed a significant cytoprotective effect against oxidative stress, which may be most likely because of the phenolics-related bioactive compounds in WESP, leading to maintenance of the normal redox status of cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Enhancement of anti-complementary and radical scavenging activities in the submerged culture of Cordyceps sinensis by addition of citrus peel.

    PubMed

    Choi, Jang Won; Ra, Kyung Soo; Kim, Seong Yeong; Yoon, Taek Joon; Yu, Kwang-Won; Shin, Kwang-Soon; Lee, Sam Pin; Suh, Hyung Joo

    2010-08-01

    To investigate the optimal conditions for the production of Cordyceps sinensis by the submerged culture method, glucosamine and exopolysaccharide (EPS) productivities were determined in culture broth containing different carbon sources, principally rice bran and citrus peel. An optimal medium composition (1.5% rice bran, 0.5% molasses, 3% CSL, 0.1% KH(2)PO(4), and 0.05% MgSO(4)) and the optimal condition (25 degrees C and 5-6 d culture time) for high EPS productivity with potent immune-stimulating activities were obtained. The addition of citrus peel to the culture of C. sinensis under the optimized conditions improved EPS productivity and glucosamine content. Furthermore, anti-complementary activity was higher (58.0-80.8%) using citrus peel as compared to no addition of citrus peel (48.2-68.7%). Antioxidant activity (AEAC value) of the citrus peel culture was high (284.3-384.6 mg/100g) compared to that of the culture without citrus peel (142.8-219.5mg/100g), indicating that the citrus peel helped enhance the anti-complementary and antioxidant activities of C. sinensis.

  17. Structural characterization of the thermally tolerant pectin methylesterase purified from citrus sinensis fruit and its gene sequence.

    PubMed

    Savary, Brett J; Vasu, Prasanna; Cameron, Randall G; McCollum, T Gregory; Nuñez, Alberto

    2013-12-26

    Despite the longstanding importance of the thermally tolerant pectin methylesterase (TT-PME) activity in citrus juice processing and product quality, the unequivocal identification of the protein and its corresponding gene has remained elusive. TT-PME was purified from sweet orange [ Citrus sinensis (L.) Osbeck] finisher pulp (8.0 mg/1.3 kg tissue) with an improved purification scheme that provided 20-fold increased enzyme yield over previous results. Structural characterization of electrophoretically pure TT-PME by MALDI-TOF MS determined molecular masses of approximately 47900 and 53000 Da for two principal glycoisoforms. De novo sequences generated from tryptic peptides by MALDI-TOF/TOF MS matched multiple anonymous Citrus EST cDNA accessions. The complete tt-pme cDNA (1710 base pair) was cloned from a fruit mRNA library using RT- and RLM-RACE PCR. Citrus TT-PME is a novel isoform that showed higher sequence identity with the multiply glycosylated kiwifruit PME than to previously described Citrus thermally labile PME isoforms.

  18. Laser-induced Fluorescence Spectroscopy (LIFS) for Discrimination of Genetically Close Sweet Orange Accessions ( Citrus sinensis L. Osbeck).

    PubMed

    Massaiti Kuboyama Kubota, Thiago; Bebeachibuli Magalhães, Aida; Nery da Silva, Marina; Ribeiro Villas Boas, Paulino; Novelli, Valdenice M; Bastianel, Marinês; Sagawa, Cíntia H D; Cristofani-Yaly, Mariângela; Marcondes Bastos Pereira Milori, Débora

    2017-02-01

    Although there is substantial diversity among cultivated sweet oranges genotypes with respect to morphological, physiological, and agronomic traits, very little variation at DNA level has been observed. It is possible that this low DNA molecular variability is due to a narrow genetic basis commonly observed in this citrus group. The most different morphological characters observed were originated through mutations, which are maintained by vegetative propagation. Despite all molecular tools available for discrimination between these different accessions, in general, low polymorphism has been observed in all groups of sweet oranges and they may not be identified by molecular markers. In this context, this paper describes the results obtained by using laser-induced fluorescent spectroscopy (LIFS) as a tool to discriminate sweet orange accessions ( Citrus sinensis L. Osbeck) including common, low acidity, pigmented, and navel orange groups, with very little variation at DNA level. The findings showed that LIFS combined with statistical methods is capable to discriminate different accessions. The basic idea is that citrus leaves have multiple fluorophores and concentration depends on their genetics and metabolism. Thus, we consider that the optical properties of citrus leaves may be different, depending on variety. The results have shown that the developed method, for the best classification rate, reaches an average sensitivity and specificity of 95% and 97.5%, respectively. An interesting application of this study is the development of an economically viable tool for early identification in seedling certification, in citrus breeding programs, in cultivar protection, or in germplasm core collection.

  19. Cloning, purification and characterization of a 90kDa heat shock protein from Citrus sinensis (sweet orange).

    PubMed

    Mendonça, Yuri A; Ramos, Carlos H I

    2012-01-01

    Protein misfolding is stimulated by stress, such as heat, and heat shock proteins (Hsps) are the first line of defense against these undesirable situations. Plants, which are naturally sessile, are perhaps more exposed to stress factors than some other organisms, and consequently, the role of Hsps is crucial to maintain homeostasis. Hsp90, because of its key role in infection and other stresses, is targeted in therapies that improve plant production by increasing resistance to both biotic and abiotic stress. In addition, Hsp90 is a primary factor in the maintenance of homeostasis in plants. Therefore, we cloned and purified Hsp90 from Citrus sinensis (sweet orange). Recombinant C. sinensis Hsp90 (rCsHsp90) was produced and measured by circular dichroism (CD), intrinsic fluorescence spectroscopy and dynamic light scattering. rCsHsp90 formed a dimer in solution with a Stokes radius of approximately 62Å. In addition, it was resistant to thermal unfolding, was able to protect citrate synthase from aggregation, and Western blot analysis demonstrated that CsHsp90 was constitutively expressed in C. sinensis cells. Our analysis indicated that CsHsp90 is conformationally similar to that of yeast Hsp90, for which structural information is available. Therefore, we showed that C. sinensis expresses an Hsp90 chaperone that has a conformation and function similar to other Hsp90s. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. Fragile Sites of 'Valencia' Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA.

    PubMed

    Lan, Hong; Chen, Chun-Li; Miao, Yin; Yu, Chang-Xiu; Guo, Wen-Wu; Xu, Qiang; Deng, Xiu-Xin

    2016-01-01

    Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in 'Valencia' C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of 'Valencia' C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid 'Valencia' C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in 'Valencia' sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in 'Valencia' sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites.

  1. Extraction process optimization of polyphenols from Indian Citrus sinensis – as novel antiglycative agents in the management of diabetes mellitus

    PubMed Central

    2014-01-01

    Background Diabetes mellitus is a chronic metabolic disorder characterized by increased blood glucose level. It has become an epidemic disease in the 21st century where, India leads the world with largest number of diabetic subjects. Non-enzymatic glycosylation (glycation) is severe form of diabetes, occurs between reducing sugar and proteins which results in the formation of advanced glycation end products (AGEs) that leads to the other complicated secondary disorders. In this context, Mangifera indica (Mango), Syzygium cumini (Jambul), Vitis vinifera (Grapes), Citrus sinensis (Orange), Artocarpus heterophyllus (Jackfruit), Manilkara zapota (Sapodilla) seeds were evaluated for their antiglyation activity. Attempts were made to isolate the polyphenols in the seeds that have recorded the maximum activity. Methods Different extraction methods (shake flask, centrifugation and pressurized hot water) using various extractants (organic solvents, hot water and pressurized hot water) were adopted to investigate the in vitro antiglycation activity. Central composite (CCD) design based Response Surface Methodology (RSM) was espoused to optimize the extraction process of polyphenols from the fruit seeds that have recorded poor antiglycation activity. The PTLC analysis was performed to isolate the polyphenols (Flavonoids and phenolic acids) and LC-PDA-MS analysis was done for structure prediction. Results Pressurized hot water extraction of Artocarpus heterophyllus (87.52%) and Citrus sinensis seeds (74.79%) was found to possess high and low antiglycation activity, respectively. The RSM mediated optimization process adopted for the Citrus sinensis seeds have revealed that 1:15 solvent ratio (hexane to heptane), 6 minutes and 1:20 solid to liquid ratio as the optimal conditions for the extraction of polyphenols with a maximum antiglycation activity (89.79%). The LC-PDA-MS analysis of preparative thin layer chromatography (PTLC) eluates of Artocarpus heterophyllus seed has

  2. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene.

    PubMed

    Singh, Priyanka; Shukla, Ravindra; Prakash, Bhanu; Kumar, Ashok; Singh, Shubhra; Mishra, Prashant Kumar; Dubey, Nawal Kishore

    2010-06-01

    The study deals with antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima and Citrus sinensis essential oils (EOs) and their phytochemical composition. The EOs were obtained by hydrodistillation and their chemical profile was determined through GC and GC-MS analysis. Both the EOs and their 1:1 combination showed broad fungitoxic spectrum against different food contaminating moulds. The EOs and their combination completely inhibited aflatoxin B(1) (AFB(1)) production at 500 ppm, whereas, DL-limonene, the major component of EOs showed better antiaflatoxigenic efficacy even at 250 ppm. Both the oils exhibited antioxidant activity as DPPH free radical scavenger in dose dependent manner. The IC(50) for radical scavenging efficacy of C. maxima and C. sinensis oils were to be 8.84 and 9.45 microl ml(-1), respectively. The EOs were found non-mammalian toxic showing high LD(50) for mice (oral, acute). The oils may be recommended as safe plant based antimicrobials as well as antioxidants for enhancement of shelf life of food commodities by checking their fungal infestation, aflatoxin production as well as lipid peroxidation.

  3. Comparative study of flavonoid production in lycopene-accumulated and blonde-flesh sweet oranges (Citrus sinensis) during fruit development.

    PubMed

    Chen, Jiajing; Zhang, Hongyan; Pang, Yibo; Cheng, Yunjiang; Deng, Xiuxin; Xu, Juan

    2015-10-01

    Four main flavanone glycosides (FGs) and four main polymethoxylated flavones (PMFs) were determined in fruits of 'Cara Cara' navel orange, 'Seike' navel orange, 'Anliu' and 'Honganliu' sweet orange (Citrus sinensis). No bitter neohesperidosides were detected in the FG profiles, indicating the functional inability of 1,2-rhamnosyltransferase, though relatively high transcription levels were detected in the fruit tissues of 'Anliu' and 'Honganliu' sweet oranges. Different to the FGs, the PMFs only exist abundantly in the peel and decreased gradually throughout fruit development of sweet oranges, suggesting the expression of methylation-related genes accounting for PMF biosynthesis have tissue-specificity. Significant changes in production of the eight flavonoids were found between red-flesh and blonde-flesh sweet oranges, indicating that lycopene accumulation might have direct or indirect effects on the modification of flavonoid biosynthesis in these citrus fruits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Disease stress detection on citrus using a leaf optical model and field spectroscopy

    NASA Astrophysics Data System (ADS)

    Badnakhe, Mrunalini R.; Durbha, Surya; Adinarayana, J.

    2015-10-01

    As citrus is progressively contributing to horticultural production, wealth and economy of a country, it is necessary to understand the factors impacting citrus production. Gummosis is one of the most serious diseases causing considerable loss of overall citrus production and yield quality. A qualitative and quantitative analysis of citrus leaf biochemical properties are necessary to monitor the crop health, disease /pest stress and production. Total leaf chlorophyll content (Cab) represents one of the key biochemical factors which contributes in water, carbon, and energy exchange processes. Photosynthesis process in citrus will be disturbed as gummosis disease life cycle progresses. It is important to study Cab to evaluate the photosynthesis rate and disease stress. In this study the potential of Radiative Transfer (RT) PROSPECT model to retrieve Cab in citrus orchards was undertaken at different sites. The main goal is to evaluate the relationship between Cab and gummosis disease stress for citrus at various phenological stages. Inversion of PROSPECT model on measured hyperspectral data is carried out to extract the leaf level parameters influencing the disease. This model was inverted with the ground truth hyperspectral reading. The testing was separately initiated for healthy and infected plant leaves. This can lead to understand the disease stress on citrus leaves. For accuracy, raw spectra are filtered and processed which is an input parameter for Inversion PROSPECT model. Here, retrieved Cab content was correlated with gummosis disease stress in terms of oozing with R2 = 0.6021 and RMSE= 0.481272.

  5. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing

    PubMed Central

    2014-01-01

    Background Boron (B)-deficiency is a widespread problem in many crops, including Citrus. MicroRNAs (miRNAs) play important roles in nutrient deficiencies. However, little is known on B-deficiency-responsive miRNAs in plants. In this study, we first identified miRNAs and their expression pattern in B-deficient Citrus sinensis roots by Illumina sequencing in order to identify miRNAs that might be involved in the tolerance of plants to B-deficiency. Results We isolated 52 (40 known and 12 novel) up-regulated and 82 (72 known and 10 novel) down-regulated miRNAs from B-deficient roots, demonstrating remarkable metabolic flexibility of roots, which might contribute to the tolerance of plants to B-deficiency. A model for the possible roles of miRNAs in the tolerance of roots to B-deficiency was proposed. miRNAs might regulate the adaptations of roots to B-deficiency through following several aspects: (a) inactivating reactive oxygen species (ROS) signaling and scavenging through up-regulating miR474 and down-regulating miR782 and miR843; (b) increasing lateral root number by lowering miR5023 expression and maintaining a certain phenotype favorable for B-deficiency-tolerance by increasing miR394 expression; (c) enhancing cell transport by decreasing the transcripts of miR830, miR5266 and miR3465; (d) improving osmoprotection (miR474) and regulating other metabolic reactions (miR5023 and miR821). Other miRNAs such as miR472 and miR2118 in roots increased in response to B-deficiency, thus decreasing the expression of their target genes, which are involved in disease resistance, and hence, the disease resistance of roots. Conclusions Our work demonstrates the possible roles of miRNAs and related mechanisms in the response of plant roots to B-deficiency. PMID:24885979

  6. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing.

    PubMed

    Lu, Yi-Bin; Yang, Lin-Tong; Qi, Yi-Ping; Li, Yan; Li, Zhong; Chen, Yan-Bin; Huang, Zeng-Rong; Chen, Li-Song

    2014-05-07

    Boron (B)-deficiency is a widespread problem in many crops, including Citrus. MicroRNAs (miRNAs) play important roles in nutrient deficiencies. However, little is known on B-deficiency-responsive miRNAs in plants. In this study, we first identified miRNAs and their expression pattern in B-deficient Citrus sinensis roots by Illumina sequencing in order to identify miRNAs that might be involved in the tolerance of plants to B-deficiency. We isolated 52 (40 known and 12 novel) up-regulated and 82 (72 known and 10 novel) down-regulated miRNAs from B-deficient roots, demonstrating remarkable metabolic flexibility of roots, which might contribute to the tolerance of plants to B-deficiency. A model for the possible roles of miRNAs in the tolerance of roots to B-deficiency was proposed. miRNAs might regulate the adaptations of roots to B-deficiency through following several aspects: (a) inactivating reactive oxygen species (ROS) signaling and scavenging through up-regulating miR474 and down-regulating miR782 and miR843; (b) increasing lateral root number by lowering miR5023 expression and maintaining a certain phenotype favorable for B-deficiency-tolerance by increasing miR394 expression; (c) enhancing cell transport by decreasing the transcripts of miR830, miR5266 and miR3465; (d) improving osmoprotection (miR474) and regulating other metabolic reactions (miR5023 and miR821). Other miRNAs such as miR472 and miR2118 in roots increased in response to B-deficiency, thus decreasing the expression of their target genes, which are involved in disease resistance, and hence, the disease resistance of roots. Our work demonstrates the possible roles of miRNAs and related mechanisms in the response of plant roots to B-deficiency.

  7. Transcriptional Profiling of Canker-Resistant Transgenic Sweet Orange (Citrus sinensis Osbeck) Constitutively Overexpressing a Spermidine Synthase Gene

    PubMed Central

    Fu, Xing-Zheng; Liu, Ji-Hong

    2013-01-01

    Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases affecting the citrus industry worldwide. In our previous study, the canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) plants were produced via constitutively overexpressing a spermidine synthase. To unravel the molecular mechanisms underlying Xcc resistance of the transgenic plants, in the present study global transcriptional profiling was compared between untransformed line (WT) and the transgenic line (TG9) by hybridizing with Affymetrix Citrus GeneChip. In total, 666 differentially expressed genes (DEGs) were identified, 448 upregulated, and 218 downregulated. The DEGs were classified into 33 categories after Gene ontology (GO) annotation, in which 68 genes are in response to stimulus and involved in immune system process, 12 genes are related to cell wall, and 13 genes belong to transcription factors. These genes and those related to starch and sucrose metabolism, glutathione metabolism, biosynthesis of phenylpropanoids, and plant hormones were hypothesized to play major roles in the canker resistance of TG9. Semiquantitative RT-PCR analysis showed that the transcript levels of several candidate genes in TG9 were significantly higher than in WT both before and after Xcc inoculation, indicating their potential association with canker disease. PMID:23509803

  8. [Seasonal variation of immature stages of Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in Citrus sinensis orchards under two management systems].

    PubMed

    Greve, Caroline; Redaelli, Luiza R

    2006-01-01

    Phyllocnistis citrella Stainton is considered an important pest of citrus, causing both direct (reduction on the photosynthetic area) and indirect damage (facilitation of invasion by bacteria that cause citrus canker). The lack of information about the population dynamics of P. citrella, considering the cultivation systems and varieties grown in citrus orchards in Rio Grande do Sul, Brazil, motivated this study. It aimed to evaluate the seasonal variation of immature stages of P. citrella, from June 2002 to July 2003, in two orchards of Citrus sinensis, cv. 'Valencia', one maintained according to organic management principles and the other under conventional ones. Fortnightly samplings were carried out, being one shoot collected from each one of 27 randomly chosen plants. The leaves were analyzed for the presence of eggs, larvae, pupae and mines of P. citrella. Leafminer was recorded from October 2002 to April 2003 in the organic orchard, and from November 2002 to July 2003 in the conventional one. A relationship between population size and resource availability (young leaves) was observed. However, population establishment does not depend exclusively on the existence of resources, but also on suitable climatic conditions. This was evidenced by the absence of attacks on the first shooting, which began in late winter. Meteorological factors and resource availability as a whole explain about 64% and 53% of the observed variation in the population size of P. citrella, respectively in the organic and conventional orchards.

  9. Transcriptional profiling of canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) constitutively overexpressing a spermidine synthase gene.

    PubMed

    Fu, Xing-Zheng; Liu, Ji-Hong

    2013-01-01

    Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases affecting the citrus industry worldwide. In our previous study, the canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) plants were produced via constitutively overexpressing a spermidine synthase. To unravel the molecular mechanisms underlying Xcc resistance of the transgenic plants, in the present study global transcriptional profiling was compared between untransformed line (WT) and the transgenic line (TG9) by hybridizing with Affymetrix Citrus GeneChip. In total, 666 differentially expressed genes (DEGs) were identified, 448 upregulated, and 218 downregulated. The DEGs were classified into 33 categories after Gene ontology (GO) annotation, in which 68 genes are in response to stimulus and involved in immune system process, 12 genes are related to cell wall, and 13 genes belong to transcription factors. These genes and those related to starch and sucrose metabolism, glutathione metabolism, biosynthesis of phenylpropanoids, and plant hormones were hypothesized to play major roles in the canker resistance of TG9. Semiquantitative RT-PCR analysis showed that the transcript levels of several candidate genes in TG9 were significantly higher than in WT both before and after Xcc inoculation, indicating their potential association with canker disease.

  10. Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol.

    PubMed

    Wu, Xiao-Ba; Wang, Jing; Liu, Ji-Hong; Deng, Xiu-Xin

    2009-01-01

    Culture of Citrus sinensis embryogenic callus on the embryo-inducing medium (EIM) containing glycerol gave rise to a large number of embryos, whereas very few embryos were observed on the callus growth medium (CGM). In the current paper, attempts were made to investigate whether polyamine biosynthesis was involved in glycerol-mediated somatic embryogenesis. Quantification of free polyamines by high-performance liquid chromatography showed that the cultures on EIM had less putrescine than those on CGM. However, increase in spermidine and spermine was detected in cultures on EIM during the first 20d of culture, coincident with abundant somatic embryogenesis. The globular embryos contained more polyamines than embryos at other stages. Semi-quantitative reverse transcriptase-polymerase chain reaction assay showed that expression levels of all of the five key genes involved in polyamine biosynthesis, with the exception of S-adenosylmethionine decarboxylase, were induced in cultures on EIM, and that their transcriptional levels were increased with maturation of the embryos. Addition of alpha-difluoromethylornithine, a polyamine biosynthesis inhibitor, to EIM resulted in remarkable inhibition of somatic embryogenesis, concurrent with notable reduction of endogenous putrescine and spermidine, particularly at higher concentrations. Exogenous application of 1mM putrescine to EIM together with 5mM alpha-difluoromethylornithine led to dramatic enhancement of endogenous polyamines, which successfully restored somatic embryogenesis. All of these, collectively, demonstrated that free polyamines, at least spermidine and spermine herein, were involved in glycerol-mediated promotion of somatic embryogenesis, which will open a new avenue for establishing a sophisticated system for somatic embryogenesis based on the modulation of endogenous polyamines.

  11. Metabolomic analysis of primary metabolites in citrus leaf during defense responses.

    PubMed

    Asai, Tomonori; Matsukawa, Tetsuya; Kajiyama, Shin'ichiro

    2017-03-01

    Mechanical damage is one of the unavoidable environmental stresses to plant growth and development. Plants induce a variety of reactions which defend against natural enemies and/or heal the wounded sites. Jasmonic acid (JA) and salicylic acid (SA), defense-related plant hormones, are well known to be involved in induction of defense reactions and play important roles as signal molecules. However, defense related metabolites are so numerous and diverse that roles of individual compounds are still to be elucidated. In this report, we carried out a comprehensive analysis of metabolic changes during wound response in citrus plants which are one of the most commercially important fruit tree families. Changes in amino acid, sugar, and organic acid profiles in leaves were surveyed after wounding, JA and SA treatments using gas chromatography-mass spectrometry (GC/MS) in seven citrus species, Citrus sinensis, Citrus limon, Citrus paradisi, Citrus unshiu, Citrus kinokuni, Citrus grandis, and Citrus hassaku. GC/MS data were applied to multivariate analyses including hierarchical cluster analysis (HCA), primary component analysis (PCA), and orthogonal partial least squares-discriminant analysis (OPLS-DA) to extract stress-related compounds. HCA showed the amino acid cluster including phenylalanine and tryptophan, suggesting that amino acids in this cluster are concertedly regulated during responses against treatments. OPLS-DA exhibited that tryptophan was accumulated after wounding and JA treatments in all species tested, while serine was down regulated. Our results suggest that tryptophan and serine are common biomarker candidates in citrus plants for wound stress. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Secondary metabolite profiles of leaves of healthy and huanglongbing-infected orange (Citrus sinensis L.) seedlings measured by HPLC-fluorescence detection

    USDA-ARS?s Scientific Manuscript database

    Leaves of greenhouse-grown ‘Hamlin’ and ‘Valencia’ orange (Citrus sinensis L.) seedlings were analyzed by high performance liquid chromatography in a study of the progression of changes in secondary metabolite profiles resulting from infection by Candidatus Liberibacter asiaticus (CLas), the Huanglo...

  13. Draft Genome Sequence of Curtobacterium sp. Strain ER1/6, an Endophytic Strain Isolated from Citrus sinensis with Potential To Be Used as a Biocontrol Agent.

    PubMed

    Garrido, Leandro Maza; Alves, João Marcelo Pereira; Oliveira, Liliane Santana; Gruber, Arthur; Padilla, Gabriel; Araújo, Welington Luiz

    2016-11-17

    Herein, we report a draft genome sequence of the endophytic Curtobacterium sp. strain ER1/6, isolated from a surface-sterilized Citrus sinensis branch, and it presented the capability to control phytopathogens. Functional annotation of the ~3.4-Mb genome revealed 3,100 protein-coding genes, with many products related to known ecological and biotechnological aspects of this bacterium.

  14. Juice quality of two new mandarin-like hybrids (Citrus clementina Hort. ex Tan x Citrus sinensis L. Osbeck) containing anthocyanins.

    PubMed

    Rapisarda, Paolo; Bellomo, Santina Elisabetta; Fabroni, Simona; Russo, Giuseppe

    2008-03-26

    Tacle and Clara [Monreal clementine (Citrus clementina Hort. ex Tan) x Tarocco orange (Citrus sinensis L. Osbeck)] are two new triploid citrus hybrids developed by the CRA-Istituto Sperimentale per l'Agrumicoltura (Acireale, Italy). The fruits are easy-peeling and juicy, have a pleasant taste like the Tarocco orange, and are sweet like the Monreal clementine. In addition, a distinctively attractive characteristic of these mandarin-like fruits is the red-pigmented flesh caused by the presence of anthocyanins. This study reports the juice quality attributes of fresh fruits harvested at different ripening stages and of cold-stored fruits kept for 104 days at 6+/-1 degrees C and 90-95% relative humidity. Physico-chemical analyses showed that the fresh-fruit juice yield ranged between 39 (Tacle) and 41% (Clara); these values were 11-14% lower after 104 days of storage. Vitamin C content in the Clara juice was decisively higher than that in the Tacle juice. Juice anthocyanins and other polyphenols increased during cold storage. These results show that low-temperature storage enhances the functional attributes of Tacle and Clara fruit juices.

  15. Potential of Moringa oleifera root and Citrus sinensis fruit rind extracts in the treatment of ulcerative colitis in mice.

    PubMed

    Gholap, Prashant A; Nirmal, Sunil A; Pattan, Shashikant R; Pal, Subodh C; Mandal, Subhash C

    2012-10-01

    The plant Moringa oleifera Lam (Moringaceae), commonly known as the drumstick tree, is an indigenous species in India. This species has been of interest to researchers because traditionally its roots are reported in the treatment of ulcerative colitis (UC). Traditionally it is reported that Citrus sinensis Linn (Rutaceae) fruit rind when combined with M. oleifera will increase the efficacy of the plant in the treatment of UC. The present work was undertaken to determine the effectiveness of M. oleifera root alone and in combination with C. sinensis fruit rind in the treatment of UC. Ethanol and aqueous extracts of M. oleifera roots (100 and 200 mg/kg, body weight) were screened alone and in equal combination with ethanol extract of C. sinensis fruit rind, i.e., 50 mg/kg each of C. sinensis and M. oleifera for their activity on acetic acid-induced UC in mice. Treatment with combination of extracts of M. oleifera root and C. sinensis fruit rind (50 mg/kg, each) showed less ulceration and hyperemia than individual extract (200 mg/kg) in histopathological observation. Acetic acid increased myeloperoxidase (MPO) level in blood and colon tissue to 342 U/mL and 384 U/mg, respectively. Combination of ethanol extract of M. oleifera root with C. sinensis fruit rind extract significantly (p<0.05) decreased MPO in blood and tissue to 278 U/mL and 291 U/mg, respectively. MPO in blood and tissue in control group was 85 ± 1.2 U/mL and 96 ± 1.3 U/mg, respectively. Similarly this combination significantly reduced malondialdehyde (MDA) level in blood and tissue to 7.11 nmol/mL and 8.19 nmol/mg, from 11.20 nmol/mL and 13.20 nmol/mg, respectively. MDA in blood and tissue in control group was 2.76 ± 1.2 nmol/mL and 3.76 ± 1.2 nmol/mg, respectively. Results show that a combination of M. oleifera root extracts with C. sinensis fruit rind extract is effective in the treatment of UC and results are comparable with the standard drug prednisolone.

  16. Seasonal trends, sampling plans and parasitoid complex of the Chinese wax scale, Ceroplastes sinensis Del Guercio (Hemiptera: Coccidae), in Mediterranean citrus groves.

    PubMed

    Martínez-Ferrer, M T; Campos-Rivela, J M; Verdú, M J

    2015-02-01

    Seasonal trends and the parasitoid complex of Chinese wax scale (Ceroplastes sinensis) was studied from July 2010 to February 2013. Six commercial citrus groves located in northeastern Spain were sampled fortnightly. Chinese wax scale completed a single annual generation. Egg oviposition started in May and continued until mid-July. Egg hatching began in mid-June, and in the first quarter of August, the maximum percentage of hatched eggs was reached. In the same groves, the parasitoid species of C. sinensis were determined together with their seasonal trends, relative abundance and occurrence on C. sinensis. Four hymenoptera were found parasitizing C. sinensis, mainly on third instars and females: Coccophagus ceroplastae (Aphelinidae), Metaphycus helvolus (Encyrtidae), Scutellista caerulea (Pteromalidae) and Aprostocetus ceroplastae (Eulophidae). The most abundant species was A. ceroplastae, corresponding to 54% of the parasitoids emerged. Coccophagus ceroplastae and M. helvolus represented 19%, whereas S. caerulea comprised 8% of the total. This study is the first published record of C. ceroplastae in Spain and the first record of M. helvolus on C. sinensis in Spain. Concerning the economical thresholds normally used, sampling plans developed for the management of C. sinensis in citrus groves should target population densities of around 12-20% of invaded twigs, equivalent to 0.2-0.5 females per twig. The sample size necessary to achieve the desired integrated pest management precision is 90-160 twigs per grove for the enumerative plan and about 160-245 twigs per grove for the binomial plan.

  17. GUS expression in sweet oranges (Citrus sinensis L. Osbeck) driven by three different phloem-specific promoters.

    PubMed

    Miyata, Luzia Yuriko; Harakava, Ricardo; Stipp, Liliane Cristina Libório; Mendes, Beatriz Madalena Januzzi; Appezzato-da-Glória, Beatriz; de Assis Alves Mourão Filho, Francisco

    2012-11-01

    Huanglongbing (HLB) is associated with Candidatus Liberibacter spp., endogenous, sieve tube-restricted bacteria that are transmitted by citrus psyllid insect vectors. Transgenic expression in the phloem of specific genes that might affect Ca. Liberibacter spp. growth and development may be an adequate strategy to improve citrus resistance to HLB. To study specific phloem gene expression in citrus, we developed three different binary vector constructs with expression cassettes bearing the β-glucuronidase (GUS) reporter gene (uidA) under the control of one of the three different promoters: Citrus phloem protein 2 (CsPP2), Arabidopsis thaliana phloem protein 2 (AtPP2), and Arabidopsis thaliana sucrose transporter 2 (AtSUC2). Transgenic lines of 'Hamlin', 'Pera', and 'Valencia' sweet oranges [Citrus sinensis (L.) Osbeck] were produced via Agrobacterium tumefaciens transformation. The epicotyl segments collected from in vitro germinated seedlings were used as explants. The gene nptII, which confers resistance to the antibiotic kanamycin, was used for selection. The transformation efficiency was expressed as the number of GUS-positive shoots over the total number of explants and varied from 1.54 to 6.08 % among the three cultivars and three constructs studied. Several lines of the three sweet orange cultivars analyzed using PCR and Southern blot analysis were genetically transformed with the three constructs evaluated. The histological GUS activity in the leaves indicates that the uidA gene was preferentially expressed in the phloem, which suggests that the use of the three promoters might be adequate for producing HLB-resistant transgenic sweet oranges. The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters. Key message The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous

  18. Fragile Sites of ‘Valencia’ Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA

    PubMed Central

    Lan, Hong; Chen, Chun-Li; Miao, Yin; Yu, Chang-Xiu; Guo, Wen-Wu; Xu, Qiang; Deng, Xiu-Xin

    2016-01-01

    Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in ‘Valencia’ C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of ‘Valencia’ C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid ‘Valencia’ C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in ‘Valencia’ sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in ‘Valencia’ sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites. PMID:26977938

  19. Insecticidal evaluation of essential oils of Citrus sinensis L. (Myrtales: Myrtaceae) against housefly, Musca domestica L. (Diptera: Muscidae).

    PubMed

    Kumar, Peeyush; Mishra, Sapna; Malik, Anushree; Satya, Santosh

    2012-05-01

    The housefly, Musca domestica L., is one of the most common insects, associated with vectoring of various etiological agents. In order to search for effective control agent, the essential oil of sweet orange [Citrus sinensis (L.) Osbeck] was evaluated for its insecticidal activity against the larvae and pupae of housefly using contact toxicity and fumigation bioassays. In the contact toxicity assay, lethal concentration, LC(50) of C. sinensis essential oil against housefly larvae, varied between 3.93 and 0.71 μl/cm(2) for different observation days, while lethal time, LT(50), varied between 5.8 to 2.3 days. Mortality of larvae were significant with different concentrations (F = 2.79, df = 4, P < 0.05) and time (F = 6.69, df = 3, P < 0.01). In fumigant assay for housefly larvae, LC(50) of 71.2 and 52.6 μl/l was obtained in 24 and 48 h, respectively. Scanning electron microscopy of oil treated larvae revealed extreme dehydration and surface distortion while control larvae were free from any of the above symptoms and presented smooth surface, conforming effect of essential oil on housefly larvae. Percentage inhibition rate of oil against housefly pupae was 27.3-72.7% for contact toxicity and 46.4-100% for fumigation assay. Compositional analysis of C. sinensis essential oil using gas chromatography/mass spectrometry (GC-MS) revealed D: -limonene (73.24%), α-pinene (5.86%) and myrcene (4.45%) as major components whereas its vapour profile (solid-phase micro extraction-GC/MS) was dominated by D: -limonene at 92.57%. Significant activity of C. sinensis essential oil against larvae and pupae of housefly, pave the way for its use as eco-friendly housefly control measure.

  20. Reaction of detached leaves of different varieties of sweet orange (Citrus sinensis L. Osbeck) to inoculation with Xanthomonas citri subsp. citri (ex Hasse) Gabriel et al.

    USDA-ARS?s Scientific Manuscript database

    Asiatic citrus canker (ACC) (caused by Xanthomonas citri subsp citri, Xcc) is a major disease of citrus in wet tropical and subtropical production regions. Screening for resistance is important to breeding programs. The objective of this study was to evaluate a detached leaf method to compare nine d...

  1. Insecticidal activity against Bemisia tabaci biotype B of peel essential oil of Citrus sinensis var. pear and Citrus aurantium cultivated in northeast Brazil.

    PubMed

    Ribeiro, Nicolle de Carvalho; da Camara, Claudio Augusto Gomes; Born, Flávia de Souza; de Siqueira, Herbert Alvaro Abreu

    2010-11-01

    The fumigant action of peel essential oils of Citrus sinensis var. pear (pear orange = PO) and C. aurantium (bitter orange = BO) from the northeast of Brazil were evaluated against Bemisia tabaci biotype B and compared with eugenol as a positive control. The oil concentration in the PO at 8.5 microL/L of air caused 97% mortality, while the oil concentration of BO at 9.5 microL/L of air caused 99% mortality. However, the LC50 estimates for both oils (LC50 = 3.80 microL/L of air for PO and LC50 = 5.80 microL/L of air for BO) did not differ from each other, but they did when compared with eugenol (LC50 = 0.20 microL/L of air). Regarding their effects on oviposition, the Citrus oils showed concentration-response dependence, reducing the number of eggs as the concentration increased, which was not observed for eugenol. The minimum concentrations of the oils that caused a significant reduction in the egg lay were 3.5 and 7.0 microL/L of air for BO and PO, respectively. These results suggest that oils from PO and BO peels may be promising as models to develop new insecticides that might be applied into the integrated management of whiteflies.

  2. The effect of viroid infection of citrus trees on the amoebicidal activity of 'Maltese half-blood' (Citrus sinensis) against trophozoite stage of Acanthamoeba castellanii Neff.

    PubMed

    Zouaghi, Ghaya; Najar, Asma; Chiboub, Olfa; Sifaoui, Ines; Abderrabba, Manef; Lorenzo Morales, Jacob

    2017-09-12

    In order to promote a local Tunisian product, this study was designed to examine, for the first time, the anti-Acanthamoeba activity (Acanthamoeba castellanii Neff) of the essential oils of Tunisian Citrus sinensis peels (Maltese half-blood) and the effect of viroid plant infection on this activity. To do so, three samples of peels' essential oils were studied: from a healthy plant (Control), a plant inoculated with Citrus exocortis viroid (CEVd) and one inoculated with hot stunt cachexia viroid (HSVd). The samples were extracted by hydrodistillation from dried peels and characterized by GC-MS. Limonene was the major component with a percentage ranging from 90.76 to 93.34% for (CEVd) sample and (Control), respectively. Anti-Acanthamoeba activity of the tested oils was determined by the Alamar Blue(®) assay. Primary results showed a strong potential anti-Acanthamoeba activity with an IC50 ranging from 36.6 to 54.58 μg/ml for (HSVd) and (CEVd) samples, respectively. In terms of the effect of viroid infection, a strong positive correlation was observed between different chemical classes and anti-Acanthamoeba activity. Copyright © 2017. Published by Elsevier Inc.

  3. MicroRNA-mediated responses to long-term magnesium-deficiency in Citrus sinensis roots revealed by Illumina sequencing.

    PubMed

    Liang, Wei-Wei; Huang, Jing-Hao; Li, Chun-Ping; Yang, Lin-Tong; Ye, Xin; Lin, Dan; Chen, Li-Song

    2017-08-24

    Magnesium (Mg)-deficiency occurs most frequently in strongly acidic, sandy soils. Citrus are grown mainly on acidic and strong acidic soils. Mg-deficiency causes poor fruit quality and low fruit yield in some Citrus orchards. For the first time, we investigated Mg-deficiency-responsive miRNAs in 'Xuegan' (Citrus sinensis) roots using Illumina sequencing in order to obtain some miRNAs presumably responsible for Citrus Mg-deficiency tolerance. We obtained 101 (69) miRNAs with increased (decreased) expression from Mg-starved roots. Our results suggested that the adaptation of Citrus roots to Mg-deficiency was related to the several aspects: (a) inhibiting root respiration and related gene expression via inducing miR158 and miR2919; (b) enhancing antioxidant system by down-regulating related miRNAs (miR780, miR6190, miR1044, miR5261 and miR1151) and the adaptation to low-phosphorus (miR6190); (c) activating transport-related genes by altering the expression of miR6190, miR6485, miR1044, miR5029 and miR3437; (d) elevating protein ubiquitination due to decreased expression levels of miR1044, miR5261, miR1151 and miR5029; (e) maintaining root growth by regulating miR5261, miR6485 and miR158 expression; and (f) triggering DNA repair (transcription regulation) by regulating miR5176 and miR6485 (miR6028, miR6190, miR6485, miR5621, miR160 and miR7708) expression. Mg-deficiency-responsive miRNAs involved in root signal transduction also had functions in Citrus Mg-deficiency tolerance. We obtained several novel Mg-deficiency-responsive miRNAs (i.e., miR5261, miR158, miR6190, miR6485, miR1151 and miR1044) possibly contributing to Mg-deficiency tolerance. These results revealed some novel clues on the miRNA-mediated adaptation to nutrient deficiencies in higher plants.

  4. Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease.

    PubMed

    Sendín, Lorena Noelia; Orce, Ingrid Georgina; Gómez, Rocío Liliana; Enrique, Ramón; Grellet Bournonville, Carlos Froilán; Noguera, Aldo Sergio; Vojnov, Adrián Alberto; Marano, María Rosa; Castagnaro, Atilio Pedro; Filippone, María Paula

    2017-04-01

    Transgenic expression of the pepper Bs2 gene confers resistance to Xanthomonas campestris pv. vesicatoria (Xcv) pathogenic strains which contain the avrBs2 avirulence gene in susceptible pepper and tomato varieties. The avrBs2 gene is highly conserved among members of the Xanthomonas genus, and the avrBs2 of Xcv shares 96% homology with the avrBs2 of Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker disease. A previous study showed that the transient expression of pepper Bs2 in lemon leaves reduced canker formation and induced plant defence mechanisms. In this work, the effect of the stable expression of Bs2 gene on citrus canker resistance was evaluated in transgenic plants of Citrus sinensis cv. Pineapple. Interestingly, Agrobacterium-mediated transformation of epicotyls was unsuccessful when a constitutive promoter (2× CaMV 35S) was used in the plasmid construction, but seven transgenic lines were obtained with a genetic construction harbouring Bs2 under the control of a pathogen-inducible promoter, from glutathione S-transferase gene from potato. A reduction of disease symptoms of up to 70% was observed in transgenic lines expressing Bs2 with respect to non-transformed control plants. This reduction was directly dependent on the Xcc avrBs2 gene since no effect was observed when a mutant strain of Xcc with a disruption in avrBs2 gene was used for inoculations. Additionally, a canker symptom reduction was correlated with levels of the Bs2 expression in transgenic plants, as assessed by real-time qPCR, and accompanied by the production of reactive oxygen species. These results indicate that the pepper Bs2 resistance gene is also functional in a family other than the Solanaceae, and could be considered for canker control.

  5. Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene.

    PubMed

    Li, D D; Shi, W; Deng, X X

    2003-12-01

    Valencia sweet orange (Citrus sinensis (L.) Osbeck) calluses were used as explants to develop a new transformation system for citrus mediated by Agrobacterium tumefaciens. Factors affecting Agrobacterium-mediated transformation efficiency included mode of pre-cultivation, temperature of cocultivation and presence of acetosyringone (AS). The highest transformation efficiency was obtained with a 4-day pre-cultivation period in liquid medium. Transformation efficiency was higher when cocultivation was performed for 3 days at 19 degrees C than at 23 or 28 degrees C. Almost no resistant callus was obtained if the cocultivation medium lacked AS. The transformation procedure yielded transgenic Valencia plants containing the pTA29-barnase gene, as verified by PCR amplification and confirmed by Southern blotting. Because male sterility is a common factor leading to seedlessness in citrus cultivars with parthenocarpic characteristics, production of seedless citrus genotypes by Agrobacterium-mediated genetic transformation is a promising alternative to conventional breeding methods.

  6. Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of Citrus sinensis (L.) Osbeck

    PubMed Central

    2014-01-01

    Background Glutathione S-transferases (GSTs) represent a ubiquitous gene family encoding detoxification enzymes able to recognize reactive electrophilic xenobiotic molecules as well as compounds of endogenous origin. Anthocyanin pigments require GSTs for their transport into the vacuole since their cytoplasmic retention is toxic to the cell. Anthocyanin accumulation in Citrus sinensis (L.) Osbeck fruit flesh determines different phenotypes affecting the typical pigmentation of Sicilian blood oranges. In this paper we describe: i) the characterization of the GST gene family in C. sinensis through a systematic EST analysis; ii) the validation of the EST assembly by exploiting the genome sequences of C. sinensis and C. clementina and their genome annotations; iii) GST gene expression profiling in six tissues/organs and in two different sweet orange cultivars, Cadenera (common) and Moro (pigmented). Results We identified 61 GST transcripts, described the full- or partial-length nature of the sequences and assigned to each sequence the GST class membership exploiting a comparative approach and the classification scheme proposed for plant species. A total of 23 full-length sequences were defined. Fifty-four of the 61 transcripts were successfully aligned to the C. sinensis and C. clementina genomes. Tissue specific expression profiling demonstrated that the expression of some GST transcripts was 'tissue-affected' and cultivar specific. A comparative analysis of C. sinensis GSTs with those from other plant species was also considered. Data from the current analysis are accessible at http://biosrv.cab.unina.it/citrusGST/, with the aim to provide a reference resource for C. sinensis GSTs. Conclusions This study aimed at the characterization of the GST gene family in C. sinensis. Based on expression patterns from two different cultivars and on sequence-comparative analyses, we also highlighted that two sequences, a Phi class GST and a Mapeg class GST, could be involved in

  7. Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of Citrus sinensis (L.) Osbeck.

    PubMed

    Licciardello, Concetta; D'Agostino, Nunzio; Traini, Alessandra; Recupero, Giuseppe Reforgiato; Frusciante, Luigi; Chiusano, Maria Luisa

    2014-02-03

    Glutathione S-transferases (GSTs) represent a ubiquitous gene family encoding detoxification enzymes able to recognize reactive electrophilic xenobiotic molecules as well as compounds of endogenous origin. Anthocyanin pigments require GSTs for their transport into the vacuole since their cytoplasmic retention is toxic to the cell. Anthocyanin accumulation in Citrus sinensis (L.) Osbeck fruit flesh determines different phenotypes affecting the typical pigmentation of Sicilian blood oranges. In this paper we describe: i) the characterization of the GST gene family in C. sinensis through a systematic EST analysis; ii) the validation of the EST assembly by exploiting the genome sequences of C. sinensis and C. clementina and their genome annotations; iii) GST gene expression profiling in six tissues/organs and in two different sweet orange cultivars, Cadenera (common) and Moro (pigmented). We identified 61 GST transcripts, described the full- or partial-length nature of the sequences and assigned to each sequence the GST class membership exploiting a comparative approach and the classification scheme proposed for plant species. A total of 23 full-length sequences were defined. Fifty-four of the 61 transcripts were successfully aligned to the C. sinensis and C. clementina genomes. Tissue specific expression profiling demonstrated that the expression of some GST transcripts was 'tissue-affected' and cultivar specific. A comparative analysis of C. sinensis GSTs with those from other plant species was also considered. Data from the current analysis are accessible at http://biosrv.cab.unina.it/citrusGST/, with the aim to provide a reference resource for C. sinensis GSTs. This study aimed at the characterization of the GST gene family in C. sinensis. Based on expression patterns from two different cultivars and on sequence-comparative analyses, we also highlighted that two sequences, a Phi class GST and a Mapeg class GST, could be involved in the conjugation of anthocyanin

  8. Xylella fastidiosa disturbs nitrogen metabolism and causes a stress response in sweet orange Citrus sinensis cv. Pera.

    PubMed

    Purcino, Rúbia P; Medina, Camilo Lázaro; Martins de Souza, Daniel; Winck, Flávia Vischi; Machado, Eduardo Caruso; Novello, José Camilo; Machado, Marcos Antonio; Mazzafera, Paulo

    2007-01-01

    Xylella fastidiosa (Xf) is a fastidious bacterium that grows exclusively in the xylem of several important crop species, including grape and sweet orange (Citrus sinensis L. Osb.) causing Pierce disease and citrus variegated chlorosis (CVC), respectively. The aim of this work was to study the nitrogen metabolism of a highly susceptible variety of sweet orange cv. 'Pêra' (C. sinensis L. Osbeck) infected with Xf. Plants were artificially infected and maintained in the greenhouse until they have developed clear disease symptoms. The content of nitrogen compounds and enzymes of the nitrogen metabolism and proteases in the xylem sap and leaves of diseased (DP) and uninfected healthy (HP) plants was studied. The activity of nitrate reductase in leaves did not change in DP, however, the activity of glutamine synthetase was significantly higher in these leaves. Although amino acid concentration was slightly higher in the xylem sap of DP, the level dropped drastically in the leaves. The protein contents were lower in the sap and in leaves of DP. DP and HP showed the same amino acid profiles, but different proportions were observed among them, mainly for asparagine, glutamine, and arginine. The polyamine putrescine was found in high concentrations only in DP. Protease activity was higher in leaves of DP while, in the xylem sap, activity was detected only in DP. Bidimensional electrophoresis showed a marked change in the protein pattern in DP. Five differentially expressed proteins were identified (2 from HP and 3 from DP), but none showed similarity with the genomic (translated) and proteomic database of Xf, but do show similarity with the proteins thaumatin, mucin, peroxidase, ABC-transporter, and strictosidine synthase. These results showed that significant changes take place in the nitrogen metabolism of DP, probably as a response to the alterations in the absorption, assimilation and distribution of N in the plant.

  9. Comparative transcriptome analysis reveals a global insight into molecular processes regulating citrate accumulation in sweet orange (Citrus sinensis).

    PubMed

    Lu, Xiaopeng; Cao, Xiongjun; Li, Feifei; Li, Jing; Xiong, Jiang; Long, Guiyou; Cao, Shangyin; Xie, Shenxi

    2016-12-01

    Citrate, the predominant organic acid in citrus, determines the taste of these fruits. However, little is known about the synergic molecular processes regulating citrate accumulation. Using 'Dahongtiancheng' (Citrus sinensis) and 'Bingtangcheng' (C. sinensis) with significant difference in citrate, the objectives of this study were to understand the global mechanisms of high-citrate accumulation in sweet orange. 'Dahongtiancheng' and 'Bingtangcheng' exhibit significantly different patterns in citrate accumulation throughout fruit development, with the largest differences observed at 50-70 days after full bloom (DAFB). Comparative transcriptome profiling was performed for the endocarps of both cultivars at 50 and 70 DAFB. Over 34.5 million clean reads per library were successfully mapped to the reference database and 670-2630 differentially expressed genes (DEGs) were found in four libraries. Among the genes, five transcription factors were ascertained to be the candidates regulating citrate accumulation. Functional assignments of the DEGs indicated that photosynthesis, the citrate cycle and amino acid metabolism were significantly altered in 'Dahongtiancheng'. Physiological and molecular analyses suggested that high photosynthetic efficiency and partial impairment of citrate catabolism were crucial for the high-citrate trait, and amino acid biosynthesis was one of the important directions for citrate flux. The results reveal a global insight into the gene expression changes in a high-citrate compared with a low-citrate sweet orange. High accumulating efficiency and impaired degradation of citrate may be associated with the high-citrate trait of 'Dahongtiancheng'. Findings in this study increase understanding of the molecular processes regulating citrate accumulation in sweet orange. © 2016 Scandinavian Plant Physiology Society.

  10. Resistance of sweet orange Pera (Citrus sinensis) genotypes to Xanthomonas citri subsp. citri under field conditions

    USDA-ARS?s Scientific Manuscript database

    Citrus canker control is based on protection measures and eradication of plants infected with Xanthomonas citri subsp. citri. Although these measures show satisfactory results, the use of resistant genotypes is an important alternative for citrus canker control. The aim of this study was to evaluate...

  11. Shikimic Acid Monitoring by HPLC with Diode Array Detector in Citrus sinensis Orchard with Glyphosate

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to evaluate the effect of weed control with glyphosate on shikimic acid levels in citrus, “Pêra” cultivar. The experimental plots were set in Santo Antônio de Posse county, Sao Paulo State, Brazil with the following treatments: glyphosate at 1,440 g.ha-1 a.e. between citrus ...

  12. Comparative analysis of surface wax in mature fruits between Satsuma mandarin (Citrus unshiu) and 'Newhall' navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression.

    PubMed

    Wang, Jinqiu; Hao, Haohao; Liu, Runsheng; Ma, Qiaoli; Xu, Juan; Chen, Feng; Cheng, Yunjiang; Deng, Xiuxin

    2014-06-15

    Surface wax of mature Satsuma mandarin (Citrus unshiu) and 'Newhall' navel orange (Citrus sinensis) was analysed by crystal morphology, chemical composition, and gene expression levels. The epicuticular and total waxes of both citrus cultivars were mostly composed of aldehydes, alkanes, fatty acids and primary alcohols. The epicuticular wax accounted for 80% of the total wax in the Newhall fruits and was higher than that in the Satsuma fruits. Scanning electron microscopy showed that larger and more wax platelets were deposited on the surface of Newhall fruits than on the Satsuma fruits. Moreover, the expression levels of genes involved in the wax formation were consistent with the biochemical and crystal morphological analyses. These diversities of fruit wax between the two cultivars may contribute to the differences of fruit postharvest storage properties, which can provide important information for the production of synthetic wax for citrus fruits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Preferential induction of a 9-lipoxygenase by salt in salt-tolerant cells of Citrus sinensis L. Osbeck.

    PubMed

    Ben-Hayyim, G; Gueta-Dahan, Y; Avsian-Kretchmer, O; Weichert, H; Feussner, I

    2001-02-01

    Recent findings in our laboratory suggested that in citrus cells the salt induction of phospholipid hydroperoxide glutathione peroxidase, an enzyme active in cellular antioxidant defense, is mediated by the accumulation of hydroperoxides. Production of hydroperoxides occurs as a result of non-enzymatic auto-oxidation or via the action of lipoxygenases (LOXs). In an attempt to resolve the role of LOX activity in the accumulation of peroxides we analyzed the expression of this protein under stress conditions and in cells of Citrus sinensis L. differing in sensitivity to salt. Lipoxygenase expression was induced very rapidly only in the salt-tolerant cells and in a transient manner. The induction was specific to salt stress and did not occur with other osmotic-stress-inducing agents, such as polyethylene glycol or mannitol, or under hot or cold conditions, or in the presence of abscisic acid. The induction was eliminated by the antioxidants dithiothreitol and kaempferol, thus once more establishing a correlation between salt and oxidative stresses. Analyses of both in vitro and in vivo products of LOX revealed a specific 9-LOX activity, and a very fast reduction of the hydroperoxides to the corresponding hydroxy derivatives. This suggests that one of the metabolites further downstream in the reductase pathway may play a key role in triggering defense responses against salt stress.

  14. Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis).

    PubMed

    Liu, Chaoyang; Wang, Xia; Xu, Yuantao; Deng, Xiuxin; Xu, Qiang

    2014-10-01

    MYB transcription factor represents one of the largest gene families in plant genomes. Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide, and recently the genome has been sequenced. This provides an opportunity to investigate the organization and evolutionary characteristics of sweet orange MYB genes from whole genome view. In the present study, we identified 100 R2R3-MYB genes in the sweet orange genome. A comprehensive analysis of this gene family was performed, including the phylogeny, gene structure, chromosomal localization and expression pattern analyses. The 100 genes were divided into 29 subfamilies based on the sequence similarity and phylogeny, and the classification was also well supported by the highly conserved exon/intron structures and motif composition. The phylogenomic comparison of MYB gene family among sweet orange and related plant species, Arabidopsis, cacao and papaya suggested the existence of functional divergence during evolution. Expression profiling indicated that sweet orange R2R3-MYB genes exhibited distinct temporal and spatial expression patterns. Our analysis suggested that the sweet orange MYB genes may play important roles in different plant biological processes, some of which may be potentially involved in citrus fruit quality. These results will be useful for future functional analysis of the MYB gene family in sweet orange.

  15. Effect of Pasteurization on Flavonoids and Carotenoids in Citrus sinensis (L.) Osbeck cv. 'Cara Cara' and 'Bahia' Juices.

    PubMed

    Brasili, Elisa; Chaves, Daniela F Seixas; Xavier, Ana Augusta O; Mercadante, Adriana Z; Hassimotto, Neuza M A; Lajolo, Franco M

    2017-02-22

    Orange juice is considered an excellent dietary source of several bioactive compounds with beneficial properties for human health. Citrus sinensis Osbeck cv. 'Cara Cara' is a bud mutation originated from 'Washington' navel orange, also known as 'Bahia' navel orange. The ascorbic acid, flavonoid, and carotenoid contents in pasteurized and nonpasteurized Bahia and Cara Cara juices using two LC-MS/MS platforms were investigated. Higher ascorbic acid content was observed in Bahia compared to Cara Cara in both pasteurized and nonpasteurized juices. Total flavanones content as well as hesperidin levels were higher in Cara Cara with respect to Bahia pasteurized juice. Cara Cara was also characterized by a significantly higher and diversified carotenoid content compared to Bahia juice with a mixture of (Z)-isomers of lycopene, all-E-β-carotene, phytoene, and phytofluene isomers accounting for the highest carotenoid proportion. The exceptionally high carotenoid content of Cara Cara may be particularly interesting for nutritional or functional studies of uncommon carotenes in a citrus food matrix.

  16. Draft Genome Sequence of Curtobacterium sp. Strain ER1/6, an Endophytic Strain Isolated from Citrus sinensis with Potential To Be Used as a Biocontrol Agent

    PubMed Central

    Garrido, Leandro Maza; Alves, João Marcelo Pereira; Oliveira, Liliane Santana; Padilla, Gabriel

    2016-01-01

    Herein, we report a draft genome sequence of the endophytic Curtobacterium sp. strain ER1/6, isolated from a surface-sterilized Citrus sinensis branch, and it presented the capability to control phytopathogens. Functional annotation of the ~3.4-Mb genome revealed 3,100 protein-coding genes, with many products related to known ecological and biotechnological aspects of this bacterium. PMID:27856581

  17. Tetraploidy Enhances Boron-Excess Tolerance in Carrizo Citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.)

    PubMed Central

    Ruiz, Marta; Quiñones, Ana; Martínez-Alcántara, Belén; Aleza, Pablo; Morillon, Raphaël; Navarro, Luis; Primo-Millo, Eduardo; Martínez-Cuenca, Mary-Rus

    2016-01-01

    Tetraploidy modifies root anatomy which may lead to differentiated capacity to uptake and transport mineral elements. This work provides insights into physiological and molecular characters involved in boron (B) toxicity responses in diploid (2x) and tetraploid (4x) plants of Carrizo citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.), a widely used citrus rootstock. With B excess, 2x plants accumulated more B in leaves than 4x plants, which accounted for their higher B uptake and root-to-shoot transport rates. Ploidy did not modify the expression of membrane transporters NIP5 and BOR1 in roots. The cellular allocation of B excess differed between ploidy levels in the soluble fraction, which was lower in 4x leaves, while cell wall-linked B was similar in 2x and 4x genotypes. This correlates with the increased damage and stunted growth recorded in the 2x plants. The 4x roots were found to have fewer root tips, shorter specific root length, longer diameter, thicker exodermis and earlier tissue maturation in root tips, where the Casparian strip was detected at a shorter distance from the root apex than in the 2x roots. The results presented herein suggest that the root anatomical characters of the 4x plants play a key role in their lower B uptake capacity and root-to-shoot transport. Highlights Tetraploidy enhances B excess tolerance in citrange Carrizo Expression of NIP5 and BOR1 transporters and cell wall-bounded B are similar between ploidies B tolerance is attributed to root anatomical modifications induced by genome duplication The rootstock 4x citrange carrizo may prevent citrus trees from B excess. PMID:27252717

  18. Tetraploidy Enhances Boron-Excess Tolerance in Carrizo Citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.).

    PubMed

    Ruiz, Marta; Quiñones, Ana; Martínez-Alcántara, Belén; Aleza, Pablo; Morillon, Raphaël; Navarro, Luis; Primo-Millo, Eduardo; Martínez-Cuenca, Mary-Rus

    2016-01-01

    Tetraploidy modifies root anatomy which may lead to differentiated capacity to uptake and transport mineral elements. This work provides insights into physiological and molecular characters involved in boron (B) toxicity responses in diploid (2x) and tetraploid (4x) plants of Carrizo citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.), a widely used citrus rootstock. With B excess, 2x plants accumulated more B in leaves than 4x plants, which accounted for their higher B uptake and root-to-shoot transport rates. Ploidy did not modify the expression of membrane transporters NIP5 and BOR1 in roots. The cellular allocation of B excess differed between ploidy levels in the soluble fraction, which was lower in 4x leaves, while cell wall-linked B was similar in 2x and 4x genotypes. This correlates with the increased damage and stunted growth recorded in the 2x plants. The 4x roots were found to have fewer root tips, shorter specific root length, longer diameter, thicker exodermis and earlier tissue maturation in root tips, where the Casparian strip was detected at a shorter distance from the root apex than in the 2x roots. The results presented herein suggest that the root anatomical characters of the 4x plants play a key role in their lower B uptake capacity and root-to-shoot transport. Tetraploidy enhances B excess tolerance in citrange CarrizoExpression of NIP5 and BOR1 transporters and cell wall-bounded B are similar between ploidiesB tolerance is attributed to root anatomical modifications induced by genome duplicationThe rootstock 4x citrange carrizo may prevent citrus trees from B excess.

  19. Development of a full-genome cDNA clone of Citrus leaf blotch virus and infection of citrus plants.

    PubMed

    Vives, María Carmen; Martín, Susana; Ambrós, Silvia; Renovell, Agueda; Navarro, Luis; Pina, Jose Antonio; Moreno, Pedro; Guerri, José

    2008-11-01

    Citrus leaf blotch virus (CLBV), a member of the family Flexiviridae, has a ~9-kb single-stranded, positive-sense genomic RNA encapsidated by a 41-kDa coat protein. CLBV isolates are associated with symptom production in citrus including leaf blotching of Dweet tangor and stem pitting in Etrog citron (Dweet mottle disease), and some isolates are associated with bud union crease on trifoliate rootstocks, but Koch's postulates for this virus were not fulfilled. A full-genome cDNA of CLBV isolate SRA-153, which induces bud union crease, was placed under the T7 promoter (clone T7-CLBV), or between the 35S promoter and the Nos-t terminator, with or without a ribozyme sequence downstream of the CLBV sequence (clones 35SRbz-CLBV and 35S-CLBV). RNA transcripts from T7-CLBV failed to infect Etrog citron and Nicotiana occidentalis and N. benthamiana plants, whereas agro-inoculation with binary vectors carrying 35SRbz-CLBV or 35S-CLBV, and the p19 silencing suppressor, caused systemic infection and production of normal CLBV virions. Virus accumulation was similar in citron plants directly agro-infiltrated, or mechanically inoculated with wild-type or 35SRbz-CLBV-derived virions from Nicotiana, and the three sources incited the symptoms characteristic of Dweet mottle disease, but not bud union crease. Our results show that (1) virions derived from an infectious clone show the same replication, movement and pathogenicity characteristics as the wild-type CLBV; (2) CLBV is the causal agent of Dweet mottle disease but not of the bud union crease syndrome; and (3) for the first time an RNA virus could be successfully agro-inoculated on citrus plants. This infectious clone may become a useful viral vector for citrus genomic studies.

  20. Citrus hallabong [(Citrus unshiu × C. sinensis) × C. reticulata)] exerts potent anti-inflammatory properties in murine splenocytes and TPA-induced murine ear oedema model.

    PubMed

    Herath, Kalahe Hewage Iresha Nadeeka Madushani; Bing, So Jin; Cho, Jinhee; Kim, Areum; Kim, Gi-Ok; Lee, Jong-Chul; Jee, Youngheun

    2016-12-01

    Hallabong [(Citrus unshiu × C. sinensis) X C. reticulata)] (Rutaceae) is a hybrid citrus cultivated in temperate regions of South Korea. Its fruit is well-known for pharmacological properties. This study examined the anti-inflammatory effect of 80% ethanol extract of Hallabong (HE) on concanavalin A (Con A)-stimulated splenocytes and mouse oedema model induced by 12-O-tetradecanoylphorbal acetate (TPA). Murine splenocytes treated with HE were stimulated with Con A (10 μg/mL, for 24 h) were evaluated for T-cell population and production of inflammatory cytokines IL-2, IL-4 and IFN-γ. Anti-inflammatory effect of topically applied HE (100 μg/20 μL) on TPA (4 μg/20 μL/ear)-induced ear oedema was investigated in mouse model. HE-treated Con A-stimulated murine splenocytes showed a marked decrease in CD44/CD62L(+) memory T-cell population, an important marker for anti-inflammatory activity, and a significant inhibition in the production of IL-2 and IFN-γ. HE treatment had reduced the mouse skin oedema (47%) and myeloperoxidase (MPO) activity significantly (40%) in TPA-challenged tissues. More importantly, immunohistochemical localization revealed the suppressed (p < 0.05) expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX2). HE decreased the infiltration of CD3(+) T cells and F4/80(+) macrophages to the site of inflammation and a topical application of HE significantly suppressed the expression of TNF-α (20.2%). A topical application of HE can exert a potential anti-inflammatory effect and HE can be explored further as a putative alternative therapeutic agent for inflammatory oedema.

  1. Hibiscus rosa- sinensis leaf extract as coagulant aid in leachate treatment

    NASA Astrophysics Data System (ADS)

    Awang, Nik Azimatolakma; Aziz, Hamidi Abdul

    2012-12-01

    Hibiscus rosa- sinensis is a biodegradable material that has remained untested for flocculating properties. The objective of this study is to examine the efficiency of coagulation-flocculation processes for the removal of color, iron (Fe3+), suspended solids, turbidity and ammonia nitrogen(NH3-N), from landfill leachate using 4,000 mg/L alum in conjunction with H. rosa- sinensis leaf extract (HBaqs). Hydroxyl (O-H) and (carboxyl) C=O functional groups along the HBaqs chain help to indulge flocculating efficiency of HBaqs via bridging. The experiments confirm the positive coagulation properties of HBaqs. The Fe3+ removal rate using 4,000 mg/L alum as sole coagulant was approximately 60 %, and increased to 100 % when 4,000 mg/L alum was mixed with 500 mg/L HBaqs. By mixing, 4,000 mg/L alum with 100-500 mg/L HBaqs, 72 % of SS was removed as compared with only 45 % reduction using 4,000 mg/L alum as sole coagulant.

  2. Citrus Leaf Volatiles as Affected by Developmental Stage and Genetic Type

    PubMed Central

    Azam, Muhammad; Jiang, Qian; Zhang, Bo; Xu, Changjie; Chen, Kunsong

    2013-01-01

    Major volatiles from young and mature leaves of different citrus types were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. A total of 123 components were identified form nine citrus cultivars, including nine aldehydes, 19 monoterpene hydrocarbons, 27 oxygenated monoterpenes, 43 sesquiterpene hydrocarbons, eight oxygenated sesquiterpenes, two ketones, six esters and nine miscellaneous. Young leaves produced higher amounts of volatiles than mature leaves in most cultivars. The percentage of aldehyde and monoterpene hydrocarbons increased, whilst oxygenated monoterpenes and sesquiterpenes compounds decreased during leaf development. Linalool was the most abundant compound in young leaves, whereas limonene was the chief component in mature ones. Notably, linalool content decreased, while limonene increased, during leaf development in most cultivars. Leaf volatiles were also affected by genetic types. A most abundant volatile in one or several genotypes can be absent in another one(s), such as limonene in young leaves of lemon vs. Satsuma mandarin and β-terpinene in mature leaves of three genotypes vs. the other four. Compositional data was subjected to multivariate statistical analysis, and variations in leaf volatiles were identified and clustered into six groups. This research determining the relationship between production of major volatiles from different citrus varieties and leaf stages could be of use for industrial and culinary purposes. PMID:23994837

  3. The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms

    PubMed Central

    Bausher, Michael G; Singh, Nameirakpam D; Lee, Seung-Bum; Jansen, Robert K; Daniell, Henry

    2006-01-01

    Background The production of Citrus, the largest fruit crop of international economic value, has recently been imperiled due to the introduction of the bacterial disease Citrus canker. No significant improvements have been made to combat this disease by plant breeding and nuclear transgenic approaches. Chloroplast genetic engineering has a number of advantages over nuclear transformation; it not only increases transgene expression but also facilitates transgene containment, which is one of the major impediments for development of transgenic trees. We have sequenced the Citrus chloroplast genome to facilitate genetic improvement of this crop and to assess phylogenetic relationships among major lineages of angiosperms. Results The complete chloroplast genome sequence of Citrus sinensis is 160,129 bp in length, and contains 133 genes (89 protein-coding, 4 rRNAs and 30 distinct tRNAs). Genome organization is very similar to the inferred ancestral angiosperm chloroplast genome. However, in Citrus the infA gene is absent. The inverted repeat region has expanded to duplicate rps19 and the first 84 amino acids of rpl22. The rpl22 gene in the IRb region has a nonsense mutation resulting in 9 stop codons. This was confirmed by PCR amplification and sequencing using primers that flank the IR/LSC boundaries. Repeat analysis identified 29 direct and inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Comparison of protein-coding sequences with expressed sequence tags revealed six putative RNA edits, five of which resulted in non-synonymous modifications in petL, psbH, ycf2 and ndhA. Phylogenetic analyses using maximum parsimony (MP) and maximum likelihood (ML) methods of a dataset composed of 61 protein-coding genes for 30 taxa provide strong support for the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids and asterids. The MP and ML trees are incongruent in three areas: the position of Amborella and Nymphaeales, relationship

  4. Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis).

    PubMed

    Ito, T M; Polido, P B; Rampim, M C; Kaschuk, G; Souza, S G H

    2014-09-26

    Sweet orange (Citrus sinensis) plays an important role in the economy of more than 140 countries, but it is grown in areas with intermittent stressful soil and climatic conditions. The stress tolerance could be addressed by manipulating the ethylene response factor (ERF) transcription factors because they orchestrate plant responses to environmental stress. We performed an in silico study on the ERFs in the expressed sequence tag database of C. sinensis to identify potential genes that regulate plant responses to stress. We identified 108 putative genes encoding protein sequences of the AP2/ERF superfamily distributed within 10 groups of amino acid sequences. Ninety-one genes were assembled from the ERF family containing only one AP2/ERF domain, 13 genes were assembled from the AP2 family containing two AP2/ERF domains, and four other genes were assembled from the RAV family containing one AP2/ERF domain and a B3 domain. Some conserved domains of the ERF family genes were disrupted into a few segments by introns. This irregular distribution of genes in the AP2/ERF superfamily in different plant species could be a result of genomic losses or duplication events in a common ancestor. The in silico gene expression revealed that 67% of AP2/ERF genes are expressed in tissues with usual plant development, and 14% were expressed in stressed tissues. Because the AP2/ERF superfamily is expressed in an orchestrated way, it is possible that the manipulation of only one gene may result in changes in the whole plant function, which could result in more tolerant crops.

  5. Magnesium-deficiency-induced alterations of gas exchange, major metabolites and key enzymes differ among roots, and lower and upper leaves of Citrus sinensis seedlings.

    PubMed

    Li, Chun-Ping; Qi, Yi-Ping; Zhang, Jiang; Yang, Lin-Tong; Wang, Dan-Hong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song

    2017-06-14

    Magnesium (Mg)-deficiency is a widespread problem adversely affecting the quality and yield of crops, including citrus. 'Xuegan' [Citrus sinensis (L.) Osbeck] seedlings were irrigated every other day with nutrient solution at an Mg concentration of 0 mM (Mg-deficiency) or 1 mM (Mg-sufficiency) for 16 weeks. Thereafter, biomass, leaf mass per area, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), pigments in the upper and lower leaves, Mg, gas exchange, organic acids, nonstructural carbohydrates, total soluble proteins, amino acids, phenolics and anthocyanins, and key enzymes related to organic acid, amino acid and phenolic metabolisms in the roots, and upper and lower leaves were assayed in order to test the hypothesis that Mg-deficiency-induced alterations of gas exchange, major metabolites and key enzymes may differ among the roots, and upper and lower leaves. Magnesium-deficiency affected the most measured parameters more in the lower than in the upper leaves except for the nonstructural carbohydrates, but the variation trends were similar between the two. Despite increased accumulation of nonstructural carbohydrates, the lower CO2 assimilation in the Mg-deficient leaves was not caused by the feedback inhibition mechanism via sugar accumulation. Both dark respiration and organic acid metabolism were elevated in the Mg-deficient lower leaves to 'consume' the excess carbohydrates, and inhibited in the Mg-deficient roots with less accumulation of nonstructural carbohydrates to keep the balance of net carbon. More total phenolics and fewer anthocyanins were accumulated in the Mg-deficient lower leaves, whereas the accumulation of both total phenolics and anthocyanins was reduced in the Mg-deficient roots. Interestingly, amino acid biosynthesis was repressed in the Mg-deficient roots and lower leaves, thus lowering the level of total free amino acids in these roots and leaves. To conclude, great differences existed in the Mg-deficiency-induced alterations

  6. Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease.

    PubMed

    Yang, Li; Hu, Chunhua; Li, Na; Zhang, Jiayin; Yan, Jiawen; Deng, Ziniu

    2011-01-01

    The COOH terminal of pthA encoding three nuclear localizing signals (NLS) was amplified by polymerase chain reaction (PCR) from the plasmid of Xanthomonas axonopodis pv. citri, the pathogen of citrus canker disease. Then the sense and antisense strands of the nls were cloned into pBI121 vector. pthA-nls driven by the CaMV35 s promoter was transferred into sweet orange via Agrobacterium -mediated transformation. Successful integration was confirmed by PCR and Southern blotting, and 12 sense-nls (nls (+)) and 9 antisense-nls (nls (-)) transgenic clones were obtained. The expression of nls fragment was analyzed by RT-PCR, Real time q-PCR and Western blotting, in which the specific NLS protein was detected only in nls (+) transgenic clones. In an in vitro assay, when pin-puncture inoculation was performed with 2.5 × 10(7) cfu/ml of bacterial solution, the nls (+) transgenic clones showed no typical lesion development, while typical symptoms were observed in the wild types and the nls (-) transgenic clones. In vivo assay results indicated that the nls (+) transgenic clones showed less disease incidence, in comparison with the wild types and the nls (-) transgenic clones, when pin-puncture inoculation was performed with 10(4)-10(5) cfu/ml. The minimum disease incidence was 23.3% for 'Sucarri' sweet orange and 33.3% for 'Bingtang' sweet orange. When 10(4)-10(7) cfu/ml of pathogen was spray inoculated, the nls (+) transgenic clones did not show any symptom, and even the concentration raised to 10(9) cfu/ml, the disease incidence was 20-80%, while the wild types and the nls (-) transgenic clones had 100% disease development with whatever concentration of inoculum. Two transgenic clones were confirmed to be resistant to citrus canker disease in the repeated inoculation. The results suggested that the transformation of nls sense strands may offer an effective way to acquire resistance to citrus canker disease.

  7. Effect of foliar application of micronutrients on the yield and quality of sweet orange (Citrus Sinensis L.).

    PubMed

    Tariq, M; Sharif, M; Shah, Z; Khan, R

    2007-06-01

    An experiment was designed to study the effect of foliar application of micronutrients on the yield, quality and leaf composition of sweet orange, Blood red variety at Shabazgari, Mardan. The experiment was laid out in a randomized complete block design in 2) factorial arrangement. Zinc, manganese and boron were applied as foliar spray at the rate of 0.4, 0.2 and 0.04 kg ha(-1), respectively in the presence of 1.56 kg N ha(-1) as urea and 0.4 kg surfactance ha(-1) (as wetting agent) in 400 L of water. The maximum fruit yield was obtained, when 0.4 kg Zn ha(-1) and 0.2 kg Mn ha(-1) was sprayed along with 1.56 kg N ha(-1) and 0.4 kg surfactance ha(-1) in 400 L of water. The minimum % peel was obtained with B alone and minimum % rag with Zn + Mn, maximum fruit size with Zn + B and maximum fruit volume with Zn + Mn. Similarly, % juice in sweet oranges was increased significantly by B alone, reducing sugar by Mn alone and vitamin C contents by Zn + B through foliar spray, suggested that each micronutrient had different role on the quality of citrus fruit. Foliar spray of Zn, Mn and B along with urea significantly increased the concentration of Zn and Mn in citrus leaves, while the concentration of B was not affected with foliar spray, perhaps due to dilution within the citrus tissues. Therefore, it is suggested that either Zn+Mn or Zn+B may be applied as foliar spray in combination with urea and surfactance for getting the maximum yield and improved quality of citrus fruit under prevailing conditions.

  8. The compositional characterisation and antioxidant activity of fresh juices from sicilian sweet orange (Citrus sinensis L. Osbeck) varieties.

    PubMed

    Proteggente, Anna R; Saija, Antonella; De Pasquale, Anna; Rice-Evans, Catherine A

    2003-06-01

    Epidemiological evidence has suggested that consumption of fruit and vegetables reduces the risk of both cancer and cardiovascular diseases, potentially through the biological actions of components such as vitamin C, vitamin E, flavonoids and carotenoids. Citrus species are extremely rich sources in vitamin C and flavanones, a class of compounds which belongs to the flavonoids family. A comparison of the phenolic compositions, the ascorbic acid contents and the antioxidant activities of fresh Sicilian orange juices from pigmented (Moro, Tarocco and Sanguinello) and non-pigmented (Ovale, Valencia and Navel) varieties of orange (Citrus sinensis L. Osbeck), was undertaken. The simultaneous characterisation and quantification of the major flavanone, anthocyanin and hydroxycinnamate components were attained by HPLC with diode array detection. Differences between varieties in terms of the flavanone glycoside content, particularly hesperidin, were observed, with the Tarocco juices reporting the highest content. Furthermore, cyanidin-3-glucoside and cyanidin-3-(6"-malonyl)-glucoside were predominant in all the pigmented varieties, but their concentration was higher in the juices of the Moro variety. Quantitatively, the major antioxidant component of all juices was ascorbic acid and its concentration was significantly correlated (r = 0.74, P < 0.001) with the total antioxidant activity of the juices, determined in vitro using the ABTS radical cation decolorization assay. Similarly, hydroxycinnamates (r = 0.73, P < 0.01) and anthocyanins (r = 0.98, P < 0.001) content showed a good correlation with the determined antioxidant capacity. Therefore orange juices, particularly those rich in anthocyanins, may represent a significant dietary source of flavonoids.

  9. Photodynamic inactivation of conidia of the fungus Colletotrichum abscissum on Citrus sinensis plants with methylene blue under solar radiation.

    PubMed

    Gonzales, Júlia C; Brancini, Guilherme T P; Rodrigues, Gabriela B; Silva-Junior, Geraldo José; Bachmann, Luciano; Wainwright, Mark; Braga, Gilberto Ú L

    2017-09-14

    Antimicrobial photodynamic treatment (APDT) is a promising light based approach to control diseases caused by plant-pathogenic fungi. In the present study, we evaluated the effects of APDT with the phenothiazinium photosensitizer methylene blue (MB) under solar radiation on the germination and viability of conidia of the pathogenic fungus Colletotricum abscissum (former Colletotrichum acutatum sensu lato). Experiments were performed both on petals and leaves of sweet orange (Citrus sinensis) in different seasons and weather conditions. Conidial suspensions were deposited on the leaves and petals surface, treated with the PS (25 or 50μM) and exposed to solar radiation for only 30min. The effects of APDT on conidia were evaluated by counting the colony forming units recovered from leaves and petals and by direct evaluating conidial germination on the surface of these plant organs after the treatment. To better understand the mechanistic of conidial photodynamic inactivation, the effect of APDT on the permeability of the conidial plasma membrane was assessed using the fluorescent probe propidium iodide (PI) together with flow cytometry and fluorescence microscopy. APDT with MB and solar exposure killed C. abscissum conidia and prevented their germination on both leaves and petals of citrus. Reduction of conidial viability was up to three orders of magnitude and a complete photodynamic inactivation was achieved in some of the treatments. APDT damaged the conidial plasma membrane and increased its permeability to PI. No damage to sweet orange flowers or leaves was observed after APDT. The demonstration of the efficacy of APDT on the plant host represents a further step towards the use of the method for control phytopathogens in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency.

    PubMed

    Yang, Lin-Tong; Qi, Yi-Ping; Lu, Yi-Bin; Guo, Peng; Sang, Wen; Feng, Hui; Zhang, Hong-Xing; Chen, Li-Song

    2013-11-20

    Seedlings of Citrus sinensis were fertilized with boron (B)-deficient (0μM H3BO3) or -sufficient (10μM H3BO3) nutrient solution for 15weeks. Thereafter, iTRAQ analysis was employed to compare the abundances of proteins from B-deficient and -sufficient roots. In B-deficient roots, 164 up-regulated and 225 down-regulated proteins were identified. These proteins were grouped into the following functional categories: protein metabolism, nucleic acid metabolism, stress responses, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, biological regulation and signal transduction, and lipid metabolism. The adaptive responses of roots to B-deficiency might include following several aspects: (a) decreasing root respiration; (b) improving the total ability to scavenge reactive oxygen species (ROS); and (c) enhancing cell transport. The differentially expressed proteins identified by iTRAQ are much larger than those detected using 2D gel electrophoresis, and many novel B-deficiency-responsive proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes were identified in this work. Our results indicate remarkable metabolic flexibility of citrus roots, which may contribute to the survival of B-deficient plants. This represents the most comprehensive analysis of protein profiles in response to B-deficiency. In this study, we identified many new proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes that were not previously known to be associated with root B-deficiency responses. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in response to B-deficiency and provides new information about the plant response to B-deficiency. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Identification, characterization and expression analysis of lineage-specific genes within sweet orange (Citrus sinensis).

    PubMed

    Xu, Yuantao; Wu, Guizhi; Hao, Baohai; Chen, Lingling; Deng, Xiuxin; Xu, Qiang

    2015-11-23

    With the availability of rapidly increasing number of genome and transcriptome sequences, lineage-specific genes (LSGs) can be identified and characterized. Like other conserved functional genes, LSGs play important roles in biological evolution and functions. Two set of citrus LSGs, 296 citrus-specific genes (CSGs) and 1039 orphan genes specific to sweet orange, were identified by comparative analysis between the sweet orange genome sequences and 41 genomes and 273 transcriptomes. With the two sets of genes, gene structure and gene expression pattern were investigated. On average, both the CSGs and orphan genes have fewer exons, shorter gene length and higher GC content when compared with those evolutionarily conserved genes (ECs). Expression profiling indicated that most of the LSGs expressed in various tissues of sweet orange and some of them exhibited distinct temporal and spatial expression patterns. Particularly, the orphan genes were preferentially expressed in callus, which is an important pluripotent tissue of citrus. Besides, part of the CSGs and orphan genes expressed responsive to abiotic stress, indicating their potential functions during interaction with environment. This study identified and characterized two sets of LSGs in citrus, dissected their sequence features and expression patterns, and provided valuable clues for future functional analysis of the LSGs in sweet orange.

  12. CsPAO4 of Citrus sinensis functions in polyamine terminal catabolism and inhibits plant growth under salt stress

    PubMed Central

    Wang, Wei; Liu, Ji-Hong

    2016-01-01

    Polyamine oxidase (PAO) is a key enzyme catalyzing polyamine catabolism leading to H2O2 production. We previously demonstrated that Citrus sinensis contains six putative PAO genes, but their functions are not well understood. In this work, we reported functional elucidation of CsPAO4 in polyamine catabolism and salt stress response. CsPAO4 was localized to the apoplast and used both spermidine (Spd) and spermine (Spm) as substrates for terminal catabolism. Transgenic plants overexpressing CsPAO4 displayed prominent increase in PAO activity, concurrent with marked decrease of Spm and Spd and elevation of H2O2. Seeds of transgenic lines displayed better germination when compared with wild type (WT) under salt stress. However, both vegetative growth and root elongation of the transgenic lines were prominently inhibited under salt stress, accompanied by higher level of H2O2 and more conspicuous programmed cell death (PCD). Exogenous supply of catalase (CAT), a H2O2 scavenger, partially recovered the vegetative growth and root elongation. In addition, spermine inhibited root growth of transgenic plants. Taken together, these data demonstrated that CsPAO4 accounts for production of H2O2 causing oxidative damages under salt stress and that down-regulation of a PAO gene involved in polyamine terminal catabolism may be an alternative approach for improving salt stress tolerance. PMID:27535697

  13. Preliminary in vitro antisickilng properties of crude juice extracts of Persia Americana, Citrus sinensis, Carica papaya and Ciklavit®.

    PubMed

    Iweala, E E J; Uhegbu, F O; Ogu, G N

    2009-12-30

    The antisickling properties of crude juice extracts of the edible portions of three commonly consumed tropical fruits namely Persia americana, Citrus sinensis, and Carica papaya were investigated in vitro alongside a new drug preparation called Ciklavit® that has antisickling activity. Four different solvent extracts of the crude juice of each fruit including aqueous, acidic, alkaline and alcoholic extracts were prepared and their antisickling effects on sickle cell trait (HbAS) and sickle cell disease (HbSS) blood samples checked alongside Ciklavit®. Blood samples were stabilized using normal saline and the antisickling effects were checked by counting the number of sickle cells remaining after incubation of the blood samples with the crude fruit extracts and Ciklavit® for twenty-four hours. The results showed that Ciklavit® produced a sustained reduction in the number of sickle cells in both HbAS and HbSS blood samples. Also the alkaline and alcoholic extracts of P. americana and C. papaya produced significant reduction in the number of sickle cells.

  14. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels.

    PubMed

    Nayak, Balunkeswar; Dahmoune, Farid; Moussi, Kamal; Remini, Hocine; Dairi, Sofiane; Aoun, Omar; Khodir, Madani

    2015-11-15

    Peel of Citrus sinensis contains significant amounts of bioactive polyphenols that could be used as ingredients for a number of value-added products with health benefits. Extraction of polyphenols from the peels was performed using a microwave-assisted extraction (MAE) technique. The effects of aqueous acetone concentration, microwave power, extraction time and solvent-to-solid ratio on the total phenolic content (TPC), total antioxidant activity (TAA) (using DPPH and ORAC-values) and individual phenolic acids (IPA) were investigated using a response surface method. The TPC, TAA and IPA of peel extracts using MAE was compared with conventional, ultrasound-assisted and accelerated solvent extraction. The maximum predicted TPC under the optimal MAE conditions (51% acetone concentration in water (v/v), 500 W microwave power, 122 s extraction time and 25 mL g(-1) solvent to solid ratio), was 12.20 mg GAE g(-1) DW. The TPC and TAA in MAE extracts were higher than the other three extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of different levels of dietary sweet orange (Citrus sinensis) peel extract on humoral immune system responses in broiler chickens.

    PubMed

    Pourhossein, Zohreh; Qotbi, Ali Ahmad Alaw; Seidavi, Alireza; Laudadio, Vito; Centoducati, Gerardo; Tufarelli, Vincenzo

    2015-01-01

    This experiment was conducted to evaluate the effects of different levels of sweet orange (Citrus sinensis) peel extract (SOPE) on humoral immune system responses in broiler chickens. Three hundred 1-day broilers (Ross-308) were randomly allocated to treatments varying in supplemental SOPE added in the drinking water. The experimental groups consisted of three treatments fed for 42 days as follows: a control treatment without feed extract, a treatment containing 1000 ppm of SOPE and a treatment containing 1250 ppm of SOPE. All treatments were isocaloric and isonitrogenous. Broilers were vaccinated with Newcastle disease virus (NDV), avian influenza (AI), infectious bursal disease (IBD) and infectious bronchitis virus (IBV) vaccines. Antibody titer response to sheep red blood cells (SRBC) was higher in the group fed 1250 ppm of SOPE (P < 0.05) as well as for immunoglobulin G (IgG) and IgM. Similarly, antibody titer responses to all vaccines were constantly elevated (P < 0.05) by SOPE enrichment in a dose-dependent manner. Relative weights of spleen and bursa of Fabricius were unaffected by treatments. Dietary SOPE supplementation may improve the immune response and diseases resistance, indicating that it can constitute a useful additive in broiler feeding. Thus, supplying SOPE in rations may help to improve relative immune response in broiler chickens. © 2014 Japanese Society of Animal Science.

  16. The State of the Art in Biosynthesis of Anthocyanins and Its Regulation in Pigmented Sweet Oranges [(Citrus sinensis) L. Osbeck].

    PubMed

    Lo Piero, Angela Roberta

    2015-04-29

    Anthocyanins are water-soluble pigments belonging to the flavonoid compound family involved in nature in several aspects of plant development and defense. By bestowing much of the color and flavor on fruits and vegetables, they are components of the human diet and, thanks to their radical-scavenging properties, are not considered exclusively as food products but also as therapeutic agents. Several cultivars of red (or blood) oranges [Citrus sinensis (L.) Osbeck], such as Tarocco, Moro, and Sanguinello, are characterized by the presence of anthocyanins in both the rind and fruit juice vesicles. The amount and composition of anthocyanins in the pigmented orange cultivar vary greatly depending on variety, maturity, region of cultivation, and many other environmental conditions. Most of the blood orange varieties require a wide day-night thermal range to maximize color formation. Therefore, the production of red oranges characterized by high anthocyanin levels is limited to a few regions and in particular to the Sicilian area around Mount Etna in Italy, where the characteristic climate conditions yield fruits of unique color intensity and quality. In this review, both the basic information and the most recent advances in red orange anthocyanins are reported, with intense attention given to their biosynthesis and regulation.

  17. Precocious flowering of juvenile citrus induced by a viral vector based on Citrus leaf blotch virus: a new tool for genetics and breeding.

    PubMed

    Velázquez, Karelia; Agüero, Jesús; Vives, María C; Aleza, Pablo; Pina, José A; Moreno, Pedro; Navarro, Luis; Guerri, José

    2016-10-01

    The long juvenile period of citrus trees (often more than 6 years) has hindered genetic improvement by traditional breeding methods and genetic studies. In this work, we have developed a biotechnology tool to promote transition from the vegetative to the reproductive phase in juvenile citrus plants by expression of the Arabidopsis thaliana or citrus FLOWERING LOCUS T (FT) genes using a Citrus leaf blotch virus-based vector (clbvINpr-AtFT and clbvINpr-CiFT, respectively). Citrus plants of different genotypes graft inoculated with either of these vectors started flowering within 4-6 months, with no alteration of the plant architecture, leaf, flower or fruit morphology in comparison with noninoculated adult plants. The vector did not integrate in or recombine with the plant genome nor was it pollen or vector transmissible, albeit seed transmission at low rate was detected. The clbvINpr-AtFT is very stable, and flowering was observed over a period of at least 5 years. Precocious flowering of juvenile citrus plants after vector infection provides a helpful and safe tool to dramatically speed up genetic studies and breeding programmes. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Quantification and localization of hesperidin and rutin in Citrus sinensis grafted on C. limonia after Xylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry.

    PubMed

    Soares, Márcio Santos; da Silva, Danielle Fernandes; Forim, Moacir Rossi; da Silva, Maria Fátima das Graças Fernandes; Fernandes, João Batista; Vieira, Paulo Cezar; Silva, Denise Brentan; Lopes, Norberto Peporine; de Carvalho, Sérgio Alves; de Souza, Alessandra Alves; Machado, Marcos Antônio

    2015-07-01

    A high performance liquid chromatography-ultraviolet (HPLC-UV) method was developed for quantifying hesperidin and rutin levels in leaves and stems of Citrus limonia, with a good linearity over a range of 1.0-80.0 and 1.0-50.0 μg mL(-1) respectively, with r(2)>0.999 for all curves. The limits of detection (LOD) for both flavonoids were 0.6 and 0.5 μg mL(-1), respectively, with quantification (LOQ) being 2.0 and 1.0 μg mL(-1), respectively. The quantification method was applied to Citrus sinensis grafted onto C. limonia with and without CVC (citrus variegated chlorosis) symptoms after Xylella fastidiosa infection. The total content of rutin was low and practically constant in all analyses in comparison with hesperidin, which showed a significant increase in its amount in symptomatic leaves. Scanning electron microscopy studies on leaves with CVC symptoms showed vessel occlusion by biofilm, and a crystallized material was noted. Considering the difficulty in isolating these crystals for analysis, tissue sections were analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) to confirm the presence of hesperidin at the site of infection. The images constructed from MS/MS data with a specific diagnostic fragment ion (m/z 483) also showed higher ion intensities for it in infected plants than in healthy ones, mainly in the vessel regions. These data suggest that hesperidin plays a role in the plant-pathogen interaction, probably as a phytoanticipin. This method was also applied to C. sinensis and C. limonia seedlings, and comparison with the graft results showed that the rootstock had an increased hesperidin content ∼3.6 fold greater in the graft stem than in the stem of C. sinensis seedlings. Increase in hesperidin content by rootstock can be related to induced internal defense mechanisms.

  19. Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet orange).

    PubMed

    Hijaz, Faraj; Killiny, Nabil

    2014-01-01

    Through utilizing the nutrient-rich phloem sap, sap feeding insects such as psyllids, leafhoppers, and aphids can transmit many phloem-restricted pathogens. On the other hand, multiplication of phloem-limited, uncultivated bacteria such as Candidatus Liberibacter asiaticus (CLas) inside the phloem of citrus indicates that the sap contains all the essential nutrients needed for the pathogen growth. The phloem sap composition of many plants has been studied; however, to our knowledge, there is no available data about citrus phloem sap. In this study, we identified and quantified the chemical components of phloem sap from pineapple sweet orange. Two approaches (EDTA enhanced exudation and centrifugation) were used to collect phloem sap. The collected sap was derivatized with methyl chloroformate (MCF), N-methyl-N- [tert-butyl dimethylsilyl]-trifluroacetamide (MTBSTFA), or trimethylsilyl (TMS) and analyzed with GC-MS revealing 20 amino acids and 8 sugars. Proline, the most abundant amino acid, composed more than 60% of the total amino acids. Tryptophan, tyrosine, leucine, isoleucine, and valine, which are considered essential for phloem sap-sucking insects, were also detected. Sucrose, glucose, fructose, and inositol were the most predominant sugars. In addition, seven organic acids including succinic, fumaric, malic, maleic, threonic, citric, and quinic were detected. All compounds detected in the EDTA-enhanced exudate were also detected in the pure phloem sap using centrifugation. The centrifugation technique allowed estimating the concentration of metabolites. This information expands our knowledge about the nutrition requirement for citrus phloem-limited bacterial pathogen and their vectors, and can help define suitable artificial media to culture them.

  20. Collection and Chemical Composition of Phloem Sap from Citrus sinensis L. Osbeck (Sweet Orange)

    PubMed Central

    Hijaz, Faraj; Killiny, Nabil

    2014-01-01

    Through utilizing the nutrient-rich phloem sap, sap feeding insects such as psyllids, leafhoppers, and aphids can transmit many phloem-restricted pathogens. On the other hand, multiplication of phloem-limited, uncultivated bacteria such as Candidatus Liberibacter asiaticus (CLas) inside the phloem of citrus indicates that the sap contains all the essential nutrients needed for the pathogen growth. The phloem sap composition of many plants has been studied; however, to our knowledge, there is no available data about citrus phloem sap. In this study, we identified and quantified the chemical components of phloem sap from pineapple sweet orange. Two approaches (EDTA enhanced exudation and centrifugation) were used to collect phloem sap. The collected sap was derivatized with methyl chloroformate (MCF), N-methyl-N- [tert-butyl dimethylsilyl]-trifluroacetamide (MTBSTFA), or trimethylsilyl (TMS) and analyzed with GC-MS revealing 20 amino acids and 8 sugars. Proline, the most abundant amino acid, composed more than 60% of the total amino acids. Tryptophan, tyrosine, leucine, isoleucine, and valine, which are considered essential for phloem sap-sucking insects, were also detected. Sucrose, glucose, fructose, and inositol were the most predominant sugars. In addition, seven organic acids including succinic, fumaric, malic, maleic, threonic, citric, and quinic were detected. All compounds detected in the EDTA-enhanced exudate were also detected in the pure phloem sap using centrifugation. The centrifugation technique allowed estimating the concentration of metabolites. This information expands our knowledge about the nutrition requirement for citrus phloem-limited bacterial pathogen and their vectors, and can help define suitable artificial media to culture them. PMID:25014027

  1. In vitro hypoglycemic effects of different insoluble fiber-rich fractions prepared from the peel of Citrus sinensis L. cv. Liucheng.

    PubMed

    Chau, Chi-Fai; Huang, Ya-Ling; Lee, Mao-Hsiang

    2003-10-22

    Insoluble fiber-rich fractions (FRFs), including insoluble dietary fiber, alcohol-insoluble solid, and water-insoluble solid, were isolated from the peel of Citrus sinensis L. cv. Liucheng. We found that these three FRFs could effectively adsorb glucose, retard glucose diffusion, and inhibit the activity of alpha-amylase to different extents. These mechanisms might create a concerted benefit in decreasing the rate of glucose absorption and eventually lower the concentration of postprandial serum glucose. The potential hypoglycemic effects of these FRFs suggested that they could be incorporated as low-calorie bulk ingredients in high-fiber foods to reduce calorie level and control blood glucose level.

  2. Ultra-High Performance Liquid Chromatography (UHPLC) Method for the Determination of Limonene in Sweet Orange (Citrus sinensis) Oil: Implications for Limonene Stability.

    PubMed

    Bernart, Matthew W

    2015-01-01

    The citrus-derived bioactive monoterpene limonene is an important industrial commodity and fragrance constituent. An RP isocratic elution C18 ultra-HPLC (UHPLC) method using a superficially porous stationary phase and photodiode array (PDA) detector has been developed for determining the limonene content of sweet orange (Citrus sinensis) oil. The method is fast with a cycle time of 1.2 min, linear, precise, accurate, specific, and stability indicating, and it satisfies U.S. Pharmacopeia suitability parameters. The method may be useful in its present form for limonene processing, or modified for research on more polar compounds of the terpenome. A forced-degradation experiment showed that limonene is degraded by heat in hydro-ethanolic solution. PDA detection facilitates classification of minor components of the essential oil, including β-myrcene.

  3. High-resolution imaging and in situ cutting of leaf epicuticular waxes of the biomass plant Miscanthus sinensis.

    PubMed

    Kim, Ki Woo

    2013-01-01

    The leaf surface features of the biomass plant Miscanthus sinensis were investigated by electron and ion beam microscopy. Fully developed leaves were collected from the plant, air-dried and examined by field emission scanning electron microscopy. Stomata and longitudinal stripes were present on both the adaxial and abaxial leaf surfaces. Longitudinally aggregated rodlets surrounded the stomata and formed hollow cylinders or chimney-like structures. With varying lengths up to ∼10 μm, the rodlets were curved (<1 μm in diameter) and almost occluded the stomata. As another type of epicuticular wax, platelets were observed in the vicinity of the stomata. The platelets were arranged into rather radially assembled clusters. As a novel approach for cross sectioning native epicuticular waxes, focused ion beam milling allowed precise in situ cutting of the stomata and epicuticular waxes. The longitudinally aggregated rodlets of the stomatal chimneys of M. sinensis were derived from the stomatal guard cells. These results suggest that the epicuticular waxes of M. sinensis can be categorized as stomatal chimneys (Strelitzia type) and rosettes (Fabales type). Combined electron and ion beam microscopy can help unravel the ultrastructure and vertical profile of epicuticular waxes in a range of plant taxa.

  4. Regulation of cuticle formation during fruit development and ripening in 'Newhall' navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling.

    PubMed

    Wang, Jinqiu; Sun, Li; Xie, Li; He, Yizhong; Luo, Tao; Sheng, Ling; Luo, Yi; Zeng, Yunliu; Xu, Juan; Deng, Xiuxin; Cheng, Yunjiang

    2016-02-01

    Fruit cuticle, which is composed of cutin and wax and biosynthesized during fruit development, plays important roles in the prevention of water loss and the resistance to pathogen infection during fruit development and postharvest storage. However, the key factors and mechanisms regarding the cuticle biosynthesis in citrus fruits are still unclear. Here, fruit cuticle of 'Newhall' navel orange (Citrus sinensis Osbeck) was studied from the stage of fruit expansion to postharvest storage from the perspectives of morphology, transcription and metabolism. The results demonstrated that cutin accumulation is synchronous with fruit expansion, while wax synthesis is synchronous with fruit maturation. Metabolic profile of fruits peel revealed that transition of metabolism of fruit peel occurred from 120 to 150 DAF and ABA was predicted to regulate citrus wax synthesis during the development of Newhall fruits. RNA-seq analysis of the peel from the above two stages manifested that the genes involved in photosynthesis were repressed, while the genes involved in the biosynthesis of wax, cutin and lignin were significantly induced at later stages. Further real-time PCR predicted that MYB transcription factor GL1-like regulates citrus fruits wax synthesis. These results are valuable for improving the fruit quality during development and storage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. x Poncirus trifoliata (L.) Raf].

    PubMed

    Martínez-Cuenca, Mary-Rus; Iglesias, Domingo J; Talón, Manuel; Abadía, Javier; López-Millán, Ana-Flor; Primo-Millo, Eduardo; Legaz, Francisco

    2013-03-01

    The effects of iron (Fe) deficiency on the low-molecular-weight organic acid (LMWOA) metabolism have been investigated in Carrizo citrange (CC) [Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.] roots. Major LMWOAs found in roots, xylem sap and root exudates were citrate and malate and their concentrations increased with Fe deficiency. The activities of several enzymes involved in the LMWOA metabolism were also assessed in roots. In the cytosolic fraction, the activities of malate dehydrogenase (cMDH) and phosphoenolpyruvate carboxylase (PEPC) enzymes were 132 and 100% higher in Fe-deficient conditions, whereas the activity of pyruvate kinase was 31% lower and the activity of malic enzyme (ME) did not change. In the mitochondrial fraction, the activities of fumarase, MDH and citrate synthase enzymes were 158, 117 and 53% higher, respectively, in Fe-deficient extracts when compared with Fe-sufficient controls, whereas no significant differences between treatments were found for aconitase (ACO) activity. The expression of their corresponding genes in roots of Fe-deficient plants was higher than that measured in Fe-sufficient controls, except for ACO and ME. Also, dicarboxylate-tricarboxylate carrier (DTC) expression was significantly increased in Fe-deficient roots. In conclusion, Fe deficiency in CC seedlings causes a reprogramming of the carbon metabolism that involves an increase of anaplerotic fixation of carbon via PEPC and MDH activities in the cytosol and a shift of the Krebs cycle in the mitochondria towards a non-cyclic mode, as previously described in herbaceous species. In this scheme, DTC could play an important role shuttling both malate and reducing equivalents between the cytosol and the mitochondria. As a result of this metabolic switch malate and citrate concentrations in roots, xylem sap and root exudates increase.

  6. Structural Characterization of Early Michaelis Complexes in the Reaction Catalyzed by (+)-Limonene Synthase from Citrus sinensis Using Fluorinated Substrate Analogues.

    PubMed

    Kumar, Ramasamy P; Morehouse, Benjamin R; Matos, Jason O; Malik, Karan; Lin, Hongkun; Krauss, Isaac J; Oprian, Daniel D

    2017-03-28

    The stereochemical course of monoterpene synthase reactions is thought to be determined early in the reaction sequence by selective binding of distinct conformations of the geranyl diphosphate (GPP) substrate. We explore here formation of early Michaelis complexes of the (+)-limonene synthase [(+)-LS] from Citrus sinensis using monofluorinated substrate analogues 2-fluoro-GPP (FGPP) and 2-fluoroneryl diphosphate (FNPP). Both are competitive inhibitors for (+)-LS with KI values of 2.4 ± 0.5 and 39.5 ± 5.2 μM, respectively. The KI values are similar to the KM for the respective nonfluorinated substrates, indicating that fluorine does not significantly perturb binding of the ligand to the enzyme. FGPP and FNPP are also substrates, but with dramatically reduced rates (kcat values of 0.00054 ± 0.00005 and 0.00024 ± 0.00002 s(-1), respectively). These data are consistent with a stepwise mechanism for (+)-LS involving ionization of the allylic GPP substrate to generate a resonance-stabilized carbenium ion in the rate-limiting step. Crystals of apo-(+)-LS were soaked with FGPP and FNPP to obtain X-ray structures at 2.4 and 2.2 Å resolution, respectively. The fluorinated analogues are found anchored in the active site through extensive interactions involving the diphosphate, three metal ions, and three active-site Asp residues. Electron density for the carbon chains extends deep into a hydrophobic pocket, while the enzyme remains mostly in the open conformation observed for the apoprotein. While FNPP was found in multiple conformations, FGPP, importantly, was in a single, relatively well-defined, left-handed screw conformation, consistent with predictions for the mechanism of stereoselectivity in the monoterpene synthases.

  7. Stable Silver Nanoparticles Synthesis by Citrus Sinensis (Orange) and Assessing Activity Against Food Poisoning Microbes.

    PubMed

    Naila, Arooj; Nadia, Dar; Zahoor, Qadir Samra

    2014-10-01

    Silver nanoparticles are considered as good antimicrobial agent. AgNPs were synthesized by mixing silver nitrate solution with citrus sinesis extract for 2 h at 37 °C and analyzed by UV-visible spectra, SEM, XRD, and FTIR. AgNPs were tested against B. subtilis, Shigella, S. aureus, and E. coli. Minimum inhibitory concentration of AgNPs was 20 µg/mL for B. subtilis and Shigella and 30 µg/mL for S. aureus and E. coli. Antibiofilm activity (80% to 90%) was observed at 25 µg/mL. AgNPs were stable for five months with sustained antimicrobial activity. Biosynthesized AgNPs can be used to inhibit food poisoning microbial growth. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  8. Efficacy of mint (Mentha arvensis) leaf and citrus (Citrus aurantium) peel extracts as natural preservatives for shelf life extension of chill stored Indian mackerel.

    PubMed

    Viji, Pankyamma; Binsi, Puthanpurakkal Kizhakkathil; Visnuvinayagam, Sivam; Bindu, Jaganath; Ravishankar, Chandragiri Nagarajarao; Srinivasa Gopal, Teralandur Krishnaswamy

    2015-10-01

    Efficacy of mint (Mentha arvensis) leaf and citrus (Citrus aurantium) peel extracts in retarding the quality changes in Indian mackerel during chilled storage was investigated. Mint leaf extract showed higher quantity of phenolics and superior in-vitro antioxidant activities than citrus peel extract. Gutted mackerel were given a dip treatment in mint extract (0.5 %, w/v) and citrus extract (1 % w/v), packed in LDPE pouches and stored at 0-2 °C. The biochemical quality indices viz. total volatile base nitrogen (TVB-N), trimethylamine nitrogen (TMA-N), free fattyacids (FFA) were significantly (p < 0.05) lower in mint extract (ME) treated fishes compared to citrus extract (CE) treated and control fishes (C) without any treatment. Plant extract treatment significantly inhibited lipid oxidation in mackerel as indicated by peroxide value (PV) and thiobarbituric acid reactive substances (TBARS). Aerobic plate count (APC) was markedly higher in C group followed by CE group throughout the storage period. As per sensory evaluation, shelf life of Indian mackerel was determined to be 11-13 days for C group, 13-15 days for CE group and 16-17 days for ME group, during storage at 0-2 °C.

  9. Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Murugan, Kadarkarai; Mahesh Kumar, Palanisamy; Kovendan, Kalimuthu; Amerasan, Duraisamy; Subrmaniam, Jayapal; Hwang, Jiang-Shiou

    2012-10-01

    Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikunguniya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present study explored the effects of orange peel ethanol extract of Citrus sinensis on larvicidal, pupicidal, repellent and adulticidal activity against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. The orange peel material was shade dried at room temperature and powdered coarsely. From orange peel, 300 g powdered was macerated with 1 L of ethanol sequentially for a period of 72 h each and filtered. The yields of the orange peel ethanol crude extract of C. sinensis 13.86 g, respectively. The extracts were concentrated at reduced temperature on a rotary vacuum evaporator and stored at a temperature of 4 °C. The larvicidal, pupicidal and adult mortality was observed after 24 h of exposure; no mortality was observed in the control group. For C. sinensis, the median lethal concentration values (LC(50)) observed for the larvicidal and pupicidal activities against mosquito vector species A. stephensi first to fourth larval instars and pupae were 182.24, 227.93, 291.69, 398.00 and 490.84 ppm; A. aegypti values were 92.27, 106.60, 204.87, 264.26, 342.45, 436.93 and 497.41 ppm; and C. quinquefasciatus values were 244.70, 324.04, 385.32, 452.78 and 530.97 ppm, respectively. The results of maximum repellent activity were observed at 450 ppm in ethanol extracts of C. sinensis and the mean complete protection time ranged from 150 to 180 min was tested. The ethanol extract of C. sinensis showed 100% repellency in 150 min and showed complete protection in 90 min at 350 ppm against A. stephensi, A. aegypti and C. quinquefasciatus, respectively. The adult mortality was found in ethanol extract of C. sinensis with the LC(50) and LC(90) values of 272.19 and 457.14 ppm, A. stephensi; 289.62 and

  10. Leaf volatile compounds of seven citrus somatic tetraploid hybrids sharing willow leaf mandarin (Citrus deliciosa Ten.) as their common parent.

    PubMed

    Gancel, Anne-Laure; Ollitrault, Patrick; Froelicher, Yann; Tomi, Felix; Jacquemond, Camille; Luro, Francois; Brillouet, Jean-Marc

    2003-09-24

    Volatile compounds were extracted by a pentane/ether (1:1) mixture from the leaves of seven citrus somatic tetraploid hybrids sharing mandarin as their common parent and having lime, Eurêka lemon, lac lemon, sweet orange, grapefruit, kumquat, or poncirus as the other parent. Extracts were examined by GC-MS and compared with those of their respective parents. All hybrids were like their mandarin parent, and unlike their nonmandarin parents, in being unable to synthesize monoterpene aldehydes and alcohols. The hybrids did retain the ability, although strongly reduced, of their nonmandarin parents to synthesize sesquiterpene hydrocarbons, alcohols, and aldehydes. These results suggest that complex forms of dominance in the mandarin genome determine the biosynthesis pathways of volatile compounds in tetraploid hybrids. A down-regulation of the biosynthesis of methyl N-methylanthranilate, a mandarin-specific compound, originates from the genomes of the nonmandarin parents. Statistical analyses showed that all of the hybrids were similar to their common mandarin parent in the relative composition of their volatile compounds.

  11. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck

    PubMed Central

    Zeng, Yunliu; Pan, Zhiyong; Ding, Yuduan; Zhu, Andan; Cao, Hongbo; Xu, Qiang; Deng, Xiuxin

    2011-01-01

    Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level. PMID:21841170

  12. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].

    PubMed

    Zeng, Yunliu; Pan, Zhiyong; Ding, Yuduan; Zhu, Andan; Cao, Hongbo; Xu, Qiang; Deng, Xiuxin

    2011-11-01

    Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level.

  13. Antimicrobial nanoemulsion formulation with improved penetration of foliar spray through citrus leaf cuticles to control citrus Huanglongbing

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB) is one of the most serious citrus diseases that threaten citrus industry worldwide. Because Candidatus Liberibacter asiaticus (Las) resides in citrus phloem, it is difficult to deliver an effective chemical compound into the phloem for control of HLB. In this study, a transcuticu...

  14. Influence of rootstock variety on huanglongbing disease development in field-grown sweet orange (Citrus sinensis L.) osbeck trees

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB), a bacterial disease of citrus, is causing substantial economic losses to the citrus industry worldwide. Sweet oranges are highly susceptible to the disease, and account for nearly 90% of all varieties grown in Florida. Rootstock is an important component of commercial citrus p...

  15. Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet Orange (Citrus sinensis L. Osb.).

    PubMed

    Martins, Cristina de Paula Santos; Pedrosa, Andresa Muniz; Du, Dongliang; Gonçalves, Luana Pereira; Yu, Qibin; Gmitter, Frederick G; Costa, Marcio Gilberto Cardoso

    2015-01-01

    The family of aquaporins (AQPs), or major intrinsic proteins (MIPs), includes integral membrane proteins that function as transmembrane channels for water and other small molecules of physiological significance. MIPs are classified into five subfamilies in higher plants, including plasma membrane (PIPs), tonoplast (TIPs), NOD26-like (NIPs), small basic (SIPs) and unclassified X (XIPs) intrinsic proteins. This study reports a genome-wide survey of MIP encoding genes in sweet orange (Citrus sinensis L. Osb.), the most widely cultivated Citrus spp. A total of 34 different genes encoding C. sinensis MIPs (CsMIPs) were identified and assigned into five subfamilies (CsPIPs, CsTIPs, CsNIPs, CsSIPs and CsXIPs) based on sequence analysis and also on their phylogenetic relationships with clearly classified MIPs of Arabidopsis thaliana. Analysis of key amino acid residues allowed the assessment of the substrate specificity of each CsMIP. Gene structure analysis revealed that the CsMIPs possess an exon-intron organization that is highly conserved within each subfamily. CsMIP loci were precisely mapped on every sweet orange chromosome, indicating a wide distribution of the gene family in the sweet orange genome. Investigation of their expression patterns in different tissues and upon drought and salt stress treatments, as well as with 'Candidatus Liberibacter asiaticus' infection, revealed a tissue-specific and coordinated regulation of the different CsMIP isoforms, consistent with the organization of the stress-responsive cis-acting regulatory elements observed in their promoter regions. A special role in regulating the flow of water and nutrients is proposed for CsTIPs and CsXIPs during drought stress, and for most CsMIPs during salt stress and the development of HLB disease. These results provide a valuable reference for further exploration of the CsMIPs functions and applications to the genetic improvement of both abiotic and biotic stress tolerance in citrus.

  16. Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet Orange (Citrus sinensis L. Osb.)

    PubMed Central

    de Paula Santos Martins, Cristina; Pedrosa, Andresa Muniz; Du, Dongliang; Gonçalves, Luana Pereira; Yu, Qibin; Gmitter, Frederick G.; Costa, Marcio Gilberto Cardoso

    2015-01-01

    The family of aquaporins (AQPs), or major intrinsic proteins (MIPs), includes integral membrane proteins that function as transmembrane channels for water and other small molecules of physiological significance. MIPs are classified into five subfamilies in higher plants, including plasma membrane (PIPs), tonoplast (TIPs), NOD26-like (NIPs), small basic (SIPs) and unclassified X (XIPs) intrinsic proteins. This study reports a genome-wide survey of MIP encoding genes in sweet orange (Citrus sinensis L. Osb.), the most widely cultivated Citrus spp. A total of 34 different genes encoding C. sinensis MIPs (CsMIPs) were identified and assigned into five subfamilies (CsPIPs, CsTIPs, CsNIPs, CsSIPs and CsXIPs) based on sequence analysis and also on their phylogenetic relationships with clearly classified MIPs of Arabidopsis thaliana. Analysis of key amino acid residues allowed the assessment of the substrate specificity of each CsMIP. Gene structure analysis revealed that the CsMIPs possess an exon-intron organization that is highly conserved within each subfamily. CsMIP loci were precisely mapped on every sweet orange chromosome, indicating a wide distribution of the gene family in the sweet orange genome. Investigation of their expression patterns in different tissues and upon drought and salt stress treatments, as well as with ‘Candidatus Liberibacter asiaticus’ infection, revealed a tissue-specific and coordinated regulation of the different CsMIP isoforms, consistent with the organization of the stress-responsive cis-acting regulatory elements observed in their promoter regions. A special role in regulating the flow of water and nutrients is proposed for CsTIPs and CsXIPs during drought stress, and for most CsMIPs during salt stress and the development of HLB disease. These results provide a valuable reference for further exploration of the CsMIPs functions and applications to the genetic improvement of both abiotic and biotic stress tolerance in citrus. PMID

  17. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration

    PubMed Central

    Rodrigo, María J.

    2012-01-01

    The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied. Six PYR/PYL/RCAR, five PP2CA, and two subclass III SnRK2 genes, homologous to those of Arabidopsis, were identified in the Citrus genome. The high degree of homology and conserved motifs for protein folding and for functional activity suggested that these Citrus proteins are bona fide core elements of ABA perception in orange. Opposite expression patterns of CsPYL4 and CsPYL5 and ABA accumulation were found during ripening, although there were few differences between varieties. In contrast, changes in expression of CsPP2CA genes during ripening paralleled those of ABA content and agreeed with the relevant differences between wild-type and mutant fruit transcript accumulation. CsSnRK2 gene expression continuously decreased with ripening and no remarkable differences were found between cultivars. Overall, dehydration had a minor effect on CsPYR/PYL/RCAR and CsSnRK2 expression in vegetative tissue, whereas CsABI1, CsAHG1, and CsAHG3 were highly induced by water stress. The global results suggest that responsiveness to ABA changes during citrus fruit ripening, and leaf dehydration was higher in the CsPP2CA gene negative regulators than in the other ABA signalosome components. PMID:22888124

  18. Effectiveness of gene silencing induced by viral vectors based on Citrus leaf blotch virus is different in Nicotiana benthamiana and citrus plants.

    PubMed

    Agüero, Jesus; Vives, María del Carmen; Velázquez, Karelia; Pina, José Antonio; Navarro, Luis; Moreno, Pedro; Guerri, Jose

    2014-07-01

    Virus induced gene silencing (VIGS) is an effective technology for gene function analysis in plants. We assessed the VIGS effectiveness in Nicotiana benthamiana and citrus plants of different Citrus leaf blotch virus (CLBV)-based vectors, using insets of the phytoene desaturase (pds) gene. While in N. benthamiana the silencing phenotype was induced only by the construct carrying a 58-nt pds hairpin, in citrus plants all the constructs induced the silencing phenotype. Differences in the generation of secondary small interfering RNAs in both species are believed to be responsible for differential host-species effects. The ability of CLBV-based vectors to silence different endogenous citrus genes was further confirmed. Since CLBV-based vectors are known to be stable and induce VIGS in successive flushes for several months, these vectors provide an important genomic tool and it is expected that they will be useful to analyze gene function by reverse genetics in the long-lived citrus plants. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Antioxidant and Anti-Inflammatory Effects of Chaenomeles sinensis Leaf Extracts on LPS-Stimulated RAW 264.7 Cells.

    PubMed

    Han, Young-Ki; Kim, Yon-Suk; Natarajan, Sithranga Boopathy; Kim, Won-Suk; Hwang, Jin-Woo; Jeon, Nam-Joo; Jeong, Jae-Hyun; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2016-03-28

    The fruit of Chaenomeles sinensis has been traditionally used in ethnomedicine for the treatment of various human ailments, including pneumonia, bronchitis, and so on, but the pharmacological applications of the leaf part of the plant have not been studied. In this study, we evaluated the various radical scavenging activities and anti-inflammatory effects of different Chaenomeles sinensis leaf (CSL) extracts. The water extract showed a higher antioxidant and radical scavenging activities. However the ethanolic extracts showed higher NO scavenging activity than water extract, therefore the ethanolic extract of CSL was examined for anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The 70% ethanol extract of CSL (CSLE) has higher anti-inflammatory activity and significantly inhibited the production of nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In addition, CSLE suppressed LPS-stimulated inducible nitric oxide synthase (iNOS) and NO production, IL-1β and phospho-STAT1 expression. In this study, we investigated the effect of CSLE on the production of inflammatory mediators through the inhibition of the TRIF-dependent pathways. Furthermore, we evaluated the role of CSLE on LPS-induced expression of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6. Our results suggest that CSLE attenuates the LPS-stimulated inflammatory responses in macrophages through regulating the key inflammatory mechanisms, providing scientific support for its traditional uses in treating various inflammatory diseases.

  20. Leaf chlorophyll, net gas exchange and chloroplast ultrastructure in citrus leaves of different nitrogen status.

    PubMed

    Bondada, Bhaskar R; Syvertsen, James P

    2003-06-01

    One-year-old 'Cleopatra mandarin' (Citrus reticulata Blanco) seedlings were raised in a greenhouse and fertilized with nitrogen (N) at four application frequencies. Nitrogen-deficient leaves (86 mmol N m-2) had less chlorophyll per unit area, but a greater chlorophyll a:b ratio than N-fertilized leaves (> 187 mmol N m-2). Leaf dry mass per area (DM area-1) and total chlorophyll concentration increased linearly with increasing leaf N, whereas chlorophyll a:b ratio declined. Net assimilation of CO2 (A(CO2)) and leaf water-use efficiency (WUE) reached maximum values in leaves with approximately 187 mmol N m-2. Nitrogen-deficient leaves exhibited small chloroplasts with no starch granules; grana and stroma lamellae that coincided with the accretion of numerous large plastoglobuli in the stroma disintegrated. High-N leaves had large chloroplasts with well-developed grana, stroma lamellae and starch granules that enlarged with increasing N concentration. The lack of an increase in A(CO2) capacity at leaf N concentrations above 187 mmol N m-2 appeared to be correlated with the presence of numerous large starch granules.

  1. Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process

    PubMed Central

    Xu, Jidi; Xu, Haidan; Liu, Yuanlong; Wang, Xia; Xu, Qiang; Deng, Xiuxin

    2015-01-01

    In eukaryotes, histone acetylation and methylation have been known to be involved in regulating diverse developmental processes and plant defense. These histone modification events are controlled by a series of histone modification gene families. To date, there is no study regarding genome-wide characterization of histone modification related genes in citrus species. Based on the two recent sequenced sweet orange genome databases, a total of 136 CsHMs (Citrus sinensis histone modification genes), including 47 CsHMTs (histone methyltransferase genes), 23 CsHDMs (histone demethylase genes), 50 CsHATs (histone acetyltransferase genes), and 16 CsHDACs (histone deacetylase genes) were identified. These genes were categorized to 11 gene families. A comprehensive analysis of these 11 gene families was performed with chromosome locations, phylogenetic comparison, gene structures, and conserved domain compositions of proteins. In order to gain an insight into the potential roles of these genes in citrus fruit development, 42 CsHMs with high mRNA abundance in fruit tissues were selected to further analyze their expression profiles at six stages of fruit development. Interestingly, a numbers of genes were expressed highly in flesh of ripening fruit and some of them showed the increasing expression levels along with the fruit development. Furthermore, we analyzed the expression patterns of all 136 CsHMs response to the infection of blue mold (Penicillium digitatum), which is the most devastating pathogen in citrus post-harvest process. The results indicated that 20 of them showed the strong alterations of their expression levels during the fruit-pathogen infection. In conclusion, this study presents a comprehensive analysis of the histone modification gene families in sweet orange and further elucidates their behaviors during the fruit development and the blue mold infection responses. PMID:26300904

  2. Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process.

    PubMed

    Xu, Jidi; Xu, Haidan; Liu, Yuanlong; Wang, Xia; Xu, Qiang; Deng, Xiuxin

    2015-01-01

    In eukaryotes, histone acetylation and methylation have been known to be involved in regulating diverse developmental processes and plant defense. These histone modification events are controlled by a series of histone modification gene families. To date, there is no study regarding genome-wide characterization of histone modification related genes in citrus species. Based on the two recent sequenced sweet orange genome databases, a total of 136 CsHMs (Citrus sinensis histone modification genes), including 47 CsHMTs (histone methyltransferase genes), 23 CsHDMs (histone demethylase genes), 50 CsHATs (histone acetyltransferase genes), and 16 CsHDACs (histone deacetylase genes) were identified. These genes were categorized to 11 gene families. A comprehensive analysis of these 11 gene families was performed with chromosome locations, phylogenetic comparison, gene structures, and conserved domain compositions of proteins. In order to gain an insight into the potential roles of these genes in citrus fruit development, 42 CsHMs with high mRNA abundance in fruit tissues were selected to further analyze their expression profiles at six stages of fruit development. Interestingly, a numbers of genes were expressed highly in flesh of ripening fruit and some of them showed the increasing expression levels along with the fruit development. Furthermore, we analyzed the expression patterns of all 136 CsHMs response to the infection of blue mold (Penicillium digitatum), which is the most devastating pathogen in citrus post-harvest process. The results indicated that 20 of them showed the strong alterations of their expression levels during the fruit-pathogen infection. In conclusion, this study presents a comprehensive analysis of the histone modification gene families in sweet orange and further elucidates their behaviors during the fruit development and the blue mold infection responses.

  3. Composition of Citrus sinensis (L.) Osbeck cv «Maltaise demi-sanguine» juice. A comparison between organic and conventional farming.

    PubMed

    Letaief, Hend; Zemni, Hassen; Mliki, Ahmed; Chebil, Samir

    2016-03-01

    Juices from conventionally and organically grown Citrus sinensis (L.) Osbeck cv. Maltaise demi-sanguine blood orange were investigated for quality parameters and antioxidant capacity. This blood orange variety is particularly rich in linoleic, linolenic acids, vitamin C and phenolic compounds. The quantitative determination of these compounds in cv. Maltaise demi-sanguine juice produced under conventional and organic agricultural practices revealed significant differences. The organically grown fruits contained more hesperidin and total fatty acids amounts as well as a higher sugar content and a lower acidity. Conventionally-grown fruit was found to have an increase in antioxidant capacity. In addition to having higher antioxidant activity conventionally-grown fruit had an observed increase in the concentration of phenolic acids and most flavonoids. The results of this study indicated that organically-grown Maltaise demi-sanguine juice contained an increased concentration of hesperidin which has been observed to possess biological activities associated with a healthy life.

  4. First evidence of C- and O-glycosyl flavone in blood orange (Citrus sinensis (L.) Osbeck) juice and their influence on antioxidant properties.

    PubMed

    Barreca, Davide; Bellocco, Ersilia; Leuzzi, Ugo; Gattuso, Giuseppe

    2014-04-15

    RP-LC-DAD-ESI-MS-MS separation/identification protocol has been employed for the identification and characterisation of nine C- and O-glycosyl flavonoids in Moro (Citrus sinensis (L.) Osbeck) juice grown in Southern Italy. For the first time we reported the presence of five C-glycosyl flavones (lucenin-2, vicenin-2, stellarin-2, lucenin-2 4'-methyl ether and scoparin), a 3-hydroxy-3-methylglutaryl glycosyl flavonol (3-hydroxy-3-methylglutaryl glycosyl quercetin) and a flavone O-glycosides (chrysoeriol 7-O-neoesperidoside). Moreover, the influence of the identified C- and O-glycosyl flavonoids on the total antioxidant activity of crude juice has been evaluated on the basis of its ability to scavenge DPPH•, OH• and ABTS•+ radicals and to reduce iron. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti.

    PubMed

    Araujo, Adriana Faraco de Oliveira; Ribeiro-Paes, João Tadeu; Deus, Juliana Telles de; Cavalcanti, Sócrates Cabral de Holanda; Nunes, Rogéria de Souza; Alves, Péricles Barreto; Macoris, Maria de Lourdes da Graça

    2016-07-04

    Environmentally friendly botanical larvicides are commonly considered as an alternative to synthetic larvicides against Aedes aegypti Linn. In addition, mosquito resistance to currently used larvicides has motivated research to find new compounds acting via different mechanisms of action, with the goal of controlling the spread of mosquitos. Essential oils have been widely studied for this purpose. This work aims to evaluate the larvicidal potential of Syzygium aromaticum and Citrus sinensis essential oils, either alone or in combination with temephos, on Ae. aegypti populations having different levels of organophosphate resistance. The 50% lethal concentration (LC50) of the essential oils alone and in combination with temephos and the influence of essential oils on vector oviposition were evaluated. The results revealed that essential oils exhibited similar larvicidal activity in resistant populations and susceptible populations. However, S. aromaticum and C. sinensis essential oils in combination with temephos did not decrease resistance profiles. The presence of the evaluated essential oils in oviposition sites significantly decreased the number of eggs compared to sites with tap water. Therefore, the evaluated essential oils are suitable for use in mosquito resistance management, whereas their combinations with temephos are not recommended. Additionally, repellency should be considered during formulation development to avoid mosquito deterrence.

  6. Systems biology study of transcriptional and post-transcriptional co-regulatory network sheds light on key regulators involved in important biological processes in Citrus sinensis.

    PubMed

    Khodadadi, Ehsan; Mehrabi, Ali Ashraf; Najafi, Ali; Rastad, Saber; Masoudi-Nejad, Ali

    2017-04-01

    Transcriptional and post-transcriptional regulators including transcription regulator, transcription factor and miRNA are the main endogenous molecular elements which control complex cellular mechanisms such as development, growth and response to biotic and abiotic stresses in a coordinated manner in plants. Utilizing the most recent information on such relationships in a plant species, obtained from high-throughput experimental technologies and advanced computational tools, we can reconstruct its co-regulatory network which consequently sheds light on key regulators involved in its important biological processes. In this article, combined systems biology approaches such as mining the literatures, various databases and network reconstruction, analysis, and visualization tools were employed to infer and visualize the coregulatory relationships between miRNAs and transcriptional regulators in Citrus sinensis. Using computationally and experimentally verified miRNA-target interactions and constructed co-expression networks on array-based data, 10 coregulatory networks and 10 corresponding subgraphs include FFL motifs were obtained for 10 distinct tissues/conditions. Then PPI subnetworks were extracted for transcripts/genes included in mentioned subgraphs in order to the functional analysis of extracted coregulatory circuits. These proposed coregulatory connections shed light on precisely identifying C. sinensis metabolic pathways key switches, which are demanded for ultimate goals such as genome editing.

  7. Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti

    PubMed Central

    Araujo, Adriana Faraco de Oliveira; Ribeiro-Paes, João Tadeu; de Deus, Juliana Telles; Cavalcanti, Sócrates Cabral de Holanda; Nunes, Rogéria de Souza; Alves, Péricles Barreto; Macoris, Maria de Lourdes da Graça

    2016-01-01

    Environmentally friendly botanical larvicides are commonly considered as an alternative to synthetic larvicides against Aedes aegypti Linn. In addition, mosquito resistance to currently used larvicides has motivated research to find new compounds acting via different mechanisms of action, with the goal of controlling the spread of mosquitos. Essential oils have been widely studied for this purpose. This work aims to evaluate the larvicidal potential of Syzygium aromaticum and Citrus sinensis essential oils, either alone or in combination with temephos, on Ae. aegypti populations having different levels of organophosphate resistance. The 50% lethal concentration (LC50) of the essential oils alone and in combination with temephos and the influence of essential oils on vector oviposition were evaluated. The results revealed that essential oils exhibited similar larvicidal activity in resistant populations and susceptible populations. However, S. aromaticum and C. sinensis essential oils in combination with temephos did not decrease resistance profiles. The presence of the evaluated essential oils in oviposition sites significantly decreased the number of eggs compared to sites with tap water. Therefore, the evaluated essential oils are suitable for use in mosquito resistance management, whereas their combinations with temephos are not recommended. Additionally, repellency should be considered during formulation development to avoid mosquito deterrence. PMID:27384083

  8. Molecular Characterization of the Meyer Lemon Isolate of Citrus Tatter Leaf Virus: Complete Genome Sequence and Development of Biologically Active In Vitro Transcripts

    USDA-ARS?s Scientific Manuscript database

    Citrus tatter leaf virus isolated from Meyer lemon trees (CTLV-ML) from California and Florida induces bud union incompatibility of citrus trees grafted on the widely used trifoliate and trifoliate hybrid rootstocks. The complete genome sequence of CTLV-ML was determined to be 6,495 nucleotides (nts...

  9. Biocontrol of aflatoxins B1, B2, G1, G2, and fumonisin B1 with 6,7-dimethoxycoumarin, a phytoalexin from Citrus sinensis.

    PubMed

    Mohanlall, Viresh; Odhav, Bharti

    2006-09-01

    Phytoalexins (stress-induced compounds) from Citrus sinensis cultivar Valencia were screened for antifungal and antimycotoxic activity against a test organism (Cladosporium cladosporoides) and mycotoxin-producing fungi Fusarium verticillioides and Aspergillus parasiticus. The active compound, a member of the coumarin family of compounds, has antifungal and antimycotoxic activities and was chemically identified. High-performance liquid chromatography results indicated that Valencia oranges contain a trace amount (0.36 microg/g) of scoparone in untreated fruit, but concentrations increased in UV-irradiated fruit (15.2 microg/g). Infection with Penicillium digitatum, a natural spoilage mold of citrus fruit, caused a 35.51-microg/g increase in the phytoalexin. UV absorption, infrared absorption, and 1H nuclear magnetic resonance spectroscopy revealed that this phytoalexin is identical to 6,7-dimethoxycoumarin. This is the first report indicating that the stress-induced compound, 6,7-dimethoxycoumarin, isolated from P. digitatum-infected Valencia fruit confers resistance against the mycotoxigenic fungi A. parasiticus and F. verticillioides and causes a reduction in production of fumonisin B1 and aflatoxins G1, G2, B1, and B2.

  10. CYP74B24 is the 13-hydroperoxide lyase involved in biosynthesis of green leaf volatiles in tea (Camellia sinensis).

    PubMed

    Ono, Eiichiro; Handa, Taiki; Koeduka, Takao; Toyonaga, Hiromi; Tawfik, Moataz M; Shiraishi, Akira; Murata, Jun; Matsui, Kenji

    2016-01-01

    Green leaf volatiles (GLVs) are C6-aliphatic aldehydes/alcohols/acetates, and biosynthesized from the central precursor fatty acid 13-hydroperoxides by 13-hydroperoxide lyases (HPLs) in various plant species. While GLVs have been implicated as defense compounds in plants, GLVs give characteristic grassy note to a bouquet of aroma in green tea, which is manufactured from young leaves of Camellia sinensis. Here we identify three HPL-related genes from C. sinensis via RNA-Sequencing (RNA-Seq) in silico, and functionally characterized a candidate gene, CYP74B24, as a gene encoding tea HPL. Recombinant CYP74B24 protein heterologously expressed in Escherichia coli specifically produced (Z)-3-hexenal from 13-HPOT with the optimal pH 6.0 in vitro. CYP74B24 gene was expressed throughout the aerial organs in a rather constitutive manner and further induced by mechanical wounding. Constitutive expression of CYP74B24 gene in intact tea leaves might account for low but substantial and constitutive formation of a subset of GLVs, some of which are stored as glycosides. Our results not only provide novel insights into the biological roles that GLVs play in tea plants, but also serve as basis for the improvement of aroma quality in tea manufacturing processes.

  11. [Relationship between drought resistance and endogenous hormone content in different citrus species].

    PubMed

    Ma, Wen-Tao; Fan, Wei-Guo

    2014-01-01

    Eight plant seedlings of citrus species, Citrus tangerina, C. erythrosa, C. chuana, Poncirus trifoliate, C. sinensis x P. trifoliate, C. grandis, C. sinensis and C. vessucosa were used to investigate the effects of drought stress on plant biomass, drought resistance coefficient and leaf hormone (ABA, GA1+3 , ZR, IAA) changes. The results showed that, on the condition of precipitation less than 1200 mm, the biomass of different citrus species reduced obviously, and drought-resistance index and drought resistance showed in order of C. erythrosa > C. tangerina > P. trifoliate > C. chuana > C. sinensis x P. trifoliate > C. grandis > C. sinensis > C. vessucosa. The leaf ABA contents of the eight species increased whereas GA1+3 , ZR and IAA decreased, under the condition of drought stress. The ratios of ABA/GA1+3 and ABA/ZR in the species of C. erythrosa and C. tangerina increased drastically, yet there was no significant correlation between the ratio of ABA/IAA and the drought tolerance. The drought-resistance index was significantly positively related to the relative content of ABA (P < 0.01), while significantly negatively related to the relative content of GA1+3. The function to enhance drought resistance by those endogenous hormones in the citrus species showed in order of ABA > GA1+3, ZR > IAA.

  12. Genetic and chemical diversity of citron (Citrus medica L.) based on nuclear and cytoplasmic markers and leaf essential oil composition.

    PubMed

    Luro, François; Venturini, Nicolas; Costantino, Gilles; Paolini, Julien; Ollitrault, Patrick; Costa, Jean

    2012-05-01

    Native to southeast Asia, the citron (Citrus medica L.) was the first citrus fruit to be introduced to the Mediterranean area, in the third century BC, and remained its only citrus representative until the tenth century. The citron was used for its aroma - stemming from its essential oils in leaves and fruit peels - and as symbols in the Jewish religion. Subsequently, the cultivation of citron was extended significantly, peaking in the nineteenth century, when its fruits were used in cosmetics and confectioneries. The objective of this study was to examine the genetic diversity of the Mediterranean citron with regard to the multiplication and dissemination practices that were related to its uses. We studied the polymorphisms of 27 nuclear and cytoplasmic genetic markers of 24 citron varieties, preserved in the citrus germplasm of INRA-CIRAD, San Giuliano, France. The composition of leaf essential oils was determined to establish varieties and phylogenic relationships between accessions. Other major citrus species were included in the molecular analysis, which demonstrated the existence of 13 genetically linked citrons, differing from other citrus species, based on low heterozygosity and specific alleles; these citrons were considered true-type citrons, confirmed by their convergent chemical profiles. We also detected a polymorphism in the chloroplastic genome in these 13 citrons, which, when combined with allelic diversity of 2.4 alleles per locus, suggests that multiple citrons were introduced to the Mediterranean area in last 2 millennia. We determined the genetic origin and relationships of several varieties, such as Corsican, which could have arisen from the selfing of Poncire Commun. We noted a higher-than-expected polymorphism rate among Mediterranean citron varieties, likely due to crossfecundation. The chemical leaf oil composition of several economical varieties, such as Corsican, is distinct and can increase the quality of specific agriculture products

  13. Two-dimensional gel electrophoresis data in support of leaf comparative proteomics of two citrus species differing in boron-tolerance.

    PubMed

    Sang, Wen; Huang, Zeng-Rong; Qi, Yi-Ping; Yang, Lin-Tong; Guo, Peng; Chen, Li-Song

    2015-09-01

    Here, we provide the data from a comparative proteomics approach used to investigate the response of boron (B)-tolerant 'Xuegan' (Citrus sinensis) and B-intolerant 'Sour pummelo' (Citrus grandis) leaves to B-toxicity. Using two-dimensional gel electrophoresis (2-DE) technique, we identified 50 and 45 protein species with a fold change of more than 1.5 and a P-value of less than 0.05 from B-toxic C. sinensis and C. grandis leaves. These B-toxicity-responsive protein species were mainly involved in carbohydrate and energy metabolism, antioxidation and detoxification, stress responses, coenzyme biosynthesis, protein and amino acid metabolism, signal transduction, cell transport, cytoskeleton, nucleotide metabolism, and cell cycle and DNA processing. A detailed analysis of this data may be obtained from Sang et al. (J. Proteomics 114 (2015))[1].

  14. The Effect of Consumption of Citrus Fruit and Olive Leaf Extract on Lipid Metabolism.

    PubMed

    Merola, Nicola; Castillo, Julián; Benavente-García, Obdulio; Ros, Gaspar; Nieto, Gema

    2017-09-26

    Citrus fruit and olive leaves are a source of bioactive compounds such as biophenols which have been shown to ameliorate obesity-related conditions through their anti-hyperlipidemic and anti-inflammatory effect, and by regulating lipoproteins and cholesterol body levels. Citrolive™ is a commercial extract which is obtained from the combination of both citrus fruit and olive leaf extracts; hence, it is hypothesised that Citrolive™ may moderate metabolic disorders that are related to obesity and their complications. Initially, an in vitro study of the inhibition of pancreatic lipase activity was made, however, no effect was found. Both preliminary and long-term evaluations of Citrolive™ on lipid metabolism were conducted in an animal model using Wistar rats. In the preliminary in vivo screening, Citrolive™ was tested on postprandial plasma triglyceride level after the administration of an oil emulsion, and a significant reduction in postprandial triacylglycerol (TAG) levels was observed. In the long-term study, Citrolive™ was administered for 60 days on Wistar rats that were fed a high-fat diet. During the study, several associated lipid metabolism indicators were analysed in blood and faeces. At the end of the experiment, the livers were removed and weighed for group comparison. Citrolive™ treatment significantly reduced the liver-to-body-weight ratio, as supported by reduced plasma transaminases compared with control, but insignificantly reduced plasma low density lipoprotein (LDL) and postprandial TAG plasma levels. In addition, faecal analysis showed that the treatment significantly increased total cholesterol excretion. On the other hand, no effect was found on faecal TAG and pancreatic lipase in vitro. In conclusion, treatment ameliorates liver inflammation symptoms that are worsened by the effects of high fat diet.

  15. Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus.

    PubMed

    Osman, Fatima; Hodzic, Emir; Kwon, Sun-Jung; Wang, Jinbo; Vidalakis, Georgios

    2015-08-01

    A single real-time multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay for the simultaneous detection of Citrus tristeza virus (CTV), Citrus psorosis virus (CPsV), and Citrus leaf blotch virus (CLBV) was developed and validated using three different fluorescently labeled minor groove binding qPCR probes. To increase the detection reliability, coat protein (CP) genes from large number of different isolates of CTV, CPsV and CLBV were sequenced and a multiple sequence alignment was generated with corresponding CP sequences from the GenBank and a robust multiplex RT-qPCR assay was designed. The capacity of the multiplex RT-qPCR assay in detecting the viruses was compared to singleplex RT-qPCR designed specifically for each virus and was assessed using multiple virus isolates from diverse geographical regions and citrus species as well as graft-inoculated citrus plants infected with various combination of the three viruses. No significant difference in detection limits was found and specificity was not affected by the inclusion of the three assays in a multiplex RT-qPCR reaction. Comparison of the viral load for each virus using singleplex and multiplex RT-qPCR assays, revealed no significant differences between the two assays in virus detection. No significant difference in Cq values was detected when using one-step and two-step multiplex RT-qPCR detection formats. Optimizing the RNA extraction technique for citrus tissues and testing the quality of the extracted RNA using RT-qPCR targeting the cytochrome oxidase citrus gene as an RNA specific internal control proved to generate better diagnostic assays. Results showed that the developed multiplex RT-qPCR can streamline viruses testing of citrus nursery stock by replacing three separate singleplex assays, thus reducing time and labor while retaining the same sensitivity and specificity. The three targeted RNA viruses are regulated pathogens for California's mandatory "Section 3701

  16. A general method for the extraction of citrus leaf proteins and separation by 2D electrophoresis: a follow up.

    PubMed

    Maserti, B E; Della Croce, C M; Luro, F; Morillon, R; Cini, M; Caltavuturo, L

    2007-04-15

    With the aim of studying differentially expressed proteins as a function of abiotic and biotic stress in citrus plants, we optimized a protocol for the extraction of total leaf proteins and their 2-DE separation using commercially available immobilized pH gradient strips (IPGs) in the first dimension. Critical factors for good reproducibility of citrus leaf protein separation were identified: trichloroacetic acid (TCA)/acetone precipitation after extraction in lysis buffer, sample fractionation on narrow range overlapping IPGs and sample-cup loading at the anodic or cathodic end of the strip. The use of thiourea and a strong detergent (C7BzO) in the solubilization/rehydration buffer, coupled with the increase to 10% of SDS in the equilibration buffer before the second dimension seemed to affect positively the resolution of basic proteins. Using our protocol we resolved about 30 basic proteins on 6.3-8.3 pH range strips. Further, our protocol was successfully applied reproducibly on the analysis of control and salt exposed leaf samples of Citrus reshni Hort. Ex Tan.

  17. Wind speed and wind-associated leaf injury affect severity of citrus canker on Swingle citrumelo

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (caused by the bacterial pathogen Xanthomonas citri subsp. citri, Xcc) can cause severe damage to citrus. It is endemic in Florida, and occurs in other citrus growing regions. The bacterium is dispersed predominantly in rain splash. To simulate dispersal in splash, and to investigate t...

  18. Nonhost status of Citrus sinensis cultivar valencia and C. paradisi cultivar ruby red to Mexican Anastrepha fraterculus (Diptera: Tephritidae).

    PubMed

    Aluja, Martín; Pérez-Staples, Diana; Macías-Ordóñez, Rogelio; Piñero, Jaime; McPheron, Bruce; Hernández-Ortiz, Vicente

    2003-12-01

    Anastrepha fraterculus (Wiedemann) is recognized as a pest of citrus, apples, and blackberries in South America. In Mexico, it is mainly found in fruit of the family Myrtaceae and has never been reported infesting citrus. Here, we sought to determine whether females stemming from Mexican A. fraterculus populations (collected in the state of Veracruz) would lay eggs in 'Valencia' oranges and 'Ruby Red' grapefruit and, if so, whether larvae would hatch and develop. We worked under laboratory and seminatural conditions (i.e., gravid females released in fruit-bearing, bagged branches in a commercial citrus grove) and used Anastrepha ludens (Loew), a notorious pest of citrus, as a control species. Under laboratory conditions, A. ludens readily accepted both oranges and grapefruit as oviposition substrates, but A. fraterculus rarely oviposited in these fruit (but did so in guavas, a preferred host) and no larvae ever developed. Eggs were deposited in the toxic flavedo (A. fraterculus) and nontoxic albedo (A. ludens) regions. Field studies revealed that, as was the case in the laboratory, A. fraterculus rarely oviposited into oranges or grapefruit and that, when such was the case, either no larvae developed (oranges) or of the few (13) that developed and pupated (grapefruit), only two adults emerged that survived 1 and 3 d, respectively (5-17% of the time necessary to reach sexual maturity). In sharp contrast, grapefruit exposed to A. ludens yielded up to 937 pupae and adults survived for >6 mo. Therefore, the inability of Mexican A. fraterculus to successfully develop in citrus renders the status of Mexican A. fraterculus as a pest of citrus in Mexico as unsubstantiated.

  19. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves.

    PubMed

    Lu, Yi-Bin; Qi, Yi-Ping; Yang, Lin-Tong; Lee, Jinwook; Guo, Peng; Ye, Xin; Jia, Meng-Yang; Li, Mei-Li; Chen, Li-Song

    2015-01-01

    Seedlings of Citrus sinensis (L.) Osbeck were supplied with boron (B)-deficient (without H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. We identified 54 (38) and 38 (45) up (down)-regulated cDNA-AFLP bands (transcript-derived fragments, TDFs) from B-deficient leaves and roots, respectively. These TDFs were mainly involved in protein and amino acid metabolism, carbohydrate and energy metabolism, nucleic acid metabolism, cell transport, signal transduction, and stress response and defense. The majority of the differentially expressed TDFs were isolated only from B-deficient roots or leaves, only seven TDFs with the same GenBank ID were isolated from the both. In addition, ATP biosynthesis-related TDFs were induced in B-deficient roots, but unaffected in B-deficient leaves. Most of the differentially expressed TDFs associated with signal transduction and stress defense were down-regulated in roots, but up-regulated in leaves. TDFs related to protein ubiquitination and proteolysis were induced in B-deficient leaves except for one TDF, while only two down-regulated TDFs associated with ubiquitination were detected in B-deficient roots. Thus, many differences existed in long-term B-deficiency-responsive genes between roots and leaves. In conclusion, our findings provided a global picture of the differential responses occurring in B-deficient roots and leaves and revealed new insight into the different adaptive mechanisms of C. sinensis roots and leaves to B-deficiency at the transcriptional level.

  20. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves

    PubMed Central

    Lu, Yi-Bin; Qi, Yi-Ping; Yang, Lin-Tong; Lee, Jinwook; Guo, Peng; Ye, Xin; Jia, Meng-Yang; Li, Mei-Li; Chen, Li-Song

    2015-01-01

    Seedlings of Citrus sinensis (L.) Osbeck were supplied with boron (B)-deficient (without H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. We identified 54 (38) and 38 (45) up (down)-regulated cDNA-AFLP bands (transcript-derived fragments, TDFs) from B-deficient leaves and roots, respectively. These TDFs were mainly involved in protein and amino acid metabolism, carbohydrate and energy metabolism, nucleic acid metabolism, cell transport, signal transduction, and stress response and defense. The majority of the differentially expressed TDFs were isolated only from B-deficient roots or leaves, only seven TDFs with the same GenBank ID were isolated from the both. In addition, ATP biosynthesis-related TDFs were induced in B-deficient roots, but unaffected in B-deficient leaves. Most of the differentially expressed TDFs associated with signal transduction and stress defense were down-regulated in roots, but up-regulated in leaves. TDFs related to protein ubiquitination and proteolysis were induced in B-deficient leaves except for one TDF, while only two down-regulated TDFs associated with ubiquitination were detected in B-deficient roots. Thus, many differences existed in long-term B-deficiency-responsive genes between roots and leaves. In conclusion, our findings provided a global picture of the differential responses occurring in B-deficient roots and leaves and revealed new insight into the different adaptive mechanisms of C. sinensis roots and leaves to B-deficiency at the transcriptional level. PMID:26284101

  1. The effect of inhalation of Citrus sinensis flowers and Mentha spicata leave essential oils on lung function and exercise performance: a quasi-experimental uncontrolled before-and-after study.

    PubMed

    Jaradat, Nidal Amin; Al Zabadi, Hamzeh; Rahhal, Belal; Hussein, Azmi Mahmoud Ali; Mahmoud, Jamal Shaker; Mansour, Basel; Khasati, Ahmad Ibrahim; Issa, Abdelkhaleq

    Recently, there has been an increased interest in the effects of essential oils on athletic performances and other physiological effects. This study aimed to assess the effects of Citrus sinensis flower and Mentha spicata leaves essential oils inhalation in two different groups of athlete male students on their exercise performance and lung function. Twenty physical education students volunteered to participate in the study. The subjects were randomly assigned into two groups: Mentha spicata and Citrus sinensis (ten participants each). One group was nebulized by Citrus sinensis flower oil and the other by Mentha spicata leaves oil in a concentration of (0.02 ml/kg of body mass) which was mixed with 2 ml of normal saline for 5 min before a 1500 m running tests. Lung function tests were measured using a spirometer for each student pre and post nebulization giving the same running distance pre and post oils inhalation. A lung function tests showed an improvement on the lung status for the students after inhaling of the oils. Interestingly, there was a significant increase in Forced Expiratory Volume in the first second and Forced Vital Capacity after inhalation for the both oils. Moreover significant reductions in the means of the running time were observed among these two groups. The normal spirometry results were 50 %, while after inhalation with M. spicata oil the ratio were 60 %. Our findings support the effectiveness of M. spicata and C. sinensis essential oils on the exercise performance and respiratory function parameters. However, our conclusion and generalisability of our results should be interpreted with caution due to small sample size and lack of control groups, randomization or masking. We recommend further investigations to explain the mechanism of actions for these two essential oils on exercise performance and respiratory parameters. ISRCTN10133422, Registered: May 3, 2016.

  2. Protective effects of orange (Citrus sinensis L.) peel aqueous extract and hesperidin on oxidative stress and peptic ulcer induced by alcohol in rat.

    PubMed

    Selmi, Slimen; Rtibi, Kais; Grami, Dhekra; Sebai, Hichem; Marzouki, Lamjed

    2017-08-14

    Massive alcohol drinking can lead to gastric ulcer. In the present study we investigated the gastroprotective effect of Citrus sinensis peel aqueous extract (CSPE) and Hesperidin (H) in ethanol (EtOH) induced oxidative stress and peptic ulcer in rats. Seventy adult male Wistar rats were divided into seven groups of 10 each: control, EtOH (4 g/kg b.w.), EtOH + various doses of CSPE (100, 200 and 400 mg/kg, b.w.), EtOH + Hesperidin (50 mg/kg, p.o.) and EtOH + Omeprazole (OM, 20 mg/kg, p.o.). Animals were perorally (p.o.) pre-treated with CSPE during 15 days and intoxicated with a single oral administration of EtOH (4 g/kg b.w.) during 2 h. Gastric ulcer was induced in rats with a single dose of ethanol (EtOH). Ulcer index, gene expression of gastric cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), malondialdhyde (MDA), hydrogen peroxide H2O2 and Thiol groups (-SH) content in stomach and antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and gluthation peroxidise (GPx) were measured. Furthermore, histopathological examinations were performed. The results showed that ethanol induced gastric damage, improving oxidative stress markers level such as MDA (121 ± 4.45 nmol/mg proteins) and H2O2 (24.62 ± 1.04 μmol/mg proteins), increased pro-inflammatory cytokine (TNF-α level), as well as the expression of COX-2 in the ethanol group. However, a significant depletion of enzymatic and non-enzymatic antioxidants were observed, such as, GPx (72%), SOD (57.5%), CAT (41.6%) and -SH (50%). The lesions were associated with severe histopathological damage. The both Citrus sinensis peel aqueous extract (CSPE) and hesperidin significantly protect against all gastric damages caused by ethanol administration in rats. We propose that CSPE and hesperidin exhibit protective effects in EtOH-induced peptic ulcer in rat. This protection might be related in to part its antioxidant properties as well as its opposite effects on some studied intracellular

  3. Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration

    PubMed Central

    2011-01-01

    Background Enormous work has shown that polyamines are involved in a variety of physiological processes, but information is scarce on the potential of modifying disease response through genetic transformation of a polyamine biosynthetic gene. Results In the present work, an apple spermidine synthase gene (MdSPDS1) was introduced into sweet orange (Citrus sinensis Osbeck 'Anliucheng') via Agrobacterium-mediated transformation of embryogenic calluses. Two transgenic lines (TG4 and TG9) varied in the transgene expression and cellular endogenous polyamine contents. Pinprick inoculation demonstrated that the transgenic lines were less susceptible to Xanthomonas axonopodis pv. citri (Xac), the causal agent of citrus canker, than the wild type plants (WT). In addition, our data showed that upon Xac attack TG9 had significantly higher free spermine (Spm) and polyamine oxidase (PAO) activity when compared with the WT, concurrent with an apparent hypersensitive response and the accumulation of more H2O2. Pretreatment of TG9 leaves with guazatine acetate, an inhibitor of PAO, repressed PAO activity and reduced H2O2 accumulation, leading to more conspicuous disease symptoms than the controls when both were challenged with Xac. Moreover, mRNA levels of most of the defense-related genes involved in synthesis of pathogenesis-related protein and jasmonic acid were upregulated in TG9 than in the WT regardless of Xac infection. Conclusion Our results demonstrated that overexpression of the MdSPDS1 gene prominently lowered the sensitivity of the transgenic plants to canker. This may be, at least partially, correlated with the generation of more H2O2 due to increased production of polyamines and enhanced PAO-mediated catabolism, triggering hypersensitive response or activation of defense-related genes. PMID:21439092

  4. Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H₂O₂ production and transcriptional alteration.

    PubMed

    Fu, Xing-Zheng; Chen, Chuan-Wu; Wang, Yin; Liu, Ji-Hong; Moriguchi, Takaya

    2011-03-28

    Enormous work has shown that polyamines are involved in a variety of physiological processes, but information is scarce on the potential of modifying disease response through genetic transformation of a polyamine biosynthetic gene. In the present work, an apple spermidine synthase gene (MdSPDS1) was introduced into sweet orange (Citrus sinensis Osbeck 'Anliucheng') via Agrobacterium-mediated transformation of embryogenic calluses. Two transgenic lines (TG4 and TG9) varied in the transgene expression and cellular endogenous polyamine contents. Pinprick inoculation demonstrated that the transgenic lines were less susceptible to Xanthomonas axonopodis pv. citri (Xac), the causal agent of citrus canker, than the wild type plants (WT). In addition, our data showed that upon Xac attack TG9 had significantly higher free spermine (Spm) and polyamine oxidase (PAO) activity when compared with the WT, concurrent with an apparent hypersensitive response and the accumulation of more H₂O₂. Pretreatment of TG9 leaves with guazatine acetate, an inhibitor of PAO, repressed PAO activity and reduced H₂O₂ accumulation, leading to more conspicuous disease symptoms than the controls when both were challenged with Xac. Moreover, mRNA levels of most of the defense-related genes involved in synthesis of pathogenesis-related protein and jasmonic acid were upregulated in TG9 than in the WT regardless of Xac infection. Our results demonstrated that overexpression of the MdSPDS1 gene prominently lowered the sensitivity of the transgenic plants to canker. This may be, at least partially, correlated with the generation of more H₂O₂ due to increased production of polyamines and enhanced PAO-mediated catabolism, triggering hypersensitive response or activation of defense-related genes.

  5. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis)

    PubMed Central

    Li, Si-Bei; OuYang, Wei-Zhi; Hou, Xiao-Jin; Xie, Liang-Liang; Hu, Chun-Gen; Zhang, Jin-Zhi

    2015-01-01

    Auxin response factors (ARFs) are an important family of proteins in auxin-mediated response, with key roles in various physiological and biochemical processes. To date, a genome-wide overview of the ARF gene family in citrus was not available. A systematic analysis of this gene family in citrus was begun by carrying out a genome-wide search for the homologs of ARFs. A total of 19 nonredundant ARF genes (CiARF) were found and validated from the sweet orange. A comprehensive overview of the CiARFs was undertaken, including the gene structures, phylogenetic analysis, chromosome locations, conserved motifs of proteins, and cis-elements in promoters of CiARF. Furthermore, expression profiling using real-time PCR revealed many CiARF genes, albeit with different patterns depending on types of tissues and/or developmental stages. Comprehensive expression analysis of these genes was also performed under two hormone treatments using real-time PCR. Indole-3-acetic acid (IAA) and N-1-napthylphthalamic acid (NPA) treatment experiments revealed differential up-regulation and down-regulation, respectively, of the 19 citrus ARF genes in the callus of sweet orange. Our comprehensive analysis of ARF genes further elucidates the roles of CiARF family members during citrus growth and development process. PMID:25870601

  6. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis).

    PubMed

    Li, Si-Bei; OuYang, Wei-Zhi; Hou, Xiao-Jin; Xie, Liang-Liang; Hu, Chun-Gen; Zhang, Jin-Zhi

    2015-01-01

    Auxin response factors (ARFs) are an important family of proteins in auxin-mediated response, with key roles in various physiological and biochemical processes. To date, a genome-wide overview of the ARF gene family in citrus was not available. A systematic analysis of this gene family in citrus was begun by carrying out a genome-wide search for the homologs of ARFs. A total of 19 nonredundant ARF genes (CiARF) were found and validated from the sweet orange. A comprehensive overview of the CiARFs was undertaken, including the gene structures, phylogenetic analysis, chromosome locations, conserved motifs of proteins, and cis-elements in promoters of CiARF. Furthermore, expression profiling using real-time PCR revealed many CiARF genes, albeit with different patterns depending on types of tissues and/or developmental stages. Comprehensive expression analysis of these genes was also performed under two hormone treatments using real-time PCR. Indole-3-acetic acid (IAA) and N-1-napthylphthalamic acid (NPA) treatment experiments revealed differential up-regulation and down-regulation, respectively, of the 19 citrus ARF genes in the callus of sweet orange. Our comprehensive analysis of ARF genes further elucidates the roles of CiARF family members during citrus growth and development process.

  7. Purification and characterization of a thermostable soluble peroxidase from Citrus medica leaf.

    PubMed

    Mall, Ruckminee; Naik, Gaurav; Mina, Usha; Mishra, Sarad Kumar

    2013-01-01

    A soluble and thermostable peroxidase enzyme (POD) was extracted from the leaf of Citrus medica. The enzyme was purified 15.10-fold with a total yield of 28.6% by ammonium sulfate precipitation followed by Sephadex G-100 gel filtration chromatography. The purified enzyme came as a single band on native polyacrylamide gel electrophoresis (PAGE) as well as sodium dodecyl sulfate (SDS) PAGE. The molecular mass of the enzyme was about 32 kD as determined by SDS-PAGE. The enzyme was optimally active at pH 6.0 and 50°C temperature. The enzyme was active in wide range of pH (5.0-8.0) and temperature (30-80°C). From the thermal inactivation studies in the range of 60-75°C, the half-life (t(1/2)) values of the enzyme ranged from 8 to 173 min. The inactivation energy (Ea) value of POD was estimated to be 21.7 kcal mol(-1). The Km values for guaiacol and H(2)O(2) were 8 mM and 1.8 mM, respectively. This enzyme was activated by some metals and reagents such as Ca(2+), Cu(2+), Mg(2+), Co(2+), ferulic acid, and indole acetic acid (IAA), while it was inhibited by Fe(2+), Zn(2+), Hg(2+), and Mn(2+), L-cysteine, L-proline, and protocatechuic acid.

  8. Production and characterization of films based on blends of chitosan from blue crab (Callinectes sapidus) waste and pectin from Orange (Citrus sinensis Osbeck) peel.

    PubMed

    Baron, Ricardo Duran; Pérez, Latife Lúquez; Salcedo, Jesús Mejía; Córdoba, Luis Pérez; Sobral, Paulo José do Amaral

    2017-05-01

    The objective of this study was to develop and characterize films based on blends of chitosan and pectin, produced in laboratory scale, from industrial wastes. The chitosan was obtained by termoalcaline deacetylation of chitin, extracted from blue crab (Callinectes sapidus) waste and characterized according to degree of deacetylation (DD) and viscosimetric molecular weight (Mw); and pectin was extracted by conventional heating, from orange (Citrus sinensis Osbeck) peel and characterized according to degree of esterification (DE) and molecular weight (Mw). The Ch:P based films were prepared by the casting method in different Ch:P ratios [0: 100, 25:75, 50:50, 75:25 and 100:0], and compared to two controls [0:100 and 100:0], of commercial pectin and chitosan. Glycerol was used as a plasticizer at concentrations of 0.2g/g macromolecules. The addition of high concentrations of pectin in the formulations resulted in films with high solubility and an increase in moisture. No significant difference (P>0.05) in the degree of swelling (DS) and water vapor permeability (WVP) of the films was observed. Ch:P blend films were less stiff and therefore more elastic and flexible than films based on only one biopolymer. The control films presented better results in terms of color, being brighter and less opaque than other film formulations. These data suggest that chitosan or pectin obtained from agro-industrial waste is a potential matrix to produce biodegradable films for future food applications.

  9. Integrated Systems Biology Analysis of Transcriptomes Reveals Candidate Genes for Acidity Control in Developing Fruits of Sweet Orange (Citrus sinensis L. Osbeck)

    PubMed Central

    Huang, Dingquan; Zhao, Yihong; Cao, Minghao; Qiao, Liang; Zheng, Zhi-Liang

    2016-01-01

    Organic acids, such as citrate and malate, are important contributors for the sensory traits of fleshy fruits. Although their biosynthesis has been illustrated, regulatory mechanisms of acid accumulation remain to be dissected. To provide transcriptional architecture and identify candidate genes for citrate accumulation in fruits, we have selected for transcriptome analysis four varieties of sweet orange (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). Fruits of these varieties at 45 days post anthesis (DPA), which corresponds to Stage I (cell division), had similar acidity, but they displayed differential acid accumulation at 142 DPA (Stage II, cell expansion). Transcriptomes of fruits at 45 and 142 DPA were profiled using RNA sequencing and analyzed with three different algorithms (Pearson correlation, gene coexpression network and surrogate variable analysis). Our network analysis shows that the acid-correlated genes belong to three distinct network modules. Several of these candidate fruit acidity genes encode regulatory proteins involved in transport (such as AHA10), degradation (such as APD2) and transcription (such as AIL6) and act as hubs in the citrate accumulation gene networks. Taken together, our integrated systems biology analysis has provided new insights into the fruit citrate accumulation gene network and led to the identification of candidate genes likely associated with the fruit acidity control. PMID:27092171

  10. Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng.

    PubMed

    Chau, Chi-Fai; Huang, Ya-Ling

    2003-04-23

    Fiber-rich fractions (FRFs) including soluble and insoluble dietary fibers (SDF and IDF), alcohol-insoluble solid (AIS), and water-insoluble solid (WIS) were isolated from the peel of Citrus sinensis L. cv. Liucheng for analysis and tests. The peel was rich in insoluble FRFs (IDF, AIS, and WIS; 476-515 g kg(-1) of peel), which were mainly composed of pectic substances and cellulose, and also contained pectic polysaccharide-rich SDF (94.1 g kg(-1) of peel). These insoluble FRFs had water-holding capacities (15.5-16.7 mL g(-1)), oil-holding capacities (2.35-5.09 g g(-1)), cation-exchange capacities (454-997 mequiv kg(-1)), and swelling properties (14.6-21.1 mL g(-1)) much higher than those of cellulose. These results recommended the consumption of these peel insoluble FRFs of desired physicochemical properties as sources of food fibers or low-calorie bulk ingredients in food applications requiring oil and moisture retention. Further investigations on the physiological functions of these peel FRFs using animal-feeding experiments are underway.

  11. The phytochemical analysis and antioxidant activity assessment of orange peel (Citrus sinensis) cultivated in Greece-Crete indicates a new commercial source of hesperidin.

    PubMed

    Kanaze, Firas I; Termentzi, Aikaterini; Gabrieli, Chrysi; Niopas, Ioannis; Georgarakis, Manolis; Kokkalou, Eugene

    2009-03-01

    The flavonoid content of several methanolic extract fractions of Navel orange peel (flavedo and albedo of Citrus sinensis) cultivated in Crete (Greece) was first analysed phytochemically and then assessed for its antioxidant activity in vitro. The chemical structures of the constituents fractionated were originally determined by comparing their retention times and the obtained UV spectral data with the available bibliographic data and further verified by detailed LC-DAD-MS (ESI+) analysis. The main flavonoid groups found within the fractions examined were polymethoxylated flavones, O-glycosylated flavones, C-glycosylated flavones, O-glycosylated flavonols, O-glycosylated flavanones and phenolic acids along with their ester derivatives. In addition, the quantitative HPLC analysis confirmed that hesperidin is the major flavonoid glycoside found in the orange peel. Interestingly enough, its quantity at 48 mg/g of dry peel permits the commercial use of orange peel as a source for the production of hesperidin. The antioxidant activity of the orange peel methanolic extract fractions was evaluated by applying two complementary methodologies, DPPH(*) assay and the Co(II)/EDTA-induced luminol chemiluminescence approach. Overall, the results have shown that orange peel methanolic extracts possess moderate antioxidant activity as compared with the activity seen in tests where the corresponding aglycones, diosmetin and hesperetin were assessed in different ratios.

  12. C- and O-glycosyl flavonoids in Sanguinello and Tarocco blood orange (Citrus sinensis (L.) Osbeck) juice: Identification and influence on antioxidant properties and acetylcholinesterase activity.

    PubMed

    Barreca, Davide; Gattuso, Giuseppe; Laganà, Giuseppina; Leuzzi, Ugo; Bellocco, Ersilia

    2016-04-01

    Sanguinello and Tarocco are the blood orange (Citrus sinensis (L.) Osbeck) cultivars most diffused worldwide. Reversed phase liquid chromatography coupled with MS-MS analysis showed that these two varieties have a similar chromatographic pattern, characterised by the presence of C- and O-glycosyl flavonoids. Of the two, Sanguinello was found to be far richer in flavonoids than Tarocco. In the juices, twelve individual components were identified for the first time, namely, four C-glycosyl flavones (lucenin-2, vicenin-2, stellarin-2, lucenin-2 4'-methyl ether and scoparin), three flavonol derivatives (quercetin-3-O-(2-rhamnosyl)-rutinoside, quercetin-3-O-hexoside, quercetin 3-hydroxy-3-methylglutaryl-glycoside), an O-triglycosyl flavanone (narirutin 4'-O-glucoside) and a flavone O-glycosides (chrysoeriol 7-O-neoesperidoside). Moreover, the influence of the identified C- and O-glycosyl flavonoids on the antioxidant and acetylcholinesterase activity of these juices has been evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Integrated Systems Biology Analysis of Transcriptomes Reveals Candidate Genes for Acidity Control in Developing Fruits of Sweet Orange (Citrus sinensis L. Osbeck).

    PubMed

    Huang, Dingquan; Zhao, Yihong; Cao, Minghao; Qiao, Liang; Zheng, Zhi-Liang

    2016-01-01

    Organic acids, such as citrate and malate, are important contributors for the sensory traits of fleshy fruits. Although their biosynthesis has been illustrated, regulatory mechanisms of acid accumulation remain to be dissected. To provide transcriptional architecture and identify candidate genes for citrate accumulation in fruits, we have selected for transcriptome analysis four varieties of sweet orange (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). Fruits of these varieties at 45 days post anthesis (DPA), which corresponds to Stage I (cell division), had similar acidity, but they displayed differential acid accumulation at 142 DPA (Stage II, cell expansion). Transcriptomes of fruits at 45 and 142 DPA were profiled using RNA sequencing and analyzed with three different algorithms (Pearson correlation, gene coexpression network and surrogate variable analysis). Our network analysis shows that the acid-correlated genes belong to three distinct network modules. Several of these candidate fruit acidity genes encode regulatory proteins involved in transport (such as AHA10), degradation (such as APD2) and transcription (such as AIL6) and act as hubs in the citrate accumulation gene networks. Taken together, our integrated systems biology analysis has provided new insights into the fruit citrate accumulation gene network and led to the identification of candidate genes likely associated with the fruit acidity control.

  14. Fumigant toxicity of Citrus sinensis essential oil on Musca domestica L. adults in the absence and presence of a P450 inhibitor.

    PubMed

    Rossi, Yanina Estefanía; Palacios, Sara María

    2013-07-01

    Essential oils (EOs) are potential tools for controlling Musca domestica L. In a fumigant assay, M. domestica adults treated with Citrus sinensis EO (LC50=3.9mg/dm(3)), with (4R)(+)-limonene (95.1%) being its main component, died within 15min or less. The terpenes absorbed by the flies and their metabolites, analyzed using SPME fiber, were (4R)(+)-limonene (LC50=6.2mg/dm(3)), α-pinene (LC50=11.5mg/dm(3)), β-pinene (LC50=6.4mg/dm(3)), and two new components, carveol (LC50=1122mg/dm(3)) and carvone (LC50=19mg/dm(3)), in a proportion of 50, 6.2, 12.5, 6.3 and 25%, respectively. Carveol and carvone were formed by oxidation of (4R)(+)-limonene mediated by cytochrome P450, as was suggested by a fumigation assay on flies previously treated with piperonyl butoxide, a P450 inhibitor. In this experiment, an increase in the toxicity of the EO and (4R)(+)-limonene was observed, as well as a lower production of carveol and carvone. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis).

    PubMed

    Wu, Zhi-Jun; Tian, Chang; Jiang, Qian; Li, Xing-Hui; Zhuang, Jing

    2016-01-27

    Tea plant (Camellia sinensis) leaf is an important non-alcoholic beverage resource. The application of quantitative real time polymerase chain reaction (qRT-PCR) has a profound significance for the gene expression studies of tea plant, especially when applied to tea leaf development and metabolism. In this study, nine candidate reference genes (i.e., CsACT7, CsEF-1α, CseIF-4α, CsGAPDH, CsPP2A, CsSAND, CsTBP, CsTIP41, and CsTUB) of C. sinensis were cloned. The quantitative expression data of these genes were investigated in five tea leaf developmental stages (i.e., 1st, 2nd, 3rd, 4th, and older leaves) and normal growth tea leaves subjected to five hormonal stimuli (i.e., ABA, GA, IAA, MeJA, and SA), and gene expression stability was calculated using three common statistical algorithms, namely, geNorm, NormFinder, and Bestkeeper. Results indicated that CsTBP and CsTIP41 were the most stable genes in tea leaf development and CsTBP was the best gene under hormonal stimuli; by contrast, CsGAPDH and CsTUB genes showed the least stability. The gene expression profile of CsNAM gene was analyzed to confirm the validity of the reference genes in this study. Our data provide basis for the selection of reference genes for future biological research in the leaf development and hormonal stimuli of C. sinensis.

  16. Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis)

    PubMed Central

    Wu, Zhi-Jun; Tian, Chang; Jiang, Qian; Li, Xing-Hui; Zhuang, Jing

    2016-01-01

    Tea plant (Camellia sinensis) leaf is an important non-alcoholic beverage resource. The application of quantitative real time polymerase chain reaction (qRT-PCR) has a profound significance for the gene expression studies of tea plant, especially when applied to tea leaf development and metabolism. In this study, nine candidate reference genes (i.e., CsACT7, CsEF-1α, CseIF-4α, CsGAPDH, CsPP2A, CsSAND, CsTBP, CsTIP41, and CsTUB) of C. sinensis were cloned. The quantitative expression data of these genes were investigated in five tea leaf developmental stages (i.e., 1st, 2nd, 3rd, 4th, and older leaves) and normal growth tea leaves subjected to five hormonal stimuli (i.e., ABA, GA, IAA, MeJA, and SA), and gene expression stability was calculated using three common statistical algorithms, namely, geNorm, NormFinder, and Bestkeeper. Results indicated that CsTBP and CsTIP41 were the most stable genes in tea leaf development and CsTBP was the best gene under hormonal stimuli; by contrast, CsGAPDH and CsTUB genes showed the least stability. The gene expression profile of CsNAM gene was analyzed to confirm the validity of the reference genes in this study. Our data provide basis for the selection of reference genes for future biological research in the leaf development and hormonal stimuli of C. sinensis. PMID:26813576

  17. Medicinal values of fruit peels from Citrus sinensis, Punica granatum, and Musa paradisiaca with respect to alterations in tissue lipid peroxidation and serum concentration of glucose, insulin, and thyroid hormones.

    PubMed

    Parmar, Hamendra Singh; Kar, Anand

    2008-06-01

    Peel extracts from Citrus sinensis, Punica granatum, and Musa paradisiaca were investigated for their effects on tissue lipid peroxidation (LPO) and on the concentration of thyroid hormones, insulin, and glucose in male rats. In vitro inhibition of H(2)O(2)-induced LPO in red blood cells of rats by 0.25, 0.50, 1.0, and 2.0 microg/mL C. sinensis, P. granatum, and M. paradisiaca peel extracts was observed in a dose-specific manner. Maximum inhibition was observed at 0.50 microg/mL C. sinensis, 2.0 microg/mL P. granatum, and 1.0 microg/mL M. paradisiaca. In the in vivo investigation, out of four different concentrations of each peel extract, 25, 200, and 100 mg/kg C. sinensis, P. granatum, and M. paradisiaca, respectively, were found to maximally inhibit hepatic LPO. The most effective doses were further evaluated for effects on serum triiodothyronine (T(3)), thyroxine (T(4)), insulin, and glucose concentrations. C. sinensis exhibited antithyroidal, hypoglycemic, and insulin stimulatory activities, in addition to inhibition of LPO, as it significantly decreased the serum T(4) (P < .05) and glucose (P < .001) concentrations with a concomitant increase in insulin levels (P < .05). P. granatum decreased LPO in hepatic, cardiac, and renal tissues (P < .01, P < .001, and P < .05, respectively) and serum glucose concentration (P < .01). M. paradisiaca strongly inhibited the serum level of thyroid hormones (P < .01 for both T(3) and T(4)) but increased the level of glucose (P < .05). These findings reveal the hitherto unknown potential of the tested peel extracts in the regulation of thyroid function and glucose metabolism. Besides antiperoxidative activity, C. sinensis extract has antithyroidal, hypoglycemic, and insulin stimulatory properties, which suggest its potential to ameliorate both hyperthyroidism and diabetes mellitus.

  18. Analysis of full-length sequences of two Citrus yellow mosaic badnavirus isolates infecting Citrus jambhiri (Rough Lemon) and Citrus sinensis L. Osbeck (Sweet Orange) from a nursery in India.

    PubMed

    Anthony Johnson, A M; Borah, B K; Sai Gopal, D V R; Dasgupta, I

    2012-12-01

    Citrus yellow mosaic badna virus (CMBV), a member of the Family Caulimoviridae, Genus Badnavirus is the causative agent of mosaic disease among Citrus species in southern India. Despite its reported prevalence in several citrus species, complete information on clear functional genomics or functional information of full-length genomes from all the CMBV isolates infecting citrus species are not available in publicly accessible databases. CMBV isolates from Rough Lemon and Sweet Orange collected from a nursery were cloned and sequenced. The analysis revealed high sequence homology of the two CMBV isolates with previously reported CMBV sequences implying that they represent new variants. Based on computational analysis of the predicted secondary structures, the possible functions of some CMBV proteins have been analyzed.

  19. Do leaf surface characteristics affect Agrobacterium infection in tea [Camellia sinensis (L.) O Kuntze]?

    PubMed

    Kumar, Nitish; Pandey, Subedar; Bhattacharya, Amita; Ahuja, Paramvir Singh

    2004-09-01

    The host range specificity of Agrobacterium with five tea cultivars and an unrelated species (Artemisia parviflora) having extreme surface characteristics was evaluated in the present study. The degree of Agrobacterium infection in the five cultivars of tea was affected by leaf wetness, micro-morphology and surface chemistry. Wettable leaf surfaces of TV1, Upasi-9 and Kangra jat showed higher rate (75%) of Agrobacterium infection compared to Upasi-10 and ST-449, whereas non-wettable leaves of A. parviflora showed minimum (25%) infection. This indicated that the leaves with glabrous surface having lower q (larger surface area covered by water droplet), higher phenol and wax content were more suitable for Agrobacterium infection. Caffeine fraction of tea promoted Agrobacterium infection even in leaves poor in wax (Upasi-10), whereas caffeine-free wax inhibited both Agrobacterium growth and infection. Thus, study suggests the importance of leaf surface features in influencing the Agrobacterium infection in tea leaf explants. Our study also provides a basis for the screening of a clone/cultivar of a particular species most suitable for Agrobacterium infection the first step in Agrobacterium-mediated genetic transformation.

  20. Late Embryogenesis Abundant (LEA) Constitutes a Large and Diverse Family of Proteins Involved in Development and Abiotic Stress Responses in Sweet Orange (Citrus sinensis L. Osb.)

    PubMed Central

    Pedrosa, Andresa Muniz; Martins, Cristina de Paula Santos; Gonçalves, Luana Pereira; Costa, Marcio Gilberto Cardoso

    2015-01-01

    Late Embryogenesis Abundant (LEA) proteins are an ubiquitous group of polypeptides that were first described to accumulate during plant seed dehydration, at the later stages of embryogenesis. Since then they have also been recorded in vegetative plant tissues experiencing water limitation and in anhydrobiotic bacteria and invertebrates and, thereby, correlated with the acquisition of desiccation tolerance. This study provides the first comprehensive study about the LEA gene family in sweet orange (Citrus sinensis L. Osb.), the most important and widely grown fruit crop around the world. A surprisingly high number (72) of genes encoding C. sinensis LEAs (CsLEAs) were identified and classified into seven groups (LEA_1, LEA_2, LEA_3 and LEA_4, LEA_5, DEHYDRIN and SMP) based on their predicted amino acid sequences and also on their phylogenetic relationships with the complete set of Arabidopsis thaliana LEA proteins (AtLEAs). Approximately 60% of the CsLEAs identified in this study belongs to the unusual LEA_2 group of more hydrophobic LEA proteins, while the other LEA groups contained a relatively small number of members typically hydrophilic. A correlation between gene structure and motif composition was observed within each LEA group. Investigation of their chromosomal localizations revealed that the CsLEAs were non-randomly distributed across all nine chromosomes and that 33% of all CsLEAs are segmentally or tandemly duplicated genes. Analysis of the upstream sequences required for transcription revealed the presence of various stress-responsive cis-acting regulatory elements in the promoter regions of CsLEAs, including ABRE, DRE/CRT, MYBS and LTRE. Expression analysis using both RNA-seq data and quantitative real-time RT-PCR (qPCR) revealed that the CsLEA genes are widely expressed in various tissues, and that many genes containing the ABRE promoter sequence are induced by drought, salt and PEG. These results provide a useful reference for further exploration of

  1. Late Embryogenesis Abundant (LEA) Constitutes a Large and Diverse Family of Proteins Involved in Development and Abiotic Stress Responses in Sweet Orange (Citrus sinensis L. Osb.).

    PubMed

    Pedrosa, Andresa Muniz; Martins, Cristina de Paula Santos; Gonçalves, Luana Pereira; Costa, Marcio Gilberto Cardoso

    2015-01-01

    Late Embryogenesis Abundant (LEA) proteins are an ubiquitous group of polypeptides that were first described to accumulate during plant seed dehydration, at the later stages of embryogenesis. Since then they have also been recorded in vegetative plant tissues experiencing water limitation and in anhydrobiotic bacteria and invertebrates and, thereby, correlated with the acquisition of desiccation tolerance. This study provides the first comprehensive study about the LEA gene family in sweet orange (Citrus sinensis L. Osb.), the most important and widely grown fruit crop around the world. A surprisingly high number (72) of genes encoding C. sinensis LEAs (CsLEAs) were identified and classified into seven groups (LEA_1, LEA_2, LEA_3 and LEA_4, LEA_5, DEHYDRIN and SMP) based on their predicted amino acid sequences and also on their phylogenetic relationships with the complete set of Arabidopsis thaliana LEA proteins (AtLEAs). Approximately 60% of the CsLEAs identified in this study belongs to the unusual LEA_2 group of more hydrophobic LEA proteins, while the other LEA groups contained a relatively small number of members typically hydrophilic. A correlation between gene structure and motif composition was observed within each LEA group. Investigation of their chromosomal localizations revealed that the CsLEAs were non-randomly distributed across all nine chromosomes and that 33% of all CsLEAs are segmentally or tandemly duplicated genes. Analysis of the upstream sequences required for transcription revealed the presence of various stress-responsive cis-acting regulatory elements in the promoter regions of CsLEAs, including ABRE, DRE/CRT, MYBS and LTRE. Expression analysis using both RNA-seq data and quantitative real-time RT-PCR (qPCR) revealed that the CsLEA genes are widely expressed in various tissues, and that many genes containing the ABRE promoter sequence are induced by drought, salt and PEG. These results provide a useful reference for further exploration of

  2. Stylet Morphometrics and Citrus Leaf Vein Structure in Relation to Feeding Behavior of the Asian Citrus Psyllid Diaphorina citri, Vector of Citrus Huanglongbing Bacterium

    PubMed Central

    Ammar, El-Desouky; Hall, David G.; Shatters, Robert G.

    2013-01-01

    The Asian citrus psyllid (ACP), Diaphorina citri (Hemiptera: Psyllidae), is the primary vector of the phloem-limited bacterium Candidatus Liberibacter asiaticus (LAS) associated with huanglongbing (HLB, citrus greening), considered the world’s most serious disease of citrus. Stylet morphometrics of ACP nymphs and adults were studied in relation to citrus vein structure and to their putative (histologically verified) feeding sites on Valencia orange leaves. ACP nymphs preferred to settle and feed on the lower (abaxial) side of young leaves either on secondary veins or on the sides of the midrib, whereas adults preferred to settle and feed on the upper (adaxial) or lower secondary veins of young or old leaves. Early instar nymphs can reach and probe the phloem probably because the distance to the phloem is considerably shorter in younger than in mature leaves, and is shorter from the sides of the midrib compared to that from the center. Additionally, the thick-walled ‘fibrous ring’ (sclerenchyma) around the phloem, which may act as a barrier to ACP stylet penetration into the phloem, is more prominent in older than in younger leaves and in the center than on the sides of the midrib. The majority (80–90%) of the salivary sheath termini produced by ACP nymphs and adults that reached a vascular bundle were associated with the phloem, whereas only 10–20% were associated with xylem vessels. Ultrastructural studies on ACP stylets and LAS-infected leaves suggested that the width of the maxillary food canal in first instar nymphs is wide enough for LAS bacteria to traverse during food ingestion (and LAS acquisition). However, the width of the maxillary salivary canal in these nymphs may not be wide enough to accommodate LAS bacteria during salivation (and LAS inoculation) into host plants. This may explain the inability of early instar nymphs to transmit LAS/HLB in earlier reports. PMID:23555830

  3. Stylet morphometrics and citrus leaf vein structure in relation to feeding behavior of the Asian citrus psyllid Diaphorina citri, vector of citrus huanglongbing bacterium.

    PubMed

    Ammar, El-Desouky; Hall, David G; Shatters, Robert G

    2013-01-01

    The Asian citrus psyllid (ACP), Diaphorina citri (Hemiptera: Psyllidae), is the primary vector of the phloem-limited bacterium Candidatus Liberibacter asiaticus (LAS) associated with huanglongbing (HLB, citrus greening), considered the world's most serious disease of citrus. Stylet morphometrics of ACP nymphs and adults were studied in relation to citrus vein structure and to their putative (histologically verified) feeding sites on Valencia orange leaves. ACP nymphs preferred to settle and feed on the lower (abaxial) side of young leaves either on secondary veins or on the sides of the midrib, whereas adults preferred to settle and feed on the upper (adaxial) or lower secondary veins of young or old leaves. Early instar nymphs can reach and probe the phloem probably because the distance to the phloem is considerably shorter in younger than in mature leaves, and is shorter from the sides of the midrib compared to that from the center. Additionally, the thick-walled 'fibrous ring' (sclerenchyma) around the phloem, which may act as a barrier to ACP stylet penetration into the phloem, is more prominent in older than in younger leaves and in the center than on the sides of the midrib. The majority (80-90%) of the salivary sheath termini produced by ACP nymphs and adults that reached a vascular bundle were associated with the phloem, whereas only 10-20% were associated with xylem vessels. Ultrastructural studies on ACP stylets and LAS-infected leaves suggested that the width of the maxillary food canal in first instar nymphs is wide enough for LAS bacteria to traverse during food ingestion (and LAS acquisition). However, the width of the maxillary salivary canal in these nymphs may not be wide enough to accommodate LAS bacteria during salivation (and LAS inoculation) into host plants. This may explain the inability of early instar nymphs to transmit LAS/HLB in earlier reports.

  4. Separation and characterization of a salt-dependent pectin methylesterase from Citrus sinensis var. Valencia fruit tissue.

    PubMed

    Cameron, Randall G; Savary, Brett J; Hotchkiss, Arland T; Fishman, Marshall L; Chau, Hoa K; Baker, Robert A; Grohmann, Karel

    2003-03-26

    A pectin methylesterase (PME) from sweet orange fruit rag tissue, which does not destabilize citrus juice cloud, has been characterized. It is a salt-dependent PME (type II) and exhibits optimal activity between 0.1 and 0.2 M NaCl at pH 7.5. The pH optimum shifted to a more alkaline range as the salt molarity decreased (pH 8.5-9.5 at 50 mM NaCl). It has an apparent molecular mass of 32.4 kDa as determined by gel filtration chromatography, an apparent molecular mass of 33.5 kDa as determined by denaturing electrophoresis, and a pI of 10.1 and exhibits a single activity band after isoelectric focusing (IEF). It has a K(m) of 0.0487 mg/mL and a V(max) of 4.2378 nkat/mg of protein on 59% DE citrus pectin. Deblocking the N-terminus revealed a partial peptide composed of SVTPNV. De-esterification of non-calcium-sensitive pectin by 6.5% increased the calcium-sensitive pectin ratio (CSPR) from 0.045 +/- 0.011 to 0.829 +/- 0.033 but had little, if any, effect on pectin molecular weight. These properties indicate this enzyme will be useful for studying the PME mode of action as it relates to juice cloud destabilization.

  5. Use of a custom array to study differentially expressed genes during blood orange (Citrus sinensis L. Osbeck) ripening.

    PubMed

    Bernardi, Jamila; Licciardello, Concetta; Russo, Maria Patrizia; Luisa Chiusano, Maria; Carletti, Giorgia; Recupero, Giuseppe Reforgiato; Marocco, Adriano

    2010-03-01

    A flesh-specific oligonucleotide custom array was designed to study gene expression during blood orange ripening. The array included 301 probes derived from a subtracted SSH library, a cDNA-AFLP collection, and a set of regulatory genes from the Harvest citrus database. The custom array was hybridized using samples of Moro, a pigmented cultivar, and Cadenera, a common cultivar, at three different ripening stages: the immature phase, the halfway point of maturation (corresponding to the start of Moro pigmentation) and the full ripening. Of the 301 probes, 27 in total, corresponding to 20 different transcripts, indicated differential expression in stage-to-stage and/or cultivar-to-cultivar comparisons. Transcripts encoding for anthocyanin biosynthesis represented most of the total over-expressed probes. The remaining differentially expressed transcripts were functionally associated with primary metabolism as flavor biosynthesis, defense and signal transduction. The expressed products associated with probes indicating differential expression were confirmed by qRT-PCR. The microarray was designed considering a small collection of sequences useful for monitoring specific pathways and regulatory genes related to fruit ripening and anthocyanin pigmentation. The main novelty of this customization is the use of expressed sequences specifically derived from blood orange flesh to study different cultivars and ripening stages, and the provision of further information about processes related to anthocyanin pigmentation in citrus fruit flesh. Copyright 2009 Elsevier GmbH. All rights reserved.

  6. Phytohormone profiling of the sweet orange (Citrus sinensis (L.) Osbeck) leaves and roots using GC-MS-based method.

    PubMed

    Nehela, Yasser; Hijaz, Faraj; Elzaawely, Abdelnaser A; El-Zahaby, Hassan M; Killiny, Nabil

    2016-07-20

    Phytohormones mainly affect plant development and trigger varied responses to biotic and abiotic stresses. The sensitivity of methods used to profile phytohormones is a vital factor that affects the results. We used an improved GC-MS-based method in the selective ion-monitoring (SIM) mode to study the phytohormone profiling in citrus tissues. One extraction solvent mixture and two derivatization reagents were used, methyl chloroformate (MCF) and N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA). The method showed a low limit of detection and low limit of quantification with high extraction recovery percentage and reproducibility. Overall, we detected 13 phytohormones belonging to six different groups. Auxins, SAs, tJA, and ABA were detected after derivatization with MCF while cytokinins and GAs were detected after derivatization with MSTFA. Cytokinins, SAs, and gibberellins were found in all tissues while auxins and tJA were observed only in the leaves. ABA was found in leaves and roots, but not in root tips. The method we used is efficient, precise, and appropriate to study citrus phytohormonal profiles to understand their crosstalk and responses to environmental and biological stresses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition.

    PubMed

    Fan, Dong-Mei; Fan, Kai; Yu, Cui-Ping; Lu, Ya-Ting; Wang, Xiao-Chang

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols.

  8. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition*

    PubMed Central

    Fan, Dong-mei; Fan, Kai; Yu, Cui-ping; Lu, Ya-ting; Wang, Xiao-chang

    2017-01-01

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols. PMID:28124839

  9. Influence of different organic fertilizers on quality parameters and the delta(15)N, delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of orange fruit (Citrus sinensis L. Osbeck).

    PubMed

    Rapisarda, Paolo; Camin, Federica; Fabroni, Simona; Perini, Matteo; Torrisi, Biagio; Intrigliolo, Francesco

    2010-03-24

    To investigate the influence of different types of fertilizers on quality parameters, N-containing compounds, and the delta(15)N, delta(13)C, delta(2)H, delta (34)S, and delta(18)O values of citrus fruit, a study was performed on the orange fruit cv. 'Valencia late' (Citrus sinensis L. Osbeck), which was harvested in four plots (three organic and one conventional) located on the same farm. The results demonstrated that different types of organic fertilizers containing the same amount of nitrogen did not effect important changes in orange fruit quality parameters. The levels of total N and N-containing compounds such as synephrine in fruit juice were not statistically different among the different treatments. The delta(15)N values of orange fruit grown under fertilizer derived from animal origin as well as from vegetable compost were statistically higher than those grown with mineral fertilizer. Therefore, delta(15)N values can be used as an indicator of citrus fertilization management (organic or conventional), because even when applied organic fertilizers are of different origins, the natural abundance of (15)N in organic citrus fruit remains higher than in conventional ones. These treatments also did not effect differences in the delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of fruit.

  10. Investigation on the effect of different levels of dried sweet orange (Citrus sinensis) pulp on performance, carcass characteristics and physiological and biochemical parameters in broiler chicken

    PubMed Central

    Abbasi, Hossein; Seidavi, Alireza; Liu, Wuyi; Asadpour, Leila

    2014-01-01

    Utilization of agricultural by-products in animal nutrition is a matter of great concern. Dried sweet orange (Citrus sinensis) pulp (DCSP) is a potential source of valuable nutrients and natural antioxidants for poultry feed. In the experiment, a feeding trial was conducted in order to investigate the effect of different levels of dried orange residues in diet on broiler growth performance, carcass characteristics, blood metabolites, humoral immunity, and cecum microbial population. A total of 200 one day experimental broiler chicks were distributed into a completely randomized design (CRD) which included 5 dietary treatments with 4 replicates per each treatment and 10 birds fed in each replicate. The experimental treatments consist of a control group (without additive), 0.5%, 1.0%, 1.5%, and 2% of DCSP (residue) in diet. Weight gain, feed intake and feed conversion ratio (FCR) were measured. Blood parameters and carcass traits were measured in the postnatal 35th day. The highest level of dried orange residues in treatment 5 (T5) had significantly increased the feed intake and body weight of broilers in groups and overall during the rearing period (P > 0.05). Different levels of dried orange residues had no significant effect on chicken FCR. Using of dried orange residues significantly decreased the liver and abdominal fat of broilers (P < 0.05). T5 has also significantly lower level of triglyceride than the control (T1) and treatment 2 (T2) (P < 0.05). In conclusion, the use of dried orange residues improved some performance (e.g. feed intake and body weight gain), decreased liver and abdominal fat and also serum triglyceride level in broiler chicken. PMID:25737644

  11. Rare earth element transfer from soil to navel orange pulp (Citrus sinensis Osbeck cv. Newhall) and the effects on internal fruit quality.

    PubMed

    Cheng, Jinjin; Ding, Changfeng; Li, Xiaogang; Zhang, Taolin; Wang, Xingxiang

    2015-01-01

    The effects of soil rare earth element (REE) on navel orange quality and safety in rare earth ore areas have gained great attention. This study investigated the transfer characteristics of REE from soil to navel orange pulp (Citrus sinensis Osbeck cv. Newhall) and examined the effects of soil REE on internal fruit quality in Xinfeng County, Jiangxi province, China. Path analysis showed that soil REE, pH, cation exchange capacity (CEC), and Fe oxide (Feox) significantly affected pulp REE concentrations. A Freundlich-type prediction model for pulp REE was established: log[REEpulp] = -1.036 + 0.272 log[REEsoil] - 0.056 pH - 0.360 log[CEC] + 0.370 log[Feox] (n = 114, R2 = 0.60). From the prediction model, it was inferred that even when soil REE and Feox were as high as 1038 mg kg-1 and 96.4 g kg-1, respectively, and pH and CEC were as low as 3.75 and 5.08 cmol kg-1, respectively, pulp REE concentrations were much lower than the food limit standard. Additionally, soil REE levels were significantly correlated with selected fruit quality indicators, including titratable acidity (r = 0.52, P < 0.01), total soluble solids (r = 0.48, P < 0.01) and vitamin C (r = 0.56, P < 0.01). Generally, under routine methods of water and fertilization management, the cultivation of navel oranges in rare earth ore areas of south China with soil REE ranging from 38.6 to 546 mg kg-1 had improved in internal fruit quality.

  12. Fruit coloration difference between Fengwan, a late-maturing mutant and its original cultivar Fengjie72-1 of navel orange (Citrus sinensis Osbeck).

    PubMed

    Liu, Yong-Zhong; Tang, Peng; Tao, Neng-Guo; Xu, Qiang; Peng, Shu-Ang; Deng, Xiu-Xin; Xiang, Ke-Shu; Huang, Ren-Hu

    2006-02-01

    Fruit color is one of the most important external quality traits. Mutants with different color are useful for the study of regulating mechanism of coloration progress. A novel mutant, Fengwan, derived from Fengjie72-1 navel orange (Citrus sinensis L. Osbeck), has the distinctive characteristic of the coloration delay of 30 d or so, with the change in total soluble solid (TSS) and the ratio of TSS/acidity. In order to understand the mechanism underlying the difference of coloration between the mutant and the parental variety, the chlorophyll and carotenoid contents in the peel of two cultivars at different maturation stages were analyzed. The expression of genes responsible for some carotenoid biosynthetic enzymes (phytoene synthase, phytoene desaturase, zeta-carotene desaturase, beta-lycopene cyclase, beta-carotene hydroxylase) and chlorophyllase using the RT-PCR technique were also studied. The distinct decrease of chlorophyll in the peel of Fengwan navel orange occurred from early November to late November, about three weeks later than that of its original cultivar. Obvious accumulation of carotenoid in the peel of the mutant began on Dec.12, while that of the original cultivar began on Nov. 3. Analysis of independent-samples t-test showed that the chlorophyll content of the peel of Fengwan navel orange from October to November was significantly higher, and the carotenoid content from December to January was significantly lower than that in the peel of the parental line, Fengjie72-1 navel orange. The expression of chlorophyllase gene in the peel of Fengwan navel orange reached a maximum in January and kept at a slightly lower level from October to December than that of Fengjie 72-1 orange, while the time of gene expression about some carotenoid biosynthetic enzymes reaching a maximum in the peel of the mutant were one month later than that of the original cultivar.

  13. miRNAome analysis associated with anatomic and transcriptomic investigations reveal the polar exhibition of corky split vein in boron deficient Citrus sinensis.

    PubMed

    Yang, Chengquan; Liu, Tao; Bai, Fuxi; Wang, Nannan; Pan, Zhiyong; Yan, Xiang; Peng, ShuAng

    2015-10-01

    Corky split vein can develop under long-term boron deficient conditions in Citrus sinensis L. Osbeck cv. Newhall. This symptom only occurs in the upper rather than the lower epidermis of old leaves. Our previous study demonstrated that vascular hypertrophy was involved in the symptoms, and the 3rd developmental stage of corky split vein (BD3) was the critical stage for phenotype formation. Here, we performed an intensive study on the BD3 vein and its control sample (CK3 vein). A lignin test demonstrated that the lignin content in BD3 vein was approximately 1.7 times more than the CK3 vein. Anatomical investigation of the corky split vein indicated that the upper epidermis was destroyed by overgrowing vascular cells, and the increased lignin may contribute to vascular cell differentiation and wounding-induced lignification. In a subsequent small RNA sequencing of the BD3 and CK3 veins, 99 known miRNAs and 22 novel miRNAs were identified. Comparative profiling of these miRNAs demonstrated that the 57 known miRNAs and all novel miRNAs exhibited significant expression differences between the two small RNAs libraries of the BD3 and CK3 veins. Associated with our corresponding digital gene expression data, we propose that the decreased expression of two miRNAs, csi-miR156b and csi-miR164, which leads to the up-regulation of their target genes, SPLs (csi-miR156b-targeted) and CUC2 (csi-miR164-targeted), may promote vascular cell division and orderless stage transition in old leaves.

  14. Investigation on the effect of different levels of dried sweet orange (Citrus sinensis) pulp on performance, carcass characteristics and physiological and biochemical parameters in broiler chicken.

    PubMed

    Abbasi, Hossein; Seidavi, Alireza; Liu, Wuyi; Asadpour, Leila

    2015-03-01

    Utilization of agricultural by-products in animal nutrition is a matter of great concern. Dried sweet orange (Citrus sinensis) pulp (DCSP) is a potential source of valuable nutrients and natural antioxidants for poultry feed. In the experiment, a feeding trial was conducted in order to investigate the effect of different levels of dried orange residues in diet on broiler growth performance, carcass characteristics, blood metabolites, humoral immunity, and cecum microbial population. A total of 200 one day experimental broiler chicks were distributed into a completely randomized design (CRD) which included 5 dietary treatments with 4 replicates per each treatment and 10 birds fed in each replicate. The experimental treatments consist of a control group (without additive), 0.5%, 1.0%, 1.5%, and 2% of DCSP (residue) in diet. Weight gain, feed intake and feed conversion ratio (FCR) were measured. Blood parameters and carcass traits were measured in the postnatal 35th day. The highest level of dried orange residues in treatment 5 (T5) had significantly increased the feed intake and body weight of broilers in groups and overall during the rearing period (P > 0.05). Different levels of dried orange residues had no significant effect on chicken FCR. Using of dried orange residues significantly decreased the liver and abdominal fat of broilers (P < 0.05). T5 has also significantly lower level of triglyceride than the control (T1) and treatment 2 (T2) (P < 0.05). In conclusion, the use of dried orange residues improved some performance (e.g. feed intake and body weight gain), decreased liver and abdominal fat and also serum triglyceride level in broiler chicken.

  15. Rare Earth Element Transfer from Soil to Navel Orange Pulp (Citrus sinensis Osbeck cv. Newhall) and the Effects on Internal Fruit Quality

    PubMed Central

    Cheng, Jinjin; Ding, Changfeng; Li, Xiaogang; Zhang, Taolin; Wang, Xingxiang

    2015-01-01

    The effects of soil rare earth element (REE) on navel orange quality and safety in rare earth ore areas have gained great attention. This study investigated the transfer characteristics of REE from soil to navel orange pulp (Citrus sinensis Osbeck cv. Newhall) and examined the effects of soil REE on internal fruit quality in Xinfeng County, Jiangxi province, China. Path analysis showed that soil REE, pH, cation exchange capacity (CEC), and Fe oxide (Feox) significantly affected pulp REE concentrations. A Freundlich-type prediction model for pulp REE was established: log[REEpulp] = -1.036 + 0.272 log[REEsoil] - 0.056 pH - 0.360 log[CEC] + 0.370 log[Feox] (n = 114, R2 = 0.60). From the prediction model, it was inferred that even when soil REE and Feox were as high as 1038 mg kg-1 and 96.4 g kg-1, respectively, and pH and CEC were as low as 3.75 and 5.08 cmol kg-1, respectively, pulp REE concentrations were much lower than the food limit standard. Additionally, soil REE levels were significantly correlated with selected fruit quality indicators, including titratable acidity (r = 0.52, P < 0.01), total soluble solids (r = 0.48, P < 0.01) and vitamin C (r = 0.56, P < 0.01). Generally, under routine methods of water and fertilization management, the cultivation of navel oranges in rare earth ore areas of south China with soil REE ranging from 38.6 to 546 mg kg-1 had improved in internal fruit quality. PMID:25806821

  16. [Construction of the plant expression vector with hepatitis a capsid protein fusion gene and genetic transformation of Citrus. Sinensis Osbeck].

    PubMed

    Hu, Rong; Wei, Hong; Chen, Shan-Chun; He, Yong-Rui

    2004-07-01

    The use of edible plants for the production and delivery of vaccine proteins could provide an economical alternative to fermentation systems. The construction of the plant expression vector pBI121-A was reported, which contained a fusion gene encoding hepatitis A capsid proteins. The gene was located between the left and right Ti border sequences under the control of CaMV35S promoter. The vector was identified via PCR and restriction enzyme analysis and was introduced into Agrobacterium tumerifacience LBA4404. The transgenic Citrus plants were produced by Agrobacterium-mediated transformation of epicotyl segments.13 putatively transformed plants through the kanamycin selection were micrografted onto the seedlings. The presence and integration of the transgene had been verified by PCR analysis. The result showed that five transformants were integrated and the transformation efficiency was 4.1%.

  17. Defining the core citrus leaf- and root-associated microbiota: Factors associated with community structure and implications for managing Huanglongbing (Citrus greening) disease.

    PubMed

    Blaustein, Ryan A; Lorca, Graciela L; Meyer, Julie L; Gonzalez, Claudio F; Teplitski, Max

    2017-03-24

    Stable associations between plants and microbes are critical to promoting host health and productivity. The objective of this work was to test the hypothesis that re-structuring of core microbiota may be associated with the progression of Huanlongbing (HLB), the devastating citrus disease caused by Liberibacter asiaticus, L. americanus, and L. africanus The microbial communities of leaves (n=94) and roots (n=79) from citrus trees that varied by HLB symptom severity, cultivar, location, and season/time were characterized with Illumina sequencing of 16S rDNA. The taxonomically rich communities contained abundant core members (i.e., detected in at least 95% of the respective leaf or root samples), some over-represented site-specific members, and a diverse community of low-abundance variable taxa. The composition and diversity of the leaf and root microbiota were strongly associated with HLB symptom severity and location; there was also an association with host cultivar. The relative abundance of Liberibacter spp. among leaf microbiota positively correlated with HLB symptom severity and negatively correlated with alpha diversity, suggesting that community diversity decreases as symptoms progress. Network analysis of the microbial community time-series identified a mutually exclusive relationship between Liberibacter spp. and members of Burkholderiaceae, Micromonosporaceae, and Xanthomonadaceae. This work confirmed several previously described plant disease-associated bacteria, as well as identified new potential implications for biological control. Our findings advance the understanding of: (1) plant microbiome selection across multiple variables and (2) changes in (core) community structure that may be a pre-condition to disease establishment and/or be associated with symptom progression.Importance This study provides a comprehensive overview of the core microbial community within the microbiomes of plant hosts that vary in extent of disease symptom progression. With

  18. Expression of phytoene synthase gene (Psy) is enhanced during fruit ripening of Cara Cara navel orange (Citrus sinensis Osbeck).

    PubMed

    Tao, Nengguo; Hu, Zhiyong; Liu, Qin; Xu, Juan; Cheng, Yunjiang; Guo, Linlin; Guo, Wenwu; Deng, Xiuxin

    2007-06-01

    Citrus is an important fruit crop as regards accumulation of carotenoids. In plant carotenoid biosynthesis, phytoene synthase gene (Psy) plays a key role in catalyzing the head-to-head condensation of geranylgeranyl diphosphate molecules to produce colorless phytoene. In the present paper, we reported the phytoene contents determination and characterization of Psy during fruit ripening of "Washington" navel orange and its red-fleshed mutant "Cara Cara". Results showed that phytoene was exclusively accumulated in peel and pulp of "Cara Cara". Although phytoene was observed accumulating with fruit ripening of "Cara Cara", the contents in pulp were 10 times higher than those in peel. The isolated two Psy cDNAs were both 1520 bp in full length, containing 436 deduced amino acid residues, with a different amino acid at 412th. Genomic hybridization results showed that one or two copies might be present in "Cara Cara" and "Washington" genomes. During "Cara Cara" and "Washington" fruit coloration, expression of Psy was observed to be up-regulated, as revealed by tissue specific profiles in the flavedo, albedo, segment membrane and juice sacs. However, Psy expression in albedo of "Cara Cara" was higher than that in "Washington", as evidenced by phytoene accumulation in the peel.

  19. Timing of the inhibitory effect of fruit on return bloom of 'Valencia' sweet orange (Citrus sinensis (L.) Osbeck).

    PubMed

    Martínez-Fuentes, Amparo; Mesejo, Carlos; Reig, Carmina; Agustí, Manuel

    2010-08-30

    In Citrus the inhibitory effect of fruit on flower formation is the main cause of alternate bearing. Although there are some studies reporting the effect on flowering of the time of fruit removal in a well-defined stage of fruit development, few have investigated the effect throughout the entire fruit growth stage from early fruitlet growth to fruit maturity. The objective of this study was to determine the phenological fruit developmental stage at which the fruit begins its inhibitory effect on flowering in sweet orange by manual removal of fruits, and the role of carbohydrates and nitrogen in the process. Fruit exerted its inhibitory effect from the time it was close to reaching its maximum weight, namely 90% of its final size (November) in the present experiments, to bud sprouting (April). The reduction in flowering paralleled the reduction in bud sprouting. This reduction was due to a decrease in the number of generative sprouted buds, whereas mixed-typed shoots were largely independent of the time of fruit removal, and vegetative shoots increased in frequency. The number of leaves and/or flowers per sprouted shoot was not significantly modified by fruit load. In 'Valencia' sweet orange, fruit inhibits flowering from the time it completes its growth. Neither soluble sugar content nor starch accumulation in leaves due to fruit removal was related to flowering intensity, but some kind of imbalance in nitrogen metabolism was observed in trees tending to flower scarcely. Copyright (c) 2010 Society of Chemical Industry.

  20. High incidence of preharvest colonization of huanglongbing-symptomatic Citrus sinensis fruit by Lasiodiplodia theobromae (Diplodia natalensis) and exacerbation of postharvest fruit decay by that fungus

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB), presumably caused by bacterium Candidatus Liberibacter asiaticus (CLas), is a devastating citrus disease associated with excessive pre-harvest fruit drop. Lasiodiplodia theobromae (Diplodia) is the causal organism of citrus stem end rot (SER). The pathogen infects citrus fruit ...

  1. Weeping dragon, a unique ornamenal citrus

    USDA-ARS?s Scientific Manuscript database

    ‘Weeping Dragon’ is a new ornamental citrus cultivar developed by intercrossing of two unusual and unique citrus types, Poncirus trifoliata cultivated variety (cv.) Flying Dragon, and Citrus sinensis cv. ‘Cipo’. This new hybrid cultivar combines strongly contorted and weeping growth traits in a smal...

  2. Comprehensive analysis of expressed sequence tags from the pulp of the red mutant 'Cara Cara' navel orange (Citrus sinensis Osbeck).

    PubMed

    Ye, Jun-Li; Zhu, An-Dan; Tao, Neng-Guo; Xu, Qiang; Xu, Juan; Deng, Xiu-Xin

    2010-10-01

    Expressed sequence tag (EST) analysis of the pulp of the red-fleshed mutant 'Cara Cara' navel orange provided a starting point for gene discovery and transcriptome survey during citrus fruit maturation. Interpretation of the EST datasets revealed that the mutant pulp transcriptome held a high section of stress responses related genes, such as the type III metallothionein-like gene (6.0%), heat shock protein (2.8%), Cu/Zn superoxide dismutase (0.8%), late embryogenesis abundant protein 5 (0.8%), etc. 133 transcripts were detected to be differentially expressed between the red mutant and its orange-color wild genotype 'Washington' via digital expression analysis. Among them, genes involved in metabolism, defense/stress and signal transduction were statistical overrepresented. Fifteen transcription factors, composed of NAM, ATAF, and CUC transcription factor (NAC); myeloblastosis (MYB); myelocytomatosis (MYC); basic helix-loop-helix (bHLH); basic leucine zipper (bZIP) domain members, were also included. The data reflected the distinct expression profile and the unique regulatory module associated with these two genotypes. Eight differently expressed genes analyzed in digital were validated by quantitative real-time polymerase chain reaction. For structural polymorphism, both simple sequence repeats and single nucleotide polymorphisms (SNP) loci were surveyed; dinucleotide presentation revealed a bias toward AG/GA/TC/CT repeats (52.5%), against GC/CG repeats (0%). SNPs analysis found that transitions (73%) outnumbered transversions (27%). Seventeen potential cultivar-specific and 387 heterozygous SNP loci were detected from 'Cara Cara' and 'Washington' EST pool. © 2010 Institute of Botany, Chinese Academy of Sciences.

  3. An RNA-Seq-based reference transcriptome for Citrus.

    PubMed

    Terol, Javier; Tadeo, Francisco; Ventimilla, Daniel; Talon, Manuel

    2016-03-01

    Previous RNA-Seq studies in citrus have been focused on physiological processes relevant to fruit quality and productivity of the major species, especially sweet orange. Less attention has been paid to vegetative or reproductive tissues, while most Citrus species have never been analysed. In this work, we characterized the transcriptome of vegetative and reproductive tissues from 12 Citrus species from all main phylogenetic groups. Our aims were to acquire a complete view of the citrus transcriptome landscape, to improve previous functional annotations and to obtain genetic markers associated with genes of agronomic interest. 28 samples were used for RNA-Seq analysis, obtained from 12 Citrus species: C. medica, C. aurantifolia, C. limon, C. bergamia, C. clementina, C. deliciosa, C. reshni, C. maxima, C. paradisi, C. aurantium, C. sinensis and Poncirus trifoliata. Four different organs were analysed: root, phloem, leaf and flower. A total of 3421 million Illumina reads were produced and mapped against the reference C. clementina genome sequence. Transcript discovery pipeline revealed 3326 new genes, the number of genes with alternative splicing was increased to 19,739, and a total of 73,797 transcripts were identified. Differential expression studies between the four tissues showed that gene expression is overall related to the physiological function of the specific organs above any other variable. Variants discovery analysis revealed the presence of indels and SNPs in genes associated with fruit quality and productivity. Pivotal pathways in citrus such as those of flavonoids, flavonols, ethylene and auxin were also analysed in detail.

  4. Transmission efficiency of Xylella fastidiosa by sharpshooters (Hemiptera: Cicadellidae) in coffee and citrus.

    PubMed

    Marucci, Rosangela C; Lopes, João R S; Cavichioli, Rodney R

    2008-08-01

    Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) is a bacterial pathogen transmitted by several sharpshooters in two tribes of Cicadellinae (Proconiini and Cicadellini). Here, we compared the transmission efficiency of X. fastidiosa in coffee (Coffea arabica L.) and citrus [Citrus sinensis (L.) Osbeck] by Cicadellini [Bucephalogonia xanthophis (Berg) and Dilobopterus costalimai Young] and Proconiini [Homalodisca ignorata Melichar and Oncometopia facialis (Signoret)] sharpshooters that occur in both crops. At different seasons, healthy adults of each species were submitted to a 48-h acquisition access period on citrus or coffee source plants infected with X. fastidiosa isolates that cause Citrus variegated chlorosis (CVC) and Coffee leaf scorch (CLS), respectively, and then confined on healthy seedlings of the corresponding host plant for a 48-h inoculation access period. No significant effect of inoculation season was observed when comparing infection rates of citrus or coffee plants inoculated by vectors at different times of the year. In citrus, the transmission rate by single insects was significantly higher for H. ignorata (30%) in relation to B. xanthophis (5%) and O. facialis (1.1%), but there was no difference among vector species in coffee, whose transmission rates ranged from 1.2 to 7.2%. Comparing host plants, H. ignorata was more effective in transmitting X. fastidiosa to citrus (30%) in relation to coffee (2.2%), whereas the other vectors transmitted the bacterium to both hosts with similar efficiencies. Despite these variations, vector efficiency in coffee and citrus is lower than that reported in other hosts.

  5. The effects of nitrogen and potassium nutrition on the growth of nonembryogenic and embryogenic tissue of sweet orange (Citrus sinensis (L.) Osbeck)

    PubMed Central

    Niedz, Randall P; Evens, Terence J

    2008-01-01

    Background Mineral nutrients are one of the most basic components of plant tissue culture media. Nitrogen in the form of NH4+ and NO3- is the dominant mineral nutrient in most plant tissue culture formulations, with effects dependent on both the proportion and the amount of NH4+ and NO3-. The effects of nitrogen nutrition on the growth of nonembryogenic and embryogenic cell lines of sweet orange (C. sinensis (L.) Osbeck cv. 'Valencia'), tissues routinely used in citrus horticultural and plant improvement research, was explored using an experimental approach free of ion confounding that included a 2-component mixture (NH4+:K+) and a quantitative factor [NO3-] crossed by the mixture, thereby providing ion-specific estimates of proportional and amount effects. Results First, the linear mixture component, though only a comparison of the design space vertices, was highly significant for both tissue types and showed that NH4+ was required by both tissues. Second, the NH4+ * K+ mixture term was highly significant for both tissue types, revealing that NH4+ and K+ exhibit strong synergistic blending and showed that growth was substantially greater at certain blends of these two ions. Third, though the interaction between the NH4+:K+ mixture and NO3- amount on fresh weight accumulation for both tissue types was significant, it was substantially less than the main effect of the NH4+:K+ mixture. Fourth, a region of the design space was identified where fresh weight growth was increased 198% and 67% over the MS medium controls for nonembryogenic and embryogenic tissues. Conclusion By designing a mineral nutrient experiment free of ion confounding, a direct estimation of ion-specific proportional and amount effects on plant tissue growth is possible. When the ions themselves are the independent factors and/or mixture components, the resulting design space can be systematically explored to identify regions where the response(s) is substantially improved over current media

  6. Bud emergence and shoot growth from mature citrus nodal stem segments

    USDA-ARS?s Scientific Manuscript database

    Bud emergence and shoot growth from adult phase citrus nodal cultures were studied using Citrus mitis (calamondin), Citrus paradisi (grapefruit), and Citrus sinensis (sweet orange). The effects of 6-benzylaminopurine (BA), indole 3-acetic acid (IAA), and citrus type on shoot quality and growth fro...

  7. Transcriptomic Analysis Reveals the Molecular Mechanisms of Drought-Stress-Induced Decreases in Camellia sinensis Leaf Quality

    PubMed Central

    Wang, Weidong; Xin, Huahong; Wang, Mingle; Ma, Qingping; Wang, Le; Kaleri, Najeeb A.; Wang, Yuhua; Li, Xinghui

    2016-01-01

    The tea plant [Camellia sinensis (L.) O. Kuntze] is an important commercial crop rich in bioactive ingredients, especially catechins, caffeine, theanine and other free amino acids, which the quality of tea leaves depends on. Drought is the most important environmental stress affecting the yield and quality of this plant. In this study, the effects of drought stress on the phenotype, physiological characteristics and major bioactive ingredients accumulation of C. sinensis leaves were examined, and the results indicated that drought stress resulted in dehydration and wilt of the leaves, and significant decrease in the total polyphenols and free amino acids and increase in the total flavonoids. In addition, HPLC analysis showed that the catechins, caffeine, theanine and some free amino acids in C. sinensis leaves were significantly reduced in response to drought stress, implying that drought stress severely decreased the quality of C. sinensis leaves. Furthermore, differentially expressed genes (DEGs) related to amino acid metabolism and secondary metabolism were identified and quantified in C. sinensis leaves under drought stress using high-throughput Illumina RNA-Seq technology, especially the key regulatory genes of the catechins, caffeine, and theanine biosynthesis pathways. The expression levels of key regulatory genes were consistent with the results from the HPLC analysis, which indicate a potential molecular mechanism for the above results. Taken together, these data provide further insights into the mechanisms underlying the change in the quality of C. sinensis leaves under environmental stress, which involve changes in the accumulation of major bioactive ingredients, especially catechins, caffeine, theanine and other free amino acids. PMID:27066035

  8. Consideration for alternative outlet for new citrus hybrids

    USDA-ARS?s Scientific Manuscript database

    Citrus sinensis (sweet orange, ex. Hamlin, Midsweet, Valencia) is the source of “orange juice” and juice must contain no less than 90% C. sinensis to be marketed as such. Juice produced from Citrus reticulata (mandarins) and C. reticulata hybrids (Orlando, Murcott, Fallglo, Sunburst, Minneola) can b...

  9. Putative protease inhibitor gene discovery and transcript profiling during fruit development and leaf damage in grapefruit (Citrus paradisi Macf.).

    PubMed

    Shatters, Robert G; Bausher, Michael G; Hunter, Wayne B; Chaparro, José X; Dang, Phat M; Niedz, Randall P; Mayer, Richard T; McCollum, T Greg; Sinisterra, Xiomara

    2004-02-04

    Seven putative protease inhibitor (PPI) cDNAs, representing four protein families, were isolated from a grapefruit (Citrus paradisi Macf. Cv. Marsh) immature fruit flavedo cDNA library. Cloned open reading frames encoded proteins with similarity to, and protein signatures for: legume Kuntiz inhibitors (lkiL-1, lkiL-2, lkiL-3), potato trypsin inhibitor I (ptiIL-1), serpins (serpL-1), cystatins (cystL-1), and gamma thionins (gthL-1). Response of transcript abundance to fruit development and leaf wounding was determined for all but lkiL-1 using real-time RT-PCR. Immature leaves had the highest transcript levels for all PPIs. The gthL-1 transcript in immature leaves was the most abundant transcript but was absent from healthy mature leaves. In fruit flavedo, transcripts for all PPIs were most abundant in youngest fruit (<15 mm dia. fruit), and declined during development, but displayed different patterns of developmental change. Mechanical or Diaprepes root weevil (DRW) feeding damage to leaves caused a <10-fold reduction or had no effect on transcript level with the exception of gthL-1 which, as a result of damage, increased >50-fold in mature leaves and decreased >1400-fold in immature leaves. This developmental control of transcript response to wounding in a woody perennial is opposite of what has been observed for defensive proteinase inhibitors (PIs) in other plants (typically herbaceous and/or annual plants), where younger leaves typically invoke a higher defensive proteinase inhibitor transcript accumulation than older tissues. Except for gthL-1, the PPI transcripts were minimally responsive or unresponsive to wounding. Changes in PPI transcript levels suggest diverse roles for the products of these genes in citrus, with only gthL-1 responding in a defense-like manner.

  10. Transcriptomic analysis of the biosynthesis, recycling, and distribution of ascorbic acid during leaf development in tea plant (Camellia sinensis (L.) O. Kuntze)

    PubMed Central

    Li, Hui; Huang, Wei; Wang, Guang-Long; Wang, Wen-Li; Cui, Xin; Zhuang, Jing

    2017-01-01

    Ascorbic acid (AsA), known as vitamin C, is an essential nutrient for humans and mainly absorbed from food. Tea plant (Camellia sinensis (L.) O. Kuntze) leaves can be a dietary source of AsA for humans. However, experimental evidence on the biosynthesis, recycling pathway and distribution of AsA during leaf development in tea plants is unclear. To gain insight into the mechanism and distribution of AsA in the tea plant leaf, we identified 18 related genes involved in AsA biosynthesis and recycling pathway based on the transcriptome database of tea plants. Tea plant leaves were used as samples at different developmental stages. AsA contens in tea plant leaves at three developmental stages were measured by reversed-phase high-performance liquid chromatography (RP-HPLC). The correlations between expression levels of these genes and AsA contents during the development of tea plant leaves were discussed. Results indicated that the l-galactose pathway might be the primary pathway of AsA biosynthesis in tea plant leaves. CsMDHAR and CsGGP might play a regulatory role in AsA accumulation in the leaves of three cultivars of tea plants. These findings may provide a further glimpse to improve the AsA accumulation in tea plants and the commercial quality of tea. PMID:28393854

  11. The nucleotide sequence and genomic organization of Citrus leaf blotch virus: candidate type species for a new virus genus.

    PubMed

    Vives, M C; Galipienso, L; Navarro, L; Moreno, P; Guerri, J

    2001-08-15

    The complete nucleotide sequence of Citrus leaf blotch virus (CLBV) was determined. CLBV genomic RNA (gRNA) has 8747 nt, excluding the 3'-terminal poly(A) tail, and contains three open reading frames (ORFs) and untranslated regions (UTR) of 73 and 541 nucleotides at the 5' and 3' termini, respectively. ORF1 potentially encodes a 227.4-kDa polypeptide, which has methyltransferase, papain-like protease, helicase, and RNA-dependent RNA polymerase motifs. ORF2 encodes a 40.2-kDa polypeptide containing a motif characteristic of cell-to-cell movement proteins. The 40.7-kDa polypeptide encoded by ORF3 was identified as the coat protein. The genome organization of CLBV resembles that of viruses in the genus Trichovirus, but they differ in various aspects: (i) in trichoviruses ORF2 overlaps ORFs 1 and 3, whereas in CLBV, ORFs 2 and 3 are separated and ORFs 1 and 2 overlap in one nucleotide; (ii) CLBV gRNA and CP are larger than those of trichoviruses; and (iii) the CLBV 3' UTR is larger than that of trichoviruses. Phylogenetic comparisons based on CP amino acid signatures clearly separates CLBV from trichoviruses. Also contrasting with trichoviruses, CLBV could not be transmitted to Chenopodium quinoa Willd. Considering these singularities, we propose that CLBV should be included in a new virus genus. Copyright 2001 Academic Press.

  12. An investigation of boron-toxicity in leaves of two citrus species differing in boron-tolerance using comparative proteomics.

    PubMed

    Sang, Wen; Huang, Zeng-Rong; Qi, Yi-Ping; Yang, Lin-Tong; Guo, Peng; Chen, Li-Song

    2015-06-18

    Limited data are available on boron (B)-toxicity-responsive proteins in plants. We first applied 2-dimensional electrophoresis (2-DE) to compare the effects of B-toxicity on leaf protein profiles in B-tolerant Citrus sinensis and B-intolerant Citrus grandis seedlings, and identified 27 (20) protein species with increased abundances and 23 (25) protein species with decreased abundances from the former (latter). Generally speaking, B-toxicity increased the abundances of protein species involved in antioxidation and detoxification, proteolysis, cell transport, and decreased the abundances of protein species involved in protein biosynthesis in the two citrus species. The higher B-tolerance of C. sinensis might include following several aspects: (a) protein species related to photosynthesis and energy metabolism in C. sinensis leaves were more adaptive to B-toxicity than in C. grandis ones, which was responsible for the higher photosynthesis and for the better maintenance of energy homeostasis in the former; and (b) the increased requirement for detoxification of reactive oxygen species and cytotoxic compounds due to decreased photosynthesis was less in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. B-toxicity-responsive protein species involved in coenzyme biosynthesis differed between the two species, which might also contribute to the higher B-tolerance of C. sinensis. B-toxicity occurs in many regions all over the world, especially in arid and semiarid regions due to the raising of B-rich water tables with high B accumulated in topsoil. In China, B-toxicity often occurs in some citrus orchards. However, the mechanisms of citrus B-tolerance are still not fully understood. Here, we first used 2-DE to identify some new B-toxicity-responsive-proteins involved in carbohydrate and energy metabolism, antioxidation and detoxification, signal transduction and nucleotide metabolism. Our results showed that proteins involved in photosynthesis and energy metabolism

  13. Effects of Low pH on Photosynthesis, Related Physiological Parameters, and Nutrient Profiles of Citrus.

    PubMed

    Long, An; Zhang, Jiang; Yang, Lin-Tong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song

    2017-01-01

    Seedlings of "Xuegan" (Citrus sinensis) and "Sour pummelo" (Citrus grandis) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H2O2 production and electrolyte leakage in roots and leaves. This was done (a) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and (b) to understand the mechanisms by which low pH may cause a decrease in leaf CO2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H(+)-toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H(+)-toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP) transients and

  14. Effects of Low pH on Photosynthesis, Related Physiological Parameters, and Nutrient Profiles of Citrus

    PubMed Central

    Long, An; Zhang, Jiang; Yang, Lin-Tong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song

    2017-01-01

    Seedlings of “Xuegan” (Citrus sinensis) and “Sour pummelo” (Citrus grandis) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H2O2 production and electrolyte leakage in roots and leaves. This was done (a) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and (b) to understand the mechanisms by which low pH may cause a decrease in leaf CO2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H+-toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H+-toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP) transients and

  15. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression.

    PubMed

    Allario, Thierry; Brumos, Javier; Colmenero-Flores, Jose Manuel; Tadeo, Francisco; Froelicher, Yann; Talon, Manuel; Navarro, Luis; Ollitrault, Patrick; Morillon, Raphaël

    2011-05-01

    Very little is known about the molecular origin of the large phenotypic differentiation between genotypes arising from somatic chromosome set doubling and their diploid parents. In this study, the anatomy and physiology of diploid (2x) and autotetraploid (4x) Rangpur lime (Citrus limonia Osbeck) seedlings has been characterized. Growth of 2x was more vigorous than 4x although leaves, stems, and roots of 4x plants were thicker and contained larger cells than 2x that may have a large impact on cell-to-cell water exchanges. Leaf water content was higher in 4x than in 2x. Leaf transcriptome expression using a citrus microarray containing 21 081 genes revealed that the number of genes differentially expressed in both genotypes was less than 1% and the maximum rate of gene expression change within a 2-fold range. Six up-regulated genes in 4x were targeted to validate microarray results by real-time reverse transcription-PCR. Five of these genes were apparently involved in the response to water deficit, suggesting that, in control conditions, the genome expression of citrus autotetraploids may act in a similar way to diploids under water-deficit stress condition. The sixth up-regulated gene which codes for a histone may also play an important role in regulating the transcription of growth processes. These results show that the large phenotypic differentiation in 4x Rangpur lime compared with 2x is not associated with large changes in genome expression. This suggests that, in 4x Rangpur lime, subtle changes in gene expression may be at the origin of the phenotypic differentiation of 4x citrus when compared with 2x.

  16. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant

    PubMed Central

    Romero, Paco; Rodrigo, María J.; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T.

    2012-01-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage. PMID:22315241

  17. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant.

    PubMed

    Romero, Paco; Rodrigo, María J; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T

    2012-04-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage.

  18. A comparison of the ultrastructure and composition of fruits' cuticular wax from the wild-type 'Newhall' navel orange (Citrus sinensis [L.] Osbeck cv. Newhall) and its glossy mutant.

    PubMed

    Liu, De-Chun; Zeng, Qiong; Ji, Qing-Xun; Liu, Chuan-Fu; Liu, Shan-Bei; Liu, Yong

    2012-12-01

    The altered ultrastructure and composition of cuticular wax from 'glossy Newhall' (MT) fruits lead to its glossy phenotype. A novel mutant derived from the wild-type (WT) 'Newhall' navel orange (Citrus sinensis [L.] Osbeck cv. Newhall), named 'glossy Newhall' (MT), which produced much more glossy fruits that were easily distinguishable from the WT fruits was characterized in this report. The total wax loads of both WT and MT fruits varied considerably during the fruit development. The most abundant wax fraction of WT mature fruits was triterpenoids, followed by aldehydes, alkanes, fatty acids, primary alcohol and cholesterol. The total wax load in MT mature fruits was reduced by 44.2 % compared with WT. Except for the minor wax components of primary alcohol and cholesterol, the amounts of all major wax fractions in MT mature fruits were decreased in varying degrees. The major reduction occurred in aldehydes that decreased 96.4 % and alkanes that decreased 81.9 %, which was consistent with scanning electron micrographs of MT mature fruit surfaces that showed a severe loss of wax crystals. Hence, aldehydes and alkanes were suggested to be required for wax crystal formation in 'Newhall' navel orange fruits.

  19. 1-Aminocyclopropane-1-Carboxylic Acid Transported from Roots to Shoots Promotes Leaf Abscission in Cleopatra Mandarin (Citrus reshni Hort. ex Tan.) Seedlings Rehydrated after Water Stress.

    PubMed

    Tudela, D; Primo-Millo, E

    1992-09-01

    The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.

  20. Leaf volatile compounds of six citrus somatic allotetraploid hybrids originating from various combinations of lime, lemon, citron, sweet orange, and grapefruit.

    PubMed

    Gancel, Anne-Laure; Ollitrault, Patrick; Froelicher, Yann; Tomi, Felix; Jacquemond, Camille; Luro, Francois; Brillouet, Jean-Marc

    2005-03-23

    Volatile compounds were extracted by a pentane/ether (1:1) mixture from the leaves of six citrus somatic allotetraploid hybrids resulting from various combinations of lime, lemon, citron, sweet orange, and grapefruit. Extracts were examined by gas chromatography-mass spectrometry (GC-MS) and compared with those of their respective parents. All hybrids having an acid citrus parent exhibit the same relative contents in hydrocarbons and oxygenated compounds as the acid citrus, while the (grapefruit + orange) hybrid behaves similarly to its two parents. When volatile compound contents (microg g(-1)) are examined in detail, several behaviors are encountered in hybrids and seem to depend on the presence/absence of the considered parental compound and on the corresponding hybrid combination. Meanwhile, the sesquiterpene hydrocarbons are present in all hybrids at concentrations systematically lower than those of the highest parental producers. Statistical analyses show that hybrids exhibit hardly discriminable aromatic profiles, meaning that no strong dominance of one or the other parent was observed in hybrids with regards to the leaf volatile compound production.

  1. Involvements of PCD and changes in gene expression profile during self-pruning of spring shoots in sweet orange (Citrus sinensis).

    PubMed

    Zhang, Jin-Zhi; Zhao, Kun; Ai, Xiao-Yan; Hu, Chun-Gen

    2014-10-13

    Citrus shoot tips abscise at an anatomically distinct abscission zone (AZ) that separates the top part of the shoots into basal and apical portions (citrus self-pruning). Cell separation occurs only at the AZ, which suggests its cells have distinctive molecular regulation. Although several studies have looked into the morphological aspects of self-pruning process, the underlying molecular mechanisms remain unknown. In this study, the hallmarks of programmed cell death (PCD) were identified by TUNEL experiments, transmission electron microscopy (TEM) and histochemical staining for reactive oxygen species (ROS) during self-pruning of the spring shoots in sweet orange. Our results indicated that PCD occurred systematically and progressively and may play an important role in the control of self-pruning of citrus. Microarray analysis was used to examine transcriptome changes at three stages of self-pruning, and 1,378 differentially expressed genes were identified. Some genes were related to PCD, while others were associated with cell wall biosynthesis or metabolism. These results strongly suggest that abscission layers activate both catabolic and anabolic wall modification pathways during the self-pruning process. In addition, a strong correlation was observed between self-pruning and the expression of hormone-related genes. Self-pruning plays an important role in citrus floral bud initiation. Therefore, several key flowering homologs of Arabidopsis and tomato shoot apical meristem (SAM) activity genes were investigated in sweet orange by real-time PCR and in situ hybridization, and the results indicated that these genes were preferentially expressed in SAM as well as axillary meristem. Based on these findings, a model for sweet orange spring shoot self-pruning is proposed, which will enable us to better understand the mechanism of self-pruning and abscission.

  2. Ozone uptake by citrus trees exposed to a range of ozone concentrations

    NASA Astrophysics Data System (ADS)

    Fares, Silvano; Park, Jeong-Hoo; Ormeno, Elena; Gentner, Drew R.; McKay, Megan; Loreto, Francesco; Karlik, John; Goldstein, Allen H.

    2010-09-01

    The Citrus genus includes a large number of species and varieties widely cultivated in the Central Valley of California and in many other countries having similar Mediterranean climates. In the summer, orchards in California experience high levels of tropospheric ozone, formed by reactions of volatile organic compounds (VOC) with oxides of nitrogen (NO x). Citrus trees may improve air quality in the orchard environment by taking up ozone through stomatal and non-stomatal mechanisms, but they may ultimately be detrimental to regional air quality by emitting biogenic VOC (BVOC) that oxidize to form ozone and secondary organic aerosol downwind of the site of emission. BVOC also play a key role in removing ozone through gas-phase chemical reactions in the intercellular spaces of the leaves and in ambient air outside the plants. Ozone is known to oxidize leaf tissues after entering stomata, resulting in decreased carbon assimilation and crop yield. To characterize ozone deposition and BVOC emissions for lemon ( Citrus limon), mandarin ( Citrus reticulata), and orange ( Citrus sinensis), we designed branch enclosures that allowed direct measurement of fluxes under different physiological conditions in a controlled greenhouse environment. Average ozone uptake was up to 11 nmol s -1 m -2 of leaf. At low concentrations of ozone (40 ppb), measured ozone deposition was higher than expected ozone deposition modeled on the basis of stomatal aperture and ozone concentration. Our results were in better agreement with modeled values when we included non-stomatal ozone loss by reaction with gas-phase BVOC emitted from the citrus plants. At high ozone concentrations (160 ppb), the measured ozone deposition was lower than modeled, and we speculate that this indicates ozone accumulation in the leaf mesophyll.

  3. High incidence of preharvest colonization of huanglongbing-symptomatic citrus sinensis fruit by Lasiodiplodia theobromae (Diplodia natalensis) and exacerbation of postharvest fruit decay by that fungus.

    PubMed

    Zhao, Wei; Bai, Jinhe; McCollum, Greg; Baldwin, Elizabeth

    2015-01-01

    Huanglongbing (HLB), presumably caused by the bacterium "Candidatus Liberibacter asiaticus," is a devastating citrus disease associated with excessive preharvest fruit drop. Lasiodiplodia theobromae (diplodia) is the causal organism of citrus stem end rot (SER). The pathogen infects citrus fruit under the calyx abscission zone (AZ-C) and is associated with cell wall hydrolytic enzymes similar to plant enzymes involved in abscission. By means of DNA sequencing, diplodia was found in "Ca. Liberibacter asiaticus"-positive juice from HLB-symptomatic fruit (S) but not in "Ca. Liberibacter asiaticus"-negative juice. Therefore, the incidence of diplodia in fruit tissues, the impact on HLB-related postharvest decay, and the implications for HLB-related preharvest fruit drop were investigated in Hamlin and Valencia oranges. Quantitative PCR results (qPCR) revealed a significantly (P < 0.001) greater incidence of diplodia in the AZ-C of HLB-symptomatic (S; "Ca. Liberibacter asiaticus" threshold cycle [CT] of <30) than in the AZ-C of in asymptomatic (AS; "Ca. Liberibacter asiaticus" CT of ≥30) fruit. In agreement with the qPCR results, 2 weeks after exposure to ethylene, the incidences of SER in S fruit were 66.7% (Hamlin) and 58.7% (Valencia), whereas for AS fruit the decay rates were 6.7% (Hamlin) and 5.3% (Valencia). Diplodia colonization of S fruit AZ-C was observed by scanning electron microscopy and confirmed by PCR test and morphology of conidia in isolates from the AZ-C after surface sterilization. Diplodia CT values were negatively correlated with ethylene production (R = -0.838 for Hamlin; R = -0.858 for Valencia) in S fruit, and positively correlated with fruit detachment force (R = 0.855 for Hamlin; R = 0.850 for Valencia), suggesting that diplodia colonization in AZ-C may exacerbate HLB-associated preharvest fruit drop. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. High Incidence of Preharvest Colonization of Huanglongbing-Symptomatic Citrus sinensis Fruit by Lasiodiplodia theobromae (Diplodia natalensis) and Exacerbation of Postharvest Fruit Decay by That Fungus

    PubMed Central

    Zhao, Wei; Bai, Jinhe; McCollum, Greg

    2014-01-01

    Huanglongbing (HLB), presumably caused by the bacterium “Candidatus Liberibacter asiaticus,” is a devastating citrus disease associated with excessive preharvest fruit drop. Lasiodiplodia theobromae (diplodia) is the causal organism of citrus stem end rot (SER). The pathogen infects citrus fruit under the calyx abscission zone (AZ-C) and is associated with cell wall hydrolytic enzymes similar to plant enzymes involved in abscission. By means of DNA sequencing, diplodia was found in “Ca. Liberibacter asiaticus”-positive juice from HLB-symptomatic fruit (S) but not in “Ca. Liberibacter asiaticus”-negative juice. Therefore, the incidence of diplodia in fruit tissues, the impact on HLB-related postharvest decay, and the implications for HLB-related preharvest fruit drop were investigated in Hamlin and Valencia oranges. Quantitative PCR results (qPCR) revealed a significantly (P < 0.001) greater incidence of diplodia in the AZ-C of HLB-symptomatic (S; “Ca. Liberibacter asiaticus” threshold cycle [CT] of <30) than in the AZ-C of in asymptomatic (AS; “Ca. Liberibacter asiaticus” CT of ≥30) fruit. In agreement with the qPCR results, 2 weeks after exposure to ethylene, the incidences of SER in S fruit were 66.7% (Hamlin) and 58.7% (Valencia), whereas for AS fruit the decay rates were 6.7% (Hamlin) and 5.3% (Valencia). Diplodia colonization of S fruit AZ-C was observed by scanning electron microscopy and confirmed by PCR test and morphology of conidia in isolates from the AZ-C after surface sterilization. Diplodia CT values were negatively correlated with ethylene production (R = −0.838 for Hamlin; R = −0.858 for Valencia) in S fruit, and positively correlated with fruit detachment force (R = 0.855 for Hamlin; R = 0.850 for Valencia), suggesting that diplodia colonization in AZ-C may exacerbate HLB-associated preharvest fruit drop. PMID:25344245

  5. Mechanisms Involved in Toxicity of Liver Caused by Piroxicam in Mice and Protective Effects of Leaf Extract of Hibiscus rosa-sinensis L.

    PubMed

    Sahu, C R

    2016-01-01

    Piroxicam is one of the important therapeutic nonsteroidal anti-inflammatory class of drugs used mainly to suppress pain and inflammation in arthritis and other musculoskeletal disorders. Besides being anti-inflammatory, these drugs are analgesic and antipyretic often used for the relief of nonspecific fever condition. Recently, piroxicam has also gained attention as an effective therapy for tumors, colorectal, and invasive bladder cancers. The objective of the current study is to evaluate the protective effects of the alcoholic leaf extract of Hibiscus rosa-sinensis (AEH), Malvaceae, against piroxicam-induced toxicity in mice. Sixty adult Swiss albino mice (Mus musculus) were divided into four groups (n = 10), which included a control group, a group treated orally with AEH (30 mg kg(-1) b.w.) for 15 days, a group treated orally with piroxicam (6.6 mg kg(-1) b.w.) for 15 days, and another group treated orally with piroxicam and AEH for 15 days. The results indicated that treatment with piroxicam alone resulted in a significant increase in the activities of serum marker enzymes, namely, aspartate transaminase, alanine transaminase, and alkaline phosphatase with profound hepatic lipid peroxidation as evidenced by a marked increment in the level of thoibarbituric acid reactive substances along with a distinct diminution in reduced glutathoine content and various antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase in the liver. However, treatment with AEH during piroxicam treatment retrieved or partially antagonized the effects induced by piroxicam toward the normal values of controls. Histopathological observations also corroborate with the above findings. It can be concluded that AEH exhibited a protective action against piroxicam toxicity and effective in combating oxidative stress-induced hepatic damage.

  6. Mechanisms Involved in Toxicity of Liver Caused by Piroxicam in Mice and Protective Effects of Leaf Extract of Hibiscus rosa-sinensis L.

    PubMed Central

    Sahu, C. R.

    2016-01-01

    Piroxicam is one of the important therapeutic nonsteroidal anti-inflammatory class of drugs used mainly to suppress pain and inflammation in arthritis and other musculoskeletal disorders. Besides being anti-inflammatory, these drugs are analgesic and antipyretic often used for the relief of nonspecific fever condition. Recently, piroxicam has also gained attention as an effective therapy for tumors, colorectal, and invasive bladder cancers. The objective of the current study is to evaluate the protective effects of the alcoholic leaf extract of Hibiscus rosa-sinensis (AEH), Malvaceae, against piroxicam-induced toxicity in mice. Sixty adult Swiss albino mice (Mus musculus) were divided into four groups (n = 10), which included a control group, a group treated orally with AEH (30 mg kg−1 b.w.) for 15 days, a group treated orally with piroxicam (6.6 mg kg−1 b.w.) for 15 days, and another group treated orally with piroxicam and AEH for 15 days. The results indicated that treatment with piroxicam alone resulted in a significant increase in the activities of serum marker enzymes, namely, aspartate transaminase, alanine transaminase, and alkaline phosphatase with profound hepatic lipid peroxidation as evidenced by a marked increment in the level of thoibarbituric acid reactive substances along with a distinct diminution in reduced glutathoine content and various antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase in the liver. However, treatment with AEH during piroxicam treatment retrieved or partially antagonized the effects induced by piroxicam toward the normal values of controls. Histopathological observations also corroborate with the above findings. It can be concluded that AEH exhibited a protective action against piroxicam toxicity and effective in combating oxidative stress-induced hepatic damage. PMID:26819562

  7. Molecular Link between Leaf Coloration and Gene Expression of Flavonoid and Carotenoid Biosynthesis in Camellia sinensis Cultivar 'Huangjinya'.

    PubMed

    Song, Lubin; Ma, Qingping; Zou, Zhongwei; Sun, Kang; Yao, Yuantao; Tao, Jihan; Kaleri, Najeeb A; Li, Xinghui

    2017-01-01

    'Huangjinya' is an excellent albino tea germplasm cultivated in China because of its bright color and high amino acid content. It is light sensitive, with yellow leaves under intense light while green leaves under weak light. As well, the flavonoid and carotenoid levels increased after moderate shading treatment. However, the mechanism underlying this interesting phenomenon remains unclear. In this study, the transcriptome of 'Huangjinya' plants exposed to sunlight and shade were analyzed by high-throughput sequencing followed by de novo assembly. Shading 'Huangjinya' made its leaf color turn green. De novo assembly showed that the transcriptome of 'Huangjinya' leaves comprises of 127,253 unigenes, with an average length of 914 nt. Among the 81,128 functionally annotated unigenes, 207 differentially expressed genes were identified, including 110 up-regulated and 97 down-regulated genes under moderate shading compared to full light. Gene ontology (GO) indicated that the differentially expressed genes are mainly involved in protein and ion binding and oxidoreductase activity. Antioxidation-related pathways, including flavonoid and carotenoid biosynthesis, were highly enriched in these functions. Shading inhibited the expression of flavonoid biosynthesis-associated genes and induced carotenoid biosynthesis-related genes. This would suggest that decreased flavonoid biosynthetic gene expression coincides with increased flavonoids (e.g., catechin) content upon moderate shading, while carotenoid levels and biosynthetic gene expression are positively correlated in 'Huangjinya.' In conclusion, the leaf color changes in 'Huangjinya' are largely determined by the combined effects of flavonoid and carotenoid biosynthesis.

  8. Light, scanning electron microscopy and SDS-PAGE studies on the effect of the essential oil, Citrus sinensis var. balady on the embryonic development of camel tick Hyalomma dromedarii (Koch, 1818) (Acari: Ixodidae).

    PubMed

    Salwa, M Habeeb; Abdel-Shafy, Sobhy; Youssef, Abd El-Ghany A

    2007-04-15

    GC-MSE analysis of the essential oil of fresh fruit peel of Citrus sinensis var. balady recognized two main natural toxic compounds, limonene (83.28%) as hydrocarbon compound and linalool (3.97%) as oxygenated compound. Therefore, the objective of this study was to evaluate its effect on different egg-ages of Hyalomma dromedarii at four concentrations of 1:40, 1:30, 1:20 and 1:15 (oil : ethanol 95%) (v/v). The LC50 values were 1:56, 1:34, 1:41, 1:32, 1: 23, 1:23, 1:18, 1:14 and 1:11 for egg-ages of 2, 4, 6, 9, 11, 13, 16, 18 and 20 day, respectively. Histological Examination (HE), Scanning Electron Microscopy (SEM) and Sodium dodecyle sulphate polyacrylamide gel electrophoresis (SDS-PAGE) were done on the 9th day old-eggs treated with the essential oil 1:32 (the LC50 value of 9 day old-egg). HE was done on the 11, 12, 13, 14 and 15th day old eggs; SEM was done on the 11, 15 and 17th day old eggs and SDS-PAGE was done on the 10, 11, 12, 13, 14, 15 and 17th day old eggs and compared each with those of control. In control, HE showed that nuclei migrated to the periphery and became part of the cytoplasmic membrane, blastula appears as a complete ring cells. Germ layer form and the later differentiate to different organelles such as opithosoma, ambulatory segment and chelicera...etc. while incase of treated eggs, HE showed that irregular manner of ectoplasmic membrane formed, blastula gathered on one or two sides, the cells of germ layer gather on one side as small or large mass or ring shape. Cells gathered as small masses or finger shape without forming any organelles. SEM revealed that heavy small bulging wrinkles were observed on egg shells of control. These wrinkles changed into large size in treated eggs on the 11th day and disappeared at the following days to become smooth surfaced. SDS-PAGE exhibited 15, 14, 14, 12, 17, 14 and 15 bands for treated eggs on the 10, 11, 12, 13, 14, 15 and 17th day old-eggs, respectively and 14, 15, 16, 19, 17, 19 and 18 bands for

  9. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck).

    PubMed

    Pan, Zhiyong; Liu, Qing; Yun, Ze; Guan, Rui; Zeng, Wenfang; Xu, Qiang; Deng, Xiuxin

    2009-12-01

    A spontaneous sweet orange (Citrus sinenesis [L.] Osbeck) mutant 'Hong Anliu' is of high value due to lycopene accumulation in the pulp. In this study, we analyzed the proteomic alterations in the pulp of 'Hong Anliu' versus its wild type (WT) at four maturing stages by using 2-DE combined with MALDI-TOF-TOF MS. Among the 74 differentially expressed proteins identified, the majority are predicted to be involved in stress response, carbohydrate/energy metabolism and regulation, or protein fate, modification and degradation. Particularly, expression levels of six anti-oxidative enzymes were altered by the mutation; and assays of their respective enzymatic activities indicated an enhanced level of oxidative stress in 'Hong Anliu', implying a regulatory role of oxidative stress on carotenogenesis. This conclusion was further confirmed by our observation that treatment of fruit pulps with tert-butylhydroperoxide (a ROS progenitor) induced lycopene accumulation in 'Hong Anliu' only. Gene expression showed that genes predicted to function upstream of lycopene biosynthesis were generally upregulated in juice sacs, but downregulated in segment membranes in both 'Hong Anliu' and its WT. The result suggests an important role of post-transcriptional regulation on carotenogenesis since lycopene was induced in 'Hong Anliu' but not WT. The result also implies that carotenogenesis in juice sacs and segment membranes of citrus fruits may be regulated by different mechanisms.

  10. Molecular Link between Leaf Coloration and Gene Expression of Flavonoid and Carotenoid Biosynthesis in Camellia sinensis Cultivar ‘Huangjinya’

    PubMed Central

    Song, Lubin; Ma, Qingping; Zou, Zhongwei; Sun, Kang; Yao, Yuantao; Tao, Jihan; Kaleri, Najeeb A.; Li, Xinghui

    2017-01-01

    ‘Huangjinya’ is an excellent albino tea germplasm cultivated in China because of its bright color and high amino acid content. It is light sensitive, with yellow leaves under intense light while green leaves under weak light. As well, the flavonoid and carotenoid levels increased after moderate shading treatment. However, the mechanism underlying this interesting phenomenon remains unclear. In this study, the transcriptome of ‘Huangjinya’ plants exposed to sunlight and shade were analyzed by high-throughput sequencing followed by de novo assembly. Shading ‘Huangjinya’ made its leaf color turn green. De novo assembly showed that the transcriptome of ‘Huangjinya’ leaves comprises of 127,253 unigenes, with an average length of 914 nt. Among the 81,128 functionally annotated unigenes, 207 differentially expressed genes were identified, including 110 up-regulated and 97 down-regulated genes under moderate shading compared to full light. Gene ontology (GO) indicated that the differentially expressed genes are mainly involved in protein and ion binding and oxidoreductase activity. Antioxidation-related pathways, including flavonoid and carotenoid biosynthesis, were highly enriched in these functions. Shading inhibited the expression of flavonoid biosynthesis-associated genes and induced carotenoid biosynthesis-related genes. This would suggest that decreased flavonoid biosynthetic gene expression coincides with increased flavonoids (e.g., catechin) content upon moderate shading, while carotenoid levels and biosynthetic gene expression are positively correlated in ‘Huangjinya.’ In conclusion, the leaf color changes in ‘Huangjinya’ are largely determined by the combined effects of flavonoid and carotenoid biosynthesis. PMID:28596773

  11. Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity.

    PubMed

    Fu, Xing-Zheng; Tong, Ya-Hua; Zhou, Xue; Ling, Li-Li; Chun, Chang-Pin; Cao, Li; Zeng, Ming; Peng, Liang-Zhi

    2017-09-20

    Plant metal tolerance proteins (MTPs) play important roles in heavy metal homeostasis; however, related information in citrus plants is limited. Citrus genome sequencing and assembly have enabled us to perform a systematic analysis of the MTP gene family. We identified 12 MTP genes in sweet orange, which we have named as CitMTP1 and CitMTP3 to CitMTP12 based on their sequence similarity to Arabidopsis thaliana MTPs. The CitMTPs were predicted to encode proteins of 864 to 2556 amino acids in length that included 4 to 6 putative transmembrane domains (TMDs). Furthermore, all the CitMTPs contained a highly conserved signature sequence encompassing the TMD-II and the start of the TMD-III. Phylogenetic analysis further classified the CitMTPs into Fe/Zn-MTP, Mn-MTP, and Zn-MTP subgroups, which coincided with the MTPs of A. thaliana and rice. The closely clustered CitMTPs shared a similar gene structure. Expression analysis indicated that most CitMTP transcripts were upregulated to various extents under heavy metal stress. Among these, CitMTP5 in the roots and CitMTP11 in the leaves during Zn stress, CitMTP8 in the roots and CitMTP8.1 in the leaves during Mn stress, CitMTP12 in the roots and CitMTP1 in the leaves during Cu stress, and CitMTP11 in the roots and CitMTP1 in the leaves during Cd stress showed the highest extent of upregulation. These findings are suggestive of their individual roles in heavy metal detoxification. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comparative proteomic analysis reveals that T3SS, Tfp, and xanthan gum are key factors in initial stages of Citrus sinensis infection by Xanthomonas citri subsp. citri.

    PubMed

    Facincani, Agda P; Moreira, Leandro M; Soares, Márcia R; Ferreira, Cristiano B; Ferreira, Rafael M; Ferro, Maria I T; Ferro, Jesus A; Gozzo, Fabio C; de Oliveira, Julio C F

    2014-03-01

    The bacteria Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. The disease symptoms are characterized by localized host cell hyperplasia followed by tissue necrosis at the infected area. An arsenal of bacterial pathogenicity- and virulence-related proteins is expressed to ensure a successful infection process. At the post-genomic stage of Xac, we used a proteomic approach to analyze the proteins that are displayed differentially over time when the pathogen attacks the host plant. Protein extracts were prepared from infectious Xac grown in inducing medium (XAM1) for 24 h or from host citrus plants for 3 or 5 days after infection, detached times to evaluate the adaptation and virulence of the pathogen. The protein extracts were proteolyzed, and the peptides derived from tryptic digestion were investigated using liquid chromatography and tandem mass spectrometry. Changes in the protein expression profile were compared with the Xac genome and the proteome recently described under non-infectious conditions. An analysis of the proteome of Xac under infectious conditions revealed proteins directly involved in virulence such as the type III secretion system (T3SS) and effector proteins (T3SS-e), the type IV pilus (Tfp), and xanthan gum biosynthesis. Moreover, four new mutants related to proteins detected in the proteome and with different functions exhibited reduced virulence relative to the wild-type proteins. The results of the proteome analysis of infectious Xac define the processes of adaptation to the host and demonstrate the induction of the virulence factors of Xac involved in plant-pathogen interactions.

  13. Effect of green tea (camellia sinensis l.) leaf extract on reproductive system of adult male albino rats.

    PubMed

    Das, Shyamal Kanti; Karmakar, Soumendra Nath

    2015-01-01

    Green tea leaf extract (GTLE), used in this experiment has shown great influence on male reproductive system functionally as well as morphologically. The extract was prepared according to the method of Wei. H. et al. The extract was given to two different experimental animal groups with two different doses during 26 consecutive days. After treatment it was found that, the weight of the testis was markedly reduced instead of normal weight gain of all the animals. The sperm count and motility were reduced for the treated groups as compared with control animal group. The enzymes like SGPT and SGOT were as usual and other blood parameters like glucose and protein were also as usual comparing with controlled group. Testosterone level was reduced in the treated groups. FSH and LH levels were also altered accordingly in treated groups. Histological examination showed inhibition of spermatogenesis as evidenced by disintegration of seminiferous tubules of testis. Result of this study showed that GTLE has potent castrative effect on male reproductive system in dose dependent manner.

  14. Effect of green tea (camellia sinensis l.) leaf extract on reproductive system of adult male albino rats

    PubMed Central

    Das, Shyamal Kanti; Karmakar, Soumendra Nath

    2015-01-01

    Green tea leaf extract (GTLE), used in this experiment has shown great influence on male reproductive system functionally as well as morphologically. The extract was prepared according to the method of Wei. H. et al. The extract was given to two different experimental animal groups with two different doses during 26 consecutive days. After treatment it was found that, the weight of the testis was markedly reduced instead of normal weight gain of all the animals. The sperm count and motility were reduced for the treated groups as compared with control animal group. The enzymes like SGPT and SGOT were as usual and other blood parameters like glucose and protein were also as usual comparing with controlled group. Testosterone level was reduced in the treated groups. FSH and LH levels were also altered accordingly in treated groups. Histological examination showed inhibition of spermatogenesis as evidenced by disintegration of seminiferous tubules of testis. Result of this study showed that GTLE has potent castrative effect on male reproductive system in dose dependent manner. PMID:27073594

  15. Excito-Repellency of Citrus hystrix DC Leaf and Peel Essential Oils Against Aedes aegypti and Anopheles minimus (Diptera: Culicidae), Vectors of Human Pathogens.

    PubMed

    Nararak, Jirod; Sathantriphop, Sunaiyana; Kongmee, Monthathip; Bangs, Michael J; Chareonviriyaphap, Theeraphap

    2016-09-30

    The essential oils of kaffir lime (Citrus hystrix DC.) at four different concentrations (0.5, 1.0, 2.5, and 5.0% v/v) were studied for their repellency, excitation, and knockdown properties against laboratory strains of Aedes aegypti (L.) and Anopheles minimus Theobald using an excito-repellency test system. Both contact and noncontact escape responses to leaf- and peel-derived kaffir lime oils were observed. Comparing unadjusted escape responses for An. minimus, leaf oil had strong combined irritant and repellent activity responses at 1-5% concentrations (90.0-96.4% escape) and the strongest spatial repellent activity at 1% and 2% (85.9% and 87.2% escape, respectively). The peel oil exhibited good excitation with repellency at concentrations of 2.5% (89.8% escape) and 5% (96.28% escape), while concentrations 1-5% showed more moderate repellent activity against An. minimus. For Ae. aegypti, 2.5% leaf oil produced the greatest response for both contact (56.1% escape) and noncontact (63.3% escape) trials, while 2.5% produced the strongest response among all concentrations of peel oil, with 46.5% escape. However, after adjusting the contact trial escape (a measure of combined excitation and repellency), the estimated escape due to contact alone was a much weaker response than spatial repellency for both species. Knockdown responses above 50% were only observed in Ae. aegypti exposed to 5% leaf oil. Kaffir lime oils were more active against An. minimus than Ae. aegypti mosquitoes. There were statistically significant differences between leaf (more active) and peel oils at each concentration against An. minimus in contact and noncontact trials, except at the highest (5%) concentration.

  16. Excito-Repellency of Citrus hystrix DC Leaf and Peel Essential Oils Against Aedes aegypti and Anopheles minimus (Diptera: Culicidae), Vectors of Human Pathogens.

    PubMed

    Nararak, Jirod; Sathantriphop, Sunaiyana; Kongmee, Monthathip; Bangs, Michael J; Chareonviriyaphap, Theeraphap

    2017-01-01

    The essential oils of kaffir lime (Citrus hystrix DC.) at four different concentrations (0.5, 1.0, 2.5, and 5.0% v/v) were studied for their repellency, excitation, and knockdown properties against laboratory strains of Aedes aegypti (L.) and Anopheles minimus Theobald using an excito-repellency test system. Both contact and noncontact escape responses to leaf- and peel-derived kaffir lime oils were observed. Comparing unadjusted escape responses for An. minimus, leaf oil had strong combined irritant and repellent activity responses at 1-5% concentrations (90.0-96.4% escape) and the strongest spatial repellent activity at 1% and 2% (85.9% and 87.2% escape, respectively). The peel oil exhibited good excitation with repellency at concentrations of 2.5% (89.8% escape) and 5% (96.28% escape), while concentrations 1-5% showed more moderate repellent activity against An. minimus. For Ae. aegypti, 2.5% leaf oil produced the greatest response for both contact (56.1% escape) and noncontact (63.3% escape) trials, while 2.5% produced the strongest response among all concentrations of peel oil, with 46.5% escape. However, after adjusting the contact trial escape (a measure of combined excitation and repellency), the estimated escape due to contact alone was a much weaker response than spatial repellency for both species. Knockdown responses above 50% were only observed in Ae. aegypti exposed to 5% leaf oil. Kaffir lime oils were more active against An. minimus than Ae. aegypti mosquitoes. There were statistically significant differences between leaf (more active) and peel oils at each concentration against An. minimus in contact and noncontact trials, except at the highest (5%) concentration. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Effects of hirami lemon, Citrus depressa Hayata, leaf meal in diets on the immune response and disease resistance of juvenile barramundi, Lates calcarifer (bloch), against Aeromonas hydrophila.

    PubMed

    Shiu, Ya-Li; Lin, Hsueh-Li; Chi, Chia-Chun; Yeh, Shinn-Pyng; Liu, Chun-Hung

    2016-08-01

    The present study was conducted to evaluate the dietary supplementation of leaf meal from Citrus depressa Hayata on the growth, innate immune response, and disease resistance of juvenile barramundi, Lates calcarifer. Four diets were formulated to contain 0% (control), 1% (C1), 3% (C3), and 5% (C5) leaf meal, respectively. During a 56 d feeding trial, fish survival, growth performance, and feed efficiency were not significantly different among all groups. For immune response, respiratory burst, superoxide dismutase and lysozyme activities were not significantly different among all groups. However, fish fed the C5 diet for 56 d had significantly higher phagocytic activity. Also, fish fed C3 and C5 diets had significantly higher Mx gene expressions in spleens and head kidneys with nerve necrosis virus injections after 24 h. Disease resistance against Aeromonas hydrophila was increased by the C5 diet. In this study, barramundi fed on a diet containing 5% C. depressa Hayata leaf meal had significantly better innate immune response and disease resistance against A. hydrophila. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. First record of Anastrepha serpentina (Wiedemann) (Diptera: Tephritidae) in citrus in Brazil.

    PubMed

    Lemos, W P; da Silva, R A; Araújo, S C A; Oliveira, E L A; da Silva, W R

    2011-01-01

    Anastrepha serpentina (Wiedemann) is recorded for the first time in citrus (Rutaceae) in Brazil. Specimens were obtained from sweet orange (Citrus sinensis) sampled in the municipalities of Belém and Capitão Poço, and from mandarin orange (Citrus reticulata) from Tomé-Açu, state of Pará, Brazil.

  19. Comparison of antifungal activities of Vietnamese citrus essential oils.

    PubMed

    Van Hung, Pham; Chi, Pham Thi Lan; Phi, Nguyen Thi Lan

    2013-03-01

    Citrus essential oils (EOs) are volatile compounds from citrus peels and widely used in perfumes, cosmetics, soaps and aromatherapy. In this study, inhibition of citrus EOs extracted from Vietnamese orange (Citrus sinensis), mandarin (Citrus reticulata Blanco), pomelo (Citrus grandis Osbeck) and lime (Citrus aurantifolia Swingle) on the growth of plant pathogenic fungi, Mucor hiemalis, Penicillium expansum and Fusarium proliferatum was investigated. The EOs of the citrus peels were obtained by cold-pressing method and the antifungal activity of EOs was evaluated using the agar dilution method. The results show that the EOs had significant antifungal activity. Lime EO was the best inhibitor of M. hiemalis and F. proliferatum while pomelo EO was the most effective against P. expansum. These results indicate that citrus EOs can be used as antifungal natural products in the food, pharmaceutical and cosmetic industries.

  20. Ozone fluxes from Citrus species exposed to different levels of atmospheric ozone concentration

    NASA Astrophysics Data System (ADS)

    Fares, S.; Ormeño, E.; Park, J.; Gentner, D. R.; McKay, M.; Karlik, J. F.; Goldstein, A. H.

    2009-12-01

    Citrus includes a large number of species and varieties widely cultivated in the Central Valley of California and in many other countries having Mediterranean climates. Orchards in California often experience high levels of tropospheric ozone, formed from reactions of VOC and NOx. On one hand, citrus trees may contribute to cleaning the air when the ozone is deposited on the canopies through stomatal and non-stomatal mechanisms, but on the other hand ozone is known to oxidize leaf tissues after entering stomata, resulting in a decrease of carbon assimilation and decrease in crop yield. To characterize ozone deposition for lemon (Citrus limon), mandarin (Citrus reticulata), and orange (Citrus sinensis), we designed branch enclosures which allowed a direct measurement of ozone uptake under different physiological conditions obtained in a greenhouse-controlled environment. A second aim of this study was to test the capability of Citrus species to emit volatile organic compounds which may play a key role in locally removing ozone through chemical reactions in the intercellular spaces and in the gas phase or forming more ozone on the regional scale through reactions with NO¬x. Ozone uptake was quantified to be in the range of 5-12 nmol m-2 s-1 under the highest conditions of physiological activity. Under high levels of ozone concentration, measured ozone deposition was lower than modeled ozone deposition based on the level of stomatal aperture. Our study evaluates the possible role of VOC in scavenging ozone through gas-phase reactions, but the results instead lead to the hypothesis of an accumulation of ozone in the intercellular spaces resulting in a decrease of ozone fluxes for the citrus species studied.

  1. The WRKY Transcription Factor Family in Citrus: Valuable and Useful Candidate Genes for Citrus Breeding.

    PubMed

    Ayadi, M; Hanana, M; Kharrat, N; Merchaoui, H; Marzoug, R Ben; Lauvergeat, V; Rebaï, A; Mzid, R

    2016-10-01

    WRKY transcription factors belong to a large family of plant transcriptional regulators whose members have been reported to be involved in a wide range of biological roles including plant development, adaptation to environmental constraints and response to several diseases. However, little or poor information is available about WRKY's in Citrus. The recent release of completely assembled genomes sequences of Citrus sinensis and Citrus clementina and the availability of ESTs sequences from other citrus species allowed us to perform a genome survey for Citrus WRKY proteins. In the present study, we identified 100 WRKY members from C. sinensis (51), C. clementina (48) and Citrus unshiu (1), and analyzed their chromosomal distribution, gene structure, gene duplication, syntenic relation and phylogenetic analysis. A phylogenetic tree of 100 Citrus WRKY sequences with their orthologs from Arabidopsis has distinguished seven groups. The CsWRKY genes were distributed across all ten sweet orange chromosomes. A comprehensive approach and an integrative analysis of Citrus WRKY gene expression revealed variable profiles of expression within tissues and stress conditions indicating functional diversification. Thus, candidate Citrus WRKY genes have been proposed as potentially involved in fruit acidification, essential oil biosynthesis and abiotic/biotic stress tolerance. Our results provided essential prerequisites for further WRKY genes cloning and functional analysis with an aim of citrus crop improvement.

  2. Interactions of citrus variegated chlorosis (CVC) with endophytic bacteria

    USDA-ARS?s Scientific Manuscript database

    Citrus variegated chlorosis (CVC), is a disease of sweet orange [Citrus sinensis (L.)], is caused by Xylella fastidiosa subsp. pauca, a phytopathogenic bacterium that has been shown to infect all sweet orange cultivars. Xylella fastidiosa is a fastidious Gram negative, xylem-limited bacterium which ...

  3. Carotenoid accumulation in postharvest "Cara Cara" navel orange (Citrus sinensis Osbeck) fruits stored at different temperatures was transcriptionally regulated in a tissue-dependent manner.

    PubMed

    Tao, Nengguo; Wang, Changfeng; Xu, Juan; Cheng, Yunjiang

    2012-09-01

    The main objective of this work was to investigate the effect of storage temperature (4 and 20 °C) on carotenoid accumulation and on the expression levels of seven carotenoid biosynthetic genes (Psy, Pds, Zds, Lcyb, Lcye, Hyb and Zep) in postharvest 'Cara Cara' navel orange (C. sinensis Osbeck) fruits. Storage at 20 °C rapidly increased the carotenoid content in the peel, whereas the content remained unchanged in the pulp before 35 days of storage. By contrast, storage at 4 °C maintained the carotenoid content in the peel before 35 days of storage, after which it slightly increased as time progressed. However, the content in the pulp gradually increased over the entire storage period. In the peel, the gene expressions of Psy and Lcyb were up-regulated at 20 °C but remained unchanged at 4 °C. In addition, the gene expressions of Zds, Hyb, and Zep were repressed at both temperatures before the early storage, followed by a rapid increase only at 20 °C. Then the expressions remained constant level at both temperatures, with the expression level at 20 °C higher than that at 4 °C. Low temperature (4 °C) apparently induced the expression of all the test carotenoid biosynthetic genes in the pulp, in contrast to the nearly stable level at 20 °C. Our present study suggests that the carotenoid biosynthesis in postharvest 'Cara Cara' fruits is transcriptionally regulated, and storage temperature affects the carotenoid accumulation and gene expression in a tissue-dependent manner. Temperature could affect the carotenoid biosynthesis in postharvest 'Cara Cara' fruits in a tissue-dependent manner. The carotenoid biosynthesis in postharvest 'Cara Cara' fruits was transcriptionally regulated by correlated genes.

  4. Compositional Shift in Fatty Acid Profiles of Lipids Obtained from Oleaginous Yeasts upon the Addition of Essential Oil from Citrus sinensis L.

    PubMed

    Uprety, Bijaya K; Rakshit, Sudip K

    2017-05-05

    Tailoring lipids from oleaginous yeasts to contain specific types of fatty acid is of considerable interest to food, fuel, and pharmaceutical industries. In this study, the essential oil obtained from Citrus sinesus L. has been used to alter the fatty acid composition of two common oleaginous yeasts, Rhodosporidium toruloides and Cryptococcus curvatus. With increasing levels of essential oil in the medium, the metabolic flux of the fatty acid biosynthesis pathway shifted towards saturated fatty acid production. Essential oil reduced the activities of elongase and ∆9 desaturase. This made the lipid obtained from both these yeasts rich in saturated fatty acids. At certain specific concentrations of the essential oil in the medium, the lipid obtained from R. toruloides and C. curvatus cultures was similar to mahuwa butter and palm oil, respectively. Limonene is the major constituents of orange essential oil. Its effect on one of the oleaginous yeasts, R. toruloides, was also studied separately. Effects similar to orange essential oil were obtained with limonene. Thus, we can conclude that limonene in orange essential oil brings about compositional change of microbial lipid produced in this organism.

  5. Digital gene expression analysis of corky split vein caused by boron deficiency in 'Newhall' Navel Orange (Citrus sinensis Osbeck) for selecting differentially expressed genes related to vascular hypertrophy.

    PubMed

    Yang, Cheng-Quan; Liu, Yong-Zhong; An, Ji-Cui; Li, Shuang; Jin, Long-Fei; Zhou, Gao-Feng; Wei, Qing-Jiang; Yan, Hui-Qing; Wang, Nan-Nan; Fu, Li-Na; Liu, Xiao; Hu, Xiao-Mei; Yan, Ting-Shuai; Peng, Shu-Ang

    2013-01-01

    Corky split vein caused by boron (B) deficiency in 'Newhall' Navel Orange was studied in the present research. The boron-deficient citrus exhibited a symptom of corky split vein in mature leaves. Morphologic and anatomical surveys at four representative phases of corky split veins showed that the symptom was the result of vascular hypertrophy. Digital gene expression (DGE) analysis was performed based on the Illumina HiSeq™ 2000 platform, which was applied to analyze the gene expression profilings of corky split veins at four morphologic phases. Over 5.3 million clean reads per library were successfully mapped to the reference database and more than 22897 mapped genes per library were simultaneously obtained. Analysis of the differentially expressed genes (DEGs) revealed that the expressions of genes associated with cytokinin signal transduction, cell division, vascular development, lignin biosynthesis and photosynthesis in corky split veins were all affected. The expressions of WOL and ARR12 involved in the cytokinin signal transduction pathway were up-regulated at 1(st) phase of corky split vein development. Furthermore, the expressions of some cell cycle genes, CYCs and CDKB, and vascular development genes, WOX4 and VND7, were up-regulated at the following 2(nd) and 3(rd) phases. These findings indicated that the cytokinin signal transduction pathway may play a role in initiating symptom observed in our study.

  6. Alternation of secondary metabolites and quality attributes in Valencia Orange fruit ( Citrus sinensis ) as influenced by storage period and edible covers.

    PubMed

    Shamloo, M M; Sharifani, M; Daraei Garmakhany, A; Seifi, E

    2015-04-01

    Flavonoids (FGs) are a large group of polyphenolic compounds with low molecular weight, found in free and glycozidic forms in plants. Citrus fruits can be used as a food supplement containing hesperidin and flavonoids to prevent infections and boost the immune system in human body. The aim of this study was the investigation of the effect of clove oil and storage period on the amount of hesperidin and naringin component in orange peel (cv. Valencia). Four treatments including clove oil (1 %), wax, mixture of wax-clove oil, control and storage period were applied. Treated fruits were stored at 7 °C and 85 % relative humidity for 3 months and naringin, hesperidin, antioxidant activity, total pheenolic compounds, TSS, Vitamin C, fruits weight loss, pH, acidity and carbohydrates content were measured every 3 weeks. The amount of hesperidin and naringin was determined using high performance liquid chromatography at the detection wavelength of 285 nm. Antioxidant activity was measured using the 1, 1-diphenyl-2-picrylhydrazyl-hydrate (DPPH) free radical scavenging assay. Total phenolic compounds were measured using the Folin-Ciocalteu micro method. Results showed that naringin and hesperidin were decreased during storage. Different treatment only had significant effect on the amount of hesperidin while storage period affected both of narigin and hesperidin. Results of correlation study, indicated strong relation between antioxidant activity and amount of naringin and hesperidin during storage time. However, at the end of storage period, the amount of hesperidin and naringin were diminished independent of different covers. Probably anaerobic condition caused such reduction. Results showed that the amount of TSS, fruit hardness, weight loss, total sugar and fructose content were increased during storage period while total acidity, pH and glucose content showed descending trend during storage periods. In conclusion, hesperidin and naringin of peels can be used as

  7. Photographic Remote Sensing of Sick Citrus Trees

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.

    1971-01-01

    Remote sensing with infrared color aerial photography (Kodak Ektachrome Infrared Aero 8443 film) for detecting citrus tree anomalies is described. Illustrations and discussions are given for detecting nutrient toxicity symptoms, for detecting foot rot and sooty mold fungal diseases, and for distinguishing among citrus species. Also, the influence of internal leaf structure on light reflectance, transmittance, and absorptance are considered; and physiological and environmental factors that affect citrus leaf light reflectance are reviewed briefly and illustrated.

  8. Whole-tree level water balance and its implications on stomatal oscillations in orange trees [Citrus sinensis (L.) Osbeck] under natural climatic conditions.

    PubMed

    Dzikiti, S; Steppe, K; Lemeur, R; Milford, J R

    2007-01-01

    Sustained cyclic oscillations in stomatal conductance, leaf water potential, and sap flow were observed in young orange trees growing under natural conditions. The oscillations had an average period of approximately 70 min. Water uptake by the roots and loss by the leaves was characterized by large time lags which led to imbalances between water supply and demand in the leaves. The bulk of the lag in response between stomatal movements and the upstream water balance resided downstream of the branch, with branch level sap flow lagging behind the stomatal conductance by approximately 20 min while the stem sap flow had a much shorter time lag of only 5 min behind the branch sap flow. This imbalance between water uptake and loss caused transient changes in internal water deficits which were closely correlated to the dynamics of the leaf water potential. The hydraulic resistance of the whole tree fluctuated throughout the day, suggesting transient changes in the efficiency of water supply to the leaves. A simple whole-tree water balance model was applied to describe the dynamics of water transport in the young orange trees, and typical values of the hydraulic parameters of the transpiration stream were estimated. In addition to the hydro-passive stomatal movements, whole-tree water balance appears to be an important factor in the generation of stomatal oscillations.

  9. First report of Phyllosticta citricarpa and description of two new species, P. paracapitalensis and P. paracitricarpa, from citrus in Europe.

    PubMed

    Guarnaccia, V; Groenewald, J Z; Li, H; Glienke, C; Carstens, E; Hattingh, V; Fourie, P H; Crous, P W

    2017-06-01

    The genus Phyllosticta occurs worldwide, and contains numerous plant pathogenic, endophytic and saprobic species. Phyllosticta citricarpa is the causal agent of Citrus Black Spot disease (CBS), affecting fruits and leaves of several citrus hosts (Rutaceae), and can also be isolated from asymptomatic citrus tissues. Citrus Black Spot occurs in citrus-growing regions with warm summer rainfall climates, but is absent in countries of the European Union (EU). Phyllosticta capitalensis is morphologically similar to P. citricarpa, but is a non-pathogenic endophyte, commonly isolated from citrus leaves and fruits and a wide range of other hosts, and is known to occur in Europe. To determine which Phyllosticta spp. occur within citrus growing regions of EU countries, several surveys were conducted (2015-2017) in the major citrus production areas of Greece, Italy, Malta, Portugal and Spain to collect both living plant material and leaf litter in commercial nurseries, orchards, gardens, backyards and plant collections. A total of 64 Phyllosticta isolates were obtained from citrus in Europe, of which 52 were included in a multi-locus (ITS, actA, tef1, gapdh, LSU and rpb2 genes) DNA dataset. Two isolates from Florida (USA), three isolates from China, and several reference strains from Australia, South Africa and South America were included in the overall 99 isolate dataset. Based on the data obtained, two known species were identified, namely P. capitalensis (from asymptomatic living leaves of Citrus spp.) in Greece, Italy, Malta, Portugal and Spain, and P. citricarpa (from leaf litter of C. sinensis and C. limon) in Italy, Malta and Portugal. Moreover, two new species were described, namely P. paracapitalensis (from asymptomatic living leaves of Citrus spp.) in Italy and Spain, and P. paracitricarpa (from leaf litter of C. limon) in Greece. On a genotypic level, isolates of P. citricarpa populations from Italy and Malta (MAT1-2-1) represented a single clone, and those

  10. Molecular characterization of Citrus tatter leaf virus historically associated with Meyer lemon trees: complete genome sequence and development of biologically active in vitro transcripts.

    PubMed

    Tatineni, Satyanarayana; Afunian, Mohammad R; Hilf, Mark E; Gowda, Siddarame; Dawson, William O; Garnsey, Stephen M

    2009-04-01

    Citrus tatter leaf virus isolated from Meyer lemon trees (CTLV-ML) from California and Florida induces bud union incompatibility of citrus trees grafted on the widely used trifoliate and trifoliate hybrid rootstocks. The complete genome sequence of CTLV-ML was determined to be 6,495 nucleotides (nts), with two overlapping open reading frames (ORFs) and a poly (A) tail at the 3' end. The genome organization is similar to other capilloviruses, with ORF1 (nts 37 to 6,354) encoding a putative 242-kDa polyprotein which contains replication-associated domains plus a coat protein (CP), and ORF2 (nts 4,788 to 5,750), which is located within ORF1 in a different reading frame and encodes a putative movement protein. Although the proteins encoded by CTLV-ML possesses 84 to 96% amino acid sequence identity with strains of Apple stem grooving virus (ASGV), we observed two strikingly different regions in ORF1: variable region I (amino acids 532 to 570) and variable region II (amino acids 1,583 to 1,868), with only 15 to 18 and 56 to 62% identities, respectively, with the corresponding regions of ASGV strains. Conditions for a herbaceous systemic assay host were optimized in which the wild-type virus induced systemic infection in Phaseolus vulgaris cv. Light Red Kidney (LRK) bean plants at 19 or 22 degrees C but not at higher temperatures. In vitro transcripts generated from full-length cDNA clones induced systemic symptoms on LRK bean plants similar to that of the wild-type virus. Replication of the recombinant virus was confirmed by hybridization of a 5' positive-stranded RNA-specific probe to a genome-sized RNA and by reverse-transcription polymerase chain reaction.

  11. Evaluation of Polyamine and Proline Levels during Low Temperature Acclimation of Citrus 1

    PubMed Central

    Kushad, Mosbah M.; Yelenosky, George

    1987-01-01

    The polyamines (PA) putrescine (Put), spermidine (Spd), and spermine (Spm) were measured during 3 weeks exposure to cold hardening (15.6°C day and 4.4°C night) and nonhardening (32.2°C day and 21.1°C night) temperature regimes in three citrus cultivars: sour orange (SO) (Citrus aurantium L.), `valencia' (VAL) (Citrus sinensis L. Osbeck), and rough lemon (RL) (Citrus jambhiri Lush). The changes in PA were compared to the amount of free proline, percent wood kill and percent leaf kill. A 2- to 3-fold increase in Spd concentrations were observed in hardened RL, SO, and VAL leaves compared to nonhardened leaves. Spermidine reached its highest level of approximately 200 nanomoles per gram fresh weight after 1 week of acclimation in both SO and VAL leaves, while RL spermidine content continued to increase up to the third week of acclimation. Spm levels in acclimated VAL and RL leaves increased 1- to 4-fold. However, SO leaves Spm content decreased with acclimation. Putrescine levels in SO and VAL increased 20 to 60% during the first 2 weeks of acclimation then declined after 3 weeks. RL putrescine content was not affected by cold acclimation. The data presented here provided direct relationship between increased Spd concentration and citrus cold hardiness. Free proline was 3- to 6-fold higher in acclimated than in nonacclimated trees. Results also demonstrate that in acclimated versus nonacclimated citrus trees the absolute amount rather than the ratio of increase in free proline is more important in predicting their ability to survive freezing stress. PMID:16665504

  12. In Silico Identification and Validation of Potential microRNAs in Kinnow Mandarin (Citrus reticulata Blanco).

    PubMed

    Mohanpuria, Prashant; Duhan, Naveen; Sarao, Navraj Kaur; Kaur, Manvir; Kaur, Mandip

    2017-05-22

    MicroRNAs (miRNAs) are a large family of 19-25 nucleotides, regulatory, non-coding RNA molecules that control gene expression by cleaving or inhibiting the translation of target gene transcripts in animals and plants. Despite the important functions of miRNAs related to regulation of plant growth and development processes, metabolism, and abiotic and biotic stresses, little is known about the disease-related miRNA. Here, we present a new pipeline for miRNA analysis using expressed sequence tags (ESTs)-based bioinformatics approach in Kinnow mandarin, a commercially important citrus fruit crop. For this, 56,041 raw EST sequences of Citrus reticulata Blanco were retrieved from EST database in NCBI through step-by-step filtering and processing methods and 130 miRNAs were predicted. Upon blast with Citrus sinensis transcriptome data, these produced potential targets related to disease resistance proteins, pectin lyase-like superfamily proteins, lateral organ boundaries (LOB) domain-containing proteins 11, and protein phosphatase 2C family proteins, protein kinases, dehydrogenases, and methyltransferases. Majority of the predicted miRNAs were of 22, 23, and 24 nucleotides in length. To validate these computationally predicted miRNA, poly(A)-tailed Reverse Transcription-PCR was applied to detect the expression of seven miRNA which showed disease-related potential targets, in citrus greening diseased leaf tissues in comparison to the healthy tissues of Kinnow mandarin. Our study provides information on regulatory roles of these potential miRNAs for the citrus greening disease development, miRNA targets, and would be helpful for future research of miRNA function in citrus.

  13. A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera.

    PubMed

    Cheng, Yunjiang; de Vicente, M Carmen; Meng, Haijun; Guo, Wenwu; Tao, Nengguo; Deng, Xiuxin

    2005-06-01

    Chloroplast simple sequence repeat (cpSSR) markers in Citrus were developed and used to analyze chloroplast diversity of Citrus and closely related genera. Fourteen cpSSR primer pairs from the chloroplast genomes of tobacco (Nicotiana tabacum L.) and Arabidopsis were found useful for analyzing the Citrus chloroplast genome (cpDNA) and recoded with the prefix SPCC (SSR Primers for Citrus Chloroplast). Eleven of the 14 primer pairs revealed some degree of polymorphism among 34 genotypes of Citrus, Fortunella, Poncirus and some of their hybrids, with polymorphism information content (PIC) values ranging from 0.057 to 0.732, and 18 haplotypes were identified. The cpSSR data were analyzed with NTSYS-pc software, and the genetic relationships suggested by the unweighted pair group method based on arithmetic means (UPGMA) dendrogram were congruent with previous taxonomic investigations: the results showed that all samples fell into seven major clusters, i.e., Citrus medica L., Poncirus, Fortunella, C. ichangensis Blanco, C. reticulata Swingle, C. aurantifolia (Christm.) Swingle and C. grandis (L.) Osbeck. The results of previous studies combined with our cpSSR analyses revealed that: (1) Calamondin (C. madurensis Swingle) is the result of hybridization between kumquat (Fortunella) and mandarin (C. reticulata), where kumquat acted as the female parent; (2) Ichang papeda (C. ichangensis) has a unique taxonomic status; and (3) although Bendiguangju mandarin (C. reticulata) and Satsuma mandarin (C. reticulata) are similar in fruit shape and leaf morphology, they have different maternal parents. Bendiguangju mandarin has the same cytoplasm as sweet orange (C. sinensis), whereas Satsuma mandarin has the cytoplasm of C. reticulata. Seventeen PCR products from SPCC1 and 21 from SPCC11 were cloned and sequenced. The results revealed that mononucleotide repeats as well as insertions and deletions of small segments of DNA were associated with SPCC1 polymorphism, whereas polymorphism

  14. Efficacy of Topical Application, Leaf Residue or Soil Drench of Blastospores of Isaria fumosorosea for Citrus Root Weevil Management: Laboratory and Greenhouse Investigations

    PubMed Central

    Avery, Pasco B.; Hunter, Wayne B.; Hall, David G.; Jackson, Mark A.; Powell, Charles A.

    2016-01-01

    The efficacy of topical, leaf residue, and soil drench applications with Isaria fumosorosea blastospores (Ifr strain 3581) was assessed for the management of the citrus root weevil, Diaprepes abbreviatus (L.). Blastospores of Ifr were applied topically at a rate of 107 blastospores mL−1 on both the larvae and adults, and each insect stage was incubated in rearing cups with artificial diet at 25 °C, either in the dark or in a growth chamber under a 16 h photophase for 2 weeks, respectively. Percent larval and adult mortality due to the infection of Ifr was assessed after 14 days as compared to untreated controls. Leaf residue assays were assessed by feeding the adults detached citrus leaves previously sprayed with Ifr (107 blastospores mL−1) in Petri dish chambers and then incubating them at 25 °C for 2–3 weeks. Efficacy of the soil drench applications was assessed on five larvae feeding on the roots of a Carrizo hybrid citrus seedling ~8.5–10.5 cm below the sterile sand surface in a single 16 cm × 15.5 cm pot inside a second pot lined with plastic mesh to prevent escapees. Drench treatments per pot consisted of 100 mL of Ifr suspension (107 blastospores mL−1), flushed with 400, 900, or 1400 mL of water compared to 500, 1000, and 1500 mL of water only for controls. The mean concentration of Ifr propagules as colony forming units per gram (CFUs g−1) that leached to different depths in the sand profile per treatment drench rate was also determined. Two weeks post-drenching of Ifr treatments, larvae were assessed for percent mortality, size differences, and effect of treatments in reducing feeding damage to the plant root biomass compared to the controls. Topical spray applications caused 13 and 19% mortality in larvae and adults after 7 days compared to none in the control after 14 days, respectively. Adults feeding on a single Ifr treated leaf for 24 h consumed less than the control, and resulted in 100% mortality 35 days post-treatment compared to 33

  15. Volatile constituents and antioxidant activity of peel, flowers and leaf oils of Citrus aurantium L. growing in Greece.

    PubMed

    Sarrou, Eirini; Chatzopoulou, Paschalina; Dimassi-Theriou, Kortessa; Therios, Ioannis

    2013-09-02

    The volatile constituents of the essential oils of the peel, flower (neroli) and leaves (petitgrain) of bitter orange (Citrus aurantium L.) growing in Greece were studied by GC-MS. The analytical procedures enabled the quantitative determination of 31 components. More specifically, the components of the essential oils identified were: twelve in the peel, twenty-six in the flowers, and twenty and sixteen in old and young leaves, respectively. The major constituents of the different parts of Citrus aurantium L. essential oils were: β-pinene (0.62%-19.08%), limonene (0.53%-94.67%), trans-β-ocimene (3.11%-6.06%), linalool (0.76%-58.21%), and α-terpineol (0.13%-12.89%). The DPPH test demonstrated that the essential oils in the old leaves had the maximum antioxidant activity, followed by the flowers, young leaves and the peel in that order. This study updates the data in the literature on the essential oils of bitter orange, and provides information on the composition of the oils for a further evaluation of this product.

  16. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus.

    PubMed

    Arbona, Vicent; Hossain, Zahed; López-Climent, María F; Pérez-Clemente, Rosa M; Gómez-Cadenas, Aurelio

    2008-04-01

    Soil flooding constitutes a seasonal factor that negatively affects plant performance and crop yields. In this work, the relationship between oxidative damage and flooding sensitivity was addressed in three citrus genotypes with different abilities to tolerate waterlogging. We examined leaf visible damage, oxidative damage in terms of malondialdehyde (MDA) concentration, leaf proline concentration, leaf and root ascorbate and glutathione contents and the antioxidant enzyme activities superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6) and glutathione reductase (EC 1.8.1.7). No differences in the extent of oxidative damage relative to controls were found among genotypes. However, a different ability to delay the apparition of oxidative damage was associated to a higher tolerance to waterlogging. This ability was linked to an enhanced activated oxygen species' scavenging capacity in terms of an increased antioxidant enzyme activity and higher content in polar antioxidant compounds. Therefore, the existence of a direct relationship between stress sensitivity and the early accumulation of MDA is proposed. In addition, data indicate that the protective role of proline has to be considered minimal as its accumulation was inversely correlated with tolerance to the stress. The positive antioxidant response in Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) and Citrumelo CPB 4475 (Poncirus trifoliata L. Raf. x Citrus paradisi L. Macf.) might be responsible for a higher tolerance to flooding stress, whereas in Cleopatra mandarin (Citrus reshni Hort. Ex Tan.), the early accumulation of MDA seems to be associated to an impaired ability for H2O2 scavenging.

  17. The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation.

    PubMed

    Peng, Gang; Wang, Chunyan; Song, Song; Fu, Xiumin; Azam, Muhammad; Grierson, Don; Xu, Changjie

    2013-10-01

    Three 1-deoxy-D-xylulose-5-phosphate synthases (DXS) and three phytoene synthases (PSY) were identified in citrus, from Affymetrix GeneChip Citrus Genome Array, GenBank and public orange genome databases. Tissue-specific expression analysis of these genes was carried out on fruit peel and flesh, flower and leaf of Satsuma mandarin (Citrus unshiu Marc.) in order to determine their roles in carotenoid accumulation in different tissues. Expression of CitDXS1 and CitPSY1 was highest in all test tissues, while that of CitDXS2 and CitPSY2 was lower, and that of CitDXS3 and CitPSY3 undetectable. The transcript profiles of CitDXS1 and CitPSY1 paralleled carotenoid accumulation in flesh of Satsuma mandarin and orange (Citrus sinensis Osbeck) during fruit development, and CitPSY1 expression was also associated with carotenoid accumulation in peel, while the CitDXS1 transcript level was only weakly correlated with carotenoid accumulation in peel. Similar results were obtained following correlation analysis between expression of CitDXS1 and CitPSY1 and carotenoid accumulation in peel and flesh of 16 citrus cultivars. These findings identify CitPSY1 and CitDXS1 as the main gene members controlling carotenoid biosynthesis in citrus fruit. Furthermore, chromoplasts were extracted from flesh tissue of these citrus, and chromoplasts of different shape (spindle or globular), different size, and color depth were observed in different cultivars, indicating chromoplast abundance, number per gram tissue, size and color depth were closely correlated with carotenoid content in most cultivars. The relationship between carotenoid biosynthesis and chromoplast development was discussed.

  18. Leaf photosynthetic and water-relations responses for 'Valencia' orange trees exposed to oxidant air pollution

    SciTech Connect

    Olszyk, D.M.; Takemoto, B.K.; Poe, M.

    1991-01-01

    Leaf responses were measured to test a hypothesis that reduced photosynthetic capacity and/or altered water relations were associated with reductions in yield for 'Valencia' orange trees (Citrus sinensis (L.), Osbeck) exposed to ambient oxidant air pollution. Exposures were continuous for 4 years to three levels of oxidants (in charcoal-filtered, half-filtered, and non-filtered air). Oxidants had no effect on net leaf photosynthetic rates or on photosynthetic pigment concentrations. A single set of measurements indicated that oxidants increased leaf starch concentrations (24%) prior to flowering, suggesting a change in photosynthate allocation. Leaves exposed to oxidants had small, but consistent, changes in water relations over the summer growing season, compared to trees growing in filtered air. Other changes included decreased stomatal conductance (12%) and transpiration (9%) rates, and increased water pressure potentials (5%). While all responses were subtle, their cumulative impact over 4 years indicated that 'Valencia' orange trees were subject to increased ambient oxidant stress.

  19. Physical Changes in Satsuma Mandarin Leaf after Infection of Elsinoë fawcettii Causing Citrus Scab Disease

    PubMed Central

    Paudyal, Dilli Prasad; Hyun, Jae-Wook

    2015-01-01

    Citrus scab disease is one of the destructive diseases that reduce the value of fruit for the fresh market. We analyzed the process of symptom development after infection with scab pathogen Elsinoë fawcettii in the susceptible satsuma mandarin leaves to observe the structural modification against pathogen. The cuticle and epidermal cells along with 3–5 layers of mesophyll tissue were degraded 1–2 days post inoculation. Surrounding peripheral cells of degraded tissues grew rapidly and then enveloped the necrotic area along with the growing conidia. Cross sections through the lesion revealed hyphal colonization in epidermis and mesophyll tissues. In response to the pathogen colonization, host cell walls were lignified, inner cells were rapidly compartmentalized and a semi-circular boundary was formed that separated the infected region from the non-infected region, and finally prevented the intercellular pathogen spread. PMID:26674386

  20. Insecticidal activity of Citrus aurantium fruit, leaf, and shoot extracts against adult olive fruit flies (Diptera: Tephritidae).

    PubMed

    Siskos, E P; Konstantopoulou, M A; Mazomenos, B E; Jervis, M

    2007-08-01

    Solvent extracts of differing polarity from Citrus aurantium (L.) (Rutaceae) fruit, leaves, and shoots were evaluated for biological activity against adults of the olive fruit fly, Bactrocera oleae (Gmelin) (Diptera: Tephritidae). Using a petri dish residual exposure bioassay, we found that the petroleum ether extract from fruit alone showed insecticidal activity against the flies. The extract of the three fruit tissues (flavedo [peel], albedo, and flesh) indicated that bioactivity was limited to the flavedo, and this activity was significantly higher than that of the whole fruit extract. The most effective extract was obtained when fresh flavedo was used, whereas extracts of oven-dried flavedo were inactive. Fruit maturity also affected bioactivity; extracts of ripe fruit were more effective than those of unripe fruit. Our results suggest that C. aurantium flavedo contains secondary metabolites with insecticidal activity against B. oleae adults.

  1. Comparative morpho-anatomical studies of the lesions caused by citrus leprosis virus on sweet orange.

    PubMed

    Marques, João P R; Kitajima, Elliot W; Freitas-Astúa, Juliana; Appezzato-da-Glória, Beatriz

    2010-06-01

    The leprosis disease shows a viral etiology and the citrus leprosis virus is considered its etiologic agent. The disease may show two types of cytopatologic symptom caused by two virus: nuclear (CiLV-N) and cytoplasmic (CiLV-C) types. The aim of this study was to compare the morpho-anatomical differences in the lesions caused by leprosis virus-cytoplasmic and nuclear types in Citrus sinensis (L.) Osbeck 'Pêra'. Leaf and fruit lesions were collected in Piracicaba/São Paulo (cytoplasmic type) and Monte Alegre do Sul/São Paulo and Amparo/São Paulo (nuclear type). The lesions were photographed and then fixed in Karnovsky solution, dehydrated in a graded ethylic series, embedded in hydroxy-ethyl methacrylate resin (Leica Historesin), sectioned (5 microm thick), stained and mounted in synthetic resin. The digital images were acquired in a microscope with digital video camera. Leaf and fruit lesions caused by the two viruses were morphologically distinct. Only the lesion caused by CiLV-N virus presented three well-defined regions. In both lesions there was the accumulation of lipidic substances in necrotic areas that were surrounded by cells with amorphous or droplets protein. Only leaf and fruit lesions caused by CiLV-N virus exhibited traumatic gum ducts in the vascular bundles.

  2. Leaf cDNA-AFLP analysis reveals novel mechanisms for boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings.

    PubMed

    Wang, Liu-Qing; Yang, Lin-Tong; Guo, Peng; Zhou, Xin-Xing; Ye, Xin; Chen, En-Jun; Chen, Li-Song

    2015-10-01

    Little information is available on the molecular mechanisms of boron (B)-induced alleviation of aluminum (Al)-toxicity. 'Sour pummelo' (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing different concentrations of B (2.5 or 20μM H3BO3) and Al (0 or 1.2mM AlCl3·6H2O). B alleviated Al-induced inhibition in plant growth accompanied by lower leaf Al. We used cDNA-AFLP to isolate 127 differentially expressed genes from leaves subjected to B and Al interactions. These genes were related to signal transduction, transport, cell wall modification, carbohydrate and energy metabolism, nucleic acid metabolism, amino acid and protein metabolism, lipid metabolism and stress responses. The ameliorative mechanisms of B on Al-toxicity might be related to: (a) triggering multiple signal transduction pathways; (b) improving the expression levels of genes related to transport; (c) activating genes involved in energy production; and (d) increasing amino acid accumulation and protein degradation. Also, genes involved in nucleic acid metabolism, cell wall modification and stress responses might play a role in B-induced alleviation of Al-toxicity. To conclude, our findings reveal some novel mechanisms on B-induced alleviation of Al-toxicity at the transcriptional level in C. grandis leaves.

  3. An effective and low-cost culture medium for isolation and growth of Xylella fastidiosa from citrus and coffee plants.

    PubMed

    Lopes, S A; Torres, S C Z

    2006-12-01

    Buffered charcoal-yeast extract medium (BCYE) has been used for isolation of Xylella fastidiosa from citrus (Citrus sinensis) and coffee (Coffea arabica) plants affected by citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS). BCYE is composed of ACES (2-[2-amino-2oxoethyl) amino]-ethanesulfonic acid) buffer, activated charcoal, yeast extract, L-cysteine, ferric pyrophosphate, and agar. ACES buffer is costly and not always commercially available in Brazil, and the L-cysteine and ferric pyrophosphate need to be filter sterilized in 0.22-mum pore membranes before inclusion in the medium. Omission of L-cysteine, addition of magnesium sulfate, and replacements of ACES and ferric pyrophosphate for potassium phosphate and ferrous sulfate resulted in an effective, less expensive, and entirely autoclavable medium, named phosphate buffered charcoal-yeast extract medium (PCYE). The final cost of PCYE was approximately one tenth that of BCYE. Its effectiveness was tested for the isolation of X. fastidiosa from symptomatic leaves collected from 52 citrus plants affected by CVC and 43 coffee plants affected by CLS. PCYE was as effective as BCYE and has been used routinely in our and other laboratories for isolation, growth, and quantification of X. fastidiosa from plant tissues.

  4. Effect of ploidy increase on transgene expression: example from Citrus diploid cybrid and allotetraploid somatic hybrid expressing the EGFP gene.

    PubMed

    Xu, Shi-Xiao; Cai, Xiao-Dong; Tan, Bin; Li, Ding-Li; Guo, Wen-Wu

    2011-07-01

    Polyploidization is an important speciation mechanism for all eukaryotes, and it has profound impacts on biodiversity dynamics and ecosystem functioning. Green fluorescent protein (GFP) has been used as an effective marker to visually screen somatic hybrids at an early stage in protoplast fusion. We have previously reported that the intensity of GFP fluorescence of regenerated embryoids was also an early indicator of ploidy level. However, little is known concerning the effects of ploidy increase on the GFP expression in citrus somatic hybrids at the plant level. Herein, allotetraploid and diploid cybrid plants with enhanced GFP (EGFP) expression were regenerated from the fusion of embryogenic callus protoplasts from 'Murcott' tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osbeck) and mesophyll protoplasts from transgenic 'Valencia' orange (C. sinensis (L.) Osbeck) expressing the EGFP gene, via electrofusion. Subsequent simple sequence repeat (SSR), chloroplast simple sequence repeat and cleaved amplified polymorphic sequence analysis revealed that the two regenerated tetraploid plants were true allotetraploid somatic hybrids possessing nuclear genomic DNA of both parents and cytoplasmic DNA from the callus parent, while the five regenerated diploid plants were cybrids containing nuclear DNA of the leaf parent and with complex segregation of cytoplasmic DNA. Furthermore, EGFP expression was compared in cells and protoplasts from mature leaves of these diploid cybrids and allotetraploid somatic hybrids. Results showed that the intensity of GFP fluorescence per cell or protoplast in diploid was generally brighter than in allotetraploid. Moreover, same hybridization signal was detected on allotetraploid and diploid plants by Southern blot analysis. By real-time RT-PCR and Western blot analysis, GFP expression level of the diploid cybrid was revealed significantly higher than that of the allotetraploid somatic hybrid. These results suggest that ploidy

  5. Genome-wide identification, classification and analysis of HD-ZIP gene family in citrus, and its potential roles in somatic embryogenesis regulation.

    PubMed

    Ge, Xiao-Xia; Liu, Zheng; Wu, Xiao-Meng; Chai, Li-Jun; Guo, Wen-Wu

    2015-12-10

    The homeodomain-leucine zipper (HD-Zip) transcription factors, which belong to a class of Homeobox proteins, has been reported to be involved in different biological processes of plants, including growth and development, photomorphogenesis, flowering, fruit ripening and adaptation responses to environmental stresses. In this study, 27 HD-Zip genes (CsHBs) were identified in Citrus. Based on the phylogenetic analysis and characteristics of individual gene or protein, the HD-Zip gene family in Citrus can be classified into 4 subfamilies, i.e. HD-Zip I, HD-Zip II, HD-Zip III, and HD-Zip IV containing 16, 2, 4, and 5 members respectively. The digital expression patterns of 27 HD-Zip genes were analyzed in the callus, flower, leaf and fruit of Citrus sinensis. The qRT-PCR and RT-PCR analyses of six selected HD-Zip genes were performed in six citrus cultivars with different embryogenic competence and in the embryo induction stages, which revealed that these genes were differentially expressed and might be involved in citrus somatic embryogenesis (SE). The results exhibited that the expression of CsHB1 was up-regulated in somatic embryo induction process, and its expression was higher in citrus cultivars with high embryogenic capacity than in cultivars recalcitrant to form somatic embryos. Moreover, a microsatellite site of three nucleotide repeats was found in CsHB1 gene among eighteen citrus genotypes, indicating the possible association of CsHB1 gene to the capacity of callus induction.

  6. Degradation products of citrus volatile organic compounds (VOCs) acting as phagostimulants that increase probing behavior of Asian citrus psyllid

    USDA-ARS?s Scientific Manuscript database

    Volatile phytochemicals play a role in orientation by phytophagous insects. We studied antennal and behavioral responses of the Asian citrus psyllid, Diaphorina citri Kuwayama, vector of the citrus greening disease pathogen. Little or no response to citrus leaf volatiles was detected by electroanten...

  7. Screening Citrus germplasm for tolerance to HLB and Diaphorina citri--progress

    USDA-ARS?s Scientific Manuscript database

    This article summarizes a project that is being funded in part by the California Citrus Research Board. In a previous field trial, 87 genotypes of citrus were planted in the field in Florida and the different genotypes were evaluated for tolerance to Asian citrus psyllid, citrus leaf miner, and hua...

  8. Movement of Diaphorina citri Kuwayama (Hemiptera: Liviidae) adults between huanglongbing-affected and healthy citrus

    USDA-ARS?s Scientific Manuscript database

    Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a vector transmitting the pathogen of citrus huanglongbing (HLB, also called yellow shoot disease or citrus greening disease). A typical symptom of citrus HLB is leaf yellowing. ACP adults behaved differently on HLB-affe...

  9. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes.

    PubMed

    Yu, Yuan; Bai, Jinhe; Chen, Chunxian; Plotto, Anne; Baldwin, Elizabeth A; Gmitter, Frederick G

    2017-07-21

    Citrus fruit flavor is an important attribute prioritized in variety improvement. The present study compared juice volatiles compositions from 13 selected citrus genotypes, including six mandarins (Citrus reticulata), three sour oranges (Citrus aurantium), one blood orange (Citrus sinensis), one lime (Citrus limonia), one Clementine (Citrus clementina) and one satsuma (Citrus unshiu). Large differences were observed with respect to volatile compositions among the citrus genotypes. 'Goutou' sour orange contained the greatest number of volatile compounds and the largest volatile production level. 'Ponkan' mandarin had the smallest number of volatiles and 'Owari' satsuma yielded the lowest volatile production level. 'Goutou' sour orange and 'Moro' blood orange were clearly distinguished from other citrus genotypes based on the analysis of volatile compositions, even though they were assigned into one single group with two other sour oranges by the molecular marker profiles. The clustering analysis based on the aroma volatile compositions was able to differentiate mandarin varieties and natural sub-groups, and was also supported by the molecular marker study. The gas chromatography-mass spectrometry analysis of citrus juice aroma volatiles can be used as a tool to distinguish citrus genotypes and assist in the assessment of future citrus breeding programs. The aroma volatile profiles of the different citrus genotypes and inter-relationships detected among volatile compounds and among citrus genotypes will provide fundamental information on the development of marker-assisted selection in citrus breeding. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Movement of Glassy-Winged Sharpshooters in a Deficit Irrigated Citrus Orchard

    USDA-ARS?s Scientific Manuscript database

    A two-year study was conducted in a citrus orchard [Citrus sinensis (L.) Osbeck cv. ‘Valencia’] to determine the effects of plant water stress on population density and movement glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar). Experimental treatments included irrigation at 100% ...

  11. First report of Xiphinema rivesi Dalmasso, 1969 on citrus in northern Egypt

    USDA-ARS?s Scientific Manuscript database

    During a nematode survey in 2012-2013 in EL-Nobarria, EL-Behera governorate, northern Egypt, specimens of dagger nematode (Xiphinema sp.) were collected from soil around the rhizosphere of citrus trees (Citrus sinensis (L.) Osbeck) exhibiting poor growth and low yield. The morphology of females esta...

  12. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening

    USDA-ARS?s Scientific Manuscript database

    Chlorophyll degradation naturally occurs during plant senescence. However, in fruit such as citrus, it is a positive characteristic, as degreening is an important colour development contributing to fruit quality. In the present work, Citrus sinensis Osbeck, cv. Newhall fruit was used as a model for ...

  13. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves.

    PubMed

    Jifon, John L; Syvertsen, James P

    2003-02-01

    Daily variations in net gas exchange, chlorophyll a fluorescence and water relations of mature, sun-acclimated grapefruit (Citrus paradisi Macfady.) and orange (Citrus sinensis L. Osbeck) leaves were determined in tree canopies either shaded with 50% shade screens or left unshaded (sunlit). Mean daily maximum photosynthetic photon flux density (PPFD) under shade varied from 500 to 700 micromol m-2 s-1 and was sufficient to achieve maximum net CO2 assimilation rates (A CO2). Responses of grapefruit and orange leaves to shading were remarkably similar. At midday, on bright clear days, the temperatures of sunlit leaves were 2-6 degrees C above air temperature and 1-4 degrees C above the temperatures of shaded leaves. Although midday depressions of stomatal conductance (gs) and A CO2 were observed in both sunlit and shaded leaves, shaded leaves had lower leaf-to-air vapor pressure differences (D) along with higher gs, A CO2 and leaf water-use efficiency than sunlit leaves. Estimated stomatal limitation to A CO2 was generally less than 25% and did not differ between shaded and sunlit leaves. Leaf intercellular CO2 partial pressure was not altered by shade treatment and did not change substantially with increasing D. Radiation and high temperature stress-induced non-stomatal limitation to A CO2 in sunlit leaves was greater than 40%. Reversible photoinhibition of photosystem II efficiency was more pronounced in sunlit than in shaded leaves. Thus, non-stomatal factors play a major role in regulating A CO2 of citrus leaves during radiation and high temperature stress.

  14. Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use.

    PubMed

    Moya, José Luís; Gómez-Cadenas, Aurelio; Primo-Millo, Eduardo; Talon, Manuel

    2003-02-01

    In this work, seedlings of two citrus rootstocks, the salt-tolerant Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and the salt-sensitive Carrizo citrange (Citrus sinensis [L.] Osb. x Poncirus trifoliata [L.] Raf.) were used to study the relationship between chloride and water uptake. The results indicated that net chloride uptake rates in both genotypes were alike and decreased linearly with the time of salinity exposure, although they were more rapidly reduced in the tolerant genotype. In each rootstock, chloride uptake rates paralleled the decreases in transpiration rates. When transpiration was modified, concomitant changes in leaf Cl(-) concentrations were observed. There was a high positive correlation between total chloride content per plant and total water absorbed. In addition, the data indicate that the tolerant genotype "excluded" more chloride, i.e. it absorbed lower amounts of chloride per volume of water. Cleopatra also possessed a less efficient root system for water uptake and a higher shoot-to-root ratio. The results show that, overall, chloride absorption is linked to water use and that further tolerance in Cleopatra is mostly conferred by superior root resistance to Cl(-) uptake. Therefore, it is proposed that chloride absorption and, hence, salt tolerance in citrus depends to a great extent upon water use.

  15. Identification of Chinese medicinal fungus Cordyceps sinensis by depth-profiling mid-infrared photoacoustic spectroscopy.

    PubMed

    Du, Changwen; Zhou, Jianmin; Liu, Jianfeng

    2017-02-15

    With increased demand for Cordyceps sinensis it needs rapid methods to meet the challenge of identification raised in quality control. In this study Cordyceps sinensis from four typical natural habitats in China was characterized by depth-profiling Fourier transform infrared photoacoustic spectroscopy. Results demonstrated that Cordyceps sinensis samples resulted in typical photoacoustic spectral appearance, but heterogeneity was sensed in the whole sample; due to the heterogeneity Cordyceps sinensis was represented by spectra of four groups including head, body, tail and leaf under a moving mirror velocity of 0.30cms(-1). The spectra of the four groups were used as input of a probabilistic neural network (PNN) to identify the source of Cordyceps sinensis, and all the samples were correctly identified by the PNN model. Therefore, depth-profiling Fourier transform infrared photoacoustic spectroscopy provides novel and unique technique to identify Cordyceps sinensis, which shows great potential in quality control of Cordyceps sinensis.

  16. Identification of Chinese medicinal fungus Cordyceps sinensis by depth-profiling mid-infrared photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, Changwen; Zhou, Jianmin; Liu, Jianfeng

    2017-02-01

    With increased demand for Cordyceps sinensis it needs rapid methods to meet the challenge of identification raised in quality control. In this study Cordyceps sinensis from four typical natural habitats in China was characterized by depth-profiling Fourier transform infrared photoacoustic spectroscopy. Results demonstrated that Cordyceps sinensis samples resulted in typical photoacoustic spectral appearance, but heterogeneity was sensed in the whole sample; due to the heterogeneity Cordyceps sinensis was represented by spectra of four groups including head, body, tail and leaf under a moving mirror velocity of 0.30 cm s- 1. The spectra of the four groups were used as input of a probabilistic neural network (PNN) to identify the source of Cordyceps sinensis, and all the samples were correctly identified by the PNN model. Therefore, depth-profiling Fourier transform infrared photoacoustic spectroscopy provides novel and unique technique to identify Cordyceps sinensis, which shows great potential in quality control of Cordyceps sinensis.

  17. Distribution of tannin-'tolerant yeasts isolated from Miang, a traditional fermented tea leaf (Camellia sinensis var. assamica) in northern Thailand.

    PubMed

    Kanpiengjai, Apinun; Chui-Chai, Naradorn; Chaikaew, Siriporn; Khanongnuch, Chartchai

    2016-12-05

    Miang is a fermented food product prepared from the tea leaves of Camellia sinensis var. assamica, and is traditionally produced in mountainous areas of northern Thailand. Although Miang has a long history and reveals deep-rooted cultural involvement with local people in northern Thailand, little is known regarding its microbial diversity. Yeasts were isolated from 47 Miang samples collected from 28 sampling sites, including eight provinces in upper northern Thailand. A hundred and seven yeast isolates were recovered and identified within 14 species based on the comparison of the D1/D2 sequence of the large subunit (LSU) rRNA gene. Candida ethanolica was determined to be the dominant species that was frequently found in Miang together with minor resident yeast species. All yeast isolates demonstrated their tannin-tolerant capability when cultivated on yeast malt agar (YMA) containing 50g/l tannin, but nine isolates displayed clear zones forming around their colonies, e.g., Debaryomyces hansenii, Cyberlindnera rhodanensis, and Sporidiobolus ruineniae. The results obtained from a visual reading method of tannase revealed that all yeast isolates were positive for methyl gallate, indicating that they possess tannase activity. It is assumed that a tannin-tolerant ability is one of the most important factors for developing a yeast community in Miang. This research study is the first report to describe tannin-tolerant yeasts and yeast communities in traditionally fermented tea leaves.

  18. Comparison of FTIR spectra between Huanglongbing (citrus greening) and other citrus maladies.

    PubMed

    Hawkins, Samantha A; Park, Bosoon; Poole, Gavin H; Gottwald, Tim R; Windham, William R; Albano, Joseph; Lawrence, Kurt C

    2010-05-26

    Fourier transform infrared (FTIR) spectroscopy has the ability to quickly identify the presence of specific carbohydrates in plant materials. The presence of the disease huanglongbing (HLB) in the leaves of infected citrus plants has a distinctive spectrum that can be used to distinguish an infected plant from a healthy plant. However, many citrus diseases display similar visible symptoms and are of concern to citrus growers. In this study several citrus diseases (citrus leaf rugose virus, citrus tristeza virus, citrus psorosis virus, and Xanthomonas axonopodis ) and nutrient deficiencies (iron, copper, zinc, manganese, and magnesium) were compared with HLB using FTIR spectroscopy to determine if the spectra alone can be used to identify plants that are infected with HLB instead of another disease. The results indicate that the spectra of some diseases and deficiencies more closely resemble those of apparently healthy plants and some share the carbohydrate transformation that has been seen in the spectra of HLB-infected plants.

  19. Global Transcriptional Analysis Reveals the Complex Relationship between Tea Quality, Leaf Senescence and the Responses to Cold-Drought Combined Stress in Camellia sinensis

    PubMed Central

    Zheng, Chao; Wang, Yu; Ding, Zhaotang; Zhao, Lei

    2016-01-01

    In field conditions, especially in arid and semi-arid areas, tea plants are often simultaneously exposed to various abiotic stresses such as cold and drought, which have profound effects on leaf senescence process and tea quality. However, most studies of gene expression in stress responses focus on a single inciting agent, and the confounding effect of multiple stresses on crop quality and leaf senescence remain unearthed. Here, global transcriptome profiles of tea leaves under separately cold and drought stress were compared with their combination using RNA-Seq technology. This revealed that tea plants shared a large overlap in unigenes displayed “similar” (26%) expression pattern and avoid antagonistic responses (lowest level of “prioritized” mode: 0%) to exhibit very congruent responses to co-occurring cold and drought stress; 31.5% differential expressed genes and 38% of the transcriptome changes in response to combined stresses were unpredictable from cold or drought single-case studies. We also identified 319 candidate genes for enhancing plant resistance to combined stress. We then investigated the combined effect of cold and drought on tea quality and leaf senescence. Our results showed that drought-induced leaf senescence were severely delayed by (i) modulation of a number of senescence-associated genes and cold responsive genes, (ii) enhancement of antioxidant capacity, (iii) attenuation of lipid degradation, (iv) maintenance of cell wall and photosynthetic system, (v) alteration of senescence-induced sugar effect/sensitivity, as well as (vi) regulation of secondary metabolism pathways that significantly influence the quality of tea during combined stress. Therefore, care should be taken when utilizing a set of stresses to try and maximize leaf longevity and tea quality. PMID:28018394

  20. Citrus Genomics

    PubMed Central

    Talon, Manuel; Gmitter Jr., Fred G.

    2008-01-01

    Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The historical developments of linkage mapping, markers and breeding, EST projects, physical mapping, an international citrus genome sequencing project, and critical functional analysis are described. Despite the challenges of working with citrus, there has been substantial progress. Citrus researchers engaged in international collaborations provide optimism about future productivity and contributions to the benefit of citrus industries worldwide and to the human population who can rely on future widespread availability of this health-promoting and aesthetically pleasing fruit crop. PMID:18509486

  1. Impact of physiology, structure and BRDF in hyperspectral time series of a Citrus orchard

    NASA Astrophysics Data System (ADS)

    Stuckens, J.; Dzikiti, S.; Verstraeten, W. W.; Verreynne, J. S.; Swinnen, R.; Coppin, P.

    2010-05-01

    Monitoring of plant production systems using remote sensing requires an understanding of the mechanisms in which physiological and structural changes as well as the quality and direction of incident light alter the measured canopy reflectance. Due to the evergreen nature of Citrus, the benefits of year-round monitoring of spectral changes are counterweighted by more subtle changes and seasonal trends than in other perennials. This study presents the results of a 14 months field measurement campaign in a commercial Citrus sinensis ‘Midknight Valencia' orchard in Wellington, Western Cape Province, South-Africa. Hyperspectral data were collected of canopy and leaf reflectance (350 - 2500 nm) of 16 representative trees at monthly intervals and supplemented with local climatology, orchard management records, sap stream, water potential and leaf and soil nutrient analysis. The aim of this research is to translate spectral changes and trends at the leaf and at canopy levels into physiological processes such as plant nutrient and carbohydrate balances and stress responses. Specific research questions include the spectral detection of flowering (date of anthesis, flowering intensity), fruit drop, fruit number and coloration, vegetative flushes, leaf senescence and drop and pruning. Attention is paid to the detection and the impact of sunburn (photo-damage). In order to separate physiological and structural changes from changes caused by seasonal changes in solar elevation during measurement time (bidirectional reflectance) a normalization function is constructed using simulated and measured data. Additional research is done to up-scale measurements from tree level to orchard level, which includes the tree variability, the influence of soil and weeds and different amounts of shading.

  2. Development of SSR markers from Citrus clementina (Rutaceae) BAC end sequences and interspecific transferability in Citrus.

    PubMed

    Ollitrault, Frédérique; Terol, Javier; Pina, Jose Antonio; Navarro, Luis; Talon, Manuel; Ollitrault, Patrick

    2010-11-01

    Microsatellite primers were developed from bacterial artificial chromosome (BAC) end sequences of Citrus clementina and their transferability and polymorphism tested in the genus Citrus for future anchorage of physical and genetic maps and comparative interspecific genetic mapping. • Using PAGE and DNA silver staining, 79 primer pairs were selected for their transferability and polymorphism among 526 microsatellites mined in BES. A preliminary diversity study in Citrus was conducted with 18 of them, in C. reticulata, C. maxima, C. medica, C. sinensis, C. aurantium, C. paradisi, C. lemon, C. aurantifolia, and some papedas (wild citrus), using a capillary electrophoresis fragment analyzer. Intra- and interspecific polymorphism was observed, and heterozygous markers were identified for the different genotypes to be used for genetic mapping. • These results indicate the utility of the developed primers for comparative mapping studies and the integration of physical and genetic maps.

  3. Genome wide selection in Citrus breeding.

    PubMed

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq(TM) (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  4. Effect of genotype and environment on citrus juice carotenoid content.

    PubMed

    Dhuique-Mayer, Claudie; Fanciullino, Anne-Laure; Dubois, Cecile; Ollitrault, Patrick

    2009-10-14

    A selection of orange and mandarin varieties belonging to the same Citrus accession and cultivated in Mediterranean (Corsica), subtropical (New Caledonia), and tropical areas (principally Tahiti) were studied to assess the effect of genotype and environmental conditions on citrus juice carotenoid content. Juices from three sweet orange cultivars, that is, Pera, Sanguinelli, and Valencia ( Citrus sinensis (L.) Osbeck), and two mandarin species ( Citrus deliciosa Ten and Citrus clementina Hort. ex Tan), were analyzed by HPLC using a C(30) column. Annual carotenoid content variations in Corsican fruits were evaluated. They were found to be very limited compared to variations due to varietal influences. The statistical analysis (PCA, dissimilarity tree) results based on the different carotenoid compounds showed that citrus juice from Corsica had a higher carotenoid content than citrus juices from tropical origins. The tropical citrus juices were clearly differentiated from citrus juices from Corsica, and close correlations were obtained between beta-cryptoxanthin and phytoene (r = 0.931) and beta-carotene and phytoene (r = 0.918). More broadly, Mediterranean conditions amplified interspecific differentiation, especially by increasing the beta-cryptoxanthin and cis-violaxanthin content in oranges and beta-carotene and phytoene-phytofluene content in mandarins. Thus, at a quantitative level, environmental conditions also had a major role in determining the levels of carotenoids of nutritional interest, such as the main provitamin A carotenoids in citrus juice (beta-cryptoxanthin and beta-carotene).

  5. Candidatus Liberibacter asiaticus titers in citrus cultivars in the field and in Asian citrus psyllid (ACP) inoculated greenhouse trees

    USDA-ARS?s Scientific Manuscript database

    A survey of seven citrus cultivars (C. sinensis, C. paradisi, ‘Temple’ tangor, ‘Minneola’ and ‘Orlando’ tangelos and, ‘Fallglo’ and ‘Sunburst’ mandarin hybrids) growing in commercial orchards in Florida revealed a correlation between visual ratings of HLB incidence and severity and CLas titer (Stove...

  6. Efficacy of topical application, leaf residue and soil drench of Isaria fumosorosea for citrus root weevil management: Laboratory and greenhouse investigations

    USDA-ARS?s Scientific Manuscript database

    Different treatment applications with Isaria fumosorosea blastospore formulation (Ifr strain 3581) were assessed for efficacy in the management of the citrus weevil Diaprepes abbreviatus. Ifr when applied topically on larvae and adults at a rate of 107 blastospores/ml and incubated in original reari...

  7. Citrus pulp for cattle.

    PubMed

    Arthington, John D; Kunkle, William E; Martin, Amy M

    2002-07-01

    Citrus pulp is classified as an energy concentrate by-product feed. Citrus by-products fed to beef cattle include citrus molasses, citrus meal, wet citrus pulp, dried citrus pulp, and pelleted citrus pulp; however, in current production systems, pulp (wet, dry, and pelleted) is the only by-product commonly used. Citrus pulp production in the United States is limited to specific subtropical regions, of which south central Florida remains the largest with additional production in California and Texas.

  8. Variation in Radopholus citrophilus Population Densities in the Citrus Rootstock Carrizo Citrange.

    PubMed

    Kaplan, D T

    1986-01-01

    Seedlings of the hybrid citrus rootstock, Carrizo citrange (Citrus sinensis x Poncirus trifoliata) do not uniformly limit development of the citrus burrowing nematode, Radopholus citrophilus. Variation in nematode population densities in roots of seedlings germinating from the same seed suggests that factors responsible for nematode incompatibility are not functional or are not inherited uniformly among progeny. Seeds which produced a single seedling were more likely to produce plants which suppressed citrus burrowing nematode population increase than were seeds which produced two or three seedlings.

  9. Predisposition of citrus foliage to infection with Xanthomonas citri subsp. citri

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (caused by Xanthomonas citri subsp. citri, Xcc) is a serious disease of susceptible citrus in Florida and other citrus-growing areas of the world. The effect of leaf preconditioning as a route for entry of the bacteria is poorly characterized. A series of experiments were designed to i...

  10. Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. × Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors.

    PubMed

    Arbona, Vicent; Zandalinas, Sara I; Manzi, Matías; González-Guzmán, Miguel; Rodriguez, Pedro L; Gómez-Cadenas, Aurelio

    2017-04-01

    Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA β-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited ΔNHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.

  11. Multimodal cues drive host-plant assessment in Asian citrus psyllid (Diaphorina citri).

    PubMed

    Patt, Joseph M; Meikle, William G; Mafra-Neto, Agenor; Sétamou, Mamoudou; Mangan, Robert; Yang, Chenghai; Malik, Nasir; Adamczyk, John J

    2011-12-01

    Asian citrus psyllid (Diaphorina citri) transmits the causal agent of Huanglongbing, a devastating disease of citrus trees. In this study we measured behavioral responses of D. citri to combinations of visual, olfactory, and gustatory stimuli in test arenas. Stimuli were presented to the psyllids in droplets or lines of an emulsified wax formulation in two different arena types in no-choice tests. First, when placed on a colored ring situated halfway between the center and perimeter of a petri dish, D. citri spent more time on yellow versus gray rings; however, this response disappeared when either gray or yellow wax droplets were applied. When the psyllids were presented with droplets scented with terpenes, the response to both scent and color was increased. The addition of a dilute (≍0.1 M) sucrose solution to the wax droplets increased the magnitude of D. citri responses. Next, groups of D. citri were placed on plastic laboratory film covering a sucrose solution, to mimic a leaf surface. Test stimuli were presented via two 'midribs' made from lines of emulsified wax formulation. Probing levels were measured as a function of color saturation and scent composition, and concentration. The test scents were based on qualitatively major volatiles emitted by Murraya paniculata (L.) Jack, Citrus aurantifolia (Christm.) Swingle, and C. sinensis (L.) Osbeck. The highest probing response was observed on the middle concentration (20-μl scent/10 ml wax formulation) of the C. aurantifolia-scented wax lines. Results indicate that there are interactive effects between the different sensory modalities in directing host-plant assessment behavior.

  12. Volatile constituents of wild citrus Mangshanyegan (Citrus nobilis Lauriro) peel oil.

    PubMed

    Liu, Cuihua; Cheng, Yunjiang; Zhang, Hongyan; Deng, Xiuxin; Chen, Feng; Xu, Juan

    2012-03-14

    Volatiles of a wild mandarin, Mangshanyegan (Citrus nobilis Lauriro), were characterized by GC-MS, and their aroma active compounds were identified by aroma extract dilution analysis (AEDA) and gas chromatography-olfactometry (GC-O). The volatile profile of Mangshanyegan was compared with those of other four citrus species, Kaopan pummelo (Citrus grandis), Eureka lemon (Citrus limon), Huangyanbendizao tangerine (Citrus reticulata), and Seike navel orange (Citrus sinensis). Monoterpene hydrocarbons predominated in Mangshanyegan, in particular d-limonene and β-myrcene, which accounted for 85.75 and 10.89% of total volatiles, respectively. Among the 12 compounds with flavor dilution factors (FD) = 27, 8 oxygenated compounds, including (Z)- and (E)-linalool oxides, were present only in Mangshanyegan. The combined results of GC-O, quantitative analysis, odor activity values (OAVs), and omission tests revealed that β-myrcene and (Z)- and (E)-linalool oxides were the characteristic aroma compounds of Mangshanyegan, contributing to the balsamic and floral notes of its aroma.

  13. Citrus Inventory

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An aerial color infrared (CIR) mapping system developed by Kennedy Space Center enables Florida's Charlotte County to accurately appraise its citrus groves while reducing appraisal costs. The technology was further advanced by development of a dual video system making it possible to simultaneously view images of the same area and detect changes. An image analysis system automatically surveys and photo interprets grove images as well as automatically counts trees and reports totals. The system, which saves both time and money, has potential beyond citrus grove valuation.

  14. Citrus Inventory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Florida's Charlotte County Property Appraiser is using an aerial color infrared mapping system for inventorying citrus trees for valuation purposes. The ACIR system has significantly reduced the time and manpower required for appraisal. Aerial photographs are taken and interpreted by a video system which makes it possible to detect changes from previous years. Potential problems can be identified. KSC's TU Office has awarded a contract to the Citrus Research and Education Center to adapt a prototype system which would automatically count trees and report totals.

  15. Citrus tissue culture employing vegetative explants.

    PubMed

    Chaturvedi, H C; Singh, S K; Sharma, A K; Agnihotri, S

    2001-11-01

    Citrus being a number one fruit of the world due to its high nutritional value, huge production of fruits and fruit products, the citrus industry may be considered a major fruit industry. Though citrus orchard area in India is comparable to USA, the produce is far less, while its export is nil. Biotechnology has played an outstanding role in boosting the citrus industry, e.g., in Spain, which is now the biggest exporter of citrus fruit with the application of micrografting. Amongst the fruit trees, perhaps the maximum tissue culture research has been done in citrus during the past four decades, however, the results of practical value are meagre. The shortfalls in citrus tissue culture research and some advancements made in this direction along with bright prospects are highlighted, restricting the review to vegetative explants only. Whilst utilization of nucellar embryogenesis is limited to rootstocks, the other aspects, like, regeneration and proliferation of shoot meristems measuring 200 microm in length--a global breakthrough--of two commercially important scion species, Citrus aurantifolia and C. sinensis and an important rootstock, C. limonia, improvement of micrografting technique, cloning of the same two scion species as well as some Indian rootstock species, employing nodal stem segments of mature trees, of immense practical value have been elaborated. A rare phenomenon of shift in the morphogenetic pattern of differentiation from shoot bud differentiation to embryoid formation occurred during the long-term culture of stem callus of C. grandis. Stem callus-regenerated plants of C. aurantifolia, C. sinensis and C. grandis showed variation in their ploidy levels and a somaclonal variant of C. sinensis, which produced seedless fruits was isolated. Tailoring of rooting in microshoots to a tap root-like system by changing the inorganic salt composition of the rooting medium, resulting in 100% transplant success, and germplasm preservation through normal growth

  16. Digital Gene Expression Analysis of Corky Split Vein Caused by Boron Deficiency in ‘Newhall’ Navel Orange (Citrus sinensis Osbeck) for Selecting Differentially Expressed Genes Related to Vascular Hypertrophy

    PubMed Central

    Yang, Cheng-Quan; Liu, Yong-Zhong; An, Ji-Cui; Li, Shuang; Jin, Long-Fei; Zhou, Gao-Feng; Wei, Qing-Jiang; Yan, Hui-Qing; Wang, Nan-Nan; Fu, Li-Na; Liu, Xiao; Hu, Xiao-Mei; Yan, Ting-Shuai; Peng, Shu-Ang

    2013-01-01

    Corky split vein caused by boron (B) deficiency in ‘Newhall’ Navel Orange was studied in the present research. The boron-deficient citrus exhibited a symptom of corky split vein in mature leaves. Morphologic and anatomical surveys at four representative phases of corky split veins showed that the symptom was the result of vascular hypertrophy. Digital gene expression (DGE) analysis was performed based on the Illumina HiSeq™ 2000 platform, which was applied to analyze the gene expression profilings of corky split veins at four morphologic phases. Over 5.3 million clean reads per library were successfully mapped to the reference database and more than 22897 mapped genes per library were simultaneously obtained. Analysis of the differentially expressed genes (DEGs) revealed that the expressions of genes associated with cytokinin signal transduction, cell division, vascular development, lignin biosynthesis and photosynthesis in corky split veins were all affected. The expressions of WOL and ARR12 involved in the cytokinin signal transduction pathway were up-regulated at 1st phase of corky split vein development. Furthermore, the expressions of some cell cycle genes, CYCs and CDKB, and vascular development genes, WOX4 and VND7, were up-regulated at the following 2nd and 3rd phases. These findings indicated that the cytokinin signal transduction pathway may play a role in initiating symptom observed in our study. PMID:23755275

  17. Chlorophyllase activity in chlorophyll-free citrus chromoplasts.

    PubMed

    Hirschfeld, K R; Goldschmidt, E E

    1983-06-01

    Chromoplast fractions from mature, chlorophyll-less 'Valencia' orange (Citrus sinensis L. Osbeck) flavedo (= the outer coloured layer of citrus peel) showed considerable chlorophyllase activity. Acetone powders prepared from chromoplast fractions had 2.5× higher specific activity than those prepared from whole flavedo. Exposure of mature, chlorophyll-less fruit to ethylene caused a 2.5 to 4.0 fold increase in chlorophyllase activity. Juice chromoplasts showed negligible chlorophyllase activity. The results suggest that chlorophyllase activity as well as its induction by ethylene are not dependent upon the presence of chlorophyll in the tissue.

  18. A Mixture of Ethanol Extracts of Persimmon Leaf and Citrus junos Sieb Improves Blood Coagulation Parameters and Ameliorates Lipid Metabolism Disturbances Caused by Diet-Induced Obesity in C57BL/6J Mice.

    PubMed

    Kim, Ae Hyang; Kim, Hye Jin; Ryu, Ri; Han, Hye Jin; Han, Young Ji; Lee, Mi-Kyung; Choi, Myung-Sook; Park, Yong Bok

    2016-02-01

    This study investigated the effects of a flavonoid-rich ethanol extract of persimmon leaf (PL), an ethanol extract of Citrus junos Sieb (CJS), and a PL-CJS mixture (MPC) on mice fed a highfat diet (HFD). We sought to elucidate the mechanisms of biological activity of these substances using measurements of blood coagulation indices and lipid metabolism parameters. C57BL/6J mice were fed a HFD with PL (0.5% (w/w)), CJS (0.1% (w/w)), or MPC (PL 0.5%, CJS 0.1% (w/w)) for 10 weeks. In comparison with data obtained for mice in the untreated HFD group, consumption of MPC remarkably prolonged the activated partial thromboplastin time (aPTT) and prothrombin time (PT), whereas exposure to PL prolonged aPTT only. Lower levels of plasma total cholesterol, hepatic cholesterol, and erythrocyte thiobarbituric acid-reactive substances, hepatic HMG-CoA reductase, and decreased SREBP-1c gene expression were observed in mice that received PL and MPC supplements compared with the respective values detected in the untreated HFD animals. Our results indicate that PL and MPC may have beneficial effects on blood circulation and lipid metabolism in obese mice.

  19. Rearing migratory endoparasitic nematodes in citrus callus and roots produced from citrus leaves.

    PubMed

    Inserra, R N; O'Bannon, J H

    1975-07-01

    Radopholus similis and Pratylenchus coffeae were reared on callus and roots developed from citrus leaves. Callus formed best when leaf petioles were immersed in Astatula fine sand and the leaves were sprayed daily with 4 ppm 2,4-D solution and maintained at 25 or 30 C. The nematodes completed one generation in 20 days at 25 C. Highest populations of R. similis (1,127) occurred after 50 days, and the highest for P. coffeae (619) after 70 days. Leaf-callus cultures from R. similis-resistant citrus rootstocks showed the same degree of infection as susceptible rough lemon callus after 30 days.

  20. LRR-RLK family from two Citrus species: genome-wide identification and evolutionary aspects.

    PubMed

    Magalhães, Diogo M; Scholte, Larissa L S; Silva, Nicholas V; Oliveira, Guilherme C; Zipfel, Cyril; Takita, Marco A; De Souza, Alessandra A

    2016-08-12

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of plant RLKs. The functions of most LRR-RLKs have remained undiscovered, and a few that have been experimentally characterized have been shown to have important roles in growth and development as well as in defense responses. Although RLK subfamilies have been previously studied in many plants, no comprehensive study has been performed on this gene family in Citrus species, which have high economic importance and are frequent targets for emerging pathogens. In this study, we performed in silico analysis to identify and classify LRR-RLK homologues in the predicted proteomes of Citrus clementina (clementine) and Citrus sinensis (sweet orange). In addition, we used large-scale phylogenetic approaches to elucidate the evolutionary relationships of the LRR-RLKs and further narrowed the analysis to the LRR-XII group, which contains several previously described cell surface immune receptors. We built integrative protein signature databases for Citrus clementina and Citrus sinensis using all predicted protein sequences obtained from whole genomes. A total of 300 and 297 proteins were identified as LRR-RLKs in C. clementina and C. sinensis, respectively. Maximum-likelihood phylogenetic trees were estimated using Arabidopsis LRR-RLK as a template and they allowed us to classify Citrus LRR-RLKs into 16 groups. The LRR-XII group showed a remarkable expansion, containing approximately 150 paralogs encoded in each Citrus genome. Phylogenetic analysis also demonstrated the existence of two distinct LRR-XII clades, each one constituted mainly by RD and non-RD kinases. We identified 68 orthologous pairs from the C. clementina and C. sinensis LRR-XII genes. In addition, among the paralogs, we identified a subset of 78 and 62 clustered genes probably derived from tandem duplication events in the genomes of C. clementina and C. sinensis, respectively. This work provided the first comprehensive

  1. Efficacy and uptake of soil-applied imidacloprid in the control of Asian citrus psyllid and a citrus leafminer, two foliar-feeding citrus pests.

    PubMed

    Sétamou, M; Rodriguez, D; Saldana, R; Schwarzlose, G; Palrang, D; Nelson, S D

    2010-10-01

    The systemic neonicotinoid insecticide imidacloprid, Admire Pro, was applied to 3- and 4-yr-old nonbearing 'Rio Red' grapefruit, Citrus x paradisi Macfad., trees in 2006 and 2007, respectively, to determine its effects in the control of two major citrus pests, the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), and a citrus leafminer Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae). Young flush shoots were randomly collected weekly for 13 and 11 wk in 2006 and 2007, respectively, to determine the infestation levels and densities of immature stages of both Asian citrus psyllid and P. citrella. Additional flush shoot samples were collected in 2007 and titers of imidacloprid in leaf tissue were determined using an enzyme-linked immunosorbent assay. Soil application of imidacloprid significantly reduced the infestation levels and densities of both pests on flush shoots, starting from the second week post application. The effects of the neonicotinoid insecticide were similar in both years. Analysis of imidacloprid concentration in leaf tissue showed a gradual increase during the first 3 wk, and titers remained well above 200 ppb for 11 wk postapplication. Significant positive correlations were obtained between imidacloprid titers in leaf tissue and the percentage of control levels achieved for both pests. A high level of suppression of both P. citrella and Asian citrus psyllid populations on citrus trees was associated with imidacloprid titer in leaf tissue >200 ppb, which was reached 2 wk after soil treatment. Although soil application of imidacloprid did not provide rapid knockdown of Asian citrus psyllid and P. citrella populations, it resulted in chronic residues in leaf tissue and long-term suppression of both pests.

  2. [Effects of Different Altitudes and Sowing Dates on Direct Sowing Angelica sinensis Yield and Quality].

    PubMed

    Ji, Ying; Lin, Hai-ming; Deng, Ji-cheng; Qi, Ju-tao; Ma, Zhan-chuan; Jin, Ling; Wang, Wan-sheng

    2015-09-01

    To study the effects of different altitudes and sowing dates on direct sowing Angelica sinensis biomass, yield and quality, and to provide a theoretical basis for Angelica sinensis direct sowing cultivation techniques. Two factors trials were used to research the influence of altitude and sowing dates on yield and quality of direct sowing Angelica sinensis. The altitudes were located at 2500, 2000 and 1500 m, and the sowing dates were set up at autumn August 29, and Spring April 3 and April 24. The experiments were designed with split plot. Under the same altitude, roots and aboveground biomass of direct sowing Angelica sinensis were higher when sowing earlier. In the same sowing date, the root and aboveground biomass was the maximum at 2 000 m altitude, followed by elevation of 1 500 m. At 2 500 m altitude, Angelica sinensis root and aboveground biomass was the minimum. Sowing at 2 000 m altitude at August 29 direct sowing Angelica sinensis showed the highest biomass and yield, reaching 13 840.95 kg/hm2, significantly higher than the other treatments. Compared with transplanting Angelica sinensis in this region, the production of direct sowing Angelica sinensis was also 15. 3% higher. Angelica sinensis medicinal grade was significantly higher than the rest of the process. Angelica sinensis extract, volatile oil and ferulic acid content had reached the standard of Chinese Pharmacopoeia. Angelica sinensis sowed in late August at 2000 m altitude has the best yield and quality on root length, root diameter, plant height, leaf number, dry and fresh matter accumulation, followed by 1500 m altitude, and 2500 m worst. Therefore, altitude range of Angelica sinensis direct sowing cultivation area can be reduced to 1500-2000 m. Angelica sinensis sowed in late August, at 2000 m altitude, the indicators like root length,root diameter,plant height,leaf number,and dry and fresh matter accumulation showed the best, followed by 1500 m altitude, 2500 m worst. Therefore, altitude

  3. Citrus leprosis research update

    USDA-ARS?s Scientific Manuscript database

    Citrus leprosis is one of the oldest citrus diseases, but is also one of the most important emerging citrus diseases in South and Central America, and it is apparently spreading northward towards the U.S. Research in our labs and by others has shown that citrus leprosis disease is caused by a compl...

  4. Citrus blight research

    USDA-ARS?s Scientific Manuscript database

    With HLB now occurring throughout Florida citrus groves, citrus blight has been getting less attention even though the problem still exists. In fact, the combination of HLB and citrus blight has compounded the problem that the citrus industry is facing with decreased yields, small fruit size and tre...

  5. Construction of citrus gene coexpression networks from microarray data using random matrix theory.

    PubMed

    Du, Dongliang; Rawat, Nidhi; Deng, Zhanao; Gmitter, Fred G

    2015-01-01

    After the sequencing of citrus genomes, gene function annotation is becoming a new challenge. Gene coexpression analysis can be employed for function annotation using publicly available microarray data sets. In this study, 230 sweet orange (Citrus sinensis) microarrays were used to construct seven coexpression networks, including one condition-independent and six condition-dependent (Citrus canker, Huanglongbing, leaves, flavedo, albedo, and flesh) networks. In total, these networks contain 37 633 edges among 6256 nodes (genes), which accounts for 52.11% measurable genes of the citrus microarray. Then, these networks were partitioned into functional modules using the Markov Cluster Algorithm. Significantly enriched Gene Ontology biological process terms and KEGG pathway terms were detected for 343 and 60 modules, respectively. Finally, independent verification of these networks was performed using another expression data of 371 genes. This study provides new targets for further functional analyses in citrus.

  6. Structure-activity relationship of citrus polymethoxylated flavones and their inhibitory effects on Aspergillus niger.

    PubMed

    Liu, Li; Xu, Xiaoyun; Cheng, Dan; Yao, Xiaolin; Pan, Siyi

    2012-05-02

    Citrus peels are rich in polymethoxylated flavones (PMFs) and are potential sources of natural preservatives. Six PMFs extracts, isolated and purified from the peels of three mandarins (Citrus reticulata) and three sweet oranges (Citrus sinensis), were identified and quantitated. Their inhibitory effects on Aspergillus niger were evaluated using a microbroth dilution assay. The Red tangerine variety exhibited the greatest antifungal activity (MIC = 0.2 mg/mL), while Jincheng showed the lowest activity (MIC = 1.8 mg/mL). An analysis of principal components was applied to the results in order to elucidate the structure-activity relationships of the citrus PMFs. The structure-activity relationship analysis revealed that, for good inhibitory effect, the 5-OH, 3-OCH₃, and 8-OCH₃ functionalities were essential, while the presence of 3-OH and 3'-OCH₃ greatly reduced inhibition. The findings of this study provide important information for the exploitation and utilization of citrus PMFs as natural biopreservatives.

  7. Construction of citrus gene coexpression networks from microarray data using random matrix theory

    PubMed Central

    Du, Dongliang; Rawat, Nidhi; Deng, Zhanao; Gmitter, Fred G.

    2015-01-01

    After the sequencing of citrus genomes, gene function annotation is becoming a new challenge. Gene coexpression analysis can be employed for function annotation using publicly available microarray data sets. In this study, 230 sweet orange (Citrus sinensis) microarrays were used to construct seven coexpression networks, including one condition-independent and six condition-dependent (Citrus canker, Huanglongbing, leaves, flavedo, albedo, and flesh) networks. In total, these networks contain 37 633 edges among 6256 nodes (genes), which accounts for 52.11% measurable genes of the citrus microarray. Then, these networks were partitioned into functional modules using the Markov Cluster Algorithm. Significantly enriched Gene Ontology biological process terms and KEGG pathway terms were detected for 343 and 60 modules, respectively. Finally, independent verification of these networks was performed using another expression data of 371 genes. This study provides new targets for further functional analyses in citrus. PMID:26504573

  8. Fumigant toxicity of citrus oils against cowpea seed beetle Callosobruchus maculatus (F.) (Coleoptera: Bruchidae).

    PubMed

    Moravvej, G; Abbar, S

    2008-01-01

    In the present study, the effects of volatile components of Citrus paradisi, C. aurantium, C. limonium and C. sinensis peel essential oils were investigated on the cowpea adult bruchid, Callosobruchus maculatus (F.). The oils were extracted from the fruit peels using hydrodistillation. The results indicated that the citrus oils had high fumigant activity against adult beetles. The mortality of 1-2 day-old adults increased with concentration and exposure time from 3 to 24 h. The oil of C. paradisi was more effective than those of C. aurantium and C. limonium (The LC50 values were 125, 145 and 235 microl L(-1) at 24 h exposure, respectively). The oil of C. sinensis proved to be least toxic (LC50 = 269 microl L(-1). The results suggested that citrus peel oils can be used as potential control measure against cowpea beetles.

  9. The evolution of CMA bands in Citrus and related genera.

    PubMed

    e Silva, Ana Emília Barros; Marques, André; dos Santos, Karla G B; Guerra, Marcelo

    2010-06-01

    Most species of Citrus and related genera display a similar karyotype with 2n = 18 and a variable number of terminal heterochromatic blocks positively stained with chromomycin A(3) (CMA(+) bands). Some of these blocks are 45S rDNA sites, whereas others may correspond to the main GC-rich satellite DNA found in several Citrus species. In the present work, the distribution of the 45S rDNA and the main satellite DNA isolated from C. sinensis (CsSat) were investigated by in situ hybridization in seven species of Citrus, two species of closely related genera (Fortunella obovata and Poncirus trifoliata) and four species of the subfamily Aurantioideae, which were less related to Citrus (Atalantia monophylla, Murraya paniculata, Severinia buxifolia, and Triphasia trifolia). In Citrus, Fortunella, and Poncirus, most CMA(+) bands colocalized only with CsSat sites, whereas others colocalized only with rDNA sites. However, some of these species displayed a few CMA(+) bands that colocalized with sites of both probes and other CMA(+) bands that did not colocalized with any of the probes. On the other hand, in the four species less related to Citrus, no CsSat signal was found on chromosomes. On Southern blot, the CsSat probe hybridized with genomic DNA from Citrus, Fortunella, and Poncirus at high stringency only, while under the less stringent conditions, it also hybridized with distantly related species. Therefore, CsSat sequences are the principal component of the heterochromatic blocks of Citrus, Poncirus, and Fortunella, whereas CsSat-like sequences seem to be widespread in the subfamily Aurantioideae. These data further suggest that the variable number of terminal CMA(+) bands observed on chromosomes of Citrus and related genera are probably the consequence of amplification or reduction in the number of CsSat-like sequences distributed on chromosome termini, paralleled by mutation and homogenization events, as proposed by the library hypothesis.

  10. Evaluation of codon biology in citrus and Poncirus trifoliata based on genomic features and frame corrected expressed sequence tags.

    PubMed

    Ahmad, Touqeer; Sablok, Gaurav; Tatarinova, Tatiana V; Xu, Qiang; Deng, Xiu-Xin; Guo, Wen-Wu

    2013-04-01

    Citrus, as one of the globally important fruit trees, has been an object of interest for understanding genetics and evolutionary process in fruit crops. Meta-analyses of 19 Citrus species, including 4 globally and economically important Citrus sinensis, Citrus clementina, Citrus reticulata, and 1 Citrus relative Poncirus trifoliata, were performed. We observed that codons ending with A- or T- at the wobble position were preferred in contrast to C- or G- ending codons, indicating a close association with AT richness of Citrus species and P. trifoliata. The present study postulates a large repertoire of a set of optimal codons for the Citrus genus and P. trifoliata and demonstrates that GCT and GGT are evolutionary conserved optimal codons. Our observation suggested that mutational bias is the dominating force in shaping the codon usage bias (CUB) in Citrus and P. trifoliata. Correspondence analysis (COA) revealed that the principal axis [axis 1; COA/relative synonymous codon usage (RSCU)] contributes only a minor portion (∼10.96%) of the recorded variance. In all analysed species, except P. trifoliata, Gravy and aromaticity played minor roles in resolving CUB. Compositional constraints were found to be strongly associated with the amino acid signatures in Citrus species and P. trifoliata. Our present analysis postulates compositional constraints in Citrus species and P. trifoliata and plausible role of the stress with GC3 and coevolution pattern of amino acid.

  11. Evaluation of Codon Biology in Citrus and Poncirus trifoliata Based on Genomic Features and Frame Corrected Expressed Sequence Tags

    PubMed Central

    Ahmad, Touqeer; Sablok, Gaurav; Tatarinova, Tatiana V.; Xu, Qiang; Deng, Xiu-Xin; Guo, Wen-Wu

    2013-01-01

    Citrus, as one of the globally important fruit trees, has been an object of interest for understanding genetics and evolutionary process in fruit crops. Meta-analyses of 19 Citrus species, including 4 globally and economically important Citrus sinensis, Citrus clementina, Citrus reticulata, and 1 Citrus relative Poncirus trifoliata, were performed. We observed that codons ending with A- or T- at the wobble position were preferred in contrast to C- or G- ending codons, indicating a close association with AT richness of Citrus species and P. trifoliata. The present study postulates a large repertoire of a set of optimal codons for the Citrus genus and P. trifoliata and demonstrates that GCT and GGT are evolutionary conserved optimal codons. Our observation suggested that mutational bias is the dominating force in shaping the codon usage bias (CUB) in Citrus and P. trifoliata. Correspondence analysis (COA) revealed that the principal axis [axis 1; COA/relative synonymous codon usage (RSCU)] contributes only a minor portion (∼10.96%) of the recorded variance. In all analysed species, except P. trifoliata, Gravy and aromaticity played minor roles in resolving CUB. Compositional constraints were found to be strongly associated with the amino acid signatures in Citrus species and P. trifoliata. Our present analysis postulates compositional constraints in Citrus species and P. trifoliata and plausible role of the stress with GC3 and coevolution pattern of amino acid. PMID:23315666

  12. Fruit load and canopy shading affect leaf characteristics and net gas exchange of 'Spring' navel orange trees.

    PubMed

    Syvertsen, J P; Goñi, C; Otero, A

    2003-09-01

    Five-year-old 'Spring' navel (Citrus sinensis (L.) Osbeck) orange trees were completely defruited, 50% defruited or left fully laden to study effects of fruit load on concentrations of nitrogen (N) and carbohydrate, net assimilation of CO2 (Ac) and stomatal conductance (gs) of mature leaves on clear winter days just before fruit harvest. Leaves on defruited trees were larger, had higher starch concentrations and greater leaf dry mass per area (LDMa) than leaves on fruited trees. Both Ac and gs were more than 40% lower in sunlit leaves on defruited trees than in sunlit leaves on trees with fruit. Leaves immediately adjacent to fruit were smaller, had lower leaf nitrogen and carbohydrate concentrations, lower LDMa and lower Ac than leaves on non-fruiting branches of the same trees. Removing half the crop increased individual fruit mass, but reduced fruit color development. Half the trees were shaded with 50% shade cloth for 4 months before harvest to determine the effects of lower leaf temperature (Tl) and leaf-to-air vapor pressure difference on leaf responses. On relatively warm days when sunlit Tl > 25 degrees C, shade increased Ac and gs, but had no effect on the ratio of internal to ambient CO2 (Ci/Ca) concentration in leaves, implying that high mesophyll temperatures in sunlit leaves were more important than gs in limiting Ac. Sunlit leaves were more photoinhibited than shaded leaves on cooler days when Tl < 25 degrees C. Shade decreased total soluble sugar concentrations in leaves, but had no effect on leaf starch concentrations. Shading had no effects on canopy volume, yield or fruit size, but shaded fruit developed better external color than sun-exposed fruit. Overall, the presence of a normal fruit crop resulted in lower foliar carbohydrate concentrations and higher Ac compared with defruited trees, except on warm days when Ac was reduced by high leaf temperatures.

  13. Biogenic emissions from Citrus species in California

    NASA Astrophysics Data System (ADS)

    Fares, Silvano; Gentner, Drew R.; Park, Jeong-Hoo; Ormeno, Elena; Karlik, John; Goldstein, Allen H.

    2011-09-01

    Biogenic Volatile Organic Compounds (BVOC) emitted from plants are the dominant source of reduced carbon chemicals to the atmosphere and are important precursors to the photochemical production of ozone and secondary organic aerosols. Considering the extensive land used for agriculture, cultivated Citrus plantations may play an important role in the chemistry of the atmosphere especially in regions such as the Central Valley of California. Moreover, the BVOC emissions from Citrus species have not been characterized in detail and more species-specific inputs for regional models of BVOC emissions are needed. In this study, we measured the physiological parameters and emissions of the most relevant BVOC (oxygenated compounds, monoterpenes, and sesquiterpenes) for four predominant Citrus species planted in California ( Citrus sinensis var. 'Parent Navel', Citrus limon var. 'Meyer', Citrus reticulata var. 'W. Murcott' and 'Clementine'). We used two analytical techniques to measure a full range of BVOC emitted: Proton Transfer Reaction Mass Spectrometry (PTR-MS) and gas chromatography with mass spectrometry. Methanol, followed by acetone and acetaldehyde, were the dominant BVOC emitted from lemon and mandarin trees (basal emission rates up to 300 ng(C) g(DW) -1 h -1), while oxygenated monoterpenes, monoterpenes, and sesquiterpenes were the main BVOC emitted from orange trees (basal emission rates up to = 2500 ng(C) g(DW) -1 h -1). Light and temperature-dependent algorithms were better predictors of methanol, acetaldehyde, acetone, isoprene and monoterpenes for all the Citrus species. Whereas, temperature-dependent algorithms were better predictors of oxygenated monoterpenes, and sesquiterpenes. We observed that flowering increased emissions from orange trees by an order of magnitude with the bulk of BVOC emissions being comprised of monoterpenes, sesquiterpenes, and oxygenated monoterpenes. Chemical speciation of BVOC emissions show that the various classes of terpene

  14. Citrus leprosis virus N: A New Dichorhavirus Causing Citrus Leprosis Disease.

    PubMed

    Ramos-González, Pedro Luis; Chabi-Jesus, Camila; Guerra-Peraza, Orlene; Tassi, Aline Daniele; Kitajima, Elliot Watanabe; Harakava, Ricardo; Salaroli, Renato Barbosa; Freitas-Astúa, Juliana

    2017-08-01

    Citrus leprosis (CL) is a viral disease endemic to the Western Hemisphere that produces local necrotic and chlorotic lesions on leaves, branches, and fruit and causes serious yield reduction in citrus orchards. Samples of sweet orange (Citrus × sinensis) trees showing CL symptoms were collected during a survey in noncommercial citrus areas in the southeast region of Brazil in 2013 to 2016. Transmission electron microscopy analyses of foliar lesions confirmed the presence of rod-like viral particles commonly associated with CL in the nucleus and cytoplasm of infected cells. However, every attempt to identify these particles by reverse-transcription polymerase chain reaction tests failed, even though all described primers for the detection of known CL-causing cileviruses and dichorhaviruses were used. Next-generation sequencing of total RNA extracts from three symptomatic samples revealed the genome of distinct, although highly related (>92% nucleotide sequence identity), viruses whose genetic organization is similar to that of dichorhaviruses. The genome sequence of these viruses showed <62% nucleotide sequence identity with those of orchid fleck virus and coffee ringspot virus. Globally, the deduced amino acid sequences of the open reading frames they encode share 32.7 to 63.8% identity with the proteins of the dichorhavirids. Mites collected from both the naturally infected citrus trees and those used for the transmission of one of the characterized isolates to Arabidopsis plants were anatomically recognized as Brevipalpus phoenicis sensu stricto. Molecular and biological features indicate that the identified viruses belong to a new species of CL-associated dichorhavirus, which we propose to call Citrus leprosis N dichorhavirus. Our results, while emphasizing the increasing diversity of viruses causing CL disease, lead to a reevaluation of the nomenclature of those viruses assigned to the genus Dichorhavirus. In this regard, a comprehensive discussion is

  15. Antihypertensive potential of the aqueous extract which combine leaf of Persea americana Mill. (Lauraceae), stems and leaf of Cymbopogon citratus (D.C) Stapf. (Poaceae), fruits of Citrus medical L. (Rutaceae) as well as honey in ethanol and sucrose experimental model.

    PubMed

    Dzeufiet, Paul Désiré Djomeni; Mogueo, Amélie; Bilanda, Danielle Claude; Aboubakar, Bibi-Farouck Oumarou; Tédong, Léonard; Dimo, Théophile; Kamtchouing, Pierre

    2014-12-17

    The present study was designed to evaluate the effects of the aqueous extract obtained from the mixture of fresh leaf of Persea americana, stems and fresh leaf of Cymbopogon citratus, fruits of Citrus medica and honey on ethanol and sucrose induced hypertension in rats. Rats were divided into eight groups of 6 rats each and daily treated for 5 weeks. The control group received distilled water (1 mL/kg) while rats of groups 2, 3 and 4 received ethanol 40 degrees (3 g/kg/day), 10% sucrose as drinking water and the two substances respectively. The remaining groups received in addition to sucrose and ethanol, the aqueous extract (50, 100 and 150 mg/kg) or nifedipine (10 mg/kg) respectively. Many parameters including hemodynamic, biochemical and histopathological were assessed at the end of the study. The concomitant consumption of ethanol and sucrose significantly (p < 0.001) increased the blood pressure and the heart rate compared to distilled water treated-rats. The levels of total cholesterol, LDL-cholesterol, triglycerides, atherogenic index, glucose, proteins, AST, ALT, creatinin, potassium, sodium and albumin increased while the HDL-cholesterol decreased under ethanol and sucrose feeding. Chronic ethanol and sucrose intake significantly decreased the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the contents of reduced glutathione (GSH) and nitrites whereas elevated the malondialdehyde (MDA) levels. Histological analysis revealed among other vascular congestion, inflammation, tubular clarification and thickening of the vessel wall in rats treated with alcohol and sucrose. Administration of the aqueous extract or nifedipine prevented the hemodynamic, biochemical, oxidative and histological impairments induced chronic ethanol and sucrose consumption. Current results suggest that the aqueous extract used in this study possess antihypertensive activity against ethanol and sucrose induced hypertension in rats by the improvement of biochemical

  16. Comparative transcriptome analysis during early fruit development between three seedy citrus genotypes and their seedless mutants

    PubMed Central

    Zhang, Shujian; Shi, Qingchun; Albrecht, Ute; Shatters, Robert G; Stange, Ric; McCollum, Greg; Zhang, Shuo; Fan, Chengming; Stover, Ed

    2017-01-01

    Identification of genes with differential transcript abundance (GDTA) in seedless mutants may enhance understanding of seedless citrus development. Transcriptome analysis was conducted at three time points during early fruit development (Phase 1) of three seedy citrus genotypes: Fallglo (Bower citrus hybrid (Citrus reticulata×C. reticulata×C. paradisi)×Temple (C. reticulata×C. sinensis)), grapefruit (C. paradisi), Pineapple sweet orange (C. sinensis), and their seedless mutants. Seed abortion in seedless mutants was observed at 26 days post anthesis (Time point 2). Affymetrix transcriptomic analysis revealed 359 to 1077 probe sets with differential transcript abundance in the comparison of seedless versus seedy fruits for each citrus genotypes and time points. The GDTA identified by 18 microarray probe sets were validated by qPCR. Hierarchical clustering analysis revealed a range of GDTA associated with development, hormone and protein metabolism, all of which may reflect genes associated with seedless fruit development. There were 14, 9 and 12 genes found exhibiting similar abundance ratios in all three seedless versus seedy genotype comparisons at time point 1, 2 and 3, respectively. Among those genes were genes coding for an aspartic protease and a cysteine protease, which may play important roles in seedless fruit development. New insights into seedless citrus fruit development may contribute to biotech approaches to create seedless cultivars. PMID:28904803

  17. Quantitative distribution of 'Candidatus Liberibacter asiaticus' in citrus plants with citrus huanglongbing.

    PubMed

    Li, Wenbin; Levy, Laurene; Hartung, John S

    2009-02-01

    Citrus huanglongbing (HLB), or greening disease, is strongly associated with any of three nonculturable gram-negative bacteria belonging to 'Candidatus Liberibacter spp.' 'Ca. Liberibacter spp.' are transmitted by citrus psyllids to all commercial cultivars of citrus. The diseases can be lethal to citrus and have recently become widespread in both São Paulo, Brazil, and Florida, United States, the locations of the largest citrus industries in the world. Asiatic HLB, the form of the disease found in Florida, is associated with 'Ca. Liberibacter asiaticus' and is the subject of this report. The nonculturable nature of the pathogen has hampered research and little is known about the distribution of 'Ca. L. asiaticus' in infected trees. In this study, we have used a quantitative polymerase chain reaction assay to systematically quantify the distribution of 'Ca. L. asiaticus' genomes in tissues of six species of citrus either identified in the field during survey efforts in Florida or propagated in a greenhouse in Beltsville, MD. The populations of 'Ca. L. asiaticus' inferred from the distribution of 16S rDNA sequences specific for 'Ca. L. asiaticus' in leaf midribs, leaf blades, and bark samples varied by a factor of 1,000 among samples prepared from the six citrus species tested and by a factor of 100 between two sweet orange trees tested. In naturally infected trees, above-ground portions of the tree averaged 10(10) 'Ca. L. asiaticus' genomes per gram of tissue. Similar levels of 'Ca. L. asiaticus' genomes were observed in some but not all root samples from the same plants. In samples taken from greenhouse-inoculated trees, levels of 'Ca. L. asiaticus' genomes varied systematically from 10(4) genomes/g at the graft inoculation site to 10(10) genomes/g in some leaf petioles. Root samples from these trees also contained 'Ca. L. asiaticus' at 10(7) genomes/g. In symptomatic fruit tissues, 'Ca. L. asiaticus' genomes were also readily detected and quantified. The highest

  18. Zinc treatment increases the titre of ‘Candidatus Liberibacter asiaticus’ in Huanglongbing-affected citrus plants while affecting the bacterial microbiomes

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB)-affected citrus often display zinc deficiency symptoms. In this study, supplemental zinc was applied to citrus to determine its effect on Candidatus Liberibacter asiaticus (Las) titer, HLB symptoms, and leaf microbiome. HLB-affected citrus were treated with various amounts of zi...

  19. Two previously unknown Phytophthora species associated with brown rot of Pomelo (Citrus grandis) fruits in Vietnam

    PubMed Central

    Schena, Leonardo; Jung, Thomas; Evoli, Maria; Pane, Antonella; Van Hoa, Nguyen; Van Tri, Mai; Wright, Sandra; Ramstedt, Mauritz; Olsson, Christer; Faedda, Roberto; Magnano di San Lio, Gaetano

    2017-01-01

    Two distinct Phytophthora taxa were found to be associated with brown rot of pomelo (Citrus grandis), a new disease of this ancestral Citrus species, in the Vinh Long province, Mekong River Delta area, southern Vietnam. On the basis of morphological characters and using the ITS1-5.8S-ITS2 region of the rDNA and the cytochrome oxidase subunit 1 (COI) as barcode genes, one of the two taxa was provisionally named as Phytophthora sp. prodigiosa, being closely related to but distinct from P. insolita, a species in Phytophthora Clade 9, while the other one, was closely related to but distinct from the Clade 2 species P. meadii and was informally designated as Phytophthora sp. mekongensis. Isolates of P. sp. prodigiosa and P. sp. mekongensis were also obtained from necrotic fibrous roots of Volkamer lemon (C. volkameriana) rootstocks grafted with ‘King’ mandarin (Citrus nobilis) and from trees of pomelo, respectively, in other provinces of the Mekong River Delta, indicating a widespread occurrence of both Phytophthora species in this citrus-growing area. Koch’s postulates were fulfilled via pathogenicity tests on fruits of various Citrus species, including pomelo, grapefruit (Citrus x paradisi), sweet orange (Citrus x sinensis) and bergamot (Citrus x bergamia) as well as on the rootstock of 2-year-old trees of pomelo and sweet orange on ‘Carrizo’ citrange (C. sinensis ‘Washington Navel’ x Poncirus trifoliata). This is the first report of a Phytophthora species from Clade 2 other than P. citricola and P. citrophthora as causal agent of fruit brown rot of Citrus worldwide and the first report of P. insolita complex in Vietnam. Results indicate that likely Vietnam is still an unexplored reservoir of Phytophthora diversity. PMID:28208159

  20. Two previously unknown Phytophthora species associated with brown rot of Pomelo (Citrus grandis) fruits in Vietnam.

    PubMed

    Puglisi, Ivana; De Patrizio, Alessandro; Schena, Leonardo; Jung, Thomas; Evoli, Maria; Pane, Antonella; Van Hoa, Nguyen; Van Tri, Mai; Wright, Sandra; Ramstedt, Mauritz; Olsson, Christer; Faedda, Roberto; Magnano di San Lio, Gaetano; Cacciola, Santa Olga

    2017-01-01

    Two distinct Phytophthora taxa were found to be associated with brown rot of pomelo (Citrus grandis), a new disease of this ancestral Citrus species, in the Vinh Long province, Mekong River Delta area, southern Vietnam. On the basis of morphological characters and using the ITS1-5.8S-ITS2 region of the rDNA and the cytochrome oxidase subunit 1 (COI) as barcode genes, one of the two taxa was provisionally named as Phytophthora sp. prodigiosa, being closely related to but distinct from P. insolita, a species in Phytophthora Clade 9, while the other one, was closely related to but distinct from the Clade 2 species P. meadii and was informally designated as Phytophthora sp. mekongensis. Isolates of P. sp. prodigiosa and P. sp. mekongensis were also obtained from necrotic fibrous roots of Volkamer lemon (C. volkameriana) rootstocks grafted with 'King' mandarin (Citrus nobilis) and from trees of pomelo, respectively, in other provinces of the Mekong River Delta, indicating a widespread occurrence of both Phytophthora species in this citrus-growing area. Koch's postulates were fulfilled via pathogenicity tests on fruits of various Citrus species, including pomelo, grapefruit (Citrus x paradisi), sweet orange (Citrus x sinensis) and bergamot (Citrus x bergamia) as well as on the rootstock of 2-year-old trees of pomelo and sweet orange on 'Carrizo' citrange (C. sinensis 'Washington Navel' x Poncirus trifoliata). This is the first report of a Phytophthora species from Clade 2 other than P. citricola and P. citrophthora as causal agent of fruit brown rot of Citrus worldwide and the first report of P. insolita complex in Vietnam. Results indicate that likely Vietnam is still an unexplored reservoir of Phytophthora diversity.

  1. Lower leaf gas-exchange and higher photorespiration of treated wastewater irrigated Citrus trees is modulated by soil type and climate.

    PubMed

    Paudel, Indira; Shaviv, Avi; Bernstein, Nirit; Heuer, Bruria; Shapira, Or; Lukyanov, Victor; Bar-Tal, Asher; Rotbart, Nativ; Ephrath, Jhonathan; Cohen, Shabtai

    2016-04-01

    Water quality, soil and climate can interact to limit photosynthesis and to increase photooxidative damage in sensitive plants. This research compared diffusive and non-diffusive limitations to photosynthesis as well as photorespiration of leaves of grapefruit trees in heavy clay and sandy soils having a previous history of treated wastewater (TWW) irrigation for >10 years, with different water qualities [fresh water (FW) vs TWW and sodium amended treated wastewater (TWW + Na)] in two arid climates (summer vs winter) and in orchard and lysimeter experiments. TWW irrigation increased salts (Na(+) and Cl(-) ), membrane leakage, proline and soluble sugar content, and decreased osmotic potentials in leaves of all experiments. Reduced leaf growth and higher stomatal and non-stomatal (i.e. mesophyll) limitations were found in summer and on clay soil for TWW and TWW + Na treatments in comparison to winter, sandy soil and FW irrigation, respectively. Stomatal closure, lower chlorophyll content and altered Rubisco activity are probable causes of higher limitations. On the other hand, non-photochemical quenching, an alternative energy dissipation pathway, was only influenced by water quality, independent of soil type and season. Furthermore, light and CO2 response curves were investigated for other possible causes of higher non-stomatal limitation. A higher proportion of non-cyclic electrons were directed to the O2 dependent pathway, and a higher proportion of electrons were diverted to photorespiration in summer than in winter. In conclusion, both diffusive and non-diffusive limitations contribute to the lower photosynthetic performance of leaves following TWW irrigation, and the response depends on soil type and environmental factors. © 2015 Scandinavian Plant Physiology Society.

  2. Cyclic lipopeptides from Bacillus subtilis ABS-S14 elicit defense-related gene expression in citrus fruit

    USDA-ARS?s Scientific Manuscript database

    Effects of cyclic lipopeptides obtained from B. subtilis ABS-S14 on eliciting defense-related gene transcription and activity of defense-related enzymes glucanase (GLU), chitinase (CHI), peroxidase (POX) and lipoxygenase (LOX) in Citrus sinensis cv. Valencia fruit were determined. The maximum level ...

  3. Fast Separation and Sensitive Quantitation of Polymethoxylated Flavonoids in the Peels of Citrus Using UPLC-Q-TOF-MS.

    PubMed

    Xing, Tian Tian; Zhao, Xi Juan; Zhang, Yi Dan; Li, Yuan Fang

    2017-03-29

    A rapid, sensitive, and efficient ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method has been developed to analyze polymethoxylated flavonoids (PMFs) in 14 Citrus peels, including 7 Citrus reticulata (C. reticulata) and 7 Citrus sinensis (C. sinensis). In this study, fast separation can be achieved within 12 min and 42 PMFs have been identified including 33 flavones and 9 flavanones. Most C. reticulata were shown to contain more than 20 PMFs, except Guangxihongpisuanju (GX) containing only 12 PMFs, while most C. sinensis contained fewer than 20 PMFs, except Edangan (EG) containing as many as 32 PMFs. To our knowledge, there are few reports about the quantitation of PMFs using the MS response. Here, a MS quantitative method was established and systematically validated in linearity, precision, and recovery. The linearity was from 1.25 ng/mL to 1.0 μg/mL with the limit of detection (LOD) as low as 75 pg/mL and the limit of quantitation (LOQ) as low as 0.25 ng/mL. Up to 13 PMFs, more types than ever before, were undoubtedly identified and quantitated according to the PMF standards. The results showed that the contents of PMFs in the C. reticulata were generally higher than those in the C. sinensis. This study is systematic for analyzing PMFs and is of great significance because it can provide guidance on utilization of both PMFs and citrus germplasm resources in the future.

  4. Antioxidant activity of citrus cultivars and chemical composition of Citrus karna essential oil.

    PubMed

    Malhotra, Swadesh; Suri, Samiksha; Tuli, Rakesh

    2009-01-01

    The genus Citrus has a number of species and hybrids that are well established for their pharmaceutical and economic importance. The essential oil from Citrus karna Raf (Rutaceae) was analyzed for D-limonene (92.31%), the major chemical constituent, along with other minor constituents such as alpha-pinene (1.23%) and beta-pinene (1.80%). It showed significant inhibition for the oxidation of linoleic acid in the beta-carotene-linoleic acid system. Essential oils A and B obtained from C. sinensis, with 35.08% and 76.68% d-limonene, respectively, were used to evaluate the effect of the d-limonene concentration on antioxidant potential. Studies showed that d-limonene and C. karna essential oil have a similar antioxidant potential (39.6 and 38.3%, respectively). C. sinensis oils A and B showed only 10.5% and 30% antioxidant potential, respectively, indicating the possible role of d-limonene in antioxidant activity.

  5. Effects of High Toxic Boron Concentration on Protein Profiles in Roots of Two Citrus Species Differing in Boron-Tolerance Revealed by a 2-DE Based MS Approach

    PubMed Central

    Sang, Wen; Huang, Zeng-Rong; Yang, Lin-Tong; Guo, Peng; Ye, Xin; Chen, Li-Song

    2017-01-01

    Citrus are sensitive to boron (B)-toxicity. In China, B-toxicity occurs in some citrus orchards. So far, limited data are available on B-toxicity-responsive proteins in higher plants. Thirteen-week-old seedlings of “Sour pummelo” (Citrus grandis) and “Xuegan” (Citrus sinensis) was fertilized every other day until dripping with nutrient solution containing 10 μM (control) or 400 μM (B-toxicity) H3BO3 for 15 weeks. The typical B-toxic symptom only occurred in 400 μM B-treated C. grandis leaves, and that B-toxicity decreased root dry weight more in C. grandis seedlings than in C. sinensis ones, demonstrating that C. sinensis was more tolerant to B-toxicity than C. grandis. Using a 2-dimensional electrophoresis (2-DE) based MS approach, we identified 27 up- and four down-accumulated, and 28 up- and 13 down-accumulated proteins in B-toxic C. sinensis and C. grandis roots, respectively. Most of these proteins were isolated only from B-toxic C. sinensis or C. grandis roots, only nine B-toxicity-responsive proteins were shared by the two citrus species. Great differences existed in B-toxicity-induced alterations of protein profiles between C. sinensis and C. grandis roots. More proteins related to detoxification were up-accumulated in B-toxic C. grandis roots than in B-toxic C. sinensis roots to meet the increased requirement for the detoxification of the more reactive oxygen species and other toxic compounds such as aldehydes in the former. For the first time, we demonstrated that the active methyl cycle was induced and repressed in B-toxic C. sinensis and C. grandis roots, respectively, and that C. sinensis roots had a better capacity to keep cell wall and cytoskeleton integrity than C. grandis roots in response to B-toxicity, which might be responsible for the higher B-tolerance of C. sinensis. In addition, proteins involved in nucleic acid metabolism, biological regulation and signal transduction might play a role in the higher B-tolerance of C. sinensis

  6. Optical fiber laser induced fluorescence spectroscopy as a citrus canker diagnostic.

    PubMed

    Lins, E C; Belasque, J; Marcassa, L G

    2010-02-01

    Citrus canker is a serious disease caused by Xanthomonas citri subsp. citri bacteria, which infects citrus plants (Citrus spp.) leading to large economic losses in citrus production worldwide. In this work, laser induced fluorescence spectroscopy (LIF) was investigated as a diagnostic technique for citrus canker disease in citrus trees at an orchard using a portable optical fiber based spectrometer. For comparison we have applied LIF to leaves contaminated with citrus canker, citrus scab, citrus variegates chlorosis, and Huanglongbing (HLB, Greening). In order to reduce the noise in the data, we collected spectra from ten leaves with visual symptoms of diseases and from five healthy leaves per plant. This procedure is carried out in order to minimize the environmental effect on the spectrum (water and nutrient supply) of each plant. Our results show that this method presents a high sensitivity (approximately 90%), however it does present a low specificity (approximately 70%) for citrus canker diagnostic. We believe that such poor performance is due to the fact that the optical fiber collects light from only a small part of the leaf. Such results may be improved using the fluorescence imaging technique on the whole leaf.

  7. Targeting excessive free radicals with peels and juices of citrus fruits: grapefruit, lemon, lime and orange.

    PubMed

    Guimarães, Rafaela; Barros, Lillian; Barreira, João C M; Sousa, M João; Carvalho, Ana Maria; Ferreira, Isabel C F R

    2010-01-01

    A comparative study between the antioxidant properties of peel (flavedo and albedo) and juice of some commercially grown citrus fruit (Rutaceae), grapefruit (Citrus paradisi), lemon (Citrus limon), lime (Citrusxaurantiifolia) and sweet orange (Citrus sinensis) was performed. Different in vitro assays were applied to the volatile and polar fractions of peels and to crude and polar fraction of juices: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, reducing power and inhibition of lipid peroxidation using beta-carotene-linoleate model system in liposomes and thiobarbituric acid reactive substances (TBARS) assay in brain homogenates. Reducing sugars and phenolics were the main antioxidant compounds found in all the extracts. Peels polar fractions revealed the highest contents in phenolics, flavonoids, ascorbic acid, carotenoids and reducing sugars, which certainly contribute to the highest antioxidant potential found in these fractions. Peels volatile fractions were clearly separated using discriminant analysis, which is in agreement with their lowest antioxidant potential. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Molecular systematics of citrus-associated Alternaria species.

    PubMed

    Peever, T L; Su, G; Carpenter-Boggs, L; Timmer, L W

    2004-01-01

    The causal agents of Alternaria brown spot of tangerines and tangerine hybrids, Alternaria leaf spot of rough lemon and Alternaria black rot of citrus historically have been referred to as Alternaria citri or A. alternata. Ten species of Alternaria recently were described among a set of isolates from leaf lesions on rough lemon (Citrus jambhiri) and tangelo (C. paradisi × C. reticulata), and none of these isolates was considered representative of A. alternata or A. citri. To test the hypothesis that these newly described morphological species are congruent with phylogenetic species, selected Alternaria brown spot and leaf spot isolates, citrus black rot isolates (post-harvest pathogens), isolates associated with healthy citrus tissue and reference species of Alternaria from noncitrus hosts were scored for sequence variation at five genomic regions and used to estimate phylogenies. These data included 432 bp from the 5' end of the mitochondrial ribosomal large subunit (mtLSU), 365 bp from the 5' end of the beta-tubulin gene, 464 bp of an endopolygalacturonase gene (endoPG) and 559 and 571 bp, respectively, of two anonymous genomic regions (OPA1-3 and OPA2-1). The mtLSU and beta-tubulin phylogenies clearly differentiated A. limicola, a large-spored species causing leaf spot of Mexican lime, from the small-spored isolates associated with citrus but were insufficiently variable to resolve evolutionary relationships among the small-spored isolates from citrus and other hosts. Sequence analysis of translation elongation factor alpha, calmodulin, actin, chitin synthase and 1, 3, 8-trihydroxynaphthalene reductase genes similarly failed to uncover significant variation among the small-spored isolates. Phylogenies estimated independently from endoPG, OPA1-3 and OPA2-1 data were congruent, and analysis of the combined data from these regions revealed nine clades, eight of which contained small-spored, citrus-associated isolates. Lineages inferred from analysis of the

  9. Genetic Transformation in Citrus

    PubMed Central

    Donmez, Dicle; Simsek, Ozhan; Izgu, Tolga; Aka Kacar, Yildiz; Yalcin Mendi, Yesim

    2013-01-01

    Citrus is one of the world's important fruit crops. Recently, citrus molecular genetics and biotechnology work have been accelerated in the world. Genetic transformation, a biotechnological tool, allows the release of improved cultivars with desirable characteristics in a shorter period of time and therefore may be useful in citrus breeding programs. Citrus transformation has now been achieved in a number of laboratories by various methods. Agrobacterium tumefaciens is used mainly in citrus transformation studies. Particle bombardment, electroporation, A. rhizogenes, and a new method called RNA interference are used in citrus transformation studies in addition to A. tumefaciens. In this review, we illustrate how different gene transformation methods can be employed in different citrus species. PMID:23983635

  10. Long-Term Boron-Excess-Induced Alterations of Gene Profiles in Roots of Two Citrus Species Differing in Boron-Tolerance Revealed by cDNA-AFLP.

    PubMed

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Ye, Xin; Huang, Jing-Hao; Chen, Li-Song

    2016-01-01

    Boron (B) toxicity is observed in some citrus orchards in China. However, limited data are available on the molecular mechanisms of citrus B-toxicity and B-tolerance. Using cDNA-AFLP, we identified 20 up- and 52 down-regulated genes, and 44 up- and 66 down-regulated genes from excess B-treated Citrus sinensis and Citrus grandis roots, respectively, thereby demonstrating that gene expression profiles were more affected in the latter. In addition, phosphorus and total soluble protein concentrations were lowered only in excess B-treated C. grandis roots. Apparently, C. sinensis had higher B-tolerance than C. grandis. Our results suggested that the following several aspects were responsible for the difference in the B-tolerance between the two citrus species including: (a) B-excess induced Root Hair Defective 3 expression in C. sinensis roots, and repressed villin4 expression in C. grandis roots; accordingly, root growth was less inhibited by B-excess in the former; (b) antioxidant systems were impaired in excess B-treated C. grandis roots, hence accelerating root senescence; (c) genes related to Ca(2+) signals were inhibited (induced) by B-excess in C. grandis (C. sinensis) roots. B-excess-responsive genes related to energy (i.e., alternative oxidase and cytochrome P450), lipid (i.e., Glycerol-3-phosphate acyltransferase 9 and citrus dioxygenase), and nucleic acid (i.e., HDA19, histone 4, and ribonucleotide reductase RNR1 like protein) metabolisms also possibly accounted for the difference in the B-tolerance between the two citrus species. These data increased our understanding of the mechanisms on citrus B-toxicity and B-tolerance at transcriptional level.

  11. Long-Term Boron-Excess-Induced Alterations of Gene Profiles in Roots of Two Citrus Species Differing in Boron-Tolerance Revealed by cDNA-AFLP

    PubMed Central

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Ye, Xin; Huang, Jing-Hao; Chen, Li-Song

    2016-01-01

    Boron (B) toxicity is observed in some citrus orchards in China. However, limited data are available on the molecular mechanisms of citrus B-toxicity and B-tolerance. Using cDNA-AFLP, we identified 20 up- and 52 down-regulated genes, and 44 up- and 66 down-regulated genes from excess B-treated Citrus sinensis and Citrus grandis roots, respectively, thereby demonstrating that gene expression profiles were more affected in the latter. In addition, phosphorus and total soluble protein concentrations were lowered only in excess B-treated C. grandis roots. Apparently, C. sinensis had higher B-tolerance than C. grandis. Our results suggested that the following several aspects were responsible for the difference in the B-tolerance between the two citrus species including: (a) B-excess induced Root Hair Defective 3 expression in C. sinensis roots, and repressed villin4 expression in C. grandis roots; accordingly, root growth was less inhibited by B-excess in the former; (b) antioxidant systems were impaired in excess B-treated C. grandis roots, hence accelerating root senescence; (c) genes related to Ca2+ signals were inhibited (induced) by B-excess in C. grandis (C. sinensis) roots. B-excess-responsive genes related to energy (i.e., alternative oxidase and cytochrome P450), lipid (i.e., Glycerol-3-phosphate acyltransferase 9 and citrus dioxygenase), and nucleic acid (i.e., HDA19, histone 4, and ribonucleotide reductase RNR1 like protein) metabolisms also possibly accounted for the difference in the B-tolerance between the two citrus species. These data increased our understanding of the mechanisms on citrus B-toxicity and B-tolerance at transcriptional level. PMID:27446128

  12. Differential expression of genes involved in alternative glycolytic pathways, phosphorus scavenging and recycling in response to aluminum and phosphorus interactions in Citrus roots.

    PubMed

    Yang, Lin-Tong; Jiang, Huan-Xin; Qi, Yi-Ping; Chen, Li-Song

    2012-05-01

    The objective was to determine the possible links between the expression levels of genes involved in alternative glycolytic pathways, phosphorus (P) scavenging and recycling and Citrus tolerance to aluminum (Al) and/or P-deficiency. 'Xuegan' (Citrus sinensis) and 'Sour pummelo' (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl(3)·6H(2)O × 0, 50 and 200 μM KH(2)PO(4). C. sinensis displayed more tolerant to Al and P-deficiency than C. grandis. Under Al stress, C. sinensis accumulated more Al in roots and less Al in shoots than C. grandis. P concentration was higher in C. sinensis shoots and roots than in C. grandis ones. C. sinensis roots secreted more malate and citrate than C. grandis ones when exposed to Al. Al-induced-secretion of malate and citrate by excised roots from Al-treated seedlings decreased with increasing P supply. Al-induced-secretion of malate and citrate from roots and Al precipitation by P in roots might be responsible for Al-tolerance of C. sinensis. qRT-PCR analysis showed that Al-activated malate transporter (ALMT1), ATP-dependent phosphofructokinase (ATP-PFK), pyrophosphate-dependent phosphofructokinase (PPi-PFK), tonoplast adenosine-triphosphatase subunit A (V-ATPase A), tonoplast pyrophosphatase (V-PPiase), pyruvate kinase (PK), acid phosphatase (APase), phosphoenolpyruvate carboxylase (PEPC), malic enzyme (ME) and malate dehydrogenase (MDH) genes might contribute to the tolerance of Citrus to Al and/or P-deficiency, but any single gene could not explain the differences between the two species. Citrus tolerance to Al and/or P-deficiency might be caused by the coordinated regulation of gene expression involved in alternative glycolytic pathways, P scavenging and recycling.

  13. Isolation and characterization of cDNAs encoding ribosome inactivating protein from Dianthus sinensis L.

    PubMed

    Cho, H J; Lee, S J; Kim, S; Kim, B D

    2000-04-30

    To isolate a ribosome inactivating protein (RIP) gene, six plant species were surveyed for antiviral activity. Crude proteins extracted from these plants were tested for the antiviral activity against tobacco mosaic virus (TMV) in Nicotiana glutinosa. All the plants, Spinacia oleracea, Amaranthus lividus, Dianthus superbus, Dianthus sinensis and Celosia cristata, with an exception of Oenanthe stolonifera, presented 70-90% inhibition of viral infectivity. In an attempt to search for the RIP gene from D. sinensis, partial cDNA was obtained by polymerase chain reaction (PCR) of the poly(A)+ RNA from D. sinensis leaves. DNA gel blot analysis showed that D. sinensis has multi-copy RIP genes. The expression of RIP gene was investigated in the flower, leaf, root and stem of D. sinensis, and was found to be most abundant in the leaf. Using the partial cDNA as a probe, seven full-length cDNAs were isolated from a library prepared from D. sinensis leaves. They were divided into three groups on the basis of their nucleotide sequence homology. The three representative clones, cDsRIP1, cDsRIP2 and cDsRIP3 were completely sequenced. They all had an open reading frame of 882 bp. The cDsRIP2 showed 79% homology with dianthin 30 and saporin genes; 59% with PAP and Mirabilis antiviral protein MAP genes. From the analysis of deduced amino acid sequences, it was predicted that D. sinensis RIP cDNAs might have a putative signal peptide of 23 amino acid residues at their N-terminus. When the cDNA was expressed in E. coli, the bacteria was unable to grow upon IPTG induction, suggesting that expression of the gene renders toxicity to E. coli cells.

  14. Phenols in citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses.

    PubMed

    Manthey, J A; Grohmann, K

    2001-07-01

    In addition to the main flavanone glycosides (i.e., hesperidin and naringin) in citrus peel, polymethoxylated flavones and numerous hydroxycinnamates also occur and are major phenolic constituents of the molasses byproduct generated from fruit processing. Although a small number of the hydroxycinnamates in citrus occur as amides, most occur as esters and are susceptible to alkaline hydrolysis. This susceptibility to alkaline hydrolysis was used in measuring the concentrations of hydroxycinnamates in citrus peel molasses. The highest concentrations of hydroxycinnamates occurred in molasses of orange [C. sinensis (L.) Osbeck] and tangerine (C. reticulata Blanco.) compared to grapefruit (C. paradisi Macf.) and lemon [C. limon (L.) Burm.]. Concentrations of two phenolic glucosides, phlorin (phloroglucinol-beta-O-glucoside) and coniferin (coniferyl alcohol-4-beta-O-glucoside), were also measured. Measurements of the polymethoxylated flavones in molasses from several tangerine and orange varieties showed that these compounds occurred in the highest amounts in Dancy tangerine, whereas samples from two other tangerine molasses contained significantly lower levels, similar to those in the molasses samples from late- and early/mid-season oranges.

  15. In vivo Induction of Tetraploid in Tangerine Citrus Plants (Citrus reticulata Blanco) with the Use of Colchicine.

    PubMed

    Surson, Suntaree; Sitthaphanit, Suphasit; Wongma, Nattapong

    2015-01-01

    This in vivo experiment was carried out at Sakhon Nakhon Rajabhat University, Sakhon Nakhon Province, Thailand during March-October 2013. The study aims to search for some possibilities in inducing a large number of tetraploid sets of chromosomes in tangerine citrus seedlings with the use of colchicine chemical. A Randomized Complete Block Design (RCBD) with four replications was used. Seeds of tangerine citrus were treated with colchicine solutions. The experiment consisted of seven treatments, i.e., T1 with 0.0% colchicine (control), T2 with 0.2% colchicine solution and submerged for 12 h, T3 with 0.2% colchicine solution and submerged for 24 h, T4 with 0.4% colchicine solution and submerged for 12 h, T5 with 0.4% colchicine solution and submerged for 24 h, T6 with 0.8% colchicine solution and submerged for 12 h, T7 with 0.8% colchicine solution and submerged for 24 h. The experiment was conducted for 91 days. The results showed that colchicine compound severely and significantly affected germination of tangerine citrus seeds. Colchicine of 0.2% in the solution with seeds submerged for 24 h gave the highest percentages of tetraploid chromosomes in seedlings of tangerine citrus (63.64%). Colchicine significantly affected seed germination, plant height, stomata density and leaf index of the tangerine citrus seeds and seedlings. Colchicine had no significant effect on poly-embryos, mono-embryos, leaf number, leaf area, leaf weight, leaf length and stomata length of the tangerine citrus seedlings.

  16. Citrus Waste Biomass Program

    SciTech Connect

    Karel Grohman; Scott Stevenson

    2007-01-30

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  17. Oral dose of citrus peel extracts promotes wound repair in diabetic rats.

    PubMed

    Ahmad, M; Ansari, M N; Alam, A; Khan, T H

    2013-10-15

    Diabetic patients wound healing is slower than the healthy individuals. Three citrus peel extracts; Lemon (Citrus limon), Grapes fruits (Citrus paradise) and Orange (Citrus sinensis) promote wound healing in experimental animals. This study investigated the effect of oral treatment with citrus peel extracts on wound repair of the skin of diabetic rats. The extracts were estimated for vitamin C and total carotenoid contents prior to animal study. Diabetes mellitus was induced in rats by intraperitoneal injection of a single dose of streptozotocin (STZ, 75 mg kg(-1) b.wt.). One week after diabetes induction, full thickness excision wounds were made in hyperglycemic rats and were divided groups, each containing 6 rats. The different test group animals were treated with different citrus peel extract orally at the dose of 400 mg kg(-1) body weight daily for 12 days. The blood glucose, body weight and rate of wound closure of each rat were measured every 3rd day during the experimental period. At the end of experiment, granular tissues of wounds were removed and estimated for hydroxylproline and total protein content. The results showed significant reduction in blood glucose and time to wound closure. Tissue growth and collagen synthesis were significantly higher as determined by total protein and hydroxyl proline content. From our experimental data, we propose that oral administration of citrus peel extracts has a therapeutic potential in the treatment of chronic wounds in diabetes.

  18. Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus.

    PubMed

    Xie, Xiu-lan; Shen, Shu-ling; Yin, Xue-ren; Xu, Qian; Sun, Chong-de; Grierson, Donald; Ferguson, Ian; Chen, Kun-song

    2014-07-01

    The AP2/ERF gene family encodes plant-specific transcription factors. In model plants, AP2/ERF genes have been shown to be expressed in response to developmental and environmental stimuli, and many function downstream of the ethylene, biotic, and abiotic stress signaling pathways. In citrus, ethylene is effective in regulation citrus fruit quality, such as degreening and aroma. However, information about the citrus AP2/ERF family is limited, and would enhance our understanding of fruit responses to environmental stress, fruit development and quality. CitAP2/ERF genes were isolated using the citrus genome database, and their expression patterns analyzed by real-time PCR using various orange organs and samples from a fruit developmental series. 126 sequences with homologies to AP2/ERF proteins were identified from the citrus genome, and, on the basis of their structure and sequence, assigned to the ERF family (102), AP2 family (18), RAV family (4) and Soloist (2). MEME motif analysis predicted the defining AP2/ERF domain and EAR repressor domains. Analysis of transcript accumulation in Citrus sinensis cv. 'Newhall' indicated that CitAP2/ERF genes show organ-specific and temporal expression, and provided a framework for understanding the transcriptional regulatory roles of AP2/ERF gene family members in citrus. Hierarchical cluster analysis and t tests identified regulators that potentially function during orange fruit growth and development.

  19. Anticancer Potential of Citrus Juices and Their Extracts: A Systematic Review of Both Preclinical and Clinical Studies

    PubMed Central

    Cirmi, Santa; Maugeri, Alessandro; Ferlazzo, Nadia; Gangemi, Sebastiano; Calapai, Gioacchino; Schumacher, Udo; Navarra, Michele

    2017-01-01

    Background: During the last decades, a huge body of evidence has been accumulated suggesting that Citrus fruits and their juices might have a role in preventing many diseases including cancer. Objective: To summarize the numerous evidences on the potential of Citrus juices and their extracts as anticancer agents. Data sources: A systematic review of articles written in English using MEDLINE (1946-present), EMBASE (1974-present) and Web of Sciences (1970-present) was performed independently by two reviewers. Search terms included Citrus, Citrus aurantifolia, Citrus sinensis, Citrus paradisi, Citrus fruits, Citrus fruits extract, cancer, neoplasm, neoplasia, tumor, metastasis, carcinogenesis, proliferation. The last search was performed on March 16th, 2017. Study selection: Study selection and systematic review were carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Prior to the beginning of the review, Authors defined a checklist for inclusion criteria, thus including articles which meet the following: (i) published on peer-reviewed scientific journals; (ii) Citrus juice used alone; (iii) extracts derived from Citrus juice; (iii) for preclinical studies, an exposure time to Citrus juices and their extracts more than 24 h. Reviews, meta-analyses, conference abstracts and book chapters were excluded. Data extraction: Three reviewers independently performed the extraction of articles. Data synthesis: 22 papers met our inclusion criteria and were eligible for inclusion in the final review. According to the kind of study, the selected ones were further divided in preclinical (n = 20) and observational (n = 2) studies. Conclusion: The studies discussed in this review strongly corroborate the role of Citrus juices and their derivatives as potential resource against cancer. PMID:28713272

  20. Anticancer Potential of Citrus Juices and Their Extracts: A Systematic Review of Both Preclinical and Clinical Studies.

    PubMed

    Cirmi, Santa; Maugeri, Alessandro; Ferlazzo, Nadia; Gangemi, Sebastiano; Calapai, Gioacchino; Schumacher, Udo; Navarra, Michele

    2017-01-01

    Background: During the last decades, a huge body of evidence has been accumulated suggesting that Citrus fruits and their juices might have a role in preventing many diseases including cancer. Objective: To summarize the numerous evidences on the potential of Citrus juices and their extracts as anticancer agents. Data sources: A systematic review of articles written in English using MEDLINE (1946-present), EMBASE (1974-present) and Web of Sciences (1970-present) was performed independently by two reviewers. Search terms included Citrus, Citrus aurantifolia, Citrus sinensis, Citrus paradisi, Citrus fruits, Citrus fruits extract, cancer, neoplasm, neoplasia, tumor, metastasis, carcinogenesis, proliferation. The last search was performed on March 16th, 2017. Study selection: Study selection and systematic review were carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Prior to the beginning of the review, Authors defined a checklist for inclusion criteria, thus including articles which meet the following: (i) published on peer-reviewed scientific journals; (ii) Citrus juice used alone; (iii) extracts derived from Citrus juice; (iii) for preclinical studies, an exposure time to Citrus juices and their extracts more than 24 h. Reviews, meta-analyses, conference abstracts and book chapters were excluded. Data extraction: Three reviewers independently performed the extraction of articles. Data synthesis: 22 papers met our inclusion criteria and were eligible for inclusion in the final review. According to the kind of study, the selected ones were further divided in preclinical (n = 20) and observational (n = 2) studies. Conclusion: The studies discussed in this review strongly corroborate the role of Citrus juices and their derivatives as potential resource against cancer.

  1. An evaluation of the basis and consequences of a stay-green mutation in the navel negra (nan) citrus mutant using transcriptomic and proteomic profiling and metabolite analysis

    USDA-ARS?s Scientific Manuscript database

    A Citrus sinensis spontaneous mutant, navel negra (nan), produces fruit with an abnormal brown colored flavedo during ripening. Analysis of pigment composition in the wild type (WT) and nan flavedo suggested that typical ripening-related chlorophyll (Chl) degradation, but not carotenoid biosynthesis...

  2. Juice components and antioxidant capacity of four Tunisian Citrus varieties.

    PubMed

    Tounsi, Moufida Saidani; Wannes, Wissem Aidi; Ouerghemmi, Ines; Jegham, Sabrine; Ben Njima, Yosra; Hamdaoui, Ghaith; Zemni, Hassene; Marzouk, Brahim

    2011-01-15

    Juices from four Citrus species of Tunisia were investigated mainly for quality parameters and antioxidant capacity. Citrus reticulata (mandarin) juice had the highest content of total flavonoids (85.33 mg CE L(-1)). The latter also occurred in high quantity (82.01 mg CE L(-1)) in Citrus lemon (lemon) juice which was also marked by its richness in total aroma (70.16 µg mL(-1)) and in total fatty acids (48.10 µg mL(-1)). Mandarin and lemon juices had the highest antioxidant activity, as determined b the β-carotene bleaching assay (26.67% and 22.67%, respectively). Citrus aurantium (bitter orange) juice was characterised by the highest content of total polyphenols (784.67 mg GAE L(-1)) and by the greatest inhibition of DPPH (96.10%). Citrus sinensis (blood orange) juice was only marked by the high quantity of ascorbic acid (36.90 mg mL(-1)). GC/MS analysis of juice aroma showed the predominance of limonene (48.85-69.59%) in mandarin and in bitter and blood oranges, but of camphene (89.05%) in lemon. GC analysis of juice fatty acids revealed their richness in oleic acid (23.13-39.52%). HPLC analysis of juice phenolics indicated the predominance of phenolic acids (73.13-86.40%). The Citrus species used in this study were considered valuable varieties from the point of view of antioxidant capacity and nutrition. Copyright © 2010 Society of Chemical Industry.

  3. Spectroscopic Study of Green Tea (Camellia sinensis) Leaves Extraction

    NASA Astrophysics Data System (ADS)

    Marzuki, A.; Suryanti, V.; Virgynia, A.

    2017-04-01

    This paper reports the analysis of UV-VIS-NIR absorption spectra of different concentrations of green tea (Camellia sinensis) leaf extract in two different solvent systems (chloroform and ethyl acetate). In those solvents, two different peaks characterizing green tea are observed at different wavelengths, namely 296 nm and 329 nm (extracted in chloroform) and 391 nm and 534 nm (extracted in ethyl acetate). We then investigated the absorption spectra change as function of green tea concentration in both solvents. We found that light absorption increases linearly with the increase of green tea concentration. Different wavelengths, however, respond this change differently. However, the way it changes is wavelength dependence.

  4. Partial dehydration and cryopreservation of Citrus seeds.

    PubMed

    Graiver, Natalia; Califano, Alicia; Zaritzky, Noemí

    2011-11-01

    Three categories of seed storage behavior are generally recognized among plant species: orthodox, intermediate and recalcitrant. Intermediate seeds cannot be stored in liquid nitrogen (LN) without a previous partial dehydration process. The water content (WC) of the seeds at the moment of immersion in LN must be regarded as the most critical factor in cryopreservation. The purpose of this study was to investigate the basis of the optimal hydration status for cryopreservation of Citrus seeds: C. sinensis (sweet orange), C. paradisi (grapefruit), C. reticulata (mandarin) in LN. To study the tolerance to dehydration and LN exposure, seeds were desiccated by equilibration at relative humidities between 11 and 95%. Sorption isotherms were determined and modeled; lipid content of the seeds was measured. Seed desiccation sensitivity was quantified by the quantal response model. Differential scanning calorimetry (DSC) thermograms were determined on cotyledon tissue at different moisture contents to measure ice melting enthalpies and unfrozen WC. Samples of total seed lipid extract were also analyzed by DSC to identify lipid transitions in the thermograms. The limit of hydration for LN Citrus seeds treatment corresponded to the unfrozen WC in the tissue, confirming that seed survival strictly depended on avoidance of intracellular ice formation. Copyright © 2011 Society of Chemical Industry.

  5. Cercosporoid diseases of Citrus.

    PubMed

    Huang, Feng; Groenewald, J Z; Zhu, Li; Crous, P W; Li, Hongye

    2015-01-01

    Citrus leaves and fruits exhibiting disease symptoms ranging from greasy spot, yellow spot, small or large brown spot, black dot, and brown dot were sampled from Fujian, Guangdong, Guizhou, Hunan, Jiangxi, Yunnan, Zhejiang provinces and the Guangxi Zhuang Autonomous Region in China. In total 82 isolates representing various cercosporoid genera were isolated from these disease symptoms, which were supplemented with eight Citrus cercosporoid isolates collected from other countries. Based on a morphological and phylogenetic study using sequence data from the nuclear ribosomal DNA's ITS1-5.8S-ITS2 regions (ITS), and partial actin (act), β-tubulin (tub2), 28S nuclear ribosomal RNA (28S rDNA) and translation elongation factor 1-α (tef1) genes, these strains were placed in the following genera: Cercospora, Pallidocercospora, Passalora, Pseudocercospora, Verrucisporota and Zasmidium. All isolates tended to be sterile, except the Zasmidium isolates associated with citrus greasy spot-like symptoms, which subsequently were compared with phylogenetically similar isolates occurring on Citrus and other hosts elsewhere. From these results four Zasmidium species were recognized on Citrus, namely Z. indonesianum on Citrus in Indonesia, Z. fructicola and Z. fructigenum on Citrus in China and Z. citri-griseum, which appears to have a wide host range including Acacia, Citrus, Eucalyptus and Musa, as well as a global distribution.

  6. Certification Programs for Citrus

    USDA-ARS?s Scientific Manuscript database

    Citrus certification programs designed to ensure that healthy plants of the highest genetic potential are being planted in the field are the basic building block of an integrated pest management program. Certification programs began for citrus began with the discovery that the diseases were graft t...

  7. Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis.

    PubMed

    Lacava, P T; Araújo, W L; Marcon, J; Maccheroni, W; Azevedo, J L

    2004-01-01

    To isolate endophytic bacteria and Xylella fastidiosa and also to evaluate whether the bacterial endophyte community contributes to citrus-variegated chlorosis (CVC) status in sweet orange (Citrus sinensis [L.] Osbeck cv. Pera). The presence of Xylella fastidiosa and the population diversity of culturable endophytic bacteria in the leaves and branches of healthy, CVC-asymptomatic and CVC-symptomatic sweet orange plants and in tangerine (Citrus reticulata cv. Blanco) plants were assessed, and the in vitro interaction between endophytic bacteria and X. fastidiosa was investigated. There were significant differences in endophyte incidence between leaves and branches, and among healthy, CVC-asymptomatic and CVC-symptomatic plants. Bacteria identified as belonging to the genus Methylobacterium were isolated only from branches, mainly from those sampled from healthy and diseased plants, from which were also isolated X. fastidiosa. The in vitro interaction experiments indicated that the growth of X. fastidiosa was stimulated by endophytic Methylobacterium extorquens and inhibited by endophytic Curtobacterium flaccumfaciens. This work provides the first evidence of an interaction between citrus endophytic bacteria and X. fastidiosa and suggests a promising approach that can be used to better understand CVC disease.

  8. Leaf Water Relations and Net Gas Exchange Responses of Salinized Carrizo Citrange Seedlings during Drought Stress and Recovery

    PubMed Central

    Pérez-Pérez, J. G.; Syvertsen, J. P.; Botía, P.; García-Sánchez, F.

    2007-01-01

    Background and Aims Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis × Poncirus trifoliata. Methods Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl− and Na+ were measured. Key Results Salinity increased leaf Cl− and Na+ concentrations and decreased osmotic potential (Ψπ) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO2 assimilation rate (ACO2) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower ACO2 was related to low RWC, whereas in salinized plants decreased ACO2 was related to high levels of leaf Cl− and Na+. ACO2 recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl−, Na+ and quaternary ammonium compounds after recovery. High leaf levels of Cl− and Na+ after recovery apparently came from the roots

  9. Abundance of citrus leafminer larvae on citrus and citrus-related germplasm

    USDA-ARS?s Scientific Manuscript database

    The citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), is a key pest in most citrus growing regions worldwide. Adult citrus leafminers oviposit primarily on young elongating flush of citrus as well as other Rutaceae and some ornamental plants. Larvae feed on the epiderm...

  10. Host susceptibility of citrus cultivars to Queensland fruit fly (Diptera: Tephritidae).

    PubMed

    Lloyd, A C; Hamacek, E L; Smith, D; Kopittke, R A; Gu, H

    2013-04-01

    Citrus crops are considered to be relatively poor hosts for Queensland fruit fly, Bactrocera tryoni (Froggatt), as for other tephritid species. Australian citrus growers and crop consultants have reported observable differences in susceptibility of different citrus cultivars under commercial growing conditions. In this study we conducted laboratory tests and field surveys to determine susceptibility to B. tryoni of six citrus cultivars [(Eureka lemon (Citrus limon (L.) Osbeck); Navel and Valencia oranges (C. sinensis (L.) Osbeck); and Imperial, Ellendale, and Murcott mandarins (C. reticulata Blanco). The host susceptibility of these citrus cultivars was quantified by a Host Susceptibility Index, which is defined as the number of adult flies produced per gram of fruit infested at a calculated rate of one egg per gram of fruit. The HSI was ranked as Murcott (0.083) > Imperial (0.052) > Navel (0.026) - Ellendale (0.020) > Valencia (0.008) > Eureka (yellow) (0.002) > Eureka (green) (0). Results of the laboratory study were in agreement with the level of field infestation in the four citrus cultivars (Eureka lemon, Imperial, Ellendale, and Murcott mandarins) that were surveyed from commercial orchards under baiting treatments against fruit flies in the Central Burnett district of Queensland. Field surveys of citrus hosts from the habitats not subject to fruit fly management showed that the numbers of fruit flies produced per gram of fruit were much lower, compared with the more susceptible noncitrus hosts, such as guava (Psidium guajava L.), cherry guava (P. littorale Raddi), mulberry (Morus nigra L.), loquat (Eriobotrya japonica (Thunb.) Lindl.), and pear (Pyrus communis L.). Therefore, the major citrus crops commercially cultivated in Australia have a relatively low susceptibility to B. tryoni, with Eureka lemons being a particularly poor host for this tephritid fruit fly.

  11. Transcriptome analysis of sweet orange trees infected with 'Candidatus Liberibacter asiaticus' and two strains of Citrus Tristeza Virus.

    PubMed

    Fu, Shimin; Shao, Jonathan; Zhou, Changyong; Hartung, John S

    2016-05-11

    Huanglongbing (HLB) and tristeza, are diseases of citrus caused by a member of the α-proteobacteria, 'Candidatus Liberibacter asiaticus' (CaLas), and Citrus tristeza virus (CTV) respectively. HLB is a devastating disease, but CTV strains vary from very severe to very mild. Both CaLas and CTV are phloem-restricted. The CaLas-B232 strain and CTV-B6 cause a wide range of severe and similar symptoms. The mild strain CTV-B2 doesn't induce significant symptoms or damage to plants. Transcriptome profiles obtained through RNA-seq revealed 611, 404 and 285 differentially expressed transcripts (DETs) after infection with CaLas-B232, CTV-B6 and CTV-B2. These DETs were components of a wide range of pathways involved in circadian rhythm, cell wall modification and cell organization, as well as transcription factors, transport, hormone response and secondary metabolism, signaling and stress response. The number of transcripts that responded to both CTV-B6 and CaLas-B232 was much larger than the number of transcripts that responded to both strains of CTV or to both CTV-B2 and CaLas-B232. A total of 38 genes were assayed by RT-qPCR and the correlation coefficients between Gfold and RT-qPCR were 0.82, 0.69, 0.81 for sweet orange plants infected with CTV-B2, CTV-B6 and CaLas-B232, respectively. The number and composition of DETs reflected the complexity of symptoms caused by the pathogens in established infections, although the leaf tissues sampled were asymptomatic. There were greater similarities between the sweet orange in response to CTV-B6 and CaLas-B232 than between the two CTV strains, reflecting the similar physiological changes caused by both CTV-B6 and CaLas-B232. The circadian rhythm system of plants was perturbed by all three pathogens, especially by CTV-B6, and the ion balance was also disrupted by all three pathogens, especially by CaLas-B232. Defense responses related to cell wall modification, transcriptional regulation, hormones, secondary metabolites, kinases and

  12. Root Adaptive Responses to Aluminum-Treatment Revealed by RNA-Seq in Two Citrus Species With Different Aluminum-Tolerance.

    PubMed

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Lai, Ning-Wei; Ye, Xin; Yang, Yi; Chen, Li-Song

    2017-01-01

    Seedlings of aluminum (Al)-tolerant Citrus sinensis and Al-intolerant Citrus grandis were fertigated daily with nutrient solution containing 0 and 1.0 mM AlCl3●6H2O for 18 weeks. The Al-induced decreases of biomass and root total soluble proteins only occurred in C. grandis, demonstrating that C. sinensis had higher Al-tolerance than C. grandis. Under Al-treatment, C. sinensis roots secreted more citrate and malate than C. grandis ones; less Al was accumulated in C. sinenis than in C. grandis leaves. The Al-induced reduction of phosphorus was lesser in C. sinensis roots and leaves than in C. grandis ones, whereas the Al-induced increase of sulfur was greater in C. sinensis roots and leaves. Using RNA-seq, we isolated 1905 and 2670 differentially expressed genes (DEGs) from Al-treated C. sinensis than C. grandis roots, respectively. Among these DEGs, only 649 DEGs were shared by the two species. Further analysis suggested that the following several aspects conferred C. sinensis higher Al-tolerance: (a) Al-treated C. sinensis seedlings had a higher external Al detoxification capacity via enhanced Al-induced secretion of organic acid anions, a higher antioxidant capacity and a more efficient chelation system in roots; (b) Al-treated C. sinensis seedlings displayed a higher level of sulfur in roots and leaves possibly due to increased uptake and decreased export of sulfur and a higher capacity to maintain the cellular phosphorus homeostasis by enhancing phosphorus acquisition and utilization; (c) Cell wall and cytoskeleton metabolism, energy and carbohydrate metabolism and signal transduction displayed higher adaptative responses to Al in C. sinensis than in C. grandis roots; (d) More upregulated than downregulated genes related to fatty acid and amino acid metabolisms were isolated from Al-treated C. sinensis roots, but the reverse was the case for Al-treated C. grandis roots. These results provide a platform for further investigating the roles of genes possibly

  13. Root Adaptive Responses to Aluminum-Treatment Revealed by RNA-Seq in Two Citrus Species With Different Aluminum-Tolerance

    PubMed Central

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Lai, Ning-Wei; Ye, Xin; Yang, Yi; Chen, Li-Song

    2017-01-01

    Seedlings of aluminum (Al)-tolerant Citrus sinensis and Al-intolerant Citrus grandis were fertigated daily with nutrient solution containing 0 and 1.0 mM AlCl3●6H2O for 18 weeks. The Al-induced decreases of biomass and root total soluble proteins only occurred in C. grandis, demonstrating that C. sinensis had higher Al-tolerance than C. grandis. Under Al-treatment, C. sinensis roots secreted more citrate and malate than C. grandis ones; less Al was accumulated in C. sinenis than in C. grandis leaves. The Al-induced reduction of phosphorus was lesser in C. sinensis roots and leaves than in C. grandis ones, whereas the Al-induced increase of sulfur was greater in C. sinensis roots and leaves. Using RNA-seq, we isolated 1905 and 2670 differentially expressed genes (DEGs) from Al-treated C. sinensis than C. grandis roots, respectively. Among these DEGs, only 649 DEGs were shared by the two species. Further analysis suggested that the following several aspects conferred C. sinensis higher Al-tolerance: (a) Al-treated C. sinensis seedlings had a higher external Al detoxification capacity via enhanced Al-induced secretion of organic acid anions, a higher antioxidant capacity and a more efficient chelation system in roots; (b) Al-treated C. sinensis seedlings displayed a higher level of sulfur in roots and leaves possibly due to increased uptake and decreased export of sulfur and a higher capacity to maintain the cellular phosphorus homeostasis by enhancing phosphorus acquisition and utilization; (c) Cell wall and cytoskeleton metabolism, energy and carbohydrate metabolism and signal transduction displayed higher adaptative responses to Al in C. sinensis than in C. grandis roots; (d) More upregulated than downregulated genes related to fatty acid and amino acid metabolisms were isolated from Al-treated C. sinensis roots, but the reverse was the case for Al-treated C. grandis roots. These results provide a platform for further investigating the roles of genes possibly

  14. Effect of Citrus paradisi extract and juice on arterial pressure both in vitro and in vivo.

    PubMed

    Díaz-Juárez, J A; Tenorio-López, F A; Zarco-Olvera, G; Valle-Mondragón, L Del; Torres-Narváez, J C; Pastelín-Hernández, G

    2009-07-01

    Citrus paradisi (grapefruit) consumption is considered as beneficial and it is popularly used for the treatment of a vast array of diseases, including hypertension. In the present study, the coronary vasodilator and hypotensive effects of Citrus paradisi peel extract were assessed in the Langendorff isolated and perfused heart model and in the heart and lung dog preparation. In both models, Citrus paradisi peel extract decreased coronary vascular resistance and mean arterial pressure when compared with control values (60 +/- 15 x 10(7) dyn s cm(-5) vs 100 +/- 10 x 10(7) dyn s cm(-5) and 90 mmHg vs 130 +/- 15 mmHg, respectively). These decreases in coronary vascular resistance and mean arterial pressure were blocked when isolated and perfused hearts and mongrel dogs were pre-treated with L-NAME. In humans, Citrus paradisi juice decreased diastolic arterial pressure and systolic arterial pressure both in normotensive and hypertensive subjects. Citrus paradisi juice produced a greater decrease in mean arterial pressure when compared with Citrus sinensis juice, cow milk and a vitamin C-supplemented beverage. However, more detailed studies are required to isolate, purify and evaluate the chemical compounds responsible for this pharmacological effect and to clarify its possible role for treating hypertension. Copyright 2009 John Wiley & Sons, Ltd.

  15. Development and reproduction of Panonychus citri (Prostigmata: Tetranychidae) on different species and varieties of citrus plants.

    PubMed

    Zanardi, Odimar Zanuzo; Bordini, Gabriela Pavan; Franco, Aline Aparecida; de Morais, Matheus Rovere; Yamamoto, Pedro Takao

    2015-12-01

    The species and varieties of citrus plants that are currently grown can favor the population growth of the citrus red mite Panonychus citri (McGregor) (Prostigmata: Tetranychidae) and alter the pest management programs in citrus groves. In this study we evaluated, in the laboratory, the development and reproduction of P. citri and estimated its life table parameters when reared on four varieties of Citrus sinensis (L.) Osbeck (Valencia, Pera, Natal, and Hamlin), one variety of Citrus reticulata Blanco (Ponkan) and one variety of Citrus limon (L.) Burm. (Sicilian). The incubation period and egg viability were not affected by the host plant. However, the development and survival of the immature stage were significantly lower on Hamlin orange than on Valencia, Pera and Natal oranges, Ponkan mandarin and Sicilian lemon. The fecundity and oviposition period of females were lower on Hamlin orange than on the other hosts. Mites reared on Valencia orange and Sicilian lemon had a higher net reproductive rate (R 0 ), intrinsic growth rate (r) and finite rate of increase (λ), and a shorter interval between generations (T) than on Pera, Natal and Hamlin oranges and Ponkan mandarin. On the other hand, mites reared on Hamlin orange had the lowest R 0 , r and λ and the highest T among the hosts. Based on the results obtained we recommend that for Valencia orange and Sicilian lemon, the mite monitoring programs should be more intense to detect the initial infestation of pest, avoiding the damage in plants and the increase in production costs.

  16. Experimental Evidence and In Silico Identification of Tryptophan Decarboxylase in Citrus Genus.

    PubMed

    De Masi, Luigi; Castaldo, Domenico; Pignone, Domenico; Servillo, Luigi; Facchiano, Angelo

    2017-02-11

    Plant tryptophan decarboxylase (TDC) converts tryptophan into tryptamine, precursor of indolealkylamine alkaloids. The recent finding of tryptamine metabolites in Citrus plants leads to hypothesize the existence of TDC activity in this genus. Here, we report for the first time that, in Citrus x limon seedlings, deuterium labeled tryptophan is decarboxylated into tryptamine, from which successively deuterated N,N,N-trimethyltryptamine is formed. These results give an evidence of the occurrence of the TDC activity and the successive methylation pathway of the tryptamine produced from the tryptophan decarboxylation. In addition, with the aim to identify the genetic basis for the presence of TDC, we carried out a sequence similarity search for TDC in the Citrus genomes using as a probe the TDC sequence reported for the plant Catharanthus roseus. We analyzed the genomes of both Citrus clementina and Citrus sinensis, available in public database, and identified putative protein sequences of aromatic l-amino acid decarboxylase. Similarly, 42 aromatic l-amino acid decarboxylase sequences from 23 plant species were extracted from public databases. Potential sequence signatures for functional TDC were then identified. With this research, we propose for the first time a putative protein sequence for TDC in the genus Citrus.

  17. Profiling gene expression in citrus fruit calyx abscission zone (AZ-C) treated with ethylene.

    PubMed

    Cheng, Chunzhen; Zhang, Lingyun; Yang, Xuelian; Zhong, Guangyan

    2015-10-01

    On-tree storage and harvesting of mature fruit account for a large proportion of cost in the production of citrus, and a reduction of the cost would not be achieved without a thorough understanding of the mechani sm of the mature fruit abscission. Genome-wide gene expression changes in ethylene-treated fruit calyx abscission zone (AZ-C) of Citrus sinensis cv. Olinda were therefore investigated using a citrus genome array representing up to 33,879 citrus transcripts. In total, 1313 and 1044 differentially regulated genes were identified in AZ-C treated with ethylene for 4 and 24 h, respectively. The results showed that mature citrus fruit abscission commenced with the activation of ethylene signal transduction pathway that led to the activation of ethylene responsive transcription factors and the subsequent transcriptional regulation of a large set of ethylene responsive genes. Significantly down-regulated genes included those of starch/sugar biosynthesis, transportation of water and growth promoting hormone synthesis and signaling, whereas significantly up-regulated genes were those involved in defense, cell wall degradation, and secondary metabolism. Our data unraveled the underlying mechanisms of some known important biochemical events occurring at AZ-C and should provide informative suggestions for future manipulation of the events to achieve a controllable abscission for mature citrus fruit.

  18. Changes of Peel Essential Oil Composition of Four Tunisian Citrus during Fruit Maturation

    PubMed Central

    Bourgou, Soumaya; Rahali, Fatma Zohra; Ourghemmi, Iness; Saïdani Tounsi, Moufida

    2012-01-01

    The present work investigates the effect of ripening stage on the chemical composition of essential oil extracted from peel of four citrus: bitter orange (Citrus aurantium), lemon (Citrus limon), orange maltaise (Citrus sinensis), and mandarin (Citrus reticulate) and on their antibacterial activity. Essential oils yields varied during ripening from 0.46 to 2.70%, where mandarin was found to be the richest. Forty volatile compounds were identified. Limonene (67.90–90.95%) and 1,8-cineole (tr-14.72%) were the most represented compounds in bitter orange oil while limonene (37.63–69.71%), β-pinene (0.63–31.49%), γ-terpinene (0.04–9.96%), and p-cymene (0.23–9.84%) were the highest ones in lemon. In the case of mandarin, the predominant compounds were limonene (51.81–69.00%), 1,8-cineole (0.01–26.43%), and γ-terpinene (2.53–14.06%). However, results showed that orange peel oil was dominated mainly by limonene (81.52–86.43%) during ripening. The results showed that ripening stage influenced significantly the antibacterial activity of the oils against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This knowledge could help establish the optimum harvest date ensuring the maximum essential oil, limonene, as well as antibacterial compounds yields of citrus. PMID:22645427

  19. Changes of peel essential oil composition of four Tunisian citrus during fruit maturation.

    PubMed

    Bourgou, Soumaya; Rahali, Fatma Zohra; Ourghemmi, Iness; Saïdani Tounsi, Moufida

    2012-01-01

    The present work investigates the effect of ripening stage on the chemical composition of essential oil extracted from peel of four citrus: bitter orange (Citrus aurantium), lemon (Citrus limon), orange maltaise (Citrus sinensis), and mandarin (Citrus reticulate) and on their antibacterial activity. Essential oils yields varied during ripening from 0.46 to 2.70%, where mandarin was found to be the richest. Forty volatile compounds were identified. Limonene (67.90-90.95%) and 1,8-cineole (tr-14.72%) were the most represented compounds in bitter orange oil while limonene (37.63-69.71%), β-pinene (0.63-31.49%), γ-terpinene (0.04-9.96%), and p-cymene (0.23-9.84%) were the highest ones in lemon. In the case of mandarin, the predominant compounds were limonene (51.81-69.00%), 1,8-cineole (0.01-26.43%), and γ-terpinene (2.53-14.06%). However, results showed that orange peel oil was dominated mainly by limonene (81.52-86.43%) during ripening. The results showed that ripening stage influenced significantly the antibacterial activity of the oils against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This knowledge could help establish the optimum harvest date ensuring the maximum essential oil, limonene, as well as antibacterial compounds yields of citrus.

  20. Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing.

    PubMed

    Zou, Xiuping; Jiang, Xueyou; Xu, Lanzhen; Lei, Tiangang; Peng, Aihong; He, Yongrui; Yao, Lixiao; Chen, Shanchun

    2017-03-01

    Expression of synthesized cecropin B genes in the citrus phloem, where Candidatus Liberibacter asiaticus resides, significantly decreased host susceptibility to Huanglongbing. Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus bacteria, is the most destructive disease of citrus worldwide. All of the commercial sweet orange cultivars lack resistance to this disease. The cationic lytic peptide cecropin B, isolated from the Chinese tasar moth (Antheraea pernyi), has been shown to effectively eliminate bacteria. In this study, we demonstrated that transgenic citrus (Citrus sinensis Osbeck) expressing the cecropin B gene specifically in the phloem had a decreased susceptibility to HLB. Three plant codon-optimized synthetic cecropin B genes, which were designed to secrete the cecropin B peptide into three specific sites, the extracellular space, the cytoplasm, and the endoplasmic reticulum, were constructed. Under the control of the selected phloem-specific promoter GRP1.8, these constructs were transferred into the citrus genome. All of the cecropin B genes were efficiently expressed in the phloem of transgenic plants. Over more than a year of evaluation, the transgenic lines exhibited reduced disease severity. Bacterial populations in transgenic lines were significantly lower than in the controls. Two lines, in which bacterial populations were significantly lower than in others, showed no visible symptoms. Thus, we demonstrated the potential application of the phloem-specific expression of an antimicrobial peptide gene to protect citrus plants from HLB.

  1. De Novo Assembly and Comparative Transcriptome Analysis Provide Insight into Lysine Biosynthesis in Toona sinensis Roem

    PubMed Central

    Zhang, Xia; Song, Zhenqiao; Liu, Tian; Guo, Linlin; Li, Xingfeng

    2016-01-01

    Toona sinensis Roem is a popular leafy vegetable in Chinese cuisine and is also used as a traditional Chinese medicine. In this study, leaf samples were collected from the same plant on two development stages and then used for high-throughput Illumina RNA-sequencing (RNA-Seq). 125,884 transcripts and 54,628 unigenes were obtained through de novo assembly. A total of 25,570 could be annotated with known biological functions, which indicated that the T. sinensis leaves and shoots were undergoing multiple developmental processes especially for active metabolic processes. Analysis of differentially expressed unigenes between the two libraries showed that the lysine biosynthesis was an enriched KEGG pathway, and candidate genes involved in the lysine biosynthesis pathway in T. sinensis leaves and shoots were identified. Our results provide a primary analysis of the gene expression files of T. sinensis leaf and shoot on different development stages and afford a valuable resource for genetic and genomic research on plant lysine biosynthesis. PMID:27376077

  2. Diversity of Endophytic Bacterial Populations and Their Interaction with Xylella fastidiosa in Citrus Plants

    PubMed Central

    Araújo, Welington L.; Marcon, Joelma; Maccheroni, Walter; van Elsas, Jan Dirk; van Vuurde, Jim W. L.; Azevedo, João Lúcio

    2002-01-01

    Citrus variegated chlorosis (CVC) is caused by Xylella fastidiosa, a phytopathogenic bacterium that can infect all Citrus sinensis cultivars. The endophytic bacterial communities of healthy, resistant, and CVC-affected citrus plants were studied by using cultivation as well as cultivation-independent techniques. The endophytic communities were assessed in surface-disinfected citrus branches by plating and denaturing gradient gel electrophoresis (DGGE). Dominant isolates were characterized by fatty-acid methyl ester analysis as Bacillus pumilus, Curtobacterium flaccumfaciens, Enterobacter cloacae, Methylobacterium spp. (including Methylobacterium extorquens, M. fujisawaense, M. mesophilicum, M. radiotolerans, and M. zatmanii), Nocardia sp., Pantoea agglomerans, and Xanthomonas campestris. We observed a relationship between CVC symptoms and the frequency of isolation of species of Methylobacterium, the genus that we most frequently isolated from symptomatic plants. In contrast, we isolated C. flaccumfaciens significantly more frequently from asymptomatic plants than from those with symptoms of CVC while P. agglomerans was frequently isolated from tangerine (Citrus reticulata) and sweet-orange (C. sinensis) plants, irrespective of whether the plants were symptomatic or asymptomatic or showed symptoms of CVC. DGGE analysis of 16S rRNA gene fragments amplified from total plant DNA resulted in several bands that matched those from the bacterial isolates, indicating that DGGE profiles can be used to detect some endophytic bacteria of citrus plants. However, some bands had no match with any isolate, suggesting the occurrence of other, nonculturable or as yet uncultured, endophytic bacteria. A specific band with a high G+C ratio was observed only in asymptomatic plants. The higher frequency of C. flaccumfaciens in asymptomatic plants suggests a role for this organism in the resistance of plants to CVC. PMID:12324338

  3. Identification of transcription factors potentially involved in the juvenile to adult phase transition in Citrus.

    PubMed

    Castillo, Mari-Cruz; Forment, Javier; Gadea, José; Carrasco, Jose Luis; Juarez, José; Navarro, Luís; Ancillo, Gema

    2013-11-01

    The juvenile to adult transition (JAT) in higher plants is required for them to reach reproductive competence. However, it is a poorly understood process in woody plants, where only a few genes have been definitely identified as being involved in this transition. This work aims at increasing our understanding of the mechanisms regulating the JAT in citrus. Juvenile and adult plants from Pineapple sweet orange (Citrus sinensis) and Rough lemon (C. jambhiri) were used to screen for differentially expressed transcription factors (TFs) using a 1·15K microarray developed on the basis of the CitrusTF database. Murcott tangor (C. reticulata × C. sinensis) and Duncan grapefruit (C. paradisi) were incorporated into the quantitative real-time reverse transcription-PCR validation in order to select those genes whose phase-specific regulation was common to the four species. A browsable web database has been created with information about the structural and functional annotation related to 1152 unigenes of putative citrus TFs (CTFs). This database constitutes a valuable resource for research on transcriptional regulation and comparative genomics. Moreover, a microarray has been developed and used that contains these putative CTFs, in order to identify eight genes that showed differential expression in juvenile and adult meristems of four different species of citrus. Those genes have been characterized, and their expression pattern in vegetative and reproductive tissues has been analysed. Four of them are MADS-box genes, a family of TFs involved in developmental processes, whereas another one resembles MADS-box genes but lacks the MADS box itself. The other three showed high partial sequence similarity restricted to specific Arabidopsis protein domains but negligible outside those domains. The work presented here indicates that the JAT in citrus could be controlled by mechanisms that are in part common to those of Arabidopsis, but also somehow different, since specific factors

  4. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants.

    PubMed

    Araújo, Welington L; Marcon, Joelma; Maccheroni, Walter; Van Elsas, Jan Dirk; Van Vuurde, Jim W L; Azevedo, João Lúcio

    2002-10-01

    Citrus variegated chlorosis (CVC) is caused by Xylella fastidiosa, a phytopathogenic bacterium that can infect all Citrus sinensis cultivars. The endophytic bacterial communities of healthy, resistant, and CVC-affected citrus plants were studied by using cultivation as well as cultivation-independent techniques. The endophytic communities were assessed in surface-disinfected citrus branches by plating and denaturing gradient gel electrophoresis (DGGE). Dominant isolates were characterized by fatty-acid methyl ester analysis as Bacillus pumilus, Curtobacterium flaccumfaciens, Enterobacter cloacae, Methylobacterium spp. (including Methylobacterium extorquens, M. fujisawaense, M. mesophilicum, M. radiotolerans, and M. zatmanii), Nocardia sp., Pantoea agglomerans, and Xanthomonas campestris. We observed a relationship between CVC symptoms and the frequency of isolation of species of Methylobacterium, the genus that we most frequently isolated from symptomatic plants. In contrast, we isolated C. flaccumfaciens significantly more frequently from asymptomatic plants than from those with symptoms of CVC while P. agglomerans was frequently isolated from tangerine (Citrus reticulata) and sweet-orange (C. sinensis) plants, irrespective of whether the plants were symptomatic or asymptomatic or showed symptoms of CVC. DGGE analysis of 16S rRNA gene fragments amplified from total plant DNA resulted in several bands that matched those from the bacterial isolates, indicating that DGGE profiles can be used to detect some endophytic bacteria of citrus plants. However, some bands had no match with any isolate, suggesting the occurrence of other, nonculturable or as yet uncultured, endophytic bacteria. A specific band with a high G+C ratio was observed only in asymptomatic plants. The higher frequency of C. flaccumfaciens in asymptomatic plants suggests a role for this organism in the resistance of plants to CVC.

  5. Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and penicillium italicum.

    PubMed

    Caccioni, D R; Guizzardi, M; Biondi, D M; Renda, A; Ruberto, G

    1998-08-18

    This study examined the effect of volatile components of citrus fruit essential oils on P. digitatum and P. italicum growth. The hydrodistilled essential oils of orange (Citrus sinensis cvv. "Washington navel", "Sanguinello", "Tarocco", "Moro", "Valencia late", and "Ovale"), bitter (sour) orange (C. aurantium), mandarin (C. deliciosa cv. "Avana"), grapefruit (C. paradisi cvv. "Marsh seedless" and "Red Blush"), citrange (C. sinensis x Poncirus trifoliata cvv. "Carrizo" and "Troyer"), and lemon (C. limon cv. "Femminello", collected in three periods), were characterized by a combination of GC and GC/MS analyses. The antifungal efficacy of the oils was then examined at progressively reduced rates. Findings showed a positive correlation between monoterpenes other than limonene and sesquiterpene content of the oils and the pathogen fungi inhibition. The best results were shown by the citrange oils, whose chemical composition is reported for the first time, and lemon. Furthermore P. digitatum was found to be more sensitive to the inhibitory action of the oils.

  6. Expression of Bacillus thuringiensis cytolytic toxin (Cyt2Ca1) in citrus roots to control Diaprepes abbreviatus larvae.

    PubMed

    Mahmoud, Sulley Ben; Ramos, John E; Shatters, Robert G; Hall, David G; Lapointe, Stephen L; Niedz, Randall P; Rougé, Pierre; Cave, Ronald D; Borovsky, Dov

    2017-03-01

    Diaprepes abbreviatus (L.) is an important pest of citrus in the USA. Currently, no effective management strategies of D. abbreviatus exist in citriculture, and new methods of control are desperately sought. To protect citrus against D. abbreviatus a transgenic citrus rootstock expressing Bacillus thuringiensis Cyt2Ca1, an insect toxin protein, was developed using Agrobacterium-mediated transformation of 'Carrizo' citrange [Citrus sinensis (L) Osbeck Poncirus trifoliate (L) Raf]. The transgenic citrus root stock expressed the cytolytic toxin Cyt2Ca1 constitutively under the control of a 35S promoter in the transgenic Carrizo citrange trifoliate hybrid including the roots that are the food source of larval D. abbreviatus. The engineered citrus was screened by Western blot and RT-qPCR analyses for cyt2Ca1 and positive citrus identified. Citrus trees expressing different levels of cyt2Ca1 transcripts were identified (Groups A-C). High expression of the toxin in the leaves (10(9) transcripts/ng RNA), however, retarded plant growth. The transgenic plants were grown in pots and the roots exposed to 3week old D. abbreviatus larvae using no-choice plant bioassays. Three cyt2Ca1 transgenic plants were identified that sustained less root damage belonging to Group B and C. One plant caused death to 43% of the larvae that fed on its roots expressed 8×10(6)cyt2Ca1 transcripts/ng RNA. These results show, for the first time, that Cyt2Ca1 expressed in moderate amounts by the roots of citrus does not retard citrus growth and can protect it from larval D. abbreviatus. Published by Elsevier Inc.

  7. Citrus diseases with global ramifications including citrus canker and huanglongbing

    USDA-ARS?s Scientific Manuscript database

    Although there are a number of diseases that plague citrus production worldwide, two bacterial diseases are particularly problematic. Both are of Asian origin and currently cause severe economic damage: Asiatic citrus canker (ACC) and citrus huanglongbing (HLB). Although ACC has been found in the ...

  8. Developing Transgenic Citrus for Resistance to Huanglongbing and Citrus Canker

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB) and Citrus Bacterial Canker (CBC) are serious threats to citrus production, and resistant transgenic citrus is desirable. Genes for antimicrobial peptides (AMPs) with diverse promoters have been used to generate thousands of rootstock and scion transformants. D35S::D4E1 transfor...

  9. Phloem restriction of viroids in three citrus hosts is overcome by grafting with Etrog citron: potential involvement of a translocatable factor.

    PubMed

    Bani-Hashemian, Seyed Mehdi; Pensabene-Bellavia, Giovanni; Duran-Vila, Nuria; Serra, Pedro

    2015-08-01

    Viroid systemic spread involves cell-to-cell movement from initially infected cells via plasmodesmata, long-distance movement within the phloem and again cell-to-cell movement to invade distal tissues including the mesophyll. Citrus exocortis viroid (CEVd), hop stunt viroid, citrus bent leaf viroid, citrus dwarfing viroid, citrus bark cracking viroid and citrus viroid V remained phloem restricted when singly infecting Citrus karna, Citrus aurantium and Poncirus trifoliata, but not Etrog citron, where they were additionally detected in mesophyll protoplasts. However, when CEVd-infected C. karna was side-grafted with Etrog citron--with the resulting plants being composed of a C. karna stock and an Etrog citron branch--the viroid was detected in mesophyll protoplasts of the former, thus indicating that the ability of Etrog citron to support viroid invasion of non-vascular tissues was transferred to the stock. Further results suggest that a translocatable factor from Etrog citron mediates this viroid trafficking.

  10. Introduction and characterization of charged functional domains into an esterified pectic homogalacturonan by a citrus pectin methylesterase and comparison of its modes of action to other pectin methylesterase isozymes

    USDA-ARS?s Scientific Manuscript database

    One of the four pectin methylesterase isozymes isolated from Citrus sinensis variety Valencia fruit was used to demethylesterify a model homogalacturonan to 30%, 50% and 70% degree of methylesterification at pH 4.5 and 7.0, respectively. Introduced demethylesterified blocks were released by a limite...

  11. The value of citrus genebanking

    USDA-ARS?s Scientific Manuscript database

    Access to diverse citrus genetic resources is critical for breeding new citrus cultivars that have higher quality fruit and improved resistance to pathogens and changing environmental conditions. The USDA-ARS National Clonal Repository for Citrus and Dates (NCGRCD) maintains a very diverse collectio...

  12. Huanglongbing: Devastating disease of citrus

    USDA-ARS?s Scientific Manuscript database

    Citrus greening or Huanglongbing (HLB) disease is devastating the citrus industry worldwide, from Asia to the Americas. The only major citrus regions free of this disease are the Mediterranean and Australia/New Zealand. To date there is no cure, no resistance and no therapy for HLB and production ra...

  13. A “walker” tool to place Diaphorina citri (Hemiptera: Liviidae) adults at predetermined sites for bioassays of behavior in citrus (Sapindales: Rutacease) trees

    USDA-ARS?s Scientific Manuscript database

    A walker tool was developed to assist placement of D. citri on citrus host trees in behavioral bioassays. The walker performs better than a commonly used paintbrush tool in the proportion of successful placements and in the reduction of jumps away from the citrus leaf, although it takes about two mi...

  14. Characterization of a virus infecting Citrus volkameriana with citrus leprosis-like symptoms.

    PubMed

    Melzer, Michael J; Sether, Diane M; Borth, Wayne B; Hu, John S

    2012-01-01

    A Citrus volkameriana tree displaying symptoms similar to citrus leprosis on its leaves and bark was found in Hawaii. Citrus leprosis virus C (CiLV-C)-specific detection assays, however, were negative for all tissues tested. Short, bacilliform virus-like particles were observed by transmission electron microscopy in the cytoplasm of symptomatic leaves but not in healthy controls. Double-stranded (ds) RNAs ≈8 and 3 kbp in size were present in symptomatic leaf tissue but not in healthy controls. Excluding poly(A) tails, the largest molecule, RNA1, was 8,354 bp in length. The ≈3 kbp dsRNA band was found to be composed of two distinct molecules, RNA2 and RNA3, which were 3,169 and 3,113 bp, respectively. Phylogenetic analyses indicated that the RNA-dependent RNA polymerase (RdRp) domain located in RNA1 was most closely related to the RdRp domain of CiLV-C. A reverse-transcription polymerase chain reaction assay developed for the detection of this virus was used to screen nearby citrus trees as well as Hibiscus arnottianus plants with symptoms of hibiscus green spot, a disease associated with infection by Hibiscus green spot virus (HGSV). All nearby citrus trees tested negative with the assay; however, symptomatic H. arnottianus plants were positive. All three RNAs were present in symptomatic H. arnottianus and were >98% identical to the RNAs isolated from C. volkameriana. We contend that the virus described in this study is HGSV, and propose that it be the type member of a new virus genus, Higrevirus.

  15. Transmission Rates of ‘Ca. Liberibacter asiaticus’ by Asian Citrus Psyllid Are Enhanced by the Presence and Developmental Stage of Citrus Flush.

    PubMed

    Hall, David G; Albrecht, Ute; Bowman, Kim D

    2016-04-01

    Asian citrus psyllid (Diaphorina citri Kuwayama) transmits a bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) putatively responsible for a devastating citrus disease known as Asiatic huanglongbing (HLB) (citrus greening disease). The psyllid and disease have invaded many citrus-growing regions including the United States, where the disease is seriously jeopardizing the Florida citrus industry. We recently concluded research that showed CLas transmission rates are increased when citrus flush is present. Flush is any new leaf growth ranging in development from first emergence up until the leaves are fully expanded yet still tender. In an experiment with seedlings of a rootstock cultivar ‘US-942’, a 1-wk infestation of 20 Asian citrus psyllids from an infected colony resulted in 53–60% of seedlings becoming infected when flush was present compared with only 7% when no flush was present. In a second experiment with ‘US-942’, 77–97% of seedlings became infected when flush was present compared with 40% when no flush was present. A similar experiment with ‘Valencia’ sweet orange resulted in 23, 80, and 3% seedlings becoming infected when young, older, or no flush was present, respectively. Young plants are therefore more likely to contract HLB if flush is present, with older flush promoting higher infection rates under the conditions of this study. Based on this finding, healthy citrus should be protected from Asian citrus psyllid infestations throughout a flush. To evaluate germplasm for CLas resistance, inoculations using infected Asian citrus psyllid would best be achieved if flush is present.

  16. Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution.

    PubMed

    Giatropoulos, Athanassios; Papachristos, Dimitrios P; Kimbaris, Athanasios; Koliopoulos, George; Polissiou, Moschos G; Emmanouel, Nickolaos; Michaelakis, Antonios

    2012-12-01

    Laboratory experiments were conducted to study the bioefficacy against Ae. albopictus of three Citrus essential oils, derived from peels of Citrus sinensis, Citrus limon, and Citrus paradise and of their components. Chiral gas chromatography analysis revealed the dominant occurrence of R-(+)-limonene and (-)-β-pinene in all three essential oils while in the case of lemon oil γ-terpinene, neral, and geranial detected also among other components. The tested Citrus essential oils were toxic against mosquito larvae with LC(50) values ranging from 25.03 to 37.03 mg l(-1). Among citrus essential oils components tested, γ-terpinene was the most toxic (LC(50) = 20.21 mg l(-1)) followed by both enantiomeric forms of limonene (LC(50) = 35.99 and 34.89 mg l(-1), for R-(+)-limonene and S-(-)-limonene, respectively). The delayed toxic effects after exposure of larvae to sublethal (LC(50)) doses were also investigated for citrus essential oils and their major component R-(+)-limonene, indicating a significant reduction of pupal survival. In repellent bioassays, lemon essential oil, S-(-)-limonene, citral (mixture of neral\\geranial) and (+)-β-pinene were the most effective compared with other citrus essential oils and components against adult mosquitoes. Repellent bioassays also revealed that limonenes and β-pinenes showed an isomer dependence repellent activity. Finally, according to enantiomeric distribution of limonene and α- and β-pinene, the repellency of lemon essential oil is possibly attributed to the presence of citral.

  17. 75 FR 17289 - Citrus Seed Imports; Citrus Greening and Citrus Variegated Chlorosis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... Animal and Plant Health Inspection Service 7 CFR Part 319 RIN 0579-AD07 Citrus Seed Imports; Citrus Greening and Citrus Variegated Chlorosis AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION...'' that attack the vascular system of host plants. The pathogens are phloem-limited, inhabiting the...

  18. Chlorophyll Fluorescence Imaging Uncovers Photosynthetic Fingerprint of Citrus Huanglongbing.

    PubMed

    Cen, Haiyan; Weng, Haiyong; Yao, Jieni; He, Mubin; Lv, Jingwen; Hua, Shijia; Li, Hongye; He, Yong

    2017-01-01

    Huanglongbing (HLB) is one of the most destructive diseases of citrus, which has posed a serious threat to the global citrus production. This research was aimed to explore the use of chlorophyll fluorescence imaging combined with feature selection to characterize and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples were measured by an in-house chlorophyll fluorescence imaging system. The commonly used chlorophyll fluorescence parameters provided the first screening of HLB disease. To further explore the photosynthetic fingerprint of HLB infected leaves, three feature selection methods combined with the supervised classifiers were employed to identify the unique fluorescence signature of HLB and perform the three-class classification (i.e., healthy, HLB infected, and nutrient deficient leaves). Unlike the commonly used fluorescence parameters, this novel data-driven approach by using the combination of the mean fluorescence parameters and image features gave the best classification performance with the accuracy of 97%, and presented a better interpretation for the spatial heterogeneity of photochemical and non-photochemical components in HLB infected citrus leaves. These results imply the potential of the proposed approach for the citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic response to the HLB disease.

  19. Chlorophyll Fluorescence Imaging Uncovers Photosynthetic Fingerprint of Citrus Huanglongbing

    PubMed Central

    Cen, Haiyan; Weng, Haiyong; Yao, Jieni; He, Mubin; Lv, Jingwen; Hua, Shijia; Li, Hongye; He, Yong

    2017-01-01

    Huanglongbing (HLB) is one of the most destructive diseases of citrus, which has posed a serious threat to the global citrus production. This research was aimed to explore the use of chlorophyll fluorescence imaging combined with feature selection to characterize and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples were measured by an in-house chlorophyll fluorescence imaging system. The commonly used chlorophyll fluorescence parameters provided the first screening of HLB disease. To further explore the photosynthetic fingerprint of HLB infected leaves, three feature selection methods combined with the supervised classifiers were employed to identify the unique fluorescence signature of HLB and perform the three-class classification (i.e., healthy, HLB infected, and nutrient deficient leaves). Unlike the commonly used fluorescence parameters, this novel data-driven approach by using the combination of the mean fluorescence parameters and image features gave the best classification performance with the accuracy of 97%, and presented a better interpretation for the spatial heterogeneity of photochemical and non-photochemical components in HLB infected citrus leaves. These results imply the potential of the proposed approach for the citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic response to the HLB disease. PMID:28900440

  20. 7 CFR 301.76-3 - Quarantined areas; citrus greening and Asian citrus psyllid.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Quarantined areas; citrus greening and Asian citrus...) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Citrus Greening and Asian Citrus Psyllid § 301.76-3 Quarantined areas; citrus greening and Asian citrus...

  1. 7 CFR 301.76-3 - Quarantined areas; citrus greening and Asian citrus psyllid.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Quarantined areas; citrus greening and Asian citrus...) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Citrus Greening and Asian Citrus Psyllid § 301.76-3 Quarantined areas; citrus greening and Asian citrus...

  2. 7 CFR 301.76-3 - Quarantined areas; citrus greening and Asian citrus psyllid.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Quarantined areas; citrus greening and Asian citrus...) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Citrus Greening and Asian Citrus Psyllid § 301.76-3 Quarantined areas; citrus greening and Asian citrus...

  3. Effects of 15N application frequency on nitrogen uptake efficiency in citrus trees.

    PubMed

    Quiñones, Ana; Bañuls, Josefina; Millo, Eduardo Primo; Legaz, Francisco

    2003-12-01

    Two irrigation systems were used to compare nitrogen uptake efficiency in citrus trees and to evaluate the NO3- runoff in "Navelina" orange trees [Citrus sinensis (L.) Osbeck] on Carrizo citrange rootstock (Citrus sinensis x Poncirus trifoliata Raf.). These were fertilized with 125 g N as labelled K15NO3 and grown outdoors in containers filled with a sand-loamy soil. Two groups of 3 trees received this N dose either in five equally split applications by a flooding irrigation system or in 66 applications by drip. Trees were harvested at the end of the vegetative cycle (December) and the isotopic ratios of 15N/14N were measured in the soil-plant system. The N uptake efficiency of the whole tree was higher with drip irrigation (75%) than with flooding system (64%). In the 0-90 cm soil profile, the N immobilized in the organic fraction was similar for both irrigation methods (around 13 %), whereas the N retained as NO3- was 1% of the N applied under drip and 10% under flooding. In the last case, most of NO3- remained under root system and it could be lost to leaching either by heavy rainfalls or excessive water applications. These results showed that a drip irrigation system was more efficient for improving water use and N uptake from fertilizer, in addition to potentially reduced leaching losses.

  4. Antioxidant activity of Citrus fruits.

    PubMed

    Zou, Zhuo; Xi, Wanpeng; Hu, Yan; Nie, Chao; Zhou, Zhiqin

    2016-04-01

    Citrus is well-known for its nutrition and health-promotion values. This reputation is derived from the studies on the biological functions of phytochemicals in Citrus fruits and their derived products in the past decades. In recent years, the antioxidant activity of Citrus fruits and their roles in the prevention and treatment of various human chronic and degenerative diseases have attracted more and more attention. Citrus fruits are suggested to be a good source of dietary antioxidants. To have a better understanding of the mechanism underlying the antioxidant activity of Citrus fruits, we reviewed a study on the antioxidant activity of the phytochemicals in Citrus fruits, introduced methods for antioxidant activity evaluation, discussed the factors which influence the antioxidant activity of Citrus fruits, and summarized the underlying mechanism of action. Some suggestions for future study were also presented.

  5. Genetic Diversity and Pathogenicity of Xanthomonas axonopodis Strains Inducing Citrus Canker Disease in Iran and South Korea.

    PubMed

    Khodakaramian, G; Swings, J

    2011-06-01

    For the first time in 1989 citrus bacterial canker disease has seen on Citrusaurantiifolia in southern Iran. A total of 43 strains from affected citrus trees, ten strains from South Korea and representative from all known five pathotypes of Xanthomonas axonopodis pathogenic on citrus trees were used in this study. Isolated strains from Iran were indistinguishable by phenotypic, FAMEs, and SDS-PAGE analyses but showed different host range. First group were pathogenic on all tested citrus seedlings including C. aurantiifolia, C. limettioides, C. limon, C. jambhiri, Poncirus trifoliata X C. paradisi, C. aurantium, C. paradise, C. medica, P. trifoliate, C. grandis, C. sinensis, C. reticulate and C. sinensis X P. trifoliate. Pathogenicity of the second group were limited to C. aurantiifolia, C. limettioides, C. limon, C. jambhiri, P. trifoliata X C. paradis, and C. aurantium. Among the strains studied by AFLP fingerprinting six clusters were found. These clusters were: (1) strains of pathotype C; (2) strains of pathotypes B and D; (3) strains of pathotype A together with the main group of the Iranian strains; (4) strains isolated from Korea; (5) strains of pathotype E; and (6) seven strains from Iran which made a completely separate cluster. Strains from pathotypes B and D could not be differentiated by AFLP. The tested Iranian strains belongs to the two different groups and strains from Korea grouped as a subcluster from main cluster of Iranian strains belong to the pathotype A.

  6. Quantification of Transfer of Salmonella from Citrus Fruits to Peel, Edible Portion, and Gloved Hands during Hand Peeling.

    PubMed

    Jung, Jiin; Friedrich, Loretta M; Danyluk, Michelle D; Schaffner, Donald W

    2017-06-01

    Although studies have quantified bacterial transfer between hands and various materials, cross-contamination between the surface of fresh citrus fruit and the edible portions during hand peeling has not been reported. This study quantifies transfer of Salmonella to the edible portion of citrus fruit from a contaminated peel during hand peeling. Citrus fruits used for this study were Citrus sinensis (sweet orange) cultivars 'Valencia' and 'Navel', Citrus unshiu (Satsuma mandarins), Citrus reticulata × Citrus paradisi ('Minneola' tangelo or 'Honeybell'), and C. paradisi (grapefruit) cultivar 'Marsh'. An avirulent Salmonella Typhimurium LT2 (ATCC 700720) resistant to rifampin was used for all experiments. The inoculum containing approximately 9 log CFU/mL (50 μL) was spot inoculated onto the equator, stem, or styler of each fruit and allowed to dry for 24 h. Six volunteers put on single-use latex gloves and peeled inoculated fruit. Peel, edible fruit portion, and gloves were collected and enumerated separately. Three replicates of the study were performed in which each volunteer peeled two inoculated fruit of each variety (n = 36 fruit per variety). Cross-contamination from contaminated surface of citrus fruits to edible portion or gloved hands during peeling was affected by inoculation sites. Average Salmonella transfer to the edible portion ranged from 0.16% (Valencia inoculated at the equator) to 5.41% (navel inoculated at the stem). Average Salmonella transfer to gloved hands ranged from 0.41% (grapefruit inoculated at the stem) to 8.97% (navel inoculated at the stem). Most Salmonella remained on the peel of citrus fruits. The average level of Salmonella remaining on the peel ranged from 5.37% (Minneola inoculated at the equator) to 66.3% (Satsuma inoculated at the styler). When grapefruit was inoculated, the Salmonella that remained on the peel showed a bimodal pattern in which some individuals left almost all Salmonella on the peel, while others left

  7. Development of Multiplex PCR for Simultaneous Detection of Citrus Viruses and the Incidence of Citrus Viral Diseases in Late-Maturity Citrus Trees in Jeju Island

    PubMed Central

    Hyun, Jae Wook; Hwang, Rok Yeon; Jung, Kyung Eun

    2017-01-01

    Satsuma dwarf virus (SDV) or Citrus mosaic sadwavirus (CiMV) were not consistently detected in RT-PCR assay with the primer sets based on gene of Japan isolates. SDV and CiMV isolates were distinctively divided into two groups based on phylogenetic analysis of PP2 gene cloned from 22 Korean isolates, and the Korean CiMV and SDV isolates shared 95.5–96.2% and 97.1–97.7% sequence identity with Japanese isolate, respectively. We developed PP2-1 primer set based on the PP2 gene sequence of Korean isolates to simultaneously and effectively detect SDV and CiMV. And CTLV-2013 and CTV-po primer sets were newly designed for detection of Citrus tatter leaf virus (CTLV) and Citrus tristeza virus (CTV), respectively. Using these primer sets, a new multiplex PCR assay was developed as a means to simultaneously detect 4 citrus viruses, CTV, CTLV, SDV, and CiMV. The degree of detection by the multiplex PCR were consistent with those of uniplex RT-PCR for detection of each of the viruses. Therefore, the new multiplex PCR provides an efficient method for detecting 4 citrus viruses, which will help diagnose many citrus plants at the same time. We verified that 35.2% and 72.1% of 775 trees in 155 orchards were infected with SDV or CiMV (SDV/CiMV) and CTV by the multiplex-PCR assay, respectively, and CTLV was not detected in any of the trees tested. PMID:28592949

  8. Mosquito larvicidal activity of citrus limonoids against Aedes albopictus.

    PubMed

    Hafeez, Faisal; Akram, Waseem; Shaalan, Essam Abdel-Salam

    2011-07-01

    Citrus limonoids, nomilin and limon