Trinitromethyl Ethers and Other Derivatives as Superior Oxidizers
2011-08-26
well as comparable or superior energy content, so that its performance will be at least equivalent to that of AP. Oxygen balance (relative to CO2) for...21]: 6 C(NO2)4 + M+Cl – → ClC(NO2)3 + M+NO2 – ClC(NO2)3 + LiBr → BrC(NO2)3 + ClC(NO2)2Br BrC(NO2)3 + LiCl → ClC(NO2)3 + LiBr ...hindrance parameter α > 8.87 would not be stable; where Ustrain is the strain energy or the potential energy of the molecule in the minimum position
Copper(I), silver(I) and gold(I) halide complexes with the dithioformamidinium dihalides
NASA Astrophysics Data System (ADS)
Peyronel, Giorgio; Malavasi, Wanda; Pignedoli, Anna
Some copper(I), silver(I) and gold(I) halide complexes with the dithioformamidinium dihalides (Tu 2X 2) were prepared and studied by infrared spectroscopy and conductometry: 3CuX.2Tu 2X 2(XCl,I), CuBr.Tu 2Br 2, 4CuBr.3.5Tu 2Br 2.MeOH, 2CuBr.Tu 2Br 2.0.66EtOH, 3CuI.2Tu 2I 2, 2AgCl.2.5Tu 2Cl 2, 3AgCl.2Tu 2Cl 2.0.5EtOH, 3AgCl.Tu 2Cl 2, 2AgBr.2Tu 2Br 2.0.5Tu 2(NO 3) 2.H 2O, AgBr.Tu 2Br 2, 4AgBr.Tu 2Br 2, 4AgI.0.5Tu 2I 2.EtOH, AuCl.1.5Tu 2Cl 2, 4AuCl.3.5Tu 2Cl 2.2DMF, AuBr.4Tu 2Br 2, AuBr.2Tu 2Br 2.1.5DMF, AuI.5Tu 2I 2, AuI.Tu 2I 2. A decrease of the ν(NH), δ(NH 2) and ν(CN 2) frequencies and an increase of the ν(CS) frequencies indicate an N-coordination of the dithioformamidinium cation to the metal ions; ν(MN) and ν(MX) frequencies are tentatively assigned in the far-infrared spectra.
Suzuki, Haruka; Miyashita, Yuri; Choi, Sun Hee; Hisa, Yusuke; Rihei, Shunsuke; Shimada, Ryoko; Jeon, Eun Jin; Abe, Junya; Uyeda, Ichiro
2016-01-01
ABSTRACT Peas carrying the cyv1 recessive resistance gene are resistant to clover yellow vein virus (ClYVV) isolates No.30 (Cl-No.30) and 90-1 (Cl-90-1) but can be infected by a derivative of Cl-90-1 (Cl-90-1 Br2). The main determinant for the breaking of cyv1 resistance by Cl-90-1 Br2 is P3N-PIPO produced from the P3 gene via transcriptional slippage, and the higher level of P3N-PIPO produced by Cl-90-1 Br2 than by Cl-No.30 contributes to the breaking of resistance. Here we show that P3N-PIPO is also a major virulence determinant in susceptible peas that possess another resistance gene, Cyn1, which does not inhibit systemic infection with ClYVV but causes hypersensitive reaction-like lethal systemic cell death. We previously assumed that the susceptible pea cultivar PI 226564 has a weak allele of Cyn1. Cl-No.30 did not induce cell death, but Cl-90-1 Br2 killed the plants. Our results suggest that P3N-PIPO is recognized by Cyn1 and induces cell death. Unexpectedly, heterologously strongly expressed P3N-PIPO of Cl-No.30 appears to be recognized by Cyn1 in PI 226564. The level of P3N-PIPO accumulation from the P3 gene of Cl-No.30 was significantly lower than that of Cl-90-1 Br2 in a Nicotiana benthamiana transient assay. Therefore, Cyn1-mediated cell death also appears to be determined by the level of P3N-PIPO. The more efficiently a ClYVV isolate broke cyv1 resistance, the more it induced cell death systemically (resulting in a loss of the environment for virus accumulation) in susceptible peas carrying Cyn1, suggesting that antagonistic pleiotropy of P3N-PIPO controls the resistance breaking of ClYVV. IMPORTANCE Control of plant viral disease has relied on the use of resistant cultivars; however, emerging mutant viruses have broken many types of resistance. Recently, we revealed that Cl-90-1 Br2 breaks the recessive resistance conferred by cyv1, mainly by accumulating a higher level of P3N-PIPO than that of the nonbreaking isolate Cl-No.30. Here we show that a susceptible pea line recognized the increased amount of P3N-PIPO produced by Cl-90-1 Br2 and activated the salicylic acid-mediated defense pathway, inducing lethal systemic cell death. We found a gradation of virulence among ClYVV isolates in a cyv1-carrying pea line and two susceptible pea lines. This study suggests a trade-off between breaking of recessive resistance (cyv1) and host viability; the latter is presumably regulated by the dominant Cyn1 gene, which may impose evolutionary constraints upon P3N-PIPO for overcoming resistance. We propose a working model of the host strategy to sustain the durability of resistance and control fast-evolving viruses. PMID:27279605
Ma, Jie; Yang, Yongqi; Jiang, Xianchenghao; Xie, Zhuoting; Li, Xiaoxuan; Chen, Changzhao; Chen, Hongkun
2018-01-01
The present study investigated the impacts of water matrix constituents (CO 3 2- , HCO 3 - , Cl - , Br - , PO 4 3- , HPO 4 2- , H 2 PO 4 - , NO 3 - , SO 4 2- and natural organic matters (NOM) on the oxidation of a mixture of benzene, toluene, ethylbenzene, and xylenes (BTEX) by thermally activated persulfate (PS). In the absence of matrix constituents, the BTEX oxidation rates decreased in the following order: xylenes > toluene ≈ ethylbenzene > benzene. HCO 3 - /CO 3 2- and NOM inhibited the BTEX oxidation and the inhibiting effects became more pronounced as the HCO 3 - /CO 3 2- /NOM concentration increased. SO 4 2- , NO 3 - , PO 4 3- and H 2 PO 4 - did not affect the BTEX oxidation while HPO 4 2- slightly inhibited the reaction. The impacts of Cl - and Br - were complex. Cl - inhibited the benzene oxidation while 100 mM and 500 mM of Cl - promoted the oxidation of m-xylene and p-xylene. Br - completely suppressed the benzene oxidation while 500 mM of Br - strongly promoted the oxidation of xylenes. Detailed explanations on the influence of each matrix constituent were discussed. In addition, various halogenated degradation byproducts were detected in the treatments containing Cl - and Br - . Overall, this study indicates that some matrix constituents such as NOM, HCO 3 - , CO 3 2- , H 2 PO 4 - , Cl - and Br - may reduce the BTEX removal efficiency of sulfate radical-based advanced oxidation process (SR-AOP) and the presence of Cl - and Br - may even lead to the formation of toxic halogenated byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Atsumi, Go; Suzuki, Haruka; Miyashita, Yuri; Choi, Sun Hee; Hisa, Yusuke; Rihei, Shunsuke; Shimada, Ryoko; Jeon, Eun Jin; Abe, Junya; Nakahara, Kenji S; Uyeda, Ichiro
2016-08-15
Peas carrying the cyv1 recessive resistance gene are resistant to clover yellow vein virus (ClYVV) isolates No.30 (Cl-No.30) and 90-1 (Cl-90-1) but can be infected by a derivative of Cl-90-1 (Cl-90-1 Br2). The main determinant for the breaking of cyv1 resistance by Cl-90-1 Br2 is P3N-PIPO produced from the P3 gene via transcriptional slippage, and the higher level of P3N-PIPO produced by Cl-90-1 Br2 than by Cl-No.30 contributes to the breaking of resistance. Here we show that P3N-PIPO is also a major virulence determinant in susceptible peas that possess another resistance gene, Cyn1, which does not inhibit systemic infection with ClYVV but causes hypersensitive reaction-like lethal systemic cell death. We previously assumed that the susceptible pea cultivar PI 226564 has a weak allele of Cyn1 Cl-No.30 did not induce cell death, but Cl-90-1 Br2 killed the plants. Our results suggest that P3N-PIPO is recognized by Cyn1 and induces cell death. Unexpectedly, heterologously strongly expressed P3N-PIPO of Cl-No.30 appears to be recognized by Cyn1 in PI 226564. The level of P3N-PIPO accumulation from the P3 gene of Cl-No.30 was significantly lower than that of Cl-90-1 Br2 in a Nicotiana benthamiana transient assay. Therefore, Cyn1-mediated cell death also appears to be determined by the level of P3N-PIPO. The more efficiently a ClYVV isolate broke cyv1 resistance, the more it induced cell death systemically (resulting in a loss of the environment for virus accumulation) in susceptible peas carrying Cyn1, suggesting that antagonistic pleiotropy of P3N-PIPO controls the resistance breaking of ClYVV. Control of plant viral disease has relied on the use of resistant cultivars; however, emerging mutant viruses have broken many types of resistance. Recently, we revealed that Cl-90-1 Br2 breaks the recessive resistance conferred by cyv1, mainly by accumulating a higher level of P3N-PIPO than that of the nonbreaking isolate Cl-No.30. Here we show that a susceptible pea line recognized the increased amount of P3N-PIPO produced by Cl-90-1 Br2 and activated the salicylic acid-mediated defense pathway, inducing lethal systemic cell death. We found a gradation of virulence among ClYVV isolates in a cyv1-carrying pea line and two susceptible pea lines. This study suggests a trade-off between breaking of recessive resistance (cyv1) and host viability; the latter is presumably regulated by the dominant Cyn1 gene, which may impose evolutionary constraints upon P3N-PIPO for overcoming resistance. We propose a working model of the host strategy to sustain the durability of resistance and control fast-evolving viruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Bai, Feng-Yang; Lv, Shuang; Ma, Yuan; Liu, Chun-Yu; He, Chun-Fang; Pan, Xiu-Mei
2017-03-01
In this work, the density functional and high-level ab initio theories are adopted to investigate the mechanisms and kinetics of reaction of (CH 3 ) 3 CC(O)X (X = F, Cl, and Br) with atomic chlorine. Rate coefficients for the reactions of chlorine atom with (CH 3 ) 3 CC(O)F (k 1 ), (CH 3 ) 3 CC(O)Cl (k 2 ), and (CH 3 ) 3 CC(O)Br (k 3 ) are calculated using canonical variational transition state theory coupled with small curvature tunneling method over a wide range of temperatures from 250 to 1000 K. The dynamic calculations are performed by the variational transition state theory with the interpolated single-point energies method at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of theory. Computed rate constant is in good line with the available experimental value. The rate constants for the title reactions are in this order: k 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dombrovskaya, N.S.; Khakhlova, N.V.; Alekseeva, E.A.
1961-04-21
The most stable configuration of the mixture of the 16 salts formed from Li, Na, Rb, Tl/Br, Cl, NO/sub 3/, and S0/sub 4/ con ture which however interact, resulting in a stable mixture. On the basis of exchange reactions the following equation has been derived: LiBr + NaNO/sub 3/ + RbCl + 1/2Tl/sub 2/SO/sub 4/ = 1/ 2LiSO/sub 4/ + NaCl + RbNO/sub 3/ + TlBr. In addition, several binary complexes are also formed, such as Li/sub 2/SO/sub 4/ - Rb/sub 2/SO/sub 4/, 4Li/sub 2/SO/ sub 4/ - RbSO /sub 4/, RbCl - 2Li/sub 2/SO/sub 4/ and possible others. Inmore » view of the great interest, the intersection of stable and non-equilibrium tetrahedra consisting of components of both, was experimentally studied by thermai analysis. On the basis of cooling curves the following deflection points have been observed: 453 deg C, precipitation of the first Li/sub 2/SO/sub 4/ crystals; 409 deg , coprecipitation of Li/sub 2/SO/sub 4/ and NaCl; 391 deg , coprecipitation of Li/sub 2/SO/sub 4/, NaCl snd TlBr; and finally at 107 deg , formation of the quaternary eutectic with the previously mentioned salts + RbNO/sub 3/. The microstructures of the stable and non-equilibrium phases are quite similar. (TTT)« less
Haloacyl complexes of boron, [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br, I).
Finze, Maik; Bernhardt, Eduard; Willner, Helge; Lehmann, Christian W
2005-11-04
The haloacyltris(trifluoromethyl)borate anions [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br, I) have been synthesized by reacting (CF3)3BCO with either MHal (M=K, Cs; Hal=F) in SO2 or MHal (M=[nBu4N]+, [Et4N]+, [Ph4P]+; Hal=Cl, Br, I) in dichloromethane. Metathesis reactions of the fluoroacyl complex with Me3SiHal (Hal=Cl, Br, I) led to the formation of its higher homologues. The thermal stabilities of the haloacyltris(trifluoromethyl)borates decrease from the fluorine to the iodine derivative. The chemical reactivities decrease in the same order as demonstrated by a series of selected reactions. The new [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br) salts are used as starting materials in the syntheses of novel compounds that contain the (CF3)3B-C fragment. All borate anions [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br, I) have been characterized by multinuclear NMR spectroscopy (11B, 13C, 17O, 19F) and vibrational spectroscopy. [PPh4][(CF3)3BC(O)Br] crystallizes in the monoclinic space group P2/c (no. 13) and the bond parameters are compared with those of (CF3)3BCO and K[(CF3)3BC(O)F]. The interpretation of the spectroscopic and structural data are supported by DFT calculations [B3LYP/6-311+G(d)].
Anion dependent ion pairing in concentrated ytterbium halide solutions
NASA Astrophysics Data System (ADS)
Klinkhammer, Christina; Böhm, Fabian; Sharma, Vinay; Schwaab, Gerhard; Seitz, Michael; Havenith, Martina
2018-06-01
We have studied ion pairing of ytterbium halide solutions. THz spectra (30-400 cm-1) of aqueous YbCl3 and YbBr3 solutions reveal fundamental differences in the hydration structures of YbCl3 and YbBr3 at high salt concentrations: While for YbBr3 no indications for a changing local hydration environment of the ions were experimentally observed within the measured concentration range, the spectra of YbCl3 pointed towards formation of weak contact ion pairs. The proposed anion specificity for ion pairing was confirmed by supplementary Raman measurements.
Matrix isolation infrared spectra of hydrogen halide and halogen complexes with nitrosyl halides
NASA Technical Reports Server (NTRS)
Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.
1982-01-01
Matrix isolation infrared spectra of nitrosyl halide (XNO) complexes with HX and X2 (X = Cl, Br) are presented. The relative frequency shifts of the HX mode are modest (ClNO H-Cl, delta-nu/nu = -0.045; BrNO H-Br, delta-nu/nu = -0.026), indicating weak hydrogen bonds 1-3 kcal/mol. These shifts are accompanied by significant shifts to higher frequencies in the XN-O stretching mode (CIN-O HCl, delta-nu/nu = +0.016; BrN-O HBr, delta-nu/nu = +0.011). Similar shifts were observed for the XN-O X2 complexes (ClN-O Cl2, delta-nu/nu = +0.009; BrN-O-Br2, delta-nu/nu = +0.013). In all four complexes, the X-NO stretching mode relative shift is opposite in sign and about 1.6 times that of the NO stretching mode. These four complexes are considered to be similar in structure and charge distribution. The XN-O frequency shift suggests that complex formation is accompanied by charge withdrawal from the NO bond ranging from about .04 to .07 electron charges. The HX and X2 molecules act as electron acceptors, drawing electrons out of the antibonding orbital of NO and strengthening the XN-O bond. The implications of the pattern of vibrational shifts concerning the structure of the complexes are discussed.
Choi, Sun Hee; Hagiwara-Komoda, Yuka; Atsumi, Go; Shimada, Ryoko; Hisa, Yusuke; Naito, Satoshi
2013-01-01
In pea carrying cyv1, a recessive gene for resistance to Clover yellow vein virus (ClYVV), ClYVV isolate Cl-no30 was restricted to the initially infected cells, whereas isolate 90-1 Br2 overcame this resistance. We mapped the region responsible for breaking of cyv1-mediated resistance by examining infection of cyv1 pea with chimeric viruses constructed from parts of Cl-no30 and 90-1 Br2. The breaking of resistance was attributed to the P3 cistron, which is known to produce two proteins: P3, from the main open reading frame (ORF), and P3N-PIPO, which has the N-terminal part of P3 fused to amino acids encoded by a small open reading frame (ORF) called PIPO in the +2 reading frame. We introduced point mutations that were synonymous with respect to the P3 protein but nonsynonymous with respect to the P3N-PIPO protein, and vice versa, into the chimeric viruses. Infection of plants with these mutant viruses revealed that both P3 and P3N-PIPO were involved in overcoming cyv1-mediated resistance. Moreover, P3N-PIPO quantitatively affected the virulence of Cl-no30 in cyv1 pea. Additional expression in trans of the P3N-PIPO derived from Cl-no30, using White clover mosaic virus as a vector, enabled Cl-no30 to move to systemic leaves in cyv1 pea. Susceptible pea plants infected with chimeric ClYVV possessing the P3 cistron of 90-1 Br2, and which were therefore virulent toward cyv1 pea, accumulated more P3N-PIPO than did those infected with Cl-no30, suggesting that the higher level of P3N-PIPO in infected cells contributed to the breaking of resistance by 90-1 Br2. This is the first report showing that P3N-PIPO is a virulence determinant in plants resistant to a potyvirus. PMID:23616656
Atmospheric Science Data Center
2013-02-19
... Methyl bromide (CH3Br) Bromopropane (C3H7 Br) Methyl Chloride (CH3Cl) Ethyl Chloride (C2H5Cl) Vinyl chloride (C2H3Cl) ... Trichloroethylene (C2HCl3) Tetrachloroethylene (C2Cl4) Methylene bromide (CH2Br2) Chlorodibromomethane (CHClBr2) Bromoform ...
Atmospheric Science Data Center
2013-02-18
... Methyl bromide (CH3Br) Bromopropane (C3H7Br) Methyl Chloride(CH3Cl) Ethyl Chloride (C2H5Cl) Vinyl chloride (C2H3Cl) ... Trichloroethylene (C2HCl3) Tetrachloroethylene (C2Cl4) Methylene bromide (CH2Br2) Chlorodibromomethane(CHClBr2) Bromoform ...
Substitution and Redox Chemistry of [Bu(4)N](2)[Ta(6)Cl(12)(OSO(2)CF(3))(6)].
Prokopuk, Nicholas; Kennedy, Vance O.; Stern, Charlotte L.; Shriver, Duward F.
1998-09-21
Two sequential electrochemical reductions occur for the cluster anion [Ta(6)Cl(12)(OSO(2)CF(3))(6)](2)(-) at 0.89 and 0.29 V vs Ag/AgCl, with the generation [Ta(6)Cl(12)(OSO(2)CF(3))(6)](3)(-) and [Ta(6)Cl(12)(OSO(2)CF(3))(6)](4)(-). Chemical reduction of [Ta(6)Cl(12)(OSO(2)CF(3))(6)](2)(-) by ferrocene produces [Ta(6)Cl(12)(OSO(2)CF(3))(6)](3)(-) with the concomitant shift of the nu(SO(2)) stretch from 1002 to 1018 cm(-)(1). Reaction of [Bu(4)N](2)[Ta(6)Cl(12)(OSO(2)CF(3))(6)] (1) with [Bu(4)N]X (X = Cl, Br, I, NCS) occurs by reduction and substitution, yielding [Bu(4)N](3)[Ta(6)Cl(12)X(6)], where the clusters with X = Br, I, and NCS are new. Spectroscopic (IR and UV-vis) evidence indicates that the reduced cluster core {Ta(6)Cl(12)}(2+) is produced in reaction mixtures of 1 with the halide and pseudohalide ions. Concomitant substitution of the triflate ligands of 1 by X(-) occurs and the rates for the overall reduction and substitution increase in the order X(-) = Cl(-) < Br(-) < NCS(-) < I(-) < CN(-). Reduction of 1 with ferrocene followed by addition of [Bu(4)N]O(2)CCH(3) produces the new cluster [Ta(6)Cl(12)(O(2)CCH(3))(6)](3)(-) isolated as the tetrabutylammonium salt. Cyclic voltammetry and UV-vis spectroscopy on the new clusters [Bu(4)N](3)[Ta(6)Cl(12)X(6)] (X = Br, I, NCS, and O(2)CCH(3)) are reported. Crystal data for [Bu(4)N](3)[Ta(6)Cl(12)(NCS)(6)].CH(2)Cl(2): monoclinic, space group, P2(1)/c (No. 14); a = 25.855(6) Å, b = 21.843(6) Å, c = 16.423(3) Å; beta = 100.03(2) degrees; V = 9133(3) Å(3); Z = 4.
NASA Astrophysics Data System (ADS)
Ryu, Minjoo; Lee, Young-A.; Jung, Ok-Sang
2018-01-01
The self-assembly of CuX2 (X- = Cl-, Br-, NO3-, ClO4-, and BF4-) with a new diallylbis(pyridin-3-yl)silane ligand (L) gives rise to the similar 2D coordination networks with composition of Cu(II) and L of 1: 2 irrespective of anions and solvents. The 2D networks of [CuCl2L2]·2H2O, [CuBr2L2]·2H2O, and [Cu(H2O)2L2]·(NO3)2 are packed in a staggered mode while the similar networks of [Cu(BF4)2L2] and [Cu(ClO4)2L2] are arrayed in a eclipsed fashion. These crystals of all 2D networks have been employed as catalysts for 3,5-di-tert-butylcatechol (3,5-DBCat) oxidation, showing the catalytic effects in the order of [CuCl2L2]·2H2O > [CuBr2L2]·2H2O > [Cu(H2O)2L2]·(NO3)2 > [Cu(ClO4)2L2] > [Cu(BF4)2L2] in chloroform and exhibiting the catalytic effects of only [Cu(H2O)2L2]·(NO3)2 in acetone. Thus, the catalytic effect on catechol oxidation is strongly dependent on anions and media.
Stable Chloro- and Bromoxenate Cage Anions; [X3(XeO3)3]3- and [X4(XeO3)4]4- (X = Cl or Br).
Goettel, James T; Haensch, Veit G; Schrobilgen, Gary J
2017-06-28
The number of isolable compounds which contain different noble-gas-element bonds is limited for xenon and even more so for krypton. Examples of Xe-Cl bonds are rare, and prior to this work, no Xe-Br bonded compound had been isolated in macroscopic quantities. The syntheses, isolation, and characterization of the first compounds to contain Xe-Br bonds and their chlorine analogues are described in the present work. The reactions of XeO 3 with [N(CH 3 ) 4 ]Br and [N(C 2 H 5 ) 4 ]Br have provided two bromoxenate salts, [N(C 2 H 5 ) 4 ] 3 [Br 3 (XeO 3 ) 3 ] and [N(CH 3 ) 4 ] 4 [Br 4 (XeO 3 ) 4 ], in which the cage anions have Xe-Br bond lengths that range from 3.0838(3) to 3.3181(8) Å. The isostructural chloroxenate anions (Xe-Cl bond lengths, 2.9316(2) to 3.101(4) Å) were synthesized by analogy with their bromine analogues. The bromo- and chloroxenate salts are stable in the atmosphere at room temperature and were characterized in the solid state by Raman spectroscopy and low-temperature single-crystal X-ray diffraction, and in the gas phase by quantum-chemical calculations. They are the only known examples of cage anions that contain a noble-gas element. The Xe-Br and Xe-Cl bonds are very weakly covalent and can be viewed as σ-hole interactions, similar to those encountered in halogen bonding. However, the halogen atoms in these cases are valence electron lone pair donors, and the σ* Xe-O orbitals are lone pair acceptors.
Fernández-Anca, Damián; García-Seijo, M Inés; García-Fernández, M Esther
2010-03-07
The reaction of NP(3) (tris[2-(diphenylphosphino)ethyl]amine and PP(3) (tris[2-(diphenylphosphino)ethyl]phosphine) with the five-coordinate complexes [PdCl(NP(3))]Cl (1) and [MX(PP(3))]X [M = Pd: X = Cl(2), Br(3), I(4); M = Pt: X = Cl(5), Br(6), I(7)], respectively, followed by (31)P{(1)H}NMR when X = Cl, led to the formation of unprecedented four-coordinate halides in a 1 : 2 metal to ligand ratio, [M(AP(3))(2)]X(2) [A = N, M = Pd: X = Cl(8); A = P, M = Pd: X = Cl(9), Br(10), I(11); A = P, M = Pt: X = Cl(12), Br(13), I (14)], containing reactive dangling phosphorus. Given the non characterised precursors [M(ONO(2))(PP(3))](NO(3))], the interaction between the heteronuclear species [MAg(NO(3))(3)(PP(3))] [M = Pd(15), Pt(16)] and PP(3) was explored. It was found that the addition of 1 equivalent of phosphine afforded [MAg(NO(3))(PP(3))(2)](NO(3))(2) [M = Pd(15*), Pt(16*)] containing Ag(I) bound to two dangling phosphorus while the reaction with 2 equivalents led to the complexes [M(PP(3))(2)](NO(3))(2) [M = Pd (17), Pt (18)] in coexistence with [Ag(2)(mu-PP(3))(2)](NO(3))(2). The fate of Ag(I) on the reaction of the mixed metal compounds with excess PP(3) consisted of preventing dissociation, observed in solution for halides, and acting as an assistant for crystallization. Colourless single crystals of 18 and 10, studied by X-ray diffraction, were afforded by reaction of 16 with 4 equivalents of PP(3) and from solutions of 10 in chloroform coexisting with red crystals of 3, respectively. The structures revealed the presence of dications [M(PP(3))(2)](2+) that show two five-membered chelate rings to M(II) in a square-planar arrangement and four uncoordinated phosphine arms with the counter anions being symmetrically placed at 4.431 (Br(-)) and 13.823 (NO(3)(-)) A from M(II) above and below its coordination, MP(4), plane. Complexes 9 and 12 were shown to undergo an interesting reactivity in solution versus group 11 monocations. The reactions consisted of conversions of the two five-membered chelate rings to M into three (structure I) or two (structure II) fused five-membered chelate rings, formation of species where Pt(II) retained its square-planar environment with the two dangling phosphine arms of each PP(3) bound to Cu(I) or Ag(I) (structure III) and complexes bearing distorted square-planar (P(2)MCl(2)) and presumably tetrahedral (AuP(4)+ P(2)AuCl(2)) arrangements (structure IV). The processes with Ag(I) salts also gave mixtures of I+III (chloride and nitrate) or II+III (nitrate).
Is the 'Bromine Explosion' generated from the reaction BrO HO2 alone?
NASA Astrophysics Data System (ADS)
Behnke, Wolfgang; Zetzsch, Cornelius
2010-05-01
We observed bromine explosions (a fast production of atomic Br and Cl under tropospheric conditions) in various smog chamber experiments in Teflon bags at room temperature at a relative humidity of about 80% in the presence of NaCl/NaBr-aerosol, simulated sunlight and ozone (200 - 400 ppb). Time profiles of ozone and hydrocarbons (HCs: n-butane, 2,2-dimethylbutane, tetramethylbutane and toluene, initially about 2 ppb each) were monitored to determine concentrations and source strengths of OH radicals, atomic Cl and Br and the corresponding time profiles of BrCl and Br2 as their photolytic precursors. The number and size of aerosols are measured as well as their chemical composition (Br-, Cl- and oxalic acid). Full records of raw data from the smog chamber runs are available at www.eurochamp.org for potential users. Chemical box model calculations deliver concentrations of various intermediates, such as aldehydes, HO2 and RO2 radicals and the inorganic halogen compounds ClO, BrO, HOCl and HOBr, where HOBr from O3 + Br- => BrO- + O2 in the aqueous/adsorbed phase induces the following gas-phase/ heterogeneous chain reaction Br + O3 => BrO + O2(1) BrO + HO2 => HOBr + O2(2a) HOBr + (Aerosol) => HOBrad(3) Surface-adsorbed HOBr reacts with Br- or Cl- to produce Br2 or BrCl, both of which are released and photolysed. Formation of Br2 should prevail up to Cl-/Br- -ratios of about 104 (Fickert, S., J.W. Adams, J.N. Crowley, J. Geophys. Res., D104, 23719-23727, 1999). A maximum of this ratio is reached about 30 minutes after the beginning and decreases during the next hours - probably by reaction of Br2 with oxalate and absorption of HBr, formed from the reaction of Br with aldehydes. Parallel to chain reaction (1)-(3) a chain reaction replacing Br by Cl seems possible but can not be realized, since the main sink of atomic Cl is its reaction with hydrocarbons - leading to chain termination - in contrast to atomic Br (ratio of rates: kCl[O3]/kCl[HC] ~ 0.1; kBr[O3]/kBr[toluene] ~ 100). Formation of aldehydes (R-CHO) interferes with the chain reaction (1) - (3) markedly, since kBr[O3] ≈kBr[R-CHO]. The chain reaction is limited by availability of ozone (degradation of HCs by atomic Cl stops completely with vanishing ozone), of HO2 (HCs are required to form HO2) and of aerosol. The central question is: will sufficient HO2 be formed from degradation of HCs to explain the magnitude of the formed Br2 and BrCl in our experiments? We found that the formation of HO2 should be by a factor of 2-4 larger to explain the formation of Br2 and BrCl. Which other sources for the formation of HOBr besides reaction (2a) are then available? The rate of CH3O2with BrO is 25% of that with HO2 (Enami, S.; Yamanaka, T.; Nakayama, T.; Hashimoto, S.; Kawasaki, M.; Shallcross, D.E.; Nakano, Y.; Ishiwata, T., J. Phys. Chem. A, 11, 3342 - 3348, 2007), suggesting that other RO2 radicals must contribute. In our model calculations we use this rate constant for all RO2 radicals to obtain reasonable agreement between the produced HOBr and the formed BrCl and Br2 necessary for our experimental degradation results. So reaction scheme (1) - (3) should be completed by: BrO + RO2 => HOBr + products (2b) The German Science Foundation (DFG) supported this research in unit 783 (HALOPROC).
NASA Astrophysics Data System (ADS)
Li, Bo; Zhang, Yanan; Zhang, Luyuan; Yin, Longwei
2017-08-01
Inorganic CsPbBr3 perovskite is arousing great interest following after organic-inorganic hybrid halide perovskites, and is found as a good candidate for photovoltaic devices for its prominent photoelectric property and stability. Herein, we for the first time report on PbCl2-tuned inorganic Cl-doped CsPbBr3(Cl) perovskite solar cells with adjustable crystal structure and Cl doping for enhanced carrier lifetime, extraction rate and photovoltaic performance. The effect of PbCl2 on the morphologies, structures, optical, and photovoltaic performance of CsPbBr3 perovskite solar cells is investigated systemically. Compared with orthorhombic CsPbBr3, cubic CsPbBr3 demonstrates a significant improvement for electron lifetime (from 6.7 ns to 12.3 ns) and diffusion length (from 69 nm to 197 nm), as well as the enhanced electron extraction rate from CsPbBr3 to TiO2. More importantly, Cl doping benefits the further enhancement of carrier lifetime (14.3 ns) and diffusion length (208 nm). The Cl doped cubic CsPbBr3(Cl) perovskite solar cell exhibits a Jsc of 8.47 mA cm-2 and a PCE of 6.21%, superior to that of pure orthorhombic CsPbBr3 (6.22 mA cm-2 and 3.78%). The improvement of photovoltaic performance can be attributed to enhanced carrier lifetime, diffusion length and extraction rates, as well as suppressed nonradiative recombination.
In Situ Detection of OH, HO2, ClO, BrO, NO2, ClONO2, BrONO2, ClOOCl, H2O, and O3 from the ER2
NASA Technical Reports Server (NTRS)
Anderson, James G.
2001-01-01
We review here the scientific progress that has emerged during the period January 1, 1998 through March 31, 2001. Results from the Sage III Ozone Loss and Validation Experiment (SOLVE) and Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) mission, and continuing work on prior missions, taken in order, including radical control of ozone on the northern hemisphere stratosphere, evolution of NO2 over the arctic winter and its effects on reactive chlorine, and the first measurements of ClOOCl in the stratosphere.
Atmospheric Science Data Center
2013-02-19
... Trichloroethylene (C2HCl3) Carbon tetrachloride (CCl4) Methylene bromide (CH2Br2) Chlorobromomethane (CH2BrCl) Dichloromethane ... Methylbromide (CH3Br) Chloroform (CH3CCl3) Methyl Chloride (CH3Cl) Methyl Iodide (CH3I) Chlorodibromomethane (CHBr2Cl) ...
Atmospheric Science Data Center
2013-02-18
... Trichloroethylene (C2HCl3) Carbon tetrachloride (CCl4) Methylene bromide (CH2Br2) Chlorobromomethane (CH2BrCl) Dichloromethane ... Methylbromide (CH3Br) Chloroform (CH3CCl3) Methyl Chloride (CH3Cl) Methyl Iodide (CH3I) Chlorodibromomethane (CHBr2Cl) ...
THERMODYNAMIC PROPERTIES OF Zr AND Hf HALIDES (in Rumanian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lungu, S.N.
1962-01-01
The following standard heats of formation were found: ZrCl/sub 3/, 178.6 plus or minus 3.2; ZrCl/sub 2/, 124.3 plus or minus 3; ZrBr/sub 3/, 151 plus or minus 7; Zr Br/sbu 2/, 100 plus or minus 6; ZrI/sub 3/, 103 plus or minus 6; ZrI/sub 2/, 68 plus or minus 4; and HfCl/sub 4/, 239.4 plus or minus 5.5; HfCl/sub 3/, 186.6; HfCl/sub 2/, 130; HfBr/sub 4/, 200; HfBr/sub 3/, 157; HfBr / sub 2/, 108; HfI/sub 4/, 140; HfI/sub 3/, 113; and HfI/sub 2/, 72 kcal/mole. (R.V.J.)
Wei, Li-Pei; Ren, Zhi-Gang; Zhu, Lian-Wen; Yan, Wen-Yan; Sun, Sha; Wang, Hui-Fang; Lang, Jian-Ping; Sun, Zhen-Rong
2011-05-16
Treatment of [Et(4)N][Tp*WS(3)] (1) (Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate) with 2 equiv of AgSCN in MeCN afforded a novel neutral compound [(Tp*WS(2))(2)(μ-S(2))] (2). Reactions of 2 with excess CuX (X = Cl, Br, I) in MeCN and CH(2)Cl(2) or CHCl(3) formed three neutral W/Cu/S clusters [{Tp*W(μ(3)-S)(3)Cu(3)(μ-Cl)}(2)Cu(μ-Cl)(2)(μ(7)-Cl)(MeCN)](2) (3), [{Tp*W(μ(3)-S)(3)Cu(3)}(2)Br(μ-Br)(2)(μ(4)-Br)(MeCN)] (4), and [{Tp*W(μ(3)-S)(3)Cu(3)}(2){Cu(2)(μ-I)(4)(μ(3)-I)(2)}] (5), respectively. On the other hand, treatment of 2 with CuX (X = Cl, Br) in the presence of Et(4)NX (X = Cl, Br) produced two anionic W/Cu/S clusters [Et(4)N][{Tp*W(μ(3)-S)(3)Cu(3)X}(2)(μ-X)(2)(μ(4)-X)] (6: X = Cl; 7 X = Br). Compounds 2-7 were characterized by elemental analysis, IR, UV-vis, (1)H NMR, electrospray ionization (ESI) mass spectra, and single-crystal X-ray crystallography. The dimeric structure of 2 can be viewed as two [Tp*WS(2)] fragments in which two W atoms are connected by one S(2)(2-) dianion. Compounds 3-7 all possess unique halide-bridged double cubanelike frameworks. For 3, two [Tp*W(μ(3)-S)(3)Cu(3)](2+) dications are linked via a μ(7)-Cl(-) bridge, two μ-Cl(-) bridges, and a [Cu(MeCN)(μ-Cl)(2)](+) bridge. For 4, one [Tp*W(μ(3)-S)(3)Cu(3)(MeCN)](2+) dication and one [Tp*W(μ(3)-S)(3)Cu(3)Br](+) cation are linked via a μ(4)-Br(-) and two μ-Br(-) bridges. For 5, the two [Tp*W(μ(3)-S)(3)Cu(3)](2+) dications are bridged by a linear [(μ-I)(2)Cu(μ(3)-I)(2)Cu(μ-I)(2)](4+) species. For 6 and 7, two [Tp*W(μ(3)-S)(3)Cu(3)X](+) cations are linked by a μ(4)-X(-) and two μ-X(-) bridges (X = Cl, Br). In addition, the third-order nonlinear optical (NLO) properties of 2-7 in MeCN/CH(2)Cl(2) were investigated by using femtosecond degenerate four-wave mixing (DFWM) technique.
NASA Astrophysics Data System (ADS)
Morzyk-Ociepa, Barbara; Dysz, Karolina; Turowska-Tyrk, Ilona; Michalska, Danuta
2018-01-01
Structures and vibrational spectra of 3-bromo-7-azaindole (3Br7AI), 4-bromo-7-azaindole (4Br7AI), 4-chloro-7-azaindole (4Cl7AI), 5-bromo-3-chloro-7-azaindole (5Br3Cl7AI) and 3-bromo-4-chloro-7-azaindole (3Br4Cl7AI) have been investigated. For the first time a single crystal analysis is reported for the three compounds: 3Br7AI (P21/n space group; a = 12.6586(3), b = 3.98664(12), c = 14.1189(4)Å, β = 100.901(2)o, Z = 4); 4Br7AI (P21/n space group; a = 5.38136 (13), b = 9.2262 (2), c = 13.9806 (4)Å, β = 90.052 (2)o, Z = 4); and 5Br3Cl7AI (C2/c space group; a = 22.9444(10), b = 3.91953(12), c = 17.8500(6)Å, β = 102.621(4)o, Z = 8). In the crystal structure, a pair of molecules forms a centrosymmetric dimer connected by dual nearly linear Nsbnd H⋯N hydrogen bonds between the pyrrole and pyridine rings. In addition, the structures of 4Br7AI and 5Br3Cl7AI are stabilized by C2sbnd H2⋯Br hydrogen bonds. The IR and Raman spectra of all compounds and their N-deuterated derivatives were recorded in the solid state. The theoretical molecular structures and vibrational spectra of the centrosymmetric dimers of five investigated compounds were calculated using the B3LYP method with the 6-311G++(d,p) basis set. The optimized structural parameters and the calculated vibrational spectra reproduce well the experiment. Detailed vibrational assignments for all these compounds have been made on the basis of the calculated potential energy distributions (PEDs). The characteristic marker bands for the chloro- and bromo-derivativeds of 7-azaindoles are reported.
Gushchin, Pavel V; Kuznetsov, Maxim L; Wang, Qian; Karasik, Andrey A; Haukka, Matti; Starova, Galina L; Kukushkin, Vadim Yu
2012-06-21
The previously predicted ability of the methyl group of nitromethane to form hydrogen bonding with halides is now confirmed experimentally based on X-ray data of novel nitromethane solvates followed by theoretical ab initio calculations at the MP2 level of theory. The cationic (1,3,5-triazapentadiene)Pt(II) complexes [Pt{HN=C(NC(5)H(10))N(Ph)C(NH(2))=NPh}(2)](Cl)(2), [1](Hal)(2) (Hal = Cl, Br, I), and [Pt{HN=C(NC(4)H(8)O)N(Ph)C(NH(2))=NPh}(2)](Cl)(2), [2](Cl)(2), were crystallized from MeNO(2)-containing systems providing nitromethane solvates studied by X-ray diffraction. In the crystal structure of [1][(Hal)(2)(MeNO(2))(2)] (Hal = Cl, Br, I) and [2][(Cl)(2)(MeNO(2))(2)], the solvated MeNO(2) molecules occupy vacant spaces between lasagna-type layers and connect to the Hal(-) ion through a weak hydrogen bridge via the H atom of the methyl thus forming, by means of the Hal(-)···HCH(2)NO(2) contact, the halide-nitromethane cluster "filling". The quantum-chemical calculations demonstrated that the short distance between the Hal(-) anion and the hydrogen atom of nitromethane in clusters [1][(Hal)(2)(MeNO(2))(2)] and [2][(Cl)(2)(MeNO(2))(2)] is not just a consequence of the packing effect but a result of the moderately strong hydrogen bonding.
NASA Astrophysics Data System (ADS)
Navakhun, Korakot; Sawangsri, Ranu; Ruangpornvisuti, Vithaya
2014-03-01
The synthesized disubstituted isophthalamide and pyridine-2,6dicarboxamide derivatives of nine compounds were prepared. Their association constants with tetrabutylammonium fluoride (TBA·F), tetrabutylammonium chloride (TBA·Cl), tetrabutylammonium bromide (TBA·Br), tetrabutylammonium dihydrogenphosphate (TBA·H2PO4), tetrabutylammonium hydrogensulphate (TBA·HSO4) and tetrabutylammonium nitrate (TBA·NO3) were obtained by 1H NMR titration technique. The optimized structures of compounds 1-9 and their association with F-, Cl-, Br-, HPO4-, HSO4- and NO3- were obtained using the B3LYP/6-31+G(d) method. The most favorable complex of compound 3 with Br- was found. The high association constants of complexes 1-6 with F- are expected. Associations of all receptors with anions are exothermic and spontaneous reactions. Thermodynamic properties of all associations obtained using B3LYP/6-31+G(d) method are reported.
In situ observations of midlatitude stratospheric ClO and BrO
NASA Technical Reports Server (NTRS)
Brune, William H.; Anderson, James C.
1986-01-01
A balloon-borne experiment to measure midlatitude stratospheric BrO and ClO concentrations by NO chemical conversion/atomic resonance fluorescence was flown from Palestine, Texas, on May 20 1986. In this first study of BrO, no signal attributable to BrO was detected, and upper limits (2 sigma uncertainty) between 35 and 24 km altitude give BrO mixing ratios less than 15 pptv. Current models predict mixing ratios that are 1.7 times larger. Measurements of ClO were obtained at less than 0.2-km altitude resolution from 41 to 22 km. The smoothly varying altitude profile lies within the range of two-dimensional model calculations.
Raatikainen, Kari; Cametti, Massimo; Rissanen, Kari
2010-01-15
THE SERIES OF HALOANILINIUM AND HALOPYRIDINIUM SALTS: 4-IPhNH₃Cl (1), 4-IPhNH₃Br (5), 4-IPhNH₃H₂PO₄ (6), 4-ClPhNH₃H₂PO₄ (8), 3-IPyBnCl (9), 3-IPyHCl (10) and 3-IPyH-5NIPA (3-iodopyridinium 5-nitroisophthalate, 13), where hydrogen or/and halogen bonding represents the most relevant non-covalent interactions, has been prepared and characterized by single crystal X-ray diffraction. This series was further complemented by extracting some relevant crystal structures: 4-BrPhNH₃Cl (2, CCDC ref. code TAWRAL), 4-ClPhNH₃Cl (3, CURGOL), 4-FPhNH₃Cl (4, ANLCLA), 4-BrPhNH₃H₂PO₄, (7, UGISEI), 3-BrPyHCl, (11, CIHBAX) and 3-ClPyHCl, (12, VOQMUJ) from Cambridge Structural Database for sake of comparison. Based on the X-ray data it was possible to highlight the balance between non-covalent forces acting in these systems, where the relative strength of the halogen bonding C-X...A⁻ (X = I, Br or Cl) and the ratio between the halogen and hydrogen bonds [C-X...A⁻ : D-H...A⁻] varied across the series.
Kinetics of the Reactions of O((sup 3)P) and Cl((sup 2)P) with HBr and Br2
NASA Technical Reports Server (NTRS)
Nicovich, J. M.; Wine, P. H.
1997-01-01
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of reactions (1)-(4) as a function of temperature. (1) O((sup 3)P) + Br2 yields BrO + Br((sup 2)P(sub 3/2)) at 255-350 K; (2) Cl((sup 2)P) + Br2 yields BrCl + Br((sup 2)P(sub 3/2)) at 298-401 K; (3) O((sup 3)P) + HBr yields OH + Br((sup 2)P(sub J)) at 250-402 K; (4) Cl((sup 2)P) + HBr yields HCl + Br((sup 2)P(sub J)) at 257-404 K. In all cases, the concentration of the excess reagent, i.e, HBr or Br2, was measured in situ in the slow flow system by UV-visible photometry. Heterogeneous dark reactions between XBr (X equals H or Br) and the photolytic precursors for Cl((sup 2)P) and O((sup 3)P) (Cl2 and O3, respectively) were avoided by injecting minimal amounts of precursor into the reaction mixture immediately upstream from the reaction zone. The following Arrhenius expressions summarize our results (errors are 2 sigma and represent precision only, units are cu cm/(molecule.s): k(sub 1) = (1.76 +/- 0.80) x 10(exp -11 exp[(40 +/- 100)/T]; k(sub 2) = (2.40 +/- 1.25) x 12(exp -10) exp[-(144 +/- 176)/T]; k(sub 3) = (5.11 +/- 2.82) x 10(exp -12) exp[-(1450 +/- 160)/T]; k(sub 4) = (2.25 +/- 0.56) x 10(exp -11) exp[-(400 +/- 80)/T]. The consistency (or lack thereof) of our results with those reported in previous kinetics and dynamics studies of reactions (1)-(4) is discussed.
The synthesis of PNP-supported low-spin nitro manganese(I) carbonyl complexes
Tondreau, Aaron M.; Boncella, James M.
2016-09-01
In this study, the coordination chemistry of Mn(CO) 5Br was investigated with a series of PNP-pincer ligands. The ligands iPrPONOP ( iPrPONOP = 2,6-bis(diisopropylphosphinito)pyridine) and iPrPN HP ( iPrPN HP = HN{CH 2CH 2(PiPr 2)} 2) gave the desired organometallic manganese complexes ( iPrPONOP)Mn(CO) 2Br and ( iPrPN HP)Mn(CO) 2Br, respectively, upon chelation to Mn(CO) 5Br. The reactivity of iPrPNNNP ( iPrPNNNP = N,N'-bis(diisopropylphosphino)-2,6-diaminopyridine) with Mn(CO) 5Br yielded a pair of products, [( iPrPNNNP)Mn(CO) 3][Br] and ( iPrPNNNCO)Mn(CO) 3. The formation of the asymmetric chelate arises from a formal loss of iPr 2PBr and C–N bond formation from a carbonylmore » ligand and NH, yielding a Mn(I) amide core. The nitration reactions of ( iPrPONOP)Mn(CO) 2Br and ( iPrPN HP)Mn(CO) 2Br were carried out using silver nitrite, yielding the nitro compounds ( iPrPONOP)Mn(CO) 2(NO 2) and ( iPrPN HP)Mn(CO) 2(NO 2), respectively. The analogous iron complex ( iPrPONOP)Fe(CO)Cl 2 was nitrated under the same conditions to yield the salt pair [( iPrPONOP)Fe(CO) 2][FeCl 3NO]. This reactivity underlines the difference between iso-valent iron and manganese centers. The manganese complexes ( iPrPONOP)Mn(CO) 2(NO 2) and ( iPrPN HP)Mn(CO) 2(NO 2) were ineffective as oxygen atom transfer reagents for a variety of substrates.« less
Fernández-Anca, Damián; García-Seijo, M Inés; García-Fernández, M Esther
2013-07-28
The reactivity of the unusual d(8) trigonal-bipyramidal systems [MX(PP3)]X (X = Cl: M = Pd(1a), Pt(2a); X = Br: M = Pd(3a), Pt(4a); X = I: M = Pd(5a), Pt(6a); PP3 = tris[2-(diphenylphosphino)ethyl]phosphine) in CHCl3-CH3OH, the square-pyramidal compounds [MCl(NP3)]Cl (M = Pd(7a); Pt(8a); NP3 = tris[2-(diphenylphosphino)ethyl]amine) in CD3OD-DMF and the distorted square-planar mononuclear [MX(PNP)]X (M = Pd: X = Cl(10a); M = Pt: X = I(10b); PNP = bis[2-(diphenylphosphino)ethyl]amine) and the heteronuclear [PdAu2X4(PP3)] [X = I(9a), Cl(14a), Br(15a)] and [MAuX2(PP3)]X [M = Pd: X = Cl(16a); M = Pt: X = Cl(17a), Br(18a)] species in CDCl3 with PPh3 + SnX2 has been explored to establish the factors that influence the nature of the products. With the mononuclear precursors the course of the reaction is strongly dependent on the tripodal or linear arrangement of the polydentate ligand and in the former case on the halogen. Thus, while for chlorides (1a-2a, 7a-8a) and bromides (3a-4a) the reaction led to the trigonal-bipyramidal compounds [M(SnCl3)(AP3)][SnCl3] [A = P: M = Pd(1), Pt(2); A = N: M = Pd(7), Pt(8)], [MBr(PP3)][SnBr3] [M = Pd(4), Pt(6)] containing M-Sn and M-Br bonds, respectively, for iodides (5a-6a) resulted in the unknown neutral square-planar compounds [MI2(PP(PO)2)(SnI2)2] [M = Pd(9) and Pt(10)] bearing two dangling P=O-SnI2 units and P2MI2 environments. However, complexes of the type [PtCl(PP2PO)X]X' [X = SnCl2, X' = [SnCl3](-)(11)] and [M(PP(PO)2)2X4]X'2 [X = SnCl2, X' = [SnCl3](-): M = Pd(12), Pt(13)] showing P=O-SnCl2 arms were obtained by direct reaction of [PtCl(PP2PO)]Cl (11a) and [M(PP(PO)2)2]Cl2 [M = Pd(12a), Pt(13a)] with SnCl2 in CH3OH. Although complex 9 was also prepared by interaction of the heteronuclear iodide 9a with PPh3 + SnI2 in CDCl3, the use of the neutral and ionic heteronuclear chlorides and bromides (14a-18a) as starting materials afforded the distorted square-planar ionic systems [MAuX'(PP3)(PPh3)][SnX3]2 [M = Pd: X = Cl, X' = SnCl3(-)(14); X = Br, X' = SnBr3(-)(15); M = Pt: X = Cl, X' = SnCl3(-)(17); X = Br, X' = SnBr3(-)(18)] containing M-SnX3 and P-Au-PPh3 functionalities. It was found that these reactions where the heteronuclear species are the precursors proceed via the trigonal-bipyramidal halides not only with X = Cl and Br(1a-4a) but also I(5a). When the precursors were 10a and 10b the reaction occurred with formation of [Pd(PNP)(PPh3)][SnCl3]2 (23) and [Pt(PNP)(PPh3)][SnCl2I]2 (24) showing M-PPh3 units and trihalostannato counter anions.
Beckmann, Jens; Bolsinger, Jens; Duthie, Andrew; Finke, Pamela
2013-09-14
The stoichiometrically controlled halogenation of the intramolecularly coordinated diaryltelluride (8-Me2NC10H6)2Te using SO2Cl2, Br2 and I2 was studied. At an equimolar ratio, the diarylhalotelluronium cations [(8-Me2NC10H6)2TeX](+) (1, X = Cl; 2, X = Br; 3, X = I) formed and were isolated as 1·Cl(-)·H2O·1/2THF, 2·Br(-), and 3·I(-), respectively. When the same reactions were carried out in the presence of KPF6, 1·PF6(-) and 22·Br(-)·PF6(-) were obtained. The chlorination of (8-Me2NC10H6)2Te with an excess of SO2Cl2 occurred with a double electrophilic substitution at the 8-dimethylaminonaphthyl residues (in the ortho- and para-positions) and afforded the diaryltellurium dichloride (5,7-Cl2-8-Me2NC10H4)2TeCl2 (4). The bromination of (8-Me2NC10H6)2Te with three equivalents of Br2 took place with a single electrophilic substitution at the 8-dimethylaminonaphthyl residues (in the para-positions) and provided the diaryltellurium dibromide (5-Br-8-Me2NC10H5)2TeBr2 (5), while an excess of Br2 produced the diarylbromotelluronium cation [(5-Br-8-Me2NC10H5)2TeBr](+) (6) that was isolated as 6·Br3(-). The reaction of (8-Me2NC10H6)2Te with two or three equivalents of iodine provided 3·I3(-) and 3·I3(-)·I2, respectively. In the presence of water, 1·Cl(-)·H2O·1/2THF, 2·Br(-), 3·I(-) and 3·I3(-) hydrolyzed to give the previously known diarylhydroxytelluronium cation [(8-Me2NC10H6)2TeOH](+) (7) that was isolated as 7·Cl(-), 7·Br(-)·H2O·THF, 7·I(-) and 7·I3(-)·H2O, respectively. The molecular structures of 1-7 were investigated in the solid-state by (125)Te MAS NMR spectroscopy and X-ray crystallography and in solution by multinuclear NMR spectroscopy ((1)H, (13)C, (125)Te), electrospray mass spectrometry and conductivity measurements. The stabilization of cations 1-3 by the intramolecular coordination was estimated by DFT calculations at the B3PW91/TZ level of theory.
NASA Astrophysics Data System (ADS)
Cheng, Xu
2001-07-01
Me3Si substituents adjacent to Cp2MCl2 (M = Ti, Zr, Hf) are converted to BrMe2Si groups using BBr 3. The high reactivity of the Si-Br bonds toward nucleophiles such as water suggested that these substituents could react with hydroxylated silica surfaces, immobilizing the metallocenes. This dissertation concerns the syntheses of electrophile-functionalized zirconocene dihalide complexes and their use as precursors to silica-supported metallocene olefin polymerization catalysts. First we extended the metallocene "functionalization" chemistry to obtain substituents bearing more than one electrophilic bond. (Me3Sn) 2C5H4 combined with CpZrCl3 in toluene to afford (eta5-Me3Sn-C5H4)CpZrCl 2 (A). Reactions of A with electrophiles (E-X = Cl2B-Cl, I-Cl, and I-I) afforded (eta5-XMe 2Sn-C5H4)CpZrCl2 (and E-Me) cleanly. The reaction of A with BBr3 afforded either (eta5-BrMe2Sn-C5H4)CpZrBr2 (25 °C, 10 min) or (eta5-Br2MeSn-C5H 4)CpZrBr2 (25 °C, 15 h). Ph2MeSi-C5H 4Li combined with ZrCl4•2THF to afford (eta 5-Ph2MeSi-C5H4)2ZrCl 2 (B). The reaction of B with BCl3 led to incomplete cleavage of the Ph-Si bonds, however treatment of B with BBr3 afforded (eta5-Br2MeSi-C 5H4)2ZrBr2 (C) efficiently. X-ray crystal structures of (eta5-ClMe2Sn-C 5H4)CpZrCl2•1/2toluene, (eta 5-Br2MeSn-C5H4)CpZrBr2•THF, B, and C were obtained. Metallocene C reacts with water to afford an oligosiloxane-supported zirconocene dibromide. Spectroscopic characterization suggested a stereoregular structure in which the metallocene units have meso symmetry. The oligomeric substance showed high activity for homogeneous ethylene polymerization. Supported metallocene olefin polymerization catalysts were prepared by combining a functionalized metallocene precursor (Cp2ZrBr 2 bearing either BrMe2Si or Br2MeSi groups) and partially dehydroxylated silica. The activities of the immobilized zirconocene catalysts decreased and the stabilities increased with increasing number of tethers. The immobilized catalyst prepared from (eta5-Br 2MeSi-C5H4)2ZrBr2, which is assumed to form two "double-tethers" to silica, was significantly more active than the catalyst prepared from [eta5-1,3-(BrMe 2Si)2C5H3]2ZrBr2, which is assumed to form four "single-tethers" to silica. Catalyst leaching was observed in all the immobilized zirconocene catalysts. Finally we report model studies on the stability of the Si-O-Si bonds toward methylaluminoxane (MAO). The reaction of (eta5-BrMe 2Si-C5H4)CpZrBr2 with tBuMe 2SiOH results in the formation of Si-O-Si bonds; addition of NEt 3 results in further reaction to afford Si-O-Zr bonds. The reaction of Me3Si-O-SiMe3 with MAO showed that Si-O-Si bonds can be cleaved under the conditions of our polymerization reactions.
Using Kalman Filter Chemical Data Assimilation to Study Ozone Catalytic Loss Cycles in January 1992
NASA Technical Reports Server (NTRS)
Lary, David J.
2002-01-01
This paper presents for the first time a global study of the ozone catalytic destruction cycles operating in the stratosphere using a stratospheric analyses for January 1992. The chemical analyses were produced using a Kalman filter data assimilation system. Because a major component of the variability of trace gases is due to the atmospheric motions the analyses have been cast in a flow-tracking coordinate system that moves with the large scale flow pattern. Particular attention is paid to the kinetic aspects of these cycles such as the rate limiting step and chain length. Although it is an important kinetic parameter, the chain length of the various cycles is seldom considered when the various catalytic cycles are discussed. This survey highlights that in the low stratosphere the cycles involving HO2 and halogens (notably bromine) are particularly important. In approximate order of effectiveness the most important ozone loss cycles in the polar lower stratosphere are the BrO/ClO, HO2/BrO, and OH/HO2 cycles. The ClO/ClO cycle clearly delineates the regions of chlorine activation. The chain length of the HO2/ClO, OH/HO2, Br/BrO, and ClO/NO2, clearly delineate the vortex edge region. The chain length of the BrO/NO2 and Cl/NO2 cycles highlight the regions of chemical processing outside the vortex where streamers of chemically processed air are stripped-off and transported away from the vortex. This is also true in the very low stratosphere for the Cl/ClO and BrO/ClO cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Lingling; Wu, Yilei; Stoumpos, Constantinos C.
Two-dimensional (2D) hybrid halide perovskites come as a family (B) 2(A) n-1PbnX 3n+1 (B and A= cations; X= halide). These perovskites are promising semiconductors for solar cells and optoelectronic applications. Among the fascinating properties of these materials is white-light emission, which has been mostly observed in single-layered 2D lead bromide or chloride systems (n = 1), where the broad emission comes from the transient photoexcited states generated by self-trapped excitons (STEs) from structural distortion. Here we report a multilayered 2D perovskite (n = 3) exhibiting a tunable white-light emission. Ethylammonium (EA+) can stabilize the 2D perovskite structure in EA 4Pbmore » 3Br 10–xCl x (x = 0, 2, 4, 6, 8, 9.5, and 10) with EA + being both the A and B cations in this system. Because of the larger size of EA, these materials show a high distortion level in their inorganic structures, with EA4Pb3Cl10 having a much larger distortion than that of EA 4Pb 3Br 10, which results in broadband white-light emission of EA 4Pb 3Cl 10 in contrast to narrow blue emission of EA4Pb3Br10. The average lifetime of the series decreases gradually from the Cl end to the Br end, indicating that the larger distortion also prolongs the lifetime (more STE states). The band gap of EA 4Pb 3Br 10–xCl x ranges from 3.45 eV (x = 10) to 2.75 eV (x = 0), following Vegard’s law. First-principles density functional theory calculations (DFT) show that both EA 4Pb 3Cl 10 and EA 4Pb 3Br 10 are direct band gap semiconductors. The color rendering index (CRI) of the series improves from 66 (EA 4Pb 3Cl 10) to 83 (EA 4Pb 3Br 0.5Cl 9.5), displaying high tunability and versatility of the title compounds.« less
Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul
2016-09-06
Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field.
Rejection of Bromide and Bromate Ions by a Ceramic Membrane.
Moslemi, Mohammadreza; Davies, Simon H; Masten, Susan J
2012-12-01
Effects of pH and the addition of calcium chloride (CaCl(2)) on bromate (BrO(3) (-)) and bromide (Br(-)) rejection by a ceramic membrane were investigated. Rejection of both ions increased with pH. At pH 8, the rejection of BrO(3) (-) and Br(-) was 68% and 63%, respectively. Donnan exclusion appears to play an important role in determining rejection of BrO(3) (-) and Br(-). In the presence of CaCl(2), rejection of BrO(3) (-) and Br(-) ions was greatly reduced, confirming the importance of electrostatic interactions in determining rejection of BrO(3) (-) and Br(-). The effect of Ca(2+) is so pronounced that in most natural waters, rejection of both BrO(3) (-) and Br(-) by the membrane would be extremely small.
NASA Astrophysics Data System (ADS)
Zhang, Qian-Feng; Zhang, Chi; Song, Ying-Lin; Xin, Xin-Quan
2000-07-01
Cluster [{MoCu 3Se 3Br}(PPh 3) 3Se]·3THF·H 2O ( 1·3THF·H 2O) was prepared from reaction of [Et 4N] 2[MoSe] 4, Cu(PPh 3) 2NO 3 and Et 4N·Br in CH 2Cl 2 solution; also, 1 can be also obtained from the reaction of [MoSe 4Cu 4Py 6Br 2] and excess PPh 3 in a DMF-CH 2Cl 2 mixture solvent. The 95Mo NMR technique was used to monitor the above two reaction processes. X-ray crystallographic structure determination shows that it contains a strongly distorted cubane-like {MoCu 3Se 3Br} core. The coordination of the central Mo atom and each Cu atom are distorted from tetrahedral. Cluster [{WCu 3Se 3Cl}(PPh 3) 3Se] ( 2) was synthesized by the reaction of [Et 4N] 2[WSe] 4 and Cu(PPh 3) 2Cl in the solid state for nonlinear optical (NLO) studies. Its structure was reported by Ibers (Inorg. Chem. 31 (1992) 4365). The NLO properties of clusters 1 and 2 were studied. Both NLO absorption and refraction were obtained, and their effective third-order non-linearities were detected with α2=3.4×10 -10 and 5.9×10 -10 m/W and n2=-1.5×10 -17 and -1.3×10 -17 m 2/W , respectively, for the same concentration CH 2Cl 2 solution of 1 and 2. Influence of skeletal atoms to nonlinear absorption is also discussed in the paper.
Balcerzyk, Anna; Schmidhammer, Uli; El Omar, Abdel Karim; Jeunesse, Pierre; Larbre, Jean-Philippe; Mostafavi, Mehran
2011-08-25
Recently we measured the amount of the single product, Br(3)(-), of steady-state radiolysis of highly concentrated Br(-) aqueous solutions, and we showed the effect of the direct ionization of Br(-) on the yield of Br(3)(-). Here, we report the first picosecond pulse-probe radiolysis measurements of ionization of highly concentrated Br(-) and Cl(-) aqueous solutions to describe the oxidation mechanism of the halide anions. The transient absorption spectra are reported from 350 to 750 nm on the picosecond range for halide solutions at different concentrations. In the highly concentrated halide solutions, we observed that, due to the presence of Na(+), the absorption band of the solvated electron is shifted to shorter wavelengths, but its decay, taking place during the spur reactions, is not affected within the first 4 ns. The kinetic measurements in the UV reveal the direct ionization of halide ions. The analysis of pulse-probe measurements show that after the electron pulse, the main reactions in solutions containing 1 M of Cl(-) and 2 M of Br(-) are the formation of ClOH(-•) and BrOH(-•), respectively. In contrast, in highly concentrated halide solutions, containing 5 M of Cl(-) and 6 M of Br(-), mainly Cl(2)(-•) and Br(2)(-•) are formed within the electron pulse without formation of ClOH(-•) and BrOH(-•). The results suggest that, not only Br(-) and Cl(-) are directly ionized into Br(•) and Cl(•) by the electron pulse, the halide atoms can also be rapidly generated through the reactions initiated by excitation and ionization of water, such as the prompt oxidation by the hole, H(2)O(+•), generated in the coordination sphere of the anion. © 2011 American Chemical Society
Pandey, Krishna K
2012-03-21
Density Functional Theory calculations have been performed for the σ-hydroboryl complexes of iron, ruthenium and osmium [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] (M = Fe, Ru, Os; R = OMe, NMe(2), Ph) at the BP86/TZ2P/ZORA level of theory in order to understand the interactions between metal and HBR ligands. The calculated geometries of the complexes [(H)(2)Cl(PMe(3))(2)Ru(HBNMe(2))], [(H)(2)Cl(PMe(3))(2)Os(HBR)] (R = OMe, NMe(2)) are in excellent agreement with structurally characterized complexes [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))], [(H)(2)Cl(P(i)Pr(3))(2)Os{σ-H-BOCH(2)CH(2)OB(O(2)CH(2)CH(2))}] and [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))]. The longer calculated M-B bond distance in complex [(H)(2)Cl(PMe(3))(2)M(σ-H-BNMe(2))] are due to greater B-N π bonding and as a result, a weaker M-B π-back-bonding. The B-H2 bond distances reveal that (i) iron complexes contain bis(σ-borane) ligand, (ii) ruthenium complexes contain (σ-H-BR) ligands with a stretched B-H2 bond, and (iii) osmium complexes contain hydride (H2) and (σ-H-BR) ligands. The H-BR ligands in osmium complexes are a better trans-directing ligand than the Cl ligand. Values of interaction energy, electrostatic interaction, orbital interaction, and bond dissociation energy for interactions between ionic fragments are very large and may not be consistent with M-(σ-H-BR) bonding. The EDA as well as NBO and AIM analysis suggest that the best bonding model for the M-σ-H-BR interactions in the complexes [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] is the interaction between neutral fragments [(H)(2)Cl(PMe(3))(2)M] and [σ-H-BR]. This becomes evident from the calculated values for the orbital interactions. The electron configuration of the fragments which is shown for C in Fig. 1 experiences the smallest change upon the M-σ-H-BR bond formation. Since model C also requires the least amount of electronic excitation and geometry changes of all models given by the ΔE(prep) values, it is clearly the most appropriate choice of interacting fragments. The π-bonding contribution is 14-22% of the total orbital contribution.
Nikitin, Kirill; Müller-Bunz, Helge; Gilheany, Declan
2013-02-18
Triphenylhalophosphonium halides, Ph(3)PX(2), form crystals comprising bridged linear cations [Ph(3)P-X-X-X-PPh(3)](+) where the X(3) bridge is shortened from 6.56 Å in Cl-Cl-Cl to 6.37 Å in the Br-Br-Br system. It is proposed that this structure is stabilised by five-centre/six-electron (5c-6e) hypervalent interactions.
NASA Astrophysics Data System (ADS)
Fujiwara, Syozo; Inaba, Minoru; Tasaka, Akimasa
Using a new simulative technique developed by us, we systematically investigated new ternary or quaternary molten salt systems, which are based on LiF-LiCl, LiF-LiBr, and LiCl-LiBr binary systems, for use as electrolytes in thermal batteries, and evaluated their ionic conductivities and melting points experimentally. It was confirmed experimentally that LiF-LiBr-KF (melting point: 425 °C, ionic conductivity at 500 °C: 2.52 S cm -1), LiCl-LiBr-KF (405 °C, 2.56 S cm -1), LiCl-LiBr-NaF-KF (425 °C, 3.11 S cm -1), LiCl-LiBr-NaCl-KCl (420 °C, 2.73 S cm -1), and LiCl-LiBr-NaBr-KBr (420 °C, 2.76 S cm -1) meet our targets for both melting point (350-430 °C) and ionic conductivity (2.0 S cm -1 and higher at 500 °C). A single cell using the newly developed LiCl-LiBr-NaCl-KCl molten salt as an electrolyte was prepared, and the DC-IR of the cell decreased by 20% than that of a single cell using the conventional LiCl-KCl molten salt. It was therefore concluded that the use of new quaternary molten salt systems can improve the discharge rate-capability in practical battery applications because of their high ionic conductivities.
Theoretical studies of weak interactions of formamide with methanol and its derivates
NASA Astrophysics Data System (ADS)
Zheng, Xiao-Wen; Wang, Lu; Han, Shu-Min; Cui, Xiang-Yang; Du, Chong-Yang; Liu, Tao
2015-08-01
Theoretical calculations have been performed for the complexes of formamide (FA) with methanol and its derivates (MAX, X = F, Cl, Br, NO2, H, OH, CH3, and NH2) to study their structures and properties. Substituent effects on the hydrogen bond (H-bond) strength and cooperative effect by using water and its derivatives (HOZ, Z = H, NH2, and Br) as weak interaction probe were also explored. The calculation results show that electron-donating groups strengthen the weak interaction between formamide with methanol whereas electron-withdrawing groups weaken it. The cooperativity is present for the N-HïO H-bond in MAX-FA-HOZ and the cooperative effect increases in a series HONH2, HOH, and HOBr. In addition, we investigated the interaction between FA with hypohalous acids HOY (Y = F, Cl, and Br). It was found that the weak interaction between FA and HOY became stronger with the increase of the size of halogen atom. The nature of the halogen atom has negligible impact on the strength of the H-bond in MAX-FA (X = F, Cl, and Br), whereas it has an obvious influence on the strength of the H-bond in HOY-FA (Y = F, Cl, and Br).
Lignos, Ioannis; Protesescu, Loredana; Emiroglu, Dilara Börte; Maceiczyk, Richard; Schneider, Simon; Kovalenko, Maksym V; deMello, Andrew J
2018-02-14
Hybrid organic-inorganic perovskites and in particular formamidinium lead halide (FAPbX 3 , X = Cl, Br, I) perovskite nanocrystals (NCs) have shown great promise for their implementation in optoelectronic devices. Specifically, the Br and I counterparts have shown unprecedented photoluminescence properties, including precise wavelength tuning (530-790 nm), narrow emission linewidths (<100 meV) and high photoluminescence quantum yields (70-90%). However, the controlled formation of blue emitting FAPb(Cl 1-x Br x ) 3 NCs lags behind their green and red counterparts and the mechanism of their formation remains unclear. Herein, we report the formation of FAPb(Cl 1-x Br x ) 3 NCs with stable emission between 440 and 520 nm in a fully automated droplet-based microfluidic reactor and subsequent reaction upscaling in conventional laboratory glassware. The thorough parametric screening allows for the elucidation of parametric zones (FA-to-Pb and Br-to-Cl molar ratios, temperature, and excess oleic acid) for the formation of nanoplatelets and/or NCs. In contrast to CsPb(Cl 1-x Br x ) 3 NCs, based on online parametric screening and offline structural characterization, we demonstrate that the controlled synthesis of Cl-rich perovskites (above 60 at% Cl) with stable emission remains a challenge due to fast segregation of halide ions.
Mosconi, Edoardo; Umari, Paolo; De Angelis, Filippo
2016-10-05
Materials engineering is a key for the enhancement of photovoltaics technology. This is particularly true for the novel class of perovskite solar cells. Accurate theoretical modelling can help establish general trends of behavior when addressing structural changes. Here, we consider the effects due to halide substitution in organohalide CH 3 NH 3 PbX 3 perovskites exploring the halide series with X = Cl, Br, I. For this task, we use accurate DFT and GW methods including spin-orbit coupling. We find the expected band gap increase when moving from X = I to Cl, in line with the experimental data. Most notably, the calculated absorption coefficients for I, Br and Cl are nicely reproducing the behavior reported experimentally. A common feature of all the simulated band structures is a significant Rashba effect. This is similar for MAPbI 3 and MAPbBr 3 while MAPbCl 3 shows in general a reduced Rashba interaction coefficient. Finally, a monotonic increase of the exciton reduced masses is calculated when moving from I to Br to Cl, in line with the stronger excitonic character of the lighter perovskite halides.
Mao, Lingling; Wu, Yilei; Stoumpos, Constantinos C; Traore, Boubacar; Katan, Claudine; Even, Jacky; Wasielewski, Michael R; Kanatzidis, Mercouri G
2017-08-30
Two-dimensional (2D) hybrid halide perovskites come as a family (B) 2 (A) n-1 Pb n X 3n+1 (B and A= cations; X= halide). These perovskites are promising semiconductors for solar cells and optoelectronic applications. Among the fascinating properties of these materials is white-light emission, which has been mostly observed in single-layered 2D lead bromide or chloride systems (n = 1), where the broad emission comes from the transient photoexcited states generated by self-trapped excitons (STEs) from structural distortion. Here we report a multilayered 2D perovskite (n = 3) exhibiting a tunable white-light emission. Ethylammonium (EA + ) can stabilize the 2D perovskite structure in EA 4 Pb 3 Br 10-x Cl x (x = 0, 2, 4, 6, 8, 9.5, and 10) with EA + being both the A and B cations in this system. Because of the larger size of EA, these materials show a high distortion level in their inorganic structures, with EA 4 Pb 3 Cl 10 having a much larger distortion than that of EA 4 Pb 3 Br 10 , which results in broadband white-light emission of EA 4 Pb 3 Cl 10 in contrast to narrow blue emission of EA 4 Pb 3 Br 10 . The average lifetime of the series decreases gradually from the Cl end to the Br end, indicating that the larger distortion also prolongs the lifetime (more STE states). The band gap of EA 4 Pb 3 Br 10-x Cl x ranges from 3.45 eV (x = 10) to 2.75 eV (x = 0), following Vegard's law. First-principles density functional theory calculations (DFT) show that both EA 4 Pb 3 Cl 10 and EA 4 Pb 3 Br 10 are direct band gap semiconductors. The color rendering index (CRI) of the series improves from 66 (EA 4 Pb 3 Cl 10 ) to 83 (EA 4 Pb 3 Br 0.5 Cl 9.5 ), displaying high tunability and versatility of the title compounds.
Negative ion electron impact studies of arsenic trihalides: AsF/sub 3/, AsCl/sub 3/, and AsBr/sub 3/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pabst, R.E.; Bennett, S.L.; Margrave, J.L.
1976-08-15
Low energy eleAsF/sup 2/-tron impact of AsF/sub 3/, AsCl/sub 3/, and AsBr/sub 3/ gases gave many ions by dissociative resonance capture. Appearance potentials have been determined by deconvolution of the capture curves, and translational energies of the majority of the ions have been measured through the resonance processes. The X/sup -/ ions are formed along with electronically excited neutral AsX/sub 2/, and the results allow the electronic transition energies to be determined: 7.3, 4.3, and 2.6 eV for AsF/sub 2/, AsCl/sup 2/, and AsBr/sup 2/, respectively. From the processes giving AsX/sup -2/+X, the experimental data allow the heats of formationmore » of the negative ions ..delta..H/subf/(AsX/sup -2/) to be derived: -129.7, -65.3, and -72.5 kcal mole/sup -1/ for AsF/sup -2/, AsCl/sup -2/, and AsBr/sup -2/, respectively. The ions AsCl/sup -/ and AsBr/sup -/ appear to be formed along with electronically excited X/sub 2/ neutral: ..delta..H/subf/(AsCl/sup -/) =-2.2 kcal mole/sup -1/ and ..delta..H/subf/(AsBr/sup -/) =1.7 kcal mole/sup -1/ are derived. The ions X/sup -2/ appear to be formed with electronically excited AsX neutral, allowing the electronic transition energies to be derived: E*/sub el/(AsBr) >0.6 eV and E*/sub el/(AsCl) =2.5 eV. (AIP)« less
NASA Astrophysics Data System (ADS)
Hammerli, J.; Rusk, B.; Spandler, C.; Oliver, N. H. S.; Emsbo, P.
2012-04-01
Chlorine and bromine are highly conservative elements, and are therefore widely used to trace the origin of fluids in sedimentary and hydrothermal/magmatic systems (e.g. Hanor & McIntosh, 2007; Nahnybida et al., 2009). Halogens are important ligands for metal transport in hydrothermal solutions and thus their behavior in hydrothermal environments is crucial for comprehending ore-forming processes. Besides fluid inclusions, scapolite-group minerals hold great potential as a tracer of igneous, metamorphic, and hydrothermal processes, as no Cl/Br fractionation in scapolite has been observed and therefore halogen ratios in scapolite are thought to mirror the halogen ratios in coexisting melts and fluids (Pan & Dong, 2003). Hence, Cl/Br ratios in fluid inclusions and minerals can be utilized to trace the origin of fluids and fluid-rock interaction pathways. Due to their high ionization energies, bromine and chlorine are not routinely measured by LA-ICP-MS and suitable standards are rare. Little is known about the potential interferences and analytical limitations of in-situ chlorine and bromine analysis by LA-ICP-MS. Nevertheless, Seo et al. (2011) showed that quantification of Br and Cl in single synthetic and natural fluid inclusions is possible. In this study, we have analyzed several scapolite grains of known bromine and chlorine concentrations by LA-ICP-MS and assess the capabilities and limitations of this method. The results show that Cl/Br ratios measured by LA-ICP-MS closely reproduce known values determined by microprobe (Cl), the Noble Gas Method (Br) and INAA (Br) (Kendrick, 2011; Lieftink et al., 1993) using laser ablation spot sizes from 24-120 μm. The well-characterized scapolite grains cover bromine concentrations from 50-883 ppm and chlorine concentrations from 3 to 4 wt.%. In order to further assess the method, we analyzed Cl/Br ratios in natural fluid inclusions hosted in sphalerite that were previously characterized by crush and leach ion chromatography. This is the first time that bulk crush and leach Cl/Br analyses can be compared with Cl/Br ratios within individual fluid inclusions. Our LA-ICP-MS measurements are in good agreement with bulk crush and leach analyses. For instance, molar Cl/Br ratios of single fluid inclusions (183±33) in sphalerite form East Tennessee match those obtained by crush and leach (206±8) Additionally, scapolite in samples from dykes of the Burstall granite, associated banded skarns and metasediments from the Mary Kathleen Fold Belt, Queensland, Australia are being studied. Scapolite is highly luminescent and therefore, cathodoluminescence images resolve chemical zoning in scapolite group minerals that, in combination with in-situ Cl/Br analyses, is a powerful tool to better understand fluid sources and fluid-rock interaction within various geological environments.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Clark, Eric B.; Schupp, John D.; Williams, Jennifer N.; Duraj, Stan A.; Fanwick, Philip E.
2013-01-01
We describe the structures of four related indium complexes obtained during synthesis of solid-state materials precursors. Indium adducts of halides and 4-methylpyridine, InX3(pic)3 (X = Cl, Br; pic = 4-methylpyridine) consist of octahedral molecules with meridional (mer) geometry. Crystals of mer-InCl3(pic)3 (1) are triclinic, space group P1(bar) (No. 2), with a = 9.3240(3), b = 13.9580(6), c = 16.7268 (7) A, alpha = 84.323(2), beta = 80.938(2), gamma = 78.274(3)Z = 4, R = 0.035 for 8820 unique reflections. Crystals of mer-InBr3(pic)3 (2) are monoclinic, space group P21/n (No. 14), with a = 15.010(2), b = 19.938(2), c = 16.593(3), beta = 116.44(1)Z = 8, R = 0.053 for 4174 unique reflections. The synthesis and structures of related compounds with phenylsulfide (chloride) (3) and a dimeric complex with bridging hydroxide (bromide) (4) coordination is also described. Crystals of trans-In(SC6H5)Cl2(pic)3 (3) are monoclinic, space group P21/n (No. 14), with a = 9.5265(2), b = 17.8729(6), c = 13.8296(4), beta = 99.7640(15)Z = 4, R = 0.048 for 5511 unique reflections. Crystals of [In(mu-OH)Br2(pic)22 (4) are tetragonal, space group = I41cd (No. 110) with a = 19.8560(4), b = 19.8560(4), c = 25.9528(6), Z = 8, R = 0.039 for 5982 unique reflections.
Fu, Yongping; Zhu, Haiming; Stoumpos, Constantinos C; Ding, Qi; Wang, Jue; Kanatzidis, Mercouri G; Zhu, Xiaoyang; Jin, Song
2016-08-23
Lead halide perovskite nanowires (NWs) are emerging as a class of inexpensive semiconductors with broad bandgap tunability for optoelectronics, such as tunable NW lasers. Despite exciting progress, the current organic-inorganic hybrid perovskite NW lasers suffer from limited tunable wavelength range and poor material stability. Herein, we report facile solution growth of single-crystal NWs of inorganic perovskite CsPbX3 (X = Br, Cl) and their alloys [CsPb(Br,Cl)3] and a low-temperature vapor-phase halide exchange method to convert CsPbBr3 NWs into perovskite phase CsPb(Br,I)3 alloys and metastable CsPbI3 with well-preserved perovskite crystal lattice and NW morphology. These single crystalline NWs with smooth end facets and subwavelength dimensions are ideal Fabry-Perot cavities for NW lasers. Optically pumped tunable lasing across the entire visible spectrum (420-710 nm) is demonstrated at room temperature from these NWs with low lasing thresholds and high-quality factors. Such highly efficient lasing similar to what can be achieved with organic-inorganic hybrid perovskites indicates that organic cation is not essential for light emission application from these lead halide perovskite materials. Furthermore, the CsPbBr3 NW lasers show stable lasing emission with no measurable degradation after at least 8 h or 7.2 × 10(9) laser shots under continuous illumination, which are substantially more robust than their organic-inorganic counterparts. The Cs-based perovskites offer a stable material platform for tunable NW lasers and other nanoscale optoelectronic devices.
Qiu, Hongdeng; Zhang, Qinghua; Chen, Limei; Liu, Xia; Jiang, Shengxiang
2008-08-01
Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.
NASA Astrophysics Data System (ADS)
Zhang, Lili; Xie, Ziang; Tian, Fuyang; Qin, Guogang
2017-04-01
Much attention has been paid to two-subcell tandem solar cells (TSCs) with crystalline silicon (c-Si) as the bottom cell (TSC-Si). Previous works have pointed out that the optimal band gap, E g, of the top cell material for a TSC-Si is around 1.75 eV. With a tunable E g and better stability than MAPbI3 (MA = CH3NH3), MAPbI3-x-y Br x Cl y is a promising candidate for the top cell material of a TSC-Si. In this work, calculations concerning the E g, refractive index and extinction coefficient of MAPbI3-x-y Br x Cl y are performed using first-principles calculations including the spin-orbit coupling (SOC) effect. MAPbI3-x-y Br x Cl y with five sets of x and y, which have a E g around 1.75 eV, are obtained. On this basis, absorption of the perovskite top cell is calculated applying the Lambert-Beer model (LBM) and the transfer matrix model (TMM), respectively. Considering the Auger recombination in the c-Si bottom cell and radiation coupling between the two subcells, the efficiencies for MAPbI3-x-y Br x Cl y /c-Si TSCs with the five sets of x and y are calculated. Among them, the MAPbI2.375Br0.5Cl0.125/c-Si TSC achieves the highest efficiency of 35.1% with a 440 nm thick top cell and 50 µm thick c-Si when applying the LBM. When applying the TMM, the highest efficiency of 32.5% is predicted with a 580 nm thick MAPbI2.375Br0.5Cl0.125 top cell and 50 µm thick c-Si. Compared with the limiting efficiency of 27.1% for a 190 µm thick c-Si single junction solar cell (SC), the MAPbI2.375Br0.5Cl0.125/c-Si TSC shows a superior performance of high efficiency and low c-Si consumption.
NASA Astrophysics Data System (ADS)
Sabounchei, Seyyed Javad; Panahimehr, Mohammad; Hosseinzadeh, Marjan; Karamian, Roya; Asadbegy, Mostafa; Masumi, Azadeh
2014-03-01
The reaction of Ph2PCH2PPh2 (dppm) with 2-bromo-3-nitroacetophenone and 2,2‧,4‧-trichloroacetophenone in chloroform produce the new phosphonium salts [Ph2PCH2PPh2CH2C(O)C6H4NO2]Br (1) and [Ph2PCH2PPh2CH2C(O)C6H3Cl2]Cl (2). Further, by reaction of the monophosphonium salts of dppm with the strong base triethylaminethe corresponding bidentate phosphorus ylides, Ph2PCH2PPh2C(H)C(O)C6H4NO2 (3) and Ph2PCH2PPh2C(H)C(O)C6H3Cl2 (4) were obtained. The reaction of these ligands with mercury(II) halides in dry methanol led to the formation of the mononuclear complexes {HgX2[(Ph2PCH2PPh2C(H)C(O)C6H4NO2)]} [X = Cl (5), Br (6), I (7)] and {HgX2[(Ph2PCH2PPh2C(H)C(O)C6H3Cl2)]} [X = Cl (8), Br (9), I (10)]. Characterization of the obtained compounds was performed by elemental analysis, IR, 1H, 31P and 13C NMR. The structure of compound 1 being unequivocally determined by single crystal X-ray diffraction techniques. The mass spectrum of compound 6 (as an instance) also demonstrates the synthesize of these compounds. In all complexes the title ylides are coordinated through the ylidic carbon and the phosphine atom. These compounds form five membered ring under complexation. The antibacterial effects of DMSO solutions of the ligands and their metal complexes were evaluated by the disc diffusion method against six Gram positive and negative bacteria. All compounds represent antibacterial activity against these bacteria with high levels of inhibitory potency exhibited against the Gram positive species.
NASA Astrophysics Data System (ADS)
Bechtel, Jonathon S.; Van der Ven, Anton
2018-04-01
Halide substitution gives rise to a tunable band gap as a function of composition in halide perovskite materials. However, photoinduced phase segregation, observed at room temperature in mixed halide A Pb (IxBr1-x) 3 systems, limits open circuit voltages and decreases photovoltaic device efficiencies. We investigate equilibrium phase stability of orthorhombic P n m a γ -phase CsM (XxY1-x) 3 perovskites where M is Pb or Sn, and X and Y are Br, Cl, or I. Finite-temperature phase diagrams are constructed using a cluster expansion effective Hamiltonian parameterized from first-principles density-functional-theory calculations. Solid solution phases for CsM (IxBr1-x) 3 and CsM (BrxCl1-x) 3 are predicted to be stable well below room temperature while CsM (IxCl1-x) 3 systems have miscibility gaps that extend above 400 K. The height of the miscibility gap correlates with the difference in volume between end members. Also layered ground states are found on the convex hull at x =2 /3 for CsSnBr2Cl ,CsPbI2Br , and CsPbBrCl2. The impact of these ground states on the finite temperature phase diagram is discussed in the context of the experimentally observed photoinduced phase segregation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linaburg, Matthew R.; McClure, Eric T.; Majher, Jackson D.
The structures of the lead halide perovskites CsPbCl3 and CsPbBr3 have been determined from X-ray powder diffraction data to be orthorhombic with Pnma space group symmetry. Their structures are distorted from the cubic structure of their hybrid analogs, CH3NH3PbX3 (X = Cl, Br), by tilts of the octahedra (Glazer tilt system a–b+a–). Substitution of the smaller Rb+ for Cs+ increases the octahedral tilting distortion and eventually destabilizes the perovskite structure altogether. To understand this behavior, bond valence parameters appropriate for use in chloride and bromide perovskites have been determined for Cs+, Rb+, and Pb2+. As the tolerance factor decreases, themore » band gap increases, by 0.15 eV in Cs1–xRbxPbCl3 and 0.20 eV in Cs1–xRbxPbBr3, upon going from x = 0 to x = 0.6. The band gap shows a linear dependence on tolerance factor, particularly for the Cs1–xRbxPbBr3 system. Comparison with the cubic perovskites CH3NH3PbCl3 and CH3NH3PbBr3 shows that the band gaps of the methylammonium perovskites are anomalously large for APbX3 perovskites with a cubic structure. This comparison suggests that the local symmetry of CH3NH3PbCl3 and CH3NH3PbBr3 deviate significantly from the cubic symmetry of the average structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Govind, Niranjan; Xantheas, Sotiris S.
Four new Zeise’s family ions with mixed-halide ligands, i.e., PtCl nX 3-n(C 2H 4) - (X = Br, I; n = 1, 2), were synthesized via ligand-exchange reactions of KX salts with KPtCl 3(C 2H 4) in aqueous solutions, and were detected in vacuum via electrospray ionization mass spectrometry. Their photoelectron spectra reveal a series of well-resolved spectral peaks with their electron binding energies (EBEs) decreasing with increasing halide size, with I having a much stronger effect than Br, i.e., 4.57 (–Cl 3) > 4.56 (–Cl 2Br) > 4.53 (–ClBr 2) > 4.34 (–Cl 2I) > 4.30 eV (–ClI 2).more » Ab initio electronic structure calculations including spin-orbit coupling (SOC) predict that the cis- and trans-isomers are nearly isoenergetic with the cis-isomer for –Cl 2X, and the trans-isomer for –ClX 2 slightly favored, respectively. Excited-state spectra calculated with time-dependent density functional theory (TDDFT), and their comparison with the observed ones, suggest that for each species, both the cis- and trans-configurations coexist in the experiments and contribute to the observed spectra, a fact that clearly violates the prediction of the widely accepted trans-effect, which suggests that only one isomer would have formed.« less
Polymorphism in 2-X-adamantane derivatives (X = Cl, Br).
Negrier, Philippe; Barrio, María; Tamarit, Josep Ll; Mondieig, Denise
2014-08-14
The polymorphism of two 2-X-adamantane derivatives, X = Cl, X = Br, has been studied by X-ray powder diffraction and normal- and high-pressure (up to 300 MPa) differential scanning calorimetry. 2-Br-adamantane displays a low-temperature orthorhombic phase (space group P212121, Z = 4) and a high-temperature plastic phase (Fm3̅m, Z = 4) from 277.9 ± 1.0 K to the melting point at 413.4 ± 1.0 K. 2-Cl-adamantane presents a richer polymorphic behavior through the temperature range studied. At low temperature it displays a triclinic phase (P1̅, Z = 2), which transforms to a monoclinic phase (C2/c, Z = 8) at 224.4 ± 1.0 K, both phases being ordered. Two high-temperature orientationally disordered are found for this compound, one hexagonal (P63/mcm, Z = 6) at ca. 241 K and the highest one, cubic (Fm3̅m, Z = 4), being stable from 244 ± 1.0 K up to the melting point at 467.5 ± 1.0 K. No additional phase appears due to the increase in pressure within the studied range. The intermolecular interactions are found to be weak, especially for the 2-Br-adamantane compound for which the Br···Br as well as C-Br···H distances are larger than the addition of the van der Waals radii, thus confirming the availability of this compound for building up diamondoid blocks.
Perchlorate in pleistocene and holocene groundwater in North-Central New Mexico
Plummer, Niel; Böhlke, J.K.; Doughten, M.W.
2006-01-01
Groundwater from remote parts of the Middle Rio Grande Basin in north-central New Mexico has perchlorate (ClO4-) concentrations of 0.12-1.8 ??g/L Because the water samples are mostly preanthropogenic in age (0-28 000 years) and there are no industrial sources in the study area, a natural source of the ClO4- is likely. Most of the samples have Br-, Cl-, and SO42- concentrations that are similar to those of modern bulk atmospheric deposition with evapotranspiration (ET) factors of about 7-40. Most of the ET values for Pleistocene recharge were nearly twice that for Holocene recharge. The NO3-/Cl- and ClO4-/Cl- ratios are more variable than those of Br -/Cl- or SO42-/Cl-. Samples thought to have recharged under the most arid conditions in the Holocene have relatively high NO3-/Cl- ratios and low ??15N values (+1 per mil (???)) similar to those of modern bulk atmospheric N deposition. The ??18O values of the NO 3- (-4 to 0 ???) indicate that atmospheric N0 3- was not transmitted directly to the groundwater but may have been cycled in the soils before infiltrating. Samples with nearly atmospheric NO3-/Cl- ratios have relatively high ClO4- concentrations (1.0-1.8 ??g/L) with a nearly constant ClO4-/Cl- mole ratio of (1.4 ?? 0.1) ?? 10-4, which would be consistent with an average ClO 4- concentration of 0.093 ?? 0.005 ??g/L in bulk atmospheric deposition during the late Holocene in north-central NM. Samples thought to have recharged underwetter conditions have higher ??15N values (+3 to +8 ???), lower N03-/Cl- ratios, and lower ClO4-/Cl- ratios than the ones most likely to preserve an atmospheric signal. Processes in the soils that may have depleted atmospherically derived NO3- also may have depleted ClO4- to varying degrees prior to recharge. If these interpretations are correct, then ClO4- concentrations of atmospheric origin as high as 4 ??g/L are possible in preanthropogenic groundwater in parts of the Southwest where ET approaches a factor of 40. Higher ClO4- concentrations in uncontaminated groundwater could occur in recharge beneath arid areas where ET is greater than 40, where long-term accumulations of atmospheric salts are leached suddenly from dry soils, or where other (nonatmospheric) natural sources of ClO/4- exist.
A spectrophotometric study of aqueous Au(III) halide-hydroxide complexes at 25-80 °C
NASA Astrophysics Data System (ADS)
Usher, Al; McPhail, D. C.; Brugger, Joël
2009-06-01
The mobility and transport of gold in low-temperature waters and brines is affected by the aqueous speciation of gold, which is sensitive in particular to pH, oxidation and halide concentrations. In this study, we use UV-Vis spectrophotometry to identify and measure the thermodynamic properties of Au(III) aqueous complexes with chloride, bromide and hydroxide. Au(III) forms stable square planar complexes with hydroxide and halide ligands. Based on systematic changes in the absorption spectra of solutions in three binary systems NaCl-NaBr, NaCl-NaOH and NaBr-NaOH at 25 °C, we derived log dissociation constants for the following mixed and end-member halide and hydroxide complexes: [AuCl 3Br] -, [AuCl 2Br 2] -, [AuBr 3Cl] - and [AuBr 4] -; [AuCl 3(OH)] -, [AuCl 2(OH) 2] -, [AuCl(OH) 3] - and [Au(OH) 4] -; and [AuBr 3(OH)] -, [AuBr 2(OH) 2] - and [AuBr(OH) 3] -. These are the first reported results for the mixed chloride-bromide complexes. Increasing temperature to 80 °C resulted in an increase in the stability of the mixed chloride-bromide complexes, relative to the end-member chloride and bromide complexes. For the [AuCl (4-n)(OH) n] - series of complexes ( n = 0-4), there is an excellent agreement between our spectrophotometric results and previous electrochemical results of Chateau et al. [Chateau et al. (1966)]. In other experiments, the iodide ion (I -) was found to be unstable in the presence of Au(III), oxidizing rapidly to I 2(g) and causing Au to precipitate. Predicted Au(III) speciation indicates that Au(III) chloride-bromide complexes can be important in transporting gold in brines with high bromide-chloride ratios (e.g., >0.05), under oxidizing (atmospheric), acidic (pH < 5) conditions. Native gold solubility under atmospheric oxygen conditions is predicted to increase with decreasing pH in acidic conditions, increasing pH in alkaline conditions, increasing chloride, especially at acid pH, and increasing bromide for bromide/chloride ratios greater than 0.05. The results of our study increase the understanding of gold aqueous geochemistry, with the potential to lead to new methods for mineral exploration, hydrometallurgy and medicine.
Fundamental studies of gas phase ionic reactions by ion mobility spectrometry
NASA Technical Reports Server (NTRS)
Giles, K.; Knighton, W. B.; Sahlstrom, K. E.; Grimsrud, E. P.
1995-01-01
Ion mobility spectrometry (IMS) provides a promising approach to the study of gas phase ionic reactions in buffer gases at unusually high pressures. This point is illustrated here by studies of the Sn2 nucleophilic displacement reaction, Cl(-) + CH3Br yields Br + CH3Br, using IMS at atmospheric pressure. The equilibrium clustering reaction, Cl(-)(CHCI3)(n - 1) + CHCI3 yields Cl(-)(CHCI3)(n), where n = 1 and 2, and the effect of clustering on the Sn2 reaction with CH3Br have also been characterized by this IMS-based kinetic method. Present problems and anticipated improvements in the application of ion mobility spectrometry to studies of other gas phase ionic processes are discussed.
Han, Yan-Gong; Xu, Chao; Duan, Taike; Wu, Fang-Hui; Zhang, Qian-Feng; Leung, Wa-Hung
2009-09-21
The treatment of a slurry of an equimolar mixture of [Sn(edt)(2)] (edt = ethane-1,2- dithiolate) and [Et(4)N]Cl.xH(2)O with CuI in the presence of PPh(3) gave a tetranuclear compound, [Sn(edt)(2)Cl(mu-I)(mu(3)-I)(CuPPh(3))(3)] (1), which consists of a rectangular-pyramidal [Sn(edt)(2)Cl](-) moiety ligated by three [Cu(PPh(3))](+) fragments via the sulfur atoms of the edt(2-) ligands. The treatment of a slurry of [Sn(edt)(2)] and excess [Et(4)N]Br with [Cu(MeCN)(4)][PF(6)] in the presence of PPh(3) afforded a pentanuclear compound, [Sn(edt)(2)(mu-Br)(2)(mu(3)-Br)(2)(CuPPh(3))(4)] (2), which comprises two [(CuPPh(3))(2)(mu-Br)](+) fragments symmetrically ligating an octahedral trans-[Sn(edt)(2)Br(2)](2-) moiety via the sulfur and bromide atoms. Reaction of [Sn(edt)(2)] with [Cu(MeCN)(4)][PF(6)] and PPh(3) in a mixed MeCN/CH(2)Cl(2) solution yielded a novel octanuclear compound, [{Sn(edt)(2)}(3)(mu-OH)(3)Cu(5)(PPh(3))(8)][PF(6)](2) (3), which may be described as a triangular [{Sn(edt)(2)}(3)(mu-OH)(3)](3-) core chelated by three [Cu(PPh(3))(2)](+) species and capped by two [Cu(PPh(3))](+) species. The luminescent properties of compounds 1, 2, and 3 were investigated in a CH(2)Cl(2) solution at room temperature. Upon excitation at lambda > 360 nm, these compounds are luminescent in CH(2)Cl(2) solution with emissions having maxima at 422, 515, and 494 nm, respectively.
Bundhun, Ashwini; Abdallah, Hassan H; Ramasami, Ponnadurai; Schaefer, Henry F
2010-12-23
A systematic investigation of the X-Ge-CY(3) (X = H, F, Cl, Br, and I; Y = F, Cl, Br, and I) species is carried out using density functional theory. The basis sets used for all atoms (except iodine) in this work are of double-ζ plus polarization quality with additional s- and p-type diffuse functions, and denoted DZP++. Vibrational frequency analyses are performed to evaluate zero-point energy corrections and to determine the nature of the stationary points located. Predicted are four different forms of neutral-anion separations: adiabatic electron affinity (EA(ad)), zero-point vibrational energy corrected EA(ad(ZPVE)), vertical electron affinity (EA(vert)), and vertical detachment energy (VDE). The electronegativity (χ) reactivity descriptor for the halogens (X = F, Cl, Br, and I) is used as a tool to assess the interrelated properties of these germylenes. The topological position of the halogen atom bound to the divalent germanium center is well correlated with the trend in the electron affinities and singlet-triplet gaps. For the expected XGeCY(3) structures (X = H, F, Cl, Br, and I; Y = F and Cl), the predicted trend in the electron affinities is well correlated with simpler germylene derivatives (J. Phys. Chem. A 2009, 113, 8080). The predicted EA(ad(ZPVE)) values with the BHLYP functional range from 1.66 eV (FGeCCl(3)) to 2.20 eV (IGeCF(3)), while the singlet-triplet splittings range from 1.28 eV (HGeCF(3)) to 2.22 eV (FGeCCl(3)). The XGeCY(3) (Y = Br and I) species are most often characterized by three-membered cyclic systems involving the divalent germanium atom, the carbon atom, and a halogen atom.
Strength order and nature of the π-hole bond of cyanuric chloride and 1,3,5-triazine with halide.
Wang, Hui; Li, Chen; Wang, Weizhou; Jin, Wei Jun
2015-08-28
The (13)C NMR chemical shift moving upfield indicates the main model of π-holeX(-) bond between cyanuric chloride/1,3,5-triazine (3ClN/3N), which possess both the π-hole and σ-hole, and X(-). (13)C NMR and UV absorption titration in acetonitrile confirmed that the bonding abilities of 3ClN/3N with X(-) follow the order I(-) > Br(-) > Cl(-), which is apparently the order of the charge transfer ability of halide to 3ClN/3N. Chemical calculations showed that the bonding abilities in solution were essentially consistent with those obtained by titration experiments. However, the results in the gas phase were the reverse, i.e., π-holeCl(-) > π-holeBr(-) > π-holeI(-) in bonding energy, which obeys the order of electrostatic interaction. In fact, the π-hole bond and σ-hole bond compete with solvation and possible anion-hydrogen bond between a solvent molecule and a halide in solution. An explanation is that the apparent charge transfer order of π-/σ-holeI(-) > π-/σ-holeBr(-) > π-/σ-holeCl(-) occurs for weak π-hole bonds and σ-hole bonds, whereas the order of electrostatic attraction of π-/σ-holeCl(-) > π-/σ-holeBr(-) > π-/σ-holeI(-) is valid for strong bonds. It can be concluded by combining energy decomposition analysis and natural bond orbital analysis that the π-holeX(-) bond and σ-holeX(-) bond are electrostatically attractive in nature regardless of whether the order is I(-) > Br(-) > Cl(-) or the reverse.
Kassaee, Mohamad Zaman; Ashenagar, Samaneh
2018-02-06
In a quest to identify new ground-state triplet germylenes, the stabilities (singlet-triplet energy differences, ΔE S-T ) of 96 singlet (s) and triplet (t) M 1 -Ge-M 2 -M 3 species were compared and contrasted at the B3LYP/6-311++G**, QCISD(T)/6-311++G**, and CCSD(T)/6-311++G** levels of theory (M 1 = H, Li, Na, K; M 2 = Be, Mg, Ca; M 3 = H, F, Cl, Br). Interestingly, F-substituent triplet germylenes (M 3 = F) appear to be more stable and linear than the corresponding Cl- or Br-substituent triplet germylenes (M 3 = Cl or Br). Triplets with M 1 = K (i.e., the K-Ge-M 2 -M 3 series) seem to be more stable than the corresponding triplets with M 1 = H, Li, or Na. This can be attributed to the higher electropositivity of potassium. Triplet species with M 3 = Cl behave similarly to those with M 3 = Br. Conversely, triplets with M 3 = H show similar stabilities and linearities to those with M 3 = F. Singlet species of formulae K-Ge-Ca-Cl and K-Ge-Ca-Br form unexpected cyclic structures. Finally, the triplet germylenes M 1 -Ge-M 2 -M 3 become more stable as the electropositivities of the α-substituents (M 1 and M 2 ) and the electronegativity of the β-substituent (M 3 ) increase.
'Pincer' dicarbene complexes of some early transition metals and uranium.
Pugh, David; Wright, Joseph A; Freeman, Sandra; Danopoulos, Andreas A
2006-02-14
The complexes [(C-N-C)MX(n)(thf)(m)] with the 'pincer' 2,6-bis(imidazolylidene)pyridine, (C-N-C) = 2,6-bis(arylimidazol-2-ylidene)pyridine, aryl = 2,6-Pr(i)2C6H3, M = V, X = Cl, n = 2, m = 1 1a; M = Cr, X = Cl, n = 2, m = 0, 2a, X = Br, 2b; M = Mn, X = Br, n = 2, m = 0, 3; M = Nb, X = Cl, n = 3, m = 0, 4; and M = U, X = Cl, n = 4, m = 0, 5, were synthesised by (a) substitution of labile tmed (1a), thf (2a, 3, 5) or dme (4) by free (C-N-C) or by (b) reaction of the bisimidazolium salt (CH-N-CH)Br2 with {Cr[N(SiMe3)2]2(thf)2} followed by amine elimination (2b). Attempted alkylation of 1a, 2, 3a and 4 with Grignard or alkyl lithiums gave intractable mixtures, and in one case [reaction of 1a with (mesityl)MgBr] resulted in exchange of Cl by Br (1b). Oxidation of 1a or [(C-N-C)VCl3] with 4-methylmorpholine N-oxide afforded the trans-V(C-N-C)(=O)Cl2, 6, which by reaction with AgBF4 in MeCN gave trans-[V(C-N-C)(=O)(MeCN)2][BF4]2, 7. Reaction of 1a with p-tolyl azide gave trans-V(C-N-C)(=N-p-tolyl)Cl2 8. The complex trans-Ti(C-N-C)(=NBu(t))Cl2, 9, was prepared by substitution of the pyridine ligands in Ti(NBu(t))Cl2(py)3 by C-N-C.
NASA Technical Reports Server (NTRS)
Buckley, Donald H.; Johnson, Robert L.
1960-01-01
The gases CF2Cl-CF2Cl, CF2Cl2, and CF2Br-CF2Br were used to lubricate metals, cermets, and ceramics in this study. One of the criteria for determining the effectiveness of a reactive-gas-lubricated systems is the stability of the halogen-containing gas molecule. The carbon-to-halogen bond in the ethane molecule has extremely good thermal stability superior to the methane analogs (CF2Cl2 and CF2Br2) used in earlier research. For this reason, the ethane compounds CF2Cl-CF2Cl and CF2Br-CF2Br were considered as high-temperature lubricants. Friction and wear studies were made with a hemisphere (3/16-in. rad.) rider sliding in a circumferential path on the flat surface of a rotating disk (21/2-in. diam. ). The specimens of metal alloys, cermets, and ceramics were run In an atmosphere of the various gases with a load of 1200 grams, sliding velocities from 75 to 8000 feet per minute, and temperatures from 75 to 1400 F. The gas CF2Cl-CF2Cl was found to be an effective lubricant for the cermet LT-LB (59.0 Cr, 19.0 Al2O3, 20.0 Mo, 2.0 Ti) and the ceramic Al2O3 sliding on Stellite Star J (cobalt-base alloy) at temperatures to 1400 F. The bromine-containing gas CF2Br-CF2Br was found to give friction and wear values that can be considered to be in a region of effective boundary lubrication for the cermet K175D (nickel-bonded metal carbide) sliding on the metal Hastelloy R-235 (nickel-base alloy) at temperatures to 1200 F.
Dielectric Study of the Phase Transitions in [P(CH3)4]2CuY4 (Y = Cl, Br)
NASA Astrophysics Data System (ADS)
Gesi, Kazuo
2002-05-01
Phase transitions in [P(CH3)4]2CuY4 (Y = Cl, Br) have been studied by dielectric measurements. In [P(CH3)4]2CuCl4, a slight break and a discontinuous jump on the dielectric constant vs. temperature curve are seen at the normal-incommensurate and the incommensurate-commensurate phase transitions, respectively. A small peak of dielectric constant along the b-direction exists just above the incommensurate-to-commensurate transition temperature. The anisotropic dielectric anomalies of [P(CH3)4]2CuBr4 at phase transitions were measured along the three crystallographic axes. The pressure-temperature phase diagram of [P(CH3)4]2CuCl4 was determined. The initial pressure coefficients of the normal-to-incommensurate and the incommensurate-to-commensurate transition temperatures are 0.19 K/MPa and 0.27 K/MPa, respectively. The incommensurate phase in [P(CH3)4]2CuCl4 disappears at a triple point which exists at 335 MPa and 443 K. The stability and the pressure effects of the incommensurate phases are much different among the four [Z(CH3)4]2CuY4 crystals (Z = N, P; Y = Cl, Br).
Intermediate Temperature Fluids Life Tests - Experiments
2007-06-01
TiCl4, TiBr4, and eutectic diphenyl/diphenyl oxide (Therminol VP-1/Dowtherm A). All of the life tests except for the GaCl3 are ongoing; the GaCl3...763 85.5 Eutectic Diphenyl/Diphenyl Oxide 285 530 770 31 Antimony Tribromide SbBr3 370 553 1178 55 Antimony Trichloride SbCl3 346 556 794 Cesium...From a Compatibility Standpoint) Have High Decomposition Potentials, While Halides/ Salts of Good Envelope Materials Have Low Decomposition Potentials
NASA Astrophysics Data System (ADS)
Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker
We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.
1995-01-01
The equilibrium structures, harmonic vibrational frequencies, quadratic force fields, dipole moments, and IR intensities of several triatomic bromine compounds of known or potential importance in stratospheric ozone depletion chemistry have been determined using the CCSD(T) electron correlation method in conjunction with a basis set of triple zeta double polarized (TZ2P) quality. Specifically, the molecules included in the present study are HOBr, HBrO, FOBr, FBrO, BrNO, BrON, Br2O, BrBrO, BrCN, BrNC, ClOBr, ClBrO, and BrClO. Very accurate isomeric energy differences have also been determined at the CCSD(T) level with atomic natural orbital basis sets that include through g-type functions. In most cases, the isomer with a normal neutral Lewis dot structure is the lowest energy form, with the single exception that FBrO is predicted to be 11.1 kcal/mol (0 K) lower in energy than FOBr. In all cases, however, the hypervalent isomer is more stable relative to the isomer with a normal Lewis dot structure as compared to the chlorine analogs. Consistent with this observation, the energy of the last three molecules given above increases in the order ClOBr less than ClBrO less than BrClO. The CCSD(T)/TZ2P geometries and vibrational frequencies are in good agreement with the available experimental data. Heats of formation are determined for all species using a combination of theoretical isomeric, homodesmic, and isodesmic reaction energies. The accuracy of these quantities is ultimately dependent on the reliability of the experimental heat of formation of HOBr.
NASA Technical Reports Server (NTRS)
Lee. Timothy J.
1995-01-01
The equilibrium structures, harmonic vibrational frequencies, quadratic force fields, dipole moments, and IR intensities of several triatomic bromine compounds of known or potential importance in stratospheric ozone depletion chemistry have been determined using the CCSD(T) electron correlation method in conjunction with a basis set of triple zeta double polarized (TZ2P) quality. Specifically, the molecules included in the present study are HOBr, HBrO, FOBr, FBrO, BrNO, BrON, Br2O, BrBrO, BrCN, BrNC, ClOBr, ClBrO, and BrClO. Very accurate isomeric energy differences have also been determined at the CCSD(T) level with atomic natural orbital basis sets that include through g-type functions. In most cases, the isomer with a normal neutral Lewis dot structure is the lowest energy form, with the single exception that FBRO is predicted to be 11.1 kcal/mol (0 K) lower in energy than FOBr. In all cases, however, the hypervalent isomer is more stable relative to the isomer with a normal Lewis dot structure as compared to the chlorine analogs. Consistent with this observation, the energy of the last three molecules given above increases in the order ClOBr less than ClBrO less than BrClO. The CCSD(T)/TZ2P geometries and vibrational frequencies are in good agreement with the available experimental data. Heats of formation are determined for all species using a combination of theoretical isomeric, homodesmic, and isodesmic reaction energies. The accuracy of these quantities is ultimately dependent on the reliability of the experimental heat of formation of HOBr.
McArthur, J M; Sikdar, P K; Hoque, M A; Ghosal, U
2012-10-15
Across West Bengal and Bangladesh, concentrations of Cl in much groundwater exceed the natural, upper limit of 10 mg/L. The Cl/Br mass ratios in groundwaters range up to 2500 and scatter along mixing lines between waste-water and dilute groundwater, with many falling near the mean end-member value for waste-water of 1561 at 126 mg/L Cl. Values of Cl/Br exceed the seawater ratio of 288 in uncommon NO(3)-bearing groundwaters, and in those containing measurable amounts of salt-corrected SO(4) (SO(4) corrected for marine salt). The data show that shallow groundwater tapped by tube-wells in the Bengal Basin has been widely contaminated by waste-water derived from pit latrines, septic tanks, and other methods of sanitary disposal, although reducing conditions in the aquifers have removed most evidence of NO(3) additions from these sources, and much evidence of their additions of SO(4). In groundwaters from wells in palaeo-channel settings, end-member modelling shows that >25% of wells yield water that comprises ≥10% of waste-water. In palaeo-interfluvial settings, only wells at the margins of the palaeo-interfluvial sequence contain detectable waste water. Settings are identifiable by well-colour survey, owner information, water composition, and drilling. Values of Cl/Br and faecal coliform counts are both inversely related to concentrations of pollutant As in groundwater, suggesting that waste-water contributions to groundwater in the near-field of septic-tanks and pit-latrines (within 30 m) suppress the mechanism of As-pollution and lessen the prevalence and severity of As pollution. In the far-field of such sources, organic matter in waste-water may increase groundwater pollution by As. Copyright © 2012. Published by Elsevier B.V.
Aspects of the history of 66095 based on trace elements in clasts and whole rock
NASA Technical Reports Server (NTRS)
Jovanovic, S.; Reed, G. W., Jr.
1982-01-01
Halogens, P, U and Na are reported in anorthositic and basaltic clasts and matrix from rusty rock 66095. Large fractions of Cl and Br associated with the separated phases from 66095 are soluble in H2O. Up to two orders of magnitude variation in concentrations of these elements in the breccia components and varying H2O-soluble Cl/Br ratios indicate different sources of volatiles. An approximately constant ratio of the H2O- to 0.1 M HNO3-soluble Br in the various components suggests no appreciable alteration in the original distributions of this element in the breccia forming processes. Up to 50% or more of the phosphorus and of the non-H2O-soluble Cl was dissolved from most of the breccia components by 0.1 M HNO3. Clast and matrix residues from the leaching steps contain, in most cases, the Cl/P2O5 ratio found in 66095 whole rock and in a number of other Apollo 16 samples. Evidence that phosphates are the major P-phases in the breccia is based on the 0.1 M acid solubility of Cl and P in the matrix sample and on elemental concentrations which are consistent with those of KREEP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roccanova, Rachel; Ming, Wenmei; Whiteside, Vincent R.
Here, we report the synthesis, crystal and electronic structures, as well as optical properties of the hybrid organic–inorganic compounds MA 2CdX 4 (MA = CH 3NH 3; X = Cl, Br, I). MA 2CdI 4 is a new compound, whereas, for MA 2CdCl 4 and MA 2CdBr 4, structural investigations have already been conducted but electronic structures and optical properties are reported here for the first time. Single crystals were grown through slow evaporation of MA 2CdX 4 solutions with optimized conditions yielding mm-sized colorless (X = Cl, Br) and pale yellow (X = I) crystals. Single crystal and variablemore » temperature powder X-ray diffraction measurements suggest that MA 2CdCl 4 forms a 2D layered perovskite structure and has two structural transitions at 283 and 173 K. In contrast, MA 2CdBr 4 and MA 2CdI 4 adopt 0D K 2SO 4-derived crystal structures based on isolated CdX 4 tetrahedra and show no phase transitions down to 20 K. The contrasting crystal structures and chemical compositions in the MA 2CdX 4 family impact their air stabilities, investigated for the first time in this work; MA 2CdCl 4 is air-stable, whereas MA 2CdBr 4 and MA 2CdI 4 partially decompose when left in air. Optical absorption measurements suggest that MA 2CdX 4 have large optical band gaps above 3.9 eV. Room temperature photoluminescence spectra of MA 2CdX 4 yield broad peaks in the 375–955 nm range with full width at half-maximum values up to 208 nm. These PL peaks are tentatively assigned to self-trapped excitons in MA 2CdX 4 following the crystal and electronic structure considerations. The bands around the Fermi level have small dispersions, which is indicative of high charge localization with significant exciton binding energies in MA 2CdX 4. On the basis of our combined experimental and computational results, MA 2CdX 4 and related compounds may be of interest for white-light-emitting phosphors and scintillator applications.« less
Roccanova, Rachel; Ming, Wenmei; Whiteside, Vincent R.; ...
2017-11-02
Here, we report the synthesis, crystal and electronic structures, as well as optical properties of the hybrid organic–inorganic compounds MA 2CdX 4 (MA = CH 3NH 3; X = Cl, Br, I). MA 2CdI 4 is a new compound, whereas, for MA 2CdCl 4 and MA 2CdBr 4, structural investigations have already been conducted but electronic structures and optical properties are reported here for the first time. Single crystals were grown through slow evaporation of MA 2CdX 4 solutions with optimized conditions yielding mm-sized colorless (X = Cl, Br) and pale yellow (X = I) crystals. Single crystal and variablemore » temperature powder X-ray diffraction measurements suggest that MA 2CdCl 4 forms a 2D layered perovskite structure and has two structural transitions at 283 and 173 K. In contrast, MA 2CdBr 4 and MA 2CdI 4 adopt 0D K 2SO 4-derived crystal structures based on isolated CdX 4 tetrahedra and show no phase transitions down to 20 K. The contrasting crystal structures and chemical compositions in the MA 2CdX 4 family impact their air stabilities, investigated for the first time in this work; MA 2CdCl 4 is air-stable, whereas MA 2CdBr 4 and MA 2CdI 4 partially decompose when left in air. Optical absorption measurements suggest that MA 2CdX 4 have large optical band gaps above 3.9 eV. Room temperature photoluminescence spectra of MA 2CdX 4 yield broad peaks in the 375–955 nm range with full width at half-maximum values up to 208 nm. These PL peaks are tentatively assigned to self-trapped excitons in MA 2CdX 4 following the crystal and electronic structure considerations. The bands around the Fermi level have small dispersions, which is indicative of high charge localization with significant exciton binding energies in MA 2CdX 4. On the basis of our combined experimental and computational results, MA 2CdX 4 and related compounds may be of interest for white-light-emitting phosphors and scintillator applications.« less
NASA Astrophysics Data System (ADS)
Hoque, M. A.; McArthur, J. M.; Sikdar, P. K.; Ball, J. D.; Molla, T. N.
2014-06-01
Dhaka, the capital of Bangladesh, is home to a population of 15 million people, whose water supply is 85% drawn from groundwater in aquifers that underlie the city. Values of Cl/Br >500 are common in groundwater beneath western Dhaka in areas <3 km from the river, and in rivers and sewers around and within the city. The study shows that groundwater beneath western Dhaka is strongly influenced by infiltration of effluent from leaking sewers and unsewered sanitation, and by river-bank infiltration from the Turag-Buriganga river system which bounds the western limit of the city. River-bank infiltration from other rivers around Dhaka is minor. Values of Cl/Br and Cl concentrations reveal that 23 % of wells sampled in Dhaka are influenced by saline connate water in amounts up to 1%. This residual natural salinity compromises the use of electrical conductivity of groundwater as a method for defining pathways of recharge by contaminated surface waters. Concentrations of As, B, Ba, Cd, Cu, F, Ni, NO3, Pb, Sb, Se and U in groundwater samples are less than WHO health-based guideline values for drinking water.
Chalcogen- and halogen-bonds involving SX2 (X = F, Cl, and Br) with formaldehyde.
Mo, Lixin; Zeng, Yanli; Li, Xiaoyan; Zhang, Xueying; Meng, Lingpeng
2016-07-01
The capacity of SX2 (X = F, Cl, and Br) to engage in different kinds of noncovalent bonds was investigated by ab initio calculations. SCl2 (SBr2) has two σ-holes upon extension of Cl (Br)-S bonds, and two σ-holes upon extension of S-Cl (Br) bonds. SF2 contains only two σ-holes upon extension of the F-S bond. Consequently, SCl2 and SBr2 form chalcogen and halogen bonds with the electron donor H2CO while SF2 forms only a chalcogen bond, i.e., no F···O halogen bond was found in the SF2:H2CO complex. The S···O chalcogen bond between SF2 and H2CO is the strongest, while the strongest halogen bond is Br···O between SBr2 and H2CO. The nature of these two types of noncovalent interaction was probed by a variety of methods, including molecular electrostatic potentials, QTAIM, energy decomposition, and electron density shift maps. Termolecular complexes X2S···H2CO···SX'2 (X = F, Cl, Br, and X' = Cl, Br) were constructed to study the interplay between chalcogen bonds and halogen bonds. All these complexes contained S···O and Cl (Br)···O bonds, with longer intermolecular distances, smaller values of electron density, and more positive three-body interaction energies, indicating negative cooperativity between the chalcogen bond and the halogen bond. In addition, for all complexes studied, interactions involving chalcogen bonds were more favorable than those involving halogen bonds. Graphical Abstract Molecular electrostatic potential and contour map of the Laplacian of the electron density in Cl2S···H2CO···SCl2 complex.
NASA Astrophysics Data System (ADS)
Yu, Wenlei; Jiang, Yunfeng; Zhu, Xiuwei; Luo, Chunhua; Jiang, Kai; Chen, Liangliang; Zhang, Juan
2018-05-01
The effects of halogen substitution on microstructure, optical absorption, and phonon modes for perovskite CH3NH3PbX3 (MAPbX3, X = I/Br/Cl) films grown on FTO substrates have been investigated. The X-ray diffraction analysis exhibited good crystallization, and the strong diffraction peak assigned to (1 0 0) c for X = Br/Cl shifted toward a higher angle compared to (1 1 0) t of MAPbI3. Band-gap tuning from 1.63 to 2.37 to 3.11 eV in the I-Br-Cl series can be found due to the halogen effects. These energy values closely match the positions of peak determined from photoluminescence experiments. The remarkable absorption dip and emission peak appear for the MAPbBr3, suggesting higher crystallinity under the same preparation conditions. The wavenumbers of main IR-vibrations slightly decrease with ionic radius of the halogen increasing (in the order of Cl-Br-I), which related to the increasing polarizability. These results provide important progress towards the understanding of the halide role in the realization of high performance MAPbX3-based solar cells.
Danis, J A; Lin, M R; Scott, B L; Eichhorn, B W; Runde, W H
2001-07-02
UO(2)(C(2)H(3)O(2))(2).2H(2)O reacts with AX or A(C(2)H(3)O(2) or ClO(4)) (where A = Li, Na, K; X = Cl, Br) and crown ethers in HCl or HBr aqueous solutions to give the sandwich-type compounds [K(18-crown-6)](2)[UO(2)Cl(4)] (1), [K(18-crown-6)](2)[UO(2)Br(4)] (2), [Na(15-crown-5)](2)[UO(2)Cl(4)] (3), [Na(15-crown-5)](2)[UO(2)Br(4)] (4), [Li(12-crown-4)](2)[UO(2)Cl(4)] (5), and [Li(12-crown-4)](2)[UO(2)Br(4)] (6). The compounds have been characterized by single-crystal X-ray diffraction, powder diffraction, elemental analysis, IR, and Raman spectroscopy. The [UO(2)X(4)](2-) ions coordinate to two [A(crown)](+) cations through the four halides only (2), through two halides only (3), through the two uranyl oxygens and two halides (3, 4), or through the two uranyl oxygen atoms only (5, 6). Raman spectra reveal nu(U-O) values that correlate with expected trends. The structural trends are discussed within the context of classical principles of hard-soft acid-base theory.
Gupta, Anand; Singh, Harkesh B; Butcher, Ray J
2017-11-01
In the mol-ecular structure of the title compound, {2,6-bis-[(di-methyl-amino)-meth-yl]phenyl-κ 3 N , C 1 , N '}[bromido/chlorido-(0.30/0.70)]mercury(II)-{2,6-bis-[(di-methyl-amino)-meth-yl]phenyl-κ 3 N , C 1 , N '}[bromido/chlorido-(0.24/0.76)]mer-cury(II) (1/1), [HgBr 0.30 Cl 0.70 (C 12 H 19 N 2 )]·[HgBr 0.24 Cl 0.76 (C 12 H 19 N 2 )], there are two mol-ecules in the asymmetric unit of formula L Hg X { L = 2,6-bis-[(di-methyl-amino)-meth-yl]phenyl and X = Cl/Br}. In each mol-ecule, the halide site is mixed Cl/Br, with occupancies of 0.699 (7):0.301 (7) and 0.763 (7):0.237 (7), respectively. The two mol-ecules are linked into dimers by a combination of Hg⋯Hg [Hg⋯Hg = 3.6153 (3) Å] and C-H⋯Cl and C-H⋯π inter-actions.
Halogen content in Lesser Antilles arc volcanic rocks : exploring subduction recycling
NASA Astrophysics Data System (ADS)
Thierry, Pauline; Villemant, Benoit; Caron, Benoit
2016-04-01
Halogens (F, Cl, Br and I) are strongly reactive volatile elements which can be used as tracers of igneous processes, through mantle melting, magma differentiation and degassing or crustal material recycling into mantle at subduction zones. Cl, Br and I are higly incompatible during partial melting or fractional cristallization and strongly depleted in melts by H2O degassing, which means that no Cl-Br-I fractionation is expected through magmatic differenciation [current thesis]. Thus, Cl/Br/I ratios in lavas reflect the halogen content of their mantle sources. Whereas these ratios seemed quite constant (e.g. Cl/Br =300 as seawater), recent works suggest significant variations in arc volcanism [1,2]. In this work we provide high-precision halogen measurements in volcanic rocks from the recent activity of the Lesser Antilles arc (Montserrat, Martinique, Guadeloupe, Dominique). Halogen contents of powdered samples were determined through extraction in solution by pyrohydrolysis and analysed by Ion Chromatography for F and Cl and high performance ICP-MS (Agilent 8800 Tripe Quad) for Cl, Br and I [3,4]. We show that lavas - and mantle sources - display significant vraiations in Cl/Br/I ratios along the Lesser Antilles arc. These variations are compared with Pb, Nd and Sr isotopes and fluid-mobile elements (Ba, U, Sr, Pb etc.) compositions which vary along the arc from a nothern ordinary arc compositions to a southern 'crustal-like' composition [5,6]. These characteristics are attributed to subducted sediments recycling into the mantle wedge, whose contribution vary along the arc from north to south [7,8]. The proportion of added sediments is also related to the distance to the trench as sediment melting and slab dehydration may occur depending on the slab depth [9]. Further Cl-Br-I in situ measurements by LA-ICP-MS in Lesser Antilles arc lavas melt inclusions will be performed, in order to provide better constraints on the deep halogen recycling cycle from crust to mantle. 1. Villemant, B., Mouatt, J. & Michel, A., 2008. Earth Planet. Sci. Lett. 269(1), 212-229. 2. Kutterolf, S. et al., 2015. Earth Planet. Sci. Lett. 429, 234-246. 3. Michel, A. & Villemant, B., 2003. Geostand. Geoanalytical Res. 27(2), 163-171. 4. Balcone-Boissard, H., Michel, A. & Villemant, B., 2009. Geostand. Geoanalytical Res. 33(4), 477-485. 5. White, W. M. & Dupré, B., 1986. J. Geophys. Res. 91(B6), 5927. 6. Labanieh, S. et al., 2010. Earth Planet. Sci. Lett. 298(1-2), 35-46. 7. Turner, S. et al., 1996. Earth Planet. Sci. Lett. 142(1-2), 191-207. 8. Carpentier, M., Chauvel, C. & Mattielli, N., 2008. Earth Planet. Sci. Lett. 272(1-2), 199-211. 9. Labanieh, S. et al., 2012. J. Petrol. 53(12), 2441-2464.
NASA Astrophysics Data System (ADS)
Motoki, Takanori; Ikeda, Shuhei; Nakamura, Shin-ichi; Honda, Genki; Nagaishi, Tatsuoki; Doi, Toshiya; Shimoyama, Jun-ichi
2018-04-01
Additive-free YBCO films, as well as those with halogen (X) added, metal (M) added and (X, M) co-added, have been prepared by the fluorine-free metal-organic decomposition method on SrTiO3(100) single crystalline substrates, where X = Cl, Br and M = Zr, Sn, Hf. It was revealed that the addition of both Cl and Br to the starting solution resulted in the generation of oxyhalide, Ba2Cu3O4 X 2, in the YBCO films, and that the oxyhalide was found to promote the bi-axial orientation of the YBCO crystals. By adding a decent amount of Cl or Br, highly textured YBCO films with high J c were reproducibly obtained, even when an impurity metal, M, was co-added, while the addition of M without X did not greatly improve J c owing to the poor bi-axial orientation of the YBCO crystals. Our results suggest that the addition of Br more effectively enhances J c than the addition of Cl. The pinning force density at 40 K in 4.8 T reached ˜55 GN m-3 with the co-addition of (Br, M). This value is much larger than that of the pure YBCO film, reaching ˜17 GN m-3.
NASA Astrophysics Data System (ADS)
Atourki, Lahoucine; Vega, Erika; Marí, Bernabé; Mollar, Miguel; Ait Ahsaine, Hassan; Bouabid, Khalid; Ihlal, Ahmed
2016-12-01
The optical and structural properties of CH3NH3PbI3 can be adjusted by introducing other extrinsic ions such as chloride and bromide. In this work, mixed bromide iodide lead perovskites with a 10% fraction of chloride were prepared from methylamine, lead nitrate and the corresponding hydro acid (X = I, Br, Cl). The effect of bromide and chloride incorporation on different properties of perovskite thin film was investigated. The Pawley fit method indicates the formation of the iodide halide MAPbI3 Pm-3 m cubic phase for x = 0 and the tetragonal P4/mmm phase for x ≥ 0.3. All deposited films showed a strong absorbance in the UV-vis range. The band gap values were estimated from absorbance measurements. It was found that the onset of the absorption edge for MAPbI2.9-xBrxCl0.1 thin film perovskites ranges between 1.60 and 1.80 eV. Moreover, it was found that both Cl and Br affect the PL emission of the mixed halide lead perovskite, the MAPbI2.9-xBrxCl0.1 films displayed intermediate values from 730 nm (MAPbI2.2Br0.7Cl0.1) to 770 nm (MAPbI2.6Br0.3Cl0.1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chen-Guang; Lash Miller Chemical Laboratories, Department of Chemistry and Institute of Optical Sciences, University of Toronto, Toronto, Ontario M5S 3H6; Huang, Kai, E-mail: khuang@chem.utoronto.ca, E-mail: wji@ruc.edu.cn
During the dissociative adsorption on a solid surface, the substrate usually participates in a passive manner to accommodate fragments produced upon the cleavage of the internal bond(s) of a (transient) molecular adsorbate. This simple picture, however, neglects the flexibility of surface atoms. Here, we report a Density Functional Theory study to revisit our early studies of the dissociative adsorption of CH{sub 3}X (X = Br and Cl) on Si(100). We have identified a new reaction pathway, which involves a flip of a silicon dimer; this new pathway agrees better with experiments. For our main exemplar of CH{sub 3}Br, insights havemore » been gained using a simple model that involves a three-atom reactive center, Br-C-Si. When the silicon dimer flips, the interaction between C and Si in the Br-C-Si center is enhanced, evident in the increased energy-split of the frontier orbitals. We also examine how the dissociation dynamics of CH{sub 3}Br is altered on a heterodimer (Si-Al, Si-P, and Si-Ge) in a Si(100) surface. In each case, we conclude, on the basis of computed reaction pathways, that no heterodimer flipping is involved before the system transverses the transition state to dissociative adsorption.« less
Structures and properties of spherical 90-vertex fullerene-like nanoballs.
Scheer, Manfred; Schindler, Andrea; Bai, Junfeng; Johnson, Brian P; Merkle, Roger; Winter, Rainer; Virovets, Alexander V; Peresypkina, Eugenia V; Blatov, Vladislav A; Sierka, Marek; Eckert, Hellmut
2010-02-15
By applying the proper stoichiometry of 1:2 to [Cp(R)Fe(eta(5)-P(5))] and CuX (X=Cl, Br) and dilution conditions in mixtures of CH(3)CN and solvents like CH(2)Cl(2), 1,2-Cl(2)C(6)H(4), toluene, and THF, nine spherical giant molecules having the simplified general formula [Cp(R)Fe(eta(5)-P(5))]@[{Cp(R)Fe(eta(5)-P(5))}(12){CuX}(25)(CH(3)CN)(10)] (Cp(R)=eta(5)-C(5)Me(5) (Cp*); eta(5)-C(5)Me(4)Et (Cp(Et)); X=Cl, Br) have been synthesized and structurally characterized. The products consist of 90-vertex frameworks consisting of non-carbon atoms and forming fullerene-like structural motifs. Besides the mostly neutral products, some charged derivatives have been isolated. These spherical giant molecules show an outer diameter of 2.24 (X=Cl) to 2.26 nm (X=Br) and have inner cavities of 1.28 (X=Cl) and 1.20 nm (X=Br) in size. In most instances the inner voids of these nanoballs encapsulate one molecule of [Cp*Fe(eta(5)-P(5))], which reveals preferred orientations of pi-pi stacking between the cyclo-P(5) rings of the guest and those of the host molecules. Moreover, pi-pi and sigma-pi interactions are also found in the packing motifs of the balls in the crystal lattice. Electrochemical investigations of these soluble molecules reveal one irreversible multi-electron oxidation at E(p)=0.615 V and two reduction steps (-1.10 and -2.0 V), the first of which corresponds to about 12 electrons. Density functional calculations reveal that during oxidation and reduction the electrons are withdrawn or added to the surface of the spherical nanomolecules, and no Cu(2+) species are involved.
Energetic Diagrams and Structural Properties of Monohaloacetylenes HC≡CX (X = F, Cl, Br).
Khiri, D; Hochlaf, M; Chambaud, G
2016-08-04
Highly correlated electronic wave functions within the Multi Reference Configuration Interaction (MRCI) approach are used to study the stability and the formation processes of the monohaloacetylenes HCCX and monohalovinylidenes C2HX (X = F, Cl, Br) in their electronic ground state. These tetra-atomics can be formed through the reaction of triatomic fragments C2F, C2Cl, and C2Br with a hydrogen atom or of C2H with halogen atoms via barrierless reactions, whereas the reactions between the diatomics [C2 + HX] need to overcome barriers of 1.70, 0.89, and 0.58 eV for X = F, Cl, and Br. It is found that the linear HCCX isomers, in singlet symmetry, are more stable than the singlet C2HX iso-forms by 1.995, 2.083, and 1.958 eV for X = F, Cl, and Br. The very small isomerization barriers from iso to linear forms are calculated 0.067, 0.044, and 0.100 eV for F, Cl, and Br systems. The dissociation energies of the HCCX systems (without ZPE corrections), resulting from the breaking of the CX bond, are calculated to be 5.647, 4.691, and 4.129 eV for X = F, Cl, Br, respectively. At the equilibrium geometry of the X(1)Σ(+) state of HCCX, the vertical excitation energies in singlet and triplet symmetries are all larger than the respective dissociation energies. Stable excited states are found only as (3)A', (3)A″, and (1)A″ monohalovinylidene structures.
Chang, H C; Miyasaka, H; Kitagawa, S
2001-01-01
A series of redox isomers of [CrIII(X4SQ)(X4Cat)2]2-, [CrIII(X4SQ)2(X4Cat)]-, and [CrIII(X4SQ)3]0 (X = Cl and Br, SQ = semiquinonate, and Cat = catecholate) have been synthesized and characterized as charge-transfer (CT) compounds with metallocenium cations: (CoIIICp2)2[CrIII(Cl4SQ)(Cl4Cat)2] (1), (CoIIICp2)2[CrIII(Br4SQ)(Br4Cat)2] (2), (FeIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)].C6H6 (4), (FeIIICp2)[CrIII(Br4SQ)2(Br4Cat)].CS2 (5), and (FeIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)][CrIII(Cl4SQ)3] (6). First, the oxidation states of the chromium complexes are strongly dependent on the redox potentials of the metallocenes used. The CoIICp2, exhibiting stronger reduction power than FeIICp2, is useful for two-electron reduction of the [CrIII(X4SQ)3]0, affording [CrIII(X4SQ)(X4Cat)2]2- (1 and 2), which are first isolated and crystallographically characterized in the solid state. In contrast the reaction with FeIICp2 affords only [CrIII(X4SQ)2(X4Cat)]- (4 and 5). Second, solvents influence crystal structures of these compounds. The solvent set of C6H6/CS2 gives 1:1:C6H6 compound 4 with unique charged anions, [CrIII(Cl4SQ)2(Cl4Cat)]-, while the other set, n-C6H12/CS2, affords 1:2 compound 6 including the two redox isomers, [CrIII(Cl4SQ)2(Cl4Cat)]- and [CrIII(Cl4SQ)3]0. The [CrIII(X4SQ)(X4Cat)2]2- anions in 1 and 2 show no significant interconnection between them (discrete type), while the [CrIII(X4SQ)2(X4Cat)]- anions in 4-6 show one-dimensional column-type structures with the aid of intermolecular stacking interactions of the ligand moieties. The anions in 4 show additional stacking interaction with the [FeIIICp2]+ to form one-dimensional ...[D][A][S][D][A]... (D = [FeIIICp2]+, A = [CrIII(Cl4SQ)2(Cl4Cat)]-, and S = C6H6) type mixed-stack arrangements similar to that of previously reported (CoIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)].C6H6 (3). Compound 6 forms a two-dimensional sheet structure where the two redox isomers, [CrIII(Cl4SQ)2(Cl4Cat)]- and [CrIII(Cl4SQ)3]0, are included. The sheet is regarded as a mixed-valence molecular assembly. Two types of the anions, [CrIII(X4SQ)(X4Cat)2]2- (1 and 2) and [CrIII(X4SQ)2(X4Cat)]- (4-6), exhibiting an intramolecular mixed-valence state, show intramolecular intervalence CT transition (IVCT) from the Cat to the SQ at near 5800 and 4300 cm-1, respectively, both in the solution and in the solid states. The intermolecular mixed-valence state of 6 was characterized by absorption spectroscopy, electric conductivity, and SQUID magnetometry. Interestingly, this mixed-valence state of the chromium module is dependent on the redox active nature of the coordinated ligands.
NASA Technical Reports Server (NTRS)
Hsu, H-J.; DeMore, W.
1994-01-01
Rate constants for the reactions of OH with CH3C1, CH2Cl2, CHCl3 and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2)and for CH2Cl2, HFC-161 (CH3CH2F).
Rejection of Bromide and Bromate Ions by a Ceramic Membrane
Moslemi, Mohammadreza; Davies, Simon H.; Masten, Susan J.
2012-01-01
Abstract Effects of pH and the addition of calcium chloride (CaCl2) on bromate (BrO3−) and bromide (Br−) rejection by a ceramic membrane were investigated. Rejection of both ions increased with pH. At pH 8, the rejection of BrO3− and Br− was 68% and 63%, respectively. Donnan exclusion appears to play an important role in determining rejection of BrO3− and Br−. In the presence of CaCl2, rejection of BrO3− and Br− ions was greatly reduced, confirming the importance of electrostatic interactions in determining rejection of BrO3− and Br−. The effect of Ca2+ is so pronounced that in most natural waters, rejection of both BrO3− and Br− by the membrane would be extremely small. PMID:23236251
TeX4 (X = F, Cl, Br) as Lewis acids--complexes with soft thio- and seleno-ether ligands.
Hector, Andrew L; Jolleys, Andrew; Levason, William; Reid, Gillian
2012-08-28
TeF(4) reacts with OPR(3) (R = Me or Ph) in anhydrous CH(2)Cl(2) to give the colourless, square based pyramidal 1 : 1 complexes [TeF(4)(OPR(3))] only, in which the OPR(3) is coordinated basally in the solid state, (R = Me: d(Te-O) = 2.122(2) Å; R = Ph: d(Te-O) = 2.1849(14) Å). Variable temperature (19)F{(1)H}, (31)P{(1)H} and (125)Te{(1)H} NMR spectroscopic studies strongly suggest this is the low temperature structure in solution, although the systems are dynamic. The much softer donor ligands SMe(2) and SeMe(2) show a lower affinity for TeF(4), although unstable, yellow products with spectroscopic features consistent with [TeF(4)(EMe(2))] are obtained by the reaction of TeF(4) in neat SMe(2) or via reaction in CH(2)Cl(2) with SeMe(2). TeX(4) (X = F, Cl or Br) causes oxidation and halogenation of TeMe(2) to form X(2)TeMe(2). The Br(2)TeMe(2) hydrolyses in trace moisture to form [BrMe(2)Te-O-TeMe(2)Br], the crystal structure of which has been determined. TeX(4) (X = Cl or Br) react with the selenoethers SeMe(2), MeSe(CH(2))(3)SeMe or o-C(6)H(4)(SeMe)(2) (X = Cl) in anhydrous CH(2)Cl(2) to give the distorted octahedral monomers trans-[TeX(4)(SeMe(2))(2)], cis-[TeX(4){MeSe(CH(2))(3)SeMe}] and cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], which have been characterised by IR, Raman and multinuclear NMR ((1)H, (77)Se{(1)H} and (125)Te{(1)H}) spectroscopy, and via X-ray structure determinations of representative examples. Tetrahydrothiophene (tht) can form both 1 : 1 and 1 : 2 Te : L complexes. For X = Br, the former has been shown to be a Br-bridged dimer, [Br(3)(tht)Te(μ-Br)(2)TeBr(3)(tht)], by crystallography with the tht ligands anti, whereas the latter are trans-octahedral monomers. Like its selenoether analogue, MeS(CH(2))(3)SMe forms distorted octahedral cis-chelates, [TeX(4){MeS(CH(2))(3)SMe}], whereas the more rigid o-C(6)H(4)(SMe)(2) unexpectedly forms a zig-zag chain polymer in the solid state, [TeCl(4){o-C(6)H(4)(SMe)(2)}](n), in which the dithioether adopts an extremely unusual bridging mode. This is in contrast to the chelating monomer, cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], formed with the analogous selenoether and may be attributed to small differences in the ligand chelate bite angles. The wider bite angle xylyl-linked bidentates, o-C(6)H(4)(CH(2)EMe(2))(2) behave differently; the thioether forms cis-chelated [TeX(4){o-C(6)H(4)(CH(2)SMe)(2)}] confirmed crystallographically, whereas the selenoether undergoes C-Se cleavage and rearrangement on treatment with TeX(4), forming the cyclic selenonium salts, [C(9)H(11)Se](2)[TeX(6)]. The tetrathiamacrocycle, [14]aneS(4) (1,4,8,11-tetrathiacyclotetradecane), does not react cleanly with TeCl(4), but forms the very poorly soluble [TeCl(4)([14]aneS(4))](n), shown by crystallography to be a zig-zag polymer with exo-coordinated [14]aneS(4) units linked via alternate S atoms to a cis-TeCl(4) unit. Trends in the (125)Te{(1)H} NMR shifts for this series of Te(IV) halides chalcogenoether complexes are discussed.
Schlueter, John A; Park, Hyunsoo; Halder, Gregory J; Armand, William R; Dunmars, Cortney; Chapman, Karena W; Manson, Jamie L; Singleton, John; McDonald, Ross; Plonczak, Alex; Kang, Jinhee; Lee, Chaghoon; Whangbo, Myung-Hwan; Lancaster, Tom; Steele, Andrew J; Franke, Isabel; Wright, Jack D; Blundell, Stephen J; Pratt, Francis L; deGeorge, Joseph; Turnbull, Mark M; Landee, Christopher P
2012-02-20
The structural and magnetic properties of the newly crystallized CuX(2)(pyzO)(H(2)O)(2) (X = Cl, Br; pyzO = pyrazine-N,N'-dioxide) coordination polymers are reported. These isostructural compounds crystallize in the monoclinic space group C2/c with, at 150 K, a = 17.0515(7) Å, b = 5.5560(2) Å, c = 10.4254(5) Å, β = 115.400(2)°, and V = 892.21(7) Å(3) for X = Cl and a = 17.3457(8) Å, b = 5.6766(3) Å, c = 10.6979(5) Å, β = 115.593(2)°, and V = 950.01(8) Å(3) for X = Br. Their crystal structure is characterized by one-dimensional chains of Cu(2+) ions linked through bidentate pyzO ligands. These chains are joined together through OH···O hydrogen bonds between the water ligands and pyzO oxygen atoms and Cu-X···X-Cu contacts. Bulk magnetic susceptibility measurements at ambient pressure show a broad maximum at 7 (Cl) and 28 K (Br) that is indicative of short-range magnetic correlations. The dominant spin exchange is the Cu-X···X-Cu supersuperexchange because the magnetic orbital of the Cu(2+) ion is contained in the CuX(2)(H(2)O)(2) plane and the X···X contact distances are short. The magnetic data were fitted to a Heisenberg 1D uniform antiferromagnetic chain model with J(1D)/k(B) = -11.1(1) (Cl) and -45.9(1) K (Br). Magnetization saturates at fields of 16.1(3) (Cl) and 66.7(5) T (Br), from which J(1D) is determined to be -11.5(2) (Cl) and -46.4(5) K (Br). For the Br analog the pressure dependence of the magnetic susceptibility indicates a gradual increase in the magnitude of J(1D)/k(B) up to -51.2 K at 0.84 GPa, suggesting a shortening of the Br···Br contact distance under pressure. At higher pressure X-ray powder diffraction data indicates a structural phase transition at ∼3.5 GPa. Muon-spin relaxation measurements indicate that CuCl(2)(pyzO)(H(2)O)(2) is magnetically ordered with T(N) = 1.06(1) K, while the signature for long-range magnetic order in CuBr(2)(pyzO)(H(2)O)(2) was much less definitive down to 0.26 K. The results for the CuX(2)(pyzO)(H(2)O)(2) complexes are compared to the related CuX(2)(pyrazine) materials.
Halide anion effects on coordination polymerization of cadmium(II) halide with 1: 1 mixed ligands
NASA Astrophysics Data System (ADS)
Ryu, Minjoo; Lee, Young-A.; Jung, Ok-Sang
2018-05-01
Insight into self-assembly of CdX2 (X = Cl and Br) with a mixture of L1 and L2 (L1 = diallylbis(3-pyridyl)silane; L2 = diallylbis(4-pyridyl)silane) was carried out. The self-assembly of CdCl2 with the 1: 1 mixture of L1 and L2 produces only 2D [CdCl2(L1)(L2)] with heteroleptic ligands, whereas that of CdBr2 with the 1: 1 mixture of L1 and L2 gives rise to the statistical mixture of 2D sheet [CdBr2(L1)2]·2H2O, 1D loop-chain [CdBr2(L2)2]·2CH2Cl2, and the 2D [CdBr2(L1)(L2)] with heteroleptic ligands.
Wu, Xiao-Peng; Sun, Xiao-Ming; Wei, Xi-Guang; Ren, Yi; Wong, Ning-Bew; Li, Wai-Kee
2009-06-09
The reactivity order of 12 anions toward ethyl chloride has been investigated by using the G2(+) method, and the competitive E2 and SN2 reactions are discussed and compared. The reactions studied are X(-) + CH3CH2Cl → HX + CH2═CH2 + Cl(-) and X(-) + CH3CH2Cl → CH3CH2X + Cl(-), with X = F, Cl, Br, HO, HS, HSe, NH2 PH2, AsH2, CH3, SiH3, and GeH3. Our results indicate that there is no general and straightforward relationship between the overall barriers and the proton affinity (PA) of X(-); instead, discernible linear correlations only exist for the X's within the same group of the periodic table. Similar correlations are also found with the electronegativity of central atoms in X, deformation energy of the E2 transition state (TS), and the overall enthalpy of reaction. It is revealed that the electronegativity will significantly affect the barrier height, and a more electronegative X will stabilize the E2 and SN2 transition states. Multiple linear regression analysis shows that there is a reasonable linear correlation between E2 (or SN2) overall barriers and the linear combination of PA of X(-) and electronegativity of the central atom.
Ionic liquids and solids with paramagnetic anions.
Krieger, Brenna M; Lee, Heather Y; Emge, Thomas J; Wishart, James F; Castner, Edward W
2010-08-21
Four paramagnetic ionic compounds have been prepared and their magnetic, structural and thermal properties have been investigated. The four compounds are methylbutylpyrrolidinium tetrachloroferrate(III) ([Pyrr(14)](+)/[FeCl(4)](-)), methyltributylammonium tetrachloroferrate(III) ([N(1444)](+)/[FeCl(4)](-)), butylmethylimidazolium tetrachloroferrate(III) ([bmim](+)/[FeCl(4)](-)) and tetrabutylammonium bromotrichloroferrate(III) ([N(4444)](+)/[FeBrCl(3)](-)). Temperature-dependent studies of their magnetic behaviors show that all four compounds are paramagnetic at ambient temperatures. Glass transitions are observed for only two of the four compounds, [Pyrr(14)](+)/[FeCl(4)](-) and [bmim](+)/[FeCl(4)](-). Crystal structures for [Pyrr(14)](+)/[FeCl(4)](-) and [N(1444)](+)/[FeCl(4)](-) are compared with the previously reported [N(4444)](+)/[FeBrCl(3)](-).
Structure and properties of the anions MF4-, MCl4- and MBr4- (M = C, Si, Ge)
NASA Astrophysics Data System (ADS)
Grein, Friedrich
2015-04-01
Density functional theory (DFT), Møller-Plesset (MP2) and coupled cluster with single and double substitutions including non-iterative triple excitations (CCSD(T)) calculations on the anions MX4-, with M = C, Si, Ge and X = F, Cl, Br, show that GeF4-, SiCl4-, GeCl4- and SiBr4- prefer a C2v conformation, but CCl4- is an elongated C3v structure. CBr4- has Td symmetry in MP2, but is slightly more stable in elongated C3v form with DFT and CCSD(T). GeBr4- has Td symmetry. CF4- and SiF4- are unstable with respect to loss of an electron. Vertical electron affinities (EAs) are negative also for CCl4 and SiCl4, and close to zero for GeF4 and SiBr4. Adiabatic EAs range from 0.47 eV for SiCl4 to 1.78 eV for GeBr4. The lowest excited states at Td symmetry are 2T2 resonances with energies of 2.1-3.5 eV, resulting from excitation of the a1 singly occupied molecular orbital to vacant t2 orbitals. Vertical excitation energies (VEEs) and vibrational frequencies are given for the most stable anionic geometries. Comparison with experimental VEEs for CCl4- is made. From dissociation energies of MX4, MX4-, MX3 and MX3-, appearance energies of X-, MX3-, X2- and MX2- were calculated. Most were found to be in reasonable agreement with experimental values. Theoretical spin densities and g-factors have been compared with experimental results available for CCl4-, SiCl4- and GeCl4-.
Sâmia, Luciana B P; Parrilha, Gabrieli L; Da Silva, Jeferson G; Ramos, Jonas P; Souza-Fagundes, Elaine M; Castelli, Silvia; Vutey, Venn; Desideri, Alessandro; Beraldo, Heloisa
2016-06-01
Complexes [Au(PyCT4BrPh)Cl]Cl (1), [Pt(PyCT4BrPh)Cl]0.5KCl (2), and [Pd(PyCT4BrPh)Cl]KCl (3) were obtained with 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCT4BrPh). Although complexes (2) and (3) did not exhibit potent cytotoxic activity, HPyCT4BrPh and its gold(III) complex (1) proved to be highly cytotoxic against HL-60 (human promyelocytic leukemia) and THP-1 (human monocytic leukemia) cells, and against MDA-MB 231 and MCF-7 (human breast adenocarcinoma) solid tumor cells. Except for HL-60 cells, upon coordination to gold(III) a 2- to 3-fold increase in the cytotoxic effect was observed. An investigation on the possible biological targets of the gold(III) complex was carried out. Complex (1) but not the free thiosemicarbazone inhibits the enzymatic activity of thioredoxin reductase (TrxR). The affinity of 1 for TrxR suggests metal binding to a selenol residue in the active site of the enzyme. While HPyCT4BrPh was inactive, 1 was able to inhibit topoisomerase IB (Topo IB) activity. Hence, inhibition of TrxR and Topo IB could contribute to the mechanism of cytotoxic action of complex (1).
2008-02-28
were found to be open-ion (A or E), unsymmetrical (B or D), or symmetrical C depending on the halogen electrophile and on the position and number of...Rearranged products 4 (Structures A-E) 1 Z = Cl 2 Z = Br 3 Z = I XY = Cl2, Br2, BrCl ICl, IBr Scheme 1 Y on the fluorine atoms of 5 shield the carbon nucleus...and 3) WITH HALOGEN ELECTROPHILES IN METHYLENE CHLORIDE F F F Z XY CH2Cl2 CF2CFZ Y X CF2CFZ X Y CF2CFY X Z + + M aM Rearranged Run Alkene (Z
NASA Technical Reports Server (NTRS)
Friedl, Randall R.; Sander, Stanley P.
1988-01-01
The reactions, BrO + ClO yields Br + ClOO (1a) yields Br + OClO (1b) yields BrCl + O2 (1c) and ClO + ClO yields Cl + CiOO (2a) yields Cl + OClO (2b) yields Cl2 + O2 (2c) yields (ClO)2 (2d) have assumed new importance in explaining the unusual springtime depletion of ozone observed in the Antarctic stratosphere. The mechanisms of these reactions involve the formation of metastable intermediates which subsequently decompose through several energetically allowed products providing the motivation to study these reactions using both the discharge flow-mass spectrometric and flash photolysis - ultraviolet absorption techniques. These methods have also been used to explore aspects of the kinetics and spectroscopy of the ClO dimer.
Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br
NASA Technical Reports Server (NTRS)
Hsu, K.-J.; Demore, W. B.
1994-01-01
Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.
Identification of Sterochemical Configurations of Cyclopent A[cd]Pyrene DNA Adducts in Strain A/J Mouse Lung and C3H10T1/2CL8 Cells.
Four major and several minor DNA adducts were resolved by 32P-postlabeling analysis of DNA from strain A/J mouse lung and C3H10T1/2CL8 (C3H...
NASA Astrophysics Data System (ADS)
Liu, Y.; Yvon-Lewis, S. A.; Hu, L.; Smith, R. W.; Shen, L.; Bianchi, T. S.; Campbell, L.
2010-12-01
Brominated very short lived substances (VSLSs), such as bromoform (CHBr3), dibromomethane (CH2Br2), dibromochloromethane (CHClBr2), and dichlorobromomethane (CHBrCl2) can potentially supply a significant amount of inorganic bromine (Bry) to the troposphere and lower stratosphere. Bromine radicals are 50 - 100 times more efficient in depleting ozone (O3) than chlorine radicals; therefore, these compounds are important to the ozone chemistry in the atmosphere. CHBr3, CH2Br2, CHClBr2 and CHBrCl2 are thought to be produced mainly by phytoplankton in the open ocean. During the Halocarbon Air-Sea Transect - Pacific (HalocAST - P) cruise we examined the distributions of halocarbons in the East Pacific Ocean and in the overlying atmosphere. The cruise started from Punta Arenas, Chile on March 29, and finished at Seattle, WA, United States on April 29 2010. Continuous underway measurements of the atmospheric and surface seawater concentrations along with depth profiles of CHBr3, CH2Br2, CHClBr2, CHBrCl2, and a suite of other halogenated compounds were measured over a large cross latitudinal transect. The brominated VSLS measured during this cruise generally exhibit a correlation with chlorophyll a, supporting biogenic production as the predominate source for these compounds in the open ocean. Here, we will be discussing air and seawater concentrations, saturation anomalies, fluxes, and depth profiles for CHBr3, CH2Br2, CHClBr2, and CHBrCl2. Cyanobacteria counts, pigment compositions, nutrient and dissolved organic carbon (DOC) concentrations in the water column were also measured and serve as useful tools for understanding the biological production of these brominated VSLSs.
Sohn, Ah Ram; Lim, Kwang Soo; Kang, Dong Won; Song, Jeong Hwa; Koh, Eui Kwan; Moon, Dohyun; Hong, Chang Seop
2016-12-06
We synthesized six Fe(iii)-Mn(iii) bimetallic compounds by self-assembling the newly developed mer-Fe cyanide PPh 4 [Fe(Clqpa)(CN) 3 ]·H 2 O (1) and PPh 4 [Fe(Brqpa)(CN) 3 ]·H 2 O (2) with Mn Schiff base Mn(5-Xsalen) + cations. These compounds include [Fe(Xqpa)(CN) 3 ][Mn(5-Ysalen)]·pMeOH·qH 2 O [qpaH 2 = N-(quinolin-8-yl)picolinamide; salen = N,N'-ethylenebis(salicylideneiminato) dianion; X = Cl, Y = H (3); X = Cl, Y = Br (4); X = Br, Y = H (5); X = Br, Y = F (6); X = Br, Y = Cl (7); X = Br, Y = Br (8)]. When precursor 1 was used, compounds 3 and 4 were isolated to give a dinuclear entity and a linear chain structure, respectively. The reaction of precursor 2 with the Schiff bases afforded four linear Fe(iii)-Mn(iii) chain complexes. Chain chirality with P- and M-helicity emerges in 4, 7, and 8, while 5 exhibits chain helicity opposite to the previous chain complexes and 6 presents no chain helicity. Such a structural feature is heavily dependent on the interchain π-π contacts and the Fe precursor bridging unit. Chiral induction from a local ethylenediamine link of Y-salen is propagated over the chain via noncovalent π-π interactions. All the bimetallic compounds show antiferromagnetic interactions transmitted by the cyanide linkage. A field-induced metamagnetic transition is involved in 4, 7, and 8, while a field-induced two-step transition is evident in 6. From a magnetostructural viewpoint, the coupling constant is primarily governed by the Mn-N ax -C ax angle (ax = axial) in the bimetallic chain complexes composed of mer-Fe(iii) tricyanides, although the torsion angle plays a role.
NASA Astrophysics Data System (ADS)
Gleeson, S. A.; Smith, M. P.
2009-10-01
We have analysed the halogen concentrations and chlorine stable isotope composition of fluid inclusion leachates from three spatially associated Fe-oxide ± Cu ± Au mineralising systems in Norrbotten, Sweden. Fluid inclusions in late-stage veins in Fe-oxide-apatite deposits contain saline brines and have a wide range of Br/Cl molar ratios, from 0.2 to 1.1 × 10 -3 and δ 37Cl values from -3.1‰ to -1.0‰. Leachates from saline fluid inclusions from the Greenstone and Porphyry hosted Cu-Au prospects have Br/Cl ratios that range from 0.2 to 0.5 × 10 -3 and δ 37Cl values from -5.6‰ to -1.3‰. Finally, the Cu-Au deposits hosted by the Nautanen Deformation Zone (NDZ) have Br/Cl molar ratios from 0.4 to 1.1 × 10 -3 and δ 37Cl values that range from -2.4‰ to +0.5‰, although the bulk of the data fall within 0‰ ± 0.5‰. The Br/Cl ratios of leachates are consistent with the derivation of salinity from magmatic sources or from the dissolution of halite. Most of the isotopic data from the Fe-oxide-apatite and Greenstone deposits are consistent with a mantle derived source of the chlorine, with the exception of the four samples with the most negative values. The origin of the low δ 37Cl values in these samples is unknown but we suggest that there may have been some modification of the Cl-isotope signature due to fractionation between the mineralising fluids and Cl-rich silicate assemblages found in the alteration haloes around the deposits. If such a process has occurred then a modified crustal source of the chlorine for all the samples cannot be ruled out although the amount of fractionation necessary to generate the low δ 37Cl values would be significantly larger. The source of Cl in the NDZ deposits has a crustal signature, which suggests the Cl in this system may be derived from (meta-) evaporites or from input from crustal melts such as granitic pegmatites of the Lina Suite.
NASA Astrophysics Data System (ADS)
Fagge, Ibrahim I.; Yusof, Nor Saadah M.; Zain, Sharifuddin Md; Khan, M. Niyaz
2017-12-01
Halo-substitutions at 3-position of benzene ring of the salts of aromatic carboxylate, MX, revealed the effect of two different halide ions (Br- and Cl-) on the counterion binding constants obtained from cationic nanoparticle catalyzed piperidinolysis of ionized phenyl salicylate (PhS-). The values of observed rate constant, kobs, determined at a constant total concentration of cetyltrimethylammonium bromide, [CTABr]T, piperidine, ([P]T), [PhS-]T, NaOH, and various concentration of MX (MX = 3-BrC6H4CO2Na and 3-ClC6H4CO2Na), were determined using UV-visible X spectrophotometric technique at 35 °C and 370 nm. The average value of nanoparticle binding constant, KXBr, for X- = 3-BrC6H4CO2- (RXBr = 57) was found to be about 2-fold larger than that for X- = 3-ClC6H4CO2- (RXBr = 30). These XX values were dependent of substituents 3-Br and 3-Cl, and independent of [CTABr]T. Both are related to the presence of different extent of viscoelastic worm-like nanoparticles formation in the [CTABr]T of 6 and 10 mM.
Forniés, Juan; Fortuño, Consuelo; Ibáñez, Susana; Martín, Antonio
2008-07-07
Reaction of unsaturated (44e (-) skeleton) [PdPt 2(mu-PPh 2) 2(mu-P 2Ph 4)(R F) 4] 4 with Br (-) produces the saturated (48e (-) skeleton) complex [NBu 4][(R F) 2Pt(mu-PPh 2)(mu-Br)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 5 without any M-M' bond. Attempts to eliminate Br (-) of 5 with Ag (+) in CH 2Cl 2 as a solvent gives a mixture of [(R F) 2Pt (III)(mu-PPh 2) 2Pt (III)(R F) 2] and some other unidentified products as a consequence of oxidation and partial fragmentation. However, when the reaction of 5 with Ag (+) is carried out in CH 3CN, no oxidation is observed but the elimination of Br (-) and the formation of [(R F) 2(CH 3CN)Pt(mu-PPh 2)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 6 (46e (-) skeleton), a complex with a Pt-Pd bond, takes place. It is noteworthy that the reaction of 5 with TlPF 6 in CH 2Cl 2 does not precipitate TlBr but forms the adduct [(R F) 2PtTl(mu-PPh 2)(mu-Br)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 7 with a Pt-Tl bond. Likewise, 5 reacts with [AgOClO 3(PPh 3)] in CH 2Cl 2 forming the adduct [AgPdPt 2(mu-Br)(mu-PPh 2) 2(mu-Ph 2P-PPh 2)(R F) 4(PPh 3)] 8, which contains a Pt-Ag bond. Both adducts are unstable in a CH 3CN solution, precipitating TlBr or AgBr and yielding the unsaturated 6. The treatment of [NBu 4] 2[(R F) 2Pt(mu-PPh 2) 2Pd(mu-PPh 2) 2Pt(R F) 2] in CH 3CN with I 2 (1:1 molar ratio) at 233 K yields a mixture of 4 and 6, which after recrystallization from CH 2Cl 2 is totally converted in 4. If the reaction with I 2 is carried out at room temperature, a mixture of the isomers [NBu 4][(R F) 2Pt(mu-PPh 2)(mu-I)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 9 and [NBu 4][(R F)(PPh 2R F)Pt(mu-PPh 2)(mu-I)Pd(mu-PPh 2) 2Pt(R F) 2] 10 are obtained. The structures of the complexes have been established on the bases of NMR data, and the X-ray structures of 5- 8 have been studied. The relationship between the different complexes has been studied.
The origin of the conductivity maximum in molten salts. II. SnCl{sub 2} and HgBr{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aravindakshan, Nikhil P.; Kuntz, Colin M.; Gemmell, Kyle E.
2016-09-07
The phenomenon of electrical conductivity maxima of molten salts versus temperature during orthobaric (closed-vessel) conditions is further examined via ab initio simulations. Previously, in a study of molten BiCl{sub 3}, a new theory was offered in which the conductivity falloff at high temperatures is due not to traditional ion association, but to a rise in the activation energy for atomic ions hopping from counterion to counterion. Here this theory is further tested on two more inorganic melts which exhibit conductivity maxima: another high-conducting melt (SnCl{sub 2}, σ{sub max} = 2.81 Ω{sup −1} cm{sup −1}) and a low-conducting one (HgBr{sub 2},more » σ{sub max} = 4.06 × 10{sup −4} Ω{sup −1} cm{sup −1}). First, ab initio molecular dynamics simulations were performed and again appear successful in reproducing the maxima for both these liquids. Second, analysis of the simulated liquid structure (radial distributions, species concentrations) was performed. In the HgBr{sub 2} case, a very molecular liquid like water, a clear Grotthuss chain of bromide transfers was observed in simulation when seeding the system with a HgBr{sup +} cation and HgBr{sub 3}{sup −} anion. The first conclusion is that the hopping mechanism offered for molten BiCl{sub 3} is simply the Grotthuss mechanism for conduction, applicable not just to H{sup +} ions, but also to halide ions in post-transition-metal halide melts. Second, it is conjectured that the conductivity maximum is due to rising activation energy in network-covalent (halide-bridging) melts (BiCl{sub 3}, SnCl{sub 2}, PbCl{sub 2}), but possibly a falling Arrhenius prefactor (collision frequency) for molecular melts (HgBr{sub 2}).« less
NASA Astrophysics Data System (ADS)
Raja, N.; Ramesh, R.
2010-02-01
Mononuclear ruthenium(III) complexes of the type [RuX(EPh 3) 2(L)] (E = P or As; X = Cl or Br; L = dibasic terdentate dehydroacetic acid thiosemicarbazones) have been synthesized from the reaction of thiosemicarbazone ligands with ruthenium(III) precursors, [RuX 3(EPh 3) 3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr 3(PPh 3) 2(CH 3OH)] in benzene. The compositions of the complexes have been established by elemental analysis, magnetic susceptibility measurement, FT-IR, UV-vis and EPR spectral data. These complexes are paramagnetic and show intense d-d and charge transfer transitions in dichloromethane. The complexes show rhombic EPR spectra at LNT which are typical of low-spin distorted octahedral ruthenium(III) species. All the complexes are redox active and display an irreversible metal centered redox processes. Complex [RuCl(PPh 3) 2(DHA-PTSC)] ( 5) was used as catalyst for transfer hydrogenation of ketones in the presence of isopropanol/KOH and was found to be the active species.
Spectrophotometric estimation of bromide ion in excess chloride media.
Adimurthy, S; Susarla, V R K S; Reddy, M P; Ramachandraiah, G
2005-10-31
The redox reaction between bromate and chloride ions in the presence and the absence of two or less equivalents of bromide ion ascertaining the formation of bromine chloride species of type BrCl and BrCl(2)(-) in subsequent reactions in 4% H(2)SO(4), has been studied by spectrophotometry. Calibration graphs for the bromide ion estimation in 0.1% KBrO(3)-4% H(2)SO(4) medium are determined separately in the presence of known amounts of NaCl. The effect of Cl(-) ion percentage on the determination of Br(-) ion is studied and reported herewith a suitable equation for a precise, reliable and quick spectrophotometric estimation.
Soma, Shoko; Van Stappen, Casey; Kiss, Mercedesz; Szilagyi, Robert K; Lehnert, Nicolai; Fujisawa, Kiyoshi
2016-09-01
The linear nickel-nitrosyl complex [Ni(NO)(L3)] supported by a highly hindered tridentate nitrogen-based ligand, hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate (denoted as L3), was prepared by the reaction of the potassium salt of the ligand with the nickel-nitrosyl precursor [Ni(NO)(Br)(PPh 3 ) 2 ]. The obtained nitrosyl complexes as well as the corresponding chlorido complexes [Ni(NO)(Cl)(PPh 3 ) 2 ] and [Ni(Cl)(L3)] were characterized by X-ray crystallography and different spectroscopic methods including IR/far-IR, UV-Vis, NMR, and multi-edge X-ray absorption spectroscopy at the Ni K-, Ni L-, Cl K-, and P K-edges. For comparative electronic structure analysis we also performed DFT calculations to further elucidate the electronic structure of [Ni(NO)(L3)]. These results provide the nickel oxidation state and the character of the Ni-NO bond. The complex [Ni(NO)(L3)] is best described as [Ni (II) (NO (-) )(L3)], and the spectroscopic results indicate that the phosphane complexes have a similar [Ni (II) (NO (-) )(X)(PPh 3 ) 2 ] ground state.
NASA Astrophysics Data System (ADS)
Lin, Zhihao; Jin, Shouwen; Li, Xiaoliang; Xiao, Xiao; Hu, Kaikai; Guo, Ming; Chi, Xinchen; Liu, Hui; Wang, Daqi
2017-10-01
Cocrystallization of the aromatic brønsted bases with a series of mineral acids gave a total of ten hybrid salts with the compositions: (2-methylquinoline)2: (hydrochloride acid): 3H2O [(HL1)+. (L1)·· (Cl-) · (H2O)3] (1), (6-bromobenzo[d]thiazol-2-amine): (hydrochloride acid) [(HL2)+. (Cl-)] (2), (6-bromobenzo[d]thiazol-2-amine): (nitric acid) [(HL2)+. (NO3-)] (3), (6-bromobenzo[d]thiazol-2-amine): (sulfuric acid) [(HL2)+ · (HSO4)-] (4), (6-bromobenzo[d]thiazol-2-amine): (phosphoric acid) [(HL2)+ · (H2PO4)-] (5), (5,7-dimethyl-1,8-naphthyridine-2-amine): (hydrochloride acid): 3H2O [(HL3)+ · (Cl-) (H2O)3] (6), (5,7-dimethyl-1,8-naphthyridine-2-amine): (hydrobromic acid): CH3OH [(HL3)+ · (Br)- · CH3OH] (7), (5,7-dimethyl-1,8-naphthyridine-2-amine): (sulfuric acid): H2O [(HL3)+ · (HSO4)- · H2O] (8), (2-aminophenol): (phosphoric acid) [(HL4)+ · (H2PO4)-] (9), and (2-amino-4-chlorophenol): (phosphoric acid) [(HL5)+ · (H2PO4)-] (10). The ten salts have been characterized by X-ray diffraction analysis, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the ten investigated crystals the ring N of the heterocycle or the NH2 in the aminophenol are protonated when the acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted classical hydrogen bonds between the NH+/NH3+ and deprotonated acidic groups. Further analysis of the crystal packing of the salts indicated that a different family of additional CHsbnd O, CHsbnd Cl, CH3sbnd N, CH3sbnd O, CHsbnd Br, CH3sbnd Br, Brsbnd Cl, Clsbnd S, Osbnd S, Osbnd O, Brsbnd S, Hsbnd H, and π-π associations contribute to the stabilization and expansion of the total high-dimensional frameworks. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical supramolecular synthons, such as R22(8), R42(8), R43(10) and R44(12), usually observed in the organic solids, were again shown to be involved in constructing most of these H-bonding networks.
ANALYSES OF THE INTERACTIONS WITHIN BINARY MIXTURES OF CARCINOGENIC PAHS USING MORPHOLOGICAL CELL TRANSFORMATION OF C3HIOT1/2 CL8 CELLS.
Studies of defined mixtures of carcinogenic polycyclic aromatic hydrocarbons (PAH) have identified three major categories of interacti...
Pal, Provas; Saha, Sujoy; Banik, Ananya; Sarkar, Arka; Biswas, Kanishka
2018-02-06
All-inorganic and hybrid perovskite type halides are generally synthesized by solution-based methods, with the help of long chain organic capping ligands, complex organometallic precursors, and high boiling organic solvents. Herein, a room temperature, solvent-free, general, and scalable all-solid-state mechanochemical synthesis is demonstrated for different inorganic perovskite type halides, with versatile structural connectivity in three (3D), two (2D), and zero (0D) dimensions. 3D CsPbBr 3 , 2D CsPb 2 Br 5 , 0D Cs 4 PbBr 6 , 3D CsPbCl 3 , 2D CsPb 2 Cl 5 , 0D Cs 4 PbCl 6 , 3D CsPbI 3 , and 3D RbPbI 3 have all been synthesized by this method. The all-solid-state synthesis is materialized through an inorganic retrosynthetic approach, which directs the decision on the solid-state precursors (e.g., CsX and PbX 2 (X=Cl/Br/I) with desired stoichiometric ratios. Moreover, post-synthetic structural transformations from 3D to 2D and 0D perovskite halides were performed by the same mechanochemical synthetic approach at room temperature. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Payne, W. A.; Nava, D. F.; Brunning, J.; Stief, L. J.
1986-01-01
The first-order, diffusion, and bimolecular rate constants for the reaction Br + C2H2 yields C2H3Br are evaluated. The rate constants are measured at 210, 248, 298, and 393 K and at pressures between 15-100 torr Ar using flash photolysis combined with time-resolved detection of atomic bromine via Br resonance radiation. It is observed that the reaction is not affected by pressure or temperature and the bimolecular constant = (4.0 + or - 0.8) x 10 to the -15th cu cm/sec with an error of two standard deviations. The C2H2 + Br reaction rates are compared with reactions of C2H2 with Cl, OH, NH2, and H. The loss rates for atmospheric C2H2 for reactions with OH, Cl, O, and Br are calculated as a function of altitude.
Li, Fei; Xia, Zhiguo; Pan, Caofeng; Gong, Yue; Gu, Lin; Liu, Quanlin; Zhang, Jin Z
2018-04-11
The unification of tunable band edge (BE) emission and strong Mn 2+ doping luminescence in all-inorganic cesium lead halide perovskite nanocrystals (NCs) CsPbX 3 (X = Cl and Br) is of fundamental importance in fine tuning their optical properties. Herein, we demonstrate that benefiting from the differentiation of the cation/anion exchange rate, ZnBr 2 and preformed CsPb 1- x Cl 3 : xMn 2+ NCs can be used to obtain high Br - content Cs(Pb 1- x- z Zn z )(Cl y Br 1- y ) 3 : xMn 2+ perovskite NCs with strong Mn 2+ emission, and the Mn 2+ substitution ratio can reach about 22%. More specifically, the fast anion exchange could be realized by the soluble halide precursors, leading to anion exchange within a few seconds as observed from the strong BE emission evolution, whereas the cation exchange instead generally required at least a few hours; moreover, their exchange mechanism and dynamics process have been evaluated. The Mn 2+ emission intensity could be further varied by controlling the replacement of Mn 2+ by Zn 2+ with prolonged ion exchange reaction time. White light emission of the doped perovskite NCs via this cation/anion synergistic exchange strategy has been realized, which was also successfully demonstrated in a prototype white light-emitting diode (LED) device based on a commercially available 365 nm LED chip.
Analysis of I-Br-Cl in single fluid inclusions by LA-ICP-MS
NASA Astrophysics Data System (ADS)
Giehl, C.; Fusswinkel, T.; Beermann, O.; Garbe-Schönberg, D.; Scholten, L.; Wagner, T.
2017-12-01
Halogens are excellent tracers of hydrothermal fluid sources and in-situ LA-ICP-MS analysis of Cl and Br in single fluid inclusions has provided fundamentally new insight into hydrothermal fluid flow and ore formation. There is mounting evidence that enrichment and depletion of Br relative to Cl may be caused by a number of processes beyond seawater evaporation and halite dissolution which cannot be discriminated on the basis of Br/Cl ratios alone. Expanding the analytical capabilities of fluid inclusion LA-ICP-MS analysis to include iodine would allow to discern between selective and coupled enrichment processes of Cl, Br and I, even in geologically complex samples that are inaccessible to bulk extraction techniques. We present iodine concentration data determined by LA-ICP-MS analysis of synthetic fluid inclusions, using the Sca17 scapolite reference material for external standardization (Seo et al., 2011). Iodine concentrations in Sca17 were determined using the Durango apatite standard. Four starting solutions containing I (0.3, 1.5, 27, 78 µg/g), Br (941, 1403, 2868, 4275 µg/g), Na (30.7, 94.7 mg/g), and Cl (50, 137 mg/g) (analyzed by ICP-OES and ICP-MS at CAU Kiel) were prepared by dissolving reagent grade chemical powders in ultra-pure water. Spherical inclusions (up to 40 µm) were synthesized from the starting solutions in pre-cracked, HF-treated synthetic quartz crystals which were placed in gold capsules and equilibrated at 600°C, 100/200 MPa in cold seal pressure vessels. Fluid inclusion LA-ICP-MS analysis (University of Helsinki) yielded average I concentrations in excellent agreement with the starting solutions (27.3 µg/g ± 14 %RSD for the 27 µg/g solution and 77.6 µg/g ± 8.3 %RSD for the 78 µg/g solution). Average Br and I concentrations deviate less than 10 % from solution concentration values. For the low I concentration solutions, the synthetic inclusions were too small to detect I. Thus, given suitable standard materials and sufficient inclusion sizes, LA-ICP-MS fluid inclusion microanalysis can be used to determine accurate I-Br-Cl concentration data and track the sources of crustal fluids in a wide range of geological settings. Seo, J.H., Guillong, M., Aerts, M., Zajacz, Z., Heinrich, C.A., 2011. Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS. Chemical Geology 284, 35-44.
Chloride and bromide sources in water: Quantitative model use and uncertainty
NASA Astrophysics Data System (ADS)
Horner, Kyle N.; Short, Michael A.; McPhail, D. C.
2017-06-01
Dissolved chloride is a commonly used geochemical tracer in hydrological studies. Assumptions underlying many chloride-based tracer methods do not hold where processes such as halide-bearing mineral dissolution, fluid mixing, or diffusion modify dissolved Cl- concentrations. Failure to identify, quantify, or correct such processes can introduce significant uncertainty to chloride-based tracer calculations. Mass balance or isotopic techniques offer a means to address this uncertainty, however, concurrent evaporation or transpiration can complicate corrections. In this study Cl/Br ratios are used to derive equations that can be used to correct a solution's total dissolved Cl- and Br- concentration for inputs from mineral dissolution and/or binary mixing. We demonstrate the equations' applicability to waters modified by evapotranspiration. The equations can be used to quickly determine the maximum proportion of dissolved Cl- and Br- from each end-member, providing no halide-bearing minerals have precipitated and the Cl/Br ratio of each end member is known. This allows rapid evaluation of halite dissolution or binary mixing contributions to total dissolved Cl- and Br-. Equation sensitivity to heterogeneity and analytical uncertainty is demonstrated through bench-top experiments simulating halite dissolution and variable degrees of evapotranspiration, as commonly occur in arid environments. The predictions agree with the experimental results to within 6% and typically much less, with the sensitivity of the predicted results varying as a function of end-member compositions and analytical uncertainty. Finally, we present a case-study illustrating how the equations presented here can be used to quantify Cl- and Br- sources and sinks in surface water and groundwater and how the equations can be applied to constrain uncertainty in chloride-based tracer calculations.
Yoom, Hoonsik; Shin, Jaedon; Ra, Jiwoon; Son, Heejong; Ryu, Dongchoon; Kim, Changwon; Lee, Yunho
2018-09-01
The reaction kinetics, products, and pathways of methylparaben (MeP) during water chlorination with and without bromide (Br - ) were investigated to better understand the fate of parabens in chlorinated waters. During the chlorination of MeP-spiked waters without Br - , MeP was transformed into mono-Cl-MeP and di-Cl-MeP with apparent second-order rate constants (k app ) of 64M -1 s -1 and 243M -1 s -1 at pH7, respectively, while further chlorination of di-Cl-MeP was relatively slower (k app =1.3M -1 s -1 at pH7). With increasing Br - concentration, brominated MePs, such as mono-Br-MeP, Br-Cl-MeP, and di-Br-MeP, became major transformation products. The di-halogenated MePs (di-Cl-MeP, Br,Cl-MeP, and di-Br-MeP) showed relatively low reactivity to chlorine at pH7 (k app =1.3-4.6M -1 s -1 ) and bromine (k app =32-71M -1 s -1 ), which explains the observed high stability of di-halogenated MePs in chlorinated waters. With increasing pH from 7 to 8.5, the transformation of di-halogenated MePs was further slowed due to the decreasing reactivity of di-MePs to chlorine. The formation of the di-halogenated MePs and their further transformation become considerably faster at Br - concentrations higher than 0.5μM (40μg/L). Nonetheless, the accelerating effect of Br - diminishes in the presence of dissolved organic matter (DOM) extract (Suwannee River humic acid (SRHA)) due to a more rapid consumption of bromine by DOM than chlorine. The effect of Br - on the fate of MeP was less in the tested real water matrices, possibly due to a more rapid bromine consumption by the real water DOM compared to SRHA. A kinetic model was developed based on the determined species-specific second-order rate constants for chlorination/bromination of MeP and its chlorinated and brominated MePs and the transformation pathway information, which could reasonably simulate the transformation of MePs during the chlorination of water in the presence of Br - and selected DOM. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis, Structure, and Antiproliferative Activity of Three Gallium(III) Azole Complexes
Zanias, Stergios; Papaefstathiou, Giannis S.; Raptopoulou, Catherine P.; Papazisis, Konstantinos T.; Vala, Vasiliki; Zambouli, Dimitra; Kortsaris, Alexandros H.; Kyriakidis, Dimitrios A.; Zafiropoulos, Theodoros F.
2010-01-01
As part of our interest into the bioinorganic chemistry of gallium, gallium(III) complexes of the azole ligands 2,1,3-benzothiadiazole (btd), 1,2,3-benzotriazole (btaH), and 1-methyl-4,5-diphenylimidazole (L) have been isolated. Reaction of btaH or btd with GaBr3 or GaCl3 resulted in the mononuclear complexes [GaBr3(btaH)2] (1) and [GaCl3(btd)2] (2), respectively, while treatment of GaCl3 with L resulted in the anionic complex (LH)2[GaCl4] (3). All three complexes were characterized by single-crystal X-ray crystallography and IR spectroscopy, while their antiproliferative activities were investigated against a series of human and mouse cancer cell lines. PMID:20721278
Miller, L.G.; Warner, K.L.; Baesman, S.M.; Oremland, R.S.; McDonald, I.R.; Radajewski, S.; Murrell, J.C.
2004-01-01
Bacteria in soil microcosm experiments oxidized elevated levels of methyl chloride (MeCl) and methyl bromide (MeBr), the former compound more rapidly than the latter. MeBr was also removed by chemical reactions while MeCl was not. Chemical degradation dominated the early removal of MeBr and accounted for more than half of its total loss. Fractionation of stable carbon isotopes during chemical degradation of MeBr resulted in a kinetic isotope effect (KIE) of 59 ?? 7???. Soil bacterial oxidation dominated the later removal of MeBr and MeCl and was characterized by different KIEs for each compound. The KIE for MeBr oxidation was 69 ?? 9??? and the KIE for MeCl oxidation was 49 ?? 3???. Stable isotope probing revealed that different populations of soil bacteria assimilated added 13C-labeled MeBr and MeCl. The identity of the active MeBr and MeCl degrading bacteria in soil was determined by analysis of 16S rRNA gene sequences amplified from 13C-DNA fractions, which identified a number of sequences from organisms not previously thought to be involved in methyl halide degradation. These included Burkholderia , the major clone type in the 13C-MeBr fraction, and Rhodobacter, Lysobacter and Nocardioides the major clone types in the 13C-MeCl fraction. None of the 16S rRNA gene sequences for methyl halide oxidizing bacteria currently in culture (including Aminobacter strain IMB-1 isolated from fumigated soil) were identified. Functional gene clone types closely related to Aminobacter spp. were identified in libraries containing the sequences for the cmuA gene, which codes for the enzyme known to catalyze the initial step in the oxidation of MeBr and MeCl. The cmuA gene was limited to members of the alpha-Proteobacteria whereas the greater diversity demonstrated by the 16S rRNA gene may indicate that other enzymes catalyze methyl halide oxidation in different groups of bacteria. Copyright ?? 2004 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Miller, Laurence G.; Warner, Karen L.; Baesman, Shaun M.; Oremland, Ronald S.; McDonald, Ian R.; Radajewski, Stefan; Murrell, J. Colin
2004-08-01
Bacteria in soil microcosm experiments oxidized elevated levels of methyl chloride (MeCl) and methyl bromide (MeBr), the former compound more rapidly than the latter. MeBr was also removed by chemical reactions while MeCl was not. Chemical degradation dominated the early removal of MeBr and accounted for more than half of its total loss. Fractionation of stable carbon isotopes during chemical degradation of MeBr resulted in a kinetic isotope effect (KIE) of 59 ± 7‰. Soil bacterial oxidation dominated the later removal of MeBr and MeCl and was characterized by different KIEs for each compound. The KIE for MeBr oxidation was 69 ± 9‰ and the KIE for MeCl oxidation was 49 ± 3‰. Stable isotope probing revealed that different populations of soil bacteria assimilated added 13C-labeled MeBr and MeCl. The identity of the active MeBr and MeCl degrading bacteria in soil was determined by analysis of 16S rRNA gene sequences amplified from 13C-DNA fractions, which identified a number of sequences from organisms not previously thought to be involved in methyl halide degradation. These included Burkholderia, the major clone type in the 13C-MeBr fraction, and Rhodobacter, Lysobacter and Nocardioides the major clone types in the 13C-MeCl fraction. None of the 16S rRNA gene sequences for methyl halide oxidizing bacteria currently in culture (including Aminobacter strain IMB-1 isolated from fumigated soil) were identified. Functional gene clone types closely related to Aminobacter spp. were identified in libraries containing the sequences for the cmuA gene, which codes for the enzyme known to catalyze the initial step in the oxidation of MeBr and MeCl. The cmuA gene was limited to members of the alpha-Proteobacteria whereas the greater diversity demonstrated by the 16S rRNA gene may indicate that other enzymes catalyze methyl halide oxidation in different groups of bacteria.
Han, Sungyub; Hong, Seongmin; Li, Xiao
2013-11-15
The sensitivity of surface-enhanced Raman spectroscopy (SERS) highly depends on experimental factors including aggregating agents and pH. Using silver nanoparticles as the substrate, the effect of five cationic (K(+), Na(+), Mg(2+), Li(+), Ca(2+)) and three anionic (Cl(-), Br(-), I(-)) aggregating agents was examined on the SERS detection of tobacco-related biomarkers, namely cotinine (COT) and trans-3'-hydroxycotinine (3HC). The optimal concentrations of the aggregating agents with respect to highest SERS intensity varied widely (from 1.5 mM for MgCl2 to 150 mM for LiCl). Both cations and anions strongly influenced the SERS enhancement. When Cl(-) was used as the anion, Mg(2+) and Na(+) exhibited the highest SERS intensities for COT and 3HC, respectively. When Mg(2+) was used as the cation, Cl(-) and Br(-) generated the highest SERS enhancement for COT and 3HC, respectively. Clearly, SERS enhancement also depended on the target molecule. Among the 11 aggregating agent combinations tested, the highest SERS enhancement is obtained using 1.5 mM MgCl2 for COT at pH 7.0 and 50 mM NaBr for 3HC at pH 3.0. Copyright © 2013 Elsevier Inc. All rights reserved.
THE RECIPROCAL SYSTEM FORMED BY THE CHLORIDES AND THE BROMIDES OF LITHIUM AND THALLIUM (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergman, A.G.; Arabadzhan, A.S.
1963-06-01
The phase diagrams of 2 series of continuous solid solutions, the Li, K:: Cl,Br and the Li,Tl:: Cl,Br were investigated, as part of a study of the relation between thermal effect of equilibrium reactions and the structure of the melts. In the second system, the heat of the exchange reaction LiCl + TlBr in equilibrium LiBr + TlCl amounts to 8.19 kcal/mole, being larger than that of the corresponding reaction in the Li,K:: Cl,Br system; this affects the crystallization surface in the system. A Pt crucible and Pt, Au, Pd/Pt-Rh thermocouple were used in the thermal studies. It was foundmore » that the liquidus surface consists of 2 fields of continuous series of solid solutions. The joint crystallization curve has a maximum at 392 deg C at the stable portion of the LiCl-TlBr system. There is crest in the liquidus surface corresponding to the stable diagonal LiCl--TlBr; this is visible more markedly in the Li(Cl,Br) field. (TTT)« less
NASA Astrophysics Data System (ADS)
Fujiwara, Syozo; Inaba, Minoru; Tasaka, Akimasa
To develop novel multi-component molten salt systems more effectively, we developed a simulative technique using the CALPHAD (Calculation of Phase Diagram and Thermodynamics) method to estimate the ionic conductivity and the melting point. The validity of this new simulative technique was confirmed by comparing the simulated ionic conductivities and melting points of typical high-temperature molten salts, such as LiF-LiCl-LiBr, LiF-LiBr-KBr, LiCl-LiBr-KBr, and LiCl-LiBr-LiI, with those reported data in the literature or experimentally obtained. This simulative technique was used to develop new quaternary molten salt systems for use as electrolytes in high-temperature molten salt batteries (called thermal batteries). The targets of the ionic conductivity and the melting point were set at 2.0 S cm -1 and higher at 500 °C, and in the range of 350-430 °C, respectively, to replace the LiCl-KCl system (1.85 S cm -1 at 500 °C) within the conventional design of the heat generation system for thermal batteries. Using the simulative method, six kinds of novel quaternary systems, LiF-LiCl-LiBr-MX (M = Na and K; X = F, Cl, and Br), which contain neither environmentally instable anions such as iodides nor expensive cations such as Rb + and Cs +, were proposed. Experimental results showed that the LiF-LiCl-LiBr-0.10NaX (X = Cl and Br) and LiF-LiCl-LiBr-0.10KX (X = F, Cl, and Br) systems meet our targets of both the ionic conductivity and the melting point.
Kinetics of the Reactions of Cl((sup 2)P(sub J)) and Br((sup 2)P(sub 3/2)) with O3
NASA Technical Reports Server (NTRS)
Nicovich, J. M.; Kreutter, K. D.; Wine, P. H.
1997-01-01
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the important stratospheric reactions Cl((sup 2)P(sub J)) + O3 yields ClO + O2 and Br((sup 2)P(sub 3/2)) + O3 yields BrO + O2 as a function of temperature. The temperature dependence observed for the Cl((sup 2)P(sub J)) + O3 reaction is nonArrhenius, but can be adequately described by the following two Arrhenius expressions (units are cu cm/(molecule.s), errors are 2 sigma and represent precision only): k(sub 1)(T) = (1.19 +/- 0.21) x 10(exp -11) exp[(-33 +/- 37)/T] for T = 189-269 K and k(sub 1)(T) = (2.49 +/- 0.38) x 10(exp -11) exp[(-233 +/- 46)/T] for 269-385 K. At temperatures below 230 K, the rate coefficients determined in this study are faster than any reported previously. Incorporation of our values for k(sub 1)(T) into stratospheric models would increase calculated ClO levels and decrease calculated HCI levels; hence the calculated efficiency of ClO catalyzed ozone destruction would increase. The temperature dependence observed for the Br((sup 2)P(sub 3/2)) + O3 reaction is adequately described by the following Arrhenius expression (units are cu cm/(molecule.s), errors are 2 sigma and represent precision only): k(sub 2)(T) = (1.50 +/- 0.16) x 10(exp -11)exp[(-775 +/- 30)/T for 195-392 K. While not in quantitative agreement with Arrhenius parameters reported in most previous studies, our results almost exactly reproduce the average of all earlier studies and therefore will not affect the choice of k(sub 2)(T) for use in modeling stratospheric BrO2 chemistry.
Optical band gaps of organic semiconductor materials
NASA Astrophysics Data System (ADS)
Costa, José C. S.; Taveira, Ricardo J. S.; Lima, Carlos F. R. A. C.; Mendes, Adélio; Santos, Luís M. N. B. F.
2016-08-01
UV-Vis can be used as an easy and forthright technique to accurately estimate the band gap energy of organic π-conjugated materials, widely used as thin films/composites in organic and hybrid electronic devices such as OLEDs, OPVs and OFETs. The electronic and optical properties, including HOMO-LUMO energy gaps of π-conjugated systems were evaluated by UV-Vis spectroscopy in CHCl3 solution for a large number of relevant π-conjugated systems: tris-8-hydroxyquinolinatos (Alq3, Gaq3, Inq3, Al(qNO2)3, Al(qCl)3, Al(qBr)3, In(qNO2)3, In(qCl)3 and In(qBr)3); triphenylamine derivatives (DDP, p-TTP, TPB, TPD, TDAB, m-MTDAB, NPB, α-NPD); oligoacenes (naphthalene, anthracene, tetracene and rubrene); oligothiophenes (α-2T, β-2T, α-3T, β-3T, α-4T and α-5T). Additionally, some electronic properties were also explored by quantum chemical calculations. The experimental UV-Vis data are in accordance with the DFT predictions and indicate that the band gap energies of the OSCs dissolved in CHCl3 solution are consistent with the values presented for thin films.
Synthesis and Characterization of Atomically Precise Copper Nanoclusters
NASA Astrophysics Data System (ADS)
Nguyen, Thuy-Ai Dang
The reactivity of MCl3(eta1-TEMPO) (M = Fe, Al; TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) with a variety of lignin models, including 3,4-dimethoxybenzyl alcohol, 1-phenyl-2-phenoxyethanol and 1,2-diphenyl-2-methoxyethanol is investigated. FeCl3(TEMPO) is effective in cleanly converting these substrates to the corresponding aldehyde or ketone. AlCl3(eta1-TEMPO) is also able to oxidize these substrates, however in a few instances the products of over-oxidation are also observed. In contrast, 2-phenoxyethanol is not oxidized by MCl 3(eta1-TEMPO); instead it likely coordinates to the metal center, forming a 2-phenoxyethoxide complex. Oxidation of activated alkanes by MCl3(eta1-TEMPO) suggests that the reactions proceed via an initial 1-electron concerted proton-electron transfer (CPET) event. Finally, reaction of TEMPO with FeBr3 in Et 2O results in oxidation of the solvent. The copper hydride clusters [Cu14H12(phen) 6(PPh3)4][X]2 (X = Cl, OTf) are obtained in good yields by reaction of [(Ph3P)CuH]6 with 1,10-phenanthroline, in the presence of a halide or pseudohalide source. [Cu14H 12(phen)6(PPh3)4][Cl]2 reacts with CO2 in CH2Cl2, in the presence of excess Ph3P, to form the formate complex, [(Ph3P)2Cu(kappa 2-O2CH)], along with [(phen)(Ph3P)CuCl]. [Cu25H22(PPh3)12]Cl and [Cu 18H17(PPh3)10]Cl, are isolated from the reaction of Cu(OAc) and CuCl with Ph2SiH2, in the presence of PPh3. [Cu25H22(PPh3) 12]Cl formally features partial Cu(0) character. Subsequent reaction with Ph2phen resulted in the isolation of [Cu29Cl 4H22(Ph2phen)12]Cl (Ph2phen = 4,7-diphenyl-1,10-phenanthroline), in good yields. A time-resolved kinetic evaluation of the formation of [Cu29Cl4H22(Ph 2phen)12]Cl reveals that the mechanism of cluster growth is initiated by rapid ligand exchange, followed by slower extrusion of CuCl monomer, transport, and subsequent capture by intact clusters. Two Cu26 nanoclusters, tentatively formulated as [Cu 26H17(PPh3)9(OAc)3] and [Cu26H22(PPh3)10(OAc)2], are isolated from the reaction of Cu(OAc) with Ph2SiH2, in the presence of PPh3. As formulated, [Cu26H 17(PPh3)9(OAc)3] features a magic number N* = 6, which is unprecedented for a copper nanocluster. XANES supports an assignment of more Cu(0) character than [Cu25H 22(PPh3)12]Cl (N* = 2) for this complex. A critical reevaluation of the synthesis and characterization of Cu 8(MPP)4 is reported. This product was reportedly formed by reaction of Cu(NO3)2 with 2-mercapto-5-n-propylpyrimidine (HMPP) and NaBH4, in ethanol, in the presence of [N(C8H 17)4][Br]. However, upon reevaluation, no experimental evidence to support the existence of Cu8(MPP)4 was found. Instead, the material isolated from this reaction is a complex mixture containing [N(C8H17)4]+, Br -, NO3-, 2-mercapto-5-n-propyl-1,6-dihydropyrimidine (H2MPP*), along with the Cu(I) coordination polymer, [Cu(MPP)]n. H2MPP* and [Cu(MPP)]n, as well as the related Cu(I) coordination complexes, [Cu(HMPP*)]n and [Cu2(MPP*)]n are independently synthesized to support these conclusions.
NASA Astrophysics Data System (ADS)
Hu, Kaikai; Deng, Bowen; Jin, Shouwen; Ding, Aihua; Jin, Shide; Zhu, Jin; Zhang, Huan; Wang, Daqi
2018-04-01
Cocrystallization of the imidazole derivatives with a series of mineral acids gave a total of ten hybrid salts with the compositions: [(H2bzm)(Cl)2·3H2O] (1), [(H2bzm)(ClO4)2] (2), [(H2bze)(Cl)2·2H2O] (3), [(H2bze)(Br)2·2H2O] (4), [(H2bzp)(Cl)2·4H2O] (5), [(H2bzp)(Br)2·4H2O] (6), (2-(imidazol-1-yl)-1-phenylethanone): (phosphoric acid) [(Himpeta)+(H2PO4)-] (7), [(H2impd)(Br)2] (8), [(H2impd)(ClO4)2] (9), and [(Hbzml)(Cl)] (10). The ten salts have been characterised by X-ray diffraction analysis, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the ten investigated crystals the ring N atoms of the imidazole are protonated when the acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted classical H-bonds between the NH+ and deprotonated acidic groups. Further analysis of the crystal packing of the salts indicated that a different set of additional CHsbnd O, CH2sbnd O, CHsbnd Cl, CH2sbnd Cl, CHsbnd N, CHsbnd Br, CH2sbnd Br, Osbnd O, O-π, Br-π, CH-π, and π-π associations contribute to the stabilization and expansion of the total high-dimensional frameworks. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical supramolecular synthons, such as R21(7), R22(7), R22(8), and R42(8), usually observed in the organic solids, were again shown to be involved in constructing some of these H-bonding networks.
NASA Astrophysics Data System (ADS)
Hoogerbeets, R.; Wiegers, S. A. J.; Van Duyneveldt, A. J.
1985-04-01
Subthreshold parallel pumping experiments on [C 6H 11NH 3]CuBr 3 (abbreviated as CHAB) and [C 6H 11NH 3]CuCl 3 (CHAC) at 9.6 and 18.3 GHz are reported. It is shown that the experimental results can be explained using the values of the parameters as have been obtained from previously reported FMR measurements.
Methyl chloride and methyl bromide emissions from baking: an unrecognized anthropogenic source.
Thornton, Brett F; Horst, Axel; Carrizo, Daniel; Holmstrand, Henry
2016-05-01
Methyl chloride and methyl bromide (CH3Cl and CH3Br) are the largest natural sources of chlorine and bromine, respectively, to the stratosphere, where they contribute to ozone depletion. We report the anthropogenic production of CH3Cl and CH3Br during breadbaking, and suggest this production is an abiotic process involving the methyl ester functional groups in pectin and lignin structural polymers of plant cells. Wide variations in baking styles allow only rough estimates of this flux of methyl halides on a global basis. A simple model suggests that CH3Br emissions from breadbaking likely peaked circa 1990 at approximately 200tonnes per year (about 0.3% of industrial production), prior to restrictions on the dough conditioner potassium bromate. In contrast, CH3Cl emissions from breadbaking may be of similar magnitude as acknowledged present-day CH3Cl industrial emissions. Because the mechanisms involve functional groups and compounds widely found in plant materials, this type of methyl halide production may occur in other cooking techniques as well. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jones, Ivy Krystal
In this dissertation the material development and optical spectroscopy of Pr3+ activated low phonon energy halide crystals is presented for possible applications in resonantly pumped eye-safe solid-state laser gain media. In the last twenty years, the developments in fiber and diode lasers have enabled highly efficient resonant pumping of Pr3+ doped crystals for possible lasing in the 1.6--1.7 microm region. In this work, the results of the purification, crystal growth, and near-infrared (NIR) spectroscopic characterization of Pr3+ doped lead (II) chloride, PbCl2 and lead (II) bromide, PbBr2 are presented. The investigated PbCl2 and PbBr2 crystals are non-hygroscopic with maximum phonon energies between ~180--200 cm-1, which enable efficient emission in the NIR spectral region (~ 1.6 microm) from the 3F3/3F4 → 3H4 transition of Pr3+ ions. The commercial available starting materials were purchased as ultra dry, high purity (~ 99.999 %) beads and purified through a combination of zone-refinement and halogenation. The crystal growth of Pr3+ doped PbCl 2 and PbBr2 was performed via vertical Bridgman technique using a two-zone furnace. The resulting Pr3+ doped PbCl 2 and PbBr2 crystals exhibited characteristic IR absorption bands in the 1.5--1.7 microm region (3H4 → 3F3/3F4), which allow for resonant pumping using commercial diode lasers. A broad IR emission band centered at ~1.6 microm was observed under ~1445 nm diode laser excitation from both Pr3+ doped halides. This dissertation presents comparative spectroscopic results for Pr 3+:PbCl2 and Pr3+:PbBr2 including NIR absorption and emission studies, lifetime measurements, modelling of radiative and non-radiative decay rates, determination of transition cross-section, and the net effective gain cross sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtscheidl, Alejandro Gaston; Pagano, Justin K.; Scott, Brian Lindley
The organometallic uranium species (C 5Me 4R) 2UBr 2 (R = Me, Et) were obtained by treating their chloride analogues (C 5Me 4R) 2UCl 2 (R = Me, Et) with Me 3SiBr. Treatment of (C 5Me 4R) 2UCl 2 and (C 5Me 4R) 2UBr 2 (R = Me, Et) with K(O-2,6- iPr 2C 6H 3) afforded the halide aryloxide mixed-ligand complexes (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(X) (R = Me, Et; X = Cl, Br). Complexes (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(Br) (R = Me, Et) can also be synthesized by treating (C 5Me 4R) 2U(O-2,6-more » iPr 2C 6H 3)(Cl) (R = Me, Et) with Me 3SiBr, respectively. Reduction of (C 5Me 4R) 2UCl 2 and (C 5Me 4R) 2UBr 2 (R = Me, Et) with KC 8 led to isolation of uranium(III) “ate” species [K(THF)][(C 5Me 5) 2UX 2] (X = Cl, Br) and [K(THF) 0.5][(C 5Me 4Et) 2UX 2] (X = Cl, Br), which can be converted to the neutral complexes (C 5Me 4R) 2U[N(SiMe 3) 2] (R = Me, Et). Analyses by nuclear magnetic resonance spectroscopy, X-ray crystallography, and elemental analysis are also presented.« less
Lichtscheidl, Alejandro Gaston; Pagano, Justin K.; Scott, Brian Lindley; ...
2016-01-06
The organometallic uranium species (C 5Me 4R) 2UBr 2 (R = Me, Et) were obtained by treating their chloride analogues (C 5Me 4R) 2UCl 2 (R = Me, Et) with Me 3SiBr. Treatment of (C 5Me 4R) 2UCl 2 and (C 5Me 4R) 2UBr 2 (R = Me, Et) with K(O-2,6- iPr 2C 6H 3) afforded the halide aryloxide mixed-ligand complexes (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(X) (R = Me, Et; X = Cl, Br). Complexes (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(Br) (R = Me, Et) can also be synthesized by treating (C 5Me 4R) 2U(O-2,6-more » iPr 2C 6H 3)(Cl) (R = Me, Et) with Me 3SiBr, respectively. Reduction of (C 5Me 4R) 2UCl 2 and (C 5Me 4R) 2UBr 2 (R = Me, Et) with KC 8 led to isolation of uranium(III) “ate” species [K(THF)][(C 5Me 5) 2UX 2] (X = Cl, Br) and [K(THF) 0.5][(C 5Me 4Et) 2UX 2] (X = Cl, Br), which can be converted to the neutral complexes (C 5Me 4R) 2U[N(SiMe 3) 2] (R = Me, Et). Analyses by nuclear magnetic resonance spectroscopy, X-ray crystallography, and elemental analysis are also presented.« less
Zhao, Hai-Rong; Li, Dong-Ping; Ren, Xiao-Ming; Song, You; Jin, Wan-Qin
2010-01-13
Four isostructural inorganic-organic hybrid ferroelectric compounds, assembled from achiral 3-R-benzylidene-1-aminopyridiniums (R = NO(2), Br, Cl, or F for 1-4, respectively) and [PbI(3)](-) anions with the chiral Kagomé-shaped tubular aggregating architecture, show larger spontaneous polarizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darawsheh, M. D.; Barrios, L. A.; Roubeau, O.
Ligand 1,3-bis(3-(pyridin-2-yl)-1H-pyrazol-5-yl)benzene, L, forms mononuclear spin crossover complexes [FeL 3] 2+ with pendant arms that cause them to dimerize through numerous intermolecular interactions forming supramolecular (X@[FeL 3] 2) 3+ cations. Finally, hey have the flexibility to encapsulate Cl -, Br - or I -, which allow tuning the magnetic properties, in the solid state and in solution.
Darawsheh, M. D.; Barrios, L. A.; Roubeau, O.; ...
2016-12-05
Ligand 1,3-bis(3-(pyridin-2-yl)-1H-pyrazol-5-yl)benzene, L, forms mononuclear spin crossover complexes [FeL 3] 2+ with pendant arms that cause them to dimerize through numerous intermolecular interactions forming supramolecular (X@[FeL 3] 2) 3+ cations. Finally, hey have the flexibility to encapsulate Cl -, Br - or I -, which allow tuning the magnetic properties, in the solid state and in solution.
Sun, Guangyi; Sommar, Jonas; Feng, Xinbin; Lin, Che-Jen; Ge, Maofa; Wang, Weigang; Yin, Runsheng; Fu, Xuewu; Shang, Lihai
2016-09-06
This study presents the first measurement of Hg stable isotope fractionation during gas-phase oxidation of Hg(0) vapor by halogen atoms (Cl(•), Br(•)) in the laboratory at 750 ± 1 Torr and 298 ± 3 K. Using a relative rate technique, the rate coefficients for Hg(0)+Cl(•) and Hg(0)+Br(•) reactions are determined to be (1.8 ± 0.5) × 10(-11) and (1.6 ± 0.8) × 10(-12) cm(3) molecule(-1) s(-1), respectively. Results show that heavier isotopes are preferentially enriched in the remaining Hg(0) during Cl(•) initiated oxidation, whereas being enriched in the product during oxidation by Br(•). The fractionation factors for (202)Hg/(198)Hg during the Cl(•) and Br(•) initiated oxidations are α(202/198) = 0.99941 ± 0.00006 (2σ) and 1.00074 ± 0.00014 (2σ), respectively. A Δ(199)Hg/Δ(201)Hg ratio of 1.64 ± 0.30 (2σ) during oxidation of Hg(0) by Br atoms suggests that Hg-MIF is introduced by the nuclear volume effect (NVE). In contrast, the Hg(0) + Cl(•) reaction produces a Δ(199)Hg/Δ(201)Hg-slope of 1.89 ± 0.18 (2σ), which in addition to a high degree of odd-mass-number isotope MIF suggests impacts from MIF effects other than NVE. This reaction also exhibits significant MIF of (200)Hg (Δ(200)Hg, up to -0.17‰ in the reactant) and is the first physicochemical process identified to trigger (200)Hg anomalies that are frequently detected in atmospheric samples.
Nighttime OClO in the Winter Arctic Vortex
NASA Technical Reports Server (NTRS)
Canty, T.; Riviere, E. D.; Salawitch, R. J.; Berthet, G.; Renard, J. -B.; Pfeilsticker, K.; Dorf, M.; Butz, A.; Bosch, H.; Stimpfle, R. M.;
2005-01-01
We show that a nighttime profile of OClO in the Arctic vortex during the winter of 2000 is overestimated, by nearly a factor of 2, using an isentropic trajectory model constrained by observed profiles of ClOx (ClO + 2 X ClOOCl) and BrO. Calculated abundances of nighttime OClO are shown to be sensitive to the abundance of BrOx (BrO + BrCl), details of the air parcel history during the most recent sunrise/sunset transitions, and the BrCl yield from the reaction BrO + ClO. Many uncertainties are considered, and the discrepancy between measured and modeled nighttime OClO appears to be robust. This discrepancy suggests that production of OClO occurs more slowly than implied by standard photochemistry. If the yield of BrCl from the reaction of BrO + ClO is increased from 7% (JPL 2002 value) to 11% (near the upper limit of the uncertainty), good agreement is found between measured and modeled nighttime OClO. This study highlights the importance of accurate knowledge of BrO + ClO reaction kinetics as well as air parcel trajectories for proper interpretation of nighttime OClO. These factors have a considerably smaller impact on the interpretation of OClO observations obtained during twilight (90(deg) <=SZA <= 92(deg)), when photolytic processes are still active.
NASA Astrophysics Data System (ADS)
Eachus, R. S.; Pawlik, Th D.; Baetzold, R. C.
2000-10-01
By using a combination of multifrequency EPR spectroscopy, ENDOR spectroscopy and calculations of structure and energy, the reactivities of photo-generated holes in microcrystalline AgBr and AgCl dispersions (photographic emulsions) have been followed in detail. Progress has been facilitated by the use of both gelatin and polyvinyl alcohol (PVA) as peptizers. The initial trapped hole centres produced by band-gap excitation have been identified. In AgBr, this species is [(Br4)3-.V], a neutral complex formed from hole trapping by the four nearest neighbours of a surface Ag+ vacancy (=V). [(Br4)3-.V] reacts with gelatin to produce a transient organic radical at the grain's surface. It does not, however, react with PVA. The formation of the oxidized gelatin radical might involve atomic bromine as an intermediate. In AgCl, the well-known self-trapped hole centre (AgCl6)4- is the initial hole species. The hole diffuses by an electron exchange process until it is trapped by a silver ion on the grain's surface or within its penultimate layer of lattice ions. It is subsequently released from this Ag2+ site to be retrapped at a centre containing four equivalent Cl- ions. The precise identity of this defect has yet to be determined, but its decay also results in the oxidation of gelatin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prestwich, G.D.; Streinz, L.
A series of mono, di-, and trihalogenated acetate analogs of Z11-16:Ac were prepared and examined for electrophysiological activity in antennae of males of the diamondback moth, Plutella xylostella. In addition, two potential affinity labels, a diazoacetate (Dza) and a trifluoromethyl ketone (Tfp), were evaluated for EAG activity. The Z11-16:Ac showed the highest activity in EAG assays, followed by the fluorinated acetates, but other haloacetates were essentially inactive. The effects of these analogs on the hydrolysis of (/sup 3/H)Z11-16:Ac to (/sup 3/H)Z11-16:OH by antennal esterases was also examined. The three fluorinated acetates showed the greatest activity as inhibitors in competition assays,more » with rank order F/sub 2/Ac > F/sub 3/Ac > FAc > AC > Cl/sub 2/Ac > ClAc > Dza > Br/sub 2/Ac > BrAc > Tfp > I > Cl/sub 3/Ac > Br/sub 3/Ac > OH. The relative polarities of the haloacetates, as determined by TLC mobility, are in the order mono- > di- > trihalo, but F, Cl, Br, and I all confer similar polarities within a substitution group. Thus, the steric size appears to be the predominant parameter affecting the interactions of the haloacetate analogs with both receptor and catabolic proteins in P. xylostella males.« less
Thioether coordination to divalent selenium halide acceptors--synthesis, properties and structures.
Jolleys, Andrew; Levason, William; Reid, Gillian
2013-02-28
The tetravalent SeCl(4) and SeBr(4) are reduced in the presence of thioether ligands L (SMe(2), tht) or L-L (MeS(CH(2))(n)SMe (n = 2 or 3), o-C(6)H(4)(SMe)(2)) in MeCN solution at 0 °C, forming Se(II) thioether complexes, including the crystallographically characterised halo-bridged chain polymers [SeX(2)(SMe(2))] (X = Cl or Br), molecular trans-[SeX(2)(tht)(2)], cis-[SeBr(2){MeS(CH(2))(2)SMe}] and the thioether-bridged polymer [SeBr(2){MeS(CH(2))(3)SMe}], as the main products, together with halogenated ligand. The [SeX(2)(L)(2)] and [SeX(2)(L-L)] complexes are all based upon distorted square planar coordination, with two Se-based lone pairs assumed to occupy the (vacant) axial sites, and Se-S bond distances of ca. 2.4-2.6 Å. The 1:1 species [SeX(2)(SMe(2))] are T-shaped with trans X groups and weak intermolecular SeX contacts. The SeCl(2)-thioether complexes are less stable than the bromides, both in solution in CH(2)Cl(2) and as solids at ambient temperature. Reaction of SeBr(4) with o-C(6)H(4)(SMe(2))(2) leads to the red complex cis-[SeBr(2){κ(1)-o-C(6)H(4)(SMe)(2)}(2)] as the major product; together with a minor (yellow) product formed via bromination of the aromatic ring, [SeBr(2){4-Br-1,2-(SMe)(2)-C(6)H(3)}(2)]. The crystal structure confirms a V-shaped SeBr(2) unit with long (weak) κ(1)-interactions to one S donor (meta to the Br) from two brominated ligands--an extremely rare coordination mode for an o-phenylene dithioether. Similar reaction of o-C(6)H(4)(SMe(2))(2) with SeCl(4) leads to several species, including monosulfonium cation, [1](+) formed by coupling of one thioether group to the C4-position of the phenylene backbone in an adjacent molecule, confirmed crystallographically. Carbon-sulfur coupling is also evident in the reaction of SeX(4) with o-C(6)H(4)(CH(2)SMe)(2), leading to two related cyclic sulfonium species, [2](+) and [3](+), which were structurally characterised as [SeBr(4)](2-) and [Se(2)Cl(6)](2-) salts respectively. Reaction of SeX(4) with SeMe(2) leads to halogenation of the ligand to form Me(2)SeX(2) and reduction of the SeX(4) to elemental selenium.
NASA Astrophysics Data System (ADS)
Bachir-Bey, Nassim; Matray, Jean-Michel
2014-05-01
This work is part of research conducted by the Institute of Radiological and Nuclear Safety (IRSN) on the geological disposal of High-Level and Intermediate-Level Long-Lived (HL-ILLL) radioactive waste in deep clayrocks. In France, the choice of the potential host rock for the geological storage is focused on the Callovian-Oxfordian (COx) of Meuse/Haute-Marne from its low permeability, capacity for self- sealing, high sorption and ability to radionuclide (RN) transport by diffusion. IRSN, which plays an expert role for ASN has its own underground research laboratory in a clayrock which has strong analogies to the COx. This is the Toarcian/Domerian clayrock located at Tournemire in southern Aveyron in France. The purpose of this study was to assess the transfer of RN in the Tournemire clayrock through the study of halides contents and of their stable isotopes (Cl-, Br-, Cl-/Br-, d37Cl, d81Br). The approach used was multiple and consisted for halides to: 1) Assess their stock in different fractions of the rock by applying several techniques including i) alkaline fusion for their total stock, ii) leaching to access their stock in porewater and to mineral phases sensitive to dissolution iii) cubic diffusion for their stock in porewater, 2) Get their diffusive transport parameters of a selection of samples from the upper Toarcian by cubic diffusion experiments modelled using the Hytec transport code developed by Mines ParisTech and 3) Model their transport after palaeohydrogeological known changes of the Tournemire massif. The experimental approach, conducted at the LAME lab, did not lead to an operational protocol for the alkaline fusion due to an incomplete rock dissolution. Leaching was used to characterize the concentrations of halides in the fractions of pore water and of minerals sensitive to dissolution. The results show levels of halides much higher than those of pore water with very low Cl/Br ratios likely resulting from the dissolution of mineral species. The cubic diffusion produced the pore diffusion coefficients for Cl and Br as well as their concentration in the porewater. Cubic diffusion also allowed to estimate a Cl to Br pore diffusion coefficient ratio, necessary to calculate the profiles of Cl/Br. These estimates have required the use of the transport code Hytec i) for dimensioning and implementing the experiment in a time frame compatible with the work period, ii) for analysing the sensitiveness of the model to the accessible porosity and to the diffusion coefficient which act respectively to the steady phase and transient phase of the experiments, and finally, iii ) for adjusting the pore diffusion coefficients of Cl and Br to an accessible porosity of 3-4%. The Hytec code was then used to check the consistency of the current profiles of chlorides, bromides, 35Cl , 37Cl , d37Cl, Cl/Br in 1D, a fake drilling assumed crossing the entire clayrock. The assumption is that halides have undergone a diffusive transport between seawater trapped during sedimentation and meteoric waters infiltrated at different times to domain boundaries. Four scenarios were tested according to the paleohydrogeological history of the massif. All tracers and scenarios are consistent with a unique marine source of halides more or less diluted by meteoric waters. The duration of the diffusive exchange initially suggested 85 ± 10 Ma (Bensenouci, 2010) is never contradicted despite uncertainties related to changes in boundary conditions. This body of evidence would suggest that molecular diffusion is the transport process which has affected and still affect the Tournemire clayrock, outside fault zones. The d37Cl results expected on the surrounding carbonated aquifers, leachates and fracture waters (including d81Br values) should help to refine the models and the results.
Oxidation of methyl halides by the facultative methylotroph strain IMB-1
Schaefer, J.K.; Oremland, R.S.
1999-01-01
Washed cell suspensions of the facultative methylotroph strain IMB-1 grown on methyl bromide (MeBr) were able to consume methyl chloride (MeCl) and methyl iodide (MeI) as well as MeBr. Consumption of >100 ??M MeBr by cells grown on glucose, acetate, or monomethylamine required induction. Induction was inhibited by chloramphenicol. However, cells had a constitutive ability to consume low concentrations (<20 nM) of MeBr. Glucose-grown cells were able to readily oxidize [14C]formaldehyde to 14CO2 but had only a small capacity for oxidation of [14C]methanol. Preincubation of cells with MeBr did not affect either activity, but MeBr-induced cells had a greater capacity for [14C]MeBr oxidation than did cells without preincubation. Consumption of MeBr was inhibited by MeI, and MeCl consumption was inhibited by MeBr. No inhibition of MeBr consumption occurred with methyl fluoride, propyl iodide, dibromomethane, dichloromethane, or difluoromethane, and in addition cells did not oxidize any of these compounds. Cells displayed Michaelis-Menten kinetics for the various methyl halides, with apparent K(s) values of 190, 280, and 6,100 nM for MeBr, MeI, and MeCl, respectively. These results suggest the presence of a single oxidation enzyme system specific for methyl halides (other than methyl fluoride) which runs through formaldehyde to CO2. The ease of induction of methyl halide oxidation in strain IMB-1 should facilitate its mass culture for the purpose of reducing MeBr emissions to the atmosphere from fumigated soils.
Laser cooling of MgCl and MgBr in theoretical approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Mingjie; Shao, Juxiang; Huang, Duohui
Ab initio calculations for three low-lying electronic states (X{sup 2}Σ{sup +}, A{sup 2}Π, and 2{sup 2}Π) of MgCl and MgBr molecules, including spin-orbit coupling, are performed using multi-reference configuration interaction plus Davidson correction method. The calculations involve all-electronic basis sets and Douglas–Kroll scalar relativistic correction. Spectroscopic parameters well agree with available theoretical and experimental data. Highly diagonally distributed Franck-Condon factors f{sub 00} for A{sup 2}Π{sub 3/2,1/2} (υ′ = 0) → X{sup 2}Σ{sup +}{sub 1/2} (υ″ = 0) are determined for both MgCl and MgBr molecules. Suitable radiative lifetimes τ of A{sup 2}Π{sub 3/2,1/2} (υ′ = 0) states for rapid lasermore » cooling are also obtained. The proposed laser drives A{sup 2}Π{sub 3/2} (υ′ = 0) → X{sup 2}Σ{sup +}{sub 1/2} (υ″ = 0) transition by using three wavelengths (main pump laser λ{sub 00}; two repumping lasers λ{sub 10} and λ{sub 21}). These results indicate the probability of laser cooling MgCl and MgBr molecules.« less
Laursen, Jens; Milman, Nils; Pind, Niels; Pedersen, Henrik; Mulvad, Gert
2014-01-01
Meta-analysis of previous studies evaluating associations between content of elements sulphur (S), chlorine (Cl), potassium (K), iron (Fe), copper (Cu), zinc (Zn) and bromine (Br) in normal and cirrhotic autopsy liver tissue samples. Normal liver samples from 45 Greenlandic Inuit, median age 60 years and from 71 Danes, median age 61 years. Cirrhotic liver samples from 27 Danes, median age 71 years. Element content was measured using X-ray fluorescence spectrometry. Dual hierarchical clustering analysis, creating a dual dendrogram, one clustering element contents according to calculated similarities, one clustering elements according to correlation coefficients between the element contents, both using Euclidian distance and Ward Procedure. One dendrogram separated subjects in 7 clusters showing no differences in ethnicity, gender or age. The analysis discriminated between elements in normal and cirrhotic livers. The other dendrogram clustered elements in four clusters: sulphur and chlorine; copper and bromine; potassium and zinc; iron. There were significant correlations between the elements in normal liver samples: S was associated with Cl, K, Br and Zn; Cl with S and Br; K with S, Br and Zn; Cu with Br. Zn with S and K. Br with S, Cl, K and Cu. Fe did not show significant associations with any other element. In contrast to simple statistical methods, which analyses content of elements separately one by one, dual hierarchical clustering analysis incorporates all elements at the same time and can be used to examine the linkage and interplay between multiple elements in tissue samples. Copyright © 2013 Elsevier GmbH. All rights reserved.
The crystal structures of six (2E)-3-aryl-1-(5-halogeno-thio-phen-2-yl)prop-2-en-1-ones.
Naik, Vasant S; Yathirajan, Hemmige S; Jasinski, Jerry P; Smolenski, Victoria A; Glidewell, Christopher
2015-09-01
The structures of six chalcones containing 5-halogeno-thio-phen-2-yl substituents are reported: (2E)-1-(5-chloro-thio-phen-2-yl)-3-(4-ethyl-phen-yl)prop-2-en-1-one, C15H13ClOS, (I), and (2E)-1-(5-bromo-thio-phen-2-yl)-3-(4-ethyl-phen-yl)prop-2-en-1-one, C15H13BrOS, (II), are isostructural in space group P-1, while (2E)-1-(5-chloro-thio-phen-2-yl)-3-(4-eth-oxy-phen-yl)prop-2-en-1-one, C15H13ClO2S, (III), and (2E)-1-(5-bromo-thio-phen-2-yl)-3-(4-eth-oxy-phen-yl)prop-2-en-1-one C15H13BrO2S, (IV), are isostructural in space group P21/c. There are no hydrogen bonds of any kind in the structures of compounds (I) and (II), but in the structures of compounds (III) and (IV), the mol-ecules are linked into C(7) chains by means of C-H⋯O hydrogen bonds. In the structure of (2E)-3-(4-bromo-phen-yl)-1-(5-chloro-thio-phen-2-yl)prop-2-en-1-one, C13H8BrClOS, (V), there are again no hydrogen bonds nor π-π stacking inter-actions but in that of (2E)-1-(5-bromo-thio-phen-2-yl)-3-(3-meth-oxy-phen-yl)prop-2-en-1-one, C14H11BrO2S, (VI), the mol-ecules are linked into C(5) chains by C-H⋯O hydrogen bonds. In each of compounds (I)-(VI), the mol-ecular skeletons are close to planarity, and there are short halogen⋯halogen contacts in the structures of compounds (II) and (V) and a short Br⋯O contact in the structure of compound (VI). Comparisons are made with the structures of some similar compounds.
Ionic Liquids and Solids with Paramagnetic Anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castner, Jr., E.W.; Wishart, J.; Krieger, B.M.
2010-06-18
Four paramagnetic ionic compounds have been prepared and their magnetic, structural and thermal properties have been investigated. The four compounds are methylbutylpyrrolidinium tetrachloroferrate(III) ([Pyrr{sub 14}]{sup +}/[FeCl{sub 4}]{sup -}), methyltributylammonium tetrachloroferrate(III) ([N{sub 1444}]{sup +}/[FeCl{sub 4}]{sup -}), butylmethylimidazolium tetrachloroferrate(III) ([bmim]{sup +}/[FeCl{sub 4}]{sup -}) and tetrabutylammonium bromotrichloroferrate(III) ([N{sub 4444}]{sup +}/[FeBrCl{sub 3}]{sup -}). Temperature-dependent studies of their magnetic behaviors show that all four compounds are paramagnetic at ambient temperatures. Glass transitions are observed for only two of the four compounds, [Pyrr{sub 14}]{sup +}/[FeCl{sub 4}]{sup -} and [bmim]{sup +}/[FeCl{sub 4}]{sup -}. Crystal structures for [Pyrr{sub 14}]{sup +}/[FeCl{sub 4}]{sup -} and [N{sub 1444}]{sup +}/[FeCl{sub 4}]{sup -}more » are compared with the previously reported [N{sub 4444}]{sup +}/[FeBrCl{sub 3}]{sup -}.« less
Solis-Ibarra, D.; Smith, I. C.
2015-01-01
Reaction with halogen vapor allows us to post-synthetically exchange halides in both three- (3D) and two-dimensional (2D) organic–inorganic metal-halide perovskites. Films of 3D Pb–I perovskites cleanly convert to films of Pb–Br or Pb–Cl perovskites upon exposure to Br2 or Cl2 gas, respectively. This gas–solid reaction provides a simple method to produce the high-quality Pb–Br or Pb–Cl perovskite films required for optoelectronic applications. Reactivity with halogens can be extended to the organic layers in 2D metal-halide perovskites. Here, terminal alkene groups placed between the inorganic layers can capture Br2 gas through chemisorption to form dibromoalkanes. This reaction's selectivity for Br2 over I2 allows us to scrub Br2 to obtain high-purity I2 gas streams. We also observe unusual halogen transfer between the inorganic and organic layers within a single perovskite structure. Remarkably, the perovskite's crystallinity is retained during these massive structural rearrangements. PMID:29218171
Spectral studies related to dissociation of HBr, HCl and BrO
NASA Technical Reports Server (NTRS)
Ginter, M. L.
1986-01-01
Concern over halogen catalyzed decomposition of O3 in the upper atmosphere has generated need for data on the atomic and molecular species X, HX and XO (where X is Cl and Br). Of special importance are Cl produced from freon decomposition and Cl and Br produced from natural processes and from other industrial and agricultural chemicals. Basic spectral data is provided on HCl, HBr, and BrO necessary to detect specific states and energy levels, to enable detailed modeling of the processes involving molecular dissociation, ionization, etc., and to help evaluate field experiments to check the validity of model calculations for these species in the upper atmosphere. Results contained in four published papers and two major spectral compilations are summarized together with other results obtained.
Carlton, Laurence; Mokoena, Lebohang V; Fernandes, Manuel A
2008-10-06
The complexes trans-[Rh(X)(XNC)(PPh 3) 2] (X = Cl, 1; Br, 2; SC 6F 5, 3; C 2Ph, 4; XNC = xylyl isocyanide) combine reversibly with molecular oxygen to give [Rh(X)(O 2)(XNC)(PPh 3) 2] of which [Rh(SC 6F 5)(O 2)(XNC)(PPh 3) 2] ( 7) and [Rh(C 2Ph)(O 2)(XNC)(PPh 3) 2] ( 8) are sufficiently stable to be isolated in crystalline form. Complexes 2, 3, 4, and 7 have been structurally characterized. Kinetic data for the dissociation of O 2 from the dioxygen adducts of 1- 4 were obtained using (31)P NMR to monitor changes in the concentration of [Rh(X)(O 2)(XNC)(PPh 3) 2] (X = Cl, Br, SC 6F 5, C 2Ph) resulting from the bubbling of argon through the respective warmed solutions (solvent chlorobenzene). From data recorded at temperatures in the range 30-70 degrees C, activation parameters were obtained as follows: Delta H (++) (kJ mol (-1)): 31.7 +/- 1.6 (X = Cl), 52.1 +/- 4.3 (X = Br), 66.0 +/- 5.8 (X = SC 6F 5), 101.3 +/- 1.8 (X = C 2Ph); Delta S (++) (J K (-1) mol (-1)): -170.3 +/- 5.0 (X = Cl), -120 +/- 13.6 (X = Br), -89 +/- 18.2 (X = SC 6F 5), -6.4 +/- 5.4 (X = C 2Ph). The values of Delta H (++) and Delta S (++) are closely correlated (R (2) = 0.9997), consistent with a common dissociation pathway along which the rate-determining step occurs at a different position for each X. Relative magnitudes of Delta H (++) are interpreted in terms of differing polarizabilities of ligands X.
The Synthesis of Potential Antiparasitic Drugs
1990-05-01
CF3 24. R - 4-Cl,3-CF3 Scheme 1, Continued 38 Contract No. DAMD17-88-C-8106 O >—-(.CH2)5-B Br(CH2) sBr 25 26. P. • 4-C1 27. R a 2-CF3 28. R...methyl-4-phthalimidobuty- lamino)quinoLine (63) A stirred mixture of 51 (3.27 g, 0.009 mol) and 4-bromo-l-phthalimido- pentane ( BPP ) (5.23 g...0.018 mol) was heated at 120-125°C while Et.N (3 ml) was slowly added during 30 min. After 3.5h at 120-125°C, more BPP (3.42 g, 0.012 mol) and Et^N (2
NASA Astrophysics Data System (ADS)
Yoshino, Harukazu; Saito, Kazuya; Nishikawa, Hiroyuki; Kikuchi, Koichi; Kobayashi, Keiji; Ikemoto, Isao
1997-08-01
Comparative study is presented for the in-plane angular effect of magnetoresistance of quasi-one-dimensional organic conductors, (DMET)2AuBr2 and (TMTSF)2ClO4. The magnetoresistance for the magnetic and electrical fields parallel and perpendicular to the most conducting plane, respectively, was measured at 4.2 K and up to 7.0 T. (DMET)2AuBr2 shows an anomalous hump in the field-orientation dependence of the magnetoresistance for the magnetic field nearly parallel to the most conducting axis and this is very similar to what previously reported for (DMET)2I3. Weak anomaly was detected for the magnetoresistance of (TMTSF)2ClO4 in the Relaxed state, while no anomaly was observed in the SDW phase in the Quenched state. By comparing the numerical angular derivatives of the magnetoresistance, it is shown that the anomaly in the in-plane angular effect continuously develops from zero magnetic field and is closely related to the quasi-one-dimensional Fermi surface. A simple method is proposed to estimate the anisotropy of the transfer integral from the width of the hump anomaly.
The microwave reactions of InX3 with [Q]Y produce a series of tetrahaloindate(III)-based ionic liquids (ILs) with a general formula of [Q][InX3Y] (Q = imidazolium, phosphonium, ammonium, and pyridinium; X = Cl, Br, I; Y = Cl, Br). The reaction of CO2
EVALUATION OF BENZO[c]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T?CL8 CELLS
Abstract The morphological cell transforming activities of three dihydrodiols of benzo[c]chrysene (B[c]C), trans-B[c]C-7,8-diol, trans-B[c]C-9...
A High Resolution Phoswich Detector: LaBr{sub 3}(Ce) Coupled With LaCl{sub 3}(Ce)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmona-Gallardo, M.; Borge, M. J. G.; Briz, J. A.
2010-04-26
An innovative solution for the forward end-cap CALIFA calorimeter of R{sup 3}B is under investigation consisting of two scintillation crystals, LaBr{sub 3} and LaCl{sub 3}, stacked together in a phoswich configuration with one readout only. This dispositive should be capable of a good determination of the energy of protons and gamma radiation. This composite detector allows to deduce the initial energy of charged particles by DELTAE1+DELTAE2 identification. For gammas, the simulations show that there is a high probability that the first interaction occurs inside the scintillator at few centimeters, with a second layer, the rest of the energy is absorbed,more » or it can be used as veto event in case of no deposition in the first layer. One such a detector has been tested at the Centro de MicroAnalisis de Materiales (CMAM) in Madrid. Good resolution and time signal separation have been achieved.« less
Polymer-Nanoparticle Hybrid Photovoltaic Research for U.S. Air Force Applications
2010-01-06
6 S S O S S O II xi xiviii xii (69%) (93%) (64%) (92%) 4S SBr Br S S OO OO II S S OO aReagents and Conditions: i.THF, n- BuLi , C6H13Br, -78oC, ii...CHCl3, FeCl3 (cat.), Br2, iii. THF, n- BuLi , B(OBu)3, -78oC, 2 M HCl, iv. Toluene, 1,3-propandiol, Reflux, v. (a) Ether, n- BuLi -78oC, (b) 3...thiophenecarboxaldehyde, vi. (a) n- BuLi (2eqiv.), -23oC, I2 (3eqiv.), (b) Na2SO3 and HI solun, vii. CH2Cl2, P.C.C, r.t, viii. Cu, DMF, Reflux, ix
ALDOL- AND MANNICH-TYPE REACTIONS VIA IN SITU OLEFIN MIGRATION IN IONIC LIQUID
An aldol-type and a Mannich-type reaction via the cross-coupling of aldehydes and imines with allylic alcohols catalyzed by RuCl2(PPh3)3 was developed with ionic liquid as the solvent. The solvent/catalyst system could be reused for at least five times with no loss of reactiv...
Enhanced ozone loss by active inorganic bromine chemistry in the tropical troposphere
NASA Astrophysics Data System (ADS)
Le Breton, Michael; Bannan, Thomas J.; Shallcross, Dudley E.; Khan, M. Anwar; Evans, Mathew J.; Lee, James; Lidster, Richard; Andrews, Stephen; Carpenter, Lucy J.; Schmidt, Johan; Jacob, Daniel; Harris, Neil R. P.; Bauguitte, Stephane; Gallagher, Martin; Bacak, Asan; Leather, Kimberley E.; Percival, Carl J.
2017-04-01
Bromine chemistry, particularly in the tropics, has been suggested to play an important role in tropospheric ozone loss although a lack of measurements of active bromine species impedes a quantitative understanding of its impacts. Recent modelling and measurements of bromine monoxide (BrO) by Wang et al. (2015) have shown current models under predict BrO concentrations over the Pacific Ocean and allude to a missing source of BrO. Here, we present the first simultaneous aircraft measurements of atmospheric bromine monoxide, BrO (a radical that along with atomic Br catalytically destroys ozone) and the inorganic Br precursor compounds HOBr, BrCl and Br2 over the Western Pacific Ocean from 0.5 to 7 km. The presence of 0.17-1.64 pptv BrO and 3.6-8 pptv total inorganic Br from these four species throughout the troposphere causes 10-20% of total ozone loss, and confirms the importance of bromine chemistry in the tropical troposphere; contributing to a 6 ppb decrease in ozone levels due to halogen chemistry. Observations are compared with a global chemical transport model and find that the observed high levels of BrO, BrCl and HOBr can be reconciled by active multiphase oxidation of halide (Br- and Cl-) by HOBr and ozone in cloud droplets and aerosols. Measurements indicate that 99% of the instantaneous free Br in the troposphere up to 8 km originates from inorganic halogen photolysis rather than from photolysis of organobromine species.
NOAA PMEL Station Chemistry Data
Quinn, Patricia
2008-04-04
Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.
The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines
Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.
2007-01-01
The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (<0.8) ratios; (2) dissolution of highly soluble salts (e.g., halite, gypsum) in the host sediments resulting in typically lower Br/Cl signal (<2 ?? 10-3); and (3) recharge of anthropogenic effluents, primarily derived from evaporated agricultural return flow that has interacted (e.g., base-exchange reactions) with the overlying soil. It is shown that shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.
Chemical Ignition of Flame Throwers
1944-04-20
fluorinating agents such as fluorine, antimony penta- fluoride, oxygen fluoride or bromine and chlorine trifluoride mixtures be evaluated. The use...0F2), and bromine and chlorine trifluoride mixtures (BrF3-ClF3). Oxygen fluoride, a gas boiling at -l67°C., has the interesting property of being...ShFc), oxygen fluoride (0F2), and bromine and chlorine fluoride mixtures (BrF3-ClFsJ. Oxygen fluoride Is stable In the presence of moisture. 4
Sivey, John D; Arey, J Samuel; Tentscher, Peter R; Roberts, A Lynn
2013-02-05
HOBr, formed via oxidation of bromide by free available chlorine (FAC), is frequently assumed to be the sole species responsible for generating brominated disinfection byproducts (DBPs). Our studies reveal that BrCl, Br(2), BrOCl, and Br(2)O can also serve as brominating agents of the herbicide dimethenamid in solutions of bromide to which FAC was added. Conditions affecting bromine speciation (pH, total free bromine concentration ([HOBr](T)), [Cl(-)], and [FAC](o)) were systematically varied, and rates of dimethenamid bromination were measured. Reaction orders in [HOBr](T) ranged from 1.09 (±0.17) to 1.67 (±0.16), reaching a maximum near the pK(a) of HOBr. This complex dependence on [HOBr](T) implicates Br(2)O as an active brominating agent. That bromination rates increased with increasing [Cl(-)], [FAC](o) (at constant [HOBr](T)), and excess bromide (where [Br(-)](o)>[FAC](o)) implicate BrCl, BrOCl, and Br(2), respectively, as brominating agents. As equilibrium constants for the formation of Br(2)O and BrOCl (aq) have not been previously reported, we have calculated these values (and their gas-phase analogues) using benchmark-quality quantum chemical methods [CCSD(T) up to CCSDTQ calculations plus solvation effects]. The results allow us to compute bromine speciation and hence second-order rate constants. Intrinsic brominating reactivity increased in the order: HOBr ≪ Br(2)O < BrOCl ≈ Br(2) < BrCl. Our results indicate that species other than HOBr can influence bromination rates under conditions typical of drinking water and wastewater chlorination.
NASA Astrophysics Data System (ADS)
Walter, Benjamin F.; Burisch, Mathias; Marks, Michael A. W.; Markl, Gregor
2017-12-01
Mixing of sedimentary formation fluids with basement-derived brines is an important mechanism for the formation of hydrothermal veins. We focus on the sources of the sediment-derived fluid component in ore-forming processes and present a comprehensive fluid inclusion study on 84 Jurassic hydrothermal veins from the Schwarzwald mining district (SW Germany). Our data derive from about 2300 fluid inclusions and reveal differences in the average fluid composition between the northern, central, and southern Schwarzwald. Fluids from the northern and southern Schwarzwald are characterised by high salinities (18-26 wt% NaCl+CaCl2), low Ca/(Ca+Na) mole ratios (0.1-0.4), and variable Cl/Br mass ratios (30-1140). In contrast, fluids from the central Schwarzwald show even higher salinities (23-27 wt% NaCl+CaCl2), higher Ca/(Ca+Na) mole ratios (0.2-0.9), and less variable Cl/Br mass ratios (40-130). These fluid compositions correlate with the nature and thickness of the now eroded sedimentary cover rocks. Compared to the northern and the southern Schwarzwald, where halite precipitation occurred during the Middle Triassic, the sedimentary basin in the central Schwarzwald was relatively shallow at this time and no halite was precipitated. Accordingly, Cl/Br ratios of fluids from the central Schwarzwald provide no evidence for the reaction of a sedimentary brine with halite, whereas those from the northern and southern Schwarzwald do. Instead, elevated Ca/(Ca+Na), high SO4 contents, and relatively low Cl/Br imply the presence of a gypsum dissolution brine during vein formation in the central Schwarzwald which agrees with the reconstructed regional Triassic geology. Hence, the information archived in fluid inclusions from hydrothermal veins in the crystalline basement has the potential for reconstructing sedimentary rocks in the former overburden.
NASA Astrophysics Data System (ADS)
Yang, Qiaofeng; Xu, Suning; Wang, Ruijiu; Li, Wenpeng; Wang, Zhiyi; Mei, Junjun; Ding, Zhilei; Yang, Peijie; Yu, Liangju; Lv, Tieying; Bai, Gang; Kang, Wei
2016-04-01
In the study of seawater intrusion, seawater is usually taken as an end-member that mixes with other source(s). However, compared to standard seawater, the coastal seawater particularly that near the estuary, can be strongly influenced by the rivers into the sea and by coastal human activities. Their composition can be thus continuously changed and redistributed with space and time. Therefore, before investigating seawater intrusion in a certain area, it is essentially important to determine the features of the estuarine seawater (e.g. the mixture percentage between standard seawater and river water). In this study, we aimed to gain a clear situation of the seawater intrusion in Laizhou Bay, Southern Bohai, China. The issue aforementioned was investigated by comparing the stable isotopic and hydrochemical composition of the marine and river water collected in this area. Samples investigated include 5 surface water samples collected at the downstream of the Bailanghe and 7 seawater samples near the estuary of Laizhou Bay. Inert tracers (δD, δ18O, Cl, Br) and reaction tracers (Na, Mg, SO4, HCO3, Ca, NO3) are particularly analyzed. The major results are as follows: 1) All the river water samples fall below the Global Meteoric Water Line in the δD - δ18O diagram, reflecting evaporation of the upstream reservoir water. The seawater samples fall on the mixing line of standard seawater and the river water in the stable isotopic diagram. 2) The Cl-δ18O diagram indicates widespread dissolution of evaporate into the river, while high concentration of Ca and HCO3-, as well as the SO42- - Cl relation of the river water samples reflect the dissolution of CO2 , carbonate and sulfate in the atmosphere and on the ground. 3) The Br/Cl ratios of seawater samples are closed to the marine ratios. This together with the plots of major ions vs. Cl suggest that the seawater samples are originated from the mixture of standard seawater and river water. Therefore, when referring to the mixing of river water and seawater, one means the solvents of these two end-members mix. This will cause the ratios of some hydrochemical components (i.e. Na, Mg, SO4 and Br) vs. Cl, close to the marine ratios, because the main component of the mixture comes from seawater. By contrast, the ratios of Ca, HCO3- and NO3- vs. Cl, which are mostly derived from continental clasts, are higher than the marine ratios. This mixing mechanism also applies to the groundwater.
Photoproduction of I2, Br2, and Cl2 on n-semiconducting powder
NASA Technical Reports Server (NTRS)
Reichman, B.; Byvik, C. E.
1981-01-01
The photosynthetic production of Br2 and Cl2 and the photocatalytic production of I2 from aqueous solutions of the respective halide ions in the presence of platinized semiconducting n-TiO2 powder are reported. Reactions were produced in 2-3 M oxygen-saturated aqueous solutions of KI, KBr or NaCl containing Pt-TiO2 powder which were irradiated by a high-pressure mercury lamp at a power of 400 mW/sq cm. Halogens are found to be produced in greater quantities when platinized TiO2 powders are used rather than pure TiO2, and rates of halogen production are observed to increase from Cl2 to Br2 to I2. The presence of the synthetic reactions producing Br2 and Cl2 with a net influx of energy indicates that an effective separation of the photoproduced electron-hole pair occurs in the semiconductor. Quantum efficiencies of the reaction, which increase with decreasing solution pH, are found to be as high as 30%, implying a solar-to-chemical energy conversion efficiency between 0.03% and 3% for the case of chlorine production. It is concluded that the photoproduction of halogens may be of practical value if product halogens are efficiently removed from the reaction cell.
NASA Technical Reports Server (NTRS)
DeMore, W.B.
1996-01-01
Relative rate experiments are used to measure rate constants and temperature dependencies of the reactions of OH with CH3F (41), CH2FCl (31), CH2BrCl (30B1), CH2Br2 (3OB2), CHBr3 (2OB3), CF2BrCHFCl (123aBl(alpha)), and CF2ClCHCl2 (122). Rate constants for additional compounds of these types are estimated using an empirical rate constant estimation method which is based on measured rate constants for a wide range of halocarbons. The experimental data are combined with the estimated and previously reported rate constants to illustrate the effects of F, Cl, and Br substitution on OH rate constants for a series of 19 halomethanes and 25 haloethanes. Application of the estimation technique is further illustrated for some higher hydrofluorocarbons (HFCs), including CHF2CF2CF2CF2H (338pcc), CF3CHFCHFCF2CF3 (43-10mee), CF3CH2CH2CF3 (356ffa), CF3CH2CF2CH2CF3 (458mfcf), CF3CH2CHF2 (245fa), and CF3CH2CF2CH3 (365mfc). The predictions are compared with literature data for these compounds.
NASA Astrophysics Data System (ADS)
Seuret, P.; Weber, J.; Wesolowski, T. A.
Density functional theory generalized gradient approximation calculations, which were tested in our previous detailed study of [RhCl(PF3)2]2 (Seuret et al., 2003, Phys. Chem. chem. Phys., 5, 268-274), were applied for a series of homologous organometallic compounds of the [RhXL2]2 (X = Cl, Br, or I; L = CO, PH3, or PF3) type. Various properties of the studied compounds were obtained. Optimized geometries of [RhCl(PH3)2]2 and [RhCl(CO)2]2 are in very good agreement with available experimental data. Geometries of other compounds as well as other properties (thermochemistry of selected fragmentation channels, barriers to structural changes, frontier orbitals) which are not available experimentally were predicted. All the considered compounds are not planar. Enforcing planarity of the central [RhX]2 moiety requires only a small energetic cost ranging from 2.2 to 3.9 kcal mol-1. The analysis of frontier orbitals indicates that the metals provide the most favourable site for the electrophilic attack in all considered compounds. The analysis of the shape of the lowest unoccupied molecular orbitals indicates that the halogens and ligands provide the most favourable site for the nucleophilic attack for [RhCl(CO)2]2 or [RhCl(PF3)2]. For [RhBr(PF3)2]2, [RhI(PF3)2]2 and [RhCl(PH3)2]2, the nucleophilic attack on the halogen is less probable. Except for [RhCl(CO)2]2, the least energetically expensive decomposition channel involves initial separation of ligands. For [RhCl(CO)2]2, its decomposition into the RhCl(CO)2 fragments was found to be the least energetically expensive fragmentation reaction which is probably one of the reasons for the known catalytic activity of this compound.
Rahaman, Hamidur; Alam Khan, Md. Khurshid; Hassan, Md. Imtaiyaz; Islam, Asimul; Moosavi-Movahedi, Ali Akbar; Ahmad, Faizan
2015-01-01
While many proteins are recognized to undergo folding via intermediate(s), the heterogeneity of equilibrium folding intermediate(s) along the folding pathway is less understood. In our present study, FTIR spectroscopy, far- and near-UV circular dichroism (CD), ANS and tryptophan fluorescence, near IR absorbance spectroscopy and dynamic light scattering (DLS) were used to study the structural and thermodynamic characteristics of the native (N), denatured (D) and intermediate state (X) of goat cytochorme c (cyt-c) induced by weak salt denaturants (LiBr, LiCl and LiClO4) at pH 6.0 and 25°C. The LiBr-induced denaturation of cyt-c measured by Soret absorption (Δε 400) and CD ([θ]409), is a three-step process, N ↔ X ↔ D. It is observed that the X state obtained along the denaturation pathway of cyt-c possesses common structural and thermodynamic characteristics of the molten globule (MG) state. The MG state of cyt-c induced by LiBr is compared for its structural and thermodynamic parameters with those found in other solvent conditions such as LiCl, LiClO4 and acidic pH. Our observations suggest: (1) that the LiBr-induced MG state of cyt-c retains the native Met80-Fe(III) axial bond and Trp59-propionate interactions; (2) that LiBr-induced MG state of cyt-c is more compact retaining the hydrophobic interactions in comparison to the MG states induced by LiCl, LiClO4 and 0.5 M NaCl at pH 2.0; and (3) that there exists heterogeneity of equilibrium intermediates along the unfolding pathway of cyt-c as highly ordered (X1), classical (X2) and disordered (X3), i.e., D ↔ X3 ↔ X2 ↔ X1 ↔ N. PMID:25849212
Rahaman, Hamidur; Alam Khan, Md Khurshid; Hassan, Md Imtaiyaz; Islam, Asimul; Moosavi-Movahedi, Ali Akbar; Ahmad, Faizan
2015-01-01
While many proteins are recognized to undergo folding via intermediate(s), the heterogeneity of equilibrium folding intermediate(s) along the folding pathway is less understood. In our present study, FTIR spectroscopy, far- and near-UV circular dichroism (CD), ANS and tryptophan fluorescence, near IR absorbance spectroscopy and dynamic light scattering (DLS) were used to study the structural and thermodynamic characteristics of the native (N), denatured (D) and intermediate state (X) of goat cytochorme c (cyt-c) induced by weak salt denaturants (LiBr, LiCl and LiClO4) at pH 6.0 and 25°C. The LiBr-induced denaturation of cyt-c measured by Soret absorption (Δε400) and CD ([θ]409), is a three-step process, N ↔ X ↔ D. It is observed that the X state obtained along the denaturation pathway of cyt-c possesses common structural and thermodynamic characteristics of the molten globule (MG) state. The MG state of cyt-c induced by LiBr is compared for its structural and thermodynamic parameters with those found in other solvent conditions such as LiCl, LiClO4 and acidic pH. Our observations suggest: (1) that the LiBr-induced MG state of cyt-c retains the native Met80-Fe(III) axial bond and Trp59-propionate interactions; (2) that LiBr-induced MG state of cyt-c is more compact retaining the hydrophobic interactions in comparison to the MG states induced by LiCl, LiClO4 and 0.5 M NaCl at pH 2.0; and (3) that there exists heterogeneity of equilibrium intermediates along the unfolding pathway of cyt-c as highly ordered (X1), classical (X2) and disordered (X3), i.e., D ↔ X3 ↔ X2 ↔ X1 ↔ N.
Li, Ji; Zhang, Peipei; Xu, Yan; Su, Zhi; Qian, Yong; Li, Shunli; Yu, Tao; Sadler, Peter J; Liu, Hong-Ke
2017-11-28
The bottom-up construction of highly functional metallamacrocycles from simple building blocks is a challenge of much current interest. We have used solvothermal reactions of a bifunctional p-bitmb ligand with [Ru(arene)X 2 ] 2 in CH 2 Cl 2 or CH 2 Br 2 to generate the novel mononuclear metallamacrocyclic [RuX(arene)L 2 CH 2 ]X 3 complexes 1-3 (1, arene = p-cym, X = Cl; 2, arene = bip, X = Cl; 3, arene = p-cym, X = Br), which were characterized by various techniques. These complexes are "bowl-like" and have two faces: one coordinative Ru centre (arene)Ru(N,N)X bridged by L (L = 1,4-bis(imidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene, p-bitmb) to a dipositive bis-imidazolinium centre. Cl - or Br - anions can be trapped inside the cavity of the "bowl-like" structure, forming H-bonds with the backbone. Experimental (NMR and ESI-MS) and computational (DFT calculations) studies show that the source of the bridging -CH 2 - group is the dihalogenated solvent (CH 2 Cl 2 or CH 2 Br 2 ) that links the two arms of an initially formed non-cyclic complex (arene)RuX 2 L 2 by a mechanism of nucleophilic substitution. Optimization of the reaction conditions afforded the macrocyclic complexes in almost quantitative yields. The applications of these complexes as anti-proliferative agents towards cancer cells and for selective anion sensing have been explored.
Yokota, Tsubasa; Omachi, Kohei; Suico, Mary Ann; Kojima, Haruka; Kamura, Misato; Teramoto, Keisuke; Kaseda, Shota; Kuwazuru, Jun; Shuto, Tsuyoshi; Kai, Hirofumi
2017-01-01
A seminal study recently demonstrated that bromide (Br-) has a critical function in the assembly of type IV collagen in basement membrane (BM), and suggested that Br- supplementation has therapeutic potential for BM diseases. Because salts of bromide (KBr and NaBr) have been used as antiepileptic drugs for several decades, repositioning of Br- for BM diseases is probable. However, the effects of Br- on glomerular basement membrane (GBM) disease such as Alport syndrome (AS) and its impact on the kidney are still unknown. In this study, we administered daily for 16 weeks 75 mg/kg or 250 mg/kg (within clinical dosage) NaBr or NaCl (control) via drinking water to 6-week-old AS mice (mouse model of X-linked AS). Treatment with 75 mg/kg NaBr had no effect on AS progression. Surprisingly, compared with 250 mg/kg NaCl, 250 mg/kg NaBr exacerbated the progressive proteinuria and increased the serum creatinine and blood urea nitrogen in AS mice. Histological analysis revealed that glomerular injury, renal inflammation and fibrosis were exacerbated in mice treated with 250 mg/kg NaBr compared with NaCl. The expressions of renal injury markers (Lcn2, Lysozyme), matrix metalloproteinase (Mmp-12), pro-inflammatory cytokines (Il-6, Il-8, Tnf-α, Il-1β) and pro-fibrotic genes (Tgf-β, Col1a1, α-Sma) were also exacerbated by 250 mg/kg NaBr treatment. Notably, the exacerbating effects of Br- were not observed in wild-type mice. These findings suggest that Br- supplementation needs to be carefully evaluated for real positive health benefits and for the absence of adverse side effects especially in GBM diseases such as AS.
Sebe, Fumie; Nishikawa, Keiko; Koga, Yoshikata
2012-04-07
Our earlier thermodynamic studies suggested that F(-) and Cl(-) form hydration shells with the hydration number 14 ± 2 and 2.3 ± 0.6, respectively, and leave the bulk H(2)O away from hydration shells unperturbed. Br(-) and I(-), on the other hand, form hydrogen bonds directly with the momentarily existing hydrogen bond network of H(2)O, and retard the degree of entropy-volume cross fluctuation inherent in liquid H(2)O. The effect of the latter is stronger for I(-) than Br(-). Here we seek additional information about this qualitative difference between Cl(-) and (Br(-) and I(-)) pair by near infrared (NIR) spectroscopy. We analyze the ν(2) + ν(3) band of H(2)O in the range 4600-5500 cm(-1) of aqueous solutions of NaCl, NaBr and NaI, by a new approach. From observed absorbance, we calculate excess molar absorptivity, ε(E), excess over the additive contributions of solute and solvent. ε(E) thus contains information about the effect of inter-molecular interactions in the ν(2) + ν(3) spectrum. The spectrum of ε(E) shows three bands; two negative ones at 5263 and 4873 cm(-1), and the positive band at 5123 cm(-1). We then define and calculate the excess partial molar absorptivity of each salt, ε(E)(salt). From the behaviour of ε(E)(salt) we suggest that the negative band at 5263 cm(-1) represents free H(2)O without much hydrogen bonding under the influence of local electric field of ions. Furthermore, from a sudden change in the x(salt) (mole fraction of salt) dependence of ε(E)(salt), we suggest that there is an ion-pairing in x(salt) > 0.032, 0.036, and 0.04 for NaCl, NaBr and NaI respectively. The positive band of ε(E) at 5123 cm(-1) is attributed to a modestly organized hydrogen bond network of H(2)O (or liquid-likeness), and the x(salt) dependence of ε indicated a qualitative difference in the effect of Cl(-) from those of Br(-) and I(-). Namely, the values of ε(E)(salt) stay constant for Cl(-) but those for Br(-) and I(-) decrease smoothly on increasing the salt mole fraction. The mole fraction dependence of ε(E)(salt) at the 4873 cm(-1) band, due to ice-likeness in H(2)O, shows a subtle difference between Cl(-) and (Br(-), I(-)) pair.
Fabrication of Low-Loss Halide Glass Fibers.
1985-09-01
chalcogenides, have some merit. Well known, also are the polycrystalline halide materials such as KRS-5, TlBr , *TlI and AgCl and their single...tension of the melt zone is high enough to *" eliminate sagging in the fibers. Using this technique, ( TlBr )I (KRS-5), TlBr , CuCl, AgCl, and AgBr have
Prestwich, G D; Streinz, L
1988-03-01
A series of mono-, di-, and trihalogenated acetate analogs of Zl 1-16: Ac were prepared and examined for electrophysiological activity in antennae of males of the diamondback moth,Plutella xylostella. In addition, two potential affinity labels, a diazoacetate (Dza) and a trifluoromethyl ketone (Tfp), were evaluated for EAG activity. The Z11-16∶Ac showed the highest activity in EAG assays, followed by the fluorinated acetates, but other halo-acetates were essentially inactive. The polar diazoacetate and the trifluoromethyl ketone were also very weak EAG stimulants. The effects of these analogs on the hydrolysis of [(3)H]Z11-16∶Ac to [(3)H]Z11-16∶OH by antennal esterases was also examined. The three fluorinated acetates showed the greatest activity as inhibitors in competition assays, with rank order F2Ac > F(3)Ac > FAc > Ac > Cl2Ac > ClAc > Dza > Br2Ac > BrAc > Tfp > I > Cl3Ac > Br3Ac > OH. The relative polarities of the haloacetates, as determined by TLC mobility, are in the order mono- > di- > trihalo, but F, Cl, Br, and I all confer similar polarities within a substitution group. Thus, the steric size appears to be the predominant parameter affecting the interactions of the haloacetate analogs with both receptor and catabolic proteins inP. xylostella males.
Akagi, Soichiro; Fujii, Sho; Kitamura, Noboru
2018-01-23
We report a systematic study on the redox, spectroscopic, and photophysical properties of a series of [{Mo 6 X 8 }Y 6 ] 2- (X, Y = Cl, Br, or I. 1-9). All of the [{Mo 6 X 8 }Y 6 ] 2- clusters show intense and long-lived phosphorescence in both CH 3 CN and crystalline phases at 298 K. We found that the emission quantum yields (Φ em ) of 1-9 increase in the sequences X = Cl < Br < I and Y = I < Br < Cl for given Y and X, respectively. The emission lifetimes (τ em ) of the clusters also increase in the sequence Y = I < Br < Cl for given {Mo 6 X 8 } 4+ -core clusters. The present data demonstrate that arbitrary combinations of X and Y in [{Mo 6 X 8 }Y 6 ] 2- could tune τ em and Φ em in the ranges of 85-300 μs and 0.09-0.47, respectively. Both capping (X) and terminal ligand (Y) effects on the photophysical properties of the clusters are discussed on the basis of the energy gap (i.e., emission energy) dependence of the nonradiative decay rate constant.
Wu, Zihao; Guo, Kaiheng; Fang, Jingyun; Yang, Xueqin; Xiao, Hong; Hou, Shaodong; Kong, Xiujuan; Shang, Chii; Yang, Xin; Meng, Fangang; Chen, Liwei
2017-12-01
The UV/chlorine process is an emerging advanced oxidation process (AOP) that produces various reactive species, such as hydroxyl radicals (HO) and reactive chlorine species (RCS). The effects of the treatment conditions, such as chlorine dosage and pH, and the water matrix components of natural organic matter (NOM), alkalinity, ammonia and halides, on the kinetics and reactive species in the degradation of four micropollutants, metronidazole (MDZ), nalidixic acid (NDA), diethyltoluamide (DEET) and caffeine (CAF), by the UV/chlorine process were investigated. The degradation of MDZ and CAF was primarily attributable to HO and ClO, respectively, while that of NDA was primarily attributable to both ClO and CO 3 - . HO, Cl and CO 3 - are important for the degradation of DEET. The second-order rate constants for ClO with CAF and CO 3 - with NDA were determined to be 5.1 (±0.2) × 10 7 M -1 s -1 and 1.4 (±0.1) × 10 7 M -1 s -1 , respectively. Increasing chlorine dosage slightly changed the contribution of HO but linearly increased that of ClO to micropollutant degradation. Increasing pH decreased the contribution of either HO or Cl but not that of ClO. Both NOM and bicarbonate decreased the contributions of HO and Cl, whereas NOM but not bicarbonate significantly decreased that of ClO. The contribution of either HO or Cl first rose and then fell as the molar ratio of ammonia to chlorine increased from 0 to 1:1, while that of ClO decreased. The co-presence of high concentrations of Cl - and Br - enhanced the contribution of ClBr - and BrCl. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wine, Paul H.; Nicovich, J. M.; Hynes, Anthony J.; Stickel, Robert E.; Thorn, R. P.; Chin, Mian; Cronkhite, Jeffrey A.; Shackelford, Christie J.; Zhao, Zhizhong; Daykin, Edward P.
1993-01-01
Some recent studies carried out in our laboratory are described where laser flash photolytic production of reactant free radicals has been combined with reactant and/or product detection using time-resolved optical techniques to investigate the kinetics and mechanisms of important atmospheric chemical reactions. Discussed are (1) a study of the radical-radical reaction O + BrO yields Br + O2 where two photolysis lasers are employed to prepare the reaction mixture and where the reactants O and BrO are monitored simultaneously using atomic resonance fluorescence to detect O and multipass UV absorption to detect BrO; (2) a study of the reaction of atomic chlorine with dimethylsulfide (CH3SCH3) where atomic resonance fluorescence detection of Cl is employed to elucidate the kinetics and tunable diode laser absorption spectroscopy is employed to investigate the HCl product yield; and (3) a study of the aqueous phase chemistry of Cl2(-) radicals where longpath UV absorption spectroscopy is employed to investigate the kinetics of the Cl2(-) + H2O reaction.
Fractionation of Cl/Br during fluid phase separation in magmatic-hydrothermal fluids
NASA Astrophysics Data System (ADS)
Seo, Jung Hun; Zajacz, Zoltán
2016-06-01
Brine and vapor inclusions were synthesized to study Cl/Br fractionation during magmatic-hydrothermal fluid phase separation at 900 °C and pressures of 90, 120, and 150 MPa in Li/Na/K halide salt-H2O systems. Laser ablation ICP-MS microanalysis of high-density brine inclusions show an elevated Cl/Br ratio compared to the coexisting low-density vapor inclusions. The degree of Cl/Br fractionation between vapor and brine is significantly dependent on the identity of the alkali metal in the system: stronger vapor partitioning of Br occurs in the Li halide-H2O system compared to the systems of K and Na halide-H2O. The effect of the identity of alkali-metals in the system is stronger compared to the effect of vapor-brine density contrast. We infer that competition between alkali-halide and alkali-OH complexes in high-temperature fluids might cause the Cl/Br fractionation, consistent with the observed molar imbalances of alkali metals compared to halides in the analyzed brine inclusions. Our experiments show that the identity of alkali metals controls the degrees of Cl/Br fractionation between the separating aqueous fluid phases at 900 °C, and suggest that a significant variability in the Cl/Br ratios of magmatic fluids can arise in Li-rich systems.
Constraining the global bromomethane budget from carbon stable isotopes
NASA Astrophysics Data System (ADS)
Bahlmann, Enno; Wittmer, Julian; Greule, Markus; Zetzsch, Cornelius; Seifert, Richard; Keppler, Frank
2016-04-01
Despite intense research in the last two decades, the global bromomethane (CH3Br) budget remains unbalanced with the known sinks exceeding the known sources by about 25%. The reaction with OH is the largest sink for CH3Br. We have determined the kinetic isotope effects for the reactions of CH3Br with the OH and Cl radical in order to better constrain the global CH3Br budget from an isotopic perspective. The isotope fractionation experiments were performed at 20±1°C in a 3500 L Teflon smog-chamber with initial CH3Br mixing ratios of about 2 and 10 ppm and perflourohexane (25 ppb) as internal standard. Atomic chlorine (Cl) was generated via photolysis of molecular chlorine (Cl2) using a solar simulator with an actinic flux comparable to that of the sun in mid-summer in Germany. OH radicals were generated via the photolysis of ozone (O3) at 253.7 nm in the presence of water vapor (RH = 70%).The mixing ratios of CH3Br, and perflourohexane were monitored by GC-MS with a time resolution of 15 minutes throughout the experiments. From each experiment 10 to 15 sub samples were taken in regular time intervals for subsequent carbon isotope ratio determinations by GC-IRMS performed at two independent laboratories in parallel. We found a kinetic isotope effect (KIE) of 17.6±3.3‰ for the reaction of CH3Br with OH and a KIE of 9.8±1.4 ‰ for the reaction with Cl*. We used these fractionation factors along with new data on the isotopic composition of CH3Br in the troposphere (-34±7‰) and the surface ocean (-26±7‰) along with reported source signatures, to constrain the unknown source from an isotopic perspective. The largest uncertainty in estimating the isotopic composition of the unknown source arises from the soil sink. Microbial degradation in soils is the second largest sink and assigned with a large fractionation factors of about 50‰. However, field experiments revealed substantially smaller apparent fractionation factors ranging from 11 to 22‰. In addition, simple model studies suggest that the soil uptake of CH3Br and hence its isotopic effect is largely controlled by diffusion resulting in an even smaller apparent isotopic fractionation. As a consequence, the estimated source signature for the unknown source is discussed with respect to the assumptions made for the soil sink.
Yamamoto, K; Matsumoto, A
1997-11-01
The solvent extraction of an ion associate of tetrabromoindate(III) ion, InBr(-)(4), with quaternary ammonium cations (Q(+)) has been studied. The extraction constant (K(ex)) were determined for the ion associates of InBr(-)(4) with Q(+) between an aqueous phase and several organic phases (chloroform, chlorobenzene, benzene and toluene). A linear relationship was found between log K(ex) and the total number of carbon atoms in Q(+); from the slope of the lines, the contribution of a methylene group to log K(ex) was calculated to be 0.91 for the chloroform extraction system and 0.52 for the other extraction systems. The extractability with alkyltrimethylammonium cations was larger than that with symmetrical tetraalkylammonium cations and the mean difference in log K(ex) for two cations (one of each type) with the same number of carbon atoms was about 1.3. From the extraction constant obtained, the extractability of InBr(-)(4) among metal-halogeno complex anions was in the order TlBr(-)(4) > BiI(-)(4) > AuBr(-)(4) > AuCl(-)(4) > TlCl(-)(4) > InBr(-)(4) > CuCl(-)(2).
Kalin, Robert M.; Hamilton, John T.G.; Harper, David B.; Miller, Laurence G.; Lamb, Clare; Kennedy, James T.; Downey, Angela; McCauley, Sean; Goldstein, Allen H.
2001-01-01
Gas chromatography/mass spectrometry/isotope ratio mass spectrometry (GC/MS/IRMS) methods for δ13C measurement of the halomethanes CH3Cl, CH3Br, CH3I and methanethiol (CH3SH) during studies of their biological production, biological degradation, and abiotic reactions are presented. Optimisation of gas chromatographic parameters allowed the identification and quantification of CO2, O2, CH3Cl, CH3Br, CH3I and CH3SH from a single sample, and also the concurrent measurement of δ13C for each of the halomethanes and methanethiol. Precision of δ13C measurements for halomethane standards decreased (±0.3, ±0.5 and ±1.3‰) with increasing mass (CH3Cl, CH3Br, CH3I, respectively). Given that carbon isotope effects during biological production, biological degradation and some chemical (abiotic) reactions can be as much as 100‰, stable isotope analysis offers a precise method to study the global sources and sinks of these halogenated compounds that are of considerable importance to our understanding of stratospheric ozone destruction.
NASA Astrophysics Data System (ADS)
Wang, Shi; Ding, Xue-Hua; Li, Yong-Hua; Huang, Wei
2015-07-01
A series of supramolecular salts have been obtained by the self-assembly of 4-fluorobenzylamine and halide ions or metal chloride with 18-crown-6 as the host in the hydrochloric acid medium, i.e. (C7H9FN)+ṡX- (X = Cl-, 1; Br-, 2), [(C7H9FN)2ṡ(18-crown-6)2]2+ṡ(MCl4)2- (M = Mn, 3; Co, 5; Zn, 7; Cd, 8), [(C7H9FN)ṡ(18-crown-6)]+ṡ(FeCl4)- (4) and [(C7H9FN)ṡ(18-crown-6)]+ṡ1/2(CuCl4)2- (6). Structural analyses indicate that 1-2 crystallize in the triclinic space group P-1, 4 in orthorhombic space group Pnma and 3, 5, 6-8 in the monoclinic space group P21/c or C2/c. In these compounds, extensive intermolecular interactions have been utilized for the self-assembly of diverse supramolecular architectures, ranging from strong N-H⋯X (X = O, Cl, Br) hydrogen bonds to weak C-H⋯Y (Y = F, Cl, π) interactions. N-H⋯Cl/Br hydrogen bonds offer the major driving force in the crystal packing of salts 1-2 while N-H⋯O hydrogen bonds are found in salts 3-8.
Sowmya, Haliwana B. V.; Suresha Kumara, Tholappanavara H.; Gopalpur, Nagendrappa; Jasinski, Jerry P.; Millikan, Sean P.; Yathirajan, Hemmige S.; Glidewell, Christopher
2015-01-01
In the molecules of the title compounds, methyl 5-bromo-2-[(2-chloroquinolin-3-yl)methoxy]benzoate, C18H13BrClNO3, (I), methyl 5-bromo-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate, C19H15BrClNO3, (II), methyl 2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate, C19H16ClNO3, (III), which crystallizes with Z′ = 4 in space group P212121, and 2-chloro-3-[(naphthalen-1-yloxy)methyl]quinoline, C20H14ClNO, (IV), the non-H atoms are nearly coplanar, but in {5-[(2-chloroquinolin-3-yl)methoxy]-4-(hydroxymethyl)-6-methylpyridin-3-yl}methanol, C18H17ClN2O3, (V), the planes of the quinoline unit and of the unfused pyridine ring are almost parallel, although not coplanar. The molecules of (I) are linked by two independent π–π stacking interactions to form chains, but there are no hydrogen bonds present in the structure. In (II), the molecules are weakly linked into chains by a single type of π–π stacking interaction. In (III), three of the four independent molecules are linked by π–π stacking interactions but the other molecule does not participate in such interactions. Weak C—H⋯O hydrogen bonds link the molecules into three types of chains, two of which contain just one type of independent molecule while the third type of chain contains two types of molecule. The molecules of (IV) are linked into chains by a C—H⋯π(arene) hydrogen bond, but π–π stacking interactions are absent. In (V), there is an intramolecular O—H⋯O hydrogen bond, and molecules are linked into sheets by a combination of O—H⋯N hydrogen bonds and π–π stacking interactions. PMID:26090133
Wang, Ruiqi; Zhang, Xian; He, Jianqiao; Bu, Kejun; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang
2018-02-05
Six isostructural antiperovskite-derived chalcohalides, Ba 2 MQ 3 X (M = As, Sb; Q = S, Se; X = Cl, Br, I), crystallizing in the space group Pnma, have been synthesized by solid-state reactions. The crystal structure features a 3D framework with the [XBa 5 ] 9+ disordered square pyramids as building blocks and [MQ 3 ] 3- units filling the interspace. [XBa 5 ] 9+ disordered square pyramids are edge-sharing along [010], derived from the fusing of the two pyramids in octahedral [XBa 6 ] 11+ . Surprisingly, Ba 2 AsS 3 X (X = Cl, Br, I) show almost the same optical band gap of 2.80 eV, and Ba 2 AsSe 3 X (X = Br, I) also have a similar band gap of 2.28 eV. The optical band gap of Ba 2 SbS 3 I is 2.64 eV. First-principles calculations reveal that the optical absorption is attributed to the transitions between Q np at the valence band maximum (VBM) and M np-Q np at the conduction band minimum (CBM). These compounds also possess interesting photoluminescence properties with splitting emission peaks on excitation at 200 nm.
Electronic structures and geometries of the XF{sub 3} (X = Cl, Br, I, At) fluorides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sergentu, Dumitru-Claudiu; CEISAM, UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3; Amaouch, Mohamed
The potential energy surfaces of the group 17 XF{sub 3} (X = Cl, Br, I, At) fluorides have been investigated for the first time with multiconfigurational wave function theory approaches. In agreement with experiment, bent T-shaped C{sub 2v} structures are computed for ClF{sub 3}, BrF{sub 3}, and IF{sub 3}, while we predict that an average D{sub 3h} structure would be experimentally observed for AtF{sub 3}. Electron correlation and scalar relativistic effects strongly reduce the energy difference between the D{sub 3h} geometry and the C{sub 2v} one, along the XF{sub 3} series, and in the X = At case, spin-orbit couplingmore » also slightly reduces this energy difference. AtF{sub 3} is a borderline system where the D{sub 3h} structure becomes a minimum, i.e., the pseudo-Jahn-Teller effect is inhibited since electron correlation and scalar-relativistic effects create small energy barriers leading to the global C{sub 2v} minima, although both types of effects interfere.« less
Chen, Yishan; Yao, Lifeng
2014-01-01
The ternary complexes X(-) · 1 · YF (1 = triazine, X = Cl, Br and I, Y = H, Cl, Br, I, PH2 and AsH2) have been investigated by MP2 calculations to understand the noncovalently electron-withdrawing effects on anion-arene interactions. The results indicate that in binary complexes (1 · X(-)), both weak σ-type and anion-π complexes can be formed for Cl(-) and Br(-), but only anion-π complex can be formed for I(-). Moreover, the hydrogen-bonding complex is the global minimum for all three halides in binary complexes. However, in ternary complexes, anion-π complex become unstable and only σ complex can retain in many cases for Cl(-) and Br(-). Anion-π complex keeps stable only when YF = HF. In contrast with binary complexes, σ complex become the global minimum for Cl(-) and Br(-) in ternary complexes. These changes in binding mode and strength are consistent with the results of covalently electron-withdrawing effects. However, in contrast with the covalently electron-withdrawing substituents, Cl(-) and Br(-) can attack the aromatic carbon atom to form a strong σ complex when the noncovalently electron-withdrawing effect is induced by halogen bonding. The binding behavior for I(-) is different from that for Cl(-) and Br(-) in two aspects. First, the anion-π complex for I(-) can also keep stable when the noncovalent interaction is halogen bonding. Second, the anion-π complex for I(-) is the global minimum when it can retain as a stable structure.
Lu, Norman; Wei, Rong Jyun; Lin, Kwan Yu; Alagesan, Mani; Wen, Yuh Sheng; Liu, Ling Kang
2017-04-01
Neutralization of 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridine with hydrohalo acids HX (X = Cl and Br) yielded the pyridinium salts 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridinium chloride, C 9 H 10 F 4 NO + ·Cl - , (1), and 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridinium bromide, C 9 H 10 F 4 NO + ·Br - , (2), both carrying a fluorous side chain at the para position of the pyridinium ring. Single-crystal X-ray diffraction techniques revealed that (1) and (2) are isomorphous. The halide anions accept four hydrogen bonds from N-H, ortho-C-H and CF 2 -H groups. Two cations and two anions form a centrosymmetric dimeric building block, utilizing complimentary N-H...X...H-Csp 3 connections. These dimers are further crosslinked, utilizing another complimentary Csp 2 -H...X...H-Csp 2 connection. The pyridinium rings are π-stacked, forming columns running parallel to the a axis that make angles of ca 44-45° with the normal to the pyridinium plane. There are also supramolecular C-H...F-C interactions, namely bifurcated C-H...F and bifurcated C-F...H interactions; additionally, one type II C-F...F-C halogen bond has been observed.
The K -region dihydrodiol ofbenzo[ a ]pyrene induces DNA damage and morphological cell transformation in C3HlOTY2CL8 mouse embryo cells without the formation of detectable stable covalent DNA adducts
Benzo[ a ]pyrene (B[ a ]P) is the most thoroughly studied polycyclic aro...
Spencer, Liam P; Yang, Ping; Minasian, Stefan G; Jilek, Robert E; Batista, Enrique R; Boland, Kevin S; Boncella, James M; Conradson, Steven D; Clark, David L; Hayton, Trevor W; Kozimor, Stosh A; Martin, Richard L; MacInnes, Molly M; Olson, Angela C; Scott, Brian L; Shuh, David K; Wilkerson, Marianne P
2013-02-13
Synthetic routes to salts containing uranium bis-imido tetrahalide anions [U(NR)(2)X(4)](2-) (X = Cl(-), Br(-)) and non-coordinating NEt(4)(+) and PPh(4)(+) countercations are reported. In general, these compounds can be prepared from U(NR)(2)I(2)(THF)(x) (x = 2 and R = (t)Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl(-), the [U(NMe)(2)](2+) cation also reacts with Br(-) to form stable [NEt(4)](2)[U(NMe)(2)Br(4)] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO(2)](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh(4)](2)[U(N(t)Bu)(2)Cl(4)] and [PPh(4)](2)[UO(2)Cl(4)]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.
Smith, C.L.
1991-01-01
Despite the value of the salt (NaCl) and brine used by the chemical industry, geochemical prospecting techniques are not customarily employed in the search for these raw materials. In this study, Br geochemistry is used as the basis for a proposed hydrogeochemical prospecting technique that was designed to search for shallow halite beds in the Eastern Province of the Kingdom of Saudi Arabia. Near-surface brine samples were collected at Sabkhah Jayb Uwayyid, both directly above and distant from a buried salt bed. Brine samples collected both directly above and offset to the north-west of the salt bed had ClBr ratios > 8000. The regional background ClBr ratio of fresh nonmarime ground water is ???300. The large range in ClBr ratios and the association of high ClBr ratios with the buried salt body suggest that the ratio can be useful in hydrogeochemical prospecting for sibakh-associated, shallow salt bodies. ?? 1991.
Isolation of 1,4-Li(2)-C(6)H(4) and its reaction with [(Ph(3)P)AuCl].
Flower, Kevin R; McGown, A T; Miles, Philip J; Pritchard, Robin G; Warren, John E
2010-04-14
The difficulty in generating 1,4-Li2-C6H4 utilising the lithium halogen exchange reaction on 1,4-Br2-C6H4, 1,4-I2-C6H4 and 1-Br-4-I-C6H4 is revisited and only on treatment of 1,4-I2-C6H4 with 2 molar equivalents of n-BuLi can 1,4-Li2-C6H4 1 be isolated in excellent yield. Treatment of 1 with two equivalents of [ClAu(PPh3)] gives [1,4-(Ph3PAu)2-C6H4] 2a in excellent yield. Subsequent treatment of 2a with 2.5 molar equivalents of PPh2Me, PPhMe2 or PMe3 affords the PPh3 substituted compounds [1,4-(LAu)2-C6H4] (L = PPh2Me 2b, PPhMe2 2c, PMe3 2d) in essentially quantitative yields. On treatment of 1,4-Br2-C6H4 or 1-Br-4-I-C6H4 with 2 molar equivalents of n-BuLi only mono-lithiation takes place to give 1-Br-4-Li-C6H4 3 as shown through the isolation of essentially 1:1 molar equivalents of Ph2PC6H4-4-Br and Ph2PBu on treatment with 2 molar equivalents of ClPPh2. Treatment of 3, prepared by lithium/iodine exchange on 1-Br-4-I-C6H4, with [ClAu(PPh3)] affords [(Ph3P)Au(C6H4-4-Br)] 4 as expected and in addition [(Ph3P)Au(n-Bu)(C6H4-4-Br)2] 5, indicating the straightforward chloride/aryl exchange at gold may proceed in competition with oxidative addition of the n-BuI, generated in the initial lithium/iodine exchange reaction, to some aurate complex Li[Au(C6H4-4-Br)2] 6 formed in situ followed by reductive elimination of Br-C6H4-4-n-Bu in a manner that mimics lithium diorganocuprate chemistry. All of the gold-containing compounds have been spectroscopically characterised by 1H and 31P-{1H} NMR and in addition compounds 2a-d and 5 by single crystal X-ray diffraction studies. The solid state structures observed for 2a-d are dictated by non-conventional hydrogen bonding and the packing requirements of the phosphine ligands. For 2a and 2b there is no close Au...Au approach, however for 2c and 2d the reduction in the number of phenyl rings allows the formation of Au...Au contacts. For 2c and 2d the extended structures appear to be helical chains with Au...Au contact parameters of 3.855(5) A and C-Au-Au-C 104.1(3)degrees for 2c and 3.139(4) A and C-Au-Au-C -92.0(2)degrees for 2d. The Au...Au approach in 2c is longer than is normally accepted for an AuAu contact and is dictated by ligand directed non-conventional hydrogen bonding to the aurated benzene ring and the pi-stacking requirements of the phosphine ligand. By comparison of the structures 2a-2d with other structures in the database it is evident that the aurophilic interaction is a poor supramolecular synthon in the presence of non-conventional hydrogen bond donors. Searches of the CCDC database suggest that the observed parameters for the Au...Au contact in 2c sit close to the cut-off point for observing this type of contact. In addition to aurophilic contacts and non-conventional hydrogen bonds there are a number of halogenated solvent C-Cl...Au contacts observed in the structures of 2a and 2d. The nature of these contacts have implications for the accepted van der Waals radius of gold which should be extended to 2 A.
NASA Astrophysics Data System (ADS)
Weil, Matthias; Kremer, Reinhard K.
2017-01-01
Chemical vapour transport reactions (900 °C → 820 °C, Cl2 or Br2 as transport agent) of in situ formed Mn3(AsO4)2 yielded the orthoarsenates(V) α-Mn3(AsO4)2 and β-Mn3(AsO4)2 as well as the oxoarsenate(V) halide compounds Mn7(AsO4)4Cl2, Mn11(AsO4)7Cl, Mn11(AsO4)7Br and Mn5(AsO4)3Cl. The crystal structures of all six phases were determined from single crystal X-ray diffraction data. The crystal structures of α-and β-Mn3(AsO4)2 are isotypic with the corresponding phosphate phases γ- and α-Mn3(PO4)2, respectively, and are reported here for the first time. A comparative discussion with other structures of general composition M3(AsO4)2 (M = Mg; divalent first-row transition metal) is given. The unique crystal structures of Mn7(AsO4)4Cl2 and that of the two isotypic Mn11(AsO4)7X (X = Cl, Br) structures are composed of two [MnO5] polyhedra, two [MnO4Cl2] polyhedra (one with site symmetry 1 bar), two AsO4 tetrahedra, and one [MnO5] polyhedron, three [MnO6] octahedra (one with site symmetry.m.), one [MnO4X], one [MnO5X] polyhedron and four AsO4 tetrahedra, respectively. The various polyhedra of the three arsenate(V) halides are condensed into three-dimensional framework structures by corner- and edge-sharing. Mn5(AsO4)3Cl adopts the chloroapatite structure. The magnetic and thermal properties of pure polycrystalline samples of a-Mn3(AsO4)2 were investigated in more detail. The magnetic susceptibility proves all Mn atoms to be in the oxidation state +2 yielding an effective magnetic moment per Mn atom of 5.9 μB. Long-range antiferromagnetic ordering is observed below 8.2 K consistent with the negative Curie-Weiss temperature of -50 K derived from the high temperature susceptibility data.
Halocarbons in the stratosphere
NASA Astrophysics Data System (ADS)
Fabian, P.; Borchers, R.
1981-12-01
The possible impact of chlorine compounds on the Earth's ozone layer has caused concern. Profiles of the anthropogenic halocarbons F-11 (CFC13) and F-12 (CF2Cl2) have already been measured in the stratosphere1-4. Measurements of the vertical distribution of methyl chloride (CH3Cl), the most important natural chlorine-bearing species confirm that chlorine of anthropogenic origin now predominates the stratosphere5,6. More halogen radicals are added through decomposition of various other halocarbons, most of them released by man. We report here the first measurements of vertical profiles of F-13 (CF3Cl), F-14 (CF4), F-113 (C2F3Cl3), F-114 (C2F4Cl2), F-115 (C2F5Cl), F-116 (C2F6), and F-13 B(CF3Br) resulting from gas chromatography-mass spectrometer (GC-MS) analysis of air samples collected cryogenically between 10 and 33 km, at 44° N. Some data for F-22 (CHF2C1), methyl bromide (CH3Br) and methyl chloroform (CH3CC13) also presented are subject to confirmation.
Jin, Rong; Zheng, Minghui; Yang, Hongbo; Yang, Lili; Wu, Xiaolin; Xu, Yang; Liu, Guorui
2017-12-01
Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are emerging semi-volatile organic pollutants in haze-associated particulate matter (PM). Their gas-particle phase partitioning and distribution among PM fractions have not been clarified. Clarification would increase understanding of atmospheric behavior and health risks of Cl/Br-PAHs. In this study, samples of the gas phase and 4 PM phases (aerodynamic diameters (d ae ) > 10 μm, 2.5-10 μm, 1.0-2.5 μm, and <1.0 μm) were collected simultaneously during haze events in Beijing and analyzed. Normalized histogram distribution indicated that the Cl/Br-PAHs tended to adhere to fine particles. Over 80% of the Cl-PAHs and 70% of the Br-PAHs were associated with fine PM (d ae < 2.5 μm). The gas-particle phase partitioning and PM distribution of Cl/Br-PAHs when heating of buildings was required, which was associated with haze events, were obviously different from those when heating was not required. The relationship between the logarithmic geometric mean diameters of the Cl/Br-PAH congeners and reciprocal of the temperature (1/T) suggested that low air temperatures during the heating period could lead to high proportions of Cl/Br-PAHs in the fine particles. Increased coal burning during the heating period also contributed to high Cl/Br-PAH loads in the fine particles. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Galván, Jorge E.; Gil, Diego M.; Lanús, Hernán E.; Altabef, Aida Ben
2015-02-01
The fourth member of the series of compounds of the type POX3 with X = I was synthesized and characterized by infrared spectroscopy. The geometrical parameters and vibrational properties of POX3 (X = F, Cl, Br, I) molecules were investigated theoretically by means DFT and ab initio methods. Available geometrical and vibrational data were used together with theoretical calculations in order to obtain a set of scaled force constants. The observed trends in geometrical parameters are analyzed and compared with those obtained in a previous work for the VOX3 (X = F, Cl, Br, I) series of compounds. NBO analysis was performed in order to know the hyper-conjugative interactions that favor one structure over another. The molecular properties such as ionization potential, electron affinity, electronegativity, chemical potential, chemical hardness, softness and global electrophilicity index have been deduced from HOMO-LUMO analysis.
Yahsi, Yasemin; Kara, Hulya
2014-06-05
Two novel monomer Mn (IV) [Mn(3,5-ClL1)2]⋅(CH3OH), (1), [3,5-ClL1H2=N-(2-hydroxyethyl)-3,5-dichlorosalicylaldimine] (1) and hydrogen-bonded pseudo-tetramer Mn (III) [Mn(5-BrL2)(H2O)2]2⋅[Mn(5-BrL2)(H2O)]2⋅2⋅(ClO4), (2), [5-BrL2H2=N,N'-bis(5-bromosalicylidenato)-1,2-diamino-2-methylpropane)] (2) Schiff base complexes have been synthesized and their crystal structures have been determined by single crystal X-ray diffraction analysis. A variable temperature magnetic susceptibility measurement study has been performed for complex (2) and the result indicates there is a very weak antiferromagnetic interaction (J=-0.40±0.016cm(-1)) between the two manganese (III) centers. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalchukova, O. V., E-mail: okovalchukova@mail.ru; Stash, A. I.; Strashnova, S. B.
2010-05-15
The complex compounds (H{sub 3}L . Cl)[CoCl{sub 4}] (I) and H{sub 2}L[CuBr{sub 4}] (II), where L is 2,4,6-tri(N,N-dimethylamino)methylphenol, were isolated in the crystalline state and studied by X-ray diffraction. The organic cations were found to be outer-sphere ligands. All three nitrogen atoms of the tertiary amino groups are protonated. In compound I, the H{sub 3}L{sup 3+} cation exists as the cis tautomer. In compound II, the H{sub 2}L{sup 2+} dication exists as the trans isomer. In the crystal structure, the dications are arranged in layers via hydrogen bonds.
Xu, Lu; Dong, Shuli; Hao, Jingcheng; Cui, Jiwei; Hoffmann, Heinz
2017-03-28
It is difficult to synthesize magnetic gold nanoparticles (AuNPs) with ultrafine sizes (<2 nm) based on a conventional method via coating AuNPs using magnetic particles, compounds, or ions. Here, magnetic cationic surfactants C 16 H 33 N + (CH 3 ) 3 [CeCl 3 Br] - (CTACe) and C 16 H 33 N + (CH 3 ) 3 [GdCl 3 Br] - (CTAGd) are prepared by a one-step coordination reaction, i.e., C 16 H 33 N + (CH 3 ) 3 Br - (CTABr) + CeCl 3 or GdCl 3 → CTACe or CTAGd. A simple strategy for fabricate ultrafine (<2 nm) magnetic gold nanoparticles (AuNPs) via surface modification with weak oxidizing paramagnetic cationic surfactants, CTACe or CTAGd, is developed. The resulting AuNPs can highly concentrate the charges of cationic surfactants on their surfaces, thereby presenting strong electrostatic interaction with negatively charged biomacromolecules, DNA, and proteins. As a consequence, they can converge DNA and proteins over 90% at a lower dosage than magnetic surfactants or existing magnetic AuNPs. The surface modification with these cationic surfactants endows AuNPs with strong magnetism, which allows them to magnetize and migrate the attached biomacromolecules with a much higher efficiency. The native conformation of DNA and proteins can be protected during the migration. Besides, the captured DNA and proteins could be released after adding sufficient inorganic salts such as at c NaBr = 50 mmol·L -1 . Our results could offer new guidance for a diverse range of systems including gene delivery, DNA transfection, and protein delivery and separation.
Sarıgüney, Ahmet Burak; Saf, Ahmet Özgür; Coşkun, Ahmet
2014-07-15
2,3-Indoledione 3-thiosemicarbazone (TSCI) and a novel compound 3-(2-(4-(4-phenoxyphenyl)thiazol-2-yl)hydrazono)indolin-2-one (FTHI) were synthesized with high yield and characterized by spectroscopic techniques. The complexation behaviors of TSCI and FTHI for various anionic species (F(-), Cl(-), Br(-), I(-), NO2(-), NO3(-), BzO(-), HSO4(-), ClO4(-)) in CH3CN were investigated and compared by UV-vis spectroscopy, cyclic voltammetry and (1)H NMR titration techniques. FTHI showed high degree of selectivity for fluoride over other anions. This selectivity could be easily observed by the naked eye, indicating that FTHI is potential colorimetric sensor for fluoride anion. Copyright © 2014 Elsevier B.V. All rights reserved.
Radiocarbon evidence for a naturally produced, bioaccumulating halogenated organic compound.
Reddy, Christopher M; Xu, Li; O'Neil, Gregory W; Nelson, Robert K; Eglinton, Timothy I; Faulkner, D John; Norstrom, Ross; Ross, Peter S; Tittlemier, Sheryl A
2004-04-01
Halogenated organic compounds (HOCs) such as 1,1'-dimethyl-3,3',4,4'-tetrabromo-5,5'-dichloro-2,2'-bipyrrole (DBP-Br4Cl2) and heptachloro-1'-methyl-1,2'-bipyrrole (Q1) have been detected worldwide, sometimes at high levels in Antarctic air, seabird eggs, the blubber of marine mammals, and, most notably, even human milk. To date, it has been difficult to determine whether these compounds are natural products or derived from industrial synthesis. Molecular-level 14C analysis of these compounds is particularly appealing because most industrial compounds are manufactured from petrochemicals (14C-free) and natural compounds should have "modern" or "contemporary" 14C levels. To investigate the source of DBP-Br4Cl2, we isolated 600 microg of this compound (150 microg of carbon) from marine animal extracts by employing gel permeation chromatography, Florisil column chromatography, and two-dimensional preparative capillary gas chromatography. The purified DBP-Br4Cl2 was split into two samples (75 microg of carbon each) and analyzed by accelerator mass spectrometry for 14C content. The delta14C values were -449 percent per thousand and -467 percent per thousand, corresponding to conventional 14C ages of 4740 and 5000 years before present (BP), respectively. The presence of detectable 14C in the DBP-Br4Cl2 strongly points to at least a natural or biogenic source. However, these delta14C values for DBP-Br4Cl2 are more depleted than expected for a recently synthesized natural product. Several explanations are discussed, but additional samples
40 CFR Appendix A to Subpart A of... - Class I Controlled Substances
Code of Federal Regulations, 2010 CFR
2010-07-01
...) 1.0 C2 F3 Cl3-Trichlorotrifluoroethane (CFC-113) 0.8 C2 F4 Cl2-Dichlorotetrafluoroethane (CFC-114) 1... F4 Br2-Dibromotetrafluoroethane (Halon-2402) 6.0 All isomers of the above chemicals C. Group III: CF3...) 1.0 C3 F2 Cl6-(CFC-212) 1.0 C3 F3 Cl5-(CFC-213) 1.0 C3 F4 Cl4-(CFC-214) 1.0 C3 F5 Cl3-(CFC-215) 1.0...
1981-01-01
I microinjected calcium ions into echinoderm eggs during mitosis to determine the calcium sensitivity of microtubules (Mts) in vivo. Spindle birefringence (BR), a measure of the number of aligned Mts in the spindle, is locally, rapidly, and reversibly abolished by small volumes of microinjected CaCl2 (1 mM). Rapid return of BR is followed by anaphase, and subsequent divisions are normal. Similar doses of MgCl2, BaCl2, KCl, NaCl, pH buffers, distilled water, or vegetable oil have no effect on spindle BR, whereas large doses of such agents sometimes cause slow, uniform loss in BR over the course of a minute or more. Of the ions tested, only Sr++ causes effects comparable to Ca++. Ca-EGTA buffers, containing greater than micromolar free Ca++, abolishes BR in a manner similar to millimolar concentrations of injected CaCl2. Caffeine, a potent uncoupler of the Ca++-pump/ATPase of sarcoplasmic reticulum, causes a local, transient depression in spindle BR in the injected region. Finally, injection of potassium oxalate results in the formation of small, highly BR crystals, presumably CA- oxalate, in Triton-sensitive compartments in the cytoplasm. Taken together, these findings demonstrate that spindle Mts are sensitive to levels of free Ca++ in the physiological range, provide evidence for the existence of a strong cytoplasmic Ca++-sequestering system, and support the notion that Mt assembly and disassembly in local regions of the spindle may be orchestrated by local changes in the cytoplasmic free Ca++ concentration during mitosis. An appendix offers the design of a new chamber for immobilizing echinoderm eggs for injection, a new method for determining the volume of the injected solution, and a description of the microinjection technique, which was designed, but never fully described, by Hiramoto (Y. Hiramoto, Exp. Cell. Res., 1962, 27:416-426.). PMID:7194345
Nishimura, Chiya; Horii, Yuichi; Tanaka, Shuhei; Asante, Kwadwo Ansong; Ballesteros, Florencio; Viet, Pham Hung; Itai, Takaaki; Takigami, Hidetaka; Tanabe, Shinsuke; Fujimori, Takashi
2017-06-01
We conducted this study to assess the occurrence, profiles, and toxicity of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) and brominated polycyclic aromatic hydrocarbons (Br-PAHs) in e-waste open burning soils (EOBS). In this study, concentrations of 15 PAHs, 26 Cl-PAHs and 14 Br-PAHs were analyzed in EOBS samples. We found that e-waste open burning is an important emission source of Cl-PAHs and Br-PAHs as well as PAHs. Concentrations of total Cl-PAHs and Br-PAHs in e-waste open burning soil samples ranged from 21 to 2800 ng/g and from 5.8 to 520 ng/g, respectively. Compared with previous studies, the mean of total Cl-PAH concentrations of the EOBS samples in this study was higher than that of electronic shredder waste, that of bottom ash, and comparable to fly ash from waste incinerators in Korea and Japan. The mean of total Br-PAH concentrations of the EOBS samples was generally three to four orders of magnitude higher than those in incinerator bottom ash and comparable to incinerator fly ash, although the number of Br-PAH congeners measured differed among studies. We also found that the Cl-PAH and Br-PAH profiles were similar among all e-waste open burning soil samples but differed from those in waste incinerator fly ash. The profiles and principal component analysis results suggested a unique mechanism of Cl-PAH and Br-PAH formation in EOBS. In addition, the Cl-PAHs and Br-PAHs showed high toxicities equivalent to PCDD/Fs measured in same EOBS samples when calculated based on their relative potencies to benzo[a]pyrene. Along with chlorinated and brominated dioxins and PAHs, Cl-PAHs and Br-PAHs are important environmental pollutants to investigate in EOBS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Wenjun; Sharp, Ian D; Tilley, T Don
2014-01-14
Insertion of dichlorocarbene (:CCl2), generated by decomposition of the Seyferth reagent PhHgCCl2Br, into the Si-H bond of a tertiary silane to form a Si-CCl2H group is an efficient homogeneous, molecular transformation. A heterogeneous version of this reaction, between PhHgCCl2Br and a silicon (111) surface terminated by tertiary Si-H bonds, was studied using a combination of surface-sensitive infrared and X-ray photoelectron spectroscopies. The insertion of dichlorocarbene into surface Si-H bonds parallels the corresponding reaction of silanes in solution, to produce surface-bound dichloromethyl groups (Si-CCl2H) covering ∼25% of the silicon surface sites. A significant fraction of the remaining Si-H bonds on the surface was converted to Si-Cl/Br groups during the same reaction, with PhHgCCl2Br serving as a halogen atom source. The presence of two distinct environments for the chlorine atoms (Si-CCl2H and Si-Cl) and one type of bromine atom (Si-Br) was confirmed by Cl 2p, Br 3d, and C 1s X-ray photoelectron spectroscopy. The formation of reactive, halogen-terminated atop silicon sites was also verified by reaction with sodium azide or the Grignard reagent (CH3MgBr), to produce Si-N3 or Si-Me functionalities, respectively. Thus, reaction of a hydrogen-terminated silicon (111) surface with PhHgCCl2Br provides a facile route to multifunctional surfaces possessing both stable silicon-carbon and labile silicon-halogen sites, in a single pot synthesis. The reactive silicon-halogen groups can be utilized for subsequent transformations and, potentially, the construction of more complex organic-silicon hybrid systems.
Trivalent Rare-Earth-Metal Bis(trimethylsilyl)amide Halide Complexes by Targeted Oxidations.
Bienfait, André M; Wolf, Benjamin M; Törnroos, Karl W; Anwander, Reiner
2018-05-07
In contrast to previously applied salt metathesis protocols the targeted rare-earth-metal compounds Ln[N(SiMe 3 ) 2 ] 2 (halogenido) were accessed by oxidation of Ln(II) silylamide precursors. Treatment of Sm[N(SiMe 3 ) 3 ] 2 (thf) 2 with 0.5 equiv of C 2 Cl 6 or 0.25 equiv of TeBr 4 in thf and crystallization thereof gave [Sm{N(SiMe 3 ) 2 } 2 (μ-X)(thf)] 2 (X = Cl, Br). A similar reaction/crystallization procedure performed with 0.5 equiv of 1,2-diiodoethane gave monomeric Sm[N(SiMe 3 ) 2 ] 2 I(thf) 2 . Switching to Yb[N(SiMe 3 ) 2 ] 2 (thf) 2 , the aforementioned oxidants generated monomeric five-coordinate complexes Yb[N(SiMe 3 ) 2 ] 2 X(thf) 2 (X = Cl, Br, I). The reaction of Eu[N(SiMe 3 ) 2 ] 2 (thf) 2 with 0.5 equiv of C 2 Cl 6 in thf yielded the separated ion pair [Eu{N(SiMe 3 ) 2 } 3 Cl][(thf) 5 Eu(μ-Cl) 2 Eu(thf) 5 ]. Performing the chlorination in n-hexane led to oxidation followed by rapid disproportionation into EuCl 3 (thf) x and Eu[N(SiMe 3 ) 2 ] 3 . The bromination reaction did not afford crystalline material, while the iodination gave crystals of divalent EuI 2 (thf) 5 . Use of trityl chloride (Ph 3 CCl) as the oxidant in thf accomplished the Eu(III) species [Eu{N(SiMe 3 ) 2 } 2 (μ-Cl)(thf)] 2 . In situ oxidation of putative [Tm{N(SiMe 3 ) 2 } 2 (thf) x ] using 0.5 equiv of C 2 Cl 6 in thf followed by crystallization from n-hexane led to the formation of a mixture of [Tm{N(SiMe 3 ) 2 } 2 (μ-Cl)(thf)] 2 and Tm[N(SiMe 3 ) 2 ] 3 . Switching the oxidant to 0.5 equiv of 1,2-diiodoethane and crystallizing from thf repeatedly afforded the bis-halogenated complex Tm[N(SiMe 3 ) 2 ]I 2 (thf) 3 .
NASA Astrophysics Data System (ADS)
Ruzie, L.; Burgess, R.; Hilton, D. R.; Ballentine, C. J.
2012-12-01
Basalts emitted along oceanic ridges have often been subdivided into two categories: the Normal-MORB and the Enriched-MORB, anomalously enriched in highly incompatible elements. Donnelly et al. (2004) proposed that the formation of enriched sources is related to two stages of melting. The first one occurs in subduction zones where the mantle wedge is enriched by the addition of low-degree melts of subducted slab. The second stage of melting occurs beneath ocean ridges. Because of their incompatibility, relatively high concentrations and distinct elemental compositions in surface reservoirs, the heavy halogens (Cl, Br, I) are good tracers to detect the slab contribution in E-MORB sources. However, the halogen systematics in mantle reservoirs remains poorly constrained mainly because of their very low abundance in materials of interest. An innovative halogen analytical technique, developed at the University of Manchester, involving neutron irradiation of samples to convert halogens to noble gases provides detection limits unmatched by any other technique studies [Johnson et al. 2000]. For the first time Cl, Br and I can now be determined in appropriate samples. We focus on the content of halogens in the glassy margins of basalts erupted along the CIR from 18-20°S and the off-axis Gasitao Ridge. Our set of samples contains both N- and E-MORB and is fully described in terms of major and trace elements, as well as 3He/4He ratios and water concentrations [Murton et al., 2005; Nauret et al., 2006; Füri et al., 2011; Barry et al., in prep.]. The halogen concentration range is between 10 and 140 ppm for Cl, 30 and 500 ppb for Br and 0.8 and 10 ppb for I. The higher concentrations are found in E-MORB samples from the northern part of ridge axis. Comparing our data with previous halogen studies, our sample suites fall within the range of N-MORB from East Pacific Ridge (EPR) and Mid-Atlantic Ridge (MAR) [Jambon et al. 1995; Deruelle et al. 1992] and in the lower range of E-MORB from Macquarie Island [Kendrick et al., 2012]. The concentrations are not related to superficial processes. The on-axis samples display a relatively restricted range (6.9-8.6wt%) of MgO contents, suggesting no control of the crystallisation processes. The basalts were erupted between 3900-2000 m bsl, so no appreciable degassing of halogens would be expected. The strong correlation, which exists between the halogens and other incompatible elements (e.g., Rb, La), also rules out seawater assimilation. Therefore, concentrations and elemental ratios can be directly linked to melting and source features. Estimates of halogens abundances in the depleted-mantle source are 4 ppm Cl, 14 ppb Br and 0.3 ppb I. These low abundances, which are in agreement with values derived for sub-continental mantle from coated diamonds [Burgess et al., 2002], suggest that, like noble gases, the upper mantle is degassed of its halogens. Critically, the halogen elemental ratios show no significant variations along the axial ridge and off-axis ridge or between N-MORB and E-MORB: Br/Cl=0.00147±0.00014, I/Cl=0.000021±0.000005; I/Br=0.0142±0.0036. These ratios are similar to E-MORB from Macquarie Island [Kendrick et al., 2012]. This observation is thus not consistent with subduction as a source of halogen enrichment in E-MORB.
Physical Chemistry of Energetic Nitrogen Compounds
1993-10-01
2177 (1981). 8. R.F. Heiner, III, H . Helvajian , G.ý. Holloway,-and J.B. Koffend, J. Phys. Chem . 93, 7813 (1989). 9. D.D. Bell and R.D. Coombe, J. Chem...Deuterium Atom Reactions with NFC12 . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. The Reaction of H Atomps with NF2Cl .............. 22 V...or Br,) was admitted downstream such that a portion of the F atoms were converted to H , Cl or Br atoms prior to the admission of HN3 to the flow. When
Liu, Wenhui; Wang, Qi; Zheng, Yan; Wang, Shubin; Yan, Yan; Yang, Yanzhao
2017-06-06
In this study, a method of one-step separation and recycling of high purity Pd(ii) and Pt(iv) using an ionic liquid, 1-butyl-3-benzimidazolium bromate ([HBBIm]Br), was investigated. The effects of [HBBIm]Br concentration, initial metal concentration, and loading capacity of [HBBIm]Br were examined in detail. It was observed that [HBBIm]Br was a very effective extractant for selectively extracting Pd(ii) and precipitating Pt(iv). Through selectively extracting Pd(ii) and precipitating Pt(iv), each metal with high purity was separately obtained from mixed Pd(ii) and Pt(iv) multi-metal solution. The method of one-step separation of Pd(ii) and Pt(iv) is simple and convenient. The anion exchange mechanism between [HBBIm]Br and Pt(iv) was proven through Job's method and FTIR and 1 H NMR spectroscopies. The coordination mechanism between [HBBIm]Br and Pd(ii) was demonstrated via single X-ray diffraction and was found to be robust and distinct, as supported by the ab initio quantum-chemical studies. The crystals of the [PdBr 2 ·2BBIm] complex were formed first. Moreover, the influence of the concentrations of hydrochloric acid, sodium chloride, and sodium nitrate on the precipitation of Pt(iv) and extraction of Pd(ii) was studied herein. It was found that only the concentration of H + could inhibit the separation of Pt(iv) because H + could attract the anion PtCl 6 2- ; thus, the exchange (anion exchange mechanism) between the anions PtCl 6 2- and Br - was prevented. However, both the concentration of H + and Cl - can obviously inhibit the extraction of Pd(ii) because H + and Cl - are the reaction products and increasing their concentration can inhibit the progress of the reaction (coordination mechanism).
Crystal-field analysis of U3+ ions in K2LaX5 (X=Cl, Br or I) single crystals
NASA Astrophysics Data System (ADS)
Karbowiak, M.; Edelstein, N.; Gajek, Z.; Drożdżyński, J.
1998-11-01
An analysis of low temperature absorption spectra of U3+ ions doped in K2LaX5 (X=Cl, Br or I) single crystals is reported. The energy levels of the U3+ ion in the single crystals were assigned and fitted to a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions at the Cs symmetry site. An analysis of the nephelauxetic effect and crystal-field splittings in the series of compounds is also reported.
The crystal structures of six (2E)-3-aryl-1-(5-halogenothiophen-2-yl)prop-2-en-1-ones
Naik, Vasant S.; Yathirajan, Hemmige S.; Jasinski, Jerry P.; Smolenski, Victoria A.; Glidewell, Christopher
2015-01-01
The structures of six chalcones containing 5-halogenothiophen-2-yl substituents are reported: (2E)-1-(5-chlorothiophen-2-yl)-3-(4-ethylphenyl)prop-2-en-1-one, C15H13ClOS, (I), and (2E)-1-(5-bromothiophen-2-yl)-3-(4-ethylphenyl)prop-2-en-1-one, C15H13BrOS, (II), are isostructural in space group P-1, while (2E)-1-(5-chlorothiophen-2-yl)-3-(4-ethoxyphenyl)prop-2-en-1-one, C15H13ClO2S, (III), and (2E)-1-(5-bromothiophen-2-yl)-3-(4-ethoxyphenyl)prop-2-en-1-one C15H13BrO2S, (IV), are isostructural in space group P21/c. There are no hydrogen bonds of any kind in the structures of compounds (I) and (II), but in the structures of compounds (III) and (IV), the molecules are linked into C(7) chains by means of C—H⋯O hydrogen bonds. In the structure of (2E)-3-(4-bromophenyl)-1-(5-chlorothiophen-2-yl)prop-2-en-1-one, C13H8BrClOS, (V), there are again no hydrogen bonds nor π–π stacking interactions but in that of (2E)-1-(5-bromothiophen-2-yl)-3-(3-methoxyphenyl)prop-2-en-1-one, C14H11BrO2S, (VI), the molecules are linked into C(5) chains by C—H⋯O hydrogen bonds. In each of compounds (I)–(VI), the molecular skeletons are close to planarity, and there are short halogen⋯halogen contacts in the structures of compounds (II) and (V) and a short Br⋯O contact in the structure of compound (VI). Comparisons are made with the structures of some similar compounds. PMID:26396857
NASA Astrophysics Data System (ADS)
Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.
2016-07-01
Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.
NASA Astrophysics Data System (ADS)
Shebl, Magdy; Adly, Omima M. I.; Taha, A.; Elabd, N. N.
2017-11-01
The compound in the title (L) was synthesized and reacted with Cu(II) metal ion with different anions (OAc-, NO3-, SO42-, ClO4-, Cl- and Br-) in absence and presence of auxiliary ligands (L‧); N,O-donor; or N,N-donor; to form binary and ternary Cu(II)-chelates. The metal complexes were fully characterized by analytical and spectral techniques in addition to thermal, conductivity and magnetic susceptibility measurements. The obtained results showed that the ligand behaves as a neutral bidentate, forming chelates with molar ratios: 1:1, 1:2 and 1:3; M:L for binary and 1:2:1 and 1:1:1; M:L:L‧ for ternary complexes, which can be formulated as: [LmCuXn(H2O)y]·zH2O, m = 1 or 2, n = 0, 1 or 2, X = OAc-, SO42-, Cl- or Br-, y = 0 or 2, z = 0 or 0.5; [LmCu(H2O)n]X2·zMeOH, m = 2 or 3, n = 0 or 2, X = ClO4- or NO3-, z = 0 or 1 and [Lm L'Cu(H2O)n](NO3)x·yS, m = 1 or 2, n = 0 or 2, X = 1 or 2, y = 0.5 or 4, S = H2O or MeOH. The ESR spin Hamiltonian parameters of some complexes were calculated. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The structural parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data. The metal complexes exhibited octahedral and square planar geometrical arrangements according to the nature of the anion. The ligand and its metal complexes showed antibacterial activity towards Gram-positive bacteria, Gram-negative bacteria, yeast and fungus.
NASA Astrophysics Data System (ADS)
Chen, Henry; Raby, Paul
2016-09-01
Cs2HfCl6 (CHC) is one of the most promising recently discovered new inorganic single crystal scintillator that has high light output, non-hygroscopic, no self-activity, having energy resolution significantly better than NaI(Tl), even approaching that of LaBr3 yet can also potentially be at a much lower cost than LaBr3. This study attempts to use Monte Carlo simulation to examine the great potential offered by this new scintillator. CHC's detector performance is compared via simulation with that of 4 typical existing scintillators of the same size and same PMT readout. Two halide-scintillators: NaI(Tl) and LaBr3 and two oxide-scintillators: GSO and LSO were used in this simulation to compare their 122 keV and 511 keV gamma responses with that of CHC with both spectroscopy application and imaging applications in mind. Initial simulation results are very promising and consistent with reported experimental measurements. Beside detector energy resolution, image-quality measurement parameters commonly used to characterize imaging detectors as in nuclear medicine such as Light Response Function (LRF) which goes in parallel with spatial resolution and simulated position spectra will also be presented and discussed.
Swift, T. Dallas; Nguyen, Hannah; Anderko, Andrzej; ...
2015-07-25
Here, a kinetic model for the tandem conversion of glucose to 5-hydroxymethylfurfural (HMF) through fructose in aqueous CrCl 3–HCl solution was developed by analyzing experimental data. We show that the coupling of Lewis and Brønsted acids in a single pot overcomes equilibrium limitations of the glucose–fructose isomerization leading to high glucose conversions and identify conditions that maximize HMF yield. Adjusting the HCl/CrCl 3 concentration has a more pronounced effect on HMF yield at constant glucose conversion than that of temperature or CrCl 3 concentration. This is attributed to the interactions between HCl and CrCl 3 speciation in solution that leadsmore » to HMF yield being maximized at moderate HCl concentrations for each CrCl 3 concentration. This volcano-like behavior is accompanied with a change in the rate-limiting step from fructose dehydration to glucose isomerization as the concentration of the Brønsted acid increases. The maximum HMF yield in a single aqueous phase is only modest and appears independent of catalysts’ concentrations as long as they are appropriately balanced. However, it can be further maximized in a biphasic system. Our findings are consistent with recent studies in other tandem reactions catalyzed by different catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swift, T. Dallas; Nguyen, Hannah; Anderko, Andrzej
Here, a kinetic model for the tandem conversion of glucose to 5-hydroxymethylfurfural (HMF) through fructose in aqueous CrCl 3–HCl solution was developed by analyzing experimental data. We show that the coupling of Lewis and Brønsted acids in a single pot overcomes equilibrium limitations of the glucose–fructose isomerization leading to high glucose conversions and identify conditions that maximize HMF yield. Adjusting the HCl/CrCl 3 concentration has a more pronounced effect on HMF yield at constant glucose conversion than that of temperature or CrCl 3 concentration. This is attributed to the interactions between HCl and CrCl 3 speciation in solution that leadsmore » to HMF yield being maximized at moderate HCl concentrations for each CrCl 3 concentration. This volcano-like behavior is accompanied with a change in the rate-limiting step from fructose dehydration to glucose isomerization as the concentration of the Brønsted acid increases. The maximum HMF yield in a single aqueous phase is only modest and appears independent of catalysts’ concentrations as long as they are appropriately balanced. However, it can be further maximized in a biphasic system. Our findings are consistent with recent studies in other tandem reactions catalyzed by different catalysts.« less
Hydrochemical zonation of the western part of Göksu Delta aquifer system, Southern Turkey
NASA Astrophysics Data System (ADS)
Dokuz, U. E.; Çelik, M.; Arslan, Ş.; Engin, H.
2012-04-01
In general, coastal areas are preferred places for human settlement, especially at places where infrastructure routes benefit from rivers, streets, or harbours. As a result, these areas usually suffer from rising population and endure increasingly high demand on natural resources like water. Göksu Delta, located in southern Turkey, is one of the important wetland areas of Turkey at the Mediterranean coast. It is divided into two parts by Göksu River. The western part of the delta, which is the subject matter of this study, hosts fertile agricultural fields, touristic places and a Special Environmental Protection Area. These properties of the region lead to a water-dependent ecosystem where groundwater has widely been used for agricultural and domestic purposes. When the exploitation of groundwater peaked in the middle of 1990s, the groundwater levels dropped and seawater intruded. General Directorate of State Hydraulic Works tried to stop seawater intrusion by building irrigation channels connected to Göksu River and banned drilling of new wells for groundwater exploitation, although it is hard to control the drilling of wells without official permit. Geological studies show that the delta is composed of terrestrial sediments including clay to coarse sand deposited during Quaternary. The heterogeneous sediments of Göksu Delta cause hydrogeological features of the aquifer systems to be heterogeneous and anisotropic. Hydrogeological investigations, therefore, indicate mainly two different aquifers, shallow and deep, separated by an aquitard. The shallow aquifer is under unconfined to confined conditions from north to south while the deep aquifer is under confined conditions. This study focuses on hydrogeochemical zonation in terms of hydrochemical processes that affect the Göksu Delta aquifer systems. For this purpose, hydrogeochemical and isotopic studies are conducted to understand the salinisation and softening processes of groundwater. The physicochemical and hydrochemical features of the water (EC, TDS, HCO3-, SO4-2, Cl-, Na+, Ca+2, Mg+2, K+, Br-, B+3, Sr+2, NO3-, PO4-3) were evaluated and composition diagrams were plotted (e.g. ion vs Cl-, ion vs TDS, Na+ vs Ca+2, HCO3/Cl vs Cl-). Ratios of HCO3/Cl, Na/Cl, Ca/Cl, SO4/Cl, Br/Cl, B/Cl were calculated and isotope analyses (δ18O, δD and Tritium) were conducted. By these methods, it is possible to differentiate the effects of agricultural land use, seawater intrusion, ion exchange, and softening processes. Hydrochemical analyses indicate that the dominant anion is HCO3- and the dominant cation is Ca+2 for the northern part and Na+ for the southern part of the aquifers. Both EC values (417-2890 µS/cm), Cl- (16-320 mg/l) and Na+ (490,68-558,58 mg/l) concentrations of groundwater increase along the flow path from north to south for the aquifer system. Combined evaluations show that seawater intrusion is still dominant in the southern part of the study area while ion exchange and softening processes control the central part. Both NO3- (up to 19,6 mg/l) and PO4-3 (up to 11 mg/l) contents as well as Br/Cl ratios indicate agricultural pollution at some locations in the study area.
Bonding in d9 complexes derived from EPR: Application to CuCl2-4, CuBr2-4, and CdCl2:Cu2+
NASA Astrophysics Data System (ADS)
Aramburu, J. A.; Moreno, M.
1985-12-01
In this work are reported the theoretical expressions for the [g], hyperfine, and superhyperfine (shf) tensors of a d9 square-planar complex within a molecular orbital (MO) scheme. These expressions include contributions arising from crystal field and charge transfer excitations calculated up to third and second order perturbations, respectively. This makes the present framework more general than those previously used. Through those expressions we have derived from the experimental EPR and optical data the MO coefficients corresponding to the valence b1g(x2-y2), b2g(xy), and eg(xz,yz) levels and also the core polarization contribution K to the hyperfine tensor for the systems CuCl2-4, CuBr2-4, and CdCl2:Cu2+. The 3d charge obtained for CuCl2-4 is equal to 0.61, 0.83, and 0.85 for the antibonding 3b1g, 2b2g, and 2eg levels, respectively. These figures are much closer to the Xα results by Bencini and Gatteschi [J. Am. Chem. Soc. 105, 5535 (1983)] than to those by Desjardins et al. [J. Am. Chem. Soc. 105, 4590 (1983)]. The σ and π covalency for CuBr2-4 are both higher than for CuCl2-4 in accord to the lower electronegativity for bromine. However, only for the antibonding 3b1g level of CuBr2-4 have we obtained an electronic charge lying mainly on ligands. The covalency of CdCl2:Cu2+ is smaller than that found for CuCl2-4, a fact associated to a higher metal-ligand distance for the former. Evidence of this statement are also given from the analysis of crystal-field spectra and isotropic shf constant. The values of K derived for CuCl2-4 (128.1×10-4 cm-1), CuBr2-4 (103.6×10-4 cm-1), and CdCl2:Cu2+ (123.9×10-4 cm-1) point out the dependence of K on the equatorial covalency but also on the existence of axial ligands. The [g] tensor of CuBr2-4 is dominated by the charge transfer contribution while the crystal field one is negative. Finally an analysis of the importance of each one of the involved contributions to the spin-Hamiltonian parameters is reported for the three systems, together with the results obtained through a full diagonalization within crystal field and charge transfer states.
NASA Astrophysics Data System (ADS)
Besral, N.; Paul, T.; Thakur, S.; Sarkar, S.; Sardar, K.; Chanda, K.; Das, A.; Chattopadhyay, K. K.
2018-04-01
The impact of varying electron beam voltage upon room temperature CL (cathodoluminescence) properties of crystalline organic-inorganic lead halide perovskite CH3NH3PbBr3 (Methylammonium lead tribromide) microcubes have been studied. CH3NH3PbBr3 microcubes were synthesized at room temperature by a very straight forward wet chemical route. After preliminary characterizations like XRD (X-ray diffraction), FESEM (Field emission scanning electron microscopy), UV-Vis spectroscopy, CL study at three different beam voltages i.e. 5 kV, 10 kV and 15 kV respectively was performed at room temperature. Prominent emission signals were obtained with emission peaks at 2.190 eV (FWHM 0.120 eV), 2.222 eV (FWHM 0.108 eV) and 2.242 eV (FWHM 0.095 eV) for electron beam voltages 5 kV, 10 kV and 15 kV respectively.
Synthesis and nonstoichiometry of the zirconium trihalides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daake, R.L.; Corbett, J.D.
1978-05-01
The synthesis of ZrX/sub 3/ (X = Cl, Br, I) by reaction of the corresponding tetrahalides with ZrCl, ZrBr, or ZrI/sub 1.8/ in sealed tantalum tubing gives high-purity, single-phase products, thereby avoiding problems of the relatively low reactivity of and contamination by zirconium powder reductant used previously. Phase limits for the three trihalides established by isopiestic equilibration with the adjoining phases are 2.94 (2) less than or equal to Cl:Zr less than or equal to 3.03 (2) (440/sup 0/C), 2.87 (2) less than or equal to Br:Zr less than or equal to 3.23 (2) (435/sup 0/C), and 2.83 (5) (775/supmore » 0/C) less than or equal to I:Zr less than or equal to 3.43 (5) (475/sup 0/C). The hexagonal lattice constants for the bromide phase (Guinier techniques) decrease linearly with increasing bromide content across the entire range without the development of any additional lines. The variation of the c dimension for ZrI/sub 3/ (and HfI/sub 3/) on oxidation is in the opposite direction, and in this case extra lines from a presumed superlattice structure developed toward the upper limit. The structural implications of these results are considered. The reported structure for ..cap alpha..-ZrCl/sub 3/, an unusual BiI/sub 3/-type variant, was based on a misassigned ZrCl powder pattern and therefore appears to be in error. 25 references.« less
Hemilability of the 1,2-Bis(dimethylphosphino)ethane (dmpe) Ligand in Cp*Mo(NO)(κ2-dmpe).
Holmes, Aaron S; Patrick, Brian O; Levesque, Taleah M; Legzdins, Peter
2017-09-18
Reaction of Cp*Mo(NO)Cl 2 with 1 equiv of 1,2-bis(dimethylphosphino)ethane (dmpe) in THF at ambient temperature forms [Cp*Mo(NO)(Cl)(κ 2 -dmpe)]Cl (1), which is isolable as an analytically pure yellow powder in 65% yield. Further addition of 2 equiv of Cp 2 Co to 1 in CH 2 Cl 2 affords dark red Cp*Mo(NO)(κ 2 -dmpe) (2), which was isolated in 36% yield by recrystallization from Et 2 O at -30 °C. Reaction of a benzene solution of 2 with an equimolar amount of elemental sulfur results in the immediate production of dark blue (μ-S)[Cp*Mo(NO)(κ 1 -dmpeS)] 2 (3), which is a rare example of a bimetallic transition-metal complex bridged by only a single sulfur atom and involving Mo═S═Mo bonding. In contrast, reaction of 2 with an excess of sulfur in benzene results in the formation of Cp*Mo(NO)(η 2 -S 2 )(κ 1 -dmpeS) (4). Complex 4 can also be formed by the addition of elemental sulfur to 3, thereby indicating that 3 is a precursor to 4. Cp*Mo(NO)(κ 2 -dmpe) (2) also undergoes interesting transformations when treated with organic bromides. For instance, reaction of 2 with 5 equiv benzyl bromide in THF produces the bimetallic complex (μ-dmpe)[Cp*Mo(NO)Br 2 ] 2 (5) and bibenzyl after 4 d at 70 °C probably via radical intermediates. In contrast to its reaction with benzyl bromide, complex 2 forms [Mo(NO)Br 2 (κ 2 -dmpe)] 2 (6), olefin, alkane, and Cp*H when treated with 5 equiv of 1-bromopropane or 1-bromooctane in THF at 70 °C for 72 h. Interestingly, complex 2 does not display any reactivity with bromobenzene or 1-bromoadamantane even after being heated for several days at 70 °C. All new complexes were characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of most of them were established by single-crystal X-ray crystallographic analyses.
Continued development of thallium bromide and related compounds for gamma-ray spectrometers
NASA Astrophysics Data System (ADS)
Kim, H.; Churilov, A.; Ciampi, G.; Cirignano, L.; Higgins, W.; Kim, S.; O'Dougherty, P.; Olschner, F.; Shah, Kanai
2011-02-01
Thallium bromide (TlBr) and related ternary compounds, TlBrI and TlBrCl, have been under development for room temperature gamma-ray spectroscopy due to high density, high Z and wide bandgap of the material. Low melting point and cubic crystal structure of selected compositions of these compounds facilitate crystal growth by melt techniques. Recent advances in material purification, crystal growth, and device processing have led to mobility-lifetime products of electrons in the mid 10 -3 cm 2/V range enabling working detectors of greater than 15 mm thickness to be fabricated. In this paper we report on our recent progress on TlBr detector development and first results from TlBr xCl 1- x devices. Pulse height spectra will be presented from TlBr arrays as thick as 18 mm. Depth corrected spectra will also be presented. For a 5 mm thick TlBr array, energy resolution of less than 1% (FWHM at 662 keV) was obtained after depth correction.
NASA Astrophysics Data System (ADS)
Katz, Brian G.; Eberts, Sandra M.; Kauffman, Leon J.
2011-02-01
SummaryA detailed review was made of chemical indicators used to identify impacts from septic tanks on groundwater quality. Potential impacts from septic tank leachate on groundwater quality were assessed using the mass ratio of chloride-bromide (Cl/Br), concentrations of selected chemical constituents, and ancillary information (land use, census data, well depth, soil characteristics) for wells in principal aquifers of the United States. Chemical data were evaluated from 1848 domestic wells in 19 aquifers, 121 public-supply wells in 6 aquifers, and associated monitoring wells in four aquifers and their overlying hydrogeologic units. Based on previously reported Cl/Br ratios, statistical comparisons between targeted wells (where Cl/Br ratios range from 400 to 1100 and Cl concentrations range from 20 to 100 mg/L) and non-targeted wells indicated that shallow targeted monitoring and domestic wells (<20 m depth below land surface) had a significantly ( p < 0.05) higher median percentage of houses with septic tanks (1990 census data) than non-targeted wells. Higher ( p = 0.08) median nitrate-N concentration (3.1 mg/L) in oxic (dissolved oxygen concentrations >0.5 mg/L) shallow groundwater from target domestic wells, relative to non-target wells (1.5 mg/L), corresponded to significantly higher potassium, boron, chloride, dissolved organic carbon, and sulfate concentrations, which may also indicate the influence of septic-tank effluent. Impacts on groundwater quality from septic systems were most evident for the Eastern Glacial Deposits aquifer and the Northern High Plains aquifer that were associated with the number of housing units using septic tanks, high permeability of overlying sediments, mostly oxic conditions, and shallow wells. Overall, little or no influence from septic systems were found for water samples from the deeper public-supply wells. The Cl/Br ratio is a useful first-level screening tool for assessing possible septic tank influence in water from shallow wells (<20 m) with the range of 400-1100. The use of this ratio would be enhanced with information on other chloride sources, temporal variability of chloride and bromide concentrations in shallow groundwater, knowledge of septic-system age and maintenance, and the use of multiple tracers (combination of additional chemical and microbiological indicators).
Performance tests of a large volume cerium tribromide (CeBr3) scintillation detector.
Naqvi, A A; Khiari, F Z; Liadi, F A; Khateeb-Ur-Rehman; Isab, A A
2016-08-01
The response of a large cylindrical 76mm×76mm (height×diameter) cerium tribromide (CeBr3) detector was measured for prompt gamma rays. The total intrinsic activity of the CeBr3 detector, which was measured over 0.33-3.33MeV range, was found to be 0.022±0.001 counts/s/cm(3). The partial intrinsic activity ( due to (227)Ac contamination), was measured over a energy range of 1.22-2.20MeV energy, was found to be 0.007±0.001 counts/s/cm(3). Compared to intrinsic activities of LaBr3:Ce and LaCl3:Ce detectors of equivalent volume, the CeBr3 detector has 7-8 times less total intrinsic activity. The detector response for low energy prompt gamma rays was measured over 0.3-0.6MeVgamma energy range using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. The experimental yield of boron, cadmium and mercury prompt gamma-rays was measured from water samples contaminated with 0.75-2.5wt% mercury, 0.31-2.50wt% boron, and 0.0625-0.500wt% cadmium, respectively. An excellent agreement has been observed between the calculated and experimental yields of the gamma rays. Also minimum detection limit (MDC) of the CeBr3 detector was measured for boron, cadmium and mercury samples. The CeBr3 detector has 23% smaller value of MDCB and 18% larger value of MDCCd than those of a LaBr3:Ce detector of equivalent size. This study has shown that CeBr3 detector has an excellent response for the low energy prompt gamma-rays with almost an order of magnitude low intrinsic activity as compared to LaCl3:Ce and LaBr3:Ce detectors of equivalent volume. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, M.; Keene, W. C.; Easter, Richard C.
Observations and model studies suggest a significant but highly non-linear role for halogens, primarily Cl and Br, in multiphase atmospheric processes relevant to tropospheric chemistry and composition, aerosol evolution, radiative transfer, weather, and climate. The sensitivity of global atmospheric chemistry to the production of marine aerosol and the associated activation and cycling of inorganic Cl and Br was tested using a size-resolved multiphase coupled chemistry/global climate model (National Center for Atmospheric Research’s Community Atmosphere Model (CAM); v3.6.33). Simulation results showed strong meridional and vertical gradients in Cl and Br species. The simulation reproduced most available observations with reasonable confidence permittingmore » the formulation of potential mechanisms for several previously unexplained halogen phenomena including the enrichment of Br- in submicron aerosol, and the presence of a BrO maximum in the polar free troposphere. However, simulated total volatile Br mixing ratios were generally high in the troposphere. Br in the stratosphere was lower than observed due to the lack of long-lived organobromine species in the simulation. Comparing simulations using chemical mechanisms with and without reactive Cl and Br species demonstrated a significant temporal and spatial sensitivity of primary atmospheric oxidants (O3, HOx, NOx), CH4, and non-methane hydrocarbons (NMHC’s) to halogen cycling. Simulated O3 and NOx were globally lower (65% and 35%, respectively, less in the planetary boundary layer based on median values) in simulations that included halogens. Globally, little impact was seen in SO2 and non-sea-salt SO42- processing due to halogens. Significant regional differences were evident: The lifetime of nss-SO42- was extended downwind of large sources of SO2. The burden and lifetime of DMS (and its oxidation products) were lower by a factor of 5 in simulations that included halogens, versus those without, leading to a 20% reduction in nss-SO42- in the southern hemisphere planetary boundary layer based on median values.« less
DFT study of the effect of substituents on the absorption and emission spectra of Indigo
2012-01-01
Background Theoretical analyses of the indigo dye molecule and its derivatives with Chlorine (Cl), Sulfur (S), Selenium (Se) and Bromine (Br) substituents, as well as an analysis of the Hemi-Indigo molecule, were performed using the Gaussian 03 software package. Results Calculations were performed based on the framework of density functional theory (DFT) with the Becke 3- parameter-Lee-Yang-Parr (B3LYP) functional, where the 6-31 G(d,p) basis set was employed. The configuration interaction singles (CIS) method with the same basis set was employed for the analysis of excited states and for the acquisition of the emission spectra. Conclusions The presented absorption and emission spectra were affected by the substitution position. When a hydrogen atom of the molecule was substituted by Cl or Br, practically no change in the absorbed and emitted energies relative to those of the indigo molecule were observed; however, when N was substituted by S or Se, the absorbed and emitted energies increased. PMID:22809100
Gold(I) and Gold(III) Complexes of Cyclic (Alkyl)(amino)carbenes
2016-01-01
The chemistry of Au(I) complexes with two types of cyclic (alkyl)(amino)carbene (CAAC) ligands has been explored, using the sterically less demanding dimethyl derivative Me2CAAC and the 2-adamantyl ligand AdCAAC. The conversion of (AdCAAC)AuCl into (AdCAAC)AuOH by treatment with KOH is significantly accelerated by the addition of tBuOH. (AdCAAC)AuOH is a convenient starting material for the high-yield syntheses of (AdCAAC)AuX complexes by acid/base and C–H activation reactions (X = OAryl, CF3CO2, N(Tf)2, C2Ph, C6F5, C6HF4, C6H2F3, CH2C(O)C6H4OMe, CH(Ph)C(O)Ph, CH2SO2Ph), while the cationic complexes [(AdCAAC)AuL]+ (L = CO, CNtBu) and (AdCAAC)AuCN were obtained by chloride substitution from (AdCAAC)AuCl. The reactivity toward variously substituted fluoroarenes suggests that (AdCAAC)AuOH is able to react with C–H bonds with pKa values lower than about 31.5. This, together with the spectroscopic data, confirm the somewhat stronger electron-donor properties of CAAC ligands in comparison to imidazolylidene-type N-heterocyclic carbenes (NHCs). In spite of this, the oxidation of Me2CAAC and AdCAAC gold compounds is much less facile. Oxidations proceed with C–Au cleavage by halogens unless light is strictly excluded. The oxidation of (AdCAAC)AuCl with PhICl2 in the dark gives near-quantitative yields of (AdCAAC)AuCl3, while [Au(Me2CAAC)2]Cl leads to trans-[AuCl2(Me2CAAC)2]Cl. In contrast to the chemistry of imidazolylidene-type gold NHC complexes, oxidation products containing Au–Br or Au–I bonds could not be obtained; whereas the reaction with CsBr3 cleaves the Au–C bond to give mixtures of [AdCAAC-Br]+[AuBr2]− and [(AdCAAC-Br)]+ [AuBr4]−, the oxidation of (AdCAAC)AuI with I2 leads to the adduct (AdCAAC)AuI·I2. Irrespective of the steric demands of the CAAC ligands, their gold complexes proved more resistant to oxidation and more prone to halogen cleavage of the Au–C bonds than gold(I) complexes of imidazole-based NHC ligands. PMID:26146436
Volatile Element Geochemistry in the Lower Atmosphere of Venus
NASA Technical Reports Server (NTRS)
Schaefer, L.; Fegley, B., Jr.
2004-01-01
We computed equilibrium abundances of volatile element compounds as a function of altitude in Venus lower atmosphere. The elements included are generally found in volcanic gases and sublimates on Earth and may be emitted in volcanic gases on Venus or volatilized from its hot surface. We predict: 1) PbS, Bi2S3, or possibly a Pb-Bi sulfosalt are the radar bright heavy metal frost in the Venusian highlands; 2) It should be possible to determine Venus' age by Pb-Pb dating of PbS condensed in the Venusian highlands, which should be a representative sample of Venusian lead; 3) The gases HBr, PbCl2, PbBr2, As4O6, As4S4, Sb4O6, BiSe, InBr, InCl, Hg, TlCl, TlBr, SeS, Se2-7, HI, I, I2, ZnCl2, and S2O have abundances greater than 0.1 ppbv in our nominal model and may be spectroscopically observable; 4) Cu, Ag, Au, Zn, Cd, Ge, and Sn are approx. 100 % condensed at the 740 K (0 km) level on Venus.
Biocompatible Ferromagnetic Cr-Trihalide Monolayers
NASA Astrophysics Data System (ADS)
Sun, Qiang
Cr with an electronic configuration of 3d54s1 possesses the largest atomic magnetic moment (6µB) of all elements in the 3d transition metal series. Furthermore, the trivalent chromium (Cr3+) is biocompatible and is widely found in food and supplements. Here using first principles calculations combined with Monte Carlo simulations based on Ising model, we systematically study a class of 2D ferromagnetic monolayers CrX3 (X = Cl, Br, I). The feasibility of exfoliation from their layered bulk phase is confirmed by the small cleavage energy and high in-plane stiffness. Spin-polarized calculations, combined with self consistently determined Hubbard U that accounts for strong correlation energy, demonstrate that CrX3 (X =Cl, Br, I) monolayers are ferromagnetic and Cr is trivalent and carries a magnetic moment of 3µB, the resulting Cr3+ ions are biocompatible. The corresponding Curie temperatures for CrCl3 CrBr3 CrI3 are are found to 66, 86, and 107 K, respectively, which can be increased to 323, 314, 293 K by hole doping. The biocompatibility and ferromagnetism render these Cr-containing trichalcogenide monolayers unique for applications.
Diurnal variation of O3, ClO, HOCl, HO2, and BrO observed by JEM/SMILES
NASA Astrophysics Data System (ADS)
Suzuki, Makoto; Mitsuda, Chihiro; Manago, Naohiro; Imai, Koji; Sakazaki, Takatoshi; Ozeki, Hiroyuki; Nishimoto, Eriko; Naito, Yoko; Akiyoshi, Hidehary; Kinnison, Douglas; Sano, Takuki; Shiotani, Masato
2013-04-01
SMILES; Superconducting Submillimeter-Wave Limb Emission Sounder is a 4 K cooled 625-650 GHz limb sounder to observe O3, HCl, ClO, HO2, HOCl, BrO, HNO3, and O3 isotopes. SMILES had been operated on the International Space Station from Oct. 12, 2009 to Apr. 21, 2010. Since ISS is 51° inclined orbit, 30-45 days SMILES zonal mean could provide diurnal variation of chemical species in the stratosphere and mesosphere. Diurnal variation of O3, ClO, HOCl, HO2, and BrO are compared with two nudged CGCM calculations (SD-WACCM; Specified-dynamics WACCM, and MIROC) and satellite observations. Diurnal variation of O3 agreed with SD-WACCM over 50-82 km, but small peak in the morning (7 am local time) is apparent for the SMILES but not for the SD-WACCM at 70 km. Diurnal variation of ClO agreed quite well between SMILES L2 ver. 2.2 and SD-WACCM from 19 to 76 km altitude region. But nighttime ClO value of SMILES L2 ver. 2,2 above 50 km is less than SD-WACCM (70%), which is not clearly explained by the SMILES retrieval issue or our current knowledge of chemical kinetics. Diurnal variation of HOCl also agreed quite nicely from 31 to 76 km. SMILES HOCl retrieval is difficult since it is strongly affected by nearby O3 isotope and O3 hot band lines, as well as very strong HCl line. The nighttime build up of HOCl observed SMILES at 44-68 km are nicely reproduced by the SD-WACCM calculation using JPL2006 chemical kinetics dataset. But chemical kinetics calculation using SMILES ClO, HO2, and HOCl at 35-45 km altitude supported much faster reaction rate of ClO + HO2 given by JPL2010. HO2 diurnal variation also agreed with SD-WACCM from 24 to 72 km. Above 76 km, SMILES L2 ver. 2.2 needs modification of a priori and its co-variance, and we will get better agreement with model calculations. SMILES L2 ver. 2.2 also shows night time bias due to AOS (Acousto-Optics Spectrometer) characteristics. SMILES Band C BrO observation is strongly interfered by overlapping O3 isotope lines, and it is currently under test retrieval stage. SMILES BrO L2 ver. 2.2 looks appropriate (answering independent of a priori value) from 19 to 64 km. After the sunset build-up and slow nighttime decay of BrO observed SMLES L2 ver. 2.2 agreed well with SD-WACCM. SMILES BrO value has negative bias from 25 to 37 km, and it should be subtracted for scientific usage. In general, SMILES L2 ver. 2.2 agreed well with SD-WACCM calculation. Agreement with MIROC is much less since the MIROC model use simplified chemistry package. We believe that the SMILES and SD-WACCM agreement is not false (a priori origin) but both SMILES observation and CGCM calculation made by SD-WACCM are enough precise and accurate.
Xia, Yilu; Liu, Dingdong; Dong, Ying; Chen, Jiazheng; Liu, Huijun
2018-03-01
The rapid increase in the production and practical application of ionic liquids (ILs) could pose potential threats to aquatic systems. In this study, we investigated the effects of four ILs with different cations and anions, including 1-hexyl-3-methylimidazolium nitrate ([HMIM]NO 3 ), 1-hexyl-3-methylimidazolium chloride ([HMIM]Cl), N-hexyl-3-metylpyridinium chloride ([HMPy]Cl), and N-hexyl-3-metylpyridinium bromide ([HMPy]Br), on photosystem and cellular structure of Scenedesmus obliquus. The results indicated that ILs are phytotoxic to S. obliquus. The contents of chlorophyll a, chlorophyll b and total chlorophyll decreased with increasing ILs concentrations. The chlorophyll fluorescence parameters of photosynthetic system II (PSII), including minimal fluorescence yield (F 0 ), potential efficiency of PSII (F v /F o ), maximum quantum efficiency of PSII photochemistry (F v /F m ), yield of photochemical quantum [Y(II)], and non-photochemical quenching coefficient without measuring F 0 ' (NPQ), were all affected. This indicates that ILs could damage PSII, inhibit the primary reaction of photosynthesis, interdict the process of electron-transfer and lead to loss of heat-dissipating ability. ILs also increased cell membrane permeability of S. obliquus, influenced the cellular ultrastructure, changed the morphology of algae cells and destroyed the cell wall, cell membrane and organelles. The results indicated that imidazolium ILs had greater effect than pyridinium ILs, NO 3 - -IL and Br - -IL had greater effect than Cl - -IL. To minimize threats to the environment, the structure of ILs should be taken into consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Halogen bonds in some dihalogenated phenols: applications to crystal engineering.
Mukherjee, Arijit; Desiraju, Gautam R
2014-01-01
3,4-Dichlorophenol (1) crystallizes in the tetragonal space group I41/a with a short axis of 3.7926 (9) Å. The structure is unique in that both type I and type II Cl⋯Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C-Cl⋯Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2) and 3-bromo-4-chlorophenol (3) have been determined. The crystal structure of (2) is isomorphous to that of (1) with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P21/c packing of compound (3) is different; while the structure still has O-H⋯O hydrogen bonds, the tetramer O-H⋯O synthon seen in (1) and (2) is not seen. Rather than a type I Br⋯Br interaction which would have been mandated if (3) were isomorphous to (1) and (2), Br forms a Br⋯O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4) and 3,5-dibromophenol (5) were also determined. A computational survey of the structural landscape was undertaken for (1), (2) and (3), using a crystal structure prediction protocol in space groups P21/c and I41/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3) takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1), (2) and (4). Length variations with temperature are greater for type II contacts compared with type I. The type II Br⋯Br interaction in (2) is stronger than the corresponding type II Cl⋯Cl interaction in (1), leading to elastic bending of the former upon application of mechanical stress, which contrasts with the plastic deformation of (1). The observation of elastic deformation in (2) is noteworthy; in that it finds an explanation based on the strengths of the respective halogen bonds, it could also be taken as a good starting model for future property design. Cl/Br isostructurality is studied with the Cambridge Structural Database and it is indicated that this isostructurality is based on shape and size similarity of Cl and Br, rather than arising from any chemical resemblance.
Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi
2018-01-23
A relationship between reported experimental band gaps (solid) and DFT-calculated binding energies (gas) is established, for the first time, for each of the four ten-membered lead (or tin) trihalide perovskite solar cell semiconductor series examined in this study, including CH 3 NH 3 PbY 3 , CsPbY 3 , CH 3 NH 3 SnY 3 and CsSnY 3 (Y=I (3-x) Br x=1-3 , I (3-x) Cl x=1-3 , Br (3-x) Cl x=1-3 , and IBrCl). The relationship unequivocally provides a new dimension for the fundamental understanding of the optoelectronic features of solid-state solar cell thin films by using the 0 K gas-phase energetics of the corresponding molecular building blocks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Lin; Sun, Hongjian; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter
2016-11-15
The selective activation of the C-F bonds in substituted (2,6-difluorophenyl)phenylimines (2,6-F 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-n'-R-C 6 H 4 (n' = 2, R = H (1); n' = 2, R = Me (2); n' = 4, R = tBu (3))) by Fe(PMe 3 ) 4 with an auxiliary strong Lewis acid (LiBr, LiI, or ZnCl 2 ) was explored. As a result, iron(ii) halides ((H 5 C 6 -(C[double bond, length as m-dash]NH)-2-FH 3 C 6 )FeX(PMe 3 ) 3 (X = Br (8); Cl (9)) and (n-RH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-FH 3 C 6 )FeX(PMe 3 ) 3 (n = 2, R = Me, X = Br (11); n = 4, R = tBu, X = I (12))) were obtained. Under similar reaction conditions, using LiBF 4 instead of LiBr or ZnCl 2 , the reaction of (2,6-difluorophenyl)phenylimine with Fe(PMe 3 ) 4 afforded an ionic complex [(2,6-F 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-H 4 C 6 )Fe(PMe 3 ) 4 ](BF 4 ) (10) via the activation of a C-H bond. The method of C-F bond activation with an auxiliary strong Lewis acid is appropriate for monofluoroarylmethanimines. Without the Lewis acid, iron(ii) hydrides ((2-RH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-FH 3 C 6 )FeH(PMe 3 ) 3 (R = H (13); Me (14))) were generated from the reactions of Fe(PMe 3 ) 4 with the monofluoroarylmethanimines (2-FH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-RC 6 H 4 (R = H (4); Me (5))); however, in the presence of ZnCl 2 or LiBr, iron(ii) halides ((2-RH 4 C 6 -(C[double bond, length as m-dash]NH)-H 4 C 6 )FeX(PMe 3 ) 3 (R = H, X = Cl (15); R = Me, X = Br (16))) could be obtained through the activation of a C-F bond. Furthermore, a C-F bond activation with good regioselectivity in (pentafluorophenyl)arylmethanimines (F 5 C 6 -(C[double bond, length as m-dash]NH)-2,6-Y 2 C 6 H 3 (Y = F (6); H (7))) could be realized in the presence of ZnCl 2 to produce iron(ii) chlorides ((2,6-Y 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-F 4 C 6 )FeCl(PMe 3 ) 3 (Y = F (17); H (18))). This series of iron(ii) halides could be used to catalyze the hydrosilylation reaction of aldehydes. Due to the stability of iron(ii) halides to high temperature, the reaction mixture was allowed to be heated to 100 °C and the reaction could finish within 0.5 h.
NASA Astrophysics Data System (ADS)
Trudinger, C. M.; Etheridge, D. M.; Sturrock, G. A.; Fraser, P. J.; Krummel, P. B.; McCulloch, A.
2004-11-01
We reconstruct atmospheric levels of methyl bromide (CH3Br), methyl chloride (CH3Cl), chloroform (CHCl3), and dichloromethane (CH2Cl2) back to before 1940 using measurements of air extracted from firn on Law Dome in Antarctica. The firn air at this site has a relatively narrow age spread, giving high time resolution reconstructions. The CH3Br reconstructions confirm previously measured firn records but with more temporal structure. Our CH3Cl reconstruction is slightly different from previous reconstructions, raising some questions about CH3Cl in the firn. Our reconstructions for CHCl3 and CH2Cl2 are the first published records of concentration prior to direct atmospheric measurements. A two-box atmospheric model is used to investigate the budgets of these gases. Much of the variation in CH3Cl can be explained by biomass burning emissions that increase up to 1980 and then are relatively stable apart from some high burning years such as 1997-1998. The CHCl3 firn reconstruction suggests that the anthropogenic source for CHCl3 is greater than previously thought, with human influence on the soil source a possible important contributor here. The CH2Cl2 firn reconstruction is consistent with industrial emission estimates based on audited sales data but suggests that the ocean source of CH2Cl2 is less than previously estimated.
Squarylium-based chromogenic anion sensors
NASA Astrophysics Data System (ADS)
Lee, Eun-Mi; Gwon, Seon-Yeong; Son, Young-A.; Kim, Sung-Hoon
2012-09-01
A squarylium (SQ) dye was synthesized by the reaction between squaric acid and 2,3,3-trimethylindolenine and its anion sensing properties were investigated using absorption and emission spectroscopy. This chemosensor exhibited high selectivity for CN- as compared with F-, CHCO2-, Br-, HPO4-, Cl-, and NO3- in acetonitrile, which was attributed to the formation of a 1:1 squarylium:CN- coordination complex, the formation of which was supported by the calculated geometry of the complex.
Specific anion binding to sulfobetaine micelles and kinetics of nucleophilic reactions.
Marte, Luisa; Beber, Rosane C; Farrukh, M Akhyar; Micke, Gustavo A; Costa, Ana C O; Gillitt, Nicholas D; Bunton, Clifford A; Di Profio, Pietro; Savelli, Gianfranco; Nome, Faruk
2007-08-23
With fully micellar bound substrates reactions of OH- with benzoic anhydride, Bz(2)O, and of Br- with methyl naphthalene-2-sulfonate, MeONs, in micellized sulfobetaines are strongly inhibited by NaClO4 which displaces the nucleophilic anions from the micellar pseudophases. Micellar incorporations of ClO4- and Br- are estimated with an ion-selective electrode and by electrophoresis, and partitioning of Br- between water and micelles is related to changes in NMR spectral (79)Br- line widths. Extents of inhibition by ClO4- of these nucleophilic reactions in the micellar pseudophase are related to quantitative displacement of the reactive anions from the micelles by ClO4-. The kinetic data are correlated with physical evidence on the strong interactions between sulfobetaines and ClO4-, which turn sulfobetaine micelles anionic and effectively provoke displacement of OH- and Br-.
Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I; Krieg, Franziska; Caputo, Riccarda; Hendon, Christopher H; Yang, Ruo Xi; Walsh, Aron; Kovalenko, Maksym V
2015-06-10
Metal halides perovskites, such as hybrid organic-inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4-15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410-700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12-42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1-29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410-530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Precipitation of salts in freezing seawater and ozone depletion events: a status report
NASA Astrophysics Data System (ADS)
Morin, S.; Marion, G. M.; von Glasow, R.; Voisin, D.; Bouchez, J.; Savarino, J.
2008-12-01
In springtime, the polar marine boundary layer exhibits drastic ozone depletion events (ODEs), associated with elevated bromine oxide (BrO) mixing ratios. The current interpretation of this peculiar chemistry requires the existence of acid and bromide-enriched surfaces to heterogeneously promote and sustain ODEs. Sander et al. (2006) have proposed that calcium carbonate (CaCO3) precipitation in any seawater-derived medium could potentially decrease its alkalinity, making it easier for atmospheric acids such as HNO3 and H2SO4 to acidify it. We performed simulations using the state-of-the-art FREZCHEM model, capable of handling the thermodynamics of concentrated electrolyte solutions, to try to reproduce their results, and found that when ikaite (CaCO3·6H2O) rather than calcite (CaCO3) precipitates, there is no such effect on alkalinity. Given that ikaite has recently been identified in Antarctic brines (Dieckmann et al., 2008), our results show that great caution should be exercised when using the results of Sander et al. (2006), and reveal the urgent need of laboratory investigations on the actual link(s) between bromine activation and the pH of the surfaces on which it is supposed to take place at subzero temperature. In addition, the evolution of the Cl/Br ratio in the brine during freezing was computed using FREZCHEM, taking into account Br substitutions in Cl-containing salts.
Permanent electric dipole moments of PtX (X = H, F, Cl, Br, and I) by the composite approach
NASA Astrophysics Data System (ADS)
Deng, Dan; Lian, Yongqin; Zou, Wenli
2017-11-01
Using the FPD composite approach of Peterson et. al. we calculate the permanent electric dipole moments of PtX (X = H, F, Cl, Br, and I) at the equilibrium geometries of their ground states. The dipole moment of PtF is estimated to be 3.421 Debye, being very close to the experimental value of 3.42(6) Debye. This research also suggests the ordering of dipole moments of PtX being proportional to the electronegativity of X.
A Highly Reactive Dicationic Iridium(III) Catalyst for Polarized Nazarov Cyclization
Vaidya, Tulaza; Atesin, Abdurrahman C.; Herrick, Ildiko R.; Frontier, Alison J.; Eisenberg, Richard
2010-01-01
Pushing the Nazarov Envelope A new electrophilic complex [IrBr(CO)(diethylisopropylidene malonate)((R)-(+)-BINAP)](SbF6)2 (2) exhibits unusual activity in the catalysis of polarized Nazarov cyclization. Aryl vinyl ketones that show poor reactivity with well-known catalysts such as [Ir(CH3)(CO)(1,2-diiodobenzene)(dppe)](B(Arf)4−)2 (1), Sc(OTf)3 + LiClO4 and Cu(ClO4)2, can be cyclized with 2 + AgSbF6 (1:1) under mild conditions with concurrent AgBr precipitation. PMID:20358570
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakazaki, Nobuya, E-mail: nakazaki.nobuya.58x@st.kyoto-u.ac.jp; Takao, Yoshinori; Eriguchi, Koji
Classical molecular dynamics (MD) simulations have been performed for Cl{sup +} and Br{sup +} ions incident on Si(100) surfaces with Cl and Br neutrals, respectively, to gain a better understanding of the ion-enhanced surface reaction kinetics during Si etching in Cl- and Br-based plasmas. The ions were incident normally on surfaces with translational energies in the range E{sub i} = 20–500 eV, and low-energy neutrals of E{sub n} = 0.01 eV were also incident normally thereon with the neutral-to-ion flux ratio in the range Γ{sub n}{sup 0}/Γ{sub i}{sup 0} = 0–100, where an improved Stillinger--Weber potential form was employed for the interatomic potential concerned. The etch yieldsmore » and thresholds presently simulated were in agreement with the experimental results previously reported for Si etching in Cl{sub 2} and Br{sub 2} plasmas as well as in Cl{sup +}, Cl{sub 2}{sup +}, and Br{sup +} beams, and the product stoichiometry simulated was consistent with that observed during Ar{sup +} beam incidence on Si in Cl{sub 2}. Moreover, the surface coverage of halogen atoms, halogenated layer thickness, surface stoichiometry, and depth profile of surface products simulated for Γ{sub n}{sup 0}/Γ{sub i}{sup 0} = 100 were in excellent agreement with the observations depending on E{sub i} reported for Si etching in Cl{sub 2} plasmas. The MD also indicated that the yield, coverage, and surface layer thickness are smaller in Si/Br than in Si/Cl system, while the percentage of higher halogenated species in product and surface stoichiometries is larger in Si/Br. The MD further indicated that in both systems, the translational energy distributions of products and halogen adsorbates desorbed from surfaces are approximated by two Maxwellians of temperature T{sub 1} ≈ 2500 K and T{sub 2} ≈ 7000–40 000 K. These energy distributions are discussed in terms of the desorption or evaporation from hot spots formed through chemically enhanced physical sputtering and physically enhanced chemical sputtering, which have so far been speculated to both occur in the ion-enhanced surface reaction kinetics of plasma etching.« less
2015-07-14
2.4 ms [24] for Er: KPb2Cl5 and ~ 1.9 ms [13] for Er: KPb2Br5). This feature is indicative of nonradiative ETU process taking place [16...such as YAG as nonradiative decay rates are smaller in chloride and bromide based hosts. Using equation (5) the microparameters for the infrared...is present which also contributes to the effective decay transient. Similar to Pr3+ in the halide hosts KPb2Cl5 and 25 KPb2Br5 nonradiative decay
Shen, Yue-Ling; Mao, Jiang-Gao
2005-07-25
Solid-state reactions of lanthanide(III) oxide (and lanthanide(III) oxyhalide), transition metal halide (and transition metal oxide), and TeO(2) at high temperature lead to six new lanthanide transition metal tellurium(IV) oxyhalides with three different types of structures, namely, DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, ErCuTe(2)O(6)Br, Sm(2)Mn(Te(5)O(13))Cl(2), Dy(2)Cu(Te(5)O(13))Br(2), and Nd(4)Cu(TeO(3))(5)Cl(3). Compounds DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, and ErCuTe(2)O(6)Br are isostructural. The lanthanide(III) ion is eight-coordinated by eight oxygen atoms, and the copper(II) ion is five-coordinated by four oxygens and a halide anion in a distorted square pyramidal geometry. The interconnection of Ln(III) and Cu(II) ions by bridging tellurite anions results in a three-dimensional (3D) network with tunnels along the a-axis; the halide anion and the lone-pair electrons of the tellurium(IV) ions are oriented toward the cavities of the tunnels. Compounds Sm(2)Mn(Te(5)O(13))Cl(2) and Dy(2)Cu(Te(5)O(13))Br(2) are isostructural. The lanthanide(III) ions are eight-coordinated by eight oxygens, and the divalent transition metal ion is octahedrally coordinated by six oxygens. Two types of polymeric tellurium(IV) oxide anions are formed: Te(3)O(8)(4)(-) and Te(4)O(10)(4)(-). The interconnection of the lanthanide(III) and divalent transition metal ions by the above two types of polymeric tellurium(IV) oxide anions leads to a 3D network with long, narrow-shaped tunnels along the b-axis. The halide anions remain isolated and are located at the above tunnels. Nd(4)Cu(TeO(3))(5)Cl(3) features a different structure. All five of the Nd(III) ions are eight-coordinated (NdO(8) for Nd(1), Nd(2), Nd(4), and Nd(5) and NdO(7)Cl for Nd(3)), and the copper(I) ion is tetrahedrally coordinated by four chloride anions. The interconnection of Nd(III) ions by bridging tellurite anions resulted in a 3D network with large tunnels along the b-axis. The CuCl(4) tetrahedra are interconnected into a 1D two-unit repeating (zweier) chain via corner-sharing. These 1D copper(I) chloride chains are inserted into the tunnels of the neodymium(III) tellurite via Nd-Cl-Cu bridges. Luminescent studies show that ErCuTe(2)O(6)Cl and Nd(4)Cu(TeO(3))(5)Cl(3) exhibit strong luminescence in the near-IR region. Magnetic measurements indicate the antiferromagnetic interactions between magnetic centers in these compounds.
NASA Astrophysics Data System (ADS)
Kelly, A. P.; O'Driscoll, B.; Clay, P. L.; Burgess, R.
2017-12-01
Layered intrusions host the world's largest known concentrations of the platinum-group elements (PGE). Emphasis has been attached to the role of halogen-bearing fluids in concentrating the precious metals, but whether this occurs at the magmatic stage, or via subsequent metasomatism, is actively debated. One obstacle to progress has been the analytical difficulty of measuring low abundances of the halogens in the cumulate products of layered intrusions. To elucidate the importance of the halogens in facilitating PGE-mineralisation, as well as fingerprint halogen provenance and assess the importance of halogen cycling in mafic magma systems more generally, a suite of samples encompassing different stages of activity of the Palaeogene Rum layered intrusion was investigated. Halogen abundances were measured by neutron irradiation noble gas mass spectrometric analysis, permitting the detection of relatively low (ppm-ppb) abundances of Cl, Br and I in mg-sized samples. The samples include PGE-enriched chromite seams, various cumulates (e.g., peridotites), picrites (approximating the Rum parental magma), and pegmatites representing volatile-rich melts that circulated the intrusion at a late-stage in its solidification history. The new data reveal that PGE-bearing chromite seams contain relatively low Cl concentrations (2-3 ppm), with high molar ratios of Br/Cl and I/Cl (0.005 and 0.009, respectively). The picrites and cumulates have Br/Cl and I/Cl ratios close to sub-continental lithospheric mantle values of approximately 0.0013 and 0.00002, respectively, and thus likely reflect the Rum magma source region. A positive correlation between Cl and Br signifies comparable partitioning behaviour in all samples. However, I is more variable, displaying a positive correlation with Cl for more primitive samples (e.g. picrite and peridotite), and seemingly decoupling from Br and Cl in chromite seams and pegmatites. The relative enrichment of I over Cl in the chromite seams points to the local involvement of an organic-rich sedimentary assimilant and potentially represents an important trigger for PGE-mineralisation. Similarly high I/Cl signatures in some of the late-stage pegmatites suggest that fluids with this distinctive composition circulated the cooling Rum intrusion for a protracted period of time.
NASA Astrophysics Data System (ADS)
Johnson, M. K.; Powell, D. B.; Cannon, R. D.
The i.r. and Raman spectra of a series of complexes [M III3O(OOCR) 6L 3]X· xH 2O (M = Cr, Fe, Mn, Ru, Rh; L = H 2O, pyridine, γ-picoline; X = Cl, Br, I, NO 3, ClO 3, ClO 4, BF 4) have been analysed in detail. The vibrational modes of the central M 3O and the three surrounding MO 4 units, are identified. The metal—nitrogen stretching vibrations and the MOH 2 modes are assigned. The 'basic' chromium(III) formate is shown to be [Cr 3O(OOCH) 6(OH 2) 2(OOCH)] xH 2O, containing monodentate, inner-sphere coordinated formate ion. The use of the symmetric and asymmetric OCO stretching frequencies in characterizing bridging carboxylate ions is discussed.
Gao, Tingting; Andino, Jean M; Alvarez-Idaboy, J Raul
2010-09-07
Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of volatile organic compounds (VOCs), including alcohols, aldehydes, ketones, alkanes, alkenes, alkynes and aromatic compounds. At least one VOC was studied to represent each class. Initially, 1-butyl-3-methylimindazolium chloride (abbreviated as C(4)mimCl) was used as the test ionic liquid compound. Calculated interaction lengths between atoms in the ionic liquid and the VOC tested as well as thermodynamic data suggest that C(4)mimCl preferentially interacts with alcohols as compared to other classes of volatile organic compounds. The interactions of methanol with different kinds of ionic liquids, specifically 1-butyl-3-methylimidazolium bromine (C(4)mimBr) and 1-butyl-3-methylimidazolium tetrafluoroborate (C(4)mimBF(4)) were also studied. In comparing C(4)mimCl, C(4)mimBr, and C(4)mimBF(4), the computational results suggest that C(4)mimCl is more likely to interact with methanol. Laboratory experiments were performed to provide further evidence for the interaction between C(4)mimCl and different classes of VOCs. Fourier transform infrared spectroscopy was used to probe the ionic liquid surface before and after exposure to the VOCs that were tested. New spectral features were detected after exposure of C(4)mimCl to various alcohols. The new features are characteristic of the alcohols tested. No new IR features were detected after exposure of the C(4)mimCl to the aldehyde, ketone, alkane, alkene, alkyne or aromatic compounds studied. In addition, after exposing the C(4)mimCl to a multi-component mixture of various classes of compounds (including an alcohol), the only new peaks that were detected were characteristic of the alcohol that was tested. These experimental results demonstrated that C(4)mimCl is selective to alcohols, even in complex mixtures. The findings in this work provide information for future gas-phase alcohol sensor design.
Double-inversion mechanisms of the X⁻ + CH₃Y [X,Y = F, Cl, Br, I] SN2 reactions.
Szabó, István; Czakó, Gábor
2015-03-26
The double-inversion and front-side attack transition states as well as the proton-abstraction channels of the X(-) + CH3Y [X,Y = F, Cl, Br, I] reactions are characterized by the explicitly correlated CCSD(T)-F12b/aug-cc-pVTZ(-PP) level of theory using small-core relativistic effective core potentials and the corresponding aug-cc-pVTZ-PP bases for Br and I. In the X = F case the double-inversion classical(adiabatic) barrier heights are 28.7(25.6), 15.8(13.4), 13.2(11.0), and 8.6(6.6) kcal mol(-1) for Y = F, Cl, Br, and I, respectively, whereas the barrier heights are in the 40-90 kcal mol(-1) range for the other 12 reactions. The abstraction channels are always above the double-inversion saddle points. For X = F, the front-side attack classical(adiabatic) barrier heights, 45.8(44.8), 31.0(30.3), 24.7(24.2), and 19.5(19.3) kcal mol(-1) for Y = F, Cl, Br, and I, respectively, are higher than the corresponding double-inversion ones, whereas for the other systems the front-side attack saddle points are in the 35-70 kcal mol(-1) range. The double-inversion transition states have XH···CH2Y(-) structures with Cs point-group symmetry, and the front-side attack saddle points have either Cs (X = F or X = Y) or C1 symmetry with XCY angles in the 78-88° range. On the basis of the previous reaction dynamics simulations and the minimum energy path computations along the inversion coordinate of selected XH···CH2Y(-) systems, we suggest that the double inversion may be a general mechanism for SN2 reactions.
Hammerli, Johannes; Rusk, Brian; Spandler, Carl; Emsbo, Poul; Oliver, Nicholas H.S.
2013-01-01
Bromine and chlorine are important halogens for fluid source identification in the Earth's crust, but until recently we lacked routine analytical techniques to determine the concentration of these elements in situ on a micrometer scale in minerals and fluid inclusions. In this study, we evaluate the potential of in situ Cl and Br measurements by LA-ICP-MS through analysis of a range of scapolite grains with known Cl and Br concentrations. We assess the effects of varying spot sizes, variable plasma energy and resolve the contribution of polyatomic interferences on Br measurements. Using well-characterised natural scapolite standards, we show that LA-ICP-MS analysis allows measurement of Br and Cl concentrations in scapolite, and fluid inclusions as small as 16 μm in diameter and potentially in sodalite and a variety of other minerals, such as apatite, biotite, and amphibole. As a demonstration of the accuracy and potential of Cl and Br analyses by LA-ICP-MS, we analysed natural fluid inclusions hosted in sphalerite and compared them to crush and leach ion chromatography Cl/Br analyses. Limit of detection for Br is ~8 μg g−1, whereas relatively high Cl concentrations (> 500 μg g−1) are required for quantification by LA-ICP-MS. In general, our LA-ICP-MS fluid inclusion results agree well with ion chromatography (IC) data. Additionally, combined cathodoluminescence and LA-ICP-MS analyses on natural scapolites within a well-studied regional metamorphic suite in South Australia demonstrate that Cl and Br can be quantified with a ~25 μm resolution in natural minerals. This technique can be applied to resolve a range of hydrothermal geology problems, including determining the origins of ore forming brines and ore deposition processes, mapping metamorphic and hydrothermal fluid provinces and pathways, and constraining the effects of fluid–rock reactions and fluid mixing.
Baesman, S.M.; Miller, L.G.
2005-01-01
Large carbon kinetic isotope effects (KIEs) were measured for reactions of methyl bromide (MeBr), methyl chloride (MeCl), and methyl iodide (MeI) with various nucleophiles at 287 and 306 K in aqueous solutions. Rates of reaction of MeBr and MeI with H2O (neutral hydrolysis) or Cl- (halide substitution) were consistent with previous measurements. Hydrolysis rates increased with increasing temperature or pH (base hydrolysis). KIEs for hydrolysis were 51 ?? 6??? for MeBr and 38 ?? 8??? for MeI. Rates of halide substitution increased with increasing temperature and greater reactivity of the attacking nucleophile, with the fastest reaction being that of MeI with Br-. KIEs for halide substitution were independent of temperature but varied with the reactant methyl halide and the attacking nucleophile. KIEs were similar for MeBr substitution with Cl- and MeCl substitution with Br- (57 ?? 5 and 60 ?? 9??? respectively). The KIE for halide exchange of MeI was lower overall (33 ?? 8??? and was greater for substitution with Br- (46 ?? 6???) than with Cl- (29 ?? 6???). ?? Springer Science + Business Media, Inc. 2005.
Zhang, Dao; Zhou, Sen; Li, Zhiming; Wang, Quanrui; Weng, Linhong
2013-09-07
Two novel amine-containing N-heterocyclic carbene ligand precursors [H(1a-b)]Br have been prepared in good yield and fully characterized. Direct syntheses of cis- and trans-dihalido-bis(NHC) nickel complexes [Ni(NHC)2X2] (X = Cl, Br) are reported. The solid structures of trans-[Ni(1a-b)2Br2] (2a-b) and cis-[Ni(1a)2Cl2] (3) were determined by single-crystal X-ray analysis and 3 was found to be the first example of cis-configuration coordination of monodentate NHC ligands to a metal center for dihalido-bis(NHC) nickel complexes. DFT calculations were conducted to determine the energy difference between cis- and trans-isomers of complexes 2a and 3 bearing bromide and chloride co-ligands. The cis-[Ni(1a)2Cl2] (cis-3) is 1.77-1.55 kcal mol(-1) lower in energy than its trans-isomer in polar solvents including CH2Cl2 and THF, while the trans-[Ni(1a)2Br2] (trans-2a) is more stable than the cis-isomer similarly in the gas phase. The cis nickel complex 3 with two coordinated monodentate NHCs was tested for olefin addition polymerization at standard conditions. It was found that cis-3 was inactive in ethylene polymerization but showed moderate catalytic activities (0.5-3.0 × 10(6) g of PNB (mol of Ni)(-1) h(-1)) in the addition polymerization of norbornene in the presence of methylaluminoxane (MAO) as cocatalyst.
Electron affinity of perhalogenated benzenes: A theoretical DFT study
NASA Astrophysics Data System (ADS)
Volatron, François; Roche, Cécile
2007-10-01
The potential energy surfaces (PES) of unsubstituted and perhalogenated benzene anions ( CX6-, X = F, Cl, Br, and I) were explored by means of DFT-B3LYP calculations. In the F and Cl cases seven extrema were located and characterized. In the Br and I cases only one minimum and two extrema were found. In each case the minimum was recomputed at the CCSD(T) level. The electron affinities of C 6X 6 were calculated (ZPE included). The results obtained agree well with the experimental determinations when available. The values obtained in the X = Br and the X = I cases are expected to be valuable predictions.
NASA Astrophysics Data System (ADS)
Li, Song; Zheng, Rui; Chen, Shan-Jun; Chen, Yan; Chen, Peng
2017-03-01
The intermolecular potential energy surfaces (PESs) of the ground electronic state for the Rg-BrCl (Rg = He, Ne, Ar, Kr, Xe) van der Waals complexes have been constructed by using the coupled-cluster method in combination with the augmented quadruple-zeta correlation-consistent basis sets supplemented with an additional set of bond functions. The features of the anisotropic PESs for these complexes are remarkably similar, which are characterized by three minima and two saddle points between them. The global minimum corresponds to a collinear Rg-Br-Cl configuration. Two local minima, correlate with an anti-linear Rg-Cl-Br geometry and a nearly T-shaped structure, can also be located on each PES. The quantum bound state calculations enable us to investigate intermolecular vibrational states and rotational energy levels of the complexes. The transition frequencies are predicted and are fitted to obtain their corresponding spectroscopic constants. In general, the periodic trends are observed for this complex family. Comparisons with available experimental data for the collinear isomer of Ar-BrCl demonstrate reliability of our theoretical predictions, and our results for the other two isomers of Ar-BrCl as well as for other members of the complex family are also anticipated to be trustable. Except for the collinear isomer of Ar-BrCl, the data presented in this paper would be beneficial to improve our knowledge for these experimentally unknown species.
Molecular and electronic structure of Re 2Br 4(PMe 3) 4
Johnstone, Erik V.; Poineau, Frederic; Todorova, Tanya K.; ...
2016-07-07
The dinuclear rhenium(II) complex Re 2Br 4(PMe 3) 4 was prepared from the reduction of [Re 2Br 8] 2– with ( n-Bu 4N)BH 4 in the presence of PMe 3 in propanol. The complex was characterized by single-crystal X-ray diffraction (SCXRD) and UV–visible spectroscopy. It crystallizes in the monoclinic C2/c space group and is isostructural with its molybdenum and technetium analogues. The Re–Re distance (2.2521(3) Å) is slightly longer than the one in Re 2Cl 4(PMe 3) 4 (2.247(1) Å). The molecular and electronic structure of Re 2X 4(PMe 3) 4 (X = Cl, Br) were studied by multiconfigurational quantummore » chemical methods. The computed ground-state geometry is in excellent agreement with the experimental structure determined by SCXRD. The calculated total bond order (2.75) is consistent with the presence of an electron-rich triple bond and is similar to the one found for Re 2Cl 4(PMe 3) 4. The electronic absorption spectrum of Re 2Br 4(PMe 3) 4 was recorded in benzene and shows a series of low-intensity bands in the range 10 000–26 000 cm –1. The absorption bands were assigned based on calculations of the excitation energies with the multireference wave functions followed by second-order perturbation theory using the CASSCF/CASPT2 method. As a result, calculations predict that the lowest energy band corresponds to the δ* → σ* transition, while the next higher energy bands were attributed to the δ* → π*, δ → σ*, and δ → π* transitions.« less
Wu, Yuntao; Shi, Hongliang; Chakoumakos, Bryan C.; ...
2015-10-05
CsCe 2Br 7 is a self-activated inorganic scintillator that shows promising performance, but the understanding of the important structure-property relationships is lacking. In this work, we conduct a comprehensive study on CCsCe 2Br 7. The crystal structure of CsCe 2Br 7 is refined using single crystal X-ray study for the first time. It crystallizes into the orthorhombic crystal system with Pmnb space group. Its electronic structure is revealed by Density Functional Theory (DFT) calculations. Two cerium emission centers are identified and the energy barriers related to the thermal quenching to 4f ground states of Ce 3+ for these two Cemore » centers are evaluated. CsCe 2Br 7 single crystal has better light yield and energy resolution than CsCe 2Cl 7, but with an additional slow decay component of 1.7 s. The existence of a deep trap with a depth of 0.9 eV in CsCe 2Cl 7 contributes to its higher afterglow level in comparison to that of CsCe 2Br 7. The most possible point defects in CsCe 2Cl 7 and CsCe 2Br 7 are proposed by considering the vapour pressure in the growth atmosphere upon melting point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chao; Feng, Kai; Tu, Heng
Four new chalcohalides, namely NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br, and CsBa{sub 2}SnS{sub 4}Cl, have been synthesized by the conventional high temperature solid-state reactions. They crystallize in three different space groups: space group I4/mcm for NaBa{sub 2}SnS{sub 4}Cl and KBa{sub 2}SnS{sub 4}Cl, Pnma for KBa{sub 2}SnS{sub 4}Br, and P2{sub 1}/c for CsBa{sub 2}SnS{sub 4}Cl. In all four compounds, the X{sup −} halide anions are only connected to six alkali metal or Ba cations, and the Sn atoms are only tetrahedrally enjoined to four S atoms. However, the M–X–Ba pseudo layers and the SnS{sub 4} tetrahedra are arrangedmore » in different ways in the three structural types, which demonstrates the interesting effect of ionic radii on the crystal structures. UV–vis–NIR spectroscopy measurements indicate that NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br, and CsBa{sub 2}SnS{sub 4}Cl have band gaps of 2.28, 2.30, 1.95, and 2.06 eV, respectively. - Graphical abstract: A new series of chalcohalides, NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have been obtained. They present three different space groups: NaBa{sub 2}SnS{sub 4}Cl and KBa{sub 2}SnS{sub 4}Cl in space group I4/mcm, KBa{sub 2}SnS{sub 4}Br in Pnma and CsBa{sub 2}SnS{sub 4}Cl in space group P2{sub 1}/c. UV–vis–NIR spectroscopy measurements indicate that NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have band gaps of 2.28, 2.30 1.95, and 2.06 eV, respectively. - Highlights: • Four new chalcohalides, NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl were obtained. • They adopt three different structures owing to different ionic radii and elemental electronegativity. • NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have band gaps of 2.28, 2.30 1.95, and 2.06 eV, respectively.« less
Solid energy calibration standards for P K-edge XANES: electronic structure analysis of PPh4Br.
Blake, Anastasia V; Wei, Haochuan; Donahue, Courtney M; Lee, Kyounghoon; Keith, Jason M; Daly, Scott R
2018-03-01
P K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs 2 CuCl 4 ) and S (Na 2 S 2 O 3 ·5H 2 O), but not neighboring P. This paper presents a review of common P K-edge XANES energy calibration standards and analysis of PPh 4 Br as a potential alternative. The P K-edge XANES region of commercially available PPh 4 Br revealed a single, highly resolved pre-edge feature with a maximum at 2146.96 eV. PPh 4 Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh 3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh 3 and PPh 4 + revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time-dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre-edge feature in the P K-edge XANES spectrum of PPh 4 Br was assigned to P 1s → P-C π* transitions, whereas those at higher energy were P 1s → P-C σ*. Overall, the analysis suggests that PPh 4 Br is an excellent alternative to other solid energy calibration standards commonly used in P K-edge XANES experiments.
NASA Astrophysics Data System (ADS)
Mayor, E.; Velasco, A. M.; Martín, I.; Lavín, C.
Los estados Rydberg moleculares han suscitado en los últimos años un creciente interés entre los espectroscopistas experimentales, motivado en parte por el desarrollo de nuevas técnicas espectroscópicas capaces de investigar estos estados altamente excitados electrónicamente. Los procesos de fotoabsorción que implican estados Rydberg en los derivados halogenados del metano son de gran importancia, debido a su abundancia en la atmósfera y a sus implicaciones medioambientales. Por ello, la obtención de datos relativos a sus fuerzas de oscilador es de gran interés. En este trabajo se aborda el estudio de dichas propiedades para las moléculas isovalentes CF3Cl y CF3Br. Ambas moléculas presentan idéntica estructura electrónica para el estado fundamental por lo que se espera que sus espectros Rydberg presenten grandes similitudes, en ausencia de perturbaciones. Por ello y dada la escasez de datos relativos a fuerzas de oscilador, hemos establecido la corrección de nuestros resultados en base a las analogías esperadas en las intensidades espectrales correspondientes a transiciones análogas. Por otro lado, Novak y col. [1] han encontrado experimentalmente un marcado carácter atómico en el espectro correspondiente a estas moléculas, siendo muy similar a los de los átomos de Cl y Br. Por ello en el presente trabajo, además de establecer la comparación entre ambas moléculas hemos buscado las similitudes con sus respectivos halógenos. Los cálculos relativos a las especies moleculares se han realizado utilizando la Metodología Molécular de Orbítales de Defecto Cuántico (MQDO) [2], mientras que para el estudio de los átomos de Cl y Br se empleó la versión relativista del método (RQDO) [3].
Roberts, Andrew C.; Gault, Robert A.; Paar, W.H.; Cooper, M.A.; Hawthorne, F.C.; Burns, P.C.; Cisneros, S.; Foord, E.E.
2005-01-01
Terlinguacreekite, ideally Hg32+O2 Cl2, has a very pronounced subcell that is orthorhombic, space-group choices Imam, Imcm, Ima2 and 12cm, with unit-cell parameters refined from powder data: a 6.737(3), b 25.528(10), c 5.533(2) A??, V951.6(6) A??3, a:b:c 0.2639:1:0.2167, Z=8. The true symmetry, supercell unit-cell parameters, and details regarding the crystal structure are unknown. The strongest nine lines of the X-ray powder-diffraction pattern [d in A?? (I)(subcell hkl)] are: 5.413(30)(011), 4.063(80)(121), 3.201(50)(080), 3.023(50)(161), 2.983(60)(240), 2.858(30)(211), 2.765(50)(002), 2.518(100b)(091, 251) and 2.026(30)(242). The mineral is found in an isolated area measuring approximately 1 ?? 0.5 m in the lower level of the Perry pit, Mariposa mine, Terlingua mining district, Brewster County, Texas (type locality), as mm-sized anhedral dark orange to reddish orange crusts of variable thickness on calcite, and rarely as 0.5 mm-sized aggregates of crystals of the same color. It has also been identified at the McDermitt mine, Humboldt County, Nevada, U.S.A., where it occurs with kleinite and calomel in silicified volcanic rocks and sediments. Terlinguacreekite is a secondary phase, most probably formed from the alteration of primary cinnabar or native mercury. At Terlingua, most crusts are thin, almost cryptocrystalline, with no discernable forms, and are resinous and translucent to opaque. Crystals are up to 0.2 mm in length, subhedral, acicular to prismatic, elongation [001], with a maximum length-to-width ratio of 4:1. They are vitreous, transparent, and some crystals have brightly reflecting faces, which may be {010} and {110}. The streak is yellow, and the mineral is brittle with an uneven fracture, no observable cleavage, and is soft, nonfluorescent under both long- and short-wave ultraviolet light. D (calc.) is 9.899 g/cm3 (empirical formula). Material from the McDermitt mine is reversibly photosensitive, and turns from vivid orange to black in strong light. In reflected plane-polarized light, it is bluish grey, with very weak (in air) to distinct (in oil) bireflectance, nonpleochroic, and distinctly anisotropic, with colors masked by ubiquitous yellowish orange to orange internal reflections. Measured values of reflectance obtained in air and in oil are tabulated. Averaged results of electron-microprobe analysis give HgO 92.03, Cl 9.54, Br 1.22, sum 102.79, less O = Cl + Br 2.28, total 100.51 wt.%. The empirical formula is Hg2+3.00O2.00(Cl1.90Br0.11) ??2.01, based on O + Cl + Br = 4 atoms per formula unit. The mineral name recalls the creek that flows through the Terlingua mining district and into the Rio Grande River.
Song, Li-Cheng; Han, Xiao-Feng; Chen, Wei; Li, Jia-Peng; Wang, Xu-Yong
2017-08-14
A new series of the structural and functional models for the active site of [NiFe]-H 2 ases has been prepared by a simple and convenient synthetic route. Thus, treatment of diphosphines RN(PPh 2 ) 2 (1a, R = p-MeC 6 H 4 CH 2 ; 1b, R = EtO 2 CCH 2 ) with an equimolar NiCl 2 ·6H 2 O, NiBr 2 ·3H 2 O, and NiI 2 in refluxing CH 2 Cl 2 /MeOH or EtOH gave the mononuclear Ni complexes RN(PPh 2 ) 2 NiX 2 (2a, R = p-MeC 6 H 4 CH 2 , X = Cl; 2b, R = EtO 2 CCH 2 , X = Cl; 3a, R = p-MeC 6 H 4 CH 2 , X = Br; 3b, R = EtO 2 CCH 2 , X = Br; 4a, R = p-MeC 6 H 4 CH 2 , X = I; 4b, R = EtO 2 CCH 2 , X = I) in 67-97% yields. Further treatment of complexes 2a,b-4a,b with an equimolar mononuclear Fe complex (dppv)(CO) 2 Fe(pdt) and NaBF 4 resulted in formation of the targeted model complexes [RN(PPh 2 ) 2 Ni(μ-pdt)(μ-X)Fe(CO)(dppv)](BF 4 ) (5a, R = p-MeC 6 H 4 CH 2 , X = Cl; 5b, R = EtO 2 CCH 2 , X = Cl; 6a, R = p-MeC 6 H 4 CH 2 , X = Br; 6b, R = EtO 2 CCH 2 , X = Br; 7a, R = p-MeC 6 H 4 CH 2 , X = I; 7b, R = EtO 2 CCH 2 , X = I) in 60-96% yields. All the new complexes 3a,b-4a,b and 5a,b-7a,b have been characterized by elemental analysis and spectroscopy, and particularly for some of them (3a,b/4a,b and 5b/6b) by X-ray crystallography. More interestingly, the electrochemical and electrocatalytic properties of such halogenido-bridged model complexes are first studied systematically and particularly they have been found to be pre-catalysts for proton reduction to H 2 under CV conditions.
Liu, Zhouyang; Li, Can; Sriram, Vishnu; ...
2016-07-25
Linear combination fitting of the X-ray Absorption Near Edge Spectroscopy (XANES) was used to quantify oxidized mercury species over RuO 2/TiO 2 and Selective Catalytic Reduction (SCR) catalysts under different simulated flue gas conditions. Halogen gases play a major role in mercury oxidation. In the absence of halogen gas, elemental mercury can react with sulfur that is contained in both the RuO2/TiO2 and SCR catalysts to form HgS and HgSO 4. In the presence of HCl or HBr gas, HgCl 2 or HgBr 2 is the main oxidized mercury species. When both HCl and HBr gases are present, HgBr2 ismore » the preferred oxidation product and no HgCl 2 can be found. The formation of HgO and HgS cannot be neglected with or without halogen gas. Other simulated flue gas components such as NO, NH 3, SO 2 and CO 2 do not have significant effect on oxidized mercury speciation when halogen gas is present.« less
NASA Astrophysics Data System (ADS)
Suryanti, Venty; Bhadbhade, Mohan; Black, David StC; Kumar, Naresh
2017-10-01
N-Nitrophenylglyoxylic amides 1 and 2 in presence of tetrabutylammonium cation (TBA) act as receptors for anions HSO4-, Cl-, Br- and NO3- as investigated by NMR studies. The receptors formed 1:1 host-guest complexes in solution. X-ray structure of 1 along with TBA that bind a chloride anion is reported. Molecule 1 showed the highest selectivity for HSO4- anion over others measured. X-ray structure of the bound Cl- revealed a pocket containing the anion making strong (Nsbnd H⋯Cl) and weak hydrogen bonds (Csbnd H⋯Cl) that contribute to the recognition of the chloride anion. Nsbnd H and Csbnd H hydrogen bonds resulted in a relatively strong binding for chloride ions.
Goodwin, Kelly D; Tokarczyk, Ryszard; Stephens, F Carol; Saltzman, Eric S
2005-07-01
Methyl bromide (CH3Br) and methyl chloride (CH3Cl) are important precursors for destruction of stratospheric ozone, and oceanic uptake is an important component of the biogeochemical cycle of these methyl halides. In an effort to identify and characterize the organisms mediating halocarbon biodegradation, we surveyed the effect of potential cometabolic substrates on CH3Br biodegradation using a 13CH3Br incubation technique. Toluene (160 to 200 nM) clearly inhibited CH3Br and CH3Cl degradation in seawater samples from the North Atlantic, North Pacific, and Southern Oceans. Furthermore, a marine bacterium able to co-oxidize CH3Br while growing on toluene was isolated from subtropical Western Atlantic seawater. The bacterium, Oxy6, was also able to oxidize o-xylene and the xylene monooxygenase (XMO) pathway intermediate 3-methylcatechol. Patterns of substrate oxidation, lack of acetylene inhibition, and the inability of the toluene 4-monooxygenase (T4MO)-containing bacterium Pseudomonas mendocina KR1 to degrade CH3Br ruled out participation of the T4MO pathway in Oxy6. Oxy6 also oxidized a variety of toluene (TOL) pathway intermediates such as benzyl alcohol, benzylaldehyde, benzoate, and catechol, but the inability of Pseudomonas putida mt-2 to degrade CH3Br suggested that the TOL pathway might not be responsible for CH3Br biodegradation. Molecular phylogenetic analysis identified Oxy6 to be a member of the family Sphingomonadaceae related to species within the Porphyrobacter genus. Although some Sphingomonadaceae can degrade a variety of xenobiotic compounds, this appears to be the first report of CH3Br degradation for this class of organism. The widespread inhibitory effect of toluene on natural seawater samples and the metabolic capabilities of Oxy6 indicate a possible link between aromatic hydrocarbon utilization and the biogeochemical cycle of methyl halides.
Recognition of a novel type X═N-Hal···Hal (X = C, S, P; Hal = F, Cl, Br, I) halogen bonding.
Gushchin, Pavel V; Kuznetsov, Maxim L; Haukka, Matti; Kukushkin, Vadim Yu
2013-04-04
The chlorination of the eight-membered platinum(II) chelates [PtCl2{NH═C(NR2)N(Ph)C(═NH)N(Ph)C(NR2)═NH}] (R = Me (1); R2 = (CH2)5 (2)) with uncomplexed imino group with Cl2 gives complexes bearing the ═N-Cl moiety [PtCl4{NH═C(NR2)N(Ph)C(═NCl)N(Ph)C(NR2)═NH}] (R = Me (3); R2 = (CH2)5 (4)). X-ray study for 3 revealed a novel type intermolecular halogen bonding ═N-Cl···Cl(-), formed between the Cl atom of the chlorinated imine and the chloride bound to the platinum(IV) center. The processing relevant structural data retrieved from the Cambridge Structural Database (CSDB) shows that this type of halogen bonding is realized in 18 more molecular species having X═N-Hal moieties (X = C, P, S, V, W; Hal = Cl, Br, I), but this weak ═N-Hal···Hal(-) bonding was totally neglected in the previous works. The presence of the halogen bonding in 3 was confirmed by theoretical calculations at the density functional theory (DFT, M06-2X) level, and its nature was analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukov, A. A., E-mail: azhukov@issp.ac.ru; Chernysheva, M. V.; Eliseev, A. A.
We report the results on the measurements of the work function of single-walled carbon nanotubes encapsulated by Agl (AgI@SWCNT), AgCl (AgCl@SWCNT), and CuBr (CuBr@SWCNT) by the local Kelvin probe technique. We found the values of the work function of tubes encapsulated with AgI and AgCl (Φ(AgI@SWCNT) = 5.08 ± 0.02, Φ(AgCl@SWCNT) = 5.10 ± 0.02 eV) to exceed substantially that of pristine carbon nanotubes, and the value of the work function of carbon nanotubes encapsulated with CuBr is Φ(CuBr@SWCNT) = 4.89 ± 0.03 (eV). The measurements are carried out using different kinds of microscope probes including multi-walled carbon nanotube tips.
NASA Astrophysics Data System (ADS)
Sage, Alan G.; Oliver, Thomas A. A.; King, Graeme A.; Murdock, Daniel; Harvey, Jeremy N.; Ashfold, Michael N. R.
2013-04-01
The wavelength dependences of C-Y and O-H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O-H bond fission following excitation at wavelengths λ ≲ 240 nm, on repulsive ((n/π)σ*) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ˜11 000 cm-1. For Y = I and Br, this process occurs in competition with prompt C-I and C-Br bond cleavage on another (n/π)σ* PES, but no Cl/Cl* products unambiguously attributable to one photon induced C-Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C-I bond fission is observed following excitation of 4-IPhOH at all λ ≤ 330 nm; the wavelength dependent trends in I/I* product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C-I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O-H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C-Y centred (n/π)σ* potentials across the series Y = I < Br < Cl and the concomitant reduction in C-Y bond strength, cf. that of the rival O-H bond, and (ii) the much increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the risks inherent in extrapolating photochemical behaviour measured for one molecule at one wavelength to other (related) molecules and to other excitation energies.
Peng, Lucheng; Geng, Jing; Ai, Lisha; Zhang, Ying; Xie, Renguo; Yang, Wensheng
2016-08-19
Phosphor with extremely narrow emission line widths, high brightness, and wide color emission tunability in visible regions is required for display and lighting applications, yet none has been reported in the literature so far. In the present study, single-sized lead halide perovskite (APbX 3; A = CH3NH3 and Cs; X = Cl, Br, and I) nanocrystalline (NC) phosphors were achieved for the first time in a one-pot reaction at room temperature (25 °C). The size-dependent samples, which included four families of CsPbBr3 NCs and exhibited sharp excitonic absorption peaks and pure band gap emission, were directly obtained by simply varying the concentration of ligands. The continuity of the optical spectrum can be successively tuned over the entire UV-visible spectral region (360-610 nm) by preparing CsPbCl3, CsPbI3, and CsPb(Y/Br)3 (Y = Cl and I) NCs with the use of CsPbBr3 NCs as templates by anion exchange while maintaining the size of NCs and high quantum yields of up to 80%. Notably, an emission line width of 10-24 nm, which is completely consistent with that of their single particles, indicates the formation of single-sized NCs. The versatility of the synthetic strategy was validated by extending it to the synthesis of single-sized CH3NH3PbX 3 NCs by simply replacing the cesium precursor by the CH3NH3 X precursor.
Intermediate Temperature Fluids Life Tests - Experiments
NASA Technical Reports Server (NTRS)
Anderson, William G.; Bonner, Richard W.; Dussinger, Peter M.; Hartenstine, John R.; Sarraf, David B.; Locci, Ivan E.
2007-01-01
There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 725 K (170 to 450 C), including space nuclear power system radiators, fuel cells, and high temperature electronics cooling. Historically, water has been used in heat pipes at temperatures up to about 425 K (150 C). Recent life tests, updated below, demonstrate that titanium/water and Monel/water heat pipes can be used at temperatures up to 550 K (277 C), due to water's favorable transport properties. At temperatures above roughly 570 K (300 C), water is no longer a suitable fluid, due to high vapor pressure and low surface tension as the critical point is approached. At higher temperatures, another working fluid/envelope combination is required, either an organic or halide working fluid. An electromotive force method was used to predict the compatibility of halide working fluids with envelope materials. This procedure was used to reject aluminum and aluminum alloys as envelope materials, due to their high decomposition potential. Titanium and three corrosion resistant superalloys were chosen as envelope materials. Life tests were conducted with these envelopes and six different working fluids: AlBr3, GaCl3, SnCl4, TiCl4, TiBr4, and eutectic diphenyl/diphenyl oxide (Therminol VP-1/Dowtherm A). All of the life tests except for the GaCl3 are ongoing; the GaCl3 was incompatible. As the temperature approaches 725 K (450 C), cesium is a potential heat pipe working fluid. Life tests results are also presented for cesium/Monel 400 and cesium/70-30 copper/nickel heat pipes operating near 750 K (477 C). These materials are not suitable for long term operation, due to copper transport from the condenser to the evaporator.
Hou, Shaodong; Ling, Li; Dionysiou, Dionysios D; Wang, Yuru; Huang, Jiajia; Guo, Kaiheng; Li, Xuchun; Fang, Jingyun
2018-06-05
Halides and natural organic matter (NOM) are inevitable in aquatic environment and influence the degradation of contaminants in sulfate radical (SO 4 •- )-based advanced oxidation processes. This study investigated the formation of chlorate in the coexposure of SO 4 •- , chloride (Cl - ), bromide (Br - ) and/or NOM in UV/persulfate (UV/PDS) and cobalt(II)/peroxymonosulfate (Co/PMS) systems. The formation of chlorate increased with increasing Cl - concentration in the UV/PDS system, however, in the Co/PMS system, it initially increased and then decreased. The chlorate formation involved the formation of hypochlorous acid/hypochlorite (HOCl/OCl - ) as an intermediate in both systems. The formation was primarily attributable to SO 4 •- in the UV/PDS system, whereas Co(III) played a significant role in the oxidation of Cl - to HOCl/OCl - and SO 4 •- was important for the oxidation of HOCl/OCl - to chlorate in the Co/PMS system. The pseudo-first-order rate constants ( k') of the transformation from Cl - to HOCl/OCl - were 3.32 × 10 -6 s -1 and 9.23 × 10 -3 s -1 in UV/PDS and Co/PMS, respectively. Meanwhile, k' of HOCl/OCl - to chlorate in UV/PDS and Co/PMS were 2.43 × 10 -3 s -1 and 2.70 × 10 -4 s -1 , respectively. Br - completely inhibited the chlorate formation in UV/PDS, but inhibited it by 45.2% in Co/PMS. The k' of SO 4 •- reacting with Br - to form hypobromous acid/hypobromite (HOBr/OBr - ) was calculated to be 378 times higher than that of Cl - to HOCl/OCl - , but the k' of Co(III) reacting with Br - to form HOBr/OBr - was comparable to that of Cl - to HOCl/OCl - . NOM also significantly inhibited the chlorate formation, due to the consumption of SO 4 •- and reactive chlorine species (RCS, such as Cl·, ClO· and HOCl/OCl - ). This study demonstrated the formation of chlorate in SO 4 •- -based AOPs, which should to be considered in their application in water treatment.
Huang, Guangguang; Wang, Chunlei; Xu, Shuhong; Zong, Shenfei; Lu, Ju; Wang, Zhuyuan; Lu, Changgui; Cui, Yiping
2017-08-01
Unlike widely used postsynthetic halide exchange for CsPbX 3 (X is halide) perovskite nanocrystals (NCs), cation exchange of Pb is of a great challenge due to the rigid nature of the Pb cationic sublattice. Actually, cation exchange has more potential for rendering NCs with peculiar properties. Herein, a novel halide exchange-driven cation exchange (HEDCE) strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br) 3 NCs via postsynthetic replacement of partial Pb in preformed perovskite NCs. The basic idea for HEDCE is that the partial cation exchange of Pb by Mn has a large probability to occur as a concomitant result for opening the rigid halide octahedron structure around Pb during halide exchange. Compared to traditional ionic exchange, HEDCE is featured by proceeding of halide exchange and cation exchange at the same time and lattice site. The time and space requirements make only MnCl 2 molecules (rather than mixture of Mn and Cl ions) capable of doping into perovskite NCs. This special molecular doping nature results in a series of unusual phenomenon, including long reaction time, core-shell structured mid states with triple emission bands, and dopant molecules composition-dependent doping process. As-prepared dual-emitting Mn-doped CsPb(Cl/Br) 3 NCs are available for ratiometric temperature sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Eggenkamp, H G M; Louvat, P
2018-04-30
In natural samples bromine is present in trace amounts, and measurement of stable Br isotopes necessitates its separation from the matrix. Most methods described previously need large samples or samples with high Br/Cl ratios. The use of metals as reagents, proposed in previous Br distillation methods, must be avoided for multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) analyses, because of risk of cross-contamination, since the instrument is also used to measure stable isotopes of metals. Dedicated to water and evaporite samples with low Br/Cl ratios, the proposed method is a simple distillation that separates bromide from chloride for isotopic analyses by MC-ICP-MS. It is based on the difference in oxidation potential between chloride and bromide in the presence of nitric acid. The sample is mixed with dilute (1:5) nitric acid in a distillation flask and heated over a candle flame for 10 min. The distillate (bromine) is trapped in an ammonia solution and reduced to bromide. Chloride is only distilled to a very small extent. The obtained solution can be measured directly by MC-ICP-MS for stable Br isotopes. The method was tested for a variety of volumes, ammonia concentrations, pH values and distillation times and compared with the classic ion-exchange chromatography method. The method more efficiently separates Br from Cl, so that samples with lower Br/Cl ratios can be analysed, with Br isotope data in agreement with those obtained by previous methods. Unlike other Br extraction methods based on oxidation, the distillation method presented here does not use any metallic ion for redox reactions that could contaminate the mass spectrometer. It is efficient in separating Br from samples with low Br/Cl ratios. The method ensures reproducible recovery yields and a long-term reproducibility of ±0.11‰ (1 standard deviation). The distillation method was successfully applied to samples with low Br/Cl ratios and low Br amounts (down to 20 μg). Copyright © 2018 John Wiley & Sons, Ltd.
Hydration of the Atlantis Massif: Halogen, Noble Gas and In-Situ δ18O Constraints
NASA Astrophysics Data System (ADS)
Williams, M. J.; Kendrick, M. A.; Rubatto, D.
2017-12-01
A combination of halogen (Cl, Br, I), noble gases (He, Ne, Ar, Kr and Xe) and in situ oxygen isotope analysis have been utilized to investigate the fluid-mobile element record of hydration and alteration processes at the Atlantis Massif (30°N on the Mid-Atlantic Ridge). The sample suite investigated includes serpentinite, talc-amphibole ± chlorite schist and hydrated gabbro recovered by seafloor drilling undertaken at sites on a transect across the Atlantis Massif during IODP Expedition 357. Serpentine mesh and veins analysed in-situ by SHRIMP SI exhibit δ18O from 6‰ down to ≈0‰, suggesting serpentinization temperatures of 150 to >280°C and water/rock ratios >5. Differences of 1.5-2.5‰ are observed between adjacent generations of serpentine, but the δ18O range is similar at each investigated drilling site. Halogen and noble gas abundances in serpentinites, talc-amphibole schist and hydrated gabbro have been measured by noble gas mass spectrometry of both irradiated and non-irradiated samples. Serpentinites contain low abundances of halogens and noble gases (e.g. 70-430 ppm Cl, 4.7-12.2 x 10-14 mol/g 36Ar) relative to other seafloor serpentinites. The samples have systematically different Br/Cl and I/Cl ratios related to their mineralogy. Serpentinites retain mantle-like Br/Cl with a wide variation in I/Cl that stretches toward seawater values. Talc-amphibole schists exhibit depletion of Br and I relative to Cl with increasing Cl abundances, suggesting tremolite exerts strong control on halogen abundance ratios. Serpentinites show no evidence of interaction with halogen-rich sedimentary pore fluids. Iodine abundances are variable across serpentinites, and are decoupled from Br and Cl; iodine enrichment (up to 530 ppb) is observed within relatively oxidised and clay-bearing samples. Serpentinized harzburgites exhibit distinct depletion of Kr and Xe relative to atmospheric 36Ar in seawater. Oxygen isotope compositions and low abundances of both halogens and noble gases are consistent with high water/rock ratios. Successive generations of serpentine have δ18O trends suggesting exposure to higher W/R ratios during exhumation and deformation of the massif. Low noble gas abundances of may also be influenced by thermal loss related to impregnation and intrusion of the Massif by gabbros and dolerites.
Li, Song; Zheng, Rui; Chen, Shan-Jun; Chen, Yan; Chen, Peng
2017-03-05
The intermolecular potential energy surfaces (PESs) of the ground electronic state for the Rg-BrCl (Rg=He, Ne, Ar, Kr, Xe) van der Waals complexes have been constructed by using the coupled-cluster method in combination with the augmented quadruple-zeta correlation-consistent basis sets supplemented with an additional set of bond functions. The features of the anisotropic PESs for these complexes are remarkably similar, which are characterized by three minima and two saddle points between them. The global minimum corresponds to a collinear Rg-Br-Cl configuration. Two local minima, correlate with an anti-linear Rg-Cl-Br geometry and a nearly T-shaped structure, can also be located on each PES. The quantum bound state calculations enable us to investigate intermolecular vibrational states and rotational energy levels of the complexes. The transition frequencies are predicted and are fitted to obtain their corresponding spectroscopic constants. In general, the periodic trends are observed for this complex family. Comparisons with available experimental data for the collinear isomer of Ar-BrCl demonstrate reliability of our theoretical predictions, and our results for the other two isomers of Ar-BrCl as well as for other members of the complex family are also anticipated to be trustable. Except for the collinear isomer of Ar-BrCl, the data presented in this paper would be beneficial to improve our knowledge for these experimentally unknown species. Copyright © 2016 Elsevier B.V. All rights reserved.
Abstract:
Benzo[a]pyrene (B[a]P) has been the most thoroughly studied polycyclic aromatic hydrocarbon (PAH). Many mechanisms have been suggested to explain its carcinogenic activity, yet many questions still remain. K-region diols of PAHs are common metabolic inter...
160. Benzo[a]pyrene and its K-region diol induce DNA damage in C3HlOTl/2Cl8 cells as measured by the alkaline single cell gel (Comet) assay
In a continuing series of studies on the genotoxicity ofK-region dihydrodiols of polycyclic aromatic hydrocarbons, we have repo...
Yun-Yun, Liu; Fang-Zhou, Qiu; Jun, Zhu; Yi, Ren; Kai-Chung, Lau
2017-06-01
The modified G4(MP2) method was applied to explore microsolvation effects on the reactivity of four solvated normal oxy-nucleophiles YO - (CH 3 OH) n=1,2 (Y = CH 3 , C 2 H 5 , FC 2 H 4 , ClC 2 H 4 ), and five α-oxy-nucleophiles YO - (CH 3 OH) n=1,2 (Y = HO, CH 3 O, F, Cl, Br), in gas-phase S N 2 reactions towards the substrate CH 3 Cl. Based on a Brønsted-type plot, our calculations reveal that the overall activation barriers of five microsolvated α-oxy-nucleophiles are obviously smaller than the prediction from the correlation line constructed by four normal microsolvated ones to different degrees, and clearly demonstrate the existence of an α-effect in the presence of one or two methanol molecule(s). Moreover, it was found that the α-effect of the mono-methanol microsolvated α-nucleophile is stronger than that of the monohydrated α-nucleophile. However, the α-effect of YO - (CH 3 OH) 2 becomes weaker for Y = HO and CH 3 O, whereas it becomes stronger for Y = F, Cl, Br than that of YO - (H 2 O) 2 , which can be explained by analyses of the activation strain model in the two cases. It was also found that the rationale about the low ionization energy of α-nucleophile inducing the α-effect was not widely significant. Graphical abstract Variation of alpha-effect in the gas-phase S N 2 reaction with the microsolvation.
THE SCATTERING OF K AND Cs BY SEVERAL COMPOUNDS.
The nonreactive scattering of K from C10H16, (CH3)3CBr, SiCl4 , Cl2, Br2, I2, ICl, (CN)2C=C(CN)2, and Cs from HBr has been studied in experiments with... SiCl4 , and Cs + HBr and also from the supernumerary rainbows for K + C10H16 and (CH3)3CBr. An optical model analysis on K+(CH3)3CBr and Cs + HBr
Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping
2015-04-28
Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors.
Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.
Combe, Nicole A; Donaldson, D James
2017-09-28
We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO 3 , KCl, MgCl 2 , CaCl 2 ) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4 ) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl 2 ) of the solution evaporation rates are well described by the modified Maxwell equation.
Kars, Mohammed; Roisnel, Thierry; Dorcet, Vincent; Rebbah, Allaoua; Otero-Diáz, L. Carlos
2014-01-01
Single crystals of Cd4As2Br3 (tetracadmium biarsenide tribromide) were grown by a chemical transport reaction. The structure is isotypic with the members of the cadmium and mercury pnictidohalides family with general formula M 4 A 2 X 3 (M = Cd, Hg; A = P, As, Sb; X = Cl, Br, I) and contains two independent As atoms on special positions with site symmetry -3 and two independent Cd atoms, of which one is on a special position with site symmetry -3. The Cd4As2Br3 structure consists of AsCd4 tetrahedra sharing vertices with isolated As2Cd6 octahedra that contain As–As dumbbells in the centre of the octahedron. The Br atoms are located in the voids of this three-dimensional arrangement and bridge the different polyhedra through Cd⋯Br contacts. PMID:24764933
Hagiwara, S; Takahashi, K
1974-04-01
1. Properties of anion permeation through the membrane of skeletal muscle fibres of the stingray, Taeniura lymma, were studied with intracellular recording and polarization techniques.2. The Cl conductance of the resting membrane in the normal stingray saline at pH 7.7 is 8-10 times greater than the K conductance.3. The Cl conductance decreases with decreasing external pH, with an apparent pK of 5.3, whereas the K conductance is independent of pH between 4 and 9.4. The Q(10) of the Cl conductance is about 2.0, compared with a value of 1.2-1.4 for the K conductance.5. The Cl conductance is proportional to the external Cl concentration when observed after the fibre is equilibrated in the test solution.6. The permeability sequence obtained by potential measurement is SCN > NO(3) > Cl = Br > I > ClO(3) and the permeability ratio is independent of the mole fraction of anions.7. The conductance sequence determined by total replacement of the external Cl with other anion species differs from the permeability sequence and the conductance observed for partial replacement deviates significantly from that expected from the independence principle.8. Possible mechanisms of anion permeation are discussed.
Hagiwara, Susumu; Takahashi, Kunitaro
1974-01-01
1. Properties of anion permeation through the membrane of skeletal muscle fibres of the stingray, Taeniura lymma, were studied with intracellular recording and polarization techniques. 2. The Cl conductance of the resting membrane in the normal stingray saline at pH 7·7 is 8-10 times greater than the K conductance. 3. The Cl conductance decreases with decreasing external pH, with an apparent pK of 5·3, whereas the K conductance is independent of pH between 4 and 9. 4. The Q10 of the Cl conductance is about 2·0, compared with a value of 1·2-1·4 for the K conductance. 5. The Cl conductance is proportional to the external Cl concentration when observed after the fibre is equilibrated in the test solution. 6. The permeability sequence obtained by potential measurement is SCN > NO3 > Cl = Br > I > ClO3 and the permeability ratio is independent of the mole fraction of anions. 7. The conductance sequence determined by total replacement of the external Cl with other anion species differs from the permeability sequence and the conductance observed for partial replacement deviates significantly from that expected from the independence principle. 8. Possible mechanisms of anion permeation are discussed. PMID:4838800
A study of the phase transition behaviour of [(NH4)0.63Li0.37]2TeBr6
NASA Astrophysics Data System (ADS)
Karray, R.; Linda, D.; Van Der Lee, A.; Ben Salah, A.; Kabadou, A.
2012-02-01
The mixed hexabromotellurate [(NH4)0.63Li0.37]2TeBr6, presenting at room temperature a K2PtCl6-type structure with space group Fm bar 3 m, exhibits three anomalies at 195, 395 and 498 K in the differential scanning calorimetry diagram. Different techniques: dielectric investigation, High-temperature X-ray powder diffraction and infrared spectroscopic study, in the range temperature (300-470) K are applied to explore the phase transition around 395 K. Combining XRD, dielectric and differential scanning calorimetry (DSC) results, no phase transition leading to a super-ionic conductivity phase is found. At high temperature, [(NH4)0.63Li0.37]2TeBr6 is characterized by a medium conductivity σ453≈ 10-4 Ω-1m-1.
The NO signaling pathway differentially regulates KCC3a and KCC3b mRNA expression.
Di Fulvio, Mauricio; Lauf, Peter K; Adragna, Norma C
2003-11-01
Nitric oxide (NO) donors and protein kinase G (PKG) acutely up-regulate K-Cl cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in vascular smooth muscle cells (VSMCs). Here, we report the presence, relative abundance, and regulation by sodium nitroprusside (SNP) of the novel KCC3a and KCC3b mRNAs, in primary cultures of rat VSMCs. KCC3a and KCC3b mRNAs were expressed in an approximate 3:1 ratio, as determined by semiquantitative RT-PCR analysis. SNP as well as YC-1 and 8-Br-cGMP, a NO-independent stimulator of soluble guanylyl cyclase (sGC) and PKG, respectively, increased KCC3a and KCC3b mRNA expression by 2.5-fold and 8.1-fold in a time-dependent manner, following a differential kinetics. Stimulation of the NO/sGC/PKG signaling pathway with either SNP, YC-1, or 8-Br-cGMP decreased the KCC3a/KCC3b ratio from 3.0+/-0.4 to 0.9+/-0.1. This is the first report on a differential regulation by the NO/sGC/PKG signaling pathway of a cotransporter and of KCC3a and KCC3b mRNA expression.
Ultrafast photochemistry of polyatomic molecules containing labile halogen atoms in solution
NASA Astrophysics Data System (ADS)
Mereshchenko, Andrey S.
Because breaking and making of chemical bonds lies at the heart of chemistry, this thesis focuses on dynamic studies of labile molecules in solutions using ultrafast transient absorption spectroscopy. Specifically, my interest is two-fold: (i) novel reaction intermediates of polyhalogenated carbon, boron and phosphorus compounds; (ii) photophysics and photochemistry of labile copper(II) halide complexes. Excitation of CH2Br2, CHBr3, BBr 3, and PBr3 into n(Br)sigma*(X-Br) states, where X=C, B, or P, leads to direct photoisomerization with formation of isomers having Br-Br bonds as well as rupture of one of X-Br bonds with the formation of a Br atom and a polyatomic radical fragment, which subsequently recombine to form similar isomer products. Nonpolar solvation stabilizes the isomers, consistent with intrinsic reaction coordinate calculations of the isomer ground state potential energy surfaces at the density functional level of theory, and consequently, the involvement of these highly energetic species on chemically-relevant time scales needs to be taken into account. Monochlorocomplexes in methanol solutions promoted to the ligand-to-metal charge transfer (LMCT) excited state predominantly undergo internal conversion via back electron transfer, giving rise to vibrationally hot ground-state parent complexes. Copper-chloride homolitical bond dissociation yielding the solvated copper(I) and Cl- atom/solvent CT complexes constitutes a minor pathway. Insights into ligand substitution mechanisms were acquired by monitoring the recovery of monochloro complexes at the expense of two unexcited dichloro- and unsubstituted forms of Cu(II) complexes also present in the solution. Detailed description of ultrafast excited-state dynamics of CuCl 42- complexes in acetonitrile upon excitation into all possible Ligand Field (LF) excited states and two most intense LMCT transitions is reported. The LF states were found to be nonreactive with lifetimes remarkably longer than those for copper(II) complexes studied so far, in particular, copper blue proteins. The highest 2A1 and lowest 2E LF states relax directly to the ground electronic state whereas the intermediate 2B1 LF state relaxes stepwise through the 2E state. The LMCT excited states are short-lived undergoing either ionic dissociation (CuCl3- + Cl-) or cascading relaxation through the manifold of vibrationally hot LF states to the ground state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basame, S.B.; White, H.S.
2000-04-01
The potential-dependent breakdown of the native oxide film ({approximately}20 {angstrom} thick) on titanium has been investigated in aqueous Br{sup {minus}} solutions and in solutions that contain a mixture of Br{sup {minus}} and anions that inhibit oxide breakdown (i.e., Cl{sup {minus}}, I{sup {minus}}, SO{sub 4}{sup 2{minus}}, Fe(CN){sub 6}{sup 4{minus}}, and Fe(CN){sub 6}{sup 3{minus}}). The oxide film is unstable in neutral pH solutions containing only Br{sup {minus}}, resulting in the formation of stable corrosion pits at relatively low potentials ({approximately}1.4 V vs. Ag/AgCl). The pitting potential, E{sub p}, is strongly dependent upon the concentration of Br{sup {minus}}, and can be modeled usingmore » a Langmuir isotherm to describe the adsorption of Br{sup {minus}} at the oxide film/electrolyte interface. Addition of a second anion inhibits oxide film breakdown, as indicated by a large positive shift in E{sub p} and a decrease in the number of stable corrosion pits. The dependence of E{sub p} on the relative concentrations of Br{sup {minus}} and the inhibitor anion is consistent with competitive adsorption of the anions. Equilibrium adsorption coefficients for I{sup {minus}}, Br{sup {minus}}, and Cl{sup {minus}} are estimated from the dependence of E{sub p} on anion concentration. The results are used to establish a physical basis for the anomalously low pitting potential for titanium in aqueous Br{sup {minus}} solutions.« less
Roy, Anand; Chhetri, Manjeet; Prasad, Suchitra; Waghmare, Umesh V; Rao, C N R
2018-01-24
Photochemical reduction of H 2 O and CO 2 has been investigated with a new family of catalysts of the formula Cd 4 P 2 X 3 (X= Cl, Br, I), obtained by the complete aliovalent substitution of the sulfide ions in CdS by P and X (Cl, Br, I). Unlike CdS, the Cd 4 P 2 X 3 compounds exhibit hydrogen evolution and CO 2 reduction from water even in the absence of a sacrificial agent or a cocatalyst. Use of Ni x P y as the cocatalyst, enhances hydrogen evolution, reaching 3870 (apparent quantum yield (AQY) = 4.11) and 9258 (AQY = 9.83) μmol h -1 g -1 , respectively, under artificial and natural (sunlight) irradiation, in the case of Cd 4 P 2 Br 3 /Ni x P y . Electrochemical and spectroscopic studies have been employed to understand the photocatalytic activity of this family of compounds. Unlike most of the semiconductor-based photocatalysts, Cd 4 P 2 X 3 catalysts reduce CO 2 to CO and CH 4 in the absence of sacrificial-agent or cocatalyst using water as the electron source. CO, CH 4 , and H 2 have been obtained with these catalysts under artificial as well as sun-light irradiation. First-principles, calculations have been carried out to understand the electronic structure and catalytic features of these new catalysts.
Sun, Jie; Sun, Di; Yuan, Shuai; Tian, Dongxu; Zhang, Liangliang; Wang, Xingpo; Sun, Daofeng
2012-12-14
A series of C(3i)-symmetric bicapped trigonal antiprismatic Cd(8) cages [2X@Cd(8)L(6)(H(2)O)(6)]⋅n Y⋅solvents (X = Cl(-), Y = NO(3)(-), n = 2: MOCC-4; X = Br(-), Y = NO(3)(-), n = 2: MOCC-5; X = NO(3)(-), Y = NO(3)(-), n = 2: MOCC-6; X = NO(3)(-), Y = BF(4)(-), n = 2: MOCC-7; X = NO(3)(-), Y = ClO(4)(-), n = 2: MOCC-8; X = CO(3)(2-), n = 0: MOCC-9), doubly anion templated by different anions, were solvothermally synthesized by means of a flexible ligand. Interestingly, the CO(3)(2-) template for MOCC-9 was generated in situ by two-step decomposition of DMF solvent. For other MOCCs, spherical or trigonal monovalent anions could also play the role of template in their formation. The template abilities of these anions in the formation of the cages were experimentally studied and are discussed for the first time. Anion exchange of MOCC-8 was carried out and showed anion-size selectivity. All of the cage-like compounds emit strong luminescence at room temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Substituent Effects on π-type Pnicogen Bond Interaction
NASA Astrophysics Data System (ADS)
Zhu, Jian-Qing; Cao, Sheng-Wei; Wang, Wei; Xu, Xiao-Lu; Xu, Hui-Ying
2017-05-01
Intermolecular interactions between PH2Cl and Ar-R (R=H, OH, NH2, CH3, Br, Cl, F, CN, NO2) were calculated by using MP2/aug-cc-pVDZ quantum chemical method. It has been shown from our calculations that the aromatic rings with electron-withdrawing groups represent much weaker binding affinities than those with electron-donating groups. The charge-transfer interaction between PH2Cl and Ar-R plays an important role in the formation of pnicogen bond complexes, as revealed by NBO analysis. The π-type halogen bond was also calculated and comparison of these two π-type interactions was made. It has been revealed that the π-type pnicogen bond systems are more stable than the halogen bond ones.
Cuccovia; Romsted; Chaimovich
1999-12-01
The interfacial concentrations of Cl(-) and Br(-) in aqueous zwitterionic micelles were determined by chemical trapping by analyzing product yields from spontaneous dediazoniation of micelle-bound 2,6-dimethyl-4-hexadecylbenzenediazonium ion. Interfacial concentrations of Cl(-) and Br(-) in 3-(N-hexadecyl-N, N-dimethylammonio) propane sulfonate, HPS, micelles were higher than in bulk solutions prepared with Li(+), Na(+), Rb(+), Cs(+), tetramethylammonium (TMA(+)), Mg(+2), and Ca(+2) salts. In contrast, the interfacial concentrations of Cl(-) and Br(-) were generally lower than in bulk solution in hexadecylphosphoryl choline, HDPC, micelles for all salts except Mg(+2) and Ca(+2). In both HPS and HDPC micelles the interfacial concentration of Br(-) was higher than that of Cl(-), showing that binding is anion selective. The cation had a large effect on the interfacial concentration of halide ions with HDPC micelles decreasing in the order Ca(2+) > Mg(2+) > Li(+) > Na(+) > K(+) > Cs(+) > Rb(+) > TMA(+). These results are the first direct and extensive determination of local halide ion concentration at the surface of zwitterionic micelles, and they demonstrate that chemical trapping methodology will work in membranes at physiologically relevant salt concentrations. Copyright 1999 Academic Press.
Szabados, Márton; Varga, Gábor; Kónya, Zoltán; Kukovecz, Ákos; Carlson, Stefan; Sipos, Pál; Pálinkó, István
2018-01-01
An ultrasonically-enhanced mechanochemical method was developed to synthesize CaFe-layered double hydroxides (LDHs) with various interlayer anions (CO 3 2- , NO 3 - , ClO 4 - , N 3 - , F - , Cl - , Br - and I - ). The duration of pre-milling and ultrasonic irradiation and the variation of synthesis temperature in the wet chemical step were investigated to obtain the optimal parameters of preparation. The main method to characterize the products was X-ray diffractometry, but infrared and synchrotron-based X-ray absorption spectroscopies as well as thermogravimetric measurements were also used to learn about fine structural details. The synthesis method afforded successful intercalation of the anions, among others the azide anion, a rarely used counter ion providing a system, which enables safe handling the otherwise highly reactive anion. The X-ray absorption spectroscopic measurements revealed that the quality of the interlayered anions could modulate the spatial arrangement of the calcium ions around the iron(III) ions, but only in the second coordination sphere. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, R.J.; George, J.N.
1988-03-01
The presence of a sodium-independent electroneutral Cl{sup {minus}}-anion exchanger in a basolateral membrane vesicle preparation from the rabbit parotid is demonstrated. This exchanger is shared by HCO{sub 3}{sup {minus}}, NO{sub 3}{sup {minus}}, Br{sup {minus}}, F{sup {minus}}, and formate, but not by thiocyanate, acetate, methylsulfate, gluconate, or hydroxyl ions. In order of relative potency, the exchanger is inhibited by SITS {ge} phloretin > furosemide > bumetanide {ge} phlorizin. A Na{sup +}-K{sup +}-dependent component of chloride flux, presumably due to the Na{sup +}-K{sup +}-Cl{sup {minus}} cotransporter already characterized in this preparation, was also observed. {sup 36}Cl uptake into vesicles loaded with KClmore » exhibited an overshoot of intravesicular ({sup 36}Cl) due to {sup 36}Cl-Cl exchange. However, when vesicles were loaded with both KCl and NaCl the height of the overshoot was considerably decreased indicating a Na{sup +}-K{sup +}-dependent dissipation of the intravesicular to extravesicular chloride gradient. This experiment provides strong evidence that the Na{sup +}-K{sup +}Cl{sup {minus}} cotransporter and the Cl{sup {minus}} HCO{sub 3}{sup {minus}} exchange are present in the same membrane vesicles. These results indicate that Cl{sup {minus}}-HCO{sub 3}{sup {minus}} exchange is present in the basolateral membrane of parotid acinar cells and thus that this transporter may play a significant role in salivary secretion.« less
TERATOGENIC RESPONSES OF TGFALPHA KNOCKOUT FETUSES TO 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)
ABBOTT1, B.D., A.R. BUCKALEW1, and P.L. BRYANT2. 1Reproductive Toxicology Division, EPA, RAP, NC; 2Dept. Environ. Sciences & Engineering, UNC, Chapel Hill, NC. Teratogenic responses of TGF knockout fetuses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).
TCDD induces cl...
Predicting the thermodynamic stability of double-perovskite halides from density functional theory
Han, Dan; Zhang, Tao; Huang, Menglin; ...
2018-05-24
Recently, a series of double-perovskite halide compounds such as Cs 2AgBiCl 6 and Cs 2AgBiBr 6 have attracted intensive interest as promising alternatives to the solar absorber material CH 3NH 3PbI 3 because they are Pb-free and may exhibit enhanced stability. The thermodynamic stability of a number of double-perovskite halides has been predicted based on density functional theory (DFT) calculations of compound formation energies. In this paper, we found that the stability prediction can be dependent on the approximations used for the exchange-correlation functionals, e.g., the DFT calculations using the widely used Perdew, Burke, Ernzerhof (PBE) functional predict that Csmore » 2AgBiBr 6 is thermodynamically unstable against phase-separation into the competing phases such as AgBr, Cs 2AgBr 3, Cs 3Bi 2Br 9, etc., obviously inconsistent with the good stability observed experimentally. The incorrect prediction by the PBE calculation results from its failure to predict the correct ground-state structures of AgBr, AgCl, and CsCl. By contrast, the DFT calculations based on local density approximation, optB86b-vdW, and optB88-vdW functionals predict the ground-state structures of these binary halides correctly. Furthermore, the optB88-vdW functional is found to give the most accurate description of the lattice constants of the double-perovskite halides and their competing phases. Given these two aspects, we suggest that the optB88-vdW functional should be used for predicting thermodynamic stability in the future high-throughput computational material design or the construction of the Materials Genome database for new double-perovskite halides. As a result, using different exchange-correlation functionals has little influence on the dispersion of the conduction and the valence bands near the electronic bandgap; however, the calculated bandgap can be affected indirectly by the optimized lattice constant, which varies for different functionals.« less
Predicting the thermodynamic stability of double-perovskite halides from density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Dan; Zhang, Tao; Huang, Menglin
Recently, a series of double-perovskite halide compounds such as Cs 2AgBiCl 6 and Cs 2AgBiBr 6 have attracted intensive interest as promising alternatives to the solar absorber material CH 3NH 3PbI 3 because they are Pb-free and may exhibit enhanced stability. The thermodynamic stability of a number of double-perovskite halides has been predicted based on density functional theory (DFT) calculations of compound formation energies. In this paper, we found that the stability prediction can be dependent on the approximations used for the exchange-correlation functionals, e.g., the DFT calculations using the widely used Perdew, Burke, Ernzerhof (PBE) functional predict that Csmore » 2AgBiBr 6 is thermodynamically unstable against phase-separation into the competing phases such as AgBr, Cs 2AgBr 3, Cs 3Bi 2Br 9, etc., obviously inconsistent with the good stability observed experimentally. The incorrect prediction by the PBE calculation results from its failure to predict the correct ground-state structures of AgBr, AgCl, and CsCl. By contrast, the DFT calculations based on local density approximation, optB86b-vdW, and optB88-vdW functionals predict the ground-state structures of these binary halides correctly. Furthermore, the optB88-vdW functional is found to give the most accurate description of the lattice constants of the double-perovskite halides and their competing phases. Given these two aspects, we suggest that the optB88-vdW functional should be used for predicting thermodynamic stability in the future high-throughput computational material design or the construction of the Materials Genome database for new double-perovskite halides. As a result, using different exchange-correlation functionals has little influence on the dispersion of the conduction and the valence bands near the electronic bandgap; however, the calculated bandgap can be affected indirectly by the optimized lattice constant, which varies for different functionals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmermann, Iwan; Kremer, Reinhard K.; Johnsson, Mats, E-mail: mats.johnsson@mmk.su.se
The new compounds Mn{sub 4}(TeO{sub 3})(SiO{sub 4})X{sub 2} (X=Br, Cl) were synthesized by solid state reactions in sealed evacuated silica tubes. The compounds crystallize in the monoclinic space group P2{sub 1}/m with the unit cell parameters a=5.5463(3) Å (5.49434(7) Å), b=6.4893(4) Å (6.44184(9) Å), c=12.8709(7) Å (12.60451(18) Å), β=93.559(5)° (94.1590(12)°) and Z=2 for the respective Br and Cl analogues. Manganese adopts various distorted coordination polyhedra; [MnO{sub 6}] octahedra, [MnO{sub 5}] tetragonal pyramids and [MnO{sub 2}X{sub 2}] tetrahedra. Other building blocks are [SiO{sub 4}] tetrahedra and [TeO{sub 3}] trigonal pyramids. The structure is made up from layers having no net chargemore » that are connected via weak Van der Waal interactions. The layers that are parallel to (1 1 0) consist of two manganese oxide sheets which are separated by [SiO{sub 4}] tetrahedra. On the outer sides of the sheets are the [MnO{sub 2}X{sub 2}] tetrahedra and the [TeO{sub 3}] trigonal pyramids connected so that the halide ions and the stereochemically active lone pairs on the tellurium atoms protrude from the layers. Magnetic susceptibility measurements reveal a Curie law with a Weiss temperature of θ=−153(3) K for temperatures ≥100 K and indicate antiferromagnetic ordering at T{sub N} ∼4 K. Possible structural origins of the large frustration parameter of f=38 are discussed. - Graphical abstract: Table of contents caption. The new compounds Mn{sub 4}(TeO{sub 3})(SiO{sub 4})X{sub 2} (X=Br, Cl) are layered with weak Van der Waal interactions in between the layers. Manganese adopts various distorted coordination polyhedral, other building blocks are [SiO{sub 4}] tetrahedra and [TeO{sub 3}] trigonal pyramids. Magnetic susceptibility measurements indicate antiferromagnetic ordering at low temperatures and a large frustration parameter. - Highlights: • Two new isostructural oxohalide compounds are described. • The compounds are the first examples of oxohalides containing both Te{sup 4+} and Si{sup 4+}. • Both compounds display the unusual coordination polyhedron MnO{sub 2}X{sub 2} (X=Cl, Br). • The compounds are made up of charge neutral layers connected via weak interactions. • The compounds are antiferromagnetic and display a large frustration parameter.« less
Ito, Kazuaki; Nomura, Ryosuke; Fujii, Takuya; Tanaka, Masahito; Tsumura, Tomoaki; Shibata, Hiroyuki; Hirokawa, Takeshi
2012-11-01
A method was developed for determination of inorganic anions, including nitrite (NO(2)(-)), nitrate (NO(3)(-)), bromide (Br(-)), and iodide (I(-)), in seawater by ion chromatography (IC). The IC system used two dilauryldimethylammonium bromide (DDAB)-coated monolithic ODS columns (50 × 4.6 mm i.d. and 100 × 4.6 mm i.d.) connected in series for separation of the ions. Aqueous NaCl (0.5 mol/L; flow rate, 3 mL/min) containing 5 mmol/L phosphate buffer (pH 5) was used as the eluent, and detection was with a UV detector at 225 nm. The monolithic ODS columns were coated and equilibrated with a 1-mmol/L DDAB solution (in H(2)O/methanol, 90:10 v/v). The hydrophilic ions (NO(2)(-), NO(3)(-), and Br(-)) were separated within 3 min and the retention time of I(-) was 16 min. No interferences from matrix ions, such as chloride and sulfate ions, were observed in 35 ‰ artificial seawater. The detection limits were 0.6 μg/L for NO(2)(-), 1.1 μg/L for NO(3)(-), 70 μg/L for Br(-), and 1.6 μg/L for I(-) with a 200-μL sample injection. The performance of the coated columns was maintained without addition of DDAB in the eluent. The IC system was successfully applied to real seawater samples with recovery rates of 94-108 % for all ions.
Yang, Shuming; Lin, Zhenghuan; Wang, Jingwei; Chen, Yunxiang; Liu, Zhengde; Yang, E; Zhang, Jian; Ling, Qidan
2018-05-09
Two-dimensional (2D) white-light-emitting hybrid perovskites (WHPs) are promising active materials for single-component white-light-emitting diodes (WLEDs) driven by UV. However, the reported WHPs exhibit low quantum yields (≤9%) and low color rendering index (CRI) values less than 85, which does not satisfy the demand of solid-state lighting applications. In this work, we report a series of mixed-halide 2D layered WHPs (C 6 H 5 C 2 H 4 NH 3 ) 2 PbBr x Cl 4- x (0 < x < 4) obtained from the phenethylammonium cation. Unlike the reported WHPs including (C 6 H 5 C 2 H 4 NH 3 ) 2 PbCl 4 , the mixed-halide perovskites display morphology-dependent white emission for the different extents of self-absorption. Additionally, the amount of Br has a huge influence on the photophysical properties of mixed-halide WHPs. With the increasing content of Br, the quantum yields of WHPs increase gradually from 0.2 to 16.9%, accompanied by tunable color temperatures ranging from 4000 K ("warm" white light) to 7000 K ("cold" white light). When applied to the WLEDs, the mixed-halide perovskite powders exhibit tunable white electroluminescent emission with very high CRI of 87-91.
Fabrication Techniques for III-V Micro-Opto-Electro-Mechanical Systems
2002-03-26
Trifluoride . . . . . . . . . . . . . . . . . . . . . 2-33 ClF3 Chlorine Trifluoride . . . . . . . . . . . . . . . . . . . . . 2-33 xix Symbol Page O2 Oxygen...dimensionless) . . . . . . . . . . . . 2-36 HCl Hydrochloric Acid . . . . . . . . . . . . . . . . . . . . . . 3-16 M Molarity (moles/liter...interhalogen etch gases have been synthesized and used to etch silicon. These gases include bromine triflouride (BrF3) and chlorine trifluoride (ClF3) [27
NASA Astrophysics Data System (ADS)
Dubrovin, V. D.; Ignat'ev, A. I.; Nikonorov, N. V.; Sidorov, A. I.
2014-05-01
It is shown experimentally that a rise in the sodium halogenide (NaCl, NaBr) concentration in photothermorefractive glasses increases the intensity of luminescence from silver neutral molecular clusters. Substitution of NaBr for NaCl with their concentration being the same shifts the luminescence band toward longer waves and raises its intensity. These findings can be explained by the formation of molecular clusters of type Ag n -Hal (Hal = Cl, Br) in photothermorefractive glass.
NASA Astrophysics Data System (ADS)
Tabassum, Sartaj; Sharma, Girish Chandra; Arjmand, Farukh
2012-05-01
A new chiral ligand scaffold L derived from (R)-2-amino-2-phenyl ethanol and diethyl oxalate was isolated and thoroughly characterized by various spectroscopic methods. The ligand L was allowed to react with CuCl2·2H2O and NiCl2·6H2O to achieve monometallic complexes 1 and 2, respectively. Subsequently modulation of 1 and 2 was carried out in the presence of SnCl4·5H2O to obtain heterobimetallic potential drug candidates 3 and 4 possessing (CuII/SnIV and NiII/SnIV) metallic cores, respectively and characterized by elemental analysis and spectroscopic data including 1H, 13C and 119Sn NMR in case of 3 and 4. In vitro DNA binding studies revealed that complex 3 avidly binds to DNA as quantified by Kb and Ksv values. Complex 3 exhibits a remarkable DNA cleavage activity (concentration dependent) with pBR322 DNA and the cleavage activity of 3 was significantly enhanced in the presence of activators and follows the order H2O2 > Asc > MPA > GSH. Complex 3 cleave pBR322 DNA via hydrolytic pathway and accessible to major groove of DNA.
Li, Zheng; Gosztola, David J.; Sun, Cheng-Jun; ...
2015-02-02
Photonic crystals made from self-assembly of mono-dispersed AgCl xBr 1-x nanocubes, which are not plasmonically active, have been discovered to exceptionally enhance Raman scattering of molecules chemically adsorbed on their surfaces. Comprehensive control measurements and X-ray absorption near-edge structure spectroscopy indicate that the Raman enhancement on the AgCl xBr 1-x nanocube photonic crystals is primarily ascribed to the chemical enhancement mechanism associated with the chemical interactions between adsorbing molecules and the AgCl xBr 1-x surfaces. In addition, the ordering of the AgCl xBr 1-x nanocubes in the photonic crystals can selectively reflect Raman scattering back to the detector at themore » bandgap position of the photonic crystals to provide additional enhancement, i.e., photonic mode enhancement. The thiophenol molecules adsorbed on the AgCl 0.44Br 0.56 nanocube photonic crystals exhibit astonishingly strong Raman signals that are on the same order of magnitude as those recorded from the thiophenol molecules adsorbed on the assembled Ag nanocubes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstone, Erik V.; Poineau, Frederic; Todorova, Tanya K.
The dinuclear rhenium(II) complex Re 2Br 4(PMe 3) 4 was prepared from the reduction of [Re 2Br 8] 2– with ( n-Bu 4N)BH 4 in the presence of PMe 3 in propanol. The complex was characterized by single-crystal X-ray diffraction (SCXRD) and UV–visible spectroscopy. It crystallizes in the monoclinic C2/c space group and is isostructural with its molybdenum and technetium analogues. The Re–Re distance (2.2521(3) Å) is slightly longer than the one in Re 2Cl 4(PMe 3) 4 (2.247(1) Å). The molecular and electronic structure of Re 2X 4(PMe 3) 4 (X = Cl, Br) were studied by multiconfigurational quantummore » chemical methods. The computed ground-state geometry is in excellent agreement with the experimental structure determined by SCXRD. The calculated total bond order (2.75) is consistent with the presence of an electron-rich triple bond and is similar to the one found for Re 2Cl 4(PMe 3) 4. The electronic absorption spectrum of Re 2Br 4(PMe 3) 4 was recorded in benzene and shows a series of low-intensity bands in the range 10 000–26 000 cm –1. The absorption bands were assigned based on calculations of the excitation energies with the multireference wave functions followed by second-order perturbation theory using the CASSCF/CASPT2 method. As a result, calculations predict that the lowest energy band corresponds to the δ* → σ* transition, while the next higher energy bands were attributed to the δ* → π*, δ → σ*, and δ → π* transitions.« less
Metal aminocarboxylate coordination polymers with chain and layered structures.
Dan, Meenakshi; Rao, C N R
2005-11-18
The synthesis and structures of metal aminocarboxylates prepared in acidic, neutral, or alkaline media have been explored with the purpose of isolating coordination polymers with linear chain and two-dimensional layered structures. Metal glycinates of the formulae [CoCl2(H2O)2(CO2CH2NH3)] (I), [MnCl2(CO2CH2NH3)2] (II), and [Cd3Cl6(CO2CH2NH3)4] (III) with one-dimensional chain structures have been obtained by the reaction of the metal salts with glycine in an acidic medium under hydro/solvothermal conditions. These chain compounds contain glycine in the zwitterionic form. 4-Aminobutyric acid transforms to a cyclic amide under such reaction conditions, and the amide forms a chain compound of the formula [CdBr2(C4H7NO)2] (IV). Glycine in the zwitterionic form also forms a two-dimensional layered compound of the formula [Mn(H2O)2(CO2CH2NH3)2]Br2 (V). 6-Aminocaproic acid under alkaline conditions forms layered compounds with metals at room temperature, the metal being coordinated both by the amino nitrogen and the carboxyl oxygen atoms. Of the two layered compounds [Cd{CO2(CH2)5NH2}2]2 H2O (VI) and [Cu{CO2(CH2)5NH2}2]2 H2O (VII), the latter has voids in which water molecules reside.
Structural Characterization of Methanol Substituted Lanthanum Halides
Boyle, Timothy J.; Ottley, Leigh Anna M.; Alam, Todd M.; Rodriguez, Mark A.; Yang, Pin; Mcintyre, Sarah K.
2010-01-01
The first study into the alcohol solvation of lanthanum halide [LaX3] derivatives as a means to lower the processing temperature for the production of the LaBr3 scintillators was undertaken using methanol (MeOH). Initially the de-hydration of {[La(µ-Br)(H2O)7](Br)2}2 (1) was investigated through the simple room temperature dissolution of 1 in MeOH. The mixed solvate monomeric [La(H2O)7(MeOH)2](Br)3 (2) compound was isolated where the La metal center retains its original 9-coordination through the binding of two additional MeOH solvents but necessitates the transfer of the innersphere Br to the outersphere. In an attempt to in situ dry the reaction mixture of 1 in MeOH over CaH2, crystals of [Ca(MeOH)6](Br)2 (3) were isolated. Compound 1 dissolved in MeOH at reflux temperatures led to the isolation of an unusual arrangement identified as the salt derivative {[LaBr2.75•5.25(MeOH)]+0.25 [LaBr3.25•4.75(MeOH)]−0.25} (4). The fully substituted species was ultimately isolated through the dissolution of dried LaBr3 in MeOH forming the 8-coordinated [LaBr3(MeOH)5] (5) complex. It was determined that the concentration of the crystallization solution directed the structure isolated (4 concentrated; 5 dilute) The other LaX3 derivatives were isolated as [(MeOH)4(Cl)2La(µ-Cl)]2 (6) and [La(MeOH)9](I)3•MeOH (7). Beryllium Dome XRD analysis indicated that the bulk material for 5 appear to have multiple solvated species, 6 is consistent with the single crystal, and 7 was too broad to elucidate structural aspects. Multinuclear NMR (139La) indicated that these compounds do not retain their structure in MeOD. TGA/DTA data revealed that the de-solvation temperatures of the MeOH derivatives 4 – 6 were slightly higher in comparison to their hydrated counterparts. PMID:20514349
Allylic and Allenic Halide Synthesis via NbCl5- and NbBr5-Mediated Alkoxide Rearrangements
Ravikumar, P. C.; Yao, Lihua; Fleming, Fraser F.
2009-01-01
Addition of NbCl5, or NbBr5, to a series of magnesium, lithium, or potassium allylic or propargylic alkoxides directly provides allylic or allenic halides. Halogenation formally occurs through a metalla-halo-[3,3] rearrangement although concerted, ionic, and direct displacement mechanisms appear to operate competitively. Transposition of the olefin is equally effective for allylic alkoxides prepared by nucleophilic addition, deprotonation, or reduction. Experimentally, the niobium pentahalide halogenations are rapid, afford essentially pure E-allylic or allenic halides after extraction, and are applicable to a range of aliphatic and aromatic alcohols, aldehydes, and ketones. PMID:19739606
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashurova, N.Kh.; Yakubov, K.G.
1993-11-01
The author studied complexation reactions of rhenium(V) and molybdenum(V) with a macrocyclic ligand 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (Tet a). The authors found that in hydrohalic acid medium, the onium complexes [H{sub 2}(Tet a)][EOX{sub 5}] are formed, with E = Re, Mo; X = Cl, Br. Reactions of [EOX{sub 5}]{sup 2{minus}} with (Tet a) in nitrometane yield complexes of molecular and cation types [EO(Tet a)Cl{sub 3}] and [EO(Tet a)Br]Br{sub 2}. Composition and structure of the obtained compounds are established by elemental analysis, conductometry, and mid- and far-IR spectroscopy.
Klencsár, Balázs; Bolea-Fernandez, Eduardo; Flórez, María R; Balcaen, Lieve; Cuyckens, Filip; Lynen, Frederic; Vanhaecke, Frank
2016-05-30
A fast, accurate and precise method for the separation and determination of the total contents of drug-related Cl and Br in human blood plasma, based on high performance liquid chromatography - inductively coupled plasma - tandem mass spectrometry (HPLC-ICP-MS/MS), has been developed. The novel approach was proved to be a suitable alternative to the presently used standard methodology (i.e. based on a radiolabelled version of the drug molecule and radiodetection), while eliminating the disadvantages of the latter. Interference-free determination of (35)Cl has been accomplished via ICP-MS/MS using H2 as reaction gas and monitoring the (35)ClH2(+) reaction product at mass-to-charge ratio of 37. Br could be measured "on mass" at a mass-to-charge of 79. HPLC was relied on for the separation of the drug-related entities from the substantial amount of inorganic Cl. The method developed was found to be sufficiently precise (repeatability <10% RSD) and accurate (recovery between 95 and 105%) and shows a linear dynamic range (R(2)>0.990) from the limit of quantification (0.05 and 0.01 mg/L for Cl and Br in blood plasma, respectively) to at least 5 and 1mg/L for Cl and Br, respectively. Quantification via either external or internal standard calibration provides reliable results for both elements. As a proof-of-concept, human blood plasma samples from a clinical study involving a newly developed Cl- and Br-containing active pharmaceutical ingredient were analysed and the total drug exposure was successfully described. Cross-validation was achieved by comparing the results obtained on Cl- and on Br-basis. Copyright © 2016 Elsevier B.V. All rights reserved.
Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots
NASA Astrophysics Data System (ADS)
Han, Qiuju; Wu, Wenzhi; Liu, Weilong; Yang, Qingxin; Yang, Yanqiang
2018-01-01
The nonlinear optical and the upconversion luminescence (UCL) properties of CsPbX3 (X = Br or its binary mixtures with Cl, I) quantum dots (QDs) are investigated by femtosecond open-aperture (OA) Z-scan and time-resolved luminescence techniques in nonresonant spectral region. The OA Z-scan results show that CsPbX3 QDs have strong reverse saturable absorption (RSA), which is ascribed to two-photon absorption. Partially changing halide composition from Cl to Br, to I, two-photon absorption cross sections become larger at the same laser excitation intensity. The composition-tunable nonlinear absorption should be attributed to the gradual decrease of the lowest direct band gaps with the halide substitute. Moreover, the strong UCL can be observed under near infrared femtosecond laser excitation. Halide composition-tunable UCL dynamics of CsPbX3 QDs is analyzed by use of two-exponential fitting with deconvolution. When CsPbX3 QDs have similar sizes (10-13 nm), with partially changing halide composition from Cl to Br, to I, the average UCL lifetime becomes longer due to the variation of Kane energy. Our findings suggest all-inorganic perovskite QDs can be used as excellent gain medium for high-performance frequency-upconversion lasers and provide reference to engineer such QDs toward practical optoelectronic applications.
On the oxidation of the three-dimensional aromatics [B(12)X(12)](2-) (X=F, Cl, Br, I).
Boeré, René T; Derendorf, Janis; Jenne, Carsten; Kacprzak, Sylwia; Kessler, Mathias; Riebau, Rainer; Riedel, Sebastian; Roemmele, Tracey L; Rühle, Monika; Scherer, Harald; Vent-Schmidt, Thomas; Warneke, Jonas; Weber, Stefan
2014-04-07
The perhalogenated closo-dodecaborate dianions [B12 X12 ](2-) (X=H, F, Cl, Br, I) are three-dimensional counterparts to the two-dimensional aromatics C6 X6 (X=H, F, Cl, Br, I). Whereas oxidation of the parent compounds [B12 H12 ](2-) and benzene does not lead to isolable radicals, the perhalogenated analogues can be oxidized by chemical or electrochemical methods to give stable radicals. The chemical oxidation of the closo-dodecaborate dianions [B12 X12 ](2-) with the strong oxidizer AsF5 in liquid sulfur dioxide (lSO2 ) yielded the corresponding radical anions [B12 X12 ](⋅-) (X=F, Cl, Br). The presence of radical ions was proven by EPR and UV/Vis spectroscopy and supported by quantum chemical calculations. Use of an excess amount of the oxidizing agent allowed the synthesis of the neutral perhalogenated hypercloso-boranes B12 X12 (X=Cl, Br). These compounds were characterized by single-crystal X-ray diffraction of dark blue B12 Cl12 and [Na(SO2 )6 ][B12 Br12 ]⋅B12 Br12 . Sublimation of the crude reaction products that contained B12 X12 (X=Cl, Br) resulted in pure dark blue B12 Cl12 or decomposition to red B9 Br9 , respectively. The energetics of the oxidation processes in the gas phase were calculated by DFT methods at the PBE0/def2-TZVPP level of theory. They revealed the trend of increasing ionization potentials of the [B12 X12 ](2-) dianions by going from fluorine to bromine as halogen substituent. The oxidation of all [B12 X12 ](2-) dianions was also studied in the gas phase by mass spectrometry in an ion trap. The electrochemical oxidation of the closo-dodecaborate dianions [B12 X12 ](2-) (X=F, Cl, Br, I) by cyclic and Osteryoung square-wave voltammetry in liquid sulfur dioxide or acetonitrile showed very good agreement with quantum chemical calculations in the gas phase. For [B12 X12 ](2-) (X=F, Cl, Br) the first and second oxidation processes are detected. Whereas the first process is quasi-reversible (with oxidation potentials in the range between +1.68 and +2.29 V (lSO2 , versus ferrocene/ferrocenium (Fc(0/+) ))), the second process is irreversible (with oxidation potentials ranging from +2.63 to +2.71 V (lSO2 , versus Fc(0/+) )). [B12 I12 ](2-) showed a complex oxidation behavior in cyclic voltammetry experiments, presumably owing to decomposition of the cluster anion under release of iodide, which also explains the failure to isolate the respective radical by chemical oxidation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Katz, B.G.; Eberts, S.M.; Kauffman, L.J.
2011-01-01
A detailed review was made of chemical indicators used to identify impacts from septic tanks on groundwater quality. Potential impacts from septic tank leachate on groundwater quality were assessed using the mass ratio of chloride-bromide (Cl/Br), concentrations of selected chemical constituents, and ancillary information (land use, census data, well depth, soil characteristics) for wells in principal aquifers of the United States. Chemical data were evaluated from 1848 domestic wells in 19 aquifers, 121 public-supply wells in 6 aquifers, and associated monitoring wells in four aquifers and their overlying hydrogeologic units. Based on previously reported Cl/Br ratios, statistical comparisons between targeted wells (where Cl/Br ratios range from 400 to 1100 and Cl concentrations range from 20 to 100 mg/L) and non-targeted wells indicated that shallow targeted monitoring and domestic wells (0.5. mg/L) shallow groundwater from target domestic wells, relative to non-target wells (1.5. mg/L), corresponded to significantly higher potassium, boron, chloride, dissolved organic carbon, and sulfate concentrations, which may also indicate the influence of septic-tank effluent. Impacts on groundwater quality from septic systems were most evident for the Eastern Glacial Deposits aquifer and the Northern High Plains aquifer that were associated with the number of housing units using septic tanks, high permeability of overlying sediments, mostly oxic conditions, and shallow wells. Overall, little or no influence from septic systems were found for water samples from the deeper public-supply wells.The Cl/Br ratio is a useful first-level screening tool for assessing possible septic tank influence in water from shallow wells (<20 m) with the range of 400-1100. The use of this ratio would be enhanced with information on other chloride sources, temporal variability of chloride and bromide concentrations in shallow groundwater, knowledge of septic-system age and maintenance, and the use of multiple tracers (combination of additional chemical and microbiological indicators). ?? 2010.
High energy chemical laser system
Gregg, D.W.; Pearson, R.K.
1975-12-23
A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Junjie; Goddard, Paul A.; Singleton, John
The crystal structures of NiX2(pyz)(2) (X = Cl (1), Br (2), I (3), and NCS (4)) were determined by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN4X2 units that are bridged by pyz ligands. The 2D layered motifs displayed by 1-4 are relevant to bifluoride-bridged [Ni(HF2) (pyz)(2)]EF6 (E = P, Sb), which also possess the same 2D layers. In contrast, terminal X ligands occupy axial positions in 1-4 and cause a staggered packing of adjacent layers. Long-range antiferromagnetic (AFM) order occurs below 1.5 (Cl), 1.9 (Br and NCS), and 2.5 Kmore » (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and g factor of 2, 3, and 4 were measured by electron-spin resonance with no evidence for zero field splitting (ZFS) being observed. The magnetism of 1-4 spans the spectrum from quasi-two-dimensional (2D) to three-dimensional (3D) antiferromagnetism. Nearly identical results and thermodynamic features were obtained for 2 and 4 as shown by pulsed-field magnetization, magnetic susceptibility, as well as their Neel temperatures. Magnetization curves for 2 and 4 calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. Compound 3 is characterized as a 3D AFM with the interlayer interaction (j(perpendicular to)) being slightly stronger than the intralayer interaction along Ni-pyz-Ni segments (j(pyz)) within the two-dimensional [Ni(pyz)(2)](2+) square planes. Regardless of X, j(pyz), is similar for the four compounds and is roughly 1 K.« less
PIXE analysis of cystic fibrosis sweat samples with an external proton beam
NASA Astrophysics Data System (ADS)
Sommer, F.; Massonnet, B.
1987-03-01
PIXE analysis with an external proton beam is used to study, in four control and five cystic fibrosis children, the elemental composition of sweat samples collected from different parts of the body during entire body hyperthermia. We observe no significant difference of sweat rates and of temperature variations between the two groups during sweat test. The statistical study of results obtained by PIXE analysis allows us to pick out amongst 8 elements studied, 6 elements (Na, Cl, Ca, Mn, Cu, Br) significatively different between the two groups of subjects. Using regression analysis, Na, Cl and Br concentrations could be used in a predictive equation of the state of health.
NASA Astrophysics Data System (ADS)
Sasaki, T.; Ito, I.; Yoneyama, N.; Kobayashi, N.; Hanasaki, N.; Tajima, H.; Ito, T.; Iwasa, Y.
2004-02-01
The polarized optical reflectance spectra of the quasi-two-dimensional organic correlated electron system κ-(BEDT-TTF)2Cu[N(CN)2]Y, Y=Br and Cl are measured in the infrared region. The former shows the superconductivity at Tc≃11.6 K and the latter does the antiferromagnetic insulator transition at TN≃28 K. Both the specific molecular vibration mode ν3(ag) of the BEDT-TTF molecule and the optical conductivity hump in the mid-infrared region change correlatively at T*≃38 K of κ-(BEDT-TTF)2Cu[N(CN)2]Br, although no indication of T* but the insulating behavior below Tins≃50 60 K are found in κ-(BEDT-TTF)2Cu[N(CN)2]Cl. The results suggest that the electron-molecular vibration coupling on the ν3(ag) mode becomes weak due to the enhancement of the itinerant nature of the carriers on the dimer of the BEDT-TTF molecules below T*, while it does strong below Tins because of the localized carriers on the dimer. These changes are in agreement with the reduction and the enhancement of the mid-infrared conductivity hump below T* and Tins, respectively, which originates from the transitions between the upper and lower Mott-Hubbard bands. The present observations demonstrate that two different metallic states of κ-(BEDT-TTF)2Cu[N(CN)2]Br are regarded as a correlated good metal below T* including the superconducting state and a half filling bad metal above T*. In contrast the insulating state of κ-(BEDT-TTF)2Cu[N(CN)2]Cl below Tins is the Mott insulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanley, Simon W. M.; Starkey, Laurina-Victoria; Lamplough, Lucinda
The platinum hexahalides have an octahedral arrangement of six halogen atoms bound to a Pt centre, thus having an octahedral shape that could prove to be useful in interpreting poor electron-density maps. In a detailed characterization, PtI{sub 6} chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15 of HEWL was also observed, which was not observed for PtBr{sub 6} or PtCl{sub 6}. This study examines the binding and chemical stability of the platinum hexahalides K{sub 2}PtCl{sub 6}, K{sub 2}PtBr{sub 6} and K{sub 2}PtI{sub 6} when soaked into pre-grown hen egg-white lysozyme (HEWL) crystalsmore » as the protein host. Direct comparison of the iodo complex with the chloro and bromo complexes shows that the iodo complex is partly chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15, a chemical behaviour that is not exhibited by the chloro or bromo complexes. Each complex does, however, bind to HEWL in its octahedral form either at one site (PtI{sub 6}) or at two sites (PtBr{sub 6} and PtCl{sub 6}). As heavy-atom derivatives of a protein, the octahedral shape of the hexahalides could be helpful in cases of difficult-to-interpret electron-density maps as they would be recognisable ‘objects’.« less
Squarylium-based chromogenic anion sensors.
Lee, Eun-Mi; Gwon, Seon-Yeong; Son, Young-A; Kim, Sung-Hoon
2012-09-01
A squarylium (SQ) dye was synthesized by the reaction between squaric acid and 2,3,3-trimethylindolenine and its anion sensing properties were investigated using absorption and emission spectroscopy. This chemosensor exhibited high selectivity for CN(-) as compared with F(-), CH(3)CO(2)(-), Br(-), H(2)PO(4)(-), Cl(-), and NO(3)(-) in acetonitrile, which was attributed to the formation of a 1:1 squarylium:CN(-) coordination complex, the formation of which was supported by the calculated geometry of the complex. Copyright © 2012 Elsevier B.V. All rights reserved.
Experimental studies of transplutonium metals and compounds under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, J.R.; Haire, R.G.; Benedict, U.
1986-01-01
The structural behavior of the first four transplutonium metals and two Bk-Cf alloys as a function of pressure has been studied in diamond anvil cells via x-ray diffraction. The sequence of structures exhibited as pressure is increased is dhcp ..-->.. ccp ..-->.. orthorhombic. In addition a distorted ccp phase is observed in Am, Bk/sub 0.40/Cf/sub 0.60/, and Cf between the ccp and orthorhombic phases. Diamond anvil cells have also been used to contain AmI/sub 3/, CfBr/sub 3/, and CfCl/sub 3/ under pressure for investigation by absorption spectrophotometry. Both AmI/sub 3/ and CfBr/sub 3/ exhibit pressure-induced, irreversible phase transformations to themore » PuBr/sub 3/-type orthorhombic structure, a more dense form of these compounds. Thus the driving force for these transformations is more efficient crystal packing. Both hexagonal (to 22 GPa) and orthorhombic (to 35 GPa) CfCl/sub 3/ exhibit only reversible spectral changes with pressure. This probably reflects their nearly identical RTP unit cell volumes. In both cases the spectra obtained are consistent with a continuous alteration of the RTP structure with pressure; physical compression seems to make a given f-f transition easier. Additional data are being sought to elucidate more completely the behavior of CfCl/sub 3/ under pressure. 23 refs., 4 figs.« less
NASA Astrophysics Data System (ADS)
Li, Min; Huang, Hongwei; Yu, Shixin; Tian, Na; Dong, Fan; Du, Xin; Zhang, Yihe
2016-11-01
Exploration of novel and efficient composite photocatalysts is of great significance for advancing the practical application of photocatalysis. BiOX (X = Cl, Br) is a kind of promising photocatalysts, but the charge separation efficiency and photoabsorption need to be ameliorated. In this work, we first employ a low-cost and easily accessable carbon material biochar to modify BiOX (X = Cl, Br) and develop biochar/BiOX (X = Cl, Br) composite photocatalysts via a facile in-situ deposition method. The as-prepared composites are detailedly characterized by SEM, SEM-mapping, TEM, XRD and XPS, and DRS result demonstrates that the visible-light absorption of BiOX (X = Cl, Br) catalysts can be exceedingly enhanced by biochar. The biochar/BiOX (X = Cl, Br) composites are found to unfold remarkably enhanced visible-light-driven photocatalytic activity toward degradation of MO and photocurrent generation. The strengthened photocatalytic performance mainly stems from the profoundly improved charge separation and delivery efficiency, as evidenced by the electrochemical impedance spectra (EIS), photoluminescence (PL), and time-resolved PL decay spectra. Additionally, the biochar exerts importance in enhancing the two different types of photochemical reactions of BiOBr and BiOCl, in which the photocatalytic mechanisms are found to be photocatalysis and photosensitization process, respectively. The present work may open up a new avenue for framing economic and efficient photocatalytic materials and new composite materials for photoelectric application.
TOPICAL REVIEW: New aspects of π-d interactions in magnetic molecular conductors
NASA Astrophysics Data System (ADS)
Sugimoto, Toyonari; Fujiwara, Hideki; Noguchi, Satoru; Murata, Keizo
2009-04-01
The 2 : 1 cation radical salts of bent donor molecules of ethylenedithio-tetrathiafulvalenoquinone-1,3-dithiolemethide (EDT-TTFVO), ethylenedithio-diselenadithiafulvalenoquinone-1,3-dithiolemethide (EDT-DSDTFVO), ethylenedithio-diselenadithiafulvalenothioquinone-1,3-diselenolemethide (EDT-DSDTFVSDS), ethylenedioxy-tetrathiafulvalenoquinone-1,3-dithiolemethide (EDO-TTFVO) and ethylenedioxy-tetrathiafulvalenoquinone-1,3-diselenolemethide (EDO-TTFVODS) with FeX4- (X = Cl, Br) ions are prepared by electrocrystallization. The crystal structures of these salts are composed of alternately stacked donor molecule and magnetic anion layers. The band structures of the donor molecule layers are calculated using the overlap integrals between neighboring donor molecules and are compared with the observed electronic transport properties. The magnetic ordering of the Fe(III) d spins of FeX4- ions is determined from magnetization and heat capacity measurements. The magnetic ordering temperatures are estimated by considering a combination of a direct d-d interaction between the d spins and an indirect π-d interaction between the conduction π electron and the d spins, whose magnitudes are separately calculated from the crystal structures with an extended Hückel molecular orbital method. The occurrence of a π-d interaction is proved by the negative magnetoresistance, and the magnitude of magnetoresistance reflects the strength of the π-d interaction. The effect of pressure on the magnetoresistance is studied, and the result indicates that the magnitude of magnetoresistance increases, namely, the π-d interaction is enhanced with increasing pressure. From these experimental results it is shown that (EDT-TTFVO)2•FeBr4 is a ferromagnetic semiconductor, (EDT-DSDTFVO)2•FeX4 (X = Cl, Br) and (EDT-DSDTFVSDS)2•FeBr4 are metals exhibiting antiferromagnetic ordering of the d spins, and (EDO-TTFVO)2•FeCl4 and (EDO-TTFVODS)2•FeBr4•(DCE)0.5 (DCE =-dichloroethane) are genuine antiferromagnetic metals. Among them, the (EDT-TTFVO)2•FeBr4 salt is the first π-d molecular system where the d spins of FeBr4- ions are ferromagnetically ordered through antiferromagnetic interaction with the conduction π electrons. Corresponding to this ferromagnetic ordering, an anomalous dielectric slow-down phenomenon toward the ordering temperature is observed. The π-d interaction in (EDT-DSDTFVSDS)2•FeBr4 is very large and comparable to that in λ-(BETS)2•FeCl4, which has the highest reported value so far, while the d-d interaction is fairly small. Concerning the ratio between the magnitudes of π-d and d-d interactions (Jπd/Jdd), this salt is currently the best π-d molecular system.
New aspects of π–d interactions in magnetic molecular conductors
Sugimoto, Toyonari; Fujiwara, Hideki; Noguchi, Satoru; Murata, Keizo
2009-01-01
The 2 : 1 cation radical salts of bent donor molecules of ethylenedithio-tetrathiafulvalenoquinone-1,3-dithiolemethide (EDT-TTFVO), ethylenedithio-diselenadithiafulvalenoquinone-1,3-dithiolemethide (EDT-DSDTFVO), ethylenedithio-diselenadithiafulvalenothioquinone-1,3-diselenolemethide (EDT-DSDTFVSDS), ethylenedioxy-tetrathiafulvalenoquinone-1,3-dithiolemethide (EDO-TTFVO) and ethylenedioxy-tetrathiafulvalenoquinone-1,3-diselenolemethide (EDO-TTFVODS) with FeX4− (X = Cl, Br) ions are prepared by electrocrystallization. The crystal structures of these salts are composed of alternately stacked donor molecule and magnetic anion layers. The band structures of the donor molecule layers are calculated using the overlap integrals between neighboring donor molecules and are compared with the observed electronic transport properties. The magnetic ordering of the Fe(III) d spins of FeX4− ions is determined from magnetization and heat capacity measurements. The magnetic ordering temperatures are estimated by considering a combination of a direct d–d interaction between the d spins and an indirect π–d interaction between the conduction π electron and the d spins, whose magnitudes are separately calculated from the crystal structures with an extended Hückel molecular orbital method. The occurrence of a π–d interaction is proved by the negative magnetoresistance, and the magnitude of magnetoresistance reflects the strength of the π–d interaction. The effect of pressure on the magnetoresistance is studied, and the result indicates that the magnitude of magnetoresistance increases, namely, the π–d interaction is enhanced with increasing pressure. From these experimental results it is shown that (EDT-TTFVO)2•FeBr4 is a ferromagnetic semiconductor, (EDT-DSDTFVO)2•FeX4 (X = Cl, Br) and (EDT-DSDTFVSDS)2•FeBr4 are metals exhibiting antiferromagnetic ordering of the d spins, and (EDO-TTFVO)2•FeCl4 and (EDO-TTFVODS)2•FeBr4•(DCE)0.5 (DCE =-dichloroethane) are genuine antiferromagnetic metals. Among them, the (EDT-TTFVO)2•FeBr4 salt is the first π–d molecular system where the d spins of FeBr4− ions are ferromagnetically ordered through antiferromagnetic interaction with the conduction π electrons. Corresponding to this ferromagnetic ordering, an anomalous dielectric slow-down phenomenon toward the ordering temperature is observed. The π–d interaction in (EDT-DSDTFVSDS)2•FeBr4 is very large and comparable to that in λ-(BETS)2•FeCl4, which has the highest reported value so far, while the d–d interaction is fairly small. Concerning the ratio between the magnitudes of π–d and d–d interactions (Jπd/Jdd), this salt is currently the best π–d molecular system. PMID:27877275
An ab initio study on MgX 3- and CaX 3- superhalogen anions (X=F, Cl, Br)
NASA Astrophysics Data System (ADS)
Anusiewicz, Iwona; Sobczyk, Monika; Dąbkowska, Iwona; Skurski, Piotr
2003-06-01
The vertical electron detachment energies (VDEs) of twenty MX 3- (M=Mg, Ca; X=F, Cl, Br) anions were calculated at the OVGF level with the 6-311++G(3df) basis sets. The largest vertical electron binding energy was found for MgF 3- system (8.793 eV). All negatively charged species possess the VDEs that are larger than 5.9 eV and thus may be termed superhalogen anions. The strong dependence of the VDE of the MX 3- species on the ligand-central atom (M-X) distance and on the partial atomic charge localized on Mg or Ca was observed and discussed, as well as the other factors that may influence the electronic stability of such anions.
Wood, Matthew R; Lalancette, Roger A; Bernal, Ivan
2015-01-01
The name `bath salts', for an emerging class of synthetic cathinones, is derived from an attempt to evade prosecution and law enforcement. These are truly illicit drugs that have psychoactive CNS (central nervous system) stimulant effects and they have seen a rise in abuse as recreational drugs in the last few years since first having been seen in Japan in 2006. The ease of synthesis and modification of specific functional groups of the parent cathinone make these drugs particularly difficult to regulate. MDPV (3,4-methylenedioxypyrovalerone) is commonly encountered as its hydrochloride salt (C16H21NO3·HCl), in either the hydrated or the anhydrous forms. This `bath salt' has various names in the US, e.g. `Super Coke', `Cloud Nine', and `Ivory Wave', to name just a few. We report here the structures of two forms of the HCl salt, one as a mixed bromide/chloride salt, C16H22NO3(+)·0.343Br(-)·0.657Cl(-) [systematic name: 1-(benzo[d][1,3]dioxol-5-yl)-2-(pyrrolidin-1-ium-1-yl)pentan-1-one bromide/chloride (0.343/0.657)], and the other with the H7O3(+) cation, as well as the HCl counter-ion [systematic name: hydroxonium 1-(benzo[d][1,3]dioxol-5-yl)-2-(pyrrolidin-1-ium-1-yl)pentan-1-one dichloride, H7O3(+)·C16H22NO3(+)·2Cl(-)]. This is one of a very few structures (11 to be exact) in which we have a new example of a precisely determined hydroxonium cation. During the course of researching the clandestine manufacture of MDPV, we were surprised by the fact that a common precursor of this illicit stimulant is known to be the fragrant species piperonal, which is present in the fragrances of orchids, most particularly in the case of the vanilla orchid. We found that MDPV can be made by a Grignard reaction of this heliotropin. This may also explain the unexpected appearance of the bromide counter-ion in some of the salts we encountered (C16H21NO3·HBr), one of which is presented here [systematic name: 1-(benzo[d][1,3]dioxol-5-yl)-2-(pyrrolidin-1-ium-1-yl)pentan-1-one bromide, C16H22NO3(+)·Br(-)]. Complexation of MDPV with a forensic crystallizing reagent, HAuCl4, yields the tetrachloridoaurate salt of this drug, (C16H22NO3)[AuCl4]. The heavy-metal complexing agent HAuCl4 has been used for over a century to identify common quarternary nitrogen-containing drugs via microscopic identification. Another street drug, called ethylone (3,4-methylenedioxyethylcathinone), is regularly sold and abused as its hydrochloride salt (C12H15NO3·HCl), and its structure is herein described (systematic name: N-{1-[(benzo[d][1,3]dioxol-5-yl)carbonyl]ethyl}ethanaminium chloride, C12H16NO3(+)·Cl(-)). Marketed and sold as a `bath salt', `plant feeder', or `cleaning product', this drug is nothing more than a slight chemical modification of the banned drug methylone (3,4-methylenedioxymethcathinone). As with previously popular synthetic cathinones, the abuse of ethylone has seen a recent increase due to regulatory efforts on previous generations of cathinones that are now banned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, T.L.; Zoller, W.H.; Crowe, B.M.
1990-08-10
Particle and gas samples were obtained before and after eruptive episode 35 in July and August 1985 at the fuming Pu'u O'o vent, Kilauea volcano, Hawaii. The sampling system employed consisted of a particle filter followed by four {sup 7}LiOH treated filters to collect acidic gases. The filters were analyzed using instrumental neutron activation analysis (INAA). The results indicate that Br/Cl and Re/Cl ratios do not fluctuate through an eruption cycle but the F/Cl, F/Br and metal/Cl ratios (In and Cd) do change through the cycle. An inverse relationship between F/Cl and metal/Cl was observed. The changes are probably duemore » to influxes of relatively undegassed magma during the repose period releasing fume with lower F/Cl, F/BR and higher metal/Cl ratios. As the magma in the Pu'u O'o conduit gradually degasses either before or several days after an eruptive episode, F/Cl and F/Br ratios increase and the metal/Cl ratios decrease. One sample collected on July 24, two days before eruptive episode 35, did not follow this general trend. This can be explained by a gas pulse from a deeper, less degassed portion of magma making its way to the top of the conduit.« less
NASA Astrophysics Data System (ADS)
Avallone, Linnea M.; Toohey, Darin W.
2001-05-01
In situ observations of the halogen oxides ClO and BrO made from the NASA ER-2 during the Airborne Arctic Stratospheric Expedition (AASE) I and II missions are used to test current understanding of photochemical parameters. Measurements of ClO obtained during AASE I in the dark perturbed polar vortex are analyzed with respect to temperature to derive the equilibrium expression for the ClO/Cl2O2 system. Assuming photochemical steady state and complete activation of chlorine (ClO + 2Cl2O2 = Cly), observations of ClO made during AASE II are used to derive the photolysis rate of Cl2O2. The photolysis rate derived from atmospheric observations is compared to J values calculated with a photochemical model and various values for the absorption cross section of Cl2O2. The photolysis rate calculated with the cross section of Huder and DeMore [1995] is shown to be systematically too small, while those of Burkholder et al. [1990] and Cox and Hayman [1988] are too large to be consistent with atmospheric observations. Observations of BrO made during AASE II indicate that our understanding of the inorganic bromine budget in the polar regions is incomplete. A possible role for the adduct BrOOCl is investigated.
NASA Astrophysics Data System (ADS)
Miller, Theresa L.; Zoller, William H.; Crowe, Bruce M.; Finnegan, David L.
1990-08-01
Particle and gas samples were obtained before and after eruptive episode 35 in July and August 1985 at the fuming Pu'u O'o vent, Kilauea volcano, Hawaii. The sampling system employed consisted of a particle filter followed by four 7LiOH treated filters to collect acidic gases. The filters were analyzed using instrumental neutron activation analysis (INAA). The results indicate that Br/Cl and Re/Cl ratios do not fluctuate through an eruption cycle but the F/Cl, F/Br and metal/Cl ratios (In and Cd) do change through the cycle. An inverse relationship between F/Cl and metal/Cl was observed. The changes are probably due to influxes of relatively undegassed magma during the repose period releasing fume with lower F/Cl, F/Br and higher metal/Cl ratios. As the magma in the Pu'u O'o conduit gradually degasses either before or several days after an eruptive episode, F/Cl and F/Br ratios increase and the metal/Cl ratios decrease. One sample collected on July 24, two days before eruptive episode 35, did not follow this general trend. This can be explained by a gas pulse from a deeper, less degassed portion of magma making its way to the top of the conduit.
Characterization and identification of Na-Cl sources in ground water
Panno, S.V.; Hackley, Keith C.; Hwang, H.-H.; Greenberg, S.E.; Krapac, I.G.; Landsberger, S.; O'Kelly, D. J.
2006-01-01
Elevated concentrations of sodium (Na+) and chloride (Cl -) in surface and ground water are common in the United States and other countries, and can serve as indicators of, or may constitute, a water quality problem. We have characterized the most prevalent natural and anthropogenic sources of Na+ and Cl- in ground water, primarily in Illinois, and explored techniques that could be used to identify their source. We considered seven potential sources that included agricultural chemicals, septic effluent, animal waste, municipal landfill leachate, sea water, basin brines, and road deicers. The halides Cl-, bromide (Br-), and iodide (I-) were useful indicators of the sources of Na+-Cl- contamination. Iodide enrichment (relative to Cl-) was greatest in precipitation, followed by uncontaminated soil water and ground water, and landfill leachate. The mass ratios of the halides among themselves, with total nitrogen (N), and with Na+ provided diagnostic methods for graphically distinguishing among sources of Na+ and Cl- in contaminated water. Cl/Br ratios relative to Cl- revealed a clear, although overlapping, separation of sample groups. Samples of landfill leachate and ground water known to be contaminated by leachate were enriched in I- and Br-; this provided an excellent fingerprint for identifying leachate contamination. In addition, total N, when plotted against Cl/Br ratios, successfully separated water contaminated by road salt from water contaminated by other sources. Copyright ?? 2005 National Ground Water Association.
Li, Junxia; Wang, Yanxin; Xie, Xianjun
2016-02-15
In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000-10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ(37)Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Iliescu, T.; Milea, I.; Abdolrahman, P. M.
1984-03-01
The paper studies the absorption, fluorescence and phosphorescence spectra of α and β-F, Cl, Br-naphtalenes (α, β-F, Cl,BrN) in different matrixes at 77 K and different concentrations. From these spectra one obtaines the vibrational frequences.
Yan, Mingquan; Li, Mingyang; Han, Xuze
2016-08-15
This study examined the effects of heating, residual chlorine and concentration of table salt on the generation of iodine-, bromine- and chlorine-containing trihalomethanes (THMs) under simulated cooking conditions. In the case of addition of either KI- or KIO3-fortified salt, total I-THM concentrations increased with increasing iodine concentration, while total Cl/Br-THM concentrations decreased. CHCl2I, CHBrClI, CHBrI2, CHBr2I and CHI3 were formed in the presence of KI salt, while only CHCl2I was formed in the presence of KIO3 salt. CHCl2I was unstable under cooking conditions, and >90% of this DBP was removed during heating, which in some cases increased the concentrations of the other I-THMs. The calculated cytotoxicity increased with addition of KI- or KIO3-fortified salt due to the generation of I-THMs, whose impact on the cytotoxicity at room temperature was equal to or five times higher, respectively, than the cytotoxicity of the simultaneously formed Cl/Br-THMs for the cases of salts. Heating decreased the cytotoxicity, except for the case of addition of KI salt, in which the calculated cytotoxicity of I-THMs increased above 150% as the temperature was increased up to 100°C. The reported results may have important implications for epidemiologic exposure assessments and, ultimately, for public health protection. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A. J.; Voss, L. F.; Beck, P. R.
We subjected device-grade TlBr to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl 2, Br:MeOH and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.
Kanbayashi, Toru; Miyafuji, Hisashi
2016-07-18
The morphological and topochemical changes in wood tissues in compression wood of Japanese cedar (Cryptomeria japonica) upon treated with two types of ionic liquids, 1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-ethylpyridinium bromide ([EtPy][Br]) were investigated. Compression wood tracheids were swollen by both ionic liquids but their swelling behaviors were different in the types of ionic liquids used. Under the polarized light, we confirmed that crystalline cellulose in compression wood is amorphized by [C2mim][Cl] treatment whereas it changes slightly by [EtPy][Br] treatment. Raman microscopic analyses revealed that [C2mim][Cl] can preferentially liquefy polysaccharides in compression wood whereas [EtPy][Br] liquefy lignin. In addition, the interaction of compression wood with ionic liquids is different for the morphological regions. These results will assist in the use of ionic liquid treatment of woody biomass to produce valuable chemicals, bio-fuels, bio-based composites and other products.
Kanbayashi, Toru; Miyafuji, Hisashi
2016-01-01
The morphological and topochemical changes in wood tissues in compression wood of Japanese cedar (Cryptomeria japonica) upon treated with two types of ionic liquids, 1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-ethylpyridinium bromide ([EtPy][Br]) were investigated. Compression wood tracheids were swollen by both ionic liquids but their swelling behaviors were different in the types of ionic liquids used. Under the polarized light, we confirmed that crystalline cellulose in compression wood is amorphized by [C2mim][Cl] treatment whereas it changes slightly by [EtPy][Br] treatment. Raman microscopic analyses revealed that [C2mim][Cl] can preferentially liquefy polysaccharides in compression wood whereas [EtPy][Br] liquefy lignin. In addition, the interaction of compression wood with ionic liquids is different for the morphological regions. These results will assist in the use of ionic liquid treatment of woody biomass to produce valuable chemicals, bio-fuels, bio-based composites and other products. PMID:27426470
NASA Astrophysics Data System (ADS)
Choi, E. S.; Graf, D.; Tokumoto, T.; Brooks, J. S.; Yamada, Jun-Ichi
2007-03-01
We have investigated transport and magnetization properties of β-(BDA-TTP)2MX4 (M=Fe, Ga and X=Cl, Br) as a function of pressure, temperature and magnetic field. The title material undergoes metal-insulator transitions above 100 K at ambient pressure. The insulating phase is suppressed with pressure and superconductivity eventually appears above Pc= 4.5 kbar (X=Cl) and 13 kbar (X=Br). The general temperature-pressure (TP) phase diagram is similar each other, while higher pressure is required for X=Br compounds to suppress the insulating state and induce the superconductivity. Pressure dependent DC magnetization studies on β-(BDA-TTP)2FeCl4 compound revealed that the AFM ordering persist well above Pc. In spite of similarity of phase diagram between M=Fe and M=Ga compounds, magnetoresistance results show distinct behaviors, which indicates the magnetic interaction with the conduction electrons are still effective. The comparison between X=Cl and X=Br compounds suggests the anion-size effect rather than the existence of localized magnetic moments plays more important role in determining the ground state.
Böhlke, J.K.; Irwin, J.J.
1992-01-01
The relative concentrations of Cl, Br, I, and K in fluid inclusions in hydrothermal minerals were measured by laser microprobe noble gas mass spectrometry on irradiated samples containing 10−10 to 10−8 L of fluid. Distinctive halogen signatures indicate contrasting sources of fluid salinity in fluid inclusions from representative “magmatic” (St. Austell), “metamorphic” (Alleghany), and “geothermal” (Creede, Salton Sea) aqueous systems. Br/Cl mol ratios are lowest at Salton Sea (0.27–0.33 × 10−3), where high salinities are largely due to halite dissolution; intermediate at St. Austell (0.85 × 10−3), possibly representative of magmatic volatiles; and highest (near that of seawater) at Creede (1.5–2.1 × 10−3) and Alleghany (1.2–2.4 × 10−3), where dissolved halogens probably were leached from volcanic and (or) nonevaporitic sedimentary rocks. IC1">IC1 mol ratios are lowest (near that of seawater) at Creede (1–14 × 10−6), possibly because organisms scavenged I during low temperature recharge; intermediate at Salton Sea (24–26 × 10−6) and St. Austell (81× 10−6); and highest at Alleghany (320–940 × 10−6), probably because the fluids interacted with organic-rich sediments at high temperatures before being trapped. KCl">KCl mol ratios indicate disequilibrium with respect to hypothetical feldspathic alkali-Al-silicate mineral buffers at fluid inclusion trapping temperatures at Creede, and large contributions of (Na, K)-bicarbonate to total fluid ionic strength at Alleghany. Significant variations in Cl/Br/I/K ratios among different fluid inclusion types are correlated with previously documented mineralization stages at Creede, and with the apparent oxidation state of dissolved carbon at Alleghany. The new data indicate that Cl/ Br/I ratios in hydrothermal fluid inclusions vary by several orders of magnitude, as they do in modern surface and ground waters. This study demonstrates that halogen signatures of fluid inclusions determined by microanalysis yield important information about sources of fluid salinity and provide excellent definition of fluid reservoirs and tracers of flow and interaction in ancient hydrothermal systems.
Olson, M.L.; Cleckner, L.B.; Hurley, J.P.; Krabbenhoft, D.P.; Heelan, T.W.
1997-01-01
Aqueous samples from the Florida Everglades present several problems for the analysis of total mercury (HgT) and methyl mercury (MeHg). Constituents such as dissolved organic carbon (DOC) and sulfide at selected sites present particular challenges due to interferences with standard analytical techniques. This is manifested by 1) the inability to discern when bromine monochloride (BrCl) addition is sufficient for sample oxidation for HgT analysis; and 2) incomplete spike recoveries using the distillation/ethylation technique for MeHg analysis. Here, we suggest ultra-violet (UV) oxidation prior to addition of BrCl to ensure total oxidation of DOC prior to HgT analysis and copper sulfate (CuSO4) addition to aid in distillation in the presence of sulfide for MeHg analysis. Despite high chloride (Cl-) levels, we observed no effects on MeHg distillation/ethylation analyses. ?? Springer-Verlag 1997.
Liu, Jun; Chen, Zongyu; Wang, Lijuan; Zhang, Yilong; Li, Zhenghong; Xu, Jiaming; Peng, Yurong
2016-08-01
The origin and evolution of brine and saline groundwater have always been a challenged work for geochemists and hydrogeologists. Chemical and isotopic data of brine and saline waters were used to trace the sources of salinity and therefore to understand the transport mechanisms of groundwater in Xishanzui, Inner Mongolia. Both Cl/Br (molar) versus Na/Br (molar) and Cl (meq/L) versus Na (meq/L) indicated that salinity was from halite dissolution or at least a significant impact by halite dissolution. The logarithmic plot of the concentration trends of Cl (mg/L) versus Br (mg/L) for the evaporation of seawater and the Qinghai Salt Lake showed that the terrestrial halite dissolution was the dominated contribution for the salinity of this brine. The stable isotope ratios of hydrogen and oxygen suggested that the origin of brine was from paleorecharge water which experienced mixing of modern water in shallow aquifer. δ(37)Cl values ranged from -0.02 to 3.43 ‰ (SMOC), and reflecting mixing of different sources. The Cl isotopic compositions suggest that the dissolution of halite by paleometeoric water had a great contribution to the salinity of brine, and the contributions of the residual seawater and the dissolution of halite by the Yellow River water could be excluded.
Synthesis of different types of alkoxy fullerene derivatives from chlorofullerene C60Cl6.
Khakina, Ekaterina A; Kraevaya, Ol'ga A; Popova, Maria L; Peregudov, Alexander S; Troyanov, Sergey I; Chernyak, Alexander V; Martynenko, Vyacheslav M; Kulikov, Alexander V; Schols, Dominique; Troshin, Pavel A
2017-01-25
We report novel synthetic routes for facile preparation of highly functionalized fullerene derivatives C 60 (OR) 5 X (X = H, Cl, Br), C 60 (OR) 4 O and C 60 (OR) 2 from chlorofullerene C 60 Cl 6 . The first water-soluble fullerene compound bearing residues of 3-oxypropanoic acid demonstrated a potent anti-HIV activity.
NASA Astrophysics Data System (ADS)
Dolníček, Zdeněk; René, Miloš; Hermannová, Sylvie; Prochaska, Walter
2014-04-01
The Okrouhlá Radouň shear zone hosted uranium deposit is developed along the contact of Variscan granites and high-grade metasedimentary rocks of the Moldanubian Zone of the Bohemian Massif. The pre-ore pervasive alteration of wall rocks is characterized by chloritization of mafic minerals, followed by albitization of feldspars and dissolution of quartz giving rise to episyenites. The subsequent fluid circulation led to precipitation of disseminated uraninite and coffinite, and later on, post-ore quartz and carbonate mineralization containing base metal sulfides. The fluid inclusion and stable isotope data suggest low homogenization temperatures (˜50-140 °C during pre-ore albitization and post-ore carbonatization, up to 230 °C during pre-ore chloritization), variable fluid salinities (0-25 wt.% NaCl eq.), low fluid δ18O values (-10 to +2 ‰ V-SMOW), low fluid δ13C values (-9 to -15 ‰ V-PDB), and highly variable ionic composition of the aqueous fluids (especially Na/Ca, Br/Cl, I/Cl, SO4/Cl, NO3/Cl ratios). The available data suggest participation of three fluid endmembers of primarily surficial origin during alteration and mineralization at the deposit: (1) local meteoric water, (2) Na-Ca-Cl basinal brines or shield brines, (3) SO4-NO3-Cl-(H)CO3 playa-like fluids. Pre-ore albitization was caused by circulation of alkaline, oxidized, and Na-rich playa fluids, whereas basinal/shield brines and meteoric water were more important during the post-ore stage of alteration.
NASA Astrophysics Data System (ADS)
Wang, Zhaoxu; Liu, Yi; Zheng, Baishu; Zhou, Fengxiang; Jiao, Yinchun; Liu, Yuan; Ding, XunLei; Lu, Tian
2018-05-01
Intermolecular interaction of XH2P...MY (X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F, Cl, Br, I) complexes was investigated by means of an ab initio method. The molecular interaction energies are in the order Ag < Cu < Au and increased with the decrease of RP...M. Interaction energies are strengthened when electron-donating substituents X connected to XH2P, while electron-withdrawing substituents produce the opposite effect. The strongest P...M bond was found in CH3H2P...AuF with -70.95 kcal/mol, while the weakest one was found in NO2H2P...AgI with -20.45 kcal/mol. The three-center/four-electron (3c/4e) resonance-type of P:-M-:Y hyperbond was recognized by the natural resonance theory and the natural bond orbital analysis. The competition of P:M-Y ↔ P-M:Y resonance structures mainly arises from hyperconjugation interactions; the bond order of bP-M and bM-Y is in line with the conservation of the idealized relationship bP-M + bM-Y ≈ 1. In all MF-containing complexes, P-M:F resonance accounted for a larger proportion which leads to the covalent characters for partial ionicity of MF. The interaction energies of these Cu/Ag/Au complexes are basically above the characteristic values of the halogen-bond complexes and close to the observed strong hydrogen bonds in ionic hydrogen-bonded species.
Bukanova, Julia V; Solntseva, Elena I; Skrebitsky, Vladimir G
2005-12-01
1. Literature data indicate that serotonin induces the long-term potentiation of glutamate (Glu) response in molluscan neurons. The aim of present work was to elucidate whether cyclic nucleotides can cause the same effect. 2. Experiments were carried out on isolated neurons of the edible snail (Helix pomatia) using a two-microelectrode voltage-clamp method. 3. In the majority of the cells examined, the application of Glu elicited a Cl- -current. The reversal potential (Er) of this current lied between -35 and -55 mV in different cells. 4. Picrotoxin, a blocker of Cl- -channels, suppressed this current equally on both sides of Er. Furosemide, an antagonist of both Cl- -channels and the Na+/K+/Cl- -cotransporter, had a dual effect on Glu-response: decrease in conductance, and shift of Er to negative potentials. 5. A short-term (2 min) cell treatment with 8-Br-cAMP or 8-Br-cGMP caused long-term (up to 30 min) change in Glu-response. At a holding potential of -60 mV, which was close to the resting level, an increase in Glu-activated inward current was observed. This potentiation seems to be related to the right shift of Er of Glu-activated Cl- -current rather than to the increase in conductance of Cl- -channels. The blocking effect of picrotoxin rested after 8-Br-cAMP treatment. 6. The change in the Cl- -homeostasis as a possible mechanism for the observed effect of cyclic nucleotides is discussed.
Spin-crossover phenomena of the mononuclear Mn(III) complex tuned by metal dithiolene counteranions.
Chen, Ying; Cao, Fan; Wei, Rong-Min; Zhang, Yang; Zhang, Yi-Quan; Song, You
2014-03-07
Three ion-pair complexes based on spin-crossover [Mn(5-Br-sal-N-1,5,8,12)]ClO4 with TBA2[Ni(mnt)2], TBA2[Pt(mnt)2] (mnt = maleonitriledithiolate) and TBA[Ni(dmit)2] respectively (dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato) have been synthesized and structurally characterized. Complexes [Mn(5-Br-sal-N-1,5,8,12)]2[Ni(mnt)2] and [Mn(5-Br-sal-N-1,5,8,12)]2[Pt(mnt)2] are isomorphic and show the axial compression of the octahedral coordination environment of Mn(III) ions. With the temperature increasing the equatorial metal-ligand bond lengths show significant elongation, but the axial bond lengths remain unchanged. Complex [Mn(5-Br-sal-N-1,5,8,12)][Ni(dmit)2]·CH3CN contains π-π, p-π and H-bonds weak interactions. Magnetic investigation shows the spin-crossover phenomena for and , and T1/2 has been increased by 230 K comparing with the reactant complex. However, no spin-crossover was observed in complex , and theoretical calculations show that there are weak antiferromagnetic couplings mediated through π-π interactions.
NASA Astrophysics Data System (ADS)
Hou, Z. Y.; Xia, M. J.; Wang, L. R.; Xu, B.; Yan, D. X.; Meng, L. P.; Liu, L. J.; Xu, D. G.; Zhang, L.; Wang, X. Y.; Li, R. K.; Chen, C. T.
2017-09-01
Two perovskite-structure K3B6O10Br1-x Cl x (x = 0 and 0.5) series nonlinear optical crystals were thoroughly investigated for their picosecond 532 nm laser pulses abilities and high power outputs were achieved via second harmonic generation (SHG) technique for the first time. SHG conversion efficiency of 57.3% with a 13.2 mm length K3B6O10Br (KBB) crystal was achieved using a laser source of pulse repetition rate of 10 Hz and pulse width of 25 ps, which is the highest conversion efficiency of ps visible laser based on KBB crystal. And by employing an 80 MHz, 10 ps fundamental laser beam, maximum power outputs of 12 W with K3B6O10Br0.5Cl0.5 (KBBC) and 11.86 W with KBB crystals were successfully demonstrated. Furthermore, the standard deviation jitters of the average power outputs are less than 0.6% and 1.17% by KBB and KBBC, respectively, showing ultrastable power stabilities favorable for practical applications. In addition, the other optical parameters including acceptance angle and temperature bandwidth were also investigated.
NASA Astrophysics Data System (ADS)
Salingue, Nils; Hess, Peter
2011-09-01
The preparation of chlorine-, bromine-, and iodine-terminated silicon surfaces (Si(111):Cl, Br, and I) using atomically flat Si(111)-(1×1):H is described. The halogenated surfaces were obtained by photochemically induced radical substitution reactions with the corresponding dihalogen in a Schlenk tube by conventional inert gas chemistry. The nucleophilic substitution of the Si-Cl functionality with the Grignard reagent (CH3MgCl) resulted in the unreconstructed methylated Si(111)-(1×1):CH3 surface. The halogenated and methylated silicon surfaces were characterized by Fourier transform infrared (FTIR) spectroscopy and laser-induced desorption of monolayers (LIDOM). Calibration of the desorption temperature via analysis of time-of-flight (TOF) distributions as a function of laser fluence allowed the determination of the originally emitted neutral fragments by TOF mass spectrometry using electron-impact ionization. The halogens were desorbed atomically and as SiX n (X = Cl, Br) clusters. The methyl groups mainly desorbed as methyl and ethyl fragments and a small amount of +SiCH3.
Thermodynamic Study of Solid-Liquid Equilibrium in NaCl-NaBr-H2O System at 288.15 K
NASA Astrophysics Data System (ADS)
Li, Dan; Meng, Ling-zong; Deng, Tian-long; Guo, Ya-fei; Fu, Qing-Tao
2018-06-01
The solubility data, composition of the solid solution and refractive indices of the NaCl-NaBr-H2O system at 288.15 K were studied with the isothermal equilibrium dissolution method. The solubility diagram and refractive index diagram of this system were plotted at 288.15 K. The solubility diagram consists of two crystallization zones for solid solution Na(Cl,Br) · 2H2O and Na(Cl,Br), one invariant points cosaturated with two solid solution and two univariant solubility isothermal curves. On the basis of Pitzer and Harvie-Weare (HW) chemical models, the composition equations and solubility equilibrium constant equations of the solid solutions at 288.15 K were acquired using the solubility data, the composition of solid solutions, and binary Pitzer parameters. The solubilities calculated using the new method combining the equations are in good agreement with the experimental data.
Matrix-isolation and computational study of the HXeY⋯H2O complexes (Y = Cl, Br, and I).
Tsuge, Masashi; Berski, Sławomir; Räsänen, Markku; Latajka, Zdzisław; Khriachtchev, Leonid
2014-01-28
The HXeY⋯H2O complexes (Y = Cl, Br, and I) are studied theoretically and experimentally. The calculations at the CCSD(T)/def2-TZVPPD level of theory predict two stable structures for Y = Cl and Br and one structure for Y = I, with interaction energies up to about -7 kcal mol(-1). In the experiments, we have identified several infrared absorption bands originating from the H-Xe stretching mode of these complexes in a xenon matrix. The monomer-to-complex frequency shifts of this mode are up to +82 cm(-1) (Y = Cl), +101 cm(-1) (Y = Br), and +138 cm(-1) (Y = I), i.e., the shift is smaller for more strongly bound molecules. Based on the agreement of the experimental and theoretical results, the observed bands are assigned to the most stable planar structure with an O-H⋯Y-Xe hydrogen bond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yijie; Xing, Huaizhong, E-mail: xinghz@dhu.edu.cn; Lu, Aijiang
2015-08-07
Semiconductor nanowires (NWs) can be applied in gas sensing and cell detection, but the sensing mechanism is not clearly understood. In this study, surface modification effect on the electronic properties of CdS NWs for different diameters with several species (H, F, Cl, Br, and NO{sub 2}) is investigated by first principles calculations. The surface dangling bonds and halogen elements are chosen to represent the environment of the surface. Halogen passivation drastically changes the band gaps due to the strong electronegativity and the energy level of halogen atoms. Density of states analysis indicates that valence band maximum (VBM) of halogen-passivated NWsmore » is formed by the p states of halogen atoms, while VBM of H-passivated NWs is originated from Cd 4d and S 3p orbitals. To illustrate that surface modification can be applied in gas sensing, NO{sub 2}-absorbed NWs with different coverage are calculated. Low coverage of NO{sub 2} introduces a deep p-type dopant-like level, while high coverage introduces a shallow n-type dopant-like level into the band structure. The transformation is due to that at low coverage the adsorption is chemical while at high coverage is physical. These findings might promote the understanding of surface modification effect and the sensing mechanism of NWs as gas sensors.« less
Mechanisms of SN2 reactions: insights from a nearside/farside analysis.
Hennig, Carsten; Schmatz, Stefan
2015-10-28
A nearside/farside analysis of differential cross sections has been performed for the complex-forming SN2 reaction Cl(-) + CH3Br → ClCH3 + Br(-). It is shown that for low rotational quantum numbers a direct "nearside" reaction mechanism plays an important role and leads to anisotropic differential cross sections. For high rotational quantum numbers, indirect mechanisms via a long-lived intermediate complex are prevalent (independent of a nearside/farside configuration), leading to isotropic cross sections. Quantum mechanical interference can be significant at specific energies or angles. Averaging over energies and angles reveals that the nearside/farside decomposition in a semiclassical interpretation can reasonably account for the analysis of the reaction mechanism.
X-ray photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors
Nelson, A. J.; Voss, L. F.; Beck, P. R.; ...
2013-01-12
We subjected device-grade TlBr to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl 2, Br:MeOH and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.
X-ray photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors
NASA Astrophysics Data System (ADS)
Nelson, A. J.; Voss, L. F.; Beck, P. R.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Lee, J.-S.; Kim, H.; Cirignano, L.; Shah, K.
2013-04-01
Device-grade TlBr was subjected to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl2, Br:MeOH, and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p, and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.
Theoretical study of the kinetics of reactions of the monohalogenated methanes with atomic chlorine.
Brudnik, Katarzyna; Twarda, Maria; Sarzyński, Dariusz; Jodkowski, Jerzy T
2013-04-01
Ab initio calculations at the G2 level were used in a theoretical description of the kinetics and mechanism of the hydrogen abstraction reactions from fluoro-, chloro- and bromomethane by chlorine atoms. The profiles of the potential energy surfaces show that mechanism of the reactions under investigation is complex and consists of two - in the case of CH3F+Cl - and of three elementary steps for CH3Cl+Cl and CH3Br+Cl. The heights of the energy barrier related to the H-abstraction are of 8-10 kJ mol(-1), the lowest value corresponds to CH3Cl+Cl and the highest one to CH3F+Cl. The rate constants were calculated using the theoretical method based on the RRKM theory and the simplified version of the statistical adiabatic channel model. The kinetic equations derived in this study[Formula: see text]and[Formula: see text]allow a description of the kinetics of the reactions under investigation in the temperature range of 200-3000 K. The kinetics of reactions of the entirely deuterated reactants were also included in the kinetic analysis. Results of ab initio calculations show that D-abstraction process is related with the energy barrier of 5 kJ mol(-1) higher than the H-abstraction from the corresponding non-deuterated reactant molecule. The derived analytical equations for the reactions, CD3X+Cl, CH2X+HCl and CD2X+DCl (X = F, Cl and Br) are a substantial supplement of the kinetic data necessary for the description and modeling of the processes of importance in the atmospheric chemistry.
Zou, Wenli; Liu, Wenjian
2009-03-01
The low-lying electronic states of TlX (X=F, Cl, Br, I, and At) are investigated using the configuration interaction based complete active space third-order perturbation theory [CASPT3(CI)] with spin-orbit coupling accounted for. The potential energy curves and the corresponding spectroscopic constants are reported. The results are grossly in good agreement with the available experimental data. The absorption spectra are simulated as well to reassign the experimental bands. The present results are also useful for guiding future experimental measurements.
Gerber, W J; van Wyk, P-H; van Niekerk, D M E; Koch, K R
2015-02-28
Bjerrum's model of step-wise ligand exchange is extended to compute a complete speciation diagram for the [PtCl6-nBrn](2-) (n = 0-6) system including all 17 equilibrium constants concerning the Pt(IV) chlorido-bromido exchange reaction network (HERN). In contrast to what the hard soft acid base (HSAB) principle "predicts", the thermodynamic driving force for the replacement of chloride by bromide in an aqueous matrix, for each individual ligand exchange reaction present in the Pt(IV) HERN, is due to the difference in halide hydration energy and not bonding interactions present in the acid-base complex. A generalized thermodynamic test calculation was developed to illustrate that the HSAB classified class (b) metal cations Ag(+), Au(+), Au(3+), Rh(3+), Cd(2+), Pt(2+), Pt(4+), Fe(3+), Cd(2+), Sn(2+) and Zn(2+) all form thermodynamically stable halido complexes in the order F(-) ≫ Cl(-) > Br(-) > I(-) irrespective of the sample matrix. The bonding interactions in the acid-base complex, e.g. ionic-covalent σ-bonding, Π-bonding and electron correlation effects, play no actual role in the classification of these metal cations using the HSAB principle. Instead, it turns out that the hydration/solvation energy of halides is the reason why metal cations are categorized into two classes using the HSAB principle which highlights the fundamental flaw of the HSAB principle.
NASA Technical Reports Server (NTRS)
Gaier, James R.; Slabe, Melissa E.; Shaffer, Nanette
1987-01-01
Four different grades of pitch-based graphite fibers (Amoco P-55, P-75, P-100. and P-120) were intercalated with each of four different intercalates: bromine (Br2), iodine monochloride (ICl), copper (II) chloride (CuCl2), and nickel (II) chloride (NiCl2). The P-55 fibers did not react with Br2 or NiCl2, and the P-75 did not react with NiCl2. The stability of the electrical resistance of the intercalated fibers was monitored over long periods of time in ambient, high humidity (100 percent at 60 C), vacuum (10 to the -6 torr), and high temperature (up to 400 C) conditions. Fibers with lower graphitization form graphite intercalation compounds (GIC's) which are more stable than those with higher graphitization (i.e., P-55 (most stable) greater than P-75 greater than P-100 greater than P-120 (least stable). Br2 formed the most stable GIC's followed in order of decreasing stability by ICl, CuCl2, and NiCl2. While Br2 GIC's had the most stability, ICl had the advantages of forming GIC's with slightly greater reduction in resistance (by about 10%) than Br2, and the ability to intercalate P-55 fiber. Transition metal chlorides are susceptible to water vapor and high temperature. The stability of fibers in composites differs.
Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong; Li, Shuai; Zhang, Yi
Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less
Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte
Zhu, Jinlong; Li, Shuai; Zhang, Yi; ...
2016-09-07
Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less
Luo, Tingting; Du, Yun; Qiu, Zhongxian; Li, Yanmei; Wang, Xiaofang; Zhou, Wenli; Zhang, Jilin; Yu, Liping; Lian, Shixun
2017-05-15
Eu 2+ -activated Ba 2 ZnS 3 has been reported as a red phosphor with a broad emission band peaking at 650 nm under blue excitation for white-LED. In this study, Ba 2 ZnS 3 :Eu 2+ , X - (X = F, Cl, Br, I) phosphors doped with halide ions were prepared by traditional high-temperature solid-state reaction. Phase identification of powders was performed by X-ray powder diffraction analysis, confirming the existence of single-phase Ba 2 ZnS 3 crystals without dopant. The corresponding excitation spectra showed an additional broad band in the green region peaking at 550 nm when the phosphor was halogenated except by the smallest F - . It was proved that the green-excitation efficiency successively strengthened from Cl - , to Br - , to I - , which suggested larger halide ions made a greater contribution to the further splitting of the t 2g energy level of the doped Eu 2+ ions in the host Ba 2 ZnS 3 , and the optimized formula Ba 1.995 ZnS 2.82 :Eu 2+ 0.005 , I - 0.18 showed a potential application in solar spectral conversion for agricultural greenhouse and solar cell. Defect chemistry theory and crystal field theory provided insights into the key role of halide ions in enhancing green-excitation efficiency.
Uemura, Kazuhiro; Yamasaki, Yukari; Onishi, Fumiaki; Kita, Hidetoshi; Ebihara, Masahiro
2010-11-01
A preliminary study of isopropanol (IPA) adsorption/desorption isotherms on a jungle-gym-type porous coordination polymer, [Zn(2)(bdc)(2)(dabco)](n) (1, H(2)bdc = 1,4-benzenedicarboxylic acid, dabco =1,4-diazabicyclo[2.2.2]octane), showed unambiguous two-step profiles via a highly shrunk intermediate framework. The results of adsorption measurements on 1, using probing gas molecules of alcohol (MeOH and EtOH) for the size effect and Me(2)CO for the influence of hydrogen bonding, show that alcohol adsorption isotherms are gradual two-step profiles, whereas the Me(2)CO isotherm is a typical type-I isotherm, indicating that a two-step adsorption/desorption is involved with hydrogen bonds. To further clarify these characteristic adsorption/desorption behaviors, selecting nitroterephthalate (bdc-NO(2)), bromoterephthalate (bdc-Br), and 2,5-dichloroterephthalate (bdc-Cl(2)) as substituted dicarboxylate ligands, isomorphous jungle-gym-type porous coordination polymers, {[Zn(2)(bdc-NO(2))(2)(dabco)]·solvents}(n) (2 ⊃ solvents), {[Zn(2)(bdc-Br)(2)(dabco)]·solvents}(n) (3 ⊃ solvents), and {[Zn(2)(bdc-Cl(2))(2)(dabco)]·solvents}(n) (4 ⊃ solvents), were synthesized and characterized by single-crystal X-ray analyses. Thermal gravimetry, X-ray powder diffraction, and N(2) adsorption at 77 K measurements reveal that [Zn(2)(bdc-NO(2))(2)(dabco)](n) (2), [Zn(2)(bdc-Br)(2)(dabco)](n) (3), and [Zn(2)(bdc-Cl(2))(2)(dabco)](n) (4) maintain their frameworks without guest molecules with Brunauer-Emmett-Teller (BET) surface areas of 1568 (2), 1292 (3), and 1216 (4) m(2) g(-1). As found in results of MeOH, EtOH, IPA, and Me(2)CO adsorption/desorption on 2-4, only MeOH adsorption on 2 shows an obvious two-step profile. Considering the substituent effects and adsorbate sizes, the hydrogen bonds, which are triggers for two-step adsorption, are formed between adsorbates and carboxylate groups at the corners in the pores, inducing wide pores to become narrow pores. Interestingly, such a two-step MeOH adsorption on 2 depends on the temperature, attributed to the small free-energy difference (ΔF(host)) between the two guest-free forms, wide and narrow pores.
Wang, Yue; Okabe, Nobuo; Odoko, Mamiko
2005-10-01
The crystal structures of a series of three palladium(II) ternary complexes of 5-halogeno-2-aminobenzoic acid (5-X-AB, where X=Cl, Br and I) with 1,10-phenanthroline [Pd(5-Cl-AB)(phen)] (1), [Pd(5-Br-AB)(phen)] (2) and [Pd(5-I-AB)(phen)] (3) have been determined, and their coordination geometries and the crystal architecture characterized. All of the complexes are an isostructure in which each Pd(II) atom has basically similar square planar coordination geometry. The substitute halogen group at 5-position of AB plays an important role in producing the coordination bonds of the carboxylate and amino groups in which the carboxylate O atom and the amino N atom act as the negative monodentate ligand atoms. The coordination bond distances of O-Pd increase in the order 1<2<3, while those of N-Pd decrease in the same order. The binding of the complexes to the calf thymus DNA has also been studied by the fluorescence method. Each of the complexes shows high binding propensity to DNA which can be reflected as the relative order 1<2<3.
Sage, Alan G; Oliver, Thomas A A; King, Graeme A; Murdock, Daniel; Harvey, Jeremy N; Ashfold, Michael N R
2013-04-28
The wavelength dependences of C-Y and O-H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O-H bond fission following excitation at wavelengths λ ≲ 240 nm, on repulsive ((n∕π)σ∗) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ∼11,000 cm(-1). For Y = I and Br, this process occurs in competition with prompt C-I and C-Br bond cleavage on another (n∕π)σ∗ PES, but no Cl∕Cl∗ products unambiguously attributable to one photon induced C-Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C-I bond fission is observed following excitation of 4-IPhOH at all λ ≤ 330 nm; the wavelength dependent trends in I∕I∗ product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C-I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O-H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C-Y centred (n∕π)σ∗ potentials across the series Y = I < Br < Cl and the concomitant reduction in C-Y bond strength, cf. that of the rival O-H bond, and (ii) the much increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the risks inherent in extrapolating photochemical behaviour measured for one molecule at one wavelength to other (related) molecules and to other excitation energies.
NASA Astrophysics Data System (ADS)
Li, Qian-Shu; Zhao, Jun-Fang; Xie, Yaoming; Schaefer, Henry F., III
Four independent density functional theory (DFT) methods have been employed to study the structures and electron affinities of the methyl and F-, Cl- and Br-substituted methyl radicals and their anions. The methods used have been carefully calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews, 2002, 102, 231). The first dissociation energies together with the vibrational frequencies of these species are also reported. The basis sets used in this work are of double- ζ plus polarization quality with additional s- and p-type diffuse functions, labelled as DZP++. Previously observed trends in the prediction of bond lengths by the DFT methods are also demonstrated for the F-, Cl- and Br-substituted methyl radicals and their anions. Generally, the Hartree-Fock/DFT hybrid methods predict shorter and more reliable bond lengths than the pure DFT methods. Neutral-anion energy differences reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Compared with the available experimental electron affinities, the BHLYP method predicts much lower values, while the other methods predict values (EAad, EAvert, VDE) close to each other and almost within the experimental range. For those systems without reliable experimental measurements, our best adiabatic EAs predicted by BLYP are 0.78 (CHF2), 1.23 (CHFCl), 1.44 (CHFBr), 1.61 (CHClBr), 2.24 (CF2Cl), 2.42 (CF2Br), 2.56 (CFBr2), 2.36 (CCl2Br), 2.46 (CClBr2), and 2.44 eV (CFClBr). The most striking feature of these predictions is that they display an inverse relationship between halogen electronegativity and EA. The DZP++ B3LYP method determines the vibrational frequencies in best agreement with available experimental results for this series, with an average relative error of ~2%. The value of using a variety of DFT methods is observed in that BHLYP does best for geometries, BLYP for electron affinities, and B3LYP for vibrational frequencies. These theoretical results serve to resolve several disagreements between competing experiments. Several other experiments appear to have drawn incorrect conclusions. For example, CHCl2 is significantly pyramidal, unlike the experimental inferences, and clearly the experimental CCl2 - Cl dissociation energy is too large.
Electronic effects of Se and Pb dopants in TlBr
NASA Astrophysics Data System (ADS)
Smith, Holland M.; Phillips, David J.; Sharp, Ian D.; Beeman, Jeffrey W.; Chrzan, Daryl C.; Haegel, Nancy M.; Haller, Eugene E.; Ciampi, Guido; Kim, Hadong; Shah, Kanai S.
2012-05-01
Deep levels in Se- and Pb-doped bulk TlBr detectors were characterized with photo-induced conductivity transient spectroscopy (PICTS) and cathodoluminescence (CL). Se-doped TlBr revealed two traps with energies of 0.35 and 0.45 eV in PICTS spectra. The Pb-doped material revealed three levels with energies of 0.11, 0.45, and 0.75 eV. CL measurements in both materials correlate with optical transitions involving some of the identified levels. The ambipolar carrier lifetimes of Se-doped and Pb-doped TlBr were measured with microwave reflectivity transients and found to be significantly lower than the lifetime of undoped TlBr.
Valinsky, William C; Touyz, Rhian M; Shrier, Alvin
2017-08-01
Thiazides block Na + reabsorption while enhancing Ca 2+ reabsorption in the kidney. As previously demonstrated in immortalized mouse distal convoluted tubule (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca 2+ uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl - channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl - channels, however the nature of these Cl - channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl - current at extracellular pH7.4. This constitutive Cl - current was more permeable to larger anions (Eisenman sequence I; I - >Br - ≥Cl - ) and was substantially inhibited by >100mM [Ca 2+ ] o , which distinguished it from ClC-K2/barttin. Moreover, the constitutive Cl - current was blocked by NPPB, along with other Cl - channel inhibitors (4,4'-diisothiocyanatostilbene-2,2'-disulfonate, DIDS; flufenamic acid, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH<5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl - current. This acid-induced Cl - current was also anion permeable (I - >Br - >Cl - ), but was distinguished from the constitutive Cl - current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl - current would be particularly relevant in the acidic IMCD (pH<5.5). To our knowledge, the properties of these Cl - currents are unique and provide the mechanisms to account for the Cl - efflux previously speculated to be present in MDCT cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Biswas, Manas Kumar; Patra, Sarat Chandra; Maity, Amarendra Nath; Ke, Shyue-Chu; Weyhermüller, Thomas; Ghosh, Prasanta
2013-05-14
Reactions of 9,10-phenanthrenequinone (PQ) in toluene with [M(II)(PPh3)3X2] at 298 K afford green complexes, trans-[M(PQ)(PPh3)2X2] (M = Ru, X = Cl, 1; M = Os, X = Br, 2) in moderate yields. Reaction of anhydrous RhCl3 with PQ and PPh3 in boiling ethanol affords the dark brown paramagnetic complex, cis-[Rh(PQ)(PPh3)2Cl2] (3) in good yields. Diffusion of iodine solution in n-hexane to the trans-[Os(PQ) (PPh3)2(CO)(Br)] solution in CH2Cl2 generates the crystals of trans-[Os(PQ)(PPh3)2(CO)(Br)](+)I3(-), (4(+))I3(-)), in lower yields. Single crystal X-ray structure determinations of 1·2toluene, 2·CH2Cl2 and 4(+)I3(-), UV-vis/NIR absorption spectra, EPR spectra of 3, electrochemical activities and DFT calculations on 1, 2, trans-[Ru(PQ)(PMe3)2Cl2] (1Me), trans-[Os(PQ)(PMe3)2Br2] (2Me), cis-[Rh(PQ)(PMe3)2Cl2] (3Me) and their oxidized and reduced analogues including trans-[Os(PQ)(PMe3)2(CO)(Br)](+) (4Me(+)) substantiated that 1-3 are the 9,10-phenanthrenesemiquinone radical (PQ(˙-)) complexes of ruthenium(III), osmium(III) and rhodium(III) and are defined as trans/cis-[M(III)(PQ(˙-))(PPh3)2X2] with a minor contribution of the resonance form trans/cis-[M(II)(PQ)(PPh3)2X2]. Two comparatively longer C-O (1.286(4) Å) and the shorter C-C lengths (1.415(7) Å) of the OO-chelate of 1·2toluene and 2·CH2Cl2 and the isotropic fluid solution EPR signal at g = 1.999 of 3 are consistent with the existence of the reduced PQ(˙-) ligand in 1-3 complexes. Anisotropic EPR spectra of the frozen glasses (g11 = g22 = 2.0046 and g33 = 1.9874) and solids (g11 = g22 = 2.005 and g33 = 1.987) instigate the contribution of the resonance form, cis-[Rh(II)(PQ)(PPh3)2Cl2] in 3. DFT calculations established that the closed shell singlet (CSS) solutions of 1Me and 2Me are unstable due to open shell singlet (OSS) perturbation. However, the broken symmetry (BS) (1,1) Ms = 0 solutions of 1Me and 2Me are respectively 22.6 and 24.2 kJ mole(-1) lower in energy and reproduced the experimental bond parameters well prompting the coordination of PQ(˙-) to the M(III) ions. The comparatively shorter C-O lengths, 1.268(4) and 1.266(5) Å and the longer C-C length, 1.466(6) Å, are consistent with the PQ chelation to osmium(II) ion in 4(+). The reversible anodic waves at 0.22, 0.22, and 0.18 V of 1-3, referenced by the Fc(+)/Fc couple, are assigned to the PQ(˙-)/PQ couple forming PQ complexes as trans/cis-[M(III)(PQ)(PPh3)2X2](+) while the cathodic waves at -0.92 and -0.89 V of 2 and 3 are due to formations of PQ(2-) complexes as trans-[M(III)(PQ(2-))(PPh3)2X2](-). 1 displays two overlapping cathodic waves at -0.72(89), -1.0(120) V. EPR spectrum of the frozen glass of 1(-) along with DFT calculations detected the contribution of both the valence tautomers, trans-[Ru(III)(PQ(2-))(PPh3)2Cl2](-) (g1 = g2 = 2.456; g3 = 1.983) and trans-[Ru(II)(PQ(˙-))(PPh3)2X2](-) (g(iso) = 1.999) in the anion. The characteristic lower energy absorption bands of 1 and 2 at 700 nm were assigned to CSS-OSS perturbation MLCT those are absent in paramagnetic 3, 1(+), 2(+), 1(-), 2(-) and 4(+) complexes, investigated by spectro-electrochemical measurements and time dependent (TD) DFT calculations on 1Me, 2Me, 1Me(+) and 1Me(-).
NASA Astrophysics Data System (ADS)
Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.
2013-07-01
We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.
NASA Astrophysics Data System (ADS)
Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.
2013-12-01
We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, Justin P.; Shuman, Nicholas S.; Miller, Thomas M.
2016-05-28
Mutual neutralization (MN) rate coefficients k{sub MN} for He{sup +} with the anions Cl{sup −}, Br{sup −}, I{sup −}, and SF{sub 6}{sup −} are reported from 300 to 500 K. The measured rate coefficients may contain a contribution from transfer ionization, i.e., double ionization of the anion. The large rate coefficient for He{sup +} + SF{sub 6}{sup −} (2.4 × 10{sup −7} cm{sup 3} s{sup −1} at 300 K) is consistent with earlier polyatomic MN results found to have a reduced mass dependence of μ{sup −1/2}. Neutralization of He{sup +} by the atomic halides follows the trend observed earlier for Ne{sup +},more » Ar{sup +}, Kr{sup +}, and Xe{sup +} neutralized by atomic halides, k{sub MN} (Cl{sup −}) < k{sub MN} (Br{sup −}) < k{sub MN} (I{sup −}). Only an upper limit could be measured for the neutralization of He{sup +} by Cl{sup −}. Predictions of the rate coefficients from a previously proposed simple model of atomic–atomic MN results are consistent with the present He{sup +}–halide rate coefficients. The temperature dependences are modestly negative for Br{sup −} and I{sup −}, while that for SF{sub 6}{sup −} is small or negligible.« less
Solà-Vázquez, Auristela; Lara-Gonzalo, Azucena; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo
2010-05-01
A tuneable microsecond pulsed direct current glow discharge (GD)-time-of-flight mass spectrometer MS(TOF) developed in our laboratory was coupled to a gas chromatograph (GC) to obtain sequential collection of the mass spectra, at different temporal regimes occurring in the GD pulses, during elution of the analytes. The capabilities of this set-up were explored using a mixture of volatile organic compounds of environmental concern: BrClCH, Cl(3)CH, Cl(4)C, BrCl(2)CH, Br(2)ClCH, Br(3)CH. The experimental parameters of the GC-pulsed GD-MS(TOF) prototype were optimized in order to separate appropriately and analyze the six selected organic compounds, and two GC carrier gases, helium and nitrogen, were evaluated. Mass spectra for all analytes were obtained in the prepeak, plateau and afterpeak temporal regimes of the pulsed GD. Results showed that helium offered the best elemental sensitivity, while nitrogen provided higher signal intensities for fragments and molecular peaks. The analytical performance characteristics were also worked out for each analyte. Absolute detection limits obtained were in the order of ng. In a second step, headspace solid phase microextraction (HS SPME), as sample preparation and preconcentration technique, was evaluated for the quantification of the compounds under study, in order to achieve the required analytical sensitivity for trihalomethanes European Union (EU) environmental legislation. The analytical figures of merit obtained using the proposed methodology showed rather good detection limits (between 2 and 13 microg L(-1) depending on the analyte). In fact, the developed methodology met the EU legislation requirements (the maximum level permitted in tap water for the "total trihalomethanes" is set at 100 microg L(-1)). Real analysis of drinking water and river water were successfully carried out. To our knowledge this is the first application of GC-pulsed GD-MS(TOF) for the analysis of real samples. Its ability to provide elemental, fragments and molecular information of the organic compounds is demonstrated.
Tang, Xiaohui; Lui, Yu Hui; Merhi, Abdul Rahman; Chen, Bolin; Ding, Shaowei; Zhang, Bowei; Hu, Shan
2017-12-27
To enhance the energy density of solid-state supercapacitors, a novel solid-state cell, made of redox-active poly(vinyl alcohol) (PVA) hydrogel electrolytes and functionalized carbon nanotube-coated cellulose paper electrodes, was investigated in this work. Briefly, acidic PVA-[BMIM]Cl-lactic acid-LiBr and neutral PVA-[BMIM]Cl-sodium acetate-LiBr hydrogel polymer electrolytes are used as catholyte and anolyte, respectively. The acidic condition of the catholyte contributes to suppression of the undesired irreversible reaction of Br - and extension of the oxygen evolution reaction potential to a higher value than that of the redox potential of Br - /Br 3 - reaction. The observed Br - /Br 3 - redox activity at the cathode contributes to enhance the cathode capacitance. The neutral condition of the anolyte helps extend the operating voltage window of the supercapacitor by introducing hydrogen evolution reaction overpotential to the anode. The electrosorption of nascent H on the negative electrode also increases the anode capacitance. As a result, the prepared solid-state hybrid supercapacitor shows a broad voltage window of 1.6 V, with a high Coulombic efficiency of 97.6% and the highest energy density of 16.3 Wh/kg with power density of 932.6 W/kg at 2 A/g obtained. After 10 000 cycles of galvanostatic charge and discharge tests at the current density of 10 A/g, it exhibits great cyclic stability with 93.4% retention of the initial capacitance. In addition, a robust capacitive performance can also be observed from the solid-state supercapacitor at different bending angles, indicating its great potential as a flexible energy storage device.
Chemical Durability Improvement and Static Fatigue of Glasses.
1982-05-01
Specifically, the replacement of hydroxyl groups on the glass surface with silane or Grignard reagent nearly completely eliminated stress rate dependence...CK3SiC13 in Heptane solution Cc) 2 vol % (CR3)3SIC1 in Heptane solution (d) 0.1 M CH3MgBr ( Grignard reagent ) in n-Buthyl ether solution • Corning 7900...C113)3- SiCl or C13MgBr ( Grignard reagent ) solution while it remains practi- cally unchanged in CH3SiCI3 solution. In CH3SICI3 , the strength is
Influence of physical activity in the intake of trihalomethanes in indoor swimming pools.
Marco, Esther; Lourencetti, Carolina; Grimalt, Joan O; Gari, Mercè; Fernández, Pilar; Font-Ribera, Laia; Villanueva, Cristina M; Kogevinas, Manolis
2015-07-01
This study describes the relationship between physical activity and intake of trihalomethanes (THMs), namely chloroform (CHCl3), bromodichloromethane (CHCl2Br), dibromochloromethane (CHClBr2) and bromoform (CHBr3), in individuals exposed in two indoor swimming pools which used different disinfection agents, chlorine (Cl-SP) and bromine (Br-SP). CHCl3 and CHBr3 were the dominant compounds in air and water of the Cl-SP and Br-SP, respectively. Physical exercise was assessed from distance swum and energy expenditure. The changes in exhaled breath concentrations of these compounds were measured from the differences after and before physical activity. A clear dependence between distance swum or energy expenditure and exhaled breath THM concentrations was observed. The statistically significant relationships involved higher THM concentrations at higher distances swum. However, air concentration was the major factor determining the CHCl3 and CHCl2Br intake in swimmers whereas distance swum was the main factor for CHBr3 intake. These two causes of THM incorporation into swimmers concurrently intensify the concentrations of these compounds into exhaled breath and pointed to inhalation as primary mechanism for THM uptake. Furthermore, the rates of THM incorporation were proportionally higher as higher was the degree of bromination of the THM species. This trend suggested that air-water partition mechanisms in the pulmonary system determined higher retention of the THM compounds with lower Henry's Law volatility constants than those of higher constant values. Inhalation is therefore the primary mechanisms for THM exposure of swimmers in indoor buildings. Copyright © 2015 Elsevier Inc. All rights reserved.
Jin, Rong; Liu, Guorui; Zheng, Minghui; Fiedler, Heidelore; Jiang, Xiaoxu; Yang, Lili; Wu, Xiaolin; Xu, Yang
2017-08-04
Isotopic dilution gas chromatography combined with high resolution mass spectrometry (GC/HRMS) has overwhelming advantages with respect to the accuracy of congener-specific ultratrace analysis of complex persistent organic pollutants (POPs) in environmental matrices. However, an isotopic dilution GC/HRMS method for analysis of chlorinated and brominated polycyclic aromatic hydrocarbons (Cl-PAHs and Br-PAHs) using 13 C-labelled congeners as internal standards has not been established. In this study, a method for identification and quantification of 38 congeners of Cl-PAHs and Br-PAHs in atmosphere and stack gas samples from waste incinerators was developed using the isotopic dilution GC/HRMS technique. The instrumental detection limits of the GC/HRMS method ranged from 0.2pg to 1.8pg for Cl-PAH congeners, and 0.7pg to 2.7pg for Br-PAH congeners, which were about three orders of magnitude lower than those of the GC/quadrupole MS method. This new method developed was also the first to enable determination of Cl-PAH and Br-PAH homologs comprising congeners with the same molecular skeleton and chlorine or bromine substitution numbers. Among the detected congeners, seven Cl-PAH congeners and thirteen Br-PAH congeners that were abundant in the atmosphere and stack gases released from waste incinerators were firstly detected in real samples and reported using the established isotopic dilution GC/HRMS method. The developed isotopic dilution GC/HRMS is significant and needed for better studying the environmental behavior and health risk of Cl-PAHs and Br-PAHs. Copyright © 2017 Elsevier B.V. All rights reserved.
Structural analysis of pyridine-imino boronic esters involving secondary interactions on solid state
NASA Astrophysics Data System (ADS)
Sánchez-Portillo, Paola; Arenaza-Corona, Antonino; Hernández-Ahuactzi, Irán F.; Barba, Victor
2017-04-01
Twelve boronic esters (1a-1l) synthesized from 4-halo- substituted arylboronic acids (halo = F, Cl, Br, I and CF3) with 2-amino-2- alkyl (H, Me) -1,3-propanediol in presence of (3- or 4)-pyridine carboxaldehyde are described. A solvent mixture toluene/methanol 1:4 ratio was used. All compounds include both donor/acceptor functional groups, which are the necessary elements to self-assembly of the molecular species. Several secondary interactions as I⋯N, Br⋯Br, Br⋯B, F⋯B, Csbnd H⋯N, Csbnd H⋯O, Br⋯π and Csbnd H⋯π support the 1D and 2D polymeric frameworks in solid state. The coordination of the nitrogen atom from the pyridine moiety with the boron atom was not observed in either solution or solid state.
Shechner, M; Tas, E
2017-12-19
Reactive iodine and bromine species (RIS and RBS, respectively) are known for altering atmospheric chemistry and causing sharp tropospheric ozone (O 3 ) depletion in polar regions and significant O 3 reduction in the marine boundary layer (MBL). Here we use measurement-based modeling to show that, unexpectedly, both RIS and RBS can lead to enhanced O 3 formation in a polluted marine environment under volatile organic compound (VOC)-limited conditions associated with high nitrogen oxide (NO X = [NO] + [NO 2 ]) concentrations. Under these conditions, the daily average O 3 mixing ratio increased to ∼44 and ∼28% for BrO and IO mixing ratios of up to ∼6.8 and 4.7 ppt, respectively. The increase in the level of O 3 was partially induced by enhanced ClNO 3 formation for higher Br 2 and I 2 emission flux. The increase in the level of O 3 was associated with an increased mixing ratio of hydroperoxyl radical to hydroxyl radical ([HO 2 ]/[OH]) and increased [NO 2 ]/[NO] with higher levels of RBS and/or RIS. NO X -rich conditions are typical of the polluted MBL, near coastlines and ship plumes. Considering that O 3 is toxic to humans, plants, and animals and is a greenhouse gas, our findings call for adequate updating of local and regional air-quality models with the effects of activities of RBS and RIS on O 3 mixing ratios in the polluted MBL.
Photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors
NASA Astrophysics Data System (ADS)
Nelson, A. J.; Lee, J.-S.; Stanford, J. A.; Grant, W. K.; Voss, L. F.; Beck, P. R.; Graff, R. T.; Swanberg, E. L.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L. J.; Shah, K.
2013-09-01
Device-grade TlBr was subjected to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. Samples of as polished TlBr were treated separately with 2%Br:MeOH, 10%HF, 10%HCl and 96%SOCl2 solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry. Results suggest anion substitution at the surface with subsequent shallow heterojunction formation. Surface chemistry and valence band electronic structure were further correlated with the goal of optimizing the long-term stability and radiation response.
Becker, Richard; Johnsson, Mats; Kremer, Reinhard K; Klauss, Hans-Henning; Lemmens, Peter
2006-12-06
A new layered transition metal oxohalide, FeTe2O5ClxBr1-x, has been identified. It crystallizes in the monoclinic space group P21/c. The unit cell for FeTe2O5Br is a = 13.3964(8), b = 6.5966(4), c = 14.2897(6) A, beta=108.118(6) degrees, and Z=8. The layers are built of edge sharing [FeO6] octahedra forming [Fe4O16]20- units that are linked by [Te4O10X2]6- groups. The layers have no net charge and are only weakly connected via van der Waals forces to adjacent layers. There are four crystallographically different Te atoms, and one of them displays a unique [TeO2X] coordination polyhedron (X=Cl, Br). Magnetic susceptibility measurements show a broad maximum typical for 4-spin clusters of coupled Fe(III) ions in the high-spin state. Evidence for magnetic instabilities exists at low temperatures, which have been confirmed with specific heat experiments. A theoretical modeling of the susceptibility concludes a frustration of the intra-tetramer anti-ferromagnetic exchange interaction.
Albertí, Margarita; Huarte-Larrañaga, Fermín; Aguilar, Antonio; Lucas, José M; Pirani, Fernando
2011-05-14
The specific influence of X(-) ions (X = F,Cl, Br, I) in the solvation process of halide-benzene (X(-)-Bz) ionic heterodimers by Ar atoms is investigated by means of molecular dynamic (MD) simulations. The gradual evolution from cluster rearrangement to solvation dynamics is discussed by considering ensembles of n (n = 1-15 and n = 30) Ar atoms around the X(-)-Bz stable ionic dimers. The potential energy surfaces employed are based on an atom/ion-atom and atom/ion-bond decomposition, which has been developed previously by some of the authors. The outcome of the dynamics is analyzed by employing radial distribution functions (RDF) and tridimensional (3D) probability densities.
Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity.
Betanzos-Lara, Soledad; Novakova, Olga; Deeth, Robert J; Pizarro, Ana M; Clarkson, Guy J; Liskova, Barbora; Brabec, Viktor; Sadler, Peter J; Habtemariam, Abraha
2012-10-01
The synthesis and characterization of complexes [(η(6)-arene)Ru(N,N')X][PF(6)], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N' is 2,2'-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)I][PF(6)] and [(η(6)-etb)Ru(bpm)Cl][PF(6)]. Complexes in which N,N' is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The Ru(II) arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-p-cym)Ru(bpm)Br][PF(6)], [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)Br][PF(6)] and [(η(6)-bip)Ru(bpm)I][PF(6)] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK (a)* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-hmb)Ru(bpm)Cl](+), [(η(6)-ind)Ru(bpm)Cl](+), [(η(6)-thn)Ru(bpm)Cl](+), [(η(6)-p-cym)Ru(phen)Cl](+) and [(η(6)-p-cym)Ru(bathophen)Cl](+) in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η(6)-p-cym)Ru(bpm)(9-EtG-N7)][PF(6)](2) shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)] and [(η(6)-p-cym)Ru(phen)Cl][PF(6)] consist of weak coordinative, intercalative and monofunctional coordination. Binding to biomolecules such as glutathione may play a role in deactivating the bpm complexes.
NASA Astrophysics Data System (ADS)
Kreyling, Daniel; Sagawa, Hideo; Kasai, Yasuko
2013-04-01
We present a diurnal variation climatology for short-lived at atmospheric compositions, such as ClO, BrO, HO2 and HOCl, as well as for longer life time species, like O3 and HCl from observations of unprecedented sensitivity with the Superconducting SubMIllimeter wave Limb-Emission Sounder (SMILES), which is installed on the Japanese Experiment Module (JEM) at the International Space Station (ISS). With its non sun synchronous orbit, SMILES measurements comprise observations at all local times. The target altitude range is between lower stratosphere and mesopause. Differences in diurnal variation chemistry of strato-, and mesospheric BrO and ClO of the diurnal climatology are presented. The data employed is produced by the SMILES level 2 retrieval algorithm version 2.1.5 at the National Institute of Information and Communications Technology (NICT). The SMILES climatology data sets are available via the SMILES data distribution homepage in NICT at https://smiles-p6.nict.go.jp/products/research_latitude-longitude.jsf
Subcontract Report: Diffusion Mechanisms and Bond Dynamics in Solid Electrolyte Ion-Conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zevgolis, A.; Hall, A.; Alvez, T.
2017-10-03
We employ first-principles molecular dynamics simulations and Maximally Localized Wannier Function (MLWF) analysis to explore how halide substitution and nano-phase microstructures affect diffusivity, through the activation energy barrier - E a and D 0, in the solid electrolyte Li 3InBr 6-xCl x. We find that nano-phase microstructures with x=3 (50-50 Br-Cl) mixed composition have a higher diffusivity compared to x=2 and x=3 solid solutions. There is a positive linear relationship between ln(D 0.) and E a, which suggests that for superionic conductivity optimizing both the activation energy and the D 0 is important. Bond frustration due to mismatch in crystalmore » geometry and ideal coordination number leads to especially high diffusivity through a high D 0 in the x=3 composition.« less
Serrano, Elena; Navarro, Rafael; Soler, Tatiana; Carbó, Jorge J; Lledós, Agustí; Urriolabeitia, Esteban P
2009-07-20
The reactivity of the known ylide-sulfonium salt [Ph(3)P=CHC(O)CH(2)SMe(2)]Br 1 and the new ylide-sulfide [Ph(3)P=CHC-(O)CH(2)SMe] 2 toward Pd(II) complexes has been studied. Compound 1 reacts with PdCl(2)(NCMe)(2) and NEt(3) to give cis-[PdCl(2)[Ph(3)PCHC(O)CHSMe(2)-kappa-C,C
Facile Reductive Silylation of UO22+ to Uranium(IV) Chloride.
Kiernicki, John J; Zeller, Matthias; Bart, Suzanne C
2017-01-19
General reductive silylation of the UO 2 2+ cation occurs readily in a one-pot, two-step stoichiometric reaction at room temperature to form uranium(IV) siloxides. Addition of two equivalents of an alkylating reagent to UO 2 X 2 (L) 2 (X=Cl, Br, I, OTf; L=triphenylphosphine oxide, 2,2'-bipyridyl) followed by two equivalents of a silyl (pseudo)halide, R 3 Si-X (R=aryl, alkyl, H; X=Cl, Br, I, OTf, SPh), cleanly affords (R 3 SiO) 2 UX 2 (L) 2 in high yields. Support is included for the key step in the process, reduction of U VI to U V . This procedure is applicable to a wide range of commercially available uranyl salts, silyl halides, and alkylating reagents. Under this protocol, one equivalent of SiCl 4 or two equivalents of Me 2 SiCl 2 results in direct conversion of the uranyl to uranium(IV) tetrachloride. Full spectroscopic and structural characterization of the siloxide products is reported. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
New Scintillator Materials (K2CeBr5) and (Cs2CeBr5)
NASA Technical Reports Server (NTRS)
Hawrami, R.; Volz, M. P.; Batra, A. K.; Aggarwal, M. D.; Roy, U. N.; Groza, M.; Burger, A.; Cherepy, Nerine; Niedermayr, Thomas; Payne, Stephen A.
2008-01-01
Cesium cerium bromide (Cs2CeBr5) and potassium cerium bromide (K2CeBr5) are new scintillator materials for X-ray and gamma ray detector applications. Recently halide scintillator materials, such as Ce doped lanthanum bromide has been proved to be very important material for the same purpose. These materials are highly hygroscopic; a search for high light yield non-hygroscopic materials was highly desirable to advance the scintillator technology. In this paper, we are reporting the crystal growth of novel scintillator materials, cesium cerium bromide (Cs2CeBr5) and potassium cerium bromide (K2CeBr5). Crystals were successfully grown from the melt using the vertical Bridgman-Stockbarger technique, in a comparison with the high performance LaBr3 or LaCl3 crystals, cerium based alkali halides crystals, (Cs2CeBr5) and (K2CeBr5) have similar scintillation properties, while being much less hygroscopic. Furthermore, cesium based compounds will not suffer from the self-activity present in potassium and lanthanum compounds. However the Cs2CeBr5 crystals did not grow properly probably due to non-congruent melting or to some phase transition during cooling. Keywords." Scintillator materials; Ce3+; Energy resolution; Light yield; K2CeBr5
Kong, Fang; Hu, Chun-Li; Liang, Ming-Li; Mao, Jiang-Gao
2016-01-19
The first example of SHG crystal in the metal bromates containing π-conjugated planar triangle systems, namely, Pb4(OH)4(BrO3)3(NO3), was successfully synthesized via the hydrothermal method. Furthermore, a single crystal of centrosymmetric Pb8O(OH)6(BrO3)6(NO3)2·H2O was also obtained. Both compounds contain similar [Pb4(OH)4] cubane-like tetranuclear clusters, but they display different one-dimensional (1D) chain structures. Pb4(OH)4(BrO3)3(NO3) features a zigzag [Pb4(OH)4(BrO3)3](+) 1D chain, while Pb8O(OH)6(BrO3)6(NO3)2·H2O is composed of two different orthogonal chains: the linear [Pb4(OH)4(BrO3)2](2+) 1D chain along the b-axis and the zigzag [Pb4O2(OH)2(BrO3)4](2-) 1D chain along the a-axis. The NO3 planar triangles of the compounds are all isolated and located in the spaces of the structures. Pb4(OH)4(BrO3)3(NO3) exhibits the first example of SHG crystal in the metal bromates with π-conjugated planar triangle. The second-harmonic generation (SHG) efficiency of Pb4(OH)4(BrO3)3(NO3) is approximately equal to that of KDP and it is phase-matchable. Dipole moment and theory calculations indicate that BrO3, NO3, and PbO4 groups are the origin of its SHG efficiency, although some of the contributions cancel each other out.
Carasel, I Alexandru; Yamnitz, Carl R; Winter, Rudolph K; Gokel, George W
2010-12-03
The F(-), Cl(-), and Br(-) binding selectivity of bis(p-nitroanilide)s of dipicolinic and isophthalic acids was studied by using competitive electrospray mass spectrometry and UV-Visible spectroscopy. Both hosts prefer binding Cl(-) over either F(-) or Br(-). Host deprotonation was observed to some extent in all experiments in which the host was exposed to halide ions. When F(-) was present, host deprotonation was often the major process, whereas little deprotonation was observed by Cl(-) or Br(-), which preferred complexation. A solution of either host changed color when mixed with a F(-), H(2)PO(4)(-), di- or triphenylacetate solution.
Bromine release during Plinian eruptions along the Central American Volcanic Arc
NASA Astrophysics Data System (ADS)
Hansteen, T. H.; Kutterolf, S.; Appel, K.; Freundt, A.; Perez-Fernandez, W.; Wehrmann, H.
2010-12-01
Volcanoes of the Central American Volcanic Arc (CAVA) have produced at least 72 highly explosive eruptions within the last 200 ka. The eruption columns of all these “Plinian” eruptions reached well into the stratosphere such that their released volatiles may have influenced atmospheric chemistry and climate. While previous research has focussed on the sulfur and chlorine emissions during such large eruptions, we here present measurements of the heavy halogen bromine by means of synchrotron radiation induced micro-XRF microanalysis (SR-XRF) with typical detection limits at 0.3 ppm (in Fe rich standard basalt ML3B glass). Spot analyses of pre-eruptive glass inclusions trapped in minerals formed in magma reservoirs were compared with those in matrix glasses of the tephras, which represent the post-eruptive, degassed concentrations. The concentration difference between inclusions and matrix glasses, multiplied by erupted magma mass determined by extensive field mapping, yields estimates of the degassed mass of bromine. Br is probably hundreds of times more effective in destroying ozone than Cl, and can accumulate in the stratosphere over significant time scales. Melt inclusions representing deposits of 22 large eruptions along the CAVA have Br contents between 0.5 and 13 ppm. Br concentrations in matrix glasses are nearly constant at 0.4 to 1.5 ppm. However, Br concentrations and Cl/Br ratios vary along the CAVA. The highest values of Br contents (>8 ppm) and lowest Cl/Br ratios (170 to 600) in melt inclusions occur across central Nicaragua and southern El Salvador, and correlate with bulk-rock compositions of high Ba/La > 85 as well as low La/Yb <5. Thus we observe the maximum magmatic Br-concentrations in the segements of the arc. where the input of sediment and water into the subduction system is largest and the melting column is longest. The largest eruptive emissions of Br into the atmosphere, however, occurred in Guatemala due to the large magnitude of eruptions. The most prominent example is the 84 ka Los Chocoyos eruption from Atitlán Caldera, which discharged 700 kilotons of Br. On average, each of the remaining 21 CAVA eruptions studied have discharged c.100 kilotons of bromine. During the past 200 ka, CAVA volcanoes have emitted a cumulative mass of 3.2 Mt of Br through highly explosive eruptions. There are six periods in the past (c. 2ka, 6ka, 25ka, 40ka, 60ka, 75ka) when up to four larger eruptions occurred within only several hundred years. The heavy halogen release of these eruptions may have had a cumulative effect on the atmosphere which is presently investigated by climate/atmosphere models based on our analyses as input data.
a Look at a Series of Alkyl and Perfluoroalkyl Bromides and Chlorides
NASA Astrophysics Data System (ADS)
Long, Brittany E.; Cooke, Stephen A.; Grubbs, Garry S. Grubbs, II
2011-06-01
The pure rotational spectrum for bromoperfluoroethane between 8.0 and 14.0 GHz and chloroperfluoroethane between 8.0 and 16.0 GHz has been measured on a chirped pulse Fourier transform microwave spectrometer for the first time. A total of 839 transitions for the bromoperfluoroethane, which includes the 79Br, 81Br parent isotopologues and the four 13C's, have been assigned quantum numbers. 496 transitions were observed for chloroperfluoroethane, which includes the 35Cl and 37Cl species. Only the trans conformers were observed for which the rotational constants are reported. Nuclear electric quadrapole coupling constants have been determined and reported. Also, two dipole forbidden/quadrapole allowed Δ J = 2 transitions were observed in only the bromoperfluoroethane spectra. No forbidden transitions were observed in the chloroperfluoroethane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tacey, Sean A.; Szilvasi, Tibor; Xu, Lang
Experimental and field measurements have shown that, in the presence of both iron-containing aerosols and sunlight, oxidized mercury species such as HgCl 2 and HgBr 2 undergo reduction to elemental mercury (Hg°), which remains in the atmosphere longer than oxidized mercury species due to its higher volatility. We performed density functional theory (DFT, PW91+U) calculations to elucidate the reduction mechanism for atmospheric HgCl 2 and HgBr 2 to Hg° on several iron-oxide aerosol surfaces relevant in the troposphere. On the OH-Fe-R-terminated α-Fe 2O 3(0001) surface, predicted to be most prevalent under ambient conditions, we show that: (1) the first Hg-Xmore » bond is broken via either thermal or photolytic activation depending on the ambient temperature; (2) photons with an energy of 2.69 eV (461 nm) are required to break the second Hg-X bond; and (3) a photo-induced surface-to-adsorbate charge-transfer process can promote Hg° desorption with an excitation energy of 2.59 eV (479 nm). All the calculated excitation energies are below the threshold value of 3.9 eV (320 nm) for photons in the troposphere, suggesting that sunlight can facilitate mercury reduction on iron-oxide aerosol surfaces. In contrast, the gas-phase reduction of HgCl 2 (HgBr 2) involves photoexcitation requiring an energy of 4.98 (4.45) eV (249 (279) nm); therefore, the energy range of sunlight is not suitable for gas-phase reduction. Our computational results provide the first evidence on the detailed mechanism for the combined role of aerosols and photons in the reduction of HgCl 2 and HgBr 2. In conclusion, our methodology can be adapted to study other photochemical heterogeneous processes in the atmosphere.« less
Tacey, Sean A.; Szilvasi, Tibor; Xu, Lang; ...
2018-04-22
Experimental and field measurements have shown that, in the presence of both iron-containing aerosols and sunlight, oxidized mercury species such as HgCl 2 and HgBr 2 undergo reduction to elemental mercury (Hg°), which remains in the atmosphere longer than oxidized mercury species due to its higher volatility. We performed density functional theory (DFT, PW91+U) calculations to elucidate the reduction mechanism for atmospheric HgCl 2 and HgBr 2 to Hg° on several iron-oxide aerosol surfaces relevant in the troposphere. On the OH-Fe-R-terminated α-Fe 2O 3(0001) surface, predicted to be most prevalent under ambient conditions, we show that: (1) the first Hg-Xmore » bond is broken via either thermal or photolytic activation depending on the ambient temperature; (2) photons with an energy of 2.69 eV (461 nm) are required to break the second Hg-X bond; and (3) a photo-induced surface-to-adsorbate charge-transfer process can promote Hg° desorption with an excitation energy of 2.59 eV (479 nm). All the calculated excitation energies are below the threshold value of 3.9 eV (320 nm) for photons in the troposphere, suggesting that sunlight can facilitate mercury reduction on iron-oxide aerosol surfaces. In contrast, the gas-phase reduction of HgCl 2 (HgBr 2) involves photoexcitation requiring an energy of 4.98 (4.45) eV (249 (279) nm); therefore, the energy range of sunlight is not suitable for gas-phase reduction. Our computational results provide the first evidence on the detailed mechanism for the combined role of aerosols and photons in the reduction of HgCl 2 and HgBr 2. In conclusion, our methodology can be adapted to study other photochemical heterogeneous processes in the atmosphere.« less
Cation Dynamics Governed Thermal Properties of Lead Halide Perovskite Nanowires.
Wang, Yuxi; Lin, Renxing; Zhu, Pengchen; Zheng, Qinghui; Wang, Qianjin; Li, Deyu; Zhu, Jia
2018-05-09
Metal halide perovskite (MHP) nanowires such as hybrid organic-inorganic CH 3 NH 3 PbX 3 (X = Cl, Br, I) have drawn significant attention as promising building blocks for high-performance solar cells, light-emitting devices, and semiconductor lasers. However, the physics of thermal transport in MHP nanowires is still elusive even though it is highly relevant to the device thermal stability and optoelectronic performance. Through combined experimental measurements and theoretical analyses, here we disclose the underlying mechanisms governing thermal transport in three different kinds of lead halide perovskite nanowires (CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr 3 and CsPbBr 3 ). It is shown that the thermal conductivity of CH 3 NH 3 PbBr 3 nanowires is significantly suppressed as compared to that of CsPbBr 3 nanowires, which is attributed to the cation dynamic disorder. Furthermore, we observed different temperature-dependent thermal conductivities of hybrid perovskites CH 3 NH 3 PbBr 3 and CH 3 NH 3 PbI 3 , which can be attributed to accelerated cation dynamics in CH 3 NH 3 PbBr 3 at low temperature and the combined effects of lower phonon group velocity and higher Umklapp scattering rate in CH 3 NH 3 PbI 3 at high temperature. These data and understanding should shed light on the design of high-performance MHP based thermal and optoelectronic devices.
Qiu, Chaoqun; He, Zhangzhen; Cui, Meiyan; Tang, Yingying; Chen, Sihuai
2017-03-27
Two new compounds Sr 2 Cu 5 (PO 4 ) 4 X 2 ·8H 2 O (X = Cl and Br) are synthesized by a conventional hydrothermal method. Sr 2 Cu 5 (PO 4 ) 4 Cl 2 ·8H 2 O crystallizes in the tetragonal system with a space group of P42 1 2, while Sr 2 Cu 5 (PO 4 ) 4 Br 2 ·8H 2 O crystallizes in the space group P4/nmm, which are found to have a similar framework of layered structure, in which the crown-like {Cu 5 (PO 4 ) 4 X 2 } building units connect to each other forming a 2D corrugated sheet with vacancies, while the Sr 2+ cations are located along the vacancies. The spin lattice of two compounds built by Cu 2+ ions shows a new type of corrugated square. Magnetic measurements confirmed that both Sr 2 Cu 5 (PO 4 ) 4 X 2 ·8H 2 O (X = Cl and Br) exhibit antiferromagnetic ordering at low temperatures. A fit of theoretical model shows exchange interaction J = -25.62 K for the Cl-analogue and J/k B = -26.47 K for the Br-analogue.
Structure of thallium(III) chloride, bromide, and cyanide complexes in aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blixt, J.; Glaser, J.; Sandstroem, M.
1995-05-10
The structures of the hydrated thallium(III) halide and pseudohalide complexes, [TlX{sub n}(OH{sub 2}){sub m}]{sup (3-d)+}, X = Cl, Br, CN, in aqueous solution have been studied by a combination of X-ray absorption fine structure spectroscopy (XAFS), large-angle X-ray scattering (LAXS), and vibrational spectroscopic (Raman and IR) techniques including far-infrared studies of aqueous solutions and some solid phases with known structures. The vibrational Tl-X frequencies of all complexes are reported, force constants are calculated using normal coordinate analysis, and assignments are given. The structural results are consistent with octahedral six-coordination for the cationic complexes Tl(OH{sub 2}){sub 6}{sup 3$PLU}, TlX(OH{sub 2}){sub 5}{supmore » 2+}, and trans-TlX{sub 2}(OH{sub 2}){sub 4}{sup +}. The coordination geometry changes to trigonal bipyramidal for the neutral TlBr{sub 3}(OH{sub 2}){sub 2} complex and possibly also for TlCl{sub 3}(OH{sub 2}){sub 2}. The TlX{sub 4}{sup -} complexes are all tetrahedral. Higher chloride complexes, TlCl{sub 5}(OH{sub 2}){sup 2-} and TlCl{sub 6}{sup 3-}, are formed and have again octahedral coordination geometry. 65 refs., 7 figs., 5 tabs.« less
Crystal structure of the new A2SnTa6X18 (A = K, Rb, Cs; X = Cl, Br) cluster compounds
NASA Astrophysics Data System (ADS)
Lemoine, P.; Wilmet, M.; Malaman, B.; Paofai, S.; Dumait, N.; Cordier, S.
2018-01-01
The crystal structure of the new cluster compounds A2SnTa6X18 (with A = K, Rb, Cs, and X = Cl, Br) was determined by using single-crystal and powder X-ray diffraction, and 119Sn Mössbauer spectroscopy. Those compounds crystallize in the Cs2EuNb6Br18-type structure of space group R 3 ̅. This type of structure is built up on discrete edge-bridged [M6Xi12Xa6]4- cluster units arranged according to a pseudo face-centered cubic stacking, where the octahedral and tetrahedral vacancies are fully occupied by divalent tin cations and monovalent alkaline cations, respectively. The tin cations influence on the halogen matrix and the electronic effects on the cluster units in the Cs2EuNb6Br18-type structure are discussed by comparison with isotype compounds. From those analyses, the ionic radius of Sn2+ in coordination number VI is estimated to be 1.14(1) Å. Finally, K2SnTa6Br18 might be considered as a new example of compound containing a quite bare stannous ion (5 s2 configuration).
An ab initio study on BeX 3- superhalogen anions (X = F, Cl, Br)
NASA Astrophysics Data System (ADS)
Anusiewicz, Iwona; Skurski, Piotr
2002-06-01
The vertical electron detachment energies (VDE) of 10 BeX 3- (X = F, Cl, Br) anions were calculated at the outer valence Green function (OVGF) level with the 6-311++G(3df) basis sets. The largest vertical electron binding energy was found for BeF 3- system (7.63 eV). All negatively charged species possess the vertical electron detachment energies that are larger than 5.5 eV and thus may be termed superhalogen anions. The strong dependence of the VDE of the BeX 3- species on the ligand-central atom (Be-X) distance and on the partial atomic charge localized on Be was observed and discussed, as well as the other factors that may influence the electronic stability of such anions. In addition, the usefulness of the various theoretical treatments for estimating the VDEs of superhalogen anions was tested and analyzed.
[The tasks and aims of hospital psychiatry today and in the future].
Honig, A; Sierink, D; Verwey, B
Care provided by consultation-liaison (CL) psychiatry and general hospital (GH) psychiatry varies widely. This means that certain services are almost unrecognisable and therefore less readily available to patients.
AIM: To describe the core tasks of current CL- and GH-psychiatry care and to suggest how these tasks can best be performed and developed in the future.
METHOD: We conducted a selective review of relevant CL- and GH-related literature and combined the information we obtained with the results of a consultation with CL-psychiatrists about how CL- and GL psychiatry should function in the future.
RESULTS: Core tasks of CL- and GH-psychiatry are: 1. inpatient and outpatient care for complex patients with combined somatic and psychiatric problems (including addiction) and 2. acute care, diagnosis and treatment of patients referred to the Emergency Department. We gave an outline of how the quality of training can be maintained and/or improved and we suggest ways in which the funding of CL- and GH-psychiatry can be safeguarded and, if possible, increased in the future.
CONCLUSION: We strongly recommend that large teaching hospitals and all university hospitals should have at their disposal a psychiatric consultation service that includes psychiatric Emergency Department facilities and specialised CL and GH inpatient and outpatient facility such as a medical-psychiatric unit. The CL- and GH-service should have a psychiatrist as gatekeeper and should be integrated into the hospital's chain of care. Partners in this chain of care are interns who have other medical specialisms, mental health specialists employed at other (mainly psychiatric) hospitals and general practitioners (GPs).
The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles
NASA Astrophysics Data System (ADS)
Chavrit, Déborah; Burgess, Ray; Sumino, Hirochika; Teagle, Damon A. H.; Droop, Giles; Shimizu, Aya; Ballentine, Chris J.
2016-06-01
Recent studies suggest that seawater-derived noble gases and halogens are recycled into the deep mantle by the subduction of oceanic crust. To understand the processes controlling the availability of halogens and noble gases for subduction, we determined the noble gas elemental and isotopic ratios and halogen (Cl, Br, I) concentrations in 28 igneous samples from the altered oceanic crust (AOC) from 5 ODP sites in the Eastern and Western Pacific Ocean. Crushing followed by heating experiments enabled determination of noble gases and halogens in fluid inclusions and mineral phases respectively. Except for He and Ar, Ne, Kr and Xe isotopic ratios were all air-like suggesting that primary MORB signatures have been completely overprinted by air and/or seawater interaction. In contrast, 3He/4He ratios obtained by crushing indicate that a mantle helium component is still preserved, and 40Ar/36Ar values are affected by radiogenic decay in the mineral phases. The 130Xe/36Ar and 84Kr/36Ar ratios are respectively up to 15 times and 5 times higher than those of seawater and the highest ratios are found in samples affected by low temperature alteration (shallower than 800-900 m sub-basement). We consider three possible processes: (i) adsorption onto the clays present in the samples; (ii) fluid inclusions with a marine pore fluid composition; and (iii) fractionation of seawater through phase separation caused by boiling. Ninety percent of the Cl, Br and I were released during the heating experiments, showing that halogens are dominantly held in mineral phases prior to subduction. I/Cl ratios vary by 4 orders of magnitude, from 3 × 10-6 to 2 × 10-2. The mean Br/Cl ratio is 30% lower than in MORB and seawater. I/Cl ratios lower than MORB values are attributed to Cl-rich amphibole formation caused by hydrothermal alteration at depths greater than 800-900 m sub-basement together with different extents of I loss during low and high temperature alteration. At shallower depths, I/Cl ratios higher than MORB values can be explained by the addition of organic-rich sediments or the presence of organic detritus, both known to efficiently sequester I. Concentrations of 36Ar of the pre-subducting materials are sufficient to account for the 36Ar and composition of the mantle in the context of existing subduction-flux models. We find the Cl subduction flux of the oceanic crust to be about three times higher than the previous estimates and that sufficient Cl and Br can potentially be delivered by subduction over the last 3 Ga to account for mantle source compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Thai V.; Fulton, John L.
2013-01-22
We present a new methodology involving the simultaneous refinement of both x-ray absorption and x-ray diffraction spectra (X-ray Absorption/Diffraction Structural Refinement,XADSR), to study hydration and ion pair structure of CaCl 2 and RbBr salts in concentrated aqueous solutions. The XADSR analysis includes the XAFS spectra analysis of both the cation and anion as a probe of their short-range structure with an XRD spectral analysis as a probe of the global structural. Together they deliver a comprehensive picture of the cation and anion hydration, the contact ion pair (CIP) structure and the solvent-separated ion pair (SSIP) structure. XADSR analysis of 6.0more » m aqueous CaCl 2 reveals that there are an insignificant number of Ca 2+-Cl- CIP’s, but there are approximately 3.4 SSIP’s separated by about 4.99 Å. In contrast XADSR analysis of aqueous RbBr yields about 0.7 pair CIP at a bond length 3.51 Å. The present work demonstrates a new approach for a direct co-refinement of XRD and XAFS spectra in a simple and reliable fashion, opening new opportunities for analysis in various disordered and crystalline systems. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle.« less
New iodide-based molten salt systems for high temperature molten salt batteries
NASA Astrophysics Data System (ADS)
Fujiwara, Syozo; Kato, Fumio; Watanabe, Syouichiro; Inaba, Minoru; Tasaka, Akimasa
Novel multi-component molten salt systems containing iodides, LiF-LiBr-LiI, LiF-NaBr-LiI, and LiF-LiCl-LiBr-LiI, were investigated for use as electrolytes in high temperature molten salt batteries to improve the discharge rate-capability. The iodide-based molten salts showed higher ionic conductivity (∼3 S cm -1 at 500 °C) than conventional LiCl-KCl, and had low enough melting points (below 400 °C) that can be used in practical high temperature molten salt batteries. The iodide-based salts showed instability at temperatures higher than 280 °C in dried air. The decomposition mechanism of iodide-based molten salts was discussed, and it was found that elimination of oxygen from the environment is effective to stabilize the iodide-based molten salts at high temperatures.
Intermediate Temperature Fluids Life Tests - Theory
NASA Technical Reports Server (NTRS)
Tarau, Calin; Sarraf, David B.; Locci, Ivan E.; Anderson, William G.
2008-01-01
There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 750 K, including space nuclear power system radiators, and high temperature electronics cooling. Potential working fluids include organic fluids, elements, and halides, with halides being the least understood, with only a few life tests conducted. Potential envelope materials for halide working fluids include pure aluminum, aluminum alloys, commercially pure (CP) titanium, titanium alloys, and corrosion resistant superalloys. Life tests were conducted with three halides (AlBr3, SbBr3, and TiCl4) and water in three different envelopes: two aluminum alloys (Al-5052, Al-6061) and Cp-2 titanium. The AlBr3 attacked the grain boundaries in the aluminum envelopes, and formed TiAl compounds in the titanium. The SbBr3 was incompatible with the only envelope material that it was tested with, Al-6061. TiCl4 and water were both compatible with CP2-titanium. A theoretical model was developed that uses electromotive force differences to predict the compatibility of halide working fluids with envelope materials. This theory predicts that iron, nickel, and molybdenum are good envelope materials, while aluminum and titanium halides are good working fluids. The model is in good agreement with results form previous life tests, as well as the current life tests.
NASA Astrophysics Data System (ADS)
Nelson, A. J.; Swanberg, E. L.; Voss, L. F.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L.; Shah, K.
2014-09-01
TlBr radiation detector operation degrades with time at room temperature and is thought to be due to electromigration of Tl and Br vacancies within the crystal as well as the metal contacts migrating into the TlBr crystal itself due to electrochemical reactions at the metal/TlBr interface. X-ray photoemission spectroscopy (XPS) was used to investigate the metal contact surface/interfacial structure on TlBr devices. Device-grade TlBr was polished and subjected to a 32% HCl etch to remove surface damage prior to Mo or Pt contact deposition. High-resolution photoemission measurements on the Tl 4f, Br 3d, Cl 2p, Mo 3d and Pt 4f core lines were used to evaluate surface chemistry and non-equilibrium interfacial diffusion. Results indicate that anion substitution at the TlBr surface due to the HCl etch forms TlBr1-xClx with consequent formation of a shallow heterojunction. In addition, a reduction of Tl1+ to Tl0 is observed at the metal contacts after device operation in both air and N2 at ambient temperature. Understanding contact/device degradation versus operating environment is useful for improving radiation detector performance.
Groen, C P; Oskam, A; Kovács, A
2000-12-25
The structure, bonding and vibrational properties of the mixed LiLnX4 (Ln = La, Dy; X = F, Cl, Br, I) rare earth/alkali halide complexes were studied using various quantum chemical methods (HF, MP2 and the Becke3-Lee-Yang-Parr exchange-correlation density functional) in conjunction with polarized triple-zeta valence basis sets and quasi-relativistic effective core potentials for the heavy atoms. Our comparative study indicated the superiority of MP2 theory while the HF and B3-LYP methods as well as less sophisticated basis sets failed for the correct energetic relations. In particular, f polarization functions on Li and X proved to be important for the Li...X interaction in the complexes. From the three characteristic structures of such complexes, possessing 1-(C3v), 2-(C2v), or 3-fold coordination (C3v) between the alkali metal and the bridging halide atoms, the bi- and tridentate forms are located considerably lower on the potential energy surface then the monodentate isomer. Therefore only the bi- and tridentate isomers have chemical relevance. The monodentate isomer is only a high-lying local minimum in the case of X = F. For X = Cl, Br, and I this structure is found to be a second-order saddle point. The bidentate structure was found to be the global minimum for the systems with X = F, Cl, and Br. However, the relative stability with respect to the tridentate structure is very small (1-5 kJ/mol) for the heavier halide derivatives and the relative order is reversed in the case of the iodides. The energy difference between the three structures and the dissociation energy decrease in the row F to I. The ionic bonding in the complexes was characterized by natural charges and a topological analysis of the electron density distribution according to Bader's theorem. Variation of the geometrical and bonding characteristics between the lanthanum and dysprosium complexes reflects the effect of "lanthanide contraction". The calculated vibrational data indicate that infrared spectroscopy may be an effective tool for experimental investigation and characterization of LiLnX4 molecules.
Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries
NASA Astrophysics Data System (ADS)
Zevgolis, Alysia; Wood, Brandon C.; Mehmedović, Zerina; Hall, Alex T.; Alves, Thomaz C.; Adelstein, Nicole
2018-04-01
Alloying of anions is a promising engineering strategy for tuning ionic conductivity in halide-based inorganic solid electrolytes. We explain the alloying effects in Li3InBr6-xClx, in terms of strain, chemistry, and microstructure, using first-principles molecular dynamics simulations and electronic structure analysis. We find that strain and bond chemistry can be tuned through alloying and affect the activation energy and maximum diffusivity coefficient. The similar conductivities of the x = 3 and x = 6 compositions can be understood by assuming that the alloy separates into Br-rich and Cl-rich regions. Phase-separation increases diffusivity at the interface and in the expanded Cl-region, suggesting microstructure effects are critical. Similarities with other halide superionic conductors are highlighted.
NASA Technical Reports Server (NTRS)
Liang, Qing; Strahan, Susan E.; Fleming, Eric L.
2017-01-01
Reactive halogen gases containing chlorine (Cl) or bromine (Br) can destroy stratospheric ozone via catalytic cycles. The main sources of atmospheric reactive halogen are the long-lived synthetic chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), carbon tetrachloride (CCl4), methyl chloroform (CH3CCl3), and bromine-containing halons, all of which persist in the atmosphere for years. These ozone-depleting substances are now controlled under the Montreal Protocol and its amendments. Natural methyl bromide (CH3Br) and methyl chloride (CH3Cl) emissions are also important long-lived sources of atmospheric reactive halogen. Rising concentrations of very-short-lived substances (VSLSs) with atmospheric lifetimes of less than half a year may also contribute to future stratospheric ozone depletion. A greater concern for ozone layer recovery is incomplete compliance with the Montreal Protocol, which will impact stratospheric ozone for many decades, as well as rising natural emissions as a result of climate change.
Method for production of hydrocarbons from hydrates
McGuire, Patrick L.
1984-01-01
A method of recovering natural gas entrapped in frozen subsurface gas hydrate formations in arctic regions. A hot supersaturated solution of CaCl.sub.2 or CaBr.sub.2, or a mixture thereof, is pumped under pressure down a wellbore and into a subsurface hydrate formation so as to hydrostatically fracture the formation. The CaCl.sub.2 /CaBr.sub.2 solution dissolves the solid hydrates and thereby releases the gas entrapped therein. Additionally, the solution contains a polymeric viscosifier, which operates to maintain in suspension finely divided crystalline CaCl.sub.2 /CaBr.sub.2 that precipitates from the supersaturated solution as it is cooled during injection into the formation.
Variation of Ionic Conductivity with Annealing Temperature in Argyrodite Solid Electrolytes
NASA Astrophysics Data System (ADS)
Rao, R. Prasada; Chen, Maohua; Adams, Stefan
2013-07-01
In situ neutron diffraction studies of argyrodite-type Li6PS5X (X = Cl, Br, I) were conducted for mechanically milled sample to reveal the formation and growth of crystalline phases. These studies indicated the formation of crystals in all the compounds started from as low as 80°C. The Rietveld refinements of the resulting crystalline phases at 150°C indicate the formation of the argyrodite structure. Structure refinements using high-intensity neutron diffraction provide insight into the influence of disorder on the fast ionic conductivity. Besides the disorder in the lithium distribution, it is the disorder in the S2-/Cl- or S2-/Br- distribution that we find to promote ion mobility. Among the samples studied Li6PS5Br, annealed at 250°C, exhibited the highest ionic conductivity, 1.05 × 10-3 S/cm at room temperature. An all solid state battery with Li4Ti5O12/Li6PS5Br/Li exhibited 57 mAh/g first discharge capacity at 75°C with 91% coulombic efficiency after 60 cycles.
Muñiz-Unamunzaga, Maria; Borge, Rafael; Sarwar, Golam; Gantt, Brett; de la Paz, David; Cuevas, Carlos A; Saiz-Lopez, Alfonso
2018-01-01
The oceans are the main source of natural halogen and sulfur compounds, which have a significant influence on the oxidizing capacity of the marine atmosphere; however, their impact on the air quality of coastal cities is currently unknown. We explore the effect of marine halogens (Cl, Br and I) and dimethyl sulfide (DMS) on the air quality of a large coastal city through a set of high-resolution (4-km) air quality simulations for the urban area of Los Angeles, US, using the Community Multiscale Air Quality (CMAQ model). The results indicate that marine halogen emissions decrease ozone and nitrogen dioxide levels up to 5ppbv and 2.5ppbv, respectively, in the city of Los Angeles. Previous studies suggested that the inclusion of chlorine in air quality models leads to the generation of ozone in urban areas through photolysis of nitryl chloride (ClNO 2 ). However, we find that when considering the chemistry of Cl, Br and I together the net effect is a reduction of surface ozone concentrations. Furthermore, combined ocean emissions of halogens and DMS cause substantial changes in the levels of key urban atmospheric oxidants such as OH, HO 2 and NO 3 , and in the composition and mass of fine particles. Although the levels of ozone, NO 3 and HO x are reduced, we find a 10% increase in secondary organic aerosol (SOA) mean concentration, attributed to the increase in aerosol acidity and sulfate aerosol formation when combining DMS and bromine. Therefore, this new pathway for enhanced SOA formation may potentially help with current model under predictions of urban SOA. Although further observations and research are needed to establish these preliminary conclusions, this first city-scale investigation suggests that the inclusion of oceanic halogens and DMS in air quality models may improve regional air quality predictions over coastal cities around the world. Copyright © 2017 Elsevier B.V. All rights reserved.
CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser
NASA Astrophysics Data System (ADS)
Zhou, Yan; Hu, Zhiping; Li, Yue; Xu, Jianqiu; Tang, Xiaosheng; Tang, Yulong
2016-06-01
Cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr3 nanocrystal films and characterize their physical properties. Broadband linear absorption from ˜0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr3 saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr3 liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm2, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ˜216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ˜1076 nm. This work shows that CsPbBr3 films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.
MERCURY REMOVAL FROM STACK GAS BY AQUEOUS SCRUBBING
Fundamental results will be obtained on the reaction kinetics in mass transfer boundary layers for the following systems:
NASA Astrophysics Data System (ADS)
Mahmoodi-Darian, Masoomeh; Huber, Stefan E.; Mauracher, Andreas; Probst, Michael; Denifl, Stephan; Scheier, Paul; Märk, Tilmann D.
2018-02-01
Dissociative electron attachment to three isomers of bromo-chlorotoluene was investigated in the electron energy range from 0 to 2 eV for gas temperatures in the range of 392-520 K using a crossed electron-molecular beam apparatus with a temperature regulated effusive molecular beam source. For all three molecules, both Cl- and Br- are formed. The ion yields of both halogenides show a pronounced temperature effect. In the case of Cl- and Br-, the influence of the gas temperature can be observed at the threshold peak close to 0 eV. The population of molecules that have some of their out-of-plane modes excited varies strongly in the temperature range investigated, indicating that such vibrations might play a role in the energy transfer towards bond breaking. Potential energy curves for the abstraction of Cl- and Br- were calculated and extrapolated into the metastable domain. The barriers in the diabatic curves approximated in this way agree well with the ones derived from the temperature dependence observed in the experiments.
NMR studies on Na+ transport in Synechococcus PCC 6311
NASA Technical Reports Server (NTRS)
Nitschmann, W. H.; Packer, L.
1992-01-01
The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.
DETANO and nitrated lipids increase chloride secretion across lung airway cells.
Chen, Lan; Bosworth, Charles A; Pico, Tristant; Collawn, James F; Varga, Karoly; Gao, Zhiqian; Clancy, John Paul; Fortenberry, James A; Lancaster, Jack R; Matalon, Sadis
2008-08-01
We investigated the cellular mechanisms by which nitric oxide (NO) increases chloride (Cl-) secretion across lung epithelial cells in vitro and in vivo. Addition of (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETANONOate [DETANO];1-1,000 microM) into apical compartments of Ussing chambers containing Calu-3 cells increased short-circuit currents (I(sc)) from 5.2 +/- 0.8 to 15.0 +/- 2.1 microA/cm(2) (X +/- 1 SE; n = 7; P < 0.001). NO generated from two nitrated lipids (nitrolinoleic and nitrooleic acids; 1-10 microM) also increased I(sc) by about 100%. Similar effects were noted across basolaterally, but not apically, permeabilized Calu-3 cells. None of these NO donors increased I(sc) in Calu-3 cells pretreated with 10 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase). Scavenging of NO either prevented or reversed the increase of I(sc). These data indicate that NO stimulation of soluble guanylyl cyclase was sufficient and necessary for the increase of I(sc) via stimulation of the apical cystic fibrosis transmembrane regulator (CFTR). Both Calu-3 and alveolar type II (ATII) cells contained CFTR, as demonstrated by in vitro phosphorylation of immunoprecipitated CFTR by protein kinase (PK) A. PKGII (but not PKGI) phosphorylated CFTR immuniprecipitated from Calu-3 cells. Corresponding values in ATII cells were below the threshold of detection. Furthermore, DETANO, 8-Br-cGMP, or 8-(4-chlorophenylthio)-cGMP (up to 2 mM each) did not increase Cl- secretion across amiloride-treated ATII cells in vitro. Measurements of nasal potential differences in anesthetized mice showed that perfusion of the nares with DETANO activated glybenclamide-sensitive Cl- secretion. These findings suggest that small concentrations of NO donors may prove beneficial in stimulating Cl- secretion across airway cells without promoting alveolar edema.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charkin, Dmitri O.; Black, Cameron; Downie, Lewis J.
Two new rare-earth – alkali – tellurium oxide halides were synthesized by a salt flux technique and characterized by single-crystal X-ray diffraction. The structures of the new compounds Cs{sub 7}Sm{sub 11}[TeO{sub 3}]{sub 12}Cl{sub 16} (I) and Rb{sub 7}Nd{sub 11}[TeO{sub 3}]{sub 12}Br{sub 16} (II) (both tetragonal, space group I4/mcm) correspond to the sequence of [MLn{sub 11}(TeO{sub 3}){sub 12}] and [M{sub 6}X{sub 16}] layers and bear very strong similarities to those of known selenite analogs. We discuss the trends in similarities and differences in compositions and structural details between the Se and Te compounds; more members of the family are predicted. -more » Graphical abstract: Two new rare-earth – alkali – tellurium oxide halides were predicted and synthesized. - Highlights: • Two new rare-earth – alkali – tellurium oxide halides were synthesized. • They adopt slab structure of rare earth-tellurium-oxygen and CsCl-like slabs. • The Br-based CsCl-like slabs have been observed first in this layered family.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Matthew M; Wang, Xue B; Reed, Christopher A
2009-12-23
Five CHB 11X 6Y 5 - carborane anions from the series X = Br, Cl, I and Y = H, Cl, CH 3 were generated by electrospray ionization, and their reactivity with a series of Brønsted acids and electron transfer reagents were examined in the gas phase. The undecachlorocarborane acid, H(CHB 11Cl 11), was found to be far more acidic than the former record holder, (1-C 4F 9SO 2) 2NH (i.e., ΔH° acid = 241 ± 29 vs 291.1 ± 2.2 kcal mol -1) and bridges the gas-phase acidity and basicity scales for the first time. Its conjugate base, CHBmore » 11Cl 11 -, was found by photoelectron spectroscopy to have a remarkably large electron binding energy (6.35 ± 0.02 eV) but the value for the (1-C 4F 9SO 2) 2N - anion is even larger (6.5 ± 0.1 eV). Consequently, it is the weak H-(CHB 11Cl 11) BDE (70.0 kcal mol -1, G3(MP2)) compared to the strong BDE of (1-C 4F 9SO 2) 2N-H (127.4 ± 3.2 kcal mol -1) that accounts for the greater acidity of carborane acids.« less
NASA Astrophysics Data System (ADS)
Li, Lixin
Low dimensional antiferromagnetic materials have received considerable attention from both chemists and physicists because of their potential application as functional materials, such as superconductors. Magnetic moments can propagate via multiple pathways such as via two-halide superexchange interactions in A2MX4 systems (where A is an organic cation and X is halides), or through bonding conjugated systems. One route for generating two-halide A2MX4 systems is via crystal packing of transition metal anions and organic cations. Following this method, we have prepared a series compounds in the (5-SAP)2CuX 4 family (where 5-SAP is a 5-substituted-2-aminopyridinium cation) and the A2CuX4 family. Eleven compounds have been prepared. They include bis(2-amino-5-fluoropyridinium) tetrachlorocuprate(II) (5-FAP) 2CuCl4 (1), bis(2-amino-5-fluoropyridinium) tetrabromocuprate(II) (5-FAP)2CuBr4 (2), bis(2-amino-5-iodopyridine) dibromocopper(II) (5-iap)2CuBr 2 dimer (3) and chain (4) forms, bis(2-amino-5-iodopyridine) dichlorocopper(II) hydrate (5-iap)2CuCl2·1.7H 2O (5), 2-amino-5-ammoniumpyridinium trichlorocuprate(II) chloride (DAP)(CuCl3)Cl (6), bis(2-amino-3-chloro-5-trifluoromethylpyridinium) tetrabromocuprate(II) (TMCAP)2CuBr4 (7) and its tetrachlorocuprate(II) analog (TMCAP)2CuCl4 (8), bis(4-aminopyridinium) tetrabromocuprate(II) monohydrate (4-AP) 2CuBr4-H2O (9), bis(3-methylpyridinium) tetrabromocuprate(II) (3-MP)2CuBr4 (10) and bis[methyl(2-phenylethyl)ammonium] tetrabromocuprate(II) (NMPH)2 CuBr4 (11). The structures and magnetic properties have been studied. Experimental data and theoretical calculations show that the strength of magnetic exchange is related to the geometric parameters of the non-bonding two-halide contacts, rather than direct contact between the copper(II) ions. The self-assembly technique can also be used to prepare magnetic networks. A variety of coordination polymers with magnetic properties have been synthesized based on different N-heterocyclic ligands such as pyrazine and its derivatives. Magnetic exchange can propagate through the conjugated system. As an extension of this method, we focused on using some new polyamines including 1,2,4,5-tetrazine (tetz), 1,2,4-triazine (tz) and the amino derivative 3-amino-1,2,4-triazine (atz) as ligands. Four new complexes have been prepared. They include bis(hexafluoroacetylacetonato)copper(II) Cu(hfac)2(C2H2N4) (13), bis(hexafluoroacetylacetonato)triazinecopper(II) Cu(hfac)2(tz) (15), bis(hexafluoroacetylacetonato)(3-aminotriazine)copper(II) Cu(hfac) 2(atz)2 (16) and hexakis(hexafluoroacetylacetonato)bis(3-aminotriazine)tricopper(II) Cu3(hfac)6(atz)2 (17). The crystal structures and magnetic properties have been studied. The magnetic data show they are paramagnetic materials because of the weak coordination bonds. To compare with its atz analog, 2-aminopyrazine (apz) was also used and three new complexes have been prepared. They include hexakis(hexafluoroacetylacetonato) bis(2-amino-pyrazine)tricopper(II) Cu3(hfac)6 (apz)2 (18), bis(hexafluoroacetylacetonato)aminopyrazinecopper(II) Cu(hfac)2(apz)2 (19) and bis(acetylacetonato)aminopyrazinecopper(II) Cu(acac)2(apz)2 (20). The structures and their magnetic properties have been investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn; Li, Shuai; Zhang, Yi
Cubic anti-perovskites with general formula Li{sub 3}OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li{sub 3}OBr and layered Li{sub 7}O{sub 2}Br{sub 3,} by solid state reaction routes. The results indicate that with the phase fraction of Li{sub 7}O{sub 2}Br{sub 3} increasing to 44 wt.more » %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li{sub 3}OBr. Formation energy calculations revealed the meta-stable nature of Li{sub 7}O{sub 2}Br{sub 3}, which supports the great difficulty in producing phase-pure Li{sub 7}O{sub 2}Br{sub 3} at ambient pressure. Methods of obtaining phase-pure Li{sub 7}O{sub 2}Br{sub 3} will continue to be explored, including both high pressure and metathesis techniques.« less
Synthesis of 1-methyleneindenes via palladium-catalyzed tandem reactions.
Ye, Shengqing; Gao, Ke; Zhou, Haibo; Yang, Xiaodi; Wu, Jie
2009-09-28
Palladium-catalyzed tandem reactions of 2-alkenylphenyl-acetylenes with CuCl2 or CuBr2 afforded 3-chloro- or 3-bromo-1-methyleneindenes in good yields; these compounds could be further elaborated via palladium-catalyzed coupling reactions.
NASA Astrophysics Data System (ADS)
Kopinga, A.; Tinus, A. M. C.; de Jonge, W. J. M.
1982-04-01
Heat-capacity measurements on (C6H11NH3)CuBr3 (CHAB) in the region 0.45 < T<55 K are presented. Three-dimensional ordering is observed at Tc=1.50 K. The data are analyzed together with previously reported measurements on (C6H11NH3)CuCl3 (CHAC). Both compounds appear to be very good approximations of a ferromagnetic S=12 Heisenberg linearchain system with Jk~50 K. From the data it is inferred that the intrachain interaction of CHAC contains about 2% uniaxial anisotropy, whereas CHAB contains about 5% easy-plane anisotropy. The results are corroborated by magnetization measurements on CHAB below Tc, which also reveal a metamagnetic transition for H-->∥b (Hc=210Oe). From the value of Hc and the location of the tricitical point the interchain interactions in CHAB were found as zAFJAFk=-0.03 K, zFJFk~0.08 K.
Wang, Jingjing; Mo, Lixin; Li, Xiaoyan; Geng, Zongke; Zeng, Yanli
2016-12-01
The σ-hole and π-hole of the protonated 2-halogenated imidazolium cation (XC 3 H 4 N 2 + ; X = F, Cl, Br, I) were investigated and analyzed. The monomers of (CH 3 ) 3 SiY(Y=F, Cl, Br, I), considered as the Lewis base, were combined with the σ-hole and π-hole of XC 3 H 4 N 2 + to form the σ-hole and π-hole interactions in the bimolecular complexes (CH 3 ) 3 SiY · · · XC 3 H 4 N 2 + and (CH 3 ) 3 SiY · · · C 3 (X)H 4 N 2 + (X/Y=F, Cl, Br, I), respectively. For both the σ-hole and π-hole interactions, the equilibrium geometries of complexes show regular changes according to the sequence of heavy sequence of the noncovalent interaction acceptors and donors. The electrostatic energy is the main contribution in the formation of both kinds of interactions, it has linear relations with the V S,max values of σ-hole and the V' S,max values of π-hole. Both the σ-hole and π-hole interactions belong to the closed-shell and noncovalent interactions. The π-hole interactions are stronger than the σ-hole interactions. For the π-hole interactions, the contribution percents of the dispersion energies are somewhat greater than those of the σ-hole interactions, while it is contrary for the polarization energy. Graphical Abstract The protonated 2-halogenated imidazolium cation as the noncovalent interaction donor: the σ-hole and π-hole interactionsᅟ.
de Visser, Sam P; Nam, Wonwoo
2008-12-18
Density functional theory studies on the nature of the cis effect and cis influence of ligands on oxoiron nonheme complexes have been performed. A detailed analysis of the electronic and oxidizing properties of [Fe(IV)O(TPA)L](+) with L = F(-), Cl(-), and Br(-) and TPA = tris-(2-pyridylmethyl)amine are presented and compared with [Fe(IV)O(TPA)NCCH(3)](2+). The calculations show that the electronic cis effect is determined by favorable orbital overlap between first-row elements with the metal, which are missing between the metal and second- and third-row elements. As a consequence, the metal 3d block is split into a one-below-two set of orbitals with L = Cl(-) and Br(-), and the HOMO/LUMO energy gap is widened with respect to the system with L = F(-). However, this larger HOMO/LUMO gap does not lead to large differences in electron affinities of the complexes. Moreover, a quantum mechanical analysis of the binding of the ligand shows that it is built up from a large electric field effect of the ligand on the oxoiron species and a much smaller quantum mechanical effect due to orbital overlap. These contributions are of similar strength for the three tested halogen cis ligands and result in similar reactivity patterns with substrates. The calculations show that [Fe(IV)O(TPA)L](+) with L = F(-), Cl(-), and Br(-) have closely lying triplet and quintet spin states, but only the quintet spin state is reactive with substrates. Therefore, the efficiency of the oxidant will be determined by the triplet-quintet spin state crossing of the reaction. The reaction of styrene with a doubly charged reactant, that is, [Fe(V)O(TPA)L](2+) with L = F(-), Cl(-), and Br(-) or [Fe(V)O(TPA)NCCH(3)](3+), leads to an initial electron transfer from the substrate to the metal followed by a highly exothermic epoxidation mechanism. These reactivity differences are mainly determined by the overall charge of the system rather than the nature of the cis ligand.
17β-estradiol as precursors of Cl/Br-DBPs in the disinfection process of different water samples.
Shao, Yanan; Pan, Zihan; Rong, Chuan; Wang, Yinghui; Zhu, Hongxiang; Zhang, Yuanyuan; Yu, Kefu
2018-05-21
During chlorine disinfection process, reactions between the disinfectant and 17β-estradiol (E2) lead to the formation of halogenated disinfection byproducts (DBPs) which can be a risk to both ecosystem and human health. The degradation and transformation products of E2 in sodium hypochlorite (NaClO) disinfection processes of different water samples were investigated. The reaction kinetics research showed that the degradation rates of E2 were considerably dependent on the initial pH value and the types of water samples. In fresh water, synthetic marine aquaculture water and seawater, the reaction rate constant was 0.133 min -1 , 2.067 min -1 and 2.592 min -1 , respectively. The reasons for the above phenomena may be due to the different concentrations of bromide ions (Br - ) in these three water samples which could promote the reaction between NaClO and E2. Furthermore, Br - could also cause the formation of brominated DBPs (Br-DBPs). The main DBPs, reaction centers and conceivable reaction pathways were explored. Seven halogenated DBPs have been observed including three chlorinated DBPs (Cl-DBPs) and four Br-DBPs. The active sites of E2 were found to be the pentabasic cyclic ring and the ortho position of the phenol moiety as well as C9-C10 position. The identified Cl/Br-DBPs were also confirmed in actual marine aquaculture water from a shrimp pond. The comparison of bio-concentration factors (BCF) values based on calculation of EPI-suite showed that the toxicities of the Br-DBPs were stronger than that of their chloride analogues. The absorbable organic halogens (AOX) analysis also suggested that the DBPs produced in the marine aquaculture water were more toxic than that in the fresh water system. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Blake, Nicola J.; Blake, Donald R.; Simpson, Isobel J.; Meinardi, Simone; Swanson, Aaron L.; Lopez, Jimena P.; Katzenstein, Aaron S.; Barletta, Barbara; Shirai, Tomoko; Atlas, Elliot; Sachse, Glen; Avery, Melody; Vay, Stephanie; Fuelberg, Henry E.; Kiley, Christopher M.; Kita, Kazuyuki; Rowland, F. Sherwood
2003-10-01
We present an overview of the spatial distributions of nonmethane hydrocarbons (NMHCs) and halocarbons observed over the western north Pacific as part of the NASA GTE Transport and Chemical Evolution over the Pacific (TRACE-P) airborne field campaign (February-April 2001). The TRACE-P data are compared with earlier measurements from the Pacific Rim during the Pacific Exploratory Mission-West B (PEM-West B), which took place in February-March 1994, and with emission inventory data for 2000. Despite the limited spatial and temporal data coverage inherent to airborne sampling, mean levels of the longer-lived NMHCs (including ethane, ethyne, and benzene) were remarkably similar to our results during the PEM-West B campaign. By comparison, mixing ratios of the fire extinguisher Halon-1211 (CF2ClBr) increased by about 50% in the period between 1994 and 2001. Southern China (south of 35°N), and particularly the Shanghai region, appears to have been a substantial source of Halon-1211 during TRACE-P. Our previous analysis of the PEM-West B data employed methyl chloroform (CH3CCl3) as a useful industrial tracer. However, regulations have reduced its emissions to the extent that its mixing ratio during TRACE-P was only one-third of that measured in 1994. Methyl chloroform mixing ratio "hot spots," indicating regions downwind of continuing emissions, included outflow from the vicinity of Shanghai, China, but particularly high emission ratios relative to CO were observed close to Japan and Korea. Tetrachloroethene (C2Cl4) levels have also decreased significantly, especially north of 25°N, but this gas still remains a useful indicator of northern industrial emissions. Methyl bromide (CH3Br) levels were systematically 1-2 pptv lower from 1994 to 2001, in accord with recent reports. However, air masses that had been advected over Japan and/or South Korean port cities typically exhibited elevated levels of CH3Br. As a consequence, emissions of CH3Br from Japan and Korea calculated employing CH3Br/CO ratios and scaled to CO emission inventory estimates, were almost as large as for all of south China (south of 35°N). Total east Asian emissions of CH3Br and CH3Cl were estimated to be roughly 4.7 Gg/yr and 167 Gg/yr, respectively, in 2001.
NASA Technical Reports Server (NTRS)
Anderson, James G.
1999-01-01
Using observations from balloon-borne instruments and aircraft-borne instruments the investigation arrived at the following developments.: (1) Determination of the dominant catalytic cycles that destroy ozone in the lower stratosphere; (2) The partial derivatives of the rate limiting steps are observables in the lower stratosphere; (3) Recognition that the "Low NOx" condition is the regime that holds the greatest potential for misjudgement of Ozone loss rates; (4) Mapping of the Bromine radical contribution to the ozone destruction rate in the lower stratosphere; (5) Observation of OH, HO2 and ClO in the plume of the Concorde SST in the stratosphere; (6) Determination of the diurnal behavior of OH in the lower stratosphere; (7) Observed OH and H02 in the Troposphere and the interrelationship between Ozone and OH, HO2, CO and NO; (8) Analysis of the Catalytic Production of Ozone and Reactions that Couple OH and H02 in the Troposphere; (9) The continuing development of the understanding of the Tropopause temperatures, water vapor mixing ratios, and vertical advection and the mixing in of mid-latitude air; (10) Performed Multiple Tracer Analyses as a diagnostic of water vapor intrusion into the "Middle World" (i.e., the lowermost stratsophere); (11) Flight testing of a new instrument for the In Situ detection of ClON02 from the ER-2; (12) Laser induced fluorescence detection of NO2. There is included an in depth discussion of each of these developments and observations.
NASA Astrophysics Data System (ADS)
Bhyrappa, P.; Sankar, M.
2018-01-01
A series of mixed β-octasubstituted Zn(II)-porphyrins, 2,3,12,13-tetra(chloro/cyano/methyl)-5,7,8,10,15,17,18,20-octaphenylporphinato zinc(II), ZnTPP(Ph)4X4 (X = CN, Cl and CH3) have been examined by electronic absorption spectroscopy in various solvents. These Zn(II)-porphyrins exhibited varying degree of red-shift of absorption bands as high as 20-30 nm in 'B' band and 50-60 nm in longest wavelength band, 'Q(0,0)' band in polar solvents relative to that found in nonpolar solvents. The red-shift of B and Q(0,0) bands showed an unusual trend, ZnTPP(Ph)4(CN)4 > ZnTPP(Ph)4(CH3)4 > ZnTPP(Ph)4Cl4 but fails to follow an anticipated anodic shift in first porphyrin ring oxidation (vs Ag/AgCl) potential: ZnTPP(Ph)4(CN)4 (1.02 V) > ZnTPP(Ph)4Cl4 (0.74 V) > ZnTPP(Ph)4(CH3)4 (0.38 V). Such a trend suggests the combined effect of non-planarity of the macrocycle and electronic effect of the peripheral substituents. The equilibrium constants for the binding of nitrogenous bases with the Zn(II)-porphyrins showed as high as twenty fold increase for ZnTPP(Ph)4X4 (X = Br and CN) relative to ZnTPP(Ph)4(CH3)4 and follow the order: ZnTPP(Ph)4(CN)4 > ZnTPP(Ph)4Br4 > ZnTPP(Ph)4(CH3)4 ≤ ZnTPP which is approximately in line with an increase in anodic shift of their first ring redox potentials (ZnTPP(Ph)4(CN)4 (1.02 V) > ZnTPP(Ph)4Br4 (0.72 V) > ZnTPP (0.84 V) > ZnTPP(Ph)4(CH3)4) (0.38 V).
Impact of Wildfire Emissions on Chloride and Bromide Depletion in Marine Aerosol Particles.
Braun, Rachel A; Dadashazar, Hossein; MacDonald, Alexander B; Aldhaif, Abdulamonam M; Maudlin, Lindsay C; Crosbie, Ewan; Aghdam, Mojtaba Azadi; Hossein Mardi, Ali; Sorooshian, Armin
2017-08-15
This work examines particulate chloride (Cl - ) and bromide (Br - ) depletion in marine aerosol particles influenced by wildfires at a coastal California site in the summers of 2013 and 2016. Chloride exhibited a dominant coarse mode due to sea salt influence, with substantially diminished concentrations during fire periods as compared to nonfire periods. Bromide exhibited a peak in the submicrometer range during fire and nonfire periods, with an additional supermicrometer peak in the latter periods. Chloride and Br - depletions were enhanced during fire periods as compared to nonfire periods. The highest observed %Cl - depletion occurred in the submicrometer range, with maximum values of 98.9% (0.32-0.56 μm) and 85.6% (0.56-1 μm) during fire and nonfire periods, respectively. The highest %Br - depletion occurred in the supermicrometer range during fire and nonfire periods with peak depletion between 1.8-3.2 μm (78.8% and 58.6%, respectively). When accounting for the neutralization of sulfate by ammonium, organic acid particles showed the greatest influence on Cl - depletion in the submicrometer range. These results have implications for aerosol hygroscopicity and radiative forcing in areas with wildfire influence owing to depletion effects on composition.
Pietzsch, H J; Gupta, A; Reisgys, M; Drews, A; Seifert, S; Syhre, R; Spies, H; Alberto, R; Abram, U; Schubiger, P A; Johannsen, B
2000-01-01
The organometallic precursor (NEt(4))(2)[ReBr(3)(CO)(3)] was reacted with bidendate dithioethers (L) of the general formula H(3)C-S-CH(2)CH(2)-S-R (R = -CH(2)CH(2)COOH, CH(2)-C&tbd1;CH) and R'-S-CH(2)CH(2)-S-R' (R' = CH(3)CH(2)-, CH(3)CH(2)-OH, and CH(2)COOH) in methanol to form stable rhenium(I) tricarbonyl complexes of the general composition [ReBr(CO)(3)L]. Under these conditions, the functional groups do not participate in the coordination. As a prototypic representative of this type of Re compounds, the propargylic group bearing complex [ReBr(CO(3))(H(3)C-S-CH(2)CH(2)-S-CH(2)C&tbd1;CH)] Re2 was studied by X-ray diffraction analysis. Its molecular structure exhibits a slightly distorted octahedron with facial coordination of the carbonyl ligands. The potentially tetradentate ligand HO-CH(2)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(2)-OH was reacted with the trinitrato precursor [Re(NO(3))(3)(CO)(3)](2-) to yield a cationic complex [Re(CO)(3)(HO-CH(2)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(2)-OH)]NO(3) Re8 which shows the coordination of one hydroxy group. Re8 has been characterized by correct elemental analysis, infrared spectroscopy, capillary electrophoresis, and X-ray diffraction analysis. Ligand exchange reaction of the carboxylic group bearing ligands H(3)C-S-CH(2)CH(2)-S-CH(2)CH(2)-COOH and HOOC-CH(2)-S-CH(2)CH(2)-S-CH(2)-COOH with (NEt(4))(2)[ReBr(3)(CO)(3)] in water and with equimolar amounts of NaOH led to complexes in which the bromide is replaced by the carboxylic group. The X-ray structure analysis of the complex [Re(CO)(3)(OOC-CH(2)-S-CH(2)CH(2)-S-CH(2)-COOH)] Re6 shows the second carboxylic group noncoordinated offering an ideal site for functionalization or coupling a biomolecule. The no-carrier-added preparation of the analogous (99m)Tc(I) carbonyl thioether complexes could be performed using the precursor fac-[(99m)Tc(H(2)O)(3)(CO)(3)](+), with yields up to 90%. The behavior of the chlorine containing (99m)Tc complex [(99m)TcCl(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))] Tc1 in aqueous solution at physiological pH value was investigated. In saline, the chromatographically separated compound was stable for at least 120 min. However, in chloride-free aqueous solution, a water-coordinated cationic species Tc1a of the proposed composition [(99m)Tc(H(2)O)(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))](+) occurred. The cationic charge of the conversion product was confirmed by capillary electrophoresis. By the introduction of a carboxylic group into the thioether ligand as a third donor group, the conversion could be suppressed and thus the neutrality of the complex preserved. Biodistribution studies in the rat demonstrated for the neutral complexes [(99m)TcCl(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))] Tc1 and [(99m)TcCl(CO)(3)(CH(2)-S-CH(2)CH(2)-S-CH(2)-C&tbd1;CH)] Tc2 a significant initial brain uptake (1.03 +/- 0.25% and 0.78 +/- 0.08% ID/organ at 5 min. p.i.). Challenge experiments with glutathione clearly indicated that no transchelation reaction occurs in vivo.
Prepubertal exposure to compounds that increase prolactin secretion in the male rat: effects on the adult prostate.
Stoker TE, Robinette CL, Britt BH, Laws SC, Cooper RL.
Endocrinology Branch, Reproductive Toxicology Division, National Health and Environmental Effec...
NASA Technical Reports Server (NTRS)
Anderson, James G.
1996-01-01
Two critical areas of research were addressed successfully by this research. The first involves NASA ER-2 airborne observations of ClO and BrO radical destruction of ozone within the arctic vortex. The second involves the analysis of diurnal variations in ClO, to test the production and loss rates of ClO that constitutes the test for coupling reactions between the chlorine and nitrogen systems. We discuss results from this research in order.
Ren, Yi; Gai, Jing-Gang; Xiong, Yan; Lee, Kuo-Hsing; Chu, San-Yan
2007-07-26
Three archetypal ion pair nucleophilic substitution reactions at the methylsulfenyl sulfur atom LiX+CH3SX-->XSCH3+LiX (X=Cl, Br, and I) are investigated by the modified Gaussian-2 theory. Including lithium cation in the anionic models makes the ion pair reactions proceed along an SN2 mechanism, contrary to the addition-elimination pathway occurring in the corresponding anionic nucleophilic substitution reactions X-+CH3SX-->XSCH3+X-. Two reaction pathways for the ion pair SN2 reactions at sulfur, inversion and retention, are proposed. Results indicate the inversion pathway is favorable for all the halogens. Comparison of the transition structures and energetics for the ion pair SN2 at sulfur with the potential competition ion pair SN2 reactions at carbon LiX+CH3SX-->XCH3+LiXS shows that the SN2 reactions at carbon are not favorable from the viewpoints of kinetics and thermodynamics.
NASA Astrophysics Data System (ADS)
Buxmann, J.; Hoch, D. J.; Sihler, H.; Pöhler, D.; Platt, U.; Bleicher, S.; Balzer, N.; Zetzsch, C.
2011-12-01
Reactive halogen species (RHS), such as Cl, Br or BrO, can significantly influence chemical processes in the troposphere, including the destruction of ozone, change in the chemical balance of hydrogen radicals (OH, HO2), increased deposition of toxic compounds (like mercury) with potential consequences for the global climate. Previous studies have shown that salt lakes can be significant sources for gaseous RHS. Environmental conditions such as salt composition, relative humidity (RH), pH, and temperature (T) can strongly influence reactive bromine levels, but are difficult to quantify in the field. Therefore, we conducted laboratory experiments by exposing NaCl salt containing 0.33% (by weight) NaBr to simulated sunlight in a Teflon smog-chamber under various conditions of RH and ozone concentrations. BrO levels were observed by a Differential-Optical-Absorption-Spectrometer (DOAS) in combination with a multi-reflection cell (White-cell). The concentrations of OH- and Cl- radicals were quantified by the radical clock method. We present the first direct observation of BrO from the "Bromine Explosion" (auto catalytic release of reactive bromine from salt surfaces - key to ozone destruction) in the laboratory above a simulated salt pan. The maximum BrO mixing ratio of 6419±71 ppt at 60% RH was observed to be one order of magnitude higher than at 37% RH and 2% RH. The release of RHS from the salt pan is possibly controlled by the thickness of the quasi liquid layer, covering the reactive surface of the halide crystals, as the layer thickness strongly depends on RH. Furthermore, a new cavity enhanced DOAS (CE-DOAS) instrument was designed and successfully used in chamber experiments. For the first time, such an instrument uses a spectral interval in the UV - wavelength range (325-365 nm) to identify BrO. We show a comparison of the CE-DOAS and White-cell DOAS instrument in a series of experiments, where e.g. a peak BrO mixing ratio up to 380 ppt within the first minutes was observed by both instruments (relative humidity 29%, 20°C, initial [O3]=300ppb). The detection limits with a time resolution of less than five minutes per measurement were found for BrO at 25 ppt, for HCHO at 5.5 ppb, for O3 at 55 ppb for the CE-DOAS. The White-cell has a higher detection limit at a better minimal time resolution of one minute per measurement with BrO at 40 ppt, for HCHO at 10 ppb and for O3 at 300 ppb, respectively. The new BrO-CE DOAS instruments with high spatial resolution also looks very promising for future field measurement campaigns aimed at a better understanding of atmospheric processes, such as halogen activation.
Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].
Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T
2016-06-28
The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids.
Miskolczi, Norbert; Ateş, Funda; Borsodi, Nikolett
2013-09-01
Pyrolysis of real wastes (MPW and MSW) has been investigated at 500°C, 550°C and 600°C using Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3 as catalysts. The viscosity of pyrolysis oils could be decreased by the using of catalysts, especially by β-zeolite and MoO3. Both carbon frame and double bound isomerization was found in case of thermo-catalytic pyrolysis. Char morphology and texture analysis showed more coke deposits on the catalyst surface using MSW raw material. Pyrolysis oils had K, S, P Cl, Ca, Zn, Fe, Cr, Br and Sb as contaminants; and the concentrations of K, S, P, Cl and Br could be decreased by the using of catalysts. Copyright © 2013 Elsevier Ltd. All rights reserved.
Theoretical investigations of the optical spectra and g-shift in CsVX 3 ( X=Cl, Br, I)
NASA Astrophysics Data System (ADS)
Lei, Y.; He, W. S.; Zu, X. T.; Zhao, M. G.
2007-04-01
The paper presents a molecular orbital calculation of the optical spectra and g shift in CsVX 3 ( X=Cl, Br, I), in which the contribution due to the electrostatic parameter A0, the Trees correction, the spin-orbit coupling of the central transition metal ion and the ligand are included. In the present calculations, instead of the 10 parameters in the previous works, there are three fitting parameters because the appropriate double- ζ function of V is used. The calculated optical spectra and g shift agree well with the available experimental data. This indicates again that the double- ζ wave functions are the appropriate approximation in the calculation of the electronic structure properties. The results show that the contribution due to the 3s of the ligand and the conjunct action between the center metal ion and the ligand cannot been neglected.
5-Chlorouracil and 5-bromouracil acid-base equilibrium study in water and DMSO by NMR spectroscopy
NASA Astrophysics Data System (ADS)
Abdrakhimova, G. S.; Ovchinnikov, M. Yu; Lobov, A. N.; Spirikhin, L. V.; Khursan, S. L.; Ivanov, S. P.
2018-04-01
Mechanism of 5-chloro- and 5-bromouracil deprotonation in water and dimethyl sulfoxide (DMSO) has been studied by the 13C and 1H NMR spectroscopy. NMR spectra were interpreted using DFT quantum chemical calculations at the CSGT-PCM-TPSSTPSS/6-311+G(d, p) level of theory. It was found that 5-chloro- (5ClU) and 5-bromouracil (5BrU) are present as a mixture of two anionic forms where the deprotonation is realized at the first (N1) and the third (N3) positions of the pyrimidine ring. N1 form is major for water-alkaline [xAN1/xAN3 (5ClU) = 0.65/0.35 and xAN1/xAN3 (5BrU) = 0.72/0.28, x - molar fraction] and the only one for DMSO solution.
Temperature Dependence of Thermodynamic Properties of Thallium Chloride and Thallium Bromide
NASA Astrophysics Data System (ADS)
Kavanoz, H. B.
2015-02-01
Thermodynamic properties as lattice parameters, thermal expansion, heat capacities Cp and Cv, bulk modulus, and Gruneisen parameter of ionic halides TlCl and TlBr in solid and liquid phases were studied using classical molecular dynamics simulation (MD) with interionic Vashistha-Rahman (VR) model potential. In addition to the static and transport properties which have been previously reported by the author [13], this study further confirms that temperature dependence of the calculated thermophysical properties of TlCl and TlBr are in agreement with the available experimental data at both solid and liquid phases in terms of providing an alternative rigid ion potential. The results give a fairly good description of TlCl and TlBr in the temperature range 10-1000 K.
Observations of Bromine Chloride (BrCl) at an Arctic Coastal Site
NASA Astrophysics Data System (ADS)
McNamara, S. M.; Garner, N.; Wang, S.; Raso, A. R. W.; Thanekar, S.; Fuentes, J. D.; Shepson, P. B.; Pratt, K.
2017-12-01
Chlorine and bromine chemistry in the Arctic boundary layer have significant impacts on tropospheric ozone depletion and the fates of atmospheric pollutants such as methane, a greenhouse gas, and mercury. However, there is sparse understanding of halogen production and removal pathways due to a lack of observations. Here, we report chemical ionization mass spectrometry measurements of bromine chloride (BrCl) observed at Utqiaġvik (Barrow), AK during March-May 2016. Over the course of the three-month study, two distinct BrCl diurnal trends were identified, and production mechanisms were explored using 0-dimensional modeling, constrained by a suite of reactive halogen measurements. The findings in this work highlight coupled chlorine and bromine chemistry, as well as halogen activation pathways in the Arctic.
Mercury removal from coal combustion flue gas by modified fly ash.
Xu, Wenqing; Wang, Hairui; Zhu, Tingyu; Kuang, Junyan; Jing, Pengfei
2013-02-01
Fly ash is a potential alternative to activated carbon for mercury adsorption. The effects of physicochemical properties on the mercury adsorption performance of three fly ash samples were investigated. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, and other methods were used to characterize the samples. Results indicate that mercury adsorption on fly ash is primarily physisorption and chemisorption. High specific surface areas and small pore diameters are beneficial to efficient mercury removal. Incompletely burned carbon is also an important factor for the improvement of mercury removal efficiency, in particular. The C-M bond, which is formed by the reaction of C and Ti, Si and other elements, may improve mercury oxidation. The samples modified with CuBr2, CuCl2 and FeCl3 showed excellent performance for Hg removal, because the chlorine in metal chlorides acts as an oxidant that promotes the conversion of elemental mercury (Hg0) into its oxidized form (Hg2+). Cu2+ and Fe3+ can also promote Hg0 oxidation as catalysts. HCl and O2 promote the adsorption of Hg by modified fly ash, whereas SO2 inhibits the Hg adsorption because of competitive adsorption for active sites. Fly ash samples modified with CuBr2, CuCl2 and FeCl3 are therefore promising materials for controlling mercury emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zheng; Okasinski, John S.; Gosztola, David J.
2015-01-01
Silver chlorobromide (AgClxBr1-x, 0 < x < 1) nanocubes with a highly uniform size, morphology, and crystallinity have been successfully synthesized through a co-precipitation of Ag+ ions with both Cl- and Br- ions in ethylene glycol containing polyvinyl pyrrolidone at mild temperatures. Compositions of the synthesized nanocubes can be easily tuned by controlling the molar ratio of Cl- to Br- ions in the reaction solutions. The size of the nanocubes is determined by varying a number of parameters including the molar ratio of Cl- to Br- ions, injection rate of Ag+ ions, and reaction temperature. The real-time formation of colloidalmore » AgClxBr1-x nanocubes has been monitored, for the first time, by in situ highenergy synchrotron X-ray diffraction. The time-resolved results reveal that a fast injection rate of Ag+ ions is critical for the formation of AgClxBr1-x nanocubes with a highly pure face-centered cubic crystalline phase. The improved uniformity of the AgClxBr1-x nanocubes is beneficial for assembling them into order superlattices (e.g., photonic crystals) even by simply applying centrifugation forces. The stop band of the resulting photonic crystals can be easily tuned from the ultraviolet to the infrared region by using AgClxBr1-x nanocubes with different sizes. The variation of the dielectric constant of AgClxBr1-x associated with the change of the relative concentration of halide ions provides an additional knob to tune the optical properties of photonic crystals.« less
NASA Astrophysics Data System (ADS)
Rana, Love Karan; Sharma, Sanyog; Hundal, Geeta
2018-02-01
Two new ligands N,N,N‧,N‧-tetraisopropyl/butyl-3,5-pyridinedicarboxamide (L3-L4) and six of their Hg(II)X2 complexes (where X = Cl-, Br- and I-), have been synthesized and characterized using single crystal X-ray diffraction and spectroscopic techniques. Complexes of L3 (1-3) with HgCl2/Br2/I2, have dimeric structure, with the ligand behaving as a 2-C linker. Complexes 4-6 are 1D coordination polymers with either 3- or 2-C, L4 linker and bridging halides. A delicate balance of anion, solvent, denticity and conformation of the ligands on the ensuing molecular and crystal structures has been delineated. Various non-covalent interactions, extending the dimensionality of the complexes are calculated, analyzed and discussed. A significant role of semi-localized LP···π non-covalent interactions in stabilizing the basic dimeric unit in the complexes, has been discerned.
NASA Astrophysics Data System (ADS)
Cai, Peiqing; Wang, Xiangfu; Seo, Hyo Jin; Yan, Xiaohong
2018-04-01
Bluish-white-light-emitting diodes (BWLEDs) are designed based on the two-dimensional mixed halide perovskite (C6H5C2H4NH3)2PbCl2Br2 at room temperature. Bluish-white electroluminescence devices were fabricated by a spin-coating method. The BWLEDs can be turned on at 4.9 V and depict a maximum luminance of ˜70 cd/m2 at 7 V. Low and room temperature photoluminescence spectra show the coexistence of free exciton and self-trapped exciton luminescence in a deformable lattice. The strategy of achieving white electroluminescence (EL) from mixed halide perovskite reported here can be applied to other two-dimensional perovskites to increase the optoelectronic efficiency of the device in the future.
NASA Astrophysics Data System (ADS)
Cullen, J. T.; Hurwitz, S.; Thordsen, J. J.; Barnes, J.
2017-12-01
B, Li, and halogens (Cl, F, Br) are used extensively in studies of thermal waters to infer fluid equilibrium conditions with the host reservoir lithology, and quantify the possible fraction of a magmatic component in thermal waters. Apart from fluorine, the limited number of minerals that incorporate these elements support the notion that they preferentially partition into an aqueous fluid during high temperature water-rock interaction. Although limited experimental work is largely consistent with these observations, a rigorous experimental investigation is required to quantify the mobility of these elements under conditions emulating a silicic hydrothermal system. Here we present the results from water-rhyolite interaction batch experiments conducted over a range of temperatures between 150 °C and 350 °C and 250 bar. Powdered obsidian from Yellowstone was reacted with MiliQ water and sampled intermittently throughout the duration of the 90 day experiment. The experimental data show that at temperatures ≤ 200 °C, B, Cl, Br, and Li are not readily leached from the rhyolite, whereas aqueous F- concentration increases by a factor of 3.5 when the temperature was increased from 150 °C to 200 °C. Between 200 °C and 250 °C, B concentration increased by more than an order of magnitude and Cl- concentration increased by a factor of 5. F- concentration increased by a factor of 3. Between 250 °C and 300 °C the opposite trend was observed, in which F- concentration decreased by 60%, Br- concentration increased by a factor of 5, and Cl- and B concentrations increased by more than an order of magnitude. The progressive decrease of aqueous F- at T ≥ 300 °C is likely controlled by precipitation into a fluorine bearing secondary mineral(s). Our experimental results demonstrate that leaching of B, Li, Cl, F, and Br from rhyolite is highly temperature-dependent between 150 °C and 350 °C. These results can provide context to infer the sources of solutes discharged at thermal springs and the subsurface water-rhyolite equilibrium temperatures in the Yellowstone hydrothermal system. Work to characterize the alteration mineralogy and the temperature-dependent stable Cl, Li, and B isotope fractionation is currently ongoing. Keywords: Yellowstone, hydrothermal, halogens, experiments, water-rock interaction
NASA Astrophysics Data System (ADS)
Cullen, J. T.; Hurwitz, S.; Thordsen, J. J.; Barnes, J.
2016-12-01
B, Li, and halogens (Cl, F, Br) are used extensively in studies of thermal waters to infer fluid equilibrium conditions with the host reservoir lithology, and quantify the possible fraction of a magmatic component in thermal waters. Apart from fluorine, the limited number of minerals that incorporate these elements support the notion that they preferentially partition into an aqueous fluid during high temperature water-rock interaction. Although limited experimental work is largely consistent with these observations, a rigorous experimental investigation is required to quantify the mobility of these elements under conditions emulating a silicic hydrothermal system. Here we present the results from water-rhyolite interaction batch experiments conducted over a range of temperatures between 150 °C and 350 °C and 250 bar. Powdered obsidian from Yellowstone was reacted with MiliQ water and sampled intermittently throughout the duration of the 90 day experiment. The experimental data show that at temperatures ≤ 200 °C, B, Cl, Br, and Li are not readily leached from the rhyolite, whereas aqueous F- concentration increases by a factor of 3.5 when the temperature was increased from 150 °C to 200 °C. Between 200 °C and 250 °C, B concentration increased by more than an order of magnitude and Cl- concentration increased by a factor of 5. F- concentration increased by a factor of 3. Between 250 °C and 300 °C the opposite trend was observed, in which F- concentration decreased by 60%, Br- concentration increased by a factor of 5, and Cl- and B concentrations increased by more than an order of magnitude. The progressive decrease of aqueous F- at T ≥ 300 °C is likely controlled by precipitation into a fluorine bearing secondary mineral(s). Our experimental results demonstrate that leaching of B, Li, Cl, F, and Br from rhyolite is highly temperature-dependent between 150 °C and 350 °C. These results can provide context to infer the sources of solutes discharged at thermal springs and the subsurface water-rhyolite equilibrium temperatures in the Yellowstone hydrothermal system. Work to characterize the alteration mineralogy and the temperature-dependent stable Cl, Li, and B isotope fractionation is currently ongoing. Keywords: Yellowstone, hydrothermal, halogens, experiments, water-rock interaction
Spin splitting in band structures of BiTeX (X=Cl, Br, I) monolayers
NASA Astrophysics Data System (ADS)
Hvazdouski, D. C.; Baranava, M. S.; Stempitsky, V. R.
2018-04-01
In systems with breaking of inversion symmetry a perpendicular electric field arises that interacts with the conduction electrons. It may give rise to electron state splitting even without influence of external magnetic field due to the spin-orbital interaction (SOI). Such a removal of the spin degeneracy is called the Rashba effect. Nanostructure with the Rashba effect can be part of a spin transistor. Spin degeneracy can be realized in a channel from a material of this type without additive of magnetic ions. Lack of additive increases the charge carrier mobility and reliability of the device. Ab initio simulations of BiTeX (X=Cl, Br, I) monolayers have been carried out using VASP wherein implemented DFT method. The study of this structures is of interest because such sort of structures can be used their as spin-orbitronics materials. The crystal parameters of BiTeCl, BiTeBr, BiTeI have been determined by the ionic relaxation and static calculations. It is necessary to note that splitting of energy bands occurs in case of SOI included. The values of the Rashba coefficient aR (in the range from 6.25 to 10.00 eV·Å) have high magnitudes for spintronics materials. Band structure of monolayers structures have ideal Rashba electron gas, i.e. there no other energy states near to Fermi level except Rashba states.
Mithoo-Singh, Paramjeet Kaur; Keng, Fiona S-L; Phang, Siew-Moi; Leedham Elvidge, Emma C; Sturges, William T; Malin, Gill; Abd Rahman, Noorsaadah
2017-01-01
Five tropical seaweeds, Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner) C. Agardh), Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh) Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient), 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr 3 ), dibro-momethane (CH 2 Br 2 ), iodomethane (CH 3 I), diiodomethane (CH 2 I 2 ), bromoiodomethane (CH 2 BrI), bromochlorometh-ane (CH 2 BrCl), bromodichloromethane (CHBrCl 2 ), and dibro-mochloromethane (CHBr 2 Cl). These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH 2 I 2 and CH 3 I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis . The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis ( F v ∕ F m ) prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum quantum yield of photosynthesis ( F v ∕ F m ) and halocarbon emission rates, was significant only for CH 2 BrCl emission by P. australis ( r = 0.47; p ≤ 0.04), implying that photosynthesis may not be closely linked to halocarbon emissions by the seaweeds studied. Bromine was the largest contributor to the total mass of halogen emitted for all the seaweeds at all pH. The highest total amount of bromine emitted by K. alvarezii (an average of 98% of total mass of halogens) and the increase in the total amount of chlorine with decreasing seawater pH fuels concern for the expanding seaweed farming activities in the ASEAN region.
Leedham Elvidge, Emma C.; Sturges, William T.; Malin, Gill; Abd Rahman, Noorsaadah
2017-01-01
Five tropical seaweeds, Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner) C. Agardh), Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh) Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient), 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr3), dibromomethane (CH2Br2), iodomethane (CH3I), diiodomethane (CH2I2), bromoiodomethane (CH2BrI), bromochloromethane (CH2BrCl), bromodichloromethane (CHBrCl2), and dibromochloromethane (CHBr2Cl). These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH2I2 and CH3I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis. The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis (Fv∕Fm) prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum quantum yield of photosynthesis (Fv∕Fm) and halocarbon emission rates, was significant only for CH2BrCl emission by P. australis (r = 0.47; p ≤ 0.04), implying that photosynthesis may not be closely linked to halocarbon emissions by the seaweeds studied. Bromine was the largest contributor to the total mass of halogen emitted for all the seaweeds at all pH. The highest total amount of bromine emitted by K. alvarezii (an average of 98% of total mass of halogens) and the increase in the total amount of chlorine with decreasing seawater pH fuels concern for the expanding seaweed farming activities in the ASEAN region. PMID:28149690
Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study
NASA Astrophysics Data System (ADS)
Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad
2018-06-01
Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.
Liu, Yazi; Xu, Jian; Wang, Liqiong; Zhang, Huayang; Xu, Ping; Duan, Xiaoguang; Sun, Hongqi; Wang, Shaobin
2017-01-01
Three-dimensional flower-like BiOI/BiOX (X = Br or Cl) hybrids were synthesized via a facile one-pot solvothermal approach. With systematic characterizations by X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), the Brunauer-Emmett-Teller (BET)specific surface area, X-ray photoelectron spectroscopy (XPS), and the UV-Vis diffuse reflectance spectra (DRS), the BiOI/BiOCl composites showed a fluffy and porous 3-D architecture with a large specific surface area (SSA) and high capability for light absorption. Among all the BiOX (X = Cl, Br, I) and BiOI/BiOX (X = Cl or Br) composites, BiOI/BiOCl stands out as the most efficient photocatalyst under both visible and UV light irradiations for methyl orange (MO) oxidation. The reaction rate of MO degradation on BiOI/BiOCl was 2.1 times higher than that on pure BiOI under visible light. Moreover, BiOI/BiOCl exhibited enhanced water oxidation efficiency for O2 evolution which was 1.5 times higher than BiOI. The enhancement of photocatalytic activity could be attributed to the formation of a heterojunction between BiOI and BiOCl, with a nanoporous structure, a larger SSA, and a stronger light absorbance capacity especially in the visible-light region. The in situ electron paramagnetic resonance (EPR) revealed that BiOI/BiOCl composites could effectively evolve superoxide radicals and hydroxyl radicals for photodegradation, and the superoxide radicals are the dominant reactive species. The superb photocatalytic activity of BiOI/BiOCl could be utilized for the degradation of various industrial dyes under natural sunlight irradiation which is of high significance for the remediation of industrial wastewater in the future. PMID:28336897
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luu, M.D.; Morrow, A.L.; Paul, S.M.
1987-09-07
..gamma..-Aminobutyric acid (GABA) receptor-mediated /sup 36/chloride (/sup 36/Cl/sup -/) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated /sup 36/Cl/sup -/ uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-(5,4-c)pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regionalmore » variation in muscimol-stimulated /sup 36/Cl/sup -/ uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated /sup 36/Cl/sup -/ uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br/sup -/>Cl/sup -/greater than or equal toNO/sub 3//sup -/>I/sup -/greater than or equal toSCN/sup -/>>C/sub 3/H/sub 5/OO/sup -/greater than or equal toClO/sub 4//sup -/>F/sup -/, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl/sup -/ channel. 43 references, 4 figures, 3 tables.« less
1990-01-01
The nature of the intracellular pH-regulatory mechanism after imposition of an alkaline load was investigated in isolated human peripheral blood neutrophils. Cells were alkalinized by removal of a DMO prepulse. The major part of the recovery could be ascribed to a Cl- /HCO3- counter-transport system: specifically, a one-for-one exchange of external Cl- for internal HCO3-. This exchange mechanism was sensitive to competitive inhibition by the cinnamate derivative UK-5099 (Ki approximately 1 microM). The half-saturation constants for binding of HCO3- and Cl- to the external translocation site of the carrier were approximately 2.5 and approximately 5.0 mM. In addition, other halides and lyotropic anions could substitute for external Cl-. These ions interacted with the exchanger in a sequence of decreasing affinities: HCO3- greater than Cl approximately NO3- approximately Br greater than I- approximately SCN- greater than PAH-. Glucuronate and SO4(2-) lacked any appreciable affinity. This rank order is reminiscent of the selectivity sequence for the principal anion exchanger in resting cells. Cl- and HCO3- displayed competition kinetics at both the internal and external binding sites of the carrier. Finally, evidence compatible with the existence of an approximately fourfold asymmetry (Michaelis constants inside greater than outside) between inward- and outward-facing states is presented. These results imply that a Cl-/HCO3- exchange mechanism, which displays several properties in common with the classical inorganic anion exchanger of erythrocytes, is primarily responsible for restoring the pHi of human neutrophils to its normal resting value after alkalinization. PMID:2280252
Li, Yanbo; Chen, Xiaofeng; Song, Yin; Fang, Ling; Zou, Gang
2011-03-07
Structurally well-defined N-heterocyclic carbene silver chlorides and bromides supported by 1-cyclohexyl-3-benzylimidazolylidene (CyBn-NHC) or 1-cyclohexyl-3-naphthalen-2-ylmethylimidazolylidene (CyNaph-NHC) were synthesized by reaction of the corresponding imidazolium halides with silver(I) oxide while cationic bis(CyBn-NHC) silver nitrate was isolated under similar conditions using imidazolium iodide in the presence of sodium nitrate. Single-crystal X-ray diffraction revealed a dimeric structure through a nonpolar weak-hydrogen-bond supported Ag-Ag bond for 1-cyclohexyl-3-benzylimidazolylidene silver halides [(CyBn-NHC)AgX](2) (X = Cl, 1; Br, 2) but a monomeric structure for N-heterocyclic carbene silver halides with the more sterically demanding 1-cyclohexyl-3-naphthalen-2-ylmethylimidazolylidene ligand (CyNaph-NHC)AgX (X = Cl, 4; Br, 5). Cationic biscarbene silver nitrate [(CyBn-NHC)(2)Ag](+)NO(3)(-)3 assumed a cis orientation with respect to the two carbene ligands. The monomeric complexes (CyNaph-NHC)AgX 4 and 5 showed higher catalytic activity than the dimeric [(CyBn-NHC)AgX](2)1 and 2 as well as the cationic biscarbene silver nitrate 3 in the model three component reaction of 3-phenylpropionaldehyde, phenylacetylene and piperidine with chloride 4 performing best and giving product in almost quantitative yield within 2 h at 100 °C. An explanation for the structure-activity relationship in N-heterocyclic carbene silver halide catalyzed three component reaction is given based on a slightly modified mechanism from the one in literature.
Investigating Planetary Volatile Accretion Mechanisms Using the Halogens
NASA Astrophysics Data System (ADS)
Ballentine, C. J.; Clay, P. L.; Burgess, R.; Busemann, H.; Ruzié, L.; Joachim, B.; Day, J. M.
2014-12-01
Depletion of the volatile elements in the Earth relative to the CI chondrites is roughly correlated with volatility, or decreasing condensation temperature. For the heavy halogen group elements (Cl, Br and I), volatility alone does not account for their apparent depletion, which early data has suggested is far greater than predicted [1-2]. Such depletion has been used to argue for the preferential loss of halogens by, amongst other processes, impact-driven erosive loss from Earth's surface [2]. Little consensus exists as to why the halogens should exhibit such preferential behavior during accretionary processes. Early efforts to constrain halogen abundance and understand their behavior in both Earth and planetary materials [3-6] have been hampered by their typically low abundance (ppb level) in most geologic materials. We present the results of halogen analysis of 23 chondrite samples, selected to represent diverse groups and petrologic type. Halogen abundances were measured by neutron irradiation noble gas mass spectrometry (NI-NGMS). Significant concentration heterogeneity is observed within some samples. However, a single Br/Cl and I/Cl ratio of 1.9 ± 0.2 (x 10-3) and 335 ± 10 (x 10-6) can be defined for carbonaceous chondrites with a good correlation between Br and Cl (R2 = 0.97) and between I and Cl (R2 = 0.84). Ratios of I/Cl overlap with terrestrial estimates of Bulk Silicate Earth and Mid Ocean Ridge Basalts. Similarly, good correlations are derived for enstatite (E) chondrites and a sulfide- and halogen- rich subset of E-chondrites. Chlorine abundances of CI (Orgueil) in this study are lower by factor of ~ 3 than the value of ~ 700 ppm Cl (compilation in [1]). Our results are similar to early discarded low values for Ivuna and Orgueil from [5,6] and agree more closely with values for CM chondrites. Halogens may not be as depleted in Earth as previously suggested, or a high degree of heterogeneity in the abundance of these volatile elements in carbonaceous chondrites should be considered when we assess Earth's halogen abundance relative to CI. [1] Lodders (2003) Astr J 591:1220-47. [2] Sharp et al. (2013) EPSL 369/70: 71-7. [3] Dreibus et al. (1979) Phys Chem Earth 11:33-8. [4] Goles et al. (1967) GCA 31: 1771-7. [5] Reed and Allen (1966) GCA 30: 779-800. [6] Greenland & Lovering (1965) GCA 29: 821-58.
Hung, Sheng-Wei; Yang, Fuh-An; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu
2008-08-18
The crystal structures of diamagnetic dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-tin(IV) methanol solvate [Sn(2-NCH 3NCTPP)Cl 2.2(0.2MeOH); 6.2(0.2MeOH)] and paramagnetic bromo(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-manganese(III) [Mn(2-NCH 3NCTPP)Br; 5] were determined. The coordination sphere around Sn (4+) in 6.2(0.2MeOH) is described as six-coordinate octahedron ( OC-6) in which the apical site is occupied by two transoid Cl (-) ligands, whereas for the Mn (3+) ion in 5, it is a five-coordinate square pyramid ( SPY-5) in which the unidentate Br (-) ligand occupies the axial site. The g value of 9.19 (or 10.4) measured from the parallel polarization (or perpendicular polarization) of X-band EPR spectra at 4 K is consistent with a high spin mononuclear manganese(III) ( S = 2) in 5. The magnitude of axial ( D) and rhombic ( E) zero-field splitting (ZFS) for the mononuclear Mn(III) in 5 were determined approximately as -2.4 cm (-1) and -0.0013 cm (-1), respectively, by paramagnetic susceptibility measurements and conventional EPR spectroscopy. Owing to weak C(45)-H(45A)...Br(1) hydrogen bonds, the mononuclear Mn(III) neutral molecules of 5 are arranged in a one-dimensional network. A weak Mn(III)...Mn(III) ferromagnetic interaction ( J = 0.56 cm (-1)) operates via a [Mn(1)-C(2)-C(1)-N(4)-C(45)-H(45A)...Br(1)-Mn(1)] superexchange pathway in complex 5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Jodie; Berntsen, Hanne Friis; Zimmer, Karin Elisabeth
Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POPs were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds,more » chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p’-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2 h and 48 h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC + Br mixture in comparison to the effects of the individual mixtures. No significant effects were detected in the Br + Cl, PFC + Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment. - Highlights: • High content analysis (HCA) is a novel approach for determining toxicity of complex mixtures. • Multiple cytotoxic endpoints were investigated for defined mixtures of persistent organic pollutants (POPs). • POP mixtures are based on levels relevant to human exposure. • POP mixtures can increase ROS induction and impact mitochondrial health, which could result in apoptosis. • HCA can detect pre-lethal and reversible signs of cellular stress.« less
Electronegativity, charge transfer, crystal field strength, and the point charge model revisited.
Tanner, Peter A; Ning, Lixin
2013-02-21
Although the optical spectra of LnCl(6)(3-) systems are complex, only two crystal field parameters, B(40) and B(60), are required to model the J-multiplet crystal field splittings in octahedral symmetry. It is found that these parameters exhibit R(-5) and R(-7) dependence, respectively, upon the ionic radius Ln(3+)(VI), but not upon the Ln-Cl distance. More generally, the crystal field strengths of LnX(6) systems (X = Br, Cl, F, O) exhibit linear relationships with ligand electronegativity, charge transfer energy, and fractional ionic character of the Ln-X bond.
Primary and secondary room temperature molten salt electrochemical cells
NASA Astrophysics Data System (ADS)
Reynolds, G. F.; Dymek, C. J., Jr.
1985-07-01
Three novel primary cells which use room temperature molten salt electrolytes are examined and found to have high open circuit potentials in the 1.75-2.19 V range, by comparison with the Al/AlCl3-MEICl concentration cell; their cathodes were of FeCl3-MEICl, WCl6-MEICl, and Br2/reticulated vitreous carbon together with Pt. Also, secondary electrochemical cell candidates were examined which combined the reversible Al/AlCl3-MEICl electrode with reversible zinc and cadmium molten salt electrodes to yield open circuit potentials of about 0.7 and 1.0 V, respectively. Room temperature molten salts' half-cell reduction potentials are given.
Alton, E W; Manning, S D; Schlatter, P J; Geddes, D M; Williams, A J
1991-01-01
1. Anion-selective channels from the apical membrane of respiratory epithelia are involved in the secretion of chloride into the airway lumen. In cystic fibrosis (CF) there is an abnormality of phosphorylation-regulated chloride transport in this tissue, whilst a calcium-dependent pathway appears to function normally. 2. Using incorporation of apical membrane vesicles into planar phospholipid bilayers, we have characterized the most commonly seen anion-selective channel from sheep tracheal epithelium. 3. In symmetrical 200 mM-NaCl solutions the channel showed rectification, with a chord conductance at negative voltages of 107 pS and at positive voltages of 67 pS. The channel characteristically demonstrated subconductance states at 1/3 and 3/4 of the fully open level. Selectivity for chloride over sodium was approximately 6:1. 4. The channel required a minimum of approximately 100 microM-calcium on the presumed cytoplasmic surface (cis) for opening events to be observed. Open probability (Po) of the fully open state was markedly voltage dependent, but little effect of voltage was seen on the 1/3 subconductance state. 5. The relative permeabilities of monovalent anions monitored under bi-ionic conditions gave the following sequence: NO3- greater than I- greater than Cl- = Br- much much greater than F-. The order of conductances in symmetrical solutions was Cl- = NO3- greater than Br- greater than I- much much greater than F-. 6. The chloride channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) produced a dose-related reduction in Po with a flickering block at 10-50 microM and complete block at higher concentrations. 7. ATP produced a dose-related reduction in Po with effects at 1 microM and complete closing at 1 mM. These effects were only seen with addition to the cis chamber. 8. The catalytic subunit of protein kinase A, either when incubated with vesicles prior to incorporation into bilayers, or when added directly to either chamber, produced no effect. 9. Channels with very similar properties were seen from transfected human tracheo-bronchial cells. 10. Recent whole-cell patch-clamp studies have suggested a distinct calcium-activated chloride current in secretory epithelia. The described channel has properties in common with this current and may be a candidate for its single-channel basis. PMID:1726592
Photoluminescence of epoxy resin modified by carbazole and its halogen derivative at 82 K
NASA Astrophysics Data System (ADS)
Mandowska, E.; Mandowski, A.; Tsvirko, M.
2009-10-01
The spectra and relative quantum yield of fluorescence and phosphorescence were measured for 9-(2,3-epoxypropyl)carbazole (EPK) added to epoxy resin (R) (R 5EPK - 5% weight content of the carbazole group in a polymer) and its mono and dihalogen derivative (Cl and Br). The materials under study have excellent mechanical properties. At 82 K photoluminescence (PL) spectra of these materials are composed of fluorescence (FL) and phosphorescence (PH) components while at 280 K, PH component is not observed. The vibrational frequencies of fluorescence and phosphorescence for R 5EPK were determined using Gaussian deconvolution. A decrease in the fluorescence and an increase in the phosphorescence quantum efficiency were observed after chemical bonding of heavy atoms Cl and Br.
Cationic aza-macrocyclic complexes of germanium(II) and silicon(IV).
Everett, Matthew; Jolleys, Andrew; Levason, William; Light, Mark E; Pugh, David; Reid, Gillian
2015-12-28
[GeCl2(dioxane)] reacts with the neutral aza-macrocyclic ligands L, L = Me3tacn (1,4,7-trimethyl-1,4,7-triazacyclononane), Me4cyclen (1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane) or Me4cyclam (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and two mol. equiv. of Me3SiO3SCF3 in thf solution to yield the unusual and hydrolytically very sensitive [Ge(L)][O3SCF3]2 as white solids in moderate yield. Using shorter reaction times [Ge(Me3tacn)]Cl2 and [Ge(Me3tacn)]Cl[O3SCF3] were also isolated; the preparation of [Ge(Me4cyclen)][GeCl3]2 is also described. The structures of the Me3tacn complexes show κ(3)-coordination of the macrocycle, with the anions interacting only weakly to produce very distorted five- or six-coordination at germanium. In contrast, the structure of [Ge(Me4cyclen)][O3SCF3]2 shows no anion interactions, and a distorted square planar geometry at germanium from coordination to the tetra-aza macrocycle. Crystal structures of the Si(iv) complexes, [SiCl3(Me3tacn)]Y (Y = O3SCF3, BAr(F); [B{3,5-(CF3)2C6H3}4]) and [SiHCl2(Me3tacn)][BAr(F)], obtained from reaction of SiCl4 or SiHCl3 with Me3tacn, followed by addition of either Me3SiO3SCF3 or Na[BAr(F)], contain distorted octahedral cations, with facialκ(3)-coordinated Me3tacn. The open-chain triamine, Me2NCH2CH2N(Me)CH2CH2NMe2 (pmdta), forms [SiCl3(pmdta)][BAr(F)] and [SiBr3(pmdta)][BAr(F)] under similar conditions, containing mer-octahedral cations.
CHAiOS: Chemistry of Halogens at the Isles of Shoals
NASA Astrophysics Data System (ADS)
Keene, W. C.; Stutz, J.; Pszenny, A. A.; Russell, L.; von Glasow, R.; Sive, B.; Varner, R.
2005-12-01
During summer 2004, a comprehensive suite of reactive trace gases (including halogen radicals and precursors, O3, reactive N, soluble acids, NH3, HCHO, SO2, hydrocarbons, and halocarbons), the chemical and physical characteristics of size-resolved aerosols, actinic flux, and related physical conditions was measured at Appledore Island, ME as part of the International Consortium for Atmospheric Research on Transport and Transformations (ICARTT). Acid displacement of sea-salt Cl- primarily by HNO3 sustained high HCl mixing ratios (often >2000 pptv or >5 * 1010 cm-3) during daytime. HCl + OH produced 105 to 106 Cl atoms cm-3 sec-1. Cl* (including HOCl and Cl2) typically ranged from <20 (<5 * 108 cm-3) to about 100 pptv (3 * 109 cm-3). Depending on its assumed composition, Cl* photolysis yielded an additional source for Cl ranging from <104 to 107 atoms cm-3 sec-1. Maximum steady-state Cl concentrations during daytime (104 to 106 atoms cm-3) indicated significant contributions to oxidizing capacity. IO, OIO, and I2 were quantified simultaneously by long-path and MAX DOAS. IO ranged from <1.8 to 7 pptv, was detected only during daytime at wind speeds >2 m sec-1, and was uncorrelated with tidal height. For the first time, OIO was detected during daytime indicating that photolysis was an unimportant sink. The presence of OIO at high NOx implies unknown chemical pathways. Calculations with the 1-D photochemical model MISTRA predict longer lifetimes for OIO relative to IO, consistent with observations. I chemistry influenced ozone significantly by direct reaction (e.g., I + O3 → IO + O2) and by changing OH/HO2 and NO/NO2 ratios. Aerosols in all size fractions were highly enriched in I relative to sea salt (factors of 102 to 105) indicating active multiphase transformations. Numerous aerosol growth events were detected some of which were associated with elevated IO and OIO. However, the lack of consistent correlation with iodine species suggests that I chemistry may not be the dominant nucleation pathway in polluted coastal New England air. Br radical chemistry was relatively unimportant.
NASA Astrophysics Data System (ADS)
Padmos, J.; van Veen, A.
A number of salts of hexakis(pyridine N-oxide)zinc(II) complexes decompose in alkali halide pellets. Initially ion exchange occurs, often followed by the formation of Zn(pyno) 3X 2 (pyno = pyridine N-oxide; X = Br, Cl). The analogous cobalt and nickel compounds are nearly always stable. A mull between alkali halide plates gives greater amounts of the same product Washing this product with toluene gives Zn(pyno) 2X 2. Examples of i.r. and far i.r. spectra are given. Energetical and structural effects are discussed. Far i.r. spectra of M(pyno) 3X 2(M = Co, Zn) confirm the structure [M(pyno) 6][MX 4] for these compounds. New compounds are [Zn(pyno) 2(NO 3) 2], [Zn(pyno- d5) 2[NO 3) 2], [Zn(pyno- d5) 6](NO 3) 2 and [Zn(pyno) 6]I 2.
Zhang, Fan; Adolf, Cyril R R; Zigon, Nicolas; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais
2017-03-23
Combinations of a neutral Pt(ii) organometallic tecton bearing two triphenylphosphine and two 3-ethynylpyridyl coordinating moieties in trans positions with MX 2 complexes (M = Co(ii) and X = Cl - or Br - and M = Zn(ii) and X = Cl - ) lead to the formation of isostructural 1D heterobimetallic coordination compounds. By 3D epitaxial growth processes, using coordination bonding, heterotrimetallic core-shell crystals are generated by the growth of crystalline layers on seed crystals.
Easy access to silicon(0) and silicon(II) compounds.
Mondal, Kartik Chandra; Samuel, Prinson P; Tretiakov, Mykyta; Singh, Amit Pratap; Roesky, Herbert W; Stückl, A Claudia; Niepötter, Benedikt; Carl, Elena; Wolf, Hilke; Herbst-Irmer, Regine; Stalke, Dietmar
2013-04-15
Two different synthetic methodologies of silicon dihalide bridged biradicals of the general formula (L(n)•)2SiX2 (n = 1, 2) have been developed. First, the metathesis reaction between NHC:SiX2 and L(n): (L(n): = cyclic akyl(amino) carbene in a 1:3 molar ratio leads to the products 2 (n = 1, X = Cl), 4 (n = 2, X = Cl), 6 (n = 1, X = Br), and 7 (n = 2, X = Br). These reactions also produce coupled NHCs (3, 5) under C-C bond formation. The formation of the coupled NHCs (L(m) = cyclic alkyl(amino) carbene substituted N-heterocyclic carbene; m = 3, n = 1 (3) and m = 4, n =2 (5)) is faster during the metathesis reaction between NHC:SiBr2 and L(n): when compared with that of NHC:SiCl2. Second, the reaction of L(1):SiCl4 (8) (L(1): =:C(CH2)(CMe2)2N-2,6-iPr2C6H3) with a non-nucleophilic base LiN(iPr)2 in a 1:1 molar ratio shows an unprecedented methodology for the synthesis of the biradical (L(1)•)2SiCl2 (2). The blue blocks of silicon dichloride bridged biradicals (2, 4) are stable for more than six months under an inert atmosphere and in air for one week. Compounds 2 and 4 melt in the temperature range of 185 to 195 °C. The dibromide (6, 7) analogue is more prone to decomposition in the solution but comparatively more stable in the solid state than in the solution. Decomposition of the products has been observed in the UV-vis spectra. Moreover, compounds 2 and 4 were further converted to stable singlet biradicaloid dicarbene-coordinated (L(n):)2Si(0) (n = 1 (9), 2 (10)) under KC8 reduction. Compounds 2 and 4 were also reduced to dehalogenated products 9 and 10, respectively when treated with RLi (R = Ph, Me, tBu). Cyclic voltametry measurements show that 10 can irreversibly undergo both one electron oxidation and reduction.
Carbon Isotope Fractionation Effects During Degradation of Methyl Halides in Agricultural Soils
NASA Astrophysics Data System (ADS)
Miller, L. G.; Baesman, S. M.; Oremland, R. S.; Bill, M.; Goldstein, A. H.
2001-12-01
Fumigation of agricultural soils prior to planting row crops constitutes the largest anthropogenic source of methyl bromide (MeBr) to the atmosphere. Typically, more than 60% of the MeBr added is lost to the atmosphere during the 5-6 day fumigation period. The remainder is oxidized by bacteria or otherwise degraded in the soil. In experiments using washed cells of methylotrophic bacteria isolated from agricultural soil (strain IMB-1), oxidation of MeBr, methyl chloride (MeCl) and methyl iodide to CO2 resulted in large (up to 70‰ ) fractionation of stable carbon isotopes (Miller, et al. 2001). By contrast, fractionation measured in field soils using both in situ techniques and bottle incubations with MeBr was less than 35‰ . This discrepancy was initially attributed to the large transportation losses that occur without isotopic fractionation during field fumigation. However, this rationale cannot explain why bottle incubations with soil resulted in lower fractionation factors than incubations with bacterial cultures. We conducted additional laboratory bottle experiments to examine the biological and chemical controls of carbon isotope fractionation during degradation of MeBr and MeCl by soils and bacteria. Soils were collected from a strawberry field in Santa Cruz County, California within two weeks of the start of each experiment. The rate of removal of methyl halides from the headspace was greatest during incubations at soil moisture contents around 8%. Increasing the amount of soil and hence native bacteria in each bottle minimized the lag in uptake by up to several days. No lag was observed during incubations of soils with added IMB-1. Stable isotope fractionation factors were similar for degradation by live soil and live soil with added IMB-1. Heat-killed controls of cell cultures showed little uptake (<10% over 5 days) and no isotope fractionation. Heat-killed soil controls, by contrast, demonstrated significant loss of MeBr (20-30%) with isotope fractionation factors comparable to live soil. Loss of MeCl during the same time was lower (<10%) however isotope fractionation was comparable to live soil. Our results indicate that bacterial oxidation in soil rapidly consumes methyl halides but only partly controls the fractionation of carbon isotopes. Two chemical processes also act to remove MeBr in soil, hydrolysis and nucleophilic exchange with Cl-, both of which result in fractionation of carbon isotopes. Hydrolysis does not remove MeCl. It seems likely that fractionation in soil could result from a combination of biological and chemical processes, but since they all have sizeable fractionation factors associated with the removal of methyl halides, the relative rate of each process may not be as important as the total amount of methyl halide degraded. Attempts to constrain our understanding of atmospheric methyl halide budgets using stable isotope signatures of sources and sinks will have to rely on this type of information regarding the net isotopic impact of methyl halide uptake by soils. Miller, L.G., Kalin, R.M., McCauley, S.E., Hamilton, J.T.G., Harper, D.B., Millet, D.B., Oremland, R.S., and Goldstein, A.H. (2001) Large carbon isotope fractionation associated with oxidation of methyl halides by methylotrophic bacteria, PNAS, vol. 98, 5833-5837.
CsPbBr{sub 3} nanocrystal saturable absorber for mode-locking ytterbium fiber laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yan; Li, Yue; Xu, Jianqiu
Cesium lead halide perovskite nanocrystals (CsPbX{sub 3}, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr{sub 3} nanocrystal films and characterize their physical properties. Broadband linear absorption from ∼0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr{sub 3} saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr{sub 3} liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm{sup 2}, respectively. With this SA, mode-locking operationmore » of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ∼216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ∼1076 nm. This work shows that CsPbBr{sub 3} films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.« less
Nawara-Hultzsch, Agnieszka J; Stollenz, Michael; Barbasiewicz, Michał; Szafert, Sławomir; Lis, Tadeusz; Hampel, Frank; Bhuvanesh, Nattamai; Gladysz, John A
2014-04-14
Threefold intramolecular ring-closing metatheses of trans-[MCl2(P{(CH2)(m)CH=CH2}3)2] are effected with Grubbs' catalyst. Following hydrogenation catalyzed by [RhCl(PPh3)3], the title complexes trans-[MCl2(P((CH2)n)3P)] (n=2m+2; M/n=Pt/14, 4 c; Pt/16, 4 d; Pt/18, 4 e; Pd/14, 5 c; Pd/18, 5 e) and sometimes isomers partly derived from intraligand metathesis, trans-[MCl2{P(CH2)n(CH2)n}P(CH2)n)] (4'c-e, 5'e), are isolated. These react with LiBr, NaI, and KCN to give the corresponding MBr2, MI2, and M(CN)2 species (58-99%). (13)C NMR data show that the MX2 moieties rapidly rotate within the diphosphine cage on the NMR timescale, even at -120 °C. The reaction of 4 c and KSCN gives separable Pt(NCS)2 and Pt(NCS)(SCN) adducts (13 c, 28%; 14 c, 20%), and those of 4 c,e and Ph2Zn give PtPh2 species (15 c, 61%; 15 e, 90%). (13)C NMR spectra of 13 c-15 c show two sets of CH2 signals (ca. 2:1 intensity ratios), indicating that MX2 rotation is no longer rapid. Reactions of 4 c or 4'c and excess NaC≡CH afford the free diphosphines P{(CH2)14}3P (91%) and (CH2)14P(CH2)14P(CH2)14 (90%). The latter has been crystallographically characterized as a bis(BH3) adduct. The crystal structures of eight complexes with P(CH2)14P linkages (PtCl2, PtBr2, PtI2, Pt(NCS)2, PtPh2, PdCl2, PdBr2, PdI2) and 15 e have been determined, and intramolecular distances analyzed with respect to MX2 rotation. The conformations of the (CH2)14 moieties and features of the crystal lattices are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lipping, Lauri; Leito, Ivo; Koppel, Ivar; Koppel, Ilmar A.
2009-10-01
The structures and gas-phase acidities (GA) of several CB11H12H-based carborane acid derivatives (HA) have been calculated with DFT B3LYP method using 6-311+G**, 6-311++G** basis sets. In order to verify the obtained GA values, several systems were also studied at G3(MP2) level of theory. Inserted substituents (CF3, F, Cl, Br, I, CN, CH3, etc.) followed the "belts" of the monocarborane cage starting from the boron antipodal to the carbon. In general, the predicted intrinsic gas-phase acidities of the systems varied according to the substituents in the following order of decreasing strength: CF3 > F > Cl > Br > I > CN > CH3. Nevertheless, some inconsistencies occurred. F and CN derivatives with lower degree of substitution had weaker intrinsic acidities than the respective Cl derivatives, but the situation was reversed in the case of a larger number of substituents. To obtain better understanding how the substituents influence the basicity of the carborane anion, three hypothetical reaction series were investigated, in which the protonation center was fixed on the boron atom (B12), antipodal to the carbon (C1), and a single substituent replaced the hydrogens at the vertexes of the three remaining positions (C1, B2, and B7). The intrinsic gas-phase acidities in these series of neutral carborane-based acids CB11X1H11H are found to clearly depend on the field-inductive and resonance effects of the substituent X. Some influence of the polarizability of X on the reaction center (B12) could be detected only in the alpha position (B7).
Atmospheric Lifetime of CHF2Br, a Proposed Substitute for Halons.
Talukdar, R; Mellouki, A; Gierczak, T; Burkholder, J B; McKeen, S A; Ravishankara, A R
1991-05-03
The rate coefficients, k(1), for the reaction of OH with CHF(2)Br have been measured using pulsed photolysis and discharge flow techniques at temperatures (T) between 233 and 432 K to be k(1), = (7.4 +/- 1.6) x 10(-13) exp[-(1300 +/- 100)/T] cubic centimeters per molecule per second. The ultraviolet absorption cross sections, sigma, of this molecule between 190 and 280 nanometers were measured at 296 K. The k(1), and sigma values were used in a one-dimensional model to obtain an atmospheric lifetime of approximately 7 years for CHF(2)Br. This lifetime is shorter by approximately factors of 10 and 2 than those for CF(3)Br and CF(2)ClBr, respectively. The ozone depletion potentials of the three compounds will reflect these lifetimes.
Perinatal exposure to estrogenic compounds and the subsequent effects on the prostate of the adult rat: evaluation of inflammation in the ventral and lateral lobes.
Stoker TE, Robinette CL, Cooper RL.
Endocrinology Branch, Reproductive Toxicology Division, National ...
Electromagnetic radiation absorbers and modulators comprising polyaniline
Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid
1992-01-01
A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.
NASA Astrophysics Data System (ADS)
Smith, Holland M.; Zhou, Yuzhi; Ciampi, Guido; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.; Haller, E. E.; Chrzan, D. C.
2013-08-01
We apply state-of-art first principle calculations to study the polymorphism and electronic structure of three previously reported phases of TlBr. The calculated band structures of NaCl-structure phase and orthorhombic-structure phase have different features than that of commonly observed CsCl-structure phase. We further interpret photoluminescence spectra based on our calculations. Several peaks close to calculated band gap values of the NaCl-structure phase and the orthorhombic-structure phase are found in unpolished TlBr samples.
Karroum, Morad; Elgettafi, Mohammed; Elmandour, Abdenabi; Wilske, Cornelia; Himi, Mahjoub; Casas, Albert
2017-12-31
Bahira plain is an important area for Morocco due to its agriculture and mining activities. Situated in a sub-arid to arid climate, this plain hosts an aquifer system that represents sequences of carbonates, phosphates, evaporates and alluvial deposits. Groundwater flows from Ganntour plateau (recharge area) to the basin-fill deposits and Zima Lake and Sed Elmejnoun where water evaporates. The objective of this study was to characterize the chemical properties of the groundwater and to assess the processes controlling the groundwater's chemistry. We can divide water samples into three hydrochemical water groups: recharge waters (Ca/Mg-HCO 3 ), transition zone waters (Ca-HCO 3 -SO 4 /Cl) and discharge waters (Na-Cl/SO 4 ). Accordingly, compositions of waters are determined by the availability of easily soluble minerals like calcite (Ca-HCO 3 dominant), halite (Na-Cl dominant) and gypsum (Ca-SO 4 dominant). Cl/Br ratios show that Cl concentration increases from dissolution of natural halite. When groundwater is affected by extreme evaporation Cl/Br ratios may increase up to 1900. High fluoride concentrations are associated with low Ca 2+ concentrations (<100mg/L). That means when recharge waters enter the aquifer, it starts dissolving fluorite since the Ca 2+ concentration is low. Once groundwater becomes saturated with Ca 2+ , the immobilization of fluoride is occurring by precipitation of fluoride-rich minerals like fluoro-apatite. According to the environmental isotope ( 18 O and 2 H) analyses, they are three potential processes affecting groundwater: 1. Evaporation as verified by low slope value, 2. Water-rock interaction, 3. admixture of waters showed different stable isotope compositions and salinities. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuzubov, A. A.; Kovaleva, E. A.; Popova, M. I.; Kholtobina, A. S.; Mikhaleva, N. S.; Visotin, M. A.; Fedorov, A. S.
2017-10-01
Using DFT GGA calculations, electronic structure and magnetic properties of wide family of transition metal trihalides (TMHal3) (Zr, Ti and Nb iodides, Mo, Ru, Ti and Zr bromides and Ti or Zr chlorides) are investigated. These structures consist of transition metal atoms chains surrounded by halides atoms. Chains are connected to each other by weak interactions. All TMHal3 compounds were found to be conductive along chain axis except of MoBr3 which is indirect gap semiconductor. It was shown that NbI3 and MoBr3 have large magnetic moments on metal atoms (1.17 and 1.81 μB, respectively) but other TMHal3 materials have small or zero magnetic moments. For all structures ferromagnetic and anti-ferromagnetic phases have almost the same energies. The causes of these properties are debated.
Busenberg, Eurybiades; Plummer, Niel
2010-01-01
A rapid headspace method for the simultaneous laboratory determination of intentionally introduced hydrologic tracers, sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), Halon 1211 (CF2ClBr), and other halocarbons in water and gases is described. The high sensitivity of the procedure allows for introduction of minimal tracer mass (a few grams) into hydrologic systems with a large dynamic range of analytical detection (dilutions to 1:108). Analysis times by gas chromatography with electron capture detector are less than 1 min for SF6; about 2 min for SF6 and SF5CF3; and 4 min for SF6, SF5CF3, and Halon 1211. Many samples can be rapidly collected, preserved in stoppered septum bottles, and analyzed at a later time in the laboratory. Examples are provided showing the effectiveness of the gas tracer test studies in varied hydrogeological settings.
NASA Astrophysics Data System (ADS)
Busenberg, Eurybiades; Plummer, L. Niel
2010-11-01
A rapid headspace method for the simultaneous laboratory determination of intentionally introduced hydrologic tracers, sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), Halon 1211 (CF2ClBr), and other halocarbons in water and gases is described. The high sensitivity of the procedure allows for introduction of minimal tracer mass (a few grams) into hydrologic systems with a large dynamic range of analytical detection (dilutions to 1:108). Analysis times by gas chromatography with electron capture detector are less than 1 min for SF6; about 2 min for SF6 and SF5CF3; and 4 min for SF6, SF5CF3, and Halon 1211. Many samples can be rapidly collected, preserved in stoppered septum bottles, and analyzed at a later time in the laboratory. Examples are provided showing the effectiveness of the gas tracer test studies in varied hydrogeological settings.
The chlorine abundance of Earth: Implications for a habitable planet
NASA Astrophysics Data System (ADS)
Sharp, Z. D.; Draper, D. S.
2013-05-01
The Cl, Br and I contents of Earth are depleted by a factor of 10 relative to predicted values from chondritic and solar abundances. Possible explanations for the apparent discrepancy include (1) unrecognized sequestration of Cl in the core, (2) a much higher nebular volatility than normally presumed or (3) a preferential loss of the heavy halogens during planetary accretion. We tested the first assumption by conducting high pressure-temperature equilibration experiments between silicate and metal. At 15 GPa and 1900 °C, the DCl(metal-silicate) value for Cl is less than 0.007, indicating that the core is not a significant reservoir for Cl. The concentration of Cl in all chondritic classes follows a depletion trend very similar to that of Na and Mn, arguing against a low condensation temperature for Cl. Instead, we propose that the depletion of the heavy halogens is due to their unique hydrophilic behavior. Almost half of Earth's Cl and Br inventory resides in the ocean and evaporites, demonstrating the unique affinity for aqueous solutions for these elements. During planetary accretion, there would have been a strong sequestration of halogens into the crustal reservoir. 'Collisional erosion' during planetary accretion provides a mechanism that would uniquely strip the heavy halogens out of an accreting Earth. Had such loss not occurred, the salinity of the oceans would be 10× the present value, and complex life would probably never have evolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter-Fella, Carolin M.; Li, Yanbo; Cefarin, Nicola
Organo-lead halide perovskites have recently attracted great interest for potential applications in thin-film photovoltaics and optoelectronics. Herein, we present a protocol for the fabrication of this material via the low-pressure vapor assisted solution process (LP-VASP) method, which yields ~19% power conversion efficiency in planar heterojunction perovskite solar cells. First, we report the synthesis of methylammonium iodide (CH 3NH 3I) and methylammonium bromide (CH 3NH 3Br) from methylamine and the corresponding halide acid (HI or HBr). Then, we describe the fabrication of pinhole-free, continuous methylammonium-lead halide perovskite (CH 3NH 3PbX 3 with X = I, Br, Cl and their mixture) filmsmore » with the LP-VASP. This process is based on two steps: i) spin-coating of a homogenous layer of lead halide precursor onto a substrate, and ii) conversion of this layer to CH 3NH 3PbI 3-xBr x by exposing the substrate to vapors of a mixture of CH 3NH 3I and CH 3NH 3Br at reduced pressure and 120 °C. Through slow diffusion of the methylammonium halide vapor into the lead halide precursor, we achieve slow and controlled growth of a continuous, pinhole-free perovskite film. The LP-VASP allows synthetic access to the full halide composition space in CH 3NH 3PbI 3-xBr x with 0 ≤ x ≤ 3. Depending on the composition of the vapor phase, the bandgap can be tuned between 1.6 eV ≤ E g ≤ 2.3 eV. In addition, by varying the composition of the halide precursor and of the vapor phase, we can also obtain CH 3NH 3PbI 3-xCl x. Films obtained from the LP-VASP are reproducible, phase pure as confirmed by X-ray diffraction measurements, and show high photoluminescence quantum yield. The process does not require the use of a glovebox.« less
Sutter-Fella, Carolin M.; Li, Yanbo; Cefarin, Nicola; ...
2017-09-08
Organo-lead halide perovskites have recently attracted great interest for potential applications in thin-film photovoltaics and optoelectronics. Herein, we present a protocol for the fabrication of this material via the low-pressure vapor assisted solution process (LP-VASP) method, which yields ~19% power conversion efficiency in planar heterojunction perovskite solar cells. First, we report the synthesis of methylammonium iodide (CH 3NH 3I) and methylammonium bromide (CH 3NH 3Br) from methylamine and the corresponding halide acid (HI or HBr). Then, we describe the fabrication of pinhole-free, continuous methylammonium-lead halide perovskite (CH 3NH 3PbX 3 with X = I, Br, Cl and their mixture) filmsmore » with the LP-VASP. This process is based on two steps: i) spin-coating of a homogenous layer of lead halide precursor onto a substrate, and ii) conversion of this layer to CH 3NH 3PbI 3-xBr x by exposing the substrate to vapors of a mixture of CH 3NH 3I and CH 3NH 3Br at reduced pressure and 120 °C. Through slow diffusion of the methylammonium halide vapor into the lead halide precursor, we achieve slow and controlled growth of a continuous, pinhole-free perovskite film. The LP-VASP allows synthetic access to the full halide composition space in CH 3NH 3PbI 3-xBr x with 0 ≤ x ≤ 3. Depending on the composition of the vapor phase, the bandgap can be tuned between 1.6 eV ≤ E g ≤ 2.3 eV. In addition, by varying the composition of the halide precursor and of the vapor phase, we can also obtain CH 3NH 3PbI 3-xCl x. Films obtained from the LP-VASP are reproducible, phase pure as confirmed by X-ray diffraction measurements, and show high photoluminescence quantum yield. The process does not require the use of a glovebox.« less
Diethyl [(4-bromophenyl)(5-chloro-2-hydroxyanilino)methyl]phosphonate
Babu, V. H. H. Surendra; Krishnaiah, M.; Prasad, G. Syam; C. Suresh Reddy; Kant, Rajni
2009-01-01
In the title compound, C17H20BrClNO4P, intermolecular C—H⋯O and N—H⋯O hydrogen bonds form centrosymmetric R 2 2(10) dimers linked through O—H⋯O intermolecular hydrogen bonds, which form centrosymmetric R 2 2(16) dimers. All these hydrogen bonds form chains along [010]. In addition, the crystal structure is stabilized by weak C—H⋯Br hydrogen bonds. The very weak intramolecular N—H⋯O interaction forms a five-membered ring. PMID:21578446
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael E. McIlwain; Nick Thompson; Da Gao
Considerable interest is given to the excellent scintillation properties of cerium doped lanthanum chloride (LaCl3) and lanthanum bromide (LaBr3). The scintillation efficiencies are much greater than other materials, even those containing cerium. This high efficiency is attributed to the high mobility of electrons and holes, unique placement of the cerium 5d states within the band gap, and energy of the band gap. To better understand the scintillation process and better define the nature of the Self Trapped Exciton (STE) within these unique scintillation materials, density functional theory (DFT), and Ab-inito (HF-MP2) calculations are reported. DFT calculations have yielded a qualitativemore » description of the orbital composition and energy distribution of the band structure in the crystalline material. MP2 and single configuration interaction calculations have provided quantitative values for the band gap and provided energies for the possible range of excited states created following hole and electron creation. Based on this theoretical treatment, one possible description of the STE is the combination of Vk center (Br2-1) and LaBr+1 species that recombine to form a distorted geometry LaBr3* (triplet state). Depending on the distance between the LaBr and Br2, the STE emission band can be reproduced.« less
Sagar, Belakavadi K; Yathirajan, Hemmige S; Rathore, Ravindranath S; Glidewell, Christopher
2018-02-01
Six closely related N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]arylamides have been synthesized and structurally characterized, together with a representative reaction intermediate. In each of N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]benzamide, C 20 H 16 ClNO 2 S, (I), N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-4-phenylbenzamide, C 26 H 20 ClNO 2 S, (II), and 2-bromo-N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]benzamide, C 20 H 15 BrClNO 2 S, (III), the molecules are disordered over two sets of atomic sites, with occupancies of 0.894 (8) and 0.106 (8) in (I), 0.832 (5) and 0.168 (5) in (II), and 0.7006 (12) and 0.2994 (12) in (III). In each of N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-2-iodobenzamide, C 20 H 15 ClINO 2 S, (IV), and N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-2-methoxybenzamide, C 21 H 18 ClNO 3 S, (V), the molecules are fully ordered, but in N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-2,6-difluorobenzamide, C 20 H 14 ClF 2 NO 2 S, (VI), which crystallizes with Z' = 2 in the space group C2/c, one of the two independent molecules is fully ordered, while the other is disordered over two sets of atomic sites having occupancies of 0.916 (3) and 0.084 (3). All of the molecules in compounds (I)-(VI) exhibit an intramolecular N-H...O hydrogen bond. The molecules of (I) and (VI) are linked by C-H...O hydrogen bonds to form finite zero-dimensional dimers, which are cyclic in (I) and acyclic in (VI), those of (III) are linked by C-H...π(arene) hydrogen bonds to form simple chains, and those of (IV) and (V) are linked into different types of chains of rings, built in each case from a combination of C-H...O and C-H...π(arene) hydrogen bonds. Two C-H...O hydrogen bonds link the molecules of (II) into sheets containing three types of ring. In benzotriazol-1-yl 3,4-dimethoxybenzoate, C 15 H 13 N 3 O 4 , (VII), the benzoate component is planar and makes a dihedral angle of 84.51 (6)° with the benzotriazole unit. Comparisons are made with related compounds.
Electrical properties and Raman studies of phase transitions in ferroelectric [N(CH3)4]2CoCl2Br2
NASA Astrophysics Data System (ADS)
Ben Mohamed, C.; Karoui, K.; Bulou, A.; Ben Rhaiem, A.
2018-03-01
The present paper accounted for the synthesis, electric properties and vibrational spectroscopy of [N(CH3)4]2CoCl2Br2. The dielectric spectra were measured in the frequency range 10-1-105 Hz and temperature interval from 223 to 393 K. The dielectical properties confirm the ferroelectric-paraelectric phase transition at 290 K, which is reported by Abdallah Ben Rhaiem et al. (2013). The equivalent circuit based on the Z-View-software was proposed and the conduction mechanisms were determined. The obtained results have been discussed in terms of the correlated barrier hopping model (CBH) in phase I and non-overlapping small polaron tunneling model (NSPT) in phases II and III. Raman spectra as function temperature have been used to characterize the phase transitions and their nature, which indicates a change of the some peak near the transitions phase.
NASA Astrophysics Data System (ADS)
Abdolmaleki, Ahmad; Dadsetani, Mehrdad; Zabardasti, Abedin
2018-05-01
The variations in nonlinear optical activity (NLO) of anthracene (C14H10) was investigated via intermolecular interactions between C14H10 and HX molecules (Xdbnd F, Cl and Br) using B3LYP-D3 method at 6-311++G(d,p) basis set. The stabilization of those complexes was investigated via vibrational analysis, quantum theory of atoms in molecules, molecular electrostatic potential, natural bond orbitals and symmetry-adapted perturbation theory (SAPT) analysis. Furthermore, the optical spectra and the first hyperpolarizabilities of C14H10⋯HX complexes were computed. The adsorption of hydrogen halide through C14H10⋯HX complex formation, didn't change much the linear optical activities of C14H10 molecule, but the magnitude of the first hyperpolarizability of the C14H10⋯HX complexes to be as much as that of urea.
Joachim, Bastian; Stechern, André; Ludwig, Thomas; Konzett, Jürgen; Pawley, Alison; Ruzié-Hamilton, Lorraine; Clay, Patricia L; Burgess, Ray; Ballentine, Christopher J
2017-01-01
Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth's mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280 °C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F-Cl-Br-I-H 2 O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H 2 O (D Cl ol/melt = 1.6 ± 0.9 × 10 -4 ) to 0.33 (6) wt% H 2 O (D Cl ol/melt = 2.2 ± 1.1 × 10 -4 ). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65-78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F-Cl-Br-I-H 2 O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280 °C and 0.3 GPa with ( R 2 = 0.99): [Formula: see text]. The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287-295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65-78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth's mantle minerals and silicate melt is vital for a correct estimation of fluorine abundances in OIB source regions. Estimates for MORB source fluorine concentrations as well as chlorine abundances in both mantle source regions are within uncertainty not affected by the presence of water.
Giant Rugby Ball [{CpBnFe(η5-P5)}24Cu96Br96] Derived from Pentaphosphaferrocene and CuBr2
2015-01-01
The self-assembly of [CpBnFe(η5-P5)] (CpBn = η5-C5(CH2Ph)5) with CuBr2 leads to the formation of an unprecedented rugby ball-shaped supramolecule consisting of 24 units of the pentaphosphaferrocene and an extended CuBr framework, which does not follow the fullerene topology. The resulting scaffold of 312 noncarbon atoms reveals three different coordination modes of the cyclo-P5 ligand including a novel π-coordination. The outer dimensions of 3.7 × 4.6 nm of the sphere approach the range of the size of proteins. With a value of 32.1 nm3, it is 62 times larger in volume than a C60 molecule. Surprisingly, this giant rugby ball is also slightly soluble in CH2Cl2. PMID:26280785
Hu, Yimin; Han, Jie; Ge, Lingling; Guo, Rong
2018-01-31
In this paper, viscoelastic wormlike micelles consisting of cationic liquid-type surfactant, 1-hexadecyl-3-octyl imidazolium bromide ([C 16 imC 8 ]Br), water and different additives were utilized for the synthesis of CdS quantum dots. First, the influence of different additives, such as [Cd(NH 3 ) 6 ]Cl 2 and ethanethioamid (precursors for the synthesis of CdS quantum dots), and temperature on the viscoelasticity of the [C 16 imC 8 ]Br aqueous solution was studied by dynamic and steady rheology. Furthermore, the synthesized CdS quantum dots and their photoluminescence properties were characterized by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX). In the end, the mechanism for the synthesis of CdS quantum dots in [C 16 imC 8 ]Br wormlike micelles is proposed.
Graphene-like monolayer InSe–X: several promising half-metallic nanosheets in spintronics
NASA Astrophysics Data System (ADS)
Liu, Jun; Kang, Wei; Zhou, Ting-Yan; Ma, Chong-Geng
2018-04-01
Several half-metallic graphene-like nanosheets, namely halogen atom adsorbed InSe–X (X = F, Cl, Br and I) nanosheets, are predicted by first-principles calculations. Then, their structural, electric and magnetic properties are studied in detail. The calculated negative adsorption energies of these InSe–X nanosheets ensure that they attain stable adsorption structures, which suggests that they may be prepared experimentally. The pristine InSe monolayer is a typical semi-conductor, whereas it is interesting that the X ion (X = F, Cl, Br and I) adsorbed InSe–X nanosheets are electronically conductive. They can be promising and good candidates for applications of half-metallic 2D materials. The calculated magnetic moments of these nanosheets are close to 1.0 µ B. In the InSe–F nanosheet, there are sp2 hybridized orbitals due to the crystal field effect, and its electroconductibility, half-metallicity and magnetic moments originate from the In and Se ions, not the F ion. However, in InSe–X (X = Cl, Br and I) nanosheets, there are sp3 hybridized orbitals, and their electroconductibility, half-metallicity and magnetic moments originate mainly from X ions, together partially with the In and Se ions.
On chemical inhibition of shock wave ignition of hydrogen-oxygen mixtures
NASA Astrophysics Data System (ADS)
Drakon, A. V.; Eremin, A. V.; Mikheyeva, E. Yu
2018-01-01
In this work an influence of the wide range of various inhibitors, namely CCl4, CF3H, C2F4Br2, (CH3O)3P, CF3I and C3F7I on shock-induced ignition of hydrogen was experimentally investigated. Observed temperature dependencies of induction times indicates that CF3H and (CH3O)3P do not show noticeable inhibiting activity at given conditions, while the effectiveness of halogen-containing specie dramatically increases in a row Cl → Br → I. It is shown that the most effective inhibitors of ignition of hydrogen-oxygen mixtures are iodinated hydrocarbons CF3I and C3F7I.
Lead-Free MA2CuCl(x)Br(4-x) Hybrid Perovskites.
Cortecchia, Daniele; Dewi, Herlina Arianita; Yin, Jun; Bruno, Annalisa; Chen, Shi; Baikie, Tom; Boix, Pablo P; Grätzel, Michael; Mhaisalkar, Subodh; Soci, Cesare; Mathews, Nripan
2016-02-01
Despite their extremely good performance in solar cells with efficiencies approaching 20% and the emerging application for light-emitting devices, organic-inorganic lead halide perovskites suffer from high content of toxic, polluting, and bioaccumulative Pb, which may eventually hamper their commercialization. Here, we present the synthesis of two-dimensional (2D) Cu-based hybrid perovskites and study their optoelectronic properties to investigate their potential application in solar cells and light-emitting devices, providing a new environmental-friendly alternative to Pb. The series (CH3NH3)2CuCl(x)Br(4-x) was studied in detail, with the role of Cl found to be essential for stabilization. By exploiting the additional Cu d-d transitions and appropriately tuning the Br/Cl ratio, which affects ligand-to-metal charge transfer transitions, the optical absorption in this series of compounds can be extended to the near-infrared for optimal spectral overlap with the solar irradiance. In situ formation of Cu(+) ions was found to be responsible for the green photoluminescence of this material set. Processing conditions for integrating Cu-based perovskites into photovoltaic device architectures, as well as the factors currently limiting photovoltaic performance, are discussed: among them, we identified the combination of low absorption coefficient and heavy mass of the holes as main limitations for the solar cell efficiency. To the best of our knowledge, this is the first demonstration of the potential of 2D copper perovskite as light harvesters and lays the foundation for further development of perovskite based on transition metals as alternative lead-free materials. Appropriate molecular design will be necessary to improve the material's properties and solar cell performance filling the gap with the state-of-the-art Pb-based perovskite devices.
Stratospheric ozone - Impact of human activity
NASA Technical Reports Server (NTRS)
Mcelroy, Michael B.; Salawitch, Ross J.
1989-01-01
The current knowledge of the chemistry of the stratosphere is reviewed, with particular consideration given to the measurements from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment and from the Airborne Antarctic Ozone Experiment. Analysis of the ATMOS data at 30 deg N suggests that the current understanding of the contemporary-stratosphere chemistry at mid-latitudes is relatively complete, except for possible problems with the diurnal variations of N2O5 at low altitudes, and with ClNO3 at higher altitudes. Except for some difficulties with these two compounds, the data from ATMOS agree well with the gas phase models for nitrogen and chlorine species at 30 deg N in spring. It is emphasized that, in addition to the HOCl mechanism proposed by Solomon et al. (1986), the ClO-BrO scheme proposed by McElroy et al. (1986), and the ClO dimer mechanism introduced by Molina and Molina (1987), other processes exist that are responsible for ozone removal.
Fan, Dawei; Hao, Jingcheng
2009-05-28
Hybrid films composed of chitosan and Keplerate-type polyoxometalate, {Mo72Fe30} (Mo72VIFe30IIIO252L102.ca.180H2O, L=H2O/CH3COO-/Mo2O8/9n-), were fabricated on quartz, silicon, and ITO substrates by layer-by-layer (LbL) method. The LbL films were characterized by UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and cyclic voltammetry (CV). UV-vis spectra show that the absorbance values at characteristic wavelengths of the multilayer films increase almost linearly with the number of chitosan/{Mo72Fe30} bilayers. XPS spectra confirm the incorporation of chitosan and {Mo72Fe30} into the films. The electrocatalytic reduction of ClO3-, BrO3-, and IO3- by chitosan/{Mo72Fe30} hybrid films in an acidic aqueous solution shows an electrocatalytic reduction activity of IO3->BrO3->ClO3-. In particular, the modified electrodes exhibited high electrocatalytic activity for reduction of IO3-.
Zhang, Honghai; Xing, Chun-Hui; Hu, Qiao-Sheng; ...
2015-02-05
The synthesis of well-defined and functionalized conjugated polymers, which are essential in the development of efficient organic electronics, through Suzuki cross-coupling polymerizations has been a challenging task. We developed controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerizations of AB-type monomers via the chain-growth mechanism with a series of in situ generated ArPd(t-Bu3P)X (X = I, Br, Cl) complexes as initiators. Among them, the combinations of Pd2(dba)3/t-Bu3P/p-BrC6H4I, Pd2(dba)3/t-Bu3P/p-BrC6H4CH2OH and Pd2(dba)3/t-Bu3P/p-PhCOC6H4Br were identified as highly robust initiator systems, resulting in polymers with predictable molecular weight and narrow polydispersity (PDI~1.13-1.20). In addition, Pd2(dba)3/t-Bu3P/p-BrC6H4CH2OH and Pd2(dba)3/t-Bu3P/p-PhCOC6H4Br initiator systems afforded functional polymers with >95% fidelity. Our results pavedmore » the road to access well-defined conjugated polymers, including conjugated polymers with complex polymer architectures such as block copolymers and branch copolymers.« less
Dhole, Bodhana; Gupta, Surabhi; Venugopal, Senthil Kumar; Kumar, Anand
2018-06-01
Leydig cells are the principal steroidogenic cells of the testis. Leydig cells also secrete a number of growth factors including vascular endothelial growth factor (VEGF) which has been shown to regulate both testicular steroidogenesis and spermatogenesis. The thyroid hormone, T 3, is known to stimulate steroidogenesis in Leydig cells. T 3 has also been shown to stimulate VEGF production in a variety of cell lines. However, studies regarding the effect of T 3 on VEGF synthesis and secretion by the Leydig cells were lacking. Therefore, we investigated the effect of T 3 on VEGF synthesis and secretion in a mouse Leydig tumour cell line, MLTC-1. The effect of T 3 was compared with that of LH/cAMP and hypoxia, two known stimulators of Leydig cell functions. The cells were treated with T 3 , 8-Br-cAMP (a cAMP analogue), or CoCl 2 (a hypoxia mimetic) and VEGF secreted in the cell supernatant was measured using ELISA. The mRNA levels of VEGF were measured by quantitative RT-PCR. In the MLTC-1 cells, T 3 , 8-Br-cAMP, and CoCl 2 stimulated VEGF mRNA levels and the protein secretion. T 3 also increased steroid secretion as well as HIF-1α protein levels, two well-established upstream regulators of VEGF. Inhibitors of steroidogenesis as well as HIF-1α resulted in inhibition of T 3 -stimulated VEGF secretion by the MLTC-1 cells. This suggested a mediatory role of steroids and HIF-1α protein in T 3 -stimulated VEGF secretion by MLTC-1 cells. The mediation by steroids and HIF-1α were independent of each other. 8-Br-cAMP: 8-bromo - 3', 5' cyclic adenosine monophosphate; CoCl 2 : cobalt chloride; HIF-1α: hypoxia inducible factor -1α; LH: luteinizing hormone; T 3 : 3, 5, 3'-L-triiodothyronine; VEGF: vascular endothelial growth factor.
Qin, Jian-Hua; Wang, Hua-Rui; Pan, Qi; Zang, Shuang-Quan; Hou, Hongwei; Fan, Yaoting
2015-10-28
Seven Mn(ii) coordination polymers, namely {[Mn2(ptptp)Cl2(H2O)3]·H2O}n (1), {[Mn(μ-ptptp)3]2[Mn3(μ3-Cl)]2}·2Cl·16H2O (2), {[Mn2(ptptp)(ip)2(H2O)3]·H2O}n (3), {[Mn2(ptptp)(5-CH3-ip)2(H2O)3]·H2O}n (4), {[Mn4(ptptp)(5-Br-ip)3(H2O)3]·4H2O}n (5), {[Mn2(ptptp)(Hbtc)(H2O)2]·2H2O}n (6) and {[Mn2(ptptp)(tdc)(H2O)2]·1.5H2O}n (7), have been prepared based on multidentate N-heterocyclic aromatic ligands and bridging carboxylate ligands (H2ptptp = 2-(5-{6-[5-(pyrazin-2-yl)-1H-1,2,4-triazol-3-yl]pyridin-2-yl}-1H-1,2,4-triazol-3-yl)pyrazine; R-isophthalic acids, H2ip-R: R = -H (3), -CH3 (4), -Br (5); H3btc = trimesic acid (6); H2tdc = thiophene-2,5-dicarboxylic acid (7)), in order to further probe the multiple roles of [RMI]Br ionic liquids in the hydro/solvothermal synthesis (RMI = 1-alkyl-3-methylimidazolium, R = ethyl, or propyl, or butyl). The successful syntheses of complexes 2-6 suggest that in hydro/solvothermal synthesis the addition of a small amount of [RMI]Br plays a crucial role. Complex 1 exhibits single right-handed helices constructed by ptptp ligands and Mn(ii) ions. Complex 2 possesses octanuclear helicate structures in which two propeller-shaped [Mn(μ-ptptp)3](4-) units embrace two [Mn3(μ3-Cl)](5+) cluster cores inside. Complexes 3 and 4 are isostructural and display a 1D double chain formed by two kinds of pseudo meso-helices: (Mn-ptptp)n and (Mn-5-R-ip)n. Complex 5 has a 2D structure containing 1D Mn(ii) ion chains formed through carboxylates and [ptptp](2-)-N,N bridges. Complex 6 shows a 2D structure formed by a meso-helix (Mn-ptptp)n and the partly deprotonated Hbtc ligands. Complex 7 features a heterochiral [2 + 2] coaxially nested double-helical column formed by using the outer double-helices (Mn-ptptp)n as a template to encapsulate the inner double-helices (Mn-tdc)n with opposite orientation. All complexes were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single-crystal X-ray crystallography and powder X-ray diffraction. The magnetic properties of 1-7 were also investigated.
Banerjee, Arnab; Sahana, Animesh; Das, Sudipta; Lohar, Sisir; Guha, Subarna; Sarkar, Bidisha; Mukhopadhyay, Subhra Kanti; Mukherjee, Asok K; Das, Debasis
2012-05-07
2-((Naphthalen-6-yl)methylthio)ethanol (HL) was prepared by one pot synthesis using 2-mercaptoethanol and 2-bromomethylnaphthalene. It was found to be a highly selective fluorescent sensor for Al(3+) in the physiological pH (pH 7.0-8.0). It could sense Al(3+) bound to cells through fluorescence microscopy. Metal ions like Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Ag(+), Cd(2+), Hg(2+), Cr(3+) and Pb(2+) did not interfere. No interference was also observed with anions like Cl(-), Br(-), F(-), SO(4)(2-), NO(3)(-), CO(3)(2-), HPO(4)(2-) and SCN(-). Experimentally observed structural and spectroscopic features of HL and its Al(3+) complex have been substantiated by computational calculations using density functional theory (DFT) and time dependent density functional theory (TDDFT).
Du, Ke-Zhao; Tu, Qing; Zhang, Xu; Han, Qiwei; Liu, Jie; Zauscher, Stefan; Mitzi, David B
2017-08-07
A series of two-dimensional (2D) hybrid organic-inorganic perovskite (HOIP) crystals, based on acene alkylamine cations (i.e., phenylmethylammonium (PMA), 2-phenylethylammonium (PEA), 1-(2-naphthyl)methanammonium (NMA), and 2-(2-naphthyl)ethanammonium (NEA)) and lead(II) halide (i.e., PbX 4 2- , X = Cl, Br, and I) frameworks, and their corresponding thin films were fabricated and examined for structure-property relationship. Several new or redetermined crystal structures are reported, including those for (NEA) 2 PbI 4 , (NEA) 2 PbBr 4 , (NMA) 2 PbBr 4 , (PMA) 2 PbBr 4 , and (PEA) 2 PbI 4 . Non-centrosymmetric structures from among these 2D HOIPs were confirmed by piezoresponse force microscopy-especially noteworthy is the structure of (PMA) 2 PbBr 4 , which was previously reported as centrosymmetric. Examination of the impact of organic cation and inorganic layer choice on the exciton absorption/emission properties, among the set of compounds considered, reveals that perovskite layer distortion (i.e., Pb-I-Pb bond angle between adjacent PbI 6 octahedra) has a more global effect on the exciton properties than octahedral distortion (i.e., variation of I-Pb-I bond angles and discrepancy among Pb-I bond lengths within each PbI 6 octahedron). In addition to the characteristic sharp exciton emission for each perovskite, (PMA) 2 PbCl 4 , (PEA) 2 PbCl 4 , (NMA) 2 PbCl 4 , and (PMA) 2 PbBr 4 exhibit separate, broad "white" emission in the long wavelength range. Piezoelectric compounds identified from these 2D HOIPs may be considered for future piezoresponse-type energy or electronic applications.
An unusual alkylidyne homologation.
Han, Yong-Shen; Hill, Anthony F; Kong, Richard Y
2018-02-27
The reaction of [W([triple bond, length as m-dash]CH)Br(CO) 2 (dcpe)] (dcpe = 1,2-bis(dicyclohexylphosphino)ethane) with t BuLi and SiCl 4 affords the trichlorosilyl ligated neopentylidyne complex [W([triple bond, length as m-dash]C t Bu)(SiCl 3 )(CO) 2 (dcpe)]. This slowly reacts with H 2 O to afford [W([triple bond, length as m-dash]CCH 2 t Bu)Cl 3 (dcpe)] and ultimately H 2 C[double bond, length as m-dash]CH t Bu via an unprecedented alkylidyne homologation in which coordinated CO is the source of the additional carbon atom with potential relevance to the Fischer-Tropsch process.
NASA Astrophysics Data System (ADS)
Bacskay, George B.
2015-07-01
The equilibrium energies of the iodocarbenes CXI (X = Br, Cl, F) in their ?, ? and ? states and their atomisation and dissociation energies in the complete basis limit were determined by extrapolating valence correlated (R/U)CCSD(T) and Davidson corrected multi-reference configuration interaction (MRCI) energies calculated with the aug-cc-pVxZ (x = T,Q,5) basis sets and the ECP28MDF pseudopotential of iodine plus corrections for core and core-valence correlation, scalar relativity, spin-orbit coupling and zero-point energies. Spin-orbit energies were computed in a large basis of configurations chosen so as to accurately describe dissociation to the 3P and 2P states of C and of the halogens X and I, respectively. The computed singlet-triplet splittings are 13.6, 14.4 and 27.3 kcal mol-1 for X = Br, Cl and F, respectively. The enthalpies of formation at 0 K are predicted to be 97.4, 82.6 and 38.1 kcal mol-1 with estimated errors of ±1.0 kcal mol-1. The ? excitation energies (T00) in CBrI and CClI are calculated to be 41.1 and 41.7 kcal mol-1, respectively. The Renner-Teller intersections in both molecules are predicted to be substantially higher than the dissociation barriers on the ? surfaces. By contrast, in CFI the ? state is found to be unbound with respect to dissociation.
Optical sensing of hydrogen sulphate using rhodamine 6G hydrazide from aqueous medium
NASA Astrophysics Data System (ADS)
Upadhyay, Yachana; Bothra, Shilpa; Kumar, Rajender; Choi, Heung-Jin; Sahoo, Suban K.
2017-06-01
This communication reports the application of rhodamine 6G hydrazide (L) for the selective colorimetric and turn-on fluorescent sensing of hydrogen sulphate ions from aqueous medium. The ring opening of the colourless spirocyclic form of L was selectively triggered in the presence of HSO4- among the other tested anions (F-, Cl-, Br-, I-, AcO-, H2PO4-, NO3-, ClO4-, CN-, HO-, AsO33 - and SO42 -), which gives rise to a pink colour and strong fluorescence in the visible region. Sensor L showed a detection limit down to micromolar range without any interference from the other tested competitive anions. Sensor L was applied for the construction of two inputs (HO- and HSO4-) INHIBIT type molecular logic gate and naked-eye detection of HSO4- using test paper strips.
ERIC Educational Resources Information Center
Beauchamp, Guy
2005-01-01
A study to present specific hypothesis that satisfactorily explain the boiling point of a number of molecules, CH[subscript w]F[subscript x]Cl[subscript y]Br[subscript z] having similar structure, and then analyze the model with the help of multiple linear regression (MLR), a data analysis tool. The MLR analysis was useful in selecting the…
NASA Astrophysics Data System (ADS)
Yang, Xiaoping; Schipper, Desmond; Zhang, Lijie; Yang, Keqin; Huang, Shaoming; Jiang, Jijun; Su, Chengyong; Jones, Richard A.
2014-08-01
Two series of Cd-Ln clusters: nano-drum [Ln8Cd24L12(OAc)48] and nano-double-drum [Ln12Cd44L20Cl30(OAc)54] (Ln = Nd and Yb) were prepared using a flexible Schiff base ligand bearing two aryl-Br groups. Chloride (Cl-) ions, together with the interactions of Br with other electronegative atoms, play a key role in the formation of the nano-double-drums. The structures were studied by TEM and photophysical properties were determined.Two series of Cd-Ln clusters: nano-drum [Ln8Cd24L12(OAc)48] and nano-double-drum [Ln12Cd44L20Cl30(OAc)54] (Ln = Nd and Yb) were prepared using a flexible Schiff base ligand bearing two aryl-Br groups. Chloride (Cl-) ions, together with the interactions of Br with other electronegative atoms, play a key role in the formation of the nano-double-drums. The structures were studied by TEM and photophysical properties were determined. Electronic supplementary information (ESI) available: Full experimental and characterization details for 1-4. CCDC 972369-972372. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4nr03075c
Transmittance of optical materials from 0.17 micro to 3.0 micro.
McCarthy, D E
1967-11-01
The transmittance of thirty-one optical materials is given from 0.17, micro to 3.0 micro. Included are NaCl, KBr, CsBr, CsI, CaF(2), BaF(2), NaF, TlBr, TICL, KRS-5, KRS-6, T-12, KC, CuC, T O(2), ADP, KDP, SrTiO(3), GaP, CaCO(3), CdSe, As(2)S(3), ruby, Al(2)O(3), Irtran 1-6, and quartz. All are synthetic with the exception of CaCO(3). In many cases, the short wavelength cutoff of the synthetic materials is less than that which has been reported for naturally occurring materials.
Shaloski, Michael A; Gord, Joseph R; Staudt, Sean; Quinn, Sarah L; Bertram, Timothy H; Nathanson, Gilbert M
2017-05-18
Gas-liquid scattering and product-yield experiments are used to investigate reactions of N 2 O 5 with glycerol containing Br - and surfactant ions. N 2 O 5 oxidizes Br - to Br 2 for every solution tested: 2.7 M NaBr, 0.03 M tetrahexylammonium bromide (THABr), 0.03 M THABr + 0.5 M NaBr, 0.03 M THABr + 0.5 M NaCl, 0.03 M THABr + 0.01 M sodium dodecyl sulfate (SDS), and 0.01 M cetyltrimethylammonium bromide (CTABr). N 2 O 5 also reacts with glycerol itself to produce mono- and dinitroglycerin. Surface tension measurements indicate that 0.03 M THABr and 2.7 M NaBr have similar interfacial Br - concentrations, though their bulk Br - concentrations differ by 90-fold. We find that twice as much Br 2 is produced in the presence of THA + , implying that the conversion of Br - to Br 2 is initiated at the interface, perhaps mediated by the charged, hydrophobic pocket within the surface THA + cation. The addition of 0.5 M NaBr, 0.5 M NaCl, or 0.01 M SDS to 0.03 M THABr lowers the Br 2 production rate by 23%, 63%, and 67% of the THABr value, respectively. When CTA + is substituted for THA + , Br 2 production drops to 12% of the THABr value. The generation of Br 2 under such different conditions implies that trace amounts of surface-active alkylammonium ions can catalyze interfacial N 2 O 5 reactions, even when salts and other surfactants are present.