NASA Technical Reports Server (NTRS)
Vessey, J. K.; Raper, C. D. Jr; Henry, L. T.; Raper CD, J. r. (Principal Investigator)
1990-01-01
Tobacco plants (Nicotiana tabacum L. cv NC82) were supplied with (NH4)2SO4 or NH4Cl at root-zone pH of 6.0 and 4.5 in hydroponic culture for 28 days. Dry matter accumulation, total N and C content, and leaf area and number were not affected by the NH4+ source or root-zone pH. Plants supplied with NH4Cl accumulated up to 1.2 mM Cl g DW-1, but accumulated 37% less inorganic H2PO4- and 47% less SO4(2-) than plants supplied with (NH4)2SO4. The large Cl- accumulation resulted in NH4Cl- supplied plants having a 31% higher inorganic anion (NO3-, H2, PO4-, SO4(2-), and Cl-) charge. This higher inorganic anion charge in the NH4Cl-supplied plants was balanced by a similar increase in K+ charge. Plants supplied with NH4Cl accumulated greater concentrations of Cl- in leaves (up to 5.1% of DW) than plants supplied with (NH4)2SO4 (less than -% DW). Despite the high Cl- concentration of leaves in NH4Cl supplied plants, these plants showed no symptoms of Cl- toxicity. This demonstrates that toxicity symptoms are not due solely to an interaction between high Cl- concentration in tissue and NH4+ nutrition. The increase in root-zone acidity to pH 4.5 from 6.0 did not induce toxicity symptoms.
Crown Ether Complexes of Alkali-Metal Chlorides from SO2.
Reuter, Kirsten; Rudel, Stefan S; Buchner, Magnus R; Kraus, Florian; von Hänisch, Carsten
2017-07-18
The structures of alkali-metal chloride SO 2 solvates (Li-Cs) in conjunction with 12-crown-4 or 1,2-disila-12-crown-4 show strong discrepancies, despite the structural similarity of the ligands. Both types of crown ethers form 1:1 complexes with LiCl to give [Li(1,2-disila-12-crown-4)(SO 2 Cl)] (1) and [Li(12-crown-4)Cl]⋅4 SO 2 (2). However, 1,2-disila-12-crown-4 proved unable to coordinate cations too large for the cavity diameter, for example, by the formation of sandwich-type complexes. As a result, 12-crown-4 reacts exclusively with the heavier alkali-metal chlorides NaCl, KCl and RbCl. Compounds [Na(12-crown-4) 2 ]Cl⋅4 SO 2 (3) and [M(12-crown-4) 2 (SO 2 )]Cl⋅4 SO 2 (4: M=K; 5: M=Rb) all showed S-coordination to the chloride ions through four SO 2 molecules. Compounds 4 and 5 additionally exhibit the first crystallographically confirmed non-bridging O,O'-coordination mode of SO 2 . Unexpectedly, the disila-crown ether supports the dissolution of RbCl and CsCl in the solvent and gives the homoleptic SO 2 -solvated alkali-metal chlorides [MCl⋅3 SO 2 ] (6: M=Rb; 7: M=Cs), which incorporate bridging μ-O,O'-coordinating moieties and the unprecedented side-on O,O'-coordination mode. All compounds were characterised by single-crystal X-ray diffraction. The crown ether complexes were additionally studied by using NMR spectroscopy, and the presence of SO 2 at ambient temperature was revealed by IR spectroscopy of the neat compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Effects of different salt and alkali stresses on ion distribution in Red globe/Beta grapevines].
Du, Yuan-peng; Jin, Xue-juan; Guo, Shu-hua; Fu, Qing-qing; Zhai, Heng
2015-06-01
The potted Red globe/Beta grapevines were selected to irrigated with NaCl, Na2SO4, NaHCO3, NH4Cl, (NH4)2SO4. Hence, the ions which induced leaf etiolation were screened and the impacts of different salt and alkali on ion distribution in different organs of grapevines were investigated. It was found that NaHCO3 exerted the greatest effects on grapevines, leaf etiolation at 14 days after treatment. By contrast, NaCl and NH4Cl treatments induced leaf etiolation at 28 days after treatment. The Na+ content in all the detected organs were significantly increased under NaHCO3 and NaCl treatment, and Na+ content in root under NaHCO3 treatment was 6.4 times as that in control root. NaHCO3 and NaCl treatments significantly decreased K+ content in the organs with the exception of leaf. NaHCO3 treatment significantly decreased K/Na in different organs, which declined to 0.1 in root. By contrast, NaCl treatment significantly decreased K/Na in the detected organs with exception of stem. Besides, the transport of Ca2+, Mg2+, Fe2+ to aboveground organs was significantly decreased by NaHCO3 and NaCl treatments. K/Na ratio in the detected organs were decreased under NH4Cl, (NH4) 2SO4 and Na2SO4 treatments, especially under NH4 Cl treatment. Taken together, NaHCO3 was the primary factor resulting in leaf etiolation, followed by NaCl and NH4Cl, while (NH4) 2SO4 and Na2SO4 produced impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dombrovskaya, N.S.; Khakhlova, N.V.; Alekseeva, E.A.
1961-04-21
The most stable configuration of the mixture of the 16 salts formed from Li, Na, Rb, Tl/Br, Cl, NO/sub 3/, and S0/sub 4/ con ture which however interact, resulting in a stable mixture. On the basis of exchange reactions the following equation has been derived: LiBr + NaNO/sub 3/ + RbCl + 1/2Tl/sub 2/SO/sub 4/ = 1/ 2LiSO/sub 4/ + NaCl + RbNO/sub 3/ + TlBr. In addition, several binary complexes are also formed, such as Li/sub 2/SO/sub 4/ - Rb/sub 2/SO/sub 4/, 4Li/sub 2/SO/ sub 4/ - RbSO /sub 4/, RbCl - 2Li/sub 2/SO/sub 4/ and possible others. Inmore » view of the great interest, the intersection of stable and non-equilibrium tetrahedra consisting of components of both, was experimentally studied by thermai analysis. On the basis of cooling curves the following deflection points have been observed: 453 deg C, precipitation of the first Li/sub 2/SO/sub 4/ crystals; 409 deg , coprecipitation of Li/sub 2/SO/sub 4/ and NaCl; 391 deg , coprecipitation of Li/sub 2/SO/sub 4/, NaCl snd TlBr; and finally at 107 deg , formation of the quaternary eutectic with the previously mentioned salts + RbNO/sub 3/. The microstructures of the stable and non-equilibrium phases are quite similar. (TTT)« less
Sulfate-chloride exchange by lobster hepatopancreas is regulated by pH-sensitive modifier sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cattey, M.A.; Ahearn, G.A.; Gerencser, G.A.
1991-03-15
{sup 35}SO{sub 4}{sup 2{minus}} uptake by Atlantic lobster (Homarus americanus) hepatopancreatic epithelial brush border membrane vesicles (BBMV) was stimulated by internal Cl{sup {minus}}, but not internal HCO{sub 3}{sup {minus}}, or external Na{sup +}. Sulfate-chloride exchange was stimulated by inside positive, and inhibited by inside negative, trans-membrane K diffusion potentials. {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange was strongly inhibited by 4,4{prime} diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS), 4-acetamido-4{prime}-isotheocynaostilbene-2,2{prime}-disulfonic acid, (SITS), and thiosulfate. Chloride, bicarbonate, furosamide, and bumetanide slightly, yet significantly, cis-inhibited {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange. Altering bilateral pH from 8.0 to 5.4 stimulated {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange when vesicles weremore » loaded with Cl{sup {minus}}, but reduced bilateral pH alone or the presence of pH gradients did not affect {sup 35}SO{sub 4}{sup 2{minus}} transport in the absence of internal Cl{sup {minus}}. {sup 36}Cl uptake into SO{sub 4}{sup 2{minus}}-loaded BBMV was stimulated by an internal negative membrane potential and inhibited when the interior was electrically positive. A model is proposed which suggests that SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange is regulated by internal and external pH-sensitive modifier sites on the anion antiporter and by coupling to the electrogenic 2 Na{sup +}/1 H{sup +} antiporter and by coupling to the electrogenic 2 Na{sup +}/1 H{sup +} antiporter on the same membrane.« less
Reactions occurring during the sulfation of sodium chloride deposited on alumina substrates
NASA Technical Reports Server (NTRS)
Wu, C. S.; Birks, N.
1986-01-01
The reaction between solid NaCl and air containing 1 pct SO2 has been studied between 500 and 700 C. The reaction product, Na2SO4, forms not only on the surface of the NaCl but also on surrounding areas of the substrate due to the volatility of the NaCl at these temperatures. At the higher temperatures, the vapor pressure of NaCl is so high that the majority of the reaction product is distributed on the substrate. Above 625 C, the reaction product is a liquid solution of NaCl and Na2SO4 that exists only so long as NaCl is supplied from the original crystal source. Eventually, the liquid solidifies by constitutional solidification as the NaCl is converted to Na2SO4. While it exists, the liquid NaCl-Na2SO4 solution is shown to be highly corrosive to Al2O3 and, on a scale of Al2O3 growing on alloy HOS 875, particularly attacks the grain boundaries of the scale at preferred sites where chromium and iron oxides and sulfides rapidly develop. This is proposed as one mechanism by which NaCl deposition contributes to the initiation of low temperature hot corrosion.
Improvement of pre-treatment method for 36Cl/Cl measurement of Cl in natural groundwater by AMS
NASA Astrophysics Data System (ADS)
Nakata, Kotaro; Hasegawa, Takuma
2011-02-01
Estimation of 36Cl/Cl by accelerator mass spectrometry (AMS) is a useful method to trace hydrological processes in groundwater. For accurate estimation, separation of SO42- from Cl - in groundwater is required because 36S affects AMS measurement of 36Cl. Previous studies utilized the difference in solubility between BaSO 4 and BaCl 2 (BaSO 4 method) to chemically separate SO42- from Cl -. However, the accuracy of the BaSO 4 method largely depends on operator skill, and consequently Cl - recovery is typically incomplete (70-80%). In addition, the method is time consuming (>1 week), and cannot be applied directly to dilute solutions. In this study, a method based on ion-exchange column chromatography (column method) was developed for separation of Cl - and SO42-. Optimum conditions were determined for the diameter and height of column, type and amount of resin, type and concentration of eluent, and flow rate. The recovery of Cl - was almost 100%, which allowed complete separation from SO42-. The separation procedure was short (<6 h), and was successfully applied to dilute (1 mg/L Cl) solution. Extracted pore water and diluted seawater samples were processed by the column and BaSO 4 methods, and then analyzed by AMS to estimate 36S counts and 36Cl/Cl values. 36S counts in samples processed by the column method were stable and lower than those from the BaSO 4 method. The column method has the following advantages over the BaSO 4 method: (1) complete and stable separation of Cl - and SO42-, (2) less operator influence on results, (3) short processing time (<6 h), (4) high (almost 100%) recovery of Cl -, and (5) concentration of Cl - and separation from SO42- in the one system for dilute solutions.
Shen, Pu; Gao, Ju-sheng; Xu, Ming-gang; Li, Dong-chu; Niu, De-kui; Qin, Dao-zhu
2011-04-01
An investigation was made at a double-rice paddy field in the Qiyang Red Soil Field Experimental Station, Hunan Province, China to study the species and biomass of weeds growing in rice (Oryza sativa L.) growth season after 34-year application of sulfur (SO4(2-)) and chloride (Cl(-))-containing chemical fertilizers under the same application rates of nitrogen (N), phosphorus (P), and potassium (K). Long-term application of Cl(-)-containing chemical fertilizer resulted in the greatest species number of weeds and the highest biomass of floating weeds and wet weeds, compared with long-term application of SO4(2-) and Cl(-) +SO4(2-)-containing chemical fertilizers. In early rice growth season, the biomass of weeds after applying Cl(-)-containing chemical fertilizer was 51.4% and 17.6% higher than that after applying Cl(-) + SO4(2-) and SO4(2-)-containing chemical fertilizers, respectively; in late rice growth season, the increment was 144% and 242%, respectively. More floating weeds were observed after applying Cl(-) + SO4(2-) and SO4(2-)-containing chemical fertilizers, but few of them were found after applying Cl(-)-containing chemical fertilizer. The total dry mass of weeds and the dry mass of wet weeds were positively correlated with soil Cl(-) content (r = 0.764, P < 0.01 and r = 0.948, P < 0.01, respectively), but negatively correlated with soil SO4(2-)-S content (r = 0.849, P < 0.01 and r = 0.641, P < 0.05). Soil alkali-hydrolyzable N and available P, under the co-effects of soil SO4(2-)-S, Cl(-), and pH, had indirect effects on the total dry mass of weeds. By adopting various fertilization measures to maintain proper soil pH and alkali-hydrolyzable N and available P contents, increase soil SO42(-)-S content, and decrease soil Cl(-) content, it could be possible to effectively inhibit the growth of wet weeds and to decrease the total biomass of weeds in double-rice paddy field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterniti, D.P.; Francisco, L.W.; Atwood, J.D.
Several new water-soluble iridium(I) complexes were synthesized and their reactivities with small molecules (H{sub 2} or CO) in polar solvents (DMSO or H{sub 2}O) examined. Reaction of H{sub 2} with [Ir(CO)(TPPMS){sub 3}]CF{sub 3}SO{sub 3} (TPPMS = P(C{sub 6}H{sub 5}){sub 2}(m-C{sub 6}H{sub 4}SO{sub 3}K)) in DMSO or H{sub 2}O produces [cis,mer-Ir(CO)(H){sub 2}(TPPMS){sub 3}]CF{sub 3}SO{sub 3}, while the reaction of CO with [Ir(CO)(TPPMS){sub 3}]-CF{sub 3}SO{sub 3} in water yields [Ir(CO){sub 2}(TPPMS){sub 3}]CF{sub 3}SO{sub 3}. Carbonylation of [Ir(CO){sub 2}(TPPMS){sub 3}]ClO{sub 4} in DMSO produces [Ir(CO){sub 3}(TPPMS){sub 2}]ClO{sub 4} and TPPMS; no reaction is observed in H{sub 2}O. Hydrogenation of [Ir(CO){sub 2}(TPPMS){sub 3}]ClO{sub 4}more » in DMSO or H{sub 2}O yields [cis,mer-Ir(CO)(H){sub 2}(TPPMS){sub 3}]ClO{sub 4}, while reaction of H{sub 2} with an aqueous solution of [Ir(CO)(H{sub 2}O)(TPPTS){sub 2}]CF{sub 3}SO{sub 3} produces [Ir(CO)(H{sub 2}O)(H){sub 2}(TPPTS){sub 2}]CF{sub 3}SO{sub 3}. Reaction of trans-Ir(CO)ClL{sub 2} (L = TPPMS or TPPTS) with excess L in H{sub 2}O produces [Ir(CO)L{sub 3}]Cl, while no reaction occurs in DMSO, [Ir(CO){sub 3}(TPPMS){sub 2}]Cl reacts irreversibly with TPPMS in H{sub 2}O to produce [Ir(CO){sub 2}-(TPPMS){sub 3}]Cl.« less
40 CFR 796.3100 - Aerobic aquatic biodegradation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... reservoir. The reservoir access port is easily sealed during incubation with a serum bottle stopper. Two... II 2 KCl 10 MgSO4 20 FeSO4·7H2O 1 III CaCl2 5 ZnCl2 0.05 MnCl2·4H2O 0.5 CuCl2 0.05 CoCl2 0.001 H3 BO3... wool, and supplemented with 25 mg/L each of Difco vitamin-free casamino acids and yeast extract...
40 CFR 796.3100 - Aerobic aquatic biodegradation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reservoir. The reservoir access port is easily sealed during incubation with a serum bottle stopper. Two... II 2 KCl 10 MgSO4 20 FeSO4·7H2O 1 III CaCl2 5 ZnCl2 0.05 MnCl2·4H2O 0.5 CuCl2 0.05 CoCl2 0.001 H3 BO3... wool, and supplemented with 25 mg/L each of Difco vitamin-free casamino acids and yeast extract...
Dron, Julien; Dodi, Alain
2011-06-15
The removal of chloride, nitrate and sulfate ions from aqueous solutions by a macroporous resin is studied through the ion exchange systems OH(-)/Cl(-), OH(-)/NO(3)(-), OH(-)/SO(4)(2-), and HCO(3)(-)/Cl(-), Cl(-)/NO(3)(-), Cl(-)/SO(4)(2-). They are investigated by means of Langmuir, Freundlich, Dubinin-Radushkevitch (D-R) and Dubinin-Astakhov (D-A) single-component adsorption isotherms. The sorption parameters and the fitting of the models are determined by nonlinear regression and discussed. The Langmuir model provides a fair estimation of the sorption capacity whatever the system under study, on the contrary to Freundlich and D-R models. The adsorption energies deduced from Dubinin and Langmuir isotherms are in good agreement, and the surface parameter of the D-A isotherm appears consistent. All models agree on the order of affinity OH(-)
Thermochemical cycles for the production of hydrogen
Steinberg, M.; Dang, V.D.
Two-step processes for the preparation of hydrogen are described: CrCl/sub 3/(g) ..-->.. CrCl/sub 2/(g) + 1/2Cl/sub 2/(g) and CrCl/sub 2/(s) + HCl(g) reversible CrCl/sub 3/(s) + 1/2H/sub 2/(g); UCl/sub 4/(g) ..-->.. UCl/sub 3/(g) + 1/2Cl/sub 2/(g) and UCl/sub 3/(s) + HCl(g) ..-->.. UCl/sub 4/(s) + 1/2H/sub 2/(g); and CaSO/sub 4/(s) ..-->.. CaO(s) + SO/sub 2/(g) + 1/2O/sub 2/(g) and CaO(s) + SO/sub 2/(g) + H/sub 2/O(l) ..-->.. CaSO/sub 4/(s) + H/sub 2/(g). The high temperature available from solar collectors, high temperature gas reactors or fusion reactors is utilized in the first step in which the reaction is endothermic. The efficiency is at least 60% and with process heat recovery, the efficiency may be increased up to 74.4%. An apparatus fr carrying out the process in conjunction with a fusion reactor, is described.
NASA Technical Reports Server (NTRS)
Birks, N.
1981-01-01
Morphological aspects of the conversion to Na2SO4 of NaCl deposits over the temperature range 500-700 C, in air with added SO2 and H2O. Progress of the reaction was observed by withdrawing samples at various times and examining them under the scanning electron microscope using EDAX to assess the extent of chloride to sulfate conversion. These initial results show that the conversion to Na2SO4 proceeds directly on the sodium chloride surface as well as on the surrounding substrate due to evaporation of NaCl from the solid particle. The mechanism of this reaction could involve reaction in the vapor to produce Na2SO4 which then deposits, alternatively Na2SO4 could form directly on the substrate surface due to direct reaction there between the vapors NaCl, SO2 and O2.
NASA Astrophysics Data System (ADS)
Freyer, Daniela; Voigt, Wolfgang
2004-01-01
At T > 100°C development of thermodynamic models suffers from missing experimental data, particularly for solubilities of sulfate minerals in mixed solutions. Solubilities in Na +-K +-Ca 2+-Cl --SO 42-/H 2O subsystems were investigated at 150, 200°C and at selected compositions at 100°C. The apparatus used to examine solid-liquid phase equilibria under hydrothermal conditions has been described. In the system NaCl-CaSO 4-H 2O the missing anhydrite (CaSO 4) solubilities at high NaCl concentrations up to halite saturation have been determined. In the system Na 2SO 4-CaSO 4-H 2O the observed glauberite (Na 2SO 4 · CaSO 4) solubility is higher than that predicted by the high temperature model of Greenberg and Møller (1989), especially at 200°C. At high salt concentrations, solubilities of both anhydrite and glauberite increase with increasing temperature. Stability fields of the minerals syngenite (K 2SO 4 · CaSO 4 · H 2O) and goergeyite (K 2SO 4 · 5 CaSO 4 · H 2O) were determined, and a new phase was found at 200°C in the K 2SO 4-CaSO 4-H 2O system. Chemical and single crystal structure analysis give the formula K 2SO 4 · CaSO 4. The structure is isostructural with palmierite (K 2SO 4 · PbSO 4). The glaserite ("3 K 2SO 4 · Na 2SO 4") appears as solid solution in the system Na 2SO 4-K 2SO 4-H 2O. Its solubility and stoichiometry was determined as a function of solution composition.
NASA Astrophysics Data System (ADS)
Toner, J. D.; Catling, D. C.; Light, B.
2014-05-01
Salt solutions on Mars can stabilize liquid water at low temperatures by lowering the freezing point of water. The maximum equilibrium freezing-point depression possible, known as the eutectic temperature, suggests a lower temperature limit for liquid water on Mars; however, salt solutions can supercool below their eutectic before crystallization occurs. To investigate the magnitude of supercooling and its variation with salt composition and concentration, we performed slow cooling and warming experiments on pure salt solutions and saturated soil-solutions of MgSO4, MgCl2, NaCl, NaClO4, Mg(ClO4)2, and Ca(ClO4)2. By monitoring solution temperatures, we identified exothermic crystallization events and determined the composition of precipitated phases from the eutectic melting temperature. Our results indicate that supercooling is pervasive. In general, supercooling is greater in more concentrated solutions and with salts of Ca and Mg. Slowly cooled MgSO4, MgCl2, NaCl, and NaClO4 solutions investigated in this study typically supercool 5-15 °C below their eutectic temperature before crystallizing. The addition of soil to these salt solutions has a variable effect on supercooling. Relative to the pure salt solutions, supercooling decreases in MgSO4 soil-solutions, increases in MgCl2 soil-solutions, and is similar in NaCl and NaClO4 soil-solutions. Supercooling in MgSO4, MgCl2, NaCl, and NaClO4 solutions could marginally extend the duration of liquid water during relatively warm daytime temperatures in the martian summer. In contrast, we find that Mg(ClO4)2 and Ca(ClO4)2 solutions do not crystallize during slow cooling, but remain in a supercooled, liquid state until forming an amorphous glass near -120 °C. Even if soil is added to the solutions, a glass still forms during cooling. The large supercooling effect in Mg(ClO4)2 and Ca(ClO4)2 solutions has the potential to prevent water from freezing over diurnal and possibly annual cycles on Mars. Glasses are also potentially important for astrobiology because of their ability to preserve pristine cellular structures intact compared to solutions that crystallize.
Company, Anna; Jee, Joo-Eun; Ribas, Xavi; Lopez-Valbuena, Josep Maria; Gómez, Laura; Corbella, Montserrat; Llobet, Antoni; Mahía, José; Benet-Buchholz, Jordi; Costas, Miquel; van Eldik, Rudi
2007-10-29
A study of the reversible CO2 fixation by a series of macrocyclic dicopper complexes is described. The dicopper macrocyclic complexes [Cu2(OH)2(Me2p)](CF3SO3)2, 1(CF3SO3)2, and [Cu2(mu-OH)2(Me2m)](CF3SO3)2, 2(CF3SO3)2, (Scheme 1) containing terminally bound and bridging hydroxide ligands, respectively, promote reversible inter- and intramolecular CO2 fixation that results in the formation of the carbonate complexes [{Cu2(Me2p)}2(mu-CO3)2](CF3SO3)4, 4(CF3SO3)4, and [Cu2(mu-CO3)(Me2m)](CF3SO3)2, 5(CF3SO3)2. Under a N2 atmosphere the complexes evolve CO2 and revert to the starting hydroxo complexes 1(CF3SO3)2 and 2(CF3SO3)2, a reaction the rate of which linearly depends on [H2O]. In the presence of water, attempts to crystallize 5(CF3SO3)2 afford [{Cu2(Me2m)(H2O)}2(mu-CO3)2](CF3SO3)4, 6(CF3SO3)4, which appears to rapidly convert to 5(CF3SO3)2 in acetonitrile solution. [Cu2(OH)2(H3m)]2+, 7, which contains a larger macrocyclic ligand, irreversibly reacts with atmospheric CO2 to generate cagelike [{Cu2(H3m)}2(mu-CO3)2](ClO4)4, 8(ClO4)4. However, addition of 1 equiv of HClO4 per Cu generates [Cu2(H3m)(CH3CN)4]4+ (3), and subsequent addition of Et3N under air reassembles 8. The carbonate complexes 4(CF3SO3)4, 5(CF3SO3)2, 6(CF3SO3)4, and 8(ClO4)4 have been characterized in the solid state by X-ray crystallography. This analysis reveals that 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 consist of self-assembled molecular boxes containing two macrocyclic dicopper complexes, bridged by CO32- ligands. The bridging mode of the carbonate ligand is anti-anti-mu-eta1:eta1 in 4(CF3SO3)4, anti-anti-mu-eta2:eta1 in 6(CF3SO3)4 and anti-anti-mu-eta2:eta2 in 5(CF3SO3)2 and 8(ClO4)4. Magnetic susceptibility measurements on 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 indicate that the carbonate ligands mediate antiferromagnetic coupling between each pair of bridged CuII ions (J = -23.1, -108.3, and -163.4 cm-1, respectively, H = -JS1S2). Detailed kinetic analyses of the reaction between carbon dioxide and the macrocyclic complexes 1(CF3SO3)2 and 2(CF3SO3)2 suggest that it is actually hydrogen carbonate formed in aqueous solution on dissolving CO2 that is responsible for the observed formation of the different carbonate complexes controlled by the binding mode of the hydroxy ligands. This study shows that CO2 fixation can be used as an on/off switch for the reversible self-assembly of supramolecular structures based on macrocyclic dicopper complexes.
Thorat, Alpana A; Forny, Laurent; Meunier, Vincent; Taylor, Lynne S; Mauer, Lisa J
2017-12-27
The effects of salts on the stability of amorphous sucrose and its crystallization in different environments were investigated. Chloride (LiCl, NaCl, KCl, MgCl 2 , CaCl 2 , CuCl 2 , FeCl 2 , FeCl 3 , and AlCl 3 ) and sulfate salts with the same cations (Na 2 SO 4 , K 2 SO 4 , MgSO 4 , CuSO 4 , Fe(II)SO 4 , and Fe(III)SO 4 ) were studied. Samples (sucrose controls and sucrose:salt 1:0.1 molar ratios) were lyophilized, stored in controlled temperature and relative humidity (RH) conditions, and monitored for one month using X-ray diffraction. Samples were also analyzed by differential scanning calorimetry, microscopy, and moisture sorption techniques. All lyophiles were initially amorphous, but during storage the presence of a salt had a variable impact on sucrose crystallization. While all samples remained amorphous when stored at 11 and 23% RH at 25 °C, increasing the RH to 33 and 40% RH resulted in variations in crystallization onset times. The recrystallization time generally followed the order monovalent cations < sucrose < divalent cations < trivalent cations. The presence of a salt typically increased water sorption as compared to sucrose alone when stored at the same RH; however, anticrystallization effects were observed for sucrose combined with salts containing di- and trivalent cations in spite of the increased water content. The cation valency and hydration number played a major role in dictating the impact of the added salt on sucrose crystallization.
Color removal from dye-containing wastewater by magnesium chloride.
Gao, Bao-Yu; Yue, Qin-Yan; Wang, Yan; Zhou, Wei-Zhi
2007-01-01
Color removal by MgCl(2) when treating synthetic waste containing pure dyes was studied. The color removal efficiency of MgCl(2)/Ca(OH)(2) was compared with that of Al(2)(SO(4))(3), polyaluminum chloride (PAC) and FeSO(4)/Ca(OH)(2). The mechanism of color removal by MgCl(2) was also investigated. The experimental results show that the color removal efficiency of MgCl(2) is related to the type of dye and depends on the pH of the waste and the dosage of the coagulants used. Treatment of waste containing reactive dye or dispersed dye with MgCl(2) yielded an optimum color removal ratio when the pH of the solution was equal to or above 12.0. For both the reactive and dispersed dye waste, MgCl(2)/Ca(OH)(2) was shown to be superior to MgCl(2)/NaOH, Al(2)(SO(4))(3), PAC and FeSO(4)/Ca(OH)(2) for color removal. A magnesium hydroxide precipitate formed at pH values greater than 12.0, which provided a large adsorptive surface area and a positive electrostatic surface charge, enabling it to remove the dyes through charge neutralization and an adsorptive coagulating mechanism. So, the MgCl(2)/Ca(OH)(2) system is a viable alternative to some of the more conventional forms of chemical treatment, especially for treating actual textile waste with high natural pH.
Decken, Andreas; Knapp, Carsten; Nikiforov, Grigori B; Passmore, Jack; Rautiainen, J Mikko; Wang, Xinping; Zeng, Xiaoqing
2009-06-22
Pushing the limits of coordination chemistry: The most weakly coordinated silver complexes of the very weakly coordinating solvents dichloromethane and liquid sulfur dioxide were prepared. Special techniques at low temperatures and the use of weakly coordinating anions allowed structural characterization of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(Cl(2)CH(2))(2)][SbF(6)] (see figure). An investigation of the bonding shows that these complexes are mainly stabilized by electrostatic monopole-dipole interactions.The synthetically useful solvent-free silver(I) salt Ag[Al(pftb)(4)] (pftb=--OC(CF(3))(3)) was prepared by metathesis reaction of Li[Al(pftb)(4)] with Ag[SbF(6)] in liquid SO(2). The solvated complexes [Ag(OSO)][Al(pftb)(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)] were prepared and isolated by special techniques at low temperatures and structurally characterized by single-crystal X-ray diffraction. The SO(2) complexes provide the first examples of coordination of the very weak Lewis base SO(2) to silver(I). The SO(2) molecule in [Ag(OSO)][Al(pftb)(4)] is eta(1)-O coordinated to Ag(+), while the SO(2) ligands in [Ag(OSO)(2/2)][SbF(6)] bridge two Ag(+) ions in an eta(2)-O,O' (trans,trans) manner. [Ag(CH(2)Cl(2))(2)][SbF(6)] contains [Ag(CH(2)Cl(2))(2)](+) ions linked through [SbF(6)](-) ions to give a polymeric structure. The solid-state silver(I) ion affinities (SIA) of SO(2) and CH(2)Cl(2), based on bond lengths and corresponding valence units in the corresponding complexes and tensimetric titrations of Ag[Al(pftb)(4)] and Ag[SbF(6)] with SO(2) vapor, show that SO(2) is a weaker ligand to Ag(+) than the commonly used weakly coordinating solvent CH(2)Cl(2) and indicated that binding strength of SO(2) to silver(I) in the silver(I) salts increases with increasing size of the corresponding counteranion ([Al(pftb)(4)](-)>[SbF(6)](-)). The experimental findings are in good agreement with theoretical gas-phase ligand-binding energies of [Ag(L)(n)](+) (L=SO(2), CH(2)Cl(2); n=1, 2) and solid-state enthalpies obtained from Born-Fajans-Haber cycles by using the volume-based thermodynamics (VBT) approach. Bonding analysis (VB, NBO, MO) of [Ag(L)(n)](+) suggests that these complexes are almost completely stabilized by electrostatic interaction, that is, monopole-dipole interaction, with almost no covalent contribution by electron donation from the ligand orbitals into the vacant 5s orbital of Ag(+). All experimental findings and theoretical considerations demonstrate that SO(2) is less covalently bound to Ag(+) than CH(2)Cl(2) and support the thesis that SO(2) is a polar but non-coordinating solvent towards Ag(+).
NASA Astrophysics Data System (ADS)
Verma, Santosh K.; Deb, Manas K.; Suzuki, Yukio; Tsai, Ying I.
2010-01-01
This work focuses on size segregated atmospheric aerosol mass concentrations and water soluble inorganic components in Chhattisgarh, the eastern central India. Investigation on the monitoring of ambient air levels of atmospheric particulates were done around a large source of primary anthropogenic particulate emissions: the industrial area and coal based power plants. Chemical characterization was carried out for aerosol samples collected in urban area, Raipur, (21°14'N, 81°38'E) of Chhattisgarh region over a period of one year, using cascade impactor. Annual mean of mass concentration for coarse (PM 2.5-10) and fine (PM 2.5) aerosols were monitored to be 238.1 ± 89.9 and 167.0 ± 75.3 µg m - 3 respectively This work deals with the seasonal variation and meteorological influences of inorganic components of the aerosols viz. NO 3-, Cl - and SO 42-, Mg 2+, Na +, K +, Ca 2+ and NH 4+. The annual mean concentration of the inorganic components were monitored to be 3.8 ± 2.5, 8.9 ± 2.7, 10.2 ± 1.5, 2.6 ± 0.6, 8.7 ± 7.2, 4.6 ± 1.8, 16.4 ± 6.9 and 0.4 ± 0.5 µg m - 3 respectively in coarse particles and 8.2 ± 7.1, 6.8 ± 3.6, 46.5 ± 32.8, 1.7 ± 0.6, 7.4 ± 3.6, 5.9 ± 3.4, 10.2 ± 2.9, and 8.8 ± 7.7 µg m - 3 respectively in fine particles, for the above ions. The average distribution of nitrate and sulphate in PM 2.5-10 were found to be 1.6 and 4.2% and in PM 2.5 were 4.9 and 27.9% respectively indicating the dominance of sulphate in both PM 2.5-10 and PM 2.5 particles. Here, industrial emission plays important role for contribution of PM 2.5 particle loading in the atmosphere. The cation-anion rational analysis indicated that the PM 2.5-10 particles were mostly neutralized and PM 2.5 particle were acidic. The major ions were mainly in the form of NaCl > CaSO 4 > K 2SO 4 > MgSO 4 > KCl > NH 4Cl > Ca(NO 3) 2 > KNO 3 > MgCl 2 > Mg(NO 3) 2 > NH 4NO 3 > (NH 4) 2SO 4 in coarse aerosol particles and (NH 4) 2SO 4 > K 2SO 4 > CaSO 4 > NaCl > NH 4NO 3 > CaCl 2 > KNO 3 > MgCl 2 > Ca(NO 3) 2 > KCl > NH 4Cl in fine particles.
Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; Wang, Hui; You, Shao-hong; Hu, Xi; Tan, Xiao-fei; Chen, An-wei; Guo, Fang-ying
2015-05-01
The present work evaluated the effects of six inorganic electrolyte anions on Cu(II) removal using aminated Fe3O4/graphene oxide (AMGO) in single- and multi-ion systems. A 2(6-2) fractional factorial design (FFD) was employed for assessing the effects of multiple anions on the adsorption process. The results indicated that the Cu(II) adsorption was strongly dependent on pH and could be significantly affected by inorganic electrolyte anions due to the changes in Cu(II) speciation and surface charge of AMGO. In the single-ion systems, the presence of monovalent anions (Cl(-), ClO4(-), and NO3(-)) slightly increased the Cu(II) adsorption onto AMGO at low pH, while the Cu(II) adsorption was largely enhanced by the presence of SO4(2-), CO3(2-), and HPO4(2-). Based on the estimates of major effects and interactions from FFD, the factorial effects of the six selected species on Cu(II) adsorption in multi-ion system were in the following sequence: HPO4(2-)>CO3(2-)>Cl(-)>SO4(2-)>NO3(-)=ClO4(-), and the combined factors of AD (Cl(-)×SO4(2-)) and EF (Cl(-)×SO4(2-)) had significant effects on Cu(II) removal. Copyright © 2015 Elsevier Ltd. All rights reserved.
Absorption and desorption of SO2 in aqueous solutions of diamine-based molten salts.
Lim, Seung Rok; Hwang, Junhyeok; Kim, Chang Soo; Park, Ho Seok; Cheong, Minserk; Kim, Hoon Sik; Lee, Hyunjoo
2015-05-30
SO2 absorption and desorption behaviors were investigated in aqueous solutions of diamine-derived molten salts with a tertiary amine group on the cation and a chloride anion, including butyl-(2-dimethylaminoethyl)-dimethylammonium chloride ([BTMEDA]Cl, pKb=8.2), 1-butyl-1,4-dimethylpiperazinium chloride ([BDMP]Cl, pKb=9.8), and 1-butyl-4-aza-1-azoniabicyclo[2,2,2]octane chloride ([BDABCO]Cl, pKb=11.1). The SO2 absorption and desorption performance of the molten salt were greatly affected by the basicity of the molten salt. Spectroscopic, X-ray crystallographic, and computational results for the interactions of SO2 with molten salts suggest that two types of SO2-containg species could be generated depending on the basicity of the unquaternized amino group: a dicationic species comprising two different anions, HSO3(-) and Cl(-), and a monocationic species bearing Cl(-) interacting with neutral H2SO3. Copyright © 2015 Elsevier B.V. All rights reserved.
Hot-corrosion of AISI 1020 steel in a molten NaCl/Na2SO4 eutectic at 700°C
NASA Astrophysics Data System (ADS)
Badaruddin, Mohammad; Risano, Ahmad Yudi Eka; Wardono, Herry; Asmi, Dwi
2017-01-01
Hot-corrosion behavior and morphological development of AISI 1020 steel with 2 mg cm-2 mixtures of various NaCl/Na2SO4 ratios at 700°C were investigated by means of weight gain measurements, Optical Microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The weight gain kinetics of the steel with mixtures of salt deposits display a rapid growth rates, compared with the weight gain kinetics of AISI 1020 steel without salt deposit in dry air oxidation, and follow a steady-state parabolic law for 49 h. Chloridation and sulfidation produced by a molten NaCl/Na2SO4 on the steel induced hot-corrosion mechanism attack, and are responsible for the formation of thicker scale. The most severe corrosion takes place with the 70 wt.% NaCl mixtures in Na2SO4. The typical Fe2O3 whisker growth in outer part scale was attributed to the FeCl3 volatilization. The formation of FeS in the innermost scale is more pronounced as the content of Na2SO4 in the mixture is increased.
Dron, Julien; Dodi, Alain
2011-03-15
The removal of chloride, nitrate, and sulfate ions from wastewaters by a macroporous ion-exchange resin is studied through the experimental results obtained for six ion exchange systems, OH(-)/Cl(-), OH(-)/NO3(-), OH(-)/SO4(2-), and HCO3(-)/Cl(-), Cl(-)/NO3(-), Cl(-)/SO4(2-). The results are described through thermodynamic modeling, considering either an ideal or a nonideal behavior of the ionic species in the liquid and solid phases. The nonidealities are determined by the Davies equation and Wilson equations in the liquid and solid phases, respectively. The results show that the resin has a strong affinity for all the target ions, and the order of affinity obtained is OH(-) < HCO3(-) < Cl(-) < NO3(-) < SO4(2-). The calculation of the changes in standard Gibbs free energies (ΔG(0)) shows that even though HCO3(-) has a lower affinity to the resin, it may affect the removal of Cl(-), and in the same way that Cl(-) may affect the removal of NO3(-) and SO4(2-). The application of nonidealities in the thermodynamic model leads to an improved fit of the model to the experimental data with average relative deviations below 1.5% except for the OH(-)/SO4(2-) system. On the other hand, considering ideal or nonideal behaviors has no significant impact on the determination of the selectivity coefficients. The thermodynamic modeling is also compared with the Dubinin-Astakhov adsorption isotherms obtained for the same ion exchange systems. Surprisingly, the latter performs significantly better than the ideal thermodynamic model and nearly as well as the nonideal thermodynamic model.
Khalik, Wan Fadhilah; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Voon, Chun-Hong; Yusuf, Sara Yasina; Yusoff, Nik Athirah; Lee, Sin-Li
2016-08-01
This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration.
NASA Astrophysics Data System (ADS)
Gowda, B. Thimme; Shetty, Mahesha; Jayalakshmi, K. L.
2005-02-01
Twenty three N-(2-/3-substituted phenyl)-4-substituted benzenesulphonamides of the general formula, 4-X'C6H4SO2NH(2-/3-XC6H4), where X' = H, CH3, C2H5, F, Cl or Br and X = CH3 or Cl have been prepared and characterized, and their infrared spectra in the solid state, 1H and 13C NMR spectra in solution were studied. The N-H stretching vibrations, νN-H, absorb in the range 3285 - 3199 cm-1, while the asymmetric and symmetric SO2 vibrations vary in the ranges 1376 - 1309 cm-1 and 1177 - 1148 cm-1, respectively. The S-N and C-N stretching vibrations absorb in the ranges 945 - 893 cm-1 and 1304 - 1168 cm-1, respectively. The compounds do not exhibit particular trends in the variation of these frequencies on substitution either at ortho or meta positions with either a methyl group or Cl. The observed 1H and 13C chemical shifts of
NASA Technical Reports Server (NTRS)
Kohl, F. J.; Stearns, C. A.
1979-01-01
Sodium chloride is believed to be the primary source of turbine engine contamination that contributes to hot corrosion. The behavior of NaCl-containing aerosols ingested with turbine intake air is very complex; some of the NaCl may vaporize during combustion while some may remain as particulates. The NaCl can lead to Na2SO4 formation by several possible routes or it can contribute to corrosion directly. Hydrogen or oxygen atom reaction with NaCl(c) was shown to result in the release of Na(g). Gaseous NaCl in flames can be partially converted to gaseous Na2SO4 by homogeneous reactions. The remaining gaseous NaCl and other Na-containing molecules can act as sodium carriers for condensate deposition of Na2SO4 on cool surfaces. A frozen boundary layer theory was developed to predict the rates of deposition. The condensed phase NaCl can be converted directly to condensed Na2SO4 by reaction with sulfur oxides and O2. Reaction of gaseous NaCl with Cr2O3 results in the vapor phase transport of chromium by the formation of complex Cr-containing gaseous molecules. Similar gaseous complexes are formed with molybdenum. The presence of gaseous NaCl was shown to affect the oxidation kinetics of Ni-Cr alloys. It also causes changes in the surface morphology of Al2O3 scales formed on Al-containing alloys.
Kinetics Study on the Effect of NaCl on the CaSO4 Dissolution Behavior
NASA Astrophysics Data System (ADS)
Song, Jingyao; Shi, Peiyang; Wang, Yeguang; Jiang, Maofa
2018-01-01
The study of the dissolution kinetics of CaSO4 is essential for the control of the dissolution and recrystallization behavior of CaSO4. In this work, the kinetic behavior of CaSO4 dissolved in NaCl solution was investigated by means of conductivity meter. The results show that with the increase of concentration of NaCl, the temperature rise and the time prolonged, the dissolution rate of dihydrate CaSO4 gradually increases, and the dissolved apparent activation energy is gradually decreased. When the NaCl concentration is 1.8%, the dissolution kinetic equation is 1-(1-α) 1/3=5.46*10-4exp (-9147/RT) t; When the NaCl concentration is 3.0%, the dissolution kinetic equation is 1-(1-α) 1/3=2.81×10-4 exp (-6753/RT)t; When the NaCl concentration is 3.6%, the dissolution kinetic equation is 1-(1-α) 1/3=3.07×l0-4exp(-6103/RT)t.
NMR studies on Pt anti-cancer drug interactions with DNA and related compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reily, M.D.
Three metastable species have been identified in the reaction between cisPt(Me/sub 2/SO)/sub 2/Cl/sub 2/ and 7-methyl inosine (7Melno), 7-9-dimethyl hypoxanthine, cytidine (Cyd), 5-methyl cytidine (5-MeCyd), and a series of 2- and 4-substituted pyridines (Xpy) in Me/sub 2/SO. These were cis (I) and trans(Pt(Me/sub 2/SO)(L)Cl/sub 2/) (II), and cis(Pt(Me/sub 2/SO)/sub 2/(L)Cl)Cl(III), where L = N3 or N1 bound C or l derivatives, respectively. cis(Pt(Me/sub 2/SO)(L)/sub 2/Cl)Cl(IV) and l are stable products when r < 0.5(PtL) or r > 0.5, respectively. The /sup 195/Pt NMR spectra of I-IV were recorded for 24 different Xpy. For each of four complexes the dependence ofmore » chemical shift on ligand pK/sub a/ was linear for 4Xpy. When 2X was -C = OR (R = H, Me phenyl) downfield shifts of ca. 100 ppm from the 4Xpy pK/sub a/ line were observed.Large upfield shifts were observed when 2X was -NR/sub 2/, R = H or alkyl« less
Zhao, Xiaoyan; Wei, Zhiyi; Du, Fangling; Zhu, Junqing
2010-11-01
Suitability of reverse micelles of anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT) and sodium dodecyl sulfate (SDS), cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and nonionic surfactant polyoxyethylene p-t-octylphenol (TritonX-100) in organic solvent isooctane for extraction of soy isoflavone-enriching proteins was investigated. The results showed that the order of combined isoflavone contents was SDS>CTAB>Triton X-100>AOT, while the order of protein recovery was SDS>AOT>TritonX-100>CTAB. As compared with ACN-HCl extraction, the total amount of isoflavones was lower than reverse micellar extraction. Ion strength was one of the important conditions to control extraction of isoflavone-enriching proteins with AOT reversed micelles. For the six salt systems, KNO(3), KCl, MgCl(2), CaCl(2), NaCl, and Na(2)SO(4), extracted fraction of isoflavone-enriching proteins was measured. Salt solutions greatly influenced the extraction efficiency of isoflavones in an order of KNO(3)>MgCl(2)>CaCl(2)>KCl>NaCl>Na(2)SO(4), while protein in an order of MgCl(2)>CaCl(2)>NaCl>KNO(3)>Na(2)SO(4)>KCl.
Wang, Chen; Lei, Ying Duan; Wania, Frank
2016-12-06
Dissolved inorganic salts influence the partitioning of organic compounds into the aqueous phase. This influence is especially significant in atmospheric aerosol, which usually contains large amounts of ions, including sodium, ammonium, chloride, sulfate, and nitrate. However, empirical data on this salt effect are very sparse. Here, the partitioning of numerous organic compounds into solutions of Na 2 SO 4 , NH 4 Cl, and NH 4 NO 3 was measured and compared with existing data for NaCl and (NH 4 ) 2 SO 4 . Salt mixtures were also tested to establish whether the salt effect is additive. In general, the salt effect showed a decreasing trend of Na 2 SO 4 > (NH) 2 SO 4 > NaCl > NH 4 Cl > NH 4 NO 3 for the studied organic compounds, implying the following relative strength of the salt effect of individual anions: SO 4 2- > Cl - > NO 3 - and of cations: Na + > NH 4 + . The salt effect of different salts is moderately correlated. Predictive models for the salt effect were developed based on the experimental data. The experimental data indicate that the salt effect of mixtures may not be entirely additive. However, the deviation from additivity, if it exists, is small. Data of very high quality are required to establish whether the effect of constituent ions or salts is additive or not.
Taketani, Fumikazu; Kanaya, Yugo; Akimoto, Hajime
2008-03-20
The HO2 uptake coefficient (gamma) for inorganic submicrometer wet and dry aerosol particles ((NH4)2SO4 and NaCl) under ambient conditions (760 Torr and 296 +/- 2 K) was measured using an aerosol flow tube (AFT) coupled with a chemical conversion/laser-induced fluorescence (CC/LIF) technique. The CC/LIF technique enabled experiments to be performed at almost the same HO2 radical concentration as that in the atmosphere. HO2 radicals were injected into the AFT through a vertically movable Pyrex tube. Injector position-dependent profiles of LIF intensity were measured as a function of aerosol concentration. Measured gamma values for dry aerosols of (NH4)2SO4 were 0.04 +/- 0.02 and 0.05 +/- 0.02 at 20% and 45% relative humidity (RH), respectively, while those of NaCl were <0.01 and 0.02 +/- 0.01 at 20% and 53% RH, respectively. For wet (NH4)2SO4 aerosols, measured gamma values were 0.11 +/- 0.03, 0.15 +/- 0.03, 0.17 +/- 0.04, and 0.19 +/- 0.04, at 45%, 55%, 65%, and 75% RH, respectively, whereas for wet NaCl aerosols the values were 0.11 +/- 0.03, 0.09 +/- 0.02, and 0.10 +/- 0.02 for 53%, 63%, and 75% RH, respectively. Wet (NH4)2SO4 and NaCl aerosols doped with CuSO4 showed gamma values of 0.53 +/- 0.12 and 0.65 +/- 0.17, respectively. These results suggest that compositions, RH, and phase for aerosol particles are significant to HO2 uptake. Potential HO2 loss processes and their atmospheric contributions are discussed.
The effect of NaCl/g/ on the Na2SO4-induced hot corrosion of NiAl
NASA Technical Reports Server (NTRS)
Smeggil, J. G.; Bornstein, N. S.; Decrescente, M. A.
1977-01-01
Studies have been performed to examine the effect of NaCl vapor on the Na2SO4-induced hot corrosion of the alumina former NiAl. In the incubation period associated with such hot corrosion, NaCl(g) has been shown to be effective in removing aluminum from below the protective alumina scale and redepositing it as Al2O3 whiskers on the surface of the Na2SO4-coated sample. Similar effects seen in simple oxidation are associated with isothermal rupturing of the protective alumina scale.
Fluoride adsorption properties of three modified forms of activated alumina in drinking water.
Duan, Ying; Wang, Chenchen; Li, Xuede; Xu, Wei
2014-12-01
The study describes the removal of fluoride from drinking water using activated alumina (AA). AA was modified with H2SO4, FeCl3 and a combination of the two to enhance fluoride adsorption. The AA adsorbents were characterized using Brunauer-Emmett-Teller surface area analysis and X-ray fluorescence. The maximum adsorption capacity of H2SO4- and FeCl3-modified AA adsorbents was 4.98 mg/g, which is 3.4 times higher compared with that of normal AA. The results showed that the surface area of AA increased when modified with H2SO4. AA modified with FeCl3 enhanced fluoride adsorption ability through ion-exchange between chlorine ions and fluoride ions. The fluoride adsorption properties of AA modified with both H2SO4 and FeCl3 were consistent with the Langmuir model. The fluoride adsorption kinetics of the adsorbents were well described by the pseudo-second-order kinetic model.
NASA Astrophysics Data System (ADS)
Inomata, Yoshie; Gochou, Yoshihiro; Nogami, Masanobu; Howell, F. Scott; Takeuchi, Toshio
2004-09-01
Eleven bivalent metal complexes with bis(2-hydroxyethyl)iminotris(hydroxymethy)methane (Bis-Tris:hihm): [M(hihm)(H 2O)]SO 4· nH 2O (M: Co, Ni, Cu, Zn), [MCl(hihm)]Cl· nH 2O (M: Co, Ni, Cu), and [M(HCOO)(hihm)](HCOO) (M: Co, Ni, Cu, Zn) have been prepared and characterized by using their infrared absorption and powder diffuse reflection spectra, magnetic susceptibility, thermal analysis and powder X-ray diffraction analysis. The crystal structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [Cu(hihm)(H 2O)]SO 4 ( 3), [NiCl(hihm)]Cl·H 2O ( 6), [CuCl(hihm)]Cl ( 7) and [Co(HCOO)(hihm)](HCOO) ( 8) have been determined by single crystal X-ray diffraction analysis. The crystals of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2) and [Cu(hihm)(H 2O)]SO 4 ( 3) are each orthorhombic with the space group P2 12 12 1 and Pna2 1. For both complexes, the metal atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a water molecule. [NiCl(hihm)]Cl·H 2O ( 6) is monoclinic with the space group P2 1/ n. For complex ( 6), the nickel atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a chloride ion. [CuCl(hihm)]Cl ( 7) is orthorhombic with the space group P2 12 12 1. Although in this copper(II) complex the copper atom is ligated by six atoms, it is more reasonable to think that the copper atom is in a trigonal bipyramidal geometry coordinated with five atoms: three hydroxyl oxygen atoms, a nitrogen atom and a chloride ion if the bond distances and angles surrounding the copper atom are taken into consideration. [Co(HCOO)(hihm)](HCOO) ( 8) is monoclinic with the space group P2 1. In cobalt(II) complex ( 8), the cobalt atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and an oxygen atom of a formate ion. The structure of complex ( 8) is the same as the structure of [NiCl(hihm)]Cl·H 2O ( 6) except for the formate ion coordinating instead of the chloride ion. [M(hihm)(H 2O)]SO 4·H 2O (M: Co, Zn) ( 1, 4), [CoCl(hihm)]Cl·H 2O ( 5) and [M(HCOO)(hihm)](HCOO) (M: Ni, Cu, Zn) ( 9- 11) seem to have the same structures as the structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [NiCl(hihm)]Cl·H 2O ( 6) and [Co(HCOO)(hihm)](HCOO) ( 8), respectively, judging by the results of IR and powder diffuse reflection spectra and powder X-ray diffraction analysis. Bis-Tris has coordinated to the metal atoms as a pentadentate ligand in all complexes of which the structures have been determined by single crystal X-ray diffraction analysis in this work.
Molecular Relaxation in LiNO3-LiClO4 and Li2CO3-Li2SO4 Solid Binary Systems
NASA Astrophysics Data System (ADS)
Aliev, A. R.; Akhmedov, I. R.; Kakagasanov, M. G.; Aliev, Z. A.; Gafurov, M. M.; Amirov, A. M.
2018-06-01
The paper presents spectroscopic combinational scattering investigations of the molecular relaxation in LiNO3-LiClO4 and Li2CO3-Li2SO4 solid binary systems. It is found that the relaxation time for ν1(A) vibrations of NO3 - anion in LiNO3-LiClO4 system is lower than in LiNO3 crystal. And the relaxation time for ν1(A) vibrations of CO3 2- anion in Li2CO3-Li2SO4 system is lower than in Li2CO3 crystal. The increase in the relaxation time is explained by the additional relaxation mechanism of the excited mode of nitrate and carbon ions which is observed in these systems. This mechanism is linked to the vibrations of other anions (ClO4 - or SO4 2-) and a nucleation of the lattice phonon. Experiments show that the additional relaxation mechanism occurs due to the vibration difference which corresponds to the area of rather a high density of states of the phonon spectrum.
Potato plants (Solanum tuberosum L.) are chloride-sensitive: Is this dogma valid?
Hütsch, Birgit W; Keipp, Katrin; Glaser, Ann-Kathrin; Schubert, Sven
2018-06-01
Chloride sensitivity of the potato (Solanum tuberosum L.) cultivars Marabel and Désirée was investigated in two pot experiments (soil/sand mixture and hydroponics). It was tested whether there are differential effects of KCl and K 2 SO 4 application on tuber yield and tuber quality, and whether both potato cultivars differ in their chloride sensitivity. Tuber yield, dry matter percentage of the tubers, starch concentration and starch yield were not significantly affected by potassium source (K 2 SO 4 or KCl). After exposure to salt stress in hydroponics (100 mmol L -1 NaCl, 50 mmol L -1 Na 2 SO 4 , 50 mmol L -1 CaCl 2 ) for 5 days, 3-week-old potato plants had significantly reduced shoot dry mass after NaCl and Na 2 SO 4 application. However, CaCl 2 treatment did not significantly affect shoot growth, although the chloride concentration reached 65 to 74 mg Cl - mg -1 dry matter, similar to the NaCl treatment. In contrast, growth reductions were closely related to sodium concentrations, thus plants suffered sodium toxicity and not chloride toxicity. Both potato cultivars are chloride-resistant and can be fertilised with KCl instead of K 2 SO 4 without the risk of depression in tuber yield or tuber quality. The statement that potatoes are chloride-sensitive and that chloride has negative effects on yield performance needs reconsideration. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Środek, Dorota; Galuskina, Irina O.; Galuskin, Evgeny; Dulski, Mateusz; Książek, Maria; Kusz, Joachim; Gazeev, Viktor
2018-05-01
Chlorellestadite (IMA2017-013), ideally Ca5(SiO4)1.5(SO4)1.5Cl, the Cl-end member of the ellestadite group was discovered in a calcium-silicate xenolith in rhyodacite lava from the Shadil Khokh volcano, Greater Caucasus, South Ossetia. Chlorellestadite forms white, tinged with blue or green, elongate crystals up to 0.2-0.3 mm in length. Associated minerals include spurrite, larnite, chlormayenite, rondorfite, srebrodolskite, jasmundite and oldhamite. The empirical crystal chemical formula of the holotype specimen is Ca4.99Na0.01(SiO4)1.51(SO4)1.46(PO4)0.03(Cl0.61OH0.21F0.11)Σ0.93. Unit-cell parameters of chlorellestadite are: P63/m, a = 9.6002(2), c = 6.8692(2) Å, V = 548.27(3)Å3, Z = 2. Chlorellestadite has a Mohs hardness of 4-4.5 and a calculated density of 3.091 g/cm3. The cleavage is indistinct, and the mineral shows irregular fracture. The Raman spectrum of chlorellestadite is similar to the spectra of other ellestadite group minerals, with main bands located at 267 cm-1 (Ca-O vibrations), and between 471 and 630 cm-1 (SiO4 4- and SO4 2- bending vibrations) and 850-1150 cm-1 (SiO4 4- and SO4 2- stretching modes). Chlorellestadite forms in xenoliths of calcium-silicate composition when they are exposed to Cl-bearing volcanic exhalations at about 1000 °C under low pressure conditions.
Catalytical Photocyclization of Arylamines with a-Olefins in the Synthesis of 2-Alkylquinoline
ERIC Educational Resources Information Center
Makhmutov, Aynur; Usmanov, Salavat; Mustafin, Ahat
2016-01-01
The article deals with the results of investigation of the process of catalytical photocyclization of aniline and aniline hydrochloride with a-olefins (hexene-1, heptene-1 and octene-1). The following compounds of d- and f-metals are tested as probable catalysts: CuSO4•5H2O, EuCl3•6H2O, PrCl3•6H2O, TbCl3•6H2O, La2O3, MnO2, NiSO4•6H2O, NiCl2•6H2O,…
Guzmán-Duque, Fernando L; Palma-Goyes, Ricardo E; González, Ignacio; Peñuela, Gustavo; Torres-Palma, Ricardo A
2014-08-15
Taking crystal violet (CV) dye as pollutant model, the electrode, electrolyte and current density (i) relationship for electro-degrading organic molecules is discussed. Boron-doped diamond (BDD) or Iridium dioxide (IrO2) used as anode materials were tested with Na2SO4 or NaCl as electrolytes. CV degradation and generated oxidants showed that degradation pathways and efficiency are strongly linked to the current density-electrode-electrolyte interaction. With BDD, the degradation pathway depends on i: If i
NASA Astrophysics Data System (ADS)
Nageswara Rao, P. V.; Appa Rao, S.; Subba Rao, N.
2017-05-01
The present study on geochemical evolution of groundwater is taken up to assess the controlling processes of water chemistry in the Western Delta region of the River Godavari (Andhra Pradesh), which is one of the major rice-producing centers in India. The study region is underlain by coarse sand with black clay (buried channels), black silty clay of recent origin (floodplain) and gray/white fine sand of modern beach sediment of marine source (coastal zone), including brown silty clay with fine sand (paleo-beach ridges). Groundwater is mostly brackish and very hard. It is characterized by Na+ > Mg2+ > Ca2+:HCO3 - > Cl- > SO4 2- > NO3 -, Na+ > Mg2+ > Ca2+:Cl- > HCO3 - > SO4 2-, and Mg2+ > Na+ > Ca2+ > or < K+:HCO3 - > Cl- > or > SO4 2- facies. The ionic relations (Ca2+ + Mg2+:HCO3 -, Ca2+ + Mg2+:SO4 2- + HCO3 -, Na+ + K+:TC, Na+ + K+:Cl- + SO4 2-, HCO3 -:TC, HCO3 -:Ca2+ + Mg2+, Na+:Cl- and Na+:Ca2+) indicate that the rock weathering, mineral dissolution, evaporation and ion exchange are the processes to control the aquifer chemistry. Anthropogenic and marine sources are also the supplementary factors for brackish water quality. These observations are further supported by Gibbs mechanisms that control the water chemistry. Thus, the study suggests that the initial quality of groundwater of geogenic origin has been subsequently modified by the influences of anthropogenic and marine sources.
Influence of pH and ionic strength (NaCl/Na2SO4) on the reaction HO Cl/ClO- + NO2-
NASA Astrophysics Data System (ADS)
Marcellos da Rosa, M.; Zetzsch, C.
2003-04-01
Equilibria such as HOCl + NO_2^- leftrightarrow ClNO_2 + OH^- and ClNO_2 + H_2O leftrightarrow NO_3^- + 2H^+ + Cl^- play an important role in halogen activation in the troposphere. We studied the oxidation of NO_2^- by HOCl/ClO^- in aqueous phase by stopped-flow measurements at different ionic strengths (bidestilled water, 0.1M NaCl, 1.0M NaCl and 1.0M Na_2SO^4) at various pH values (4.0, 5.5, 6.2 and 10.0) at 293K. The experiments were performed using a SX.18MV Applied Photophysics spectrophotometer, observing the exponential decay of HOCl/ClO^- at λ = 290nm between 10ms and 100s. HOCl (pK_a= 7.50) was obtained by bubbling N_2 with 1% Cl_2 through bidestilled water. The pH of the aqueous solutions of HOCl was determined by a pH meter (CG820, Schott) with a glass electrode N6180 (calibrated with standard buffer solutions at pH = 3.0, 4.0, 7.0 and 10.0), and the pH values were adjusted by dropwise addition of HClO_4 or NaOH. The concentrations of HOCl (ɛHOCl (230nm) = 100M-1cm-1) ([HOCl] = 1.3mM - 10mM) and ClO- (ɛClO- (292nm) = 350 M-1cm-1) ([ClO^-] = 1.3mM - 5mM) were determined by UV spectrometry (Kontron UVIKON 860) at a resolution of 2 nm in 1 cm cells at various pH values. The concentration range of NO_2^- was between 5mM and 50mM. The following second-order rate constant kII were obtained at 293K at various pH values (in units of M-1s-1) in H_2O: pH 4.0, (5.6±0.3)\\cdot 10^3; pH 5.5, (5.0±0.4)\\cdot 10^3; pH 10.0, 3.9±0.4; in 0.1M NaCl: pH 5.5, (4.3±0.4)\\cdot 10^3; pH 10.0, 2.6±0.4; in 1.0M NaCl: pH 5.5, (4.0±0.3); pH 10.0, 0.7±0.2 and in 1.0M Na_2SO_4: pH 5.5, (3.0±0.3)\\cdot 10^3; pH 10.0, 1.9±0.4. There is a strong effect of the pH on the reaction HOCl/ClO^- + NO_2^-, as reflected in the ratio kII_a(pH 5.5, HOCl)/kII_b(pH 10.0, ClO^-): in H_2O (kII_a ˜ 1200 \\cdot kII_b), in 0.1M NaCl (kII_a ˜ 1900 \\cdot kII_b), in 1.0M NaCl (kII_a ˜ 5700 \\cdot kII_b) and in 1.0 M Na_2SO_4 (kII_a ˜ 1500 \\cdot kII_b). A mechanism for the oxidation of NO_2^- by HOCl/ClO^- will be presented and compared with previous work.
Yan, Mi; Qi, Zhifu; Yang, Jie; Li, Xiaodong; Ren, Jianli; Xu, Zhang
2014-11-01
The effect of ammonium sulfate ((NH4)2SO4) and urea (CO(NH2)2) on polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) formation from active carbon was investigated in this study. Both additives could significantly inhibit PCDD/F formation, and PCDD/F (TEQ) generation was reduced to 98.5% (98%) or 64.5% (77.2%) after 5% (NH4)2SO4 or CO(NH2)2 was added into model ash, respectively. The inhibition efficiency of PCDDs was higher than the value of PCDFs, however, the reduction of PCDD/F yield was mainly from PCDFs decreasing. In addition, the solid-phase products were reduced more than the gas-phase compounds by inhibitors. By the measurement of chlorine emission in the phase of ion (Cl[Cl(-)]) and molecule gas (Cl[Cl2]), it was observed that both Cl[Cl(-)] and Cl[Cl2] were reduced after inhibitors were added into ash. Cl[Cl2] was reduced to 51.0% by urea addition, which was supposed as one possible mechanism of PCDD/F inhibition. Copyright © 2014. Published by Elsevier B.V.
Spermicidal activity of some halides.
Narayan, J P; Singh, J N
1979-01-01
Though most of the metallic ions are spermicidal in action, the present investigation emphasises the spermicidal activity of anions. Among the inorganic compounds screened at 4 concentrations (0.01%, 0.1%, 1% and 5%) halides are mainly spermicidal, except NaCl, KCl & CsCl which are spermiostatic; sulphates and nitrates are mainly spermiostatic except ZnSO4 at 1% concentration and above; CuSO4, Al2 (SO4)3, Uo2(NO3)2.6H2O and AgNO3 at 5% concentration where they become spermicidal.
Anomalous surface behavior of hydrated guanidinium ions due to ion pairing
NASA Astrophysics Data System (ADS)
Ekholm, Victor; Vazdar, Mario; Mason, Philip E.; Bialik, Erik; Walz, Marie-Madeleine; Öhrwall, Gunnar; Werner, Josephina; Rubensson, Jan-Erik; Jungwirth, Pavel; Björneholm, Olle
2018-04-01
Surface affinity of aqueous guanidinium chloride (GdmCl) is compared to that of aqueous tetrapropylammonium chloride (TPACl) upon addition of sodium chloride (NaCl) or disodium sulfate (Na2SO4). The experimental results have been acquired using the surface sensitive technique X-ray photoelectron spectroscopy on a liquid jet. Molecular dynamics simulations have been used to produce radial distribution functions and surface density plots. The surface affinities of both TPA+ and Gdm+ increase upon adding NaCl to the solution. With the addition of Na2SO4, the surface affinity of TPA+ increases, while that of Gdm+ decreases. From the results of MD simulations it is seen that Gdm+ and SO4 2 - ions form pairs. This finding can be used to explain the decreased surface affinity of Gdm+ when co-dissolved with SO4 2 - ions. Since SO4 2 - ions avoid the surface due to the double charge and strong water interaction, the Gdm+-SO4 2 - ion pair resides deeper in the solutions' bulk than the Gdm+ ions. Since TPA+ does not form ion pairs with SO4 2 -, the TPA+ ions are instead enriched at the surface.
Spectrophotometric estimation of bromide ion in excess chloride media.
Adimurthy, S; Susarla, V R K S; Reddy, M P; Ramachandraiah, G
2005-10-31
The redox reaction between bromate and chloride ions in the presence and the absence of two or less equivalents of bromide ion ascertaining the formation of bromine chloride species of type BrCl and BrCl(2)(-) in subsequent reactions in 4% H(2)SO(4), has been studied by spectrophotometry. Calibration graphs for the bromide ion estimation in 0.1% KBrO(3)-4% H(2)SO(4) medium are determined separately in the presence of known amounts of NaCl. The effect of Cl(-) ion percentage on the determination of Br(-) ion is studied and reported herewith a suitable equation for a precise, reliable and quick spectrophotometric estimation.
A kinetic study of the interaction between atomic oxygen and aerosols
NASA Technical Reports Server (NTRS)
Akers, F. I.; Wightman, J. P.
1976-01-01
This study was concerned with the effects of NH4Cl and (NH4)2SO4 aerosols on the kinetics of disappearance of atomic oxygen. Atomic oxygen was generated by a 2.45-GHz microwave discharge and the kinetics of disappearance measured in a fast flow system using NO2 titration. Values of the recombination coefficient for heterogeneous wall recombination were determined for clean, H2SO4-coated, and (NH4)2SO4-coated Pyrex to be 0.000050, 0.000020, and 0.000019, respectively. A rapid exothermic chemical reaction was found to occur between atomic oxygen and an NH4Cl wall coating; the products were NH3, NO, H2O, and HCl. The NH4Cl aerosol was generated by gas phase reaction of NH3 with HCl. The aerosol particles were approximately spherical and nearly monodisperse with a mean diameter of 1.6 plus or minus 0.2 micron. The rate constant for the disappearance of atomic oxygen in the presence of NH4Cl aerosol was measured. No significant decrease was observed in the rate of disappearance of atomic oxygen in the presence of an (NH4)2SO4 aerosol at a concentration of 285 mg per cu m.
Li, Jian; Liu, Yun; Kong, Dongdong; Ren, Shujuan; Li, Na
2016-05-01
In the present study, a two-hybrid yeast bioassay and a T-screen were used to screen for the thyroid receptor (TR)-disrupting activity of select metallic compounds (CdCl2, ZnCl2, HgCl2, CuSO4, MnSO4, and MgSO4). The results reveal that none of the tested metallic compounds showed TR-agonistic activity, whereas ZnCl2, HgCl2, and CdCl2 demonstrated TR antagonism. For the yeast assay, the dose-response relationship of these metallic compounds was established, and the concentrations producing 20 % of the maximum effect of ZnCl2, HgCl2, and CdCl2 were 9.1 × 10(-5), 3.2 × 10(-6), and 1.2 × 10(-6) mol/L, respectively. The T-screen also supported the finding that ZnCl2, HgCl2, and CdCl2 decreased the cell proliferation at concentrations ranging from 10(-6) to 10(-4) mol/L. Furthermore, the thyroid-disrupting activity of metallic compounds in environmental water samples collected from the Guanting Reservoir, Beijing, China was evaluated. Solid-phase extraction was used to separate the organic extracts, and a modified two-hybrid yeast bioassay revealed that the metallic compounds in the water samples could affect thyroid hormone-induced signaling by decreasing the binding of the thyroid hormone. The addition of ethylenediaminetetraacetic acid (30 mg/L) could eliminate the effects. Thus, the cause(s) of the thyroid toxicity in the water samples appeared to be partly related to the metallic compounds.
NASA Astrophysics Data System (ADS)
Harlov, D. E.; Budzyn, B.
2008-12-01
Cl-CO3-scapolite [(Na,Ca)4[Al3 (Al,Si) 3 Si3 O24](Cl, CO3 , SO4 )] occurs as a common partial to total alteration of plagioclase in deep-crustal xenoliths, skarns, marbles, gabbros, metabasites, calc-silicate gneisses, as well as in quartzofeldspathic granulite-facies rocks in general (Moecher and Essene, 1990, J Petrol 31, 997). Alteration of plagioclase to Cl-CO3-scapolite is presumed due to metasomatism by CO2-NaCl-H2O fluids (Satish-Kumar and Santosh, 1998, Geol Mag 135, 27). Previous experimental work on CO3-scapolite has focused on reversing the equilibrium 3 CaAl2 Si2 O8 + CaCO3 = Ca4 Al6 Si6 O24 CO3 in either pure CO2 (Goldschmidt and Newton, 1977, Am Mineral 62, 1063) or in CO2-H2O (Huckenholz and Seiberl, 1989 Abs IGC 28, 2.79). These experiments have determined that the anorthite- calcite-scapolite equilibrium is nearly pressure-invariant in P-T space (200 to 1500 MPa) occurring at approximately 790 to 820 °C (Huckenholz and Seiberl, 1989). In this study, a series of experiments, involving the equilibrium 3 Plagioclase(An60) + 0.5 CaCO3 + 0.5 CaSO4 = [(Na,Ca)4[Al3 (Al,Si)3 Si3 O24](Cl, CO3, SO4 )] plus an NaCl brine (10/90, 20/80, 30/70, and 50/50 molar NaCl/H2O) have been done at 500, 1000, and 1500 MPa and 600 to 900 °C. Natural plagioclase and scapolite, along with synthetic calcite and anhydrite, were lightly ground together in equi-molar amounts in ethanol. The mineral mix (10 mg) + NaCl brine (5 mg), or pure H2O (1.5 mg), were loaded into 3 mm diameter/1.3 mm long Pt capsules which were arc-welded shut, folded, and placed horizontally in a CaF2 setup (with graphite oven), such that the thermocouple tip touched the Pt capsule, or placed in a hydrothermal autoclave (600 and 700 °C; 500 MPa) with an internal thermocouple. A series of duplicate experiments for the same mineral mix, at the same P-T conditions, were done utilizing pure H2O as the flux. The H2O-only experiments duplicated the P-T reversals of Huckenholz and Seiberl (1989). In contrast, the NaCl/H2 O experiments indicate that the stability field of Cl-CO3-scapolite (SiO2 =52.1, Al2O3=24.9, CaO=11.9, Na2O=7.60, Cl=1.86, CO3=2.00, SO4=0.45), relative to plagioclase, greatly expands in the presence of NaCl brines at NaCl concentrations above 10 percent NaCl such that Cl-CO2-scapolite is stable over 600 to 900 °C and 500 to 1500 MPa. This result further strengthens the proposition that NaCl brines, coupled with CO2-bearing fluids, can be and probably are involved during high-grade scapolitization of plagioclase-bearing rocks in the mid to lower crust and upper mantle.
Anderson, Craig M; Jain, Swapan S; Silber, Lisa; Chen, Kody; Guha, Sumedha; Zhang, Wancong; McLaughlin, Emily C; Hu, Yongfeng; Tanski, Joseph M
2015-04-01
The reaction of Na[RuCl4(SO(CH3)2)2], 1, with one equivalent of FcCONHCH2C6H4N (Fc=FeC10H9), L1, FcCOOCH2CH2C3H3N2, L2, FcCOOC6H4N, L3, afforded the dinuclear species, Na[FcCONHCH2C6H4N[RuCl4(SO(CH3)2)
NASA Astrophysics Data System (ADS)
Shirini, Farhad; Langarudi, Mohaddeseh Safarpoor Nikoo; Daneshvar, Nader; Jamasbi, Negar; Irankhah-Khanghah, Mahsa
2018-06-01
[H2-DABCO][ClO4]2, as a novel DABCO-based ionic liquid, has been synthesized, characterized, and used as an affordable and recyclable catalyst in the synthesis of pyrimido [4,5-b]-quinoline and pyrimido [4,5-d]pyrimidine derivatives. The procedure shows several advantages over the previous methods such as simplicity, high yields, short reaction times, easy work-up, and use of a non-metal catalyst. Moreover, this paper virtually debates the impact of anions and cations on moisture-resistant property and catalytic activity in DABCO-based ionic liquids through the comparison of [DABCO](SO3H)2(Cl)2, [DABCO](SO3H)2(HSO4)2, [H2-DABCO][H2PO4]2, [H2-DABCO][HSO4]2, and [H2-DABCO][ClO4]2.
Romero-Gil, V; Rejano-Zapata, L; Garrido-Fernández, A; Arroyo-López, F N
2016-08-01
This study uses a mathematical approach to assessing the inhibitory effect of Zn(2)(+)(0-10 mM, obtained from ZnCl2 and ZnSO4) in presence of NaCl (0-8%) and hydroxytyrosol (0-2588 mg/L), on a yeast cocktail formed by species Pichia galeiformis, Pichia kudriavzevii, Pichia manshurica and Candida thaimueangensis obtained from spoilt green olive packages. The logistic/probabilistic models were built in laboratory medium using a total of 1980 responses (1188 for NaCl and 792 for hydroxytyrosol). ZnCl2 showed significantly higher inhibitory effect than ZnSO4 in the presence of both NaCl (p < 0.033) and hydroxytyrosol (p < 0.009). NaCl did not interfere the effect of Zn(2)(+)while hydroxytyrosol, at high levels, had a slight antagonistic effect. According to models, Zn(2)(+)inhibits (p = 0.01) the yeast cocktail in the range 4.5-5.0 mM for ZnCl2, or 8.5-9.5 mM for ZnSO4. Therefore, this work confirms the fungicidal activity of zinc compounds (mainly ZnCl2) in synthetic medium, and also shows that the loss of zinc effectiveness in real green Spanish-style olive packaging is not due to the presence of NaCl or hydroxytyrosol, two of the most abundant chemical compounds in the product. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ruprecht, Heidi; Sigg, Laura
The concentrations of aerosols (NH 4NO 3, (NH 4) 2SO 4 and NH 4Cl) and of gases (HCl (g), HNO 3(g), NH 3(g) were determined by denuder methods under different conditions (in the absence of fog, before, during and after fog events). At this site situated in an urban region, high concentrations of the gaseous strong acids HCl (g) and HNO 3(g) are observed. NH 4Cl and NH 4NO 3 aerosols represent a major fraction of the Cl - and NO 3- aerosols (<2.4 μm)collected by denuders. During a fog event, very high concentrations of SO 42- were found in small aerosols, which are attributed to the aqueous phase oxidation of SO 2 under the influence of high pH due to the presence of NH 3. Differences in SO 42- concentrations measured in aerosols (<2.4 μm) and in fog droplets were probably due to mass-transport limitations of the SO 2 oxidation. Ammonium sulfate aerosols represent in some cases a significant fraction of the total S present (SO 2(g) + SO 42-. Soluble aerosols and gases contribute to the composition of fogwater and are released again after fog dissipation.
Direct effects of manganese compounds on dopamine and its metabolite Dopac: an in vitro study
Sistrunk, Shannon C.; Ross, Matthew K.; Filipov, Nikolay M.
2007-01-01
Following combustion of fuel containing the additive methylcyclopentadienyl-manganese-tricarbonyl (MMT), manganese phosphate (MnPO4) and manganese sulfate (MnSO4) are emitted in the atmosphere. Manganese chloride (MnCl2), another Mn2+ species, is widely used experimentally. Using rat striatal slices, we found that MnPO4 decreased tissue and media dopamine (DA) and media Dopac (a DA metabolite) levels substantially more than either MnCl2 or MnSO4; antioxidants were partially protective. Also, both MnCl2 and MnPO4 (more potently) oxidized DA and Dopac even in the absence of tissue in the media, suggesting a direct interaction between Mn and DA/Dopac. Because aminochrome is a major oxidation product of DA, we next determined whether MnPO4 will be more potent in forming aminochrome than MnCl2 or MnSO4 which, indeed, was the case. Thus, a potential additional mechanism for the neurotoxic effects of environmentally-relevant forms of Mn, MnPO4 in particular, is the generation of reactive DA intermediates. PMID:18449324
Hou, Shaodong; Ling, Li; Dionysiou, Dionysios D; Wang, Yuru; Huang, Jiajia; Guo, Kaiheng; Li, Xuchun; Fang, Jingyun
2018-06-05
Halides and natural organic matter (NOM) are inevitable in aquatic environment and influence the degradation of contaminants in sulfate radical (SO 4 •- )-based advanced oxidation processes. This study investigated the formation of chlorate in the coexposure of SO 4 •- , chloride (Cl - ), bromide (Br - ) and/or NOM in UV/persulfate (UV/PDS) and cobalt(II)/peroxymonosulfate (Co/PMS) systems. The formation of chlorate increased with increasing Cl - concentration in the UV/PDS system, however, in the Co/PMS system, it initially increased and then decreased. The chlorate formation involved the formation of hypochlorous acid/hypochlorite (HOCl/OCl - ) as an intermediate in both systems. The formation was primarily attributable to SO 4 •- in the UV/PDS system, whereas Co(III) played a significant role in the oxidation of Cl - to HOCl/OCl - and SO 4 •- was important for the oxidation of HOCl/OCl - to chlorate in the Co/PMS system. The pseudo-first-order rate constants ( k') of the transformation from Cl - to HOCl/OCl - were 3.32 × 10 -6 s -1 and 9.23 × 10 -3 s -1 in UV/PDS and Co/PMS, respectively. Meanwhile, k' of HOCl/OCl - to chlorate in UV/PDS and Co/PMS were 2.43 × 10 -3 s -1 and 2.70 × 10 -4 s -1 , respectively. Br - completely inhibited the chlorate formation in UV/PDS, but inhibited it by 45.2% in Co/PMS. The k' of SO 4 •- reacting with Br - to form hypobromous acid/hypobromite (HOBr/OBr - ) was calculated to be 378 times higher than that of Cl - to HOCl/OCl - , but the k' of Co(III) reacting with Br - to form HOBr/OBr - was comparable to that of Cl - to HOCl/OCl - . NOM also significantly inhibited the chlorate formation, due to the consumption of SO 4 •- and reactive chlorine species (RCS, such as Cl·, ClO· and HOCl/OCl - ). This study demonstrated the formation of chlorate in SO 4 •- -based AOPs, which should to be considered in their application in water treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufi, S.M.; Wallace, A.
1982-07-01
Maximum growth over a period of 3 months of Atriplex hymenelytra (Torr.) Wats. (desert holly) in solution culture was obtained when the nutrient solution contained 5 x 10/sup -2/ N NaCl. Sodium concentratons in leaves at maximum yield was 7.88% and that of Cl was also 7.88%. In the presence of 10/sup -2/ N Na/sub 2/SO/sub 4/, there was much less growth than with 10/sup -2/ N NaCl. The highest NaCl level depressed levels of K, Ca, and Mg in leaves, stems, and roots. The highest NaCl level also decreased levels of micronutrients in many of the plants.
NASA Astrophysics Data System (ADS)
Wang, G. H.; Cheng, C. L.; Huang, Y.; Tao, J.; Ren, Y. Q.; Wu, F.; Meng, J. J.; Li, J. J.; Cheng, Y. T.; Cao, J. J.; Liu, S. X.; Zhang, T.; Zhang, R.; Chen, Y. B.
2014-11-01
A total suspended particulate (TSP) sample was collected hourly in Xi'an, an inland megacity of China near the Loess Plateau, during a dust storm event of 2013 (9 March 18:00-12 March 10:00 LT), along with a size-resolved aerosol sampling and an online measurement of PM2.5. The TSP and size-resolved samples were determined for elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC) and nitrogen (WSON), inorganic ions and elements to investigate chemistry evolution of dust particles. Hourly concentrations of Cl-, NO3-, SO42-, Na+ and Ca2+ in the TSP samples reached up to 34, 12, 180, 72 and 28 μg m-3, respectively, when dust peak arrived over Xi'an. Chemical compositions of the TSP samples showed that during the whole observation period NH4+ and NO3- were linearly correlated with each other (r2=0.76) with a molar ratio of 1 : 1, while SO42- and Cl- were well correlated with Na+, Ca2+, Mg2+ and K+ (r2 > 0.85). Size distributions of NH4+ and NO3- presented a same pattern, which dominated in the coarse mode (> 2.1 μm) during the event and predominated in the fine mode (< 2.1 μm) during the non-event. SO42- and Cl- also dominated in the coarse mode during the event hours, but both exhibited two equivalent peaks in both the fine and the coarse modes during the non-event, due to the fine-mode accumulations of secondarily produced SO42- and biomass-burning-emitted Cl- and the coarse-mode enrichments of urban soil-derived SO42- and Cl-. Linear fit regression analysis further indicated that SO42- and Cl- in the dust samples possibly exist as Na2SO4, CaSO4 and NaCl, which directly originated from Gobi desert surface soil, while NH4+ and NO3- in the dust samples exist as NH4NO3. We propose a mechanism to explain these observations in which aqueous phase of dust particle surface is formed via uptake of water vapor by hygroscopic salts such as Na2SO4 and NaCl, followed by heterogeneous formation of nitrate on the liquid phase and subsequent absorption of ammonia. Our data indicate that 54 ± 20% and 60 ± 23% of NH4+ and NO3- during the dust period were secondarily produced via this pathway, with the remaining derived from the Gobi desert and Loess Plateau, while SO42- in the event almost entirely originated from the desert regions. Such cases are different from those in the East Asian continental outflow region, where during Asia dust storm events SO42- is secondarily produced and concentrates in sub-micrometer particles as (NH4)2SO4 and/or NH4HSO4. To the best of our knowledge, the current work for the first time revealed an infant state of the East Asian dust ageing process in the regions near the source, which is helpful for researchers to understand the panorama of East Asian dust ageing process from the desert area to the downwind region.
Ko, K Y; Nam, K C; Jo, C; Lee, E J; Ahn, D U
2011-05-01
The objective of this study was to develop a new protocol that could be used for large-scale separation of phosvitin from egg yolk using ethanol and salts. Yolk granules, which contain phosvitin, were precipitated after diluting egg yolk with 9 volumes of distilled water. The pH of the yolk solution was adjusted to pH 4.0 to 8.0 using 6 N HCl or NaOH, and then yolk granules containing phosvitin was separated by centrifugation at 3,220 × g for 30 min. Lipids and phospholipids were removed from the insoluble yolk granules using 85% ethanol. The optimal volumes and concentration of ethanol in removing lipids from the precipitants were determined. After centrifugation, the lipid-free precipitants were homogenized with 9 volumes of ammonium sulfate [(NH(4))(2)SO(4)] or NaCl to extract phosvitin. The optimal pH and concentration of (NH(4))(2)SO(4) or NaCl for the highest recovery rate and purity for phosvitin in final solution were determined. At pH 6.0, all the phosvitin in diluted egg yolk solution was precipitated. Among the (NH(4))(2)SO(4) and NaCl conditions tested, 10% (NH(4))(2)SO(4) or 10% NaCl at pH 4.0 yielded the greatest phosvitin extraction from the lipid-free precipitants. The recovery rates of phosvitin using (NH(4))(2)SO(4) and NaCl were 72 and 97%, respectively, and their purity was approximately 85%. Salt was removed from the extract using ultrafiltration. The salt-free phosvitin solution was concentrated using ultrafiltration, the impurities were removed by centrifugation, and the resulting solution was freeze-dried. The partially purified phosvitin was suitable for human use because ethanol was the only solvent used to remove lipids, (NH(4))(2)SO(4) or NaCl was used to extract phosvitin, and ultrafiltration was used to remove salt and concentrate the extract. The developed method was simple and suitable for a large-scale preparation of partially purified phosvitin.
NASA Astrophysics Data System (ADS)
Shetty, Mahesha; Gowda, B. Thimme
2005-02-01
Fifty four N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides of the general formula 4-X'C6H4SO2NH(i,j-X2C6H3), where X' = H, CH3, C2H5, F, Cl or Br; i,j = 2,3; 2,4; 2,5; 2,6 or 3, 4; and X = CH3 or Cl, are prepared and characterized and their infrared, 1H and 13C NMR spectra in solution are studied. The N-H stretching vibrations νN-H absorb in the range 3305 - 3205 cm-1, while the asymmetric and symmetric SO2 vibrations vary in the ranges 1377 - 1307 cm-1 and 1184 - 1128 cm-1, respectively. The N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides show C-S, S-N and C-N stretching vibrations in the ranges 844 - 800 cm-1, 945 - 891 cm-1 and 1309 - 1170 cm-1, respectively. The compounds do not exhibit particular trends in the variation of these frequencies on substitution either at ortho or meta positions with either a methyl group or Cl. The observed 1H and 13C chemical shifts of
Zhang, Le; Zhang, Jifeng
2012-09-04
The perturbation of salt ions on the solubility of a monoclonal antibody was systematically studied at various pHs in Na(2)SO(4), NaNO(3), NaCl, NaF, MgSO(4), Mg(NO(3))(2) and MgCl(2) solutions below 350 mM. At pH 7.1, close to the pI, all of the salts increased the solubility of the antibody, following the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-) for anions and Mg(2+) > Na(+) for cations. At pH 5.3 where the antibody had a net positive charge, the anions initially followed the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-) for effectiveness in reducing the solubility and then switched to increasing the solubility retaining the same order. Furthermore, the antibody was more soluble in the Mg(2+) salt solutions than in the corresponding Na(+) salt solutions with the same anion. At pH 9.0 where the antibody had a net negative charge, an initial decrease in the protein solubility was observed in the solutions of the Mg(2+) salts and NaF, but not in the rest of the Na(+) salt solutions. Then, the solubility of the antibody was increased by the anions in the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-). The above complex behavior is explained based on the ability of both cation and anion from a salt to modulate protein-protein interactions through their specific binding to the protein surface.
Al-Mailem, Dina M.; Eliyas, Mohamed; Radwan, Samir S.
2018-01-01
The aim of this study was to explore the heavy-metal resistance and hydrocarbonoclastic potential of microorganisms in a hypersaline soil. For this, hydrocarbonoclastic microorganisms were counted on a mineral medium with oil vapor as a sole carbon source in the presence of increasing concentrations of ZnSO4, HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4. The colony-forming units counted decreased in number from about 150 g-1 on the heavy-metal-free medium to zero units on media with 40–100 mg l-1 of HgCl2, CdSO4, PbNO3, or Na2HAsO4. On media with CuSO4 or ZnSO4 on the other hand, numbers increased first reaching maxima on media with 50 mg l-1 CuSO4 and 90 mg l-1 ZnSO4. Higher concentrations reduced the numbers, which however, still remained considerable. Pure microbial isolates in cultures tolerated 200–1600 mg l-1 of HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4 in the absence of crude oil. In the presence of oil vapor, the isolates tolerated much lower concentrations of the heavy metals, only 10–80 mg l-1. The addition of 10 Fe2(SO4)3 and 200 mg l-1 proline (by up to two- to threefold) enhanced the tolerance of several isolates to heavy metals, and consequently their potential for oil biodegradation in their presence. The results are useful in designing bioremediation technologies for oil spilled in hypersaline areas. PMID:29563904
NASA Astrophysics Data System (ADS)
Han, Mei; Zhao, Yanyang; Zhao, Hui; Han, Zuozhen; Yan, Huaxiao; Sun, Bin; Meng, Ruirui; Zhuang, Dingxiang; Li, Dan; Liu, Binwei
2018-04-01
Based on the terminology of "aragonite seas" and "calcite seas", whether different Mg sources could affect the mineralogy of carbonate sediments at the same Mg/Ca ratio was explored, which was expected to provide a qualitative assessment of the chemistry of the paleo-ocean. In this work, amorphous calcium carbonate (ACC) was prepared by direct precipitation in anhydrous ethanol and used as a precursor to study crystallization processes in MgSO4 and MgCl2 solutions having different concentrations at 60 °C (reaction times 240 and 2880 min). Based on the morphology of the aragonite crystals, as well as mineral saturation indices and kinetic analysis of geochemical processes, it was found that these crystals formed with a spherulitic texture in 4 steps. First, ACC crystallized into columnar Mg calcite by nearly oriented attachment. Second, the Mg calcite changed from columnar shapes into smooth dumbbell forms. Third, the Mg calcite transformed into rough dumbbell or cauliflower-shaped aragonite forms by local dissolution and precipitation. Finally, the aragonite transformed further into spherulitic radial and irregular aggregate forms. The increase in Ca2+ in the MgSO4 solutions compared with the MgCl2 solutions indicates the fast dissolution and slow precipitation of ACC in the former solutions. The phase transition was more complete in the 0.005 M MgCl2 solution, whereas Mg calcite crystallized from the 0.005 M MgSO4 solution, indicating that Mg calcite could be formed more easily in an MgSO4 solution. Based on these findings, aragonite and Mg calcite relative to ACC could be used to provide a qualitative assessment of the chemistry of the paleo-ocean. Therefore, calcite seas relative to high-Mg calcite could reflect a low concentration MgSO4 paleo-ocean, while aragonite seas could be related to an MgCl2 or high concentration of MgSO4 paleo-ocean.
Spatially resolved micro-Raman observation on the phase separation of effloresced sea salt droplets.
Xiao, Han-Shuang; Dong, Jin-Ling; Wang, Liang-Yu; Zhao, Li-Jun; Wang, Feng; Zhang, Yun-Hong
2008-12-01
We report on the investigation of the phase separation of individual seawater droplets in the efflorescence processes with the spatially resolved Raman system. Upon decreasing the relative humidity (RH), CaSO4.0.5H2O separated out foremost fromthe droplet atan unexpectedly high RH of approcimately 90%. Occasionally, CaSO4.2H2O substituted for CaSO4.O.5H2O crystallizing first at approximately 78% RH. Relatively large NaCI solids followed to crystallize at approximately 55% RH and led to the great loss of the solution. Then, the KMgCl3.6H2O crystallites separated out from the residual solutions, adjacentto NaCl at approximately 44% RH. Moreover, a shell structure of dried sea salt particle was found to form at low RHs, with the NaCl crystals in the core and minor supersaturated solutions covered with MgSO4 gel coating on the surface. Ultimately, the shielded solution partly effloresced into MgSO4 hydrates at very dry state (<5% RH).
Comparisons of plutonium, thorium, and cerium tellurite sulfates.
Lin, Jian; Cross, Justin N; Diwu, Juan; Meredith, Nathan A; Albrecht-Schmitt, Thomas E
2013-04-15
The hydrothermal reaction of PuCl3 or CeCl3 with TeO2 in the presence of sulfuric acid under the comparable conditions results in the crystallization of Pu(TeO3)(SO4) or Ce2(Te2O5)(SO4)2, respectively. Pu(TeO3)(SO4) and its isotypic compound Th(TeO3)(SO4) are characterized by a neutral layer structure with no interlamellar charge-balancing ions. However, Ce2(Te2O5)(SO4)2 possesses a completely different dense three-dimensional framework. Bond valence calculation and UV-vis-NIR spectra indicate that the Ce compound is trivalent whereas the Pu and Th compounds are tetravalent leading to the formation of significantly different compounds. Pu(TeO3)(SO4), Th(TeO3)(SO4), and Ce2(Te2O5)(SO4)2 represent the first plutonium/thorium/cerium tellurite sulfate compounds. Our study strongly suggests that the chemistries of Pu and Ce are not the same, and this is another example of the failure of Ce as a surrogate.
Effect of calcium and light on the germination of Urochondra setulosa under different salts*
Shaikh, Faiza; Gul, Bilquees; Li, Wei-qiang; Liu, Xiao-jing; Khan, M. Ajmal
2007-01-01
Urochondra setulosa (Trin.) C.E. Hubbard is a coastal halophytic grass thriving on the coastal dunes along the Pakistani seashore. This grass could be useful in coastal sand dune stabilization using seawater irrigation. The purpose of this investigation was to test the hypothesis that Ca2+ (0.0, 2.5, 5.0, 10.0 and 50.0 mmol/L) alleviates the adverse effects of KCl, MgSO4, NaCl and Na2SO4 at 0, 200, 400, 600, 800 and 1000 mmol/L on the germination of Urochondra setulosa. Seed germination was inhibited with increase in salt concentration with few seeds germinated at and above 400 mmol/L concentration. No seed germinated in any of the KCl treatments. Inclusion of CaCl2 substantially alleviated the inhibitory effects of all salts. Germination was higher under photoperiod in comparison to those seeds germinated under complete darkness. Among the CaCl2 concentrations used, 10 mmol/L was most effective in alleviating salinity effects and allowing few seeds to germinate at 1000 mmol/L KCl, MgSO4, NaCl and Na2SO4 solution. PMID:17173358
Skinner, Dorothy M.; Beattie, Wanda G.
1973-01-01
A combination of both Ag+ and Hg2+ in Cs2SO4 effects the complete separation of two DNAs having identical densities in CsCl. Satellite DNAs of hermit crab, Pagurus pollicaris, and lobster, Homarus americanus, have been isolated by this means. PMID:4522292
Singh, Gursharan; Sharma, Prince; Capalash, Neena
2009-08-01
An alkalophilic and halotolerant laccase from gamma-proteobacterium JB catalyzed in high concentrations of organic solvents and various salts. The enzyme retained 80-100% activity in 10% concentration of dimethylsulfoxide (DMSO), ethanol, acetone or methanol; 100, 85 and 50% activity in 20 mM MgCl(2), 5.0 mM MnCl(2) and 0.1 mM CuCl(2); 140, 120 and 110% activity in 5.0 mM MnSO(4), 10 mM MgSO(4) and 1mM CaSO(4), respectively. Sodium halides inhibited the enzyme in the order: F(-)> Br(-)> I(-)> Cl(-). In 0.5 M NaCl, pH 6.0, laccase was approximately 60% active. Decolorization of indigo carmine by laccase at pH 9.0 was not inhibited even in the presence of 0.5 M NaCl. Release of chromophoric, reducing and hydrophobic compounds during biobleaching of straw rich-soda pulp by laccase was not inhibited when the enzyme was applied in the presence of 1 M NaCl at pH 8.0. Laccase retained 50% residual activity even when incubated with 5% calcium hypochlorite for 30 min.
Investigation of efflorescence of inorganic aerosols using fluorescence spectroscopy.
Choi, Man Yee; Chan, Chak K
2005-02-17
The phase transition is one of the most fundamental phenomena affecting the physical and chemical properties of atmospheric aerosols. Efflorescence, in particular, is not well understood, partly because the molecular interactions between the solute and water molecules of saturated or supersaturated solution droplets have not been well characterized. Recently, we developed a technique that combines the use of an electrodynamic balance and a fluorescence dye, 8-hydroxyl-1,3,6-pyrenetrisulfonate (pyranine), to study the distributions of solvated and free water in aqueous droplets (Choi, M. Y.; Chan, C. K.; Zhang, Y. H. J. Phys. Chem. A 2004, 108, 1133). We found that the equality of the amounts of solvated and free water is a necessary but not sufficient condition for efflorescence. For efflorescing compounds such as Na2SO4, (NH4)2SO4, and a mixture of NaCl and Na2SO4, the amount of free water decreases, while that of solvated water is roughly constant in bulk measurements and decreases less dramatically than that of free water in single-particle measurements as the relative humidity (RH) decreases. Efflorescence of the supersaturated droplets of these solutions occurs when the amounts of free and solvated water are equal, which is consistent with our previous observation for NaCl. For nonefflorescing compounds in single-particle levitation experiments such as MgSO4 and Mg(NO3)2, the amounts of free and solvated water are equal at a water-to-solute molar ratio of about 6, at which spectral changes due to the formation of contact ion pairs between magnesium and the anions occur as shown by Raman spectroscopy. Fluorescence imaging shows that the droplets of diluted Mg(NO3)2 (at 80% RH) and MgSO4 are homogeneous but those of NaCl, Na2SO4, (NH4)2SO4, and supersaturated Mg(NO3)2 (at 10% RH) are heterogeneous in terms of the solvated-to-free water distribution. The solvated-to-free water ratios in NaCl, Na2SO4, and (NH4)2SO4 droplets are higher in the outer regions by about half a radius deep than at the center of the droplets.
Hydrothermal syntheses and anion-induced structural transformation of three Cadmium phosphonates
NASA Astrophysics Data System (ADS)
Hu, Han; Zhai, Fupeng; Liu, Xiaofeng; Ling, Yun; Chen, Zhenxia; Zhou, Yaming
2018-05-01
Three cadmium phosphonate coordinated polymers, namely as [Cd5(ptz)3(SO4)2(5H2O)]·6H2O (Cdptz-1), [Cd3(ptz)2(Cl)2(4H2O)]·2H2O (Cdptz-2) and [Cd4(ptz)2(SO4)(Cl)(OH)H2O]·H2O (Cdptz-3) have been hydrothermally synthesized using 4-(1,2,4-triazol-4-yl)phenylphosphonic acid (H2ptz) as ligand. Single crystal X-ray analyses revealed Cdptz-2 as layered structure and Cdptz-1,3 as pillar-layered structures with Cl- or SO42- as bridging anions. Due to the weak bonding between metal and anions, Cdptz-1 and 2 can reversibly convert into each other by simple immersing in the corresponding solution at room temperature. While the transformations between Cdptz-1,2 and Cdptz-3 can only happen under hydrothermal condition. The causes for the transformation involve the metal-ligand bond breaking/formation, replacement of anions and enhancement/decrement of the network dimensionality.
Ionic composition of TSP and PM 2.5 during dust storms and air pollution episodes at Xi'an, China
NASA Astrophysics Data System (ADS)
Shen, Zhenxing; Cao, Junji; Arimoto, Richard; Han, Zhiwei; Zhang, Renjian; Han, Yuemei; Liu, Suixin; Okuda, Tomoaki; Nakao, Shunsuke; Tanaka, Shigeru
TSP and PM 2.5 samples were collected at Xi'an, China during dust storms (DSs) and several types of pollution events, including haze, biomass burning, and firework displays. Aerosol mass concentrations were up to 2 times higher during the particulate matter (PM) events than on normal days (NDs), and all types of PM led to decreased visibility. Water-soluble ions (Na +, NH 4+, K +, Mg 2+, Ca 2+, F -, Cl -, NO 3-, and SO 42-). were major aerosol components during the pollution episodes, but their concentrations were lower during DSs. NH 4+, K +, F -, Cl -, NO 3-, and SO 42- were more abundant in PM 2.5 than TSP but the opposite was true for Mg 2+ and Ca 2+. PM collected on hazy days was enriched with secondary species (NH 4+, NO 3-, and SO 42) while PM from straw combustion showed high K + and Cl -. Firework displays caused increases in K + and also enrichments of NO 3- relative to SO 42-. During DSs, the concentrations of secondary aerosol components were low, but Ca 2+ was abundant. Ion balance calculations indicate that PM from haze and straw combustion was acidic while the DSs samples were alkaline and the fireworks' PM was close to neutral. Ion ratios (SO 42-/K +, NO 3-/SO 42-, and Cl -/K +) proved effective as indicators for different pollution episodes.
Fu, YunLin; Pao, Te; Chen, Sih-Zih; Yau, ShuehLin; Dow, Wei-Ping; Lee, Yuh-Lang
2012-07-03
This study employed real-time in situ STM imaging to examine the adsorption of PEG molecules on Pt(111) modified by a monolayer of copper adatoms and the subsequent bulk Cu deposition in 1 M H(2)SO(4) + 1 mM CuSO(4)+ 1 mM KCl + 88 μM PEG. At the end of Cu underpotential deposition (~0.35 V vs Ag/AgCl), a highly ordered Pt(111)-(√3 × √7)-Cu + HSO(4)(-) structure was observed in 1 M H(2)SO(4) + 1 mM CuSO(4). This adlattice restructured upon the introduction of poly(ethylene glycol) (PEG, molecular weight 200) and chloride anions. At the onset potential for bulk Cu deposition (~0 V), a Pt(111)-(√3 × √3)R30°-Cu + Cl(-) structure was imaged with a tunneling current of 0.5 nA and a bias voltage of 100 mV. Lowering the tunneling current to 0.2 nA yielded a (4 × 4) structure, presumably because of adsorbed PEG200 molecules. The subsequent nucleation and deposition processes of Cu in solution containing PEG and Cl(-) were examined, revealing the nucleation of 2- to 3-nm-wide CuCl clusters on an atomically smooth Pt(111) surface at overpotentials of less than 50 mV. With larger overpotential (η > 150 mV), Cu deposition seemed to bypass the production of CuCl species, leading to layered Cu deposition, starting preferentially at step defects, followed by lateral growth to cover the entire Pt electrode surface. These processes were observed with both PEG200 and 4000, although the former tended to produce more CuCl nanoclusters. Raising [H(2)SO(4)] to 1 M substantiates the suppressing effect of PEG on Cu deposition. This STM study provided atomic- or molecular-level insight into the effect of PEG additives on the deposition of Cu.
Redox flow batteries based on supporting solutions containing chloride
Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang
2014-01-14
Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.
Redox flow batteries based on supporting solutions containing chloride
Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang
2015-07-07
Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.
Redox flow batteries based on supporting solutions containing chloride
Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang
2015-09-01
Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.
Redox flow batteries based on supporting solutions containing chloride
Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang
2017-11-14
Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.
Effects of pH and Salts on Physical and Mechanical Properties of Pea Starch Films.
Choi, W S; Patel, D; Han, J H
2016-07-01
To identify the significant contribution of intermolecular hydrogen bonds of starch molecules to the film structure formation, pH of film-forming solutions was adjusted and also various salts (NaCl, CaCl2 , CaSO4 , and K2 SO4 ) were mixed into the glycerol-plasticized pea starch film. The film made from pH 7 possessed the highest tensile strength-at-break (2 times) and elastic modulus (4 to 15 times) and the lowest elongation-at-break compared with those of the films made from acid and alkali environments. The pH 7 film also has the highest film density and the lowest total soluble matter. At the level of 0.01 to 0.1 M of CaSO4 and 0.1 M of K2 SO4 in a kilogram of starch, the water solubility of the film increased, while chloride salts slightly lowered the solubility. NaCl and CaSO4 reduced water vapor permeability (WVP), while CaCl2 slightly increased WVP at 0.01 and 0.06 M concentrations, and K2 SO4 significantly increased WVP at 0.03 and 0.15 M. Presence of salts increased tensile strength (5 to 14 times than the control films) and elastic modulus (35 to 180 times) of starch film at 0.01 to 0.03 M of CaSO4 and K2 SO4 . Elongation-at-break increased significantly as salt concentration increases to an optimal level. However, when the concentration exceeded above the optimal level, the E of starch films decreased and showed no significant difference from the control film. Overall, the addition of salts modified physical and mechanical properties of pea starch films more than pH adjustment without any salt addition. © 2016 Institute of Food Technologists®
Novel Flaxseed Gum Nanocomposites Are Slow Release Iron Supplements.
Liang, Shan; Huang, Yu; Shim, Youn Young; Ma, Xiang; Reaney, Martin J T; Wang, Yong
2018-05-23
Nanocomposites, based on iron salts and soluble flaxseed gum (FG), were prepared as potential treatments of iron deficiency anemia (IDA). FG was extracted, characterized, and formulated into iron-loading nanocomposites via ion-exchange against FeCl 3 , Fe 2 (SO 4 ) 3 , FeCl 2 , and FeSO 4 ·7H 2 O. FG-iron nanocomposites preparation condition was optimized, and physicochemical properties of the nanocomposites were investigated. In vitro release kinetics of iron in simulated gastric fluid (SGF) was also evaluated. FG heteropolysaccharide, consisting of rhamnose (33.73%), arabinose (24.35%), xylose (14.23%), glucose (4.54%), and galactose (23.15%) monosaccharides, linked together via varieties of glycosidic bonds, was a good recipient for both ferric and ferrous irons under screened conditions (i.e., 80 °C, 2 h, I/G = 1:2). Iron loaded contents in the nanocomposites prepared from FG-FeCl 3 , FG-Fe 2 (SO 4 ) 3 , FG-FeCl 2 , and FG-FeSO 4 ·7H 2 O were 25.51%, 10.36%, 5.83%, and 22.83%, respectively. Iron in these nanocomposites was mostly in a bound state, especially in FG-FeCl 3 , due to chelation forming bonds between iron and polysaccharide hydroxyl or carboxyl groups and formed stable polysaccharide-iron crystal network structures. Free iron ions were effectively removed by ethanol treatments. Because of chelation, the nanocomposites delayed iron release in SGF and the release kinetics were consistent with Korsmeyer-Peppas model. This indicates that such complexes might reduce side effects of free iron in human stomach. Altogether, this study indicates that these synthetic FG-iron nanocomposites might be developed as novel iron supplements for iron deficiency, in which FG-FeCl 3 is considered as the best option.
42 CFR Appendix - Tables to Subpart L of Part 84
Code of Federal Regulations, 2010 CFR
2010-10-01
... respiratory protection against more than one gas of a type, as for use in chlorine and sulfur dioxide, the... Ammonia Equilibrated NH3 1000 32 4 50 50 Chlorine As received Cl2 500 64 3 5 35 Chlorine Equilibrated Cl2... Sulfur dioxide As received SO2 500 64 3 5 30 Sulfur dioxide Equilibrated SO2 500 32 4 5 30 1 Minimum life...
NASA Astrophysics Data System (ADS)
Bashir, Erum; Huda, Syed Nawaz-ul; Naseem, Shahid; Hamza, Salma; Kaleem, Maria
2017-07-01
Thirty-nine (23 dug and 16 tube well) samples were geochemically evaluated and investigated to ascertain the quality of water in Khipro, Sindh. The analytical results exhibited abundance of major cations and anions in Na+ > Ca2+ > Mg2+ > K+ and Cl- > HCO3 - > SO4 2- sequence. Stiff diagram showed dug well sample have high Na-Cl and moderate Mg-SO4 content as compared to tube well samples. Majority of dug well samples appeared as Na-Cl type on Piper diagram while tube well samples are mixed type. Gibbs diagram reflected evaporation as a dominant phenomenon in dug well; however, tube well samples are declined toward rock dominance. Process of ion exchange was witnessed from Na+ versus Cl- and Ca2+ + Mg2+ versus HCO3 - + SO4 2- plots. Principal component analysis also discriminates dug well and tube well water by means of positive and negative loading based on physical and chemical composition of the groundwater. Studied and computed parameters like pH, EC, TDS, TH, Na+, K+, Ca2+, Mg2+, Cl-, SO4 2-, HCO3 -, sodium adsorption ratio, magnesium adsorption ratio, potential salinity, residual sodium carbonate, Na%, Kelly's ratio, and permeability index were compared with WHO to evaluate studied water for drinking and agricultural purposes. Except Na+ and K+, all chemical constrains are within the allowed limits, set by WHO for drinking water. Similarly, most of the groundwater is moderately suitable for irrigation uses, with few exceptions.
Bharmoria, Pankaj; Gehlot, Praveen Singh; Gupta, Hariom; Kumar, Arvind
2014-11-06
Dual, aqueous solubility behavior of Na2SO4 as a function of temperatures is still a natural enigma lying unresolved in the literature. The solubility of Na2SO4 increases up to 32.38 °C and decreases slightly thereafter at higher temperatures. We have thrown light on this phenomenon by analyzing the Na2SO4-water clusters (growth and stability) detected from temperature-dependent dynamic light scattering experiments, solution compressibility changes derived from the density and speed of sound measurements, and water structural changes/Na2SO4 (ion pair)-water interactions observed from the FT-IR and 2D DOSY (1)H NMR spectroscopic investigations. It has been observed that Na2SO4-water clusters grow with an increase in Na2SO4 concentration (until the solubility transition temperature) and then start decreasing afterward. An unusual decrease in cluster size and solution compressibility has been observed with the rise in temperature for the Na2SO4 saturated solutions below the solubility transition temperature, whereas an inverse pattern is followed thereafter. DOSY experiments have indicated different types of water cluster species in saturated solutions at different temperatures with varying self-diffusion coefficients. The effect of NaCl (5-15 wt %) on the solubility behavior of Na2SO4 at different temperatures has also been examined. The studies are important from both fundamental and industrial application points of view, for example, toward the clean separation of NaCl and Na2SO4 from the effluent streams of textile and tannery industries.
Solubility of Anhydrite (CaSO4) in NaCl-H2O Fluids at High T and P
NASA Astrophysics Data System (ADS)
Newton, R. C.; Manning, C. E.
2003-12-01
Weight losses of single crystals of a very pure natural anhydrite exposed to NaCl solutions of 0-0.3 mol fraction were measured at 600-800 \\deg C and 6-14 kbar. Experimental charges were contained in welded Pt capsules in 1.91 cm-diameter piston-cylinder apparatus with NaCl pressure medium for 5-72 hr. Measurements in initially pure H2O were made with HM, NNO, and MnO2 buffers, as well as without buffering. At 800 \\deg C and 10 kbar, CaSO4 molalities are: MnO2, 0.014 mol/kg H2O; HM, 0.017; NNO, 0.148; and unbuffered, 0.026. Variation in oxygen fugacity thus has a large effect on CaSO4 solubility, increasing with H2S/SO2 in the fluid. Unbuffered (self-buffered) charges gave solubilities much closer to HM than NNO. Melting occurred in the NNO experiment at this P and T. NaCl increases CaSO4 solubility enormously, with m(CaSO4) reaching 5.4, or 23.5 wt. %, at 800 \\deg C, 10 kbar and X(NaCl)=0.3. There is also a very large increase with temperature. Regression of all the data give: log(m-mo) = -1.533 + 0.00291T + (1.441 + 0.00016T)logX(NaCl) + 0.0413(P-10) where mo is molality in pure H2O, P is in kbar, and T is in Kelvins. The very large carrying capacity for sulfate in even mildly saline fluids at high P and T, together with the high oxygen potential generated when these solutions react with FeO in rocks to yield pyrrhotite, indicates that such fluids should be considered as principal agents in S-rich, highly oxidizing processes such as Pinatubo-type volcanic eruptions, certain deep-crustal granulite facies metamorphism, as in Bamble, Norway and Shevaroy Hills, S. India, and the anhydrite-related, oxidized Au ore deposits like Abitibi, Ontario, and Kalgoorlie, Australia.
Synthesis and characterization of Fe3O4-SiO2-AgCl photocatalyst
NASA Astrophysics Data System (ADS)
Husni, H. N.; Mahmed, N.; Ngee, H. L.
2016-07-01
Magnetite-silica-silver chloride (Fe3O4-SiO2-AgCl) coreshell particles with AgCl crystallite size of 117 nm was prepared by a wet chemistry method at ambient temperature. The magnetite-core was synthesized by using iron (II) sulfate heptahydrate (FeSO4•7H2O) and iron (III) sulfate hydrate (Fe2(SO4)3) with ammonium hydroxide (NH4OH) as the precipitating agent. The silica-shell was synthesized by using a modified Stöber process. The silver ions (Ag+) was adsorbed onto the silica surface after Söber process, followed by the addition of Cl- and polyvinylpyrrolidone (PVP) for the formation of Fe3O4-SiO2-AgCl coreshell particles. The effectiveness of the synthesized photocatalyst was investigated by monitoring the degradation of the methylene blue (MB) under sunlight for five cycles. About 90 % of the MB solution can be degraded after 2 hours. The degradation of MB solution by the Fe3O4-SiO2-AgCl particles is highly efficient for first three cycles according to the MB concentration recorded by the UV-Visible spectroscopy (UV-Vis). Nevertheless, the synthesized particles could be a promising material for photocatalytic applications.
Fiorini, Dennis; Pacetti, Deborah; Gabbianelli, Rosita; Gabrielli, Serena; Ballini, Roberto
2015-08-28
Given the importance of short and medium chain free fatty acids (FFAs) in several fields, this study sought to improve the extraction efficiency of the solid-phase microextraction (SPME) of FFAs by evaluating salting out agents that appear promising for this application. The salts ammonium sulfate ((NH4)2SO4) and sodium dihydrogen phosphate (NaH2PO4) were tried on their own and in combination (3.7/1), in four different total amounts, as salting out agents in the headspace-SPME-gas chromatographic (HS-SPME-GC) analysis of the FFAs from acetic acid (C2) to decanoic acid (C10). Their performance in a model system of an aqueous standard mixture of FFAs at a pH of 3.5 was compared to that of the more commonly used sodium chloride (NaCl) and sodium sulfate (Na2SO4). All of the salts and salt systems evaluated, in proper amount, gave improved results compared to NaCl (saturated), which instead gave interesting results only for the least volatile FFAs C8 and C10. For C2-C6, the salt system that gave the best results compared to NaCl was (NH4)2SO4/NaH2PO4, in the highest of the four amounts evaluated, with factor increases between 1.2 and 4.1-fold, and NaH2PO4, between 1.0 and 4.3-fold. The SPME extraction efficiency given by the mixture (NH4)2SO4/NaH2PO4 was also assessed on biological and food samples, confirming that overall it performed better than NaCl. Copyright © 2015 Elsevier B.V. All rights reserved.
An Electronic Tongue Designed to Detect Ammonium Nitrate in Aqueous Solutions
Campos, Inmaculada; Pascual, Lluis; Soto, Juan; Gil-Sánchez, Luis; Martínez-Máñez, Ramón
2013-01-01
An electronic tongue has been developed to monitor the presence of ammonium nitrate in water. It is based on pulse voltammetry and consists of an array of eight working electrodes (Au; Pt; Rh; Ir; Cu; Co; Ag and Ni) encapsulated in a stainless steel cylinder. In a first step the electrochemical response of the different electrodes was studied in the presence of ammonium nitrate in water in order to further design the wave form used in the voltammetric tongue. The response of the electronic tongue was then tested in the presence of a set of 15 common inorganic salts; i.e.; NH4NO3; MgSO4; NH4Cl; NaCl; Na2CO3; (NH4)2SO4; MgCl2; Na3PO4; K2SO4; K2CO3; CaCl2; NaH2PO4; KCl; NaNO3; K2HPO4. A PCA plot showed a fairly good discrimination between ammonium nitrate and the remaining salts studied. In addition Fuzzy Art map analyses determined that the best classification was obtained using the Pt; Co; Cu and Ni electrodes. Moreover; PLS regression allowed the creation of a model to correlate the voltammetric response of the electrodes with concentrations of ammonium nitrate in the presence of potential interferents such as ammonium chloride and sodium nitrate. PMID:24145916
Xu, Ming-Gang; Zhang, Qian; Sun, Nan; Shen, Hua-Ping; Zhang, Wen-Ju
2009-07-15
Bio-availability of Cu and Zn fixed by phosphate in contaminated soils with application of nutrients were measured by pot experiment. It was simulated for the third national standardization of copper and zinc polluted soils by adding copper and zinc nitrate into red and paddy soils, respectively and together. Phosphate amendment was added to the soils to fix Cu and Zn, then added KCl and NH4Cl or K2SO4 and (NH4)2SO4 fertilizers following to plant Ryegrass, which was harvested after 40 d. Available Cu/Zn content in soils and biomass, Cu/Zn content in the shoot of Ryegrass were determined. Results showed that, compared with no nutrient application, adding KCl and NH4 Cl/K2SO4 and (NH4)2SO4 to polluted red and paddy soils increased the available Cu and Zn content in red soil significantly. The increasing order was KCl and NH4 Cl > K2SO4 and (NH4)2SO4. Especially in single Zn polluted red soil, the available Zn content increased by 133.4% in maximum. Although adding K2SO4 and (NH4)2SO4 could promote the growth of Ryegrass on red soil, and the largest increasing was up to 22.2%, it increased Cu and Zn content in the shoot of Ryegrass for 21.5%-112.6% remarkably. These nutrient effects on available Cu and Zn were not significantly in paddy soil. It was suggested that application of nitrogen and potassium fertilizers to soils could change the bioavailability of Cu/Zn. So it is necessary to take full account of the nutrient influence to the heavy metal stability which fixed by phosphate in contaminated soils when consider contaminated soils remediation by fertilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Matthew M; Wang, Xue B; Reed, Christopher A
2009-12-23
Five CHB 11X 6Y 5 - carborane anions from the series X = Br, Cl, I and Y = H, Cl, CH 3 were generated by electrospray ionization, and their reactivity with a series of Brønsted acids and electron transfer reagents were examined in the gas phase. The undecachlorocarborane acid, H(CHB 11Cl 11), was found to be far more acidic than the former record holder, (1-C 4F 9SO 2) 2NH (i.e., ΔH° acid = 241 ± 29 vs 291.1 ± 2.2 kcal mol -1) and bridges the gas-phase acidity and basicity scales for the first time. Its conjugate base, CHBmore » 11Cl 11 -, was found by photoelectron spectroscopy to have a remarkably large electron binding energy (6.35 ± 0.02 eV) but the value for the (1-C 4F 9SO 2) 2N - anion is even larger (6.5 ± 0.1 eV). Consequently, it is the weak H-(CHB 11Cl 11) BDE (70.0 kcal mol -1, G3(MP2)) compared to the strong BDE of (1-C 4F 9SO 2) 2N-H (127.4 ± 3.2 kcal mol -1) that accounts for the greater acidity of carborane acids.« less
Jasmin, I; Mallikarjuna, P
2014-02-01
Groundwater is the most important natural resource which cannot be optimally used and sustained unless its quality is properly assessed. In the present study, the spatial and temporal variations in physicochemical quality parameters of groundwater of Araniar River Basin, India were analyzed to determine its suitability for drinking purpose through development of drinking water quality index (DWQI) maps of the post- and pre-monsoon periods. The suitability for drinking purpose was evaluated by comparing the physicochemical parameters of groundwater in the study area with drinking water standards prescribed by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. The cations such as sodium (Na(+)) and potassium (K(+)) and anions such as bicarbonate (HCO3 (-)) and chloride (Cl(-)) exceeded the permissible limits of drinking water standards (WHO and BIS) in certain pockets in the northeastern part of the basin during the pre-monsoon period. The higher total dissolved solids (TDS) concentration was observed in the northeastern part of the basin, and the parameters such as calcium (Ca(2+)), magnesium (Mg(2+)), sulfate (SO4 (2-)), nitrate (NO3 (-)), and fluoride (F(-)) were within the limits in both the seasons. The hydrogeochemical evaluation of groundwater of the basin demonstrated with the Piper trilinear diagram indicated that the groundwater samples of the area were of Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Ca(2+)-Mg(2+)-HCO3 (-) and Na(+)-K(+)-Cl(-)-SO4 (2-) types during the post-monsoon period and Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Na(+)-K(+)-Cl(-)-SO4 (2-) and Ca(2+)-Mg(2+)-HCO3 (-) types during the pre-monsoon period. The DWQI maps for the basin revealed that 90.24 and 73.46% of the basin area possess good quality drinking water during the post- and pre-monsoon seasons, respectively.
Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization.
Tarchoune, I; Sgherri, C; Izzo, R; Lachaal, M; Ouerghi, Z; Navari-Izzo, F
2010-09-01
Soils and ground water in nature are dominated by chloride and sulphate salts. There have been several studies concerning NaCl salinity, however, little is known about the Na(2)SO(4) one. The effects on antioxidative activities of chloride or sodium sulphate in terms of the same Na(+) equivalents (25 mM Na(2)SO(4) and 50 mM NaCl) were studied on 30 day-old plants of Ocimum basilicum L., variety Genovese subjected to 15 and 30 days of treatment. Growth, thiobarbituric acid reactive substances (TBARS), relative ion leakage ratio (RLR), hydrogen peroxide (H(2)O(2)), ascorbate and glutathione contents as well as the activities of ascorbate peroxidase (APX, EC 1.11.1.11); glutathione reductase (GR, EC 1.6.4.2) and peroxidases (POD, EC 1.11.1.7) were determined. In leaves, growth was more depressed by 25 mM Na(2)SO(4) than 50 mM NaCl. The higher sensitivity of basil to Na(2)SO(4) was associated with an enhanced accumulation of H(2)O(2), an inhibition of APX, GR and POD activities (with the exception of POD under the 30-day-treatment) and a lower regeneration of reduced ascorbate (AsA) and reduced glutathione (GSH). However, the changes in the antioxidant metabolism were enough to limit oxidative damage, explaining the fact that RLR and TBARS levels were unchanged under both Na(2)SO(4) and NaCl treatment. Moreover, for both salts the 30-day-treatment reduced H(2)O(2) accumulation, unchanged RLR and TBARS levels, and enhanced the levels of antioxidants and antioxidative enzymes, thus achieving an adaptation mechanism against reactive oxygen species. 2010 Elsevier Masson SAS. All rights reserved.
Salinization owing to evaporation from bare-soil surfaces and its influences on the evaporation
NASA Astrophysics Data System (ADS)
Shimojimaa, Eiichi; Yoshioka, Ryuma; Tamagawa, Ichiro
1996-04-01
To investigate the relationship between evaporation and salinization, the surfaces of three columns of uniform porous materials, desert dune sand, silica sand and glass beads, respectively, were exposed to a temperature-, humidity- and/or wind-speed-controlled ambient atmosphere. For the dune sand, chemicals such as Na +, Ca 2+, Cl - and SO 42-, dissolved mainly from CaSO 4, Na 2SO 4, CaCO 3 and NaC1 in the sand particles, caused marked salinization near the top surface. Slow dissolution of Na 2SO 4 and CaSO 4 influenced the development of concentration profiles for SO 42- and Na + markedly for months after the beginning of the experiment, while the profile of Cl - was not affected directly, because dissolution of NaCl was rapid. Concentration profiles of Cl - for the glass beads and for the silica sand columns filled with a high concentration of NaCI solution of (10 4 mg1 -1 for Cl -), were analysed similarly. Experimental results suggested that the vapour flux in a dry soil became larger because of the increase in the gradient of the vapour density caused by greater chemical enrichment near the top surface compared with that at the evaporation surface. The vapour flux also became smaller as the gradient of the vapour density decreased, owing to the markedly enriched evaporation surface. In the experiment with glass beads, filled with the NaCl solution, solute crystallization (4-10 mm thick) was observed. For the dune sand, only when a turbulent airflow was applied did a crust (a few millimetres in thickness) form entirely on the top surface. Such deposition led to a reduction in the flux of water vapour as the permeable cross-sectional area decreased. The resistance to transfer increased three to ten times for the glass beads but only by 30% for the dune sand. The lower increase for the dune sand may be due to penetration of the applied airflow into cracks in the crust.
Coupled Sulfur and Chlorine Chemistry in Venus' Upper Cloud Layer
NASA Astrophysics Data System (ADS)
Mills, Franklin P.
2006-09-01
Venus' atmosphere likely contains a rich variety of sulfur and chlorine compounds because HCl, SO2, and OCS have all been observed. Photodissociation of CO2 and SO2 in the upper cloud layer produces oxygen which can react directly or indirectly with SO2 to form SO3 and eventually H2SO4. Photodissociation of HCl within and above the upper cloud layer produces chlorine which can react with CO and O2 to form ClCO and ClC(O)OO. These two species have been identified as potentially critical intermediaries in the production of CO2. Much less work has been done on the potential coupling between sulfur and chlorine chemistry that may occur within the upper cloud layer. Several aspects have been examined in recent modeling: (1) linkage of the CO2 and sulfur oxidation cycles (based on ideas from Yung and DeMore, 1982), (2) reaction of Cl with SO2 to form ClSO2 (based on ideas from DeMore et al., 1985), and (3) the chemistry of SmCln for m,n = 1,2 (based on preliminary work in Mills, 1998). Initial results suggest the chemistry of SmCln may provide a pathway for accelerated production of polysulfur, Sx, if the oxygen abundance in the upper cloud layer is as small as is implied by the observational limit on O2 (Trauger and Lunine, 1983). Initial results also suggest that ClSO2 can act as a buffer which helps increase the scale height of SO2 and decrease the rate of production of H2SO4. This presentation will describe the results from this modeling; discuss their potential implications for the CO2, sulfur oxidation, and polysulfur cycles; and outline key observations from Venus Express that can help resolve existing questions concerning the chemistry of Venus' upper cloud. Partial funding for this research was provided by the Australian Research Council.
The ion chemistry, seasonal cycle, and sources of PM 2.5 and TSP aerosol in Shanghai
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhuang, Guoshun; Zhang, Xingying; Huang, Kan; Xu, Chang; Tang, Aohan; Chen, Jianmin; An, Zhisheng
Daily total suspended particulate (TSP), particle size smaller than 100 μm and particle size smaller than 2.5 μm (PM 2.5) aerosol samples were collected at two sites in Shanghai in four seasons from September 2003 to January 2005. Concentrations of the water-soluble ions (SO 42-, NO 3-, Cl -, F -, PO 43-, HCOO -, CH 3COO -, NO 2-, MSA, C 2O 42-, NH 4+, Ca 2+, Na +, K +, Mg 2+) were measured for a total of 202 samples. Daily TSP and PM 2.5 mass concentrations ranged from 66.1 to 666.8 μg m -3 and 17.8 to 217.9 μg m -3, with annual average concentrations of 230.5 and 94.6 μg m -3, respectively. The sum of ions contributed an average of 26% and 32% of TSP and PM 2.5 mass concentrations, respectively. In PM 2.5, the concentration of the major ions followed the order of SO 42->NO 3->NH 4+>Cl ->Ca 2+>K +, while in TSP was SO 42->NO 3->Cl ->Ca 2+>NH 4+>Na +. These major ions were mainly in the form of (NH 4) 2SO 4, Ca(NO 3) 2, CaCl 2, and CaSO 4 in aerosol particles. The aerosol was slightly acidic in the fine particle size range, and alkaline in the coarse mode. Seasonal variation of ion concentrations was significant, with the highest concentrations observed in winter and spring and the lowest in summer and autumn. Three types of air masses, i.e. marine, mixing, and continental, were frequently observed, and their distribution in four seasons might result in the clear seasonal variation. It is Shanghai that has the highest NO 3-/SO 42- value among all of those cities in China, indicating that as the biggest city in China the mobile source of the air pollution becomes more and more predominant. However, stationary emissions were still the dominant source in Shanghai indicated by the NO 3-/SO 42- ratio of lower than 1. The formation of NO 3- was largely from the gas-phase photochemical reaction in the cold season, and from the heterogeneous reaction in the warm season, while the formation of SO 42- might be from the heterogeneous reaction in the entire year round. NH 4+, K +, Cl -, NO 3-, and SO 42- were mainly influenced by the anthropogenic emissions in land, meanwhile Cl - and SO 42- might be partly influenced by the sea. Na +, Mg 2+, and Ca 2+ were derived from both inland crustal and marine sources. Chloride depletion was found especially in summer. The air pollution in Shanghai has proved to be under the influence of both the local emissions and the long-range transport from outside areas.
Copeland, G; Lee, E P F; Williams, R G; Archibald, A T; Shallcross, D E; Dyke, J M
2014-01-01
In this work, the photolysis rate coefficient of CH3SCH2Cl (MClDMS) in the lower atmosphere has been determined and has been used in a marine boundary layer (MBL) box model to determine the enhancement of SO2 production arising from the reaction DMS + Cl2. Absorption cross sections measured in the 28000-34000 cm(-1) region have been used to determine photolysis rate coefficients of MClDMS in the troposphere at 10 solar zenith angles (SZAs). These have been used to determine the lifetimes of MClDMS in the troposphere. At 0° SZA, a photolysis lifetime of 3-4 h has been obtained. The results show that the photolysis lifetime of MClDMS is significantly smaller than the lifetimes with respect to reaction with OH (≈ 4.6 days) and with Cl atoms (≈ 1.2 days). It has also been shown, using experimentally derived dissociation energies with supporting quantum-chemical calculations, that the dominant photodissocation route of MClDMS is dissociation of the C-S bond to give CH3S and CH2Cl. MBL box modeling calculations show that buildup of MClDMS at night from the Cl2 + DMS reaction leads to enhanced SO2 production during the day. The extra SO2 arises from photolysis of MClDMS to give CH3S and CH2Cl, followed by subsequent oxidation of CH3S.
Chemistry and quality of groundwater in a coastal region of Andhra Pradesh, India
NASA Astrophysics Data System (ADS)
Rao, N. Subba; Vidyasagar, G.; Surya Rao, P.; Bhanumurthy, P.
2017-03-01
The chemistry of groundwater in the coastal region between Chirala and Ongole of Andhra Pradesh, India shows pollution to varying extent. The relative contribution of ions in six zones divided based on TDS indicates unsuitability of groundwater here for drinking, irrigation and industrial use. The water is brackish except in first zone and further alkaline. TDS is less than 1,000 mg/L in first zone, while it is more in other zones. This classification of groundwater into zones is also investigated by hydrogeochemical facies, genetic classification, mechanisms of groundwater chemistry and geochemical signatures. Hydrogeochemical facies of Na+>Mg2+>Ca2+: {{HCO}}3^{ - } > Cl- > SO 4^{2 - } is observed from zone I, while that of Na+>Mg2+>Ca2+:Cl- > HCO 3^{ - } > SO 4^{2 - } from second to sixth zones. The genetic classification of groundwater in first and second zones is HCO 3^{ - } type and supported by good drainage conditions, while zones III to VI belong to Cl- category evident from poor drainage scenario. The location of six zones on mechanisms of groundwater chemistry supports sluggish drainage conditions of second to six zones, while predominate rock-water interaction in first zone. The geochemical signatures (HCO 3^{ - } :Cl- > 1 and Na+:Cl- < 1) also endorse the pollution. The quantities of chemical species (Mg2+, Na+, K+, HCO 3^{ - } , Cl ^{ - } , SO 4^{2 - } , NO 3^{ - } and F ^{ - } ) and TDS in all zones are far greater than the stipulated limits for drinking. The United States Salinity Laboratory plots discriminated the suitability of groundwater in second to sixth zones for irrigation after only special soil treatment. Higher concentrations of TDS, HCO 3^{ - } , Cl- and SO 4^{2 - } in all zones render it unsuitable for industry too. This information is crucial for public and civic authorities for taking up strategic management plan for preventing further deterioration of hydrogeochemical environmental conditions of this part of the coastal region.
Heterogeneous Reactions of ClONO2, HCl, and HOCl on Liquid Sulfuric Acid Surfaces
NASA Technical Reports Server (NTRS)
Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.
1994-01-01
The heterogeneous reactions of ClONO2 + H2O yields HNO3 + HOCl (1), ClONO2 + HCl yields C12 + HNO3 (2), and HOCl + HCl yields Cl2 + H2O (3) on liquid sulfuric acid surfaces have been studied using a fast flow reactor coupled to a quadrupole mass spectrometer. The main objectives of the study are to investigate: (a) the temperature dependence of these reactions at a fixed H2O partial pressure typical of the lower stratosphere (that is, by changing temperature at a constant water partial pressure, the H2SO4 content of the surfaces is also changed), (b) the relative importance or competition between reactions 1 and 2, and (c) the effect of HNO3 on the reaction probabilities due to the formation of a H2SO4/HNO3/H2O ternary system. The measurements show that all the reactions depend markedly on temperature at a fixed H2O partial pressure: they proceed efficiently at temperatures near 200 K and much slower at temperatures near 220 K. The reaction probability (gamma(sub 1)) for ClONO2 hydrolysis approaches 0.01 at temperatures below 200 K, whereas the values for gamma(sub 2) and gamma(sub 3) are on the order of a few tenths at 200 K. Although detailed mechanisms for these reactions are still unknown, the present data indicate that the competition between ClONO2 hydrolysis and ClONO2 reaction with HCl may depend on temperature (or H2SO4 Wt %): in the presence of gaseous HCl at stratospheric concentrations, reaction 2 is dominant at lower temperatures (less than 200 K), but reaction 1 becomes important at temperatures above 210 K. Furthermore, reaction probability measurements performed on the H2SO4/HNO3/ H2O ternary solutions do not exhibit noticeable deviation from those performed on the H2SO4/H2O binary system, suggesting little effect of HNO3 in sulfate aerosols on the ClONO2 and HOCl reactions with HCl. The results reveal that significant reductions in the chlorine-containing reservoir species (such as ClONO2 and HCl) can take place on stratospheric sulfate aerosols at high latitudes in winter and early spring, even at temperatures too warm for Polar Stratospheric Clouds (PSCs) to form or in regions where nucleation of PSCs is sparse. This is particularly true under elevated sulfuric acid loading, such as that after the eruption of Mt. Pinatubo. Comparisons between our results and those presently available have also been made.
NASA Astrophysics Data System (ADS)
Møller, Nancy
1988-04-01
This paper describes a chemical equilibrium model for the Na-Ca-Cl-SO 4-H 2O system which calculates solubilities from 25°C to 250°C and from zero to high concentration ( I ~ 18. m) within experimental uncertainty. The concentration and temperature dependence of the model were established by fitting available activity (solubility, osmotic and emf) data. A single ion complex, CaSO 04, which increases in strength with temperature, is included explicitly in the model. The validation of model accuracy by comparison to laboratory and field solubility data is included. Applications of the model are also given. Phase diagrams constructed for the Na-Ca-Cl-SO 4-H 2O system and predicted solubilities of anhydrite and hemihydrate in concentrated seawater at high temperature are in very good agreement with the data. Calculations of the temperature of gypsum-anhydrite coexistence as a function of water activity are compared to reported values, and are used to estimate the composition-temperature relation for gypsum-anhydrite transition in a natural brine evaporation. A preliminary model for barite solubility in sodium chloride solutions at high temperature (100°C to 250°C), based on this parameterization of the CaSO 4-NaCl-H 2O system, gives good agreement with the data.
Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.
Dutcher, Cari S; Wexler, Anthony S; Clegg, Simon L
2010-11-25
A semiempirical model is presented that predicts surface tensions (σ) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation σ = c(1) + c(2)T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO(3), H(2)SO(4), NaCl, NaNO(3), Na(2)SO(4), NaHSO(4), Na(2)CO(3), NaHCO(3), NaOH, NH(4)Cl, NH(4)NO(3), (NH(4))(2)SO(4), NH(4)HCO(3), NH(4)OH, KCl, KNO(3), K(2)SO(4), K(2)CO(3), KHCO(3), KOH, CaCl(2), Ca(NO(3))(2), MgCl(2), Mg(NO(3))(2), and MgSO(4). The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored.
NASA Astrophysics Data System (ADS)
Phillips-Lander, Charity M.; Parnell, S. R.; McGraw, L. E.; Elwood Madden, M. E.
2018-06-01
A diverse suite of carbonate minerals including calcite (CaCO3) and magnesite (MgCO3) have been observed on the martian surface and in meteorites. Terrestrial carbonates usually form via aqueous processes and often record information about the environment in which they formed, including chemical and textural biosignatures. In addition, terrestrial carbonates are often found in association with evaporite deposits on Earth. Similar high salinity environments and processes were likely active on Mars and some areas may contain active high salinity brines today. In this study, we directly compare calcite and magnesite dissolution in ultrapure water, dilute sulfate and chloride solutions, as well as near-saturated sulfate and chloride brines with known activity of water (aH2O) to determine how dissolution rates vary with mineralogy and aH2O, as well as aqueous cation and anion chemistry to better understand how high salinity fluids may have altered carbonate deposits on Mars. We measured both calcite and magnesite initial dissolution rates at 298 K and near neutral pH (6-8) in unbuffered solutions containing ultrapure water (18 MΩ cm-1 UPW; aH2O = 1), dilute (0.1 mol kg-1; aH2O = 1) and near-saturated Na2SO4 (2.5 mol kg-1, aH2O = 0.92), dilute (0.1 mol kg-1, aH2O = 1) and near-saturated NaCl (5.7 mol kg-1, aH2O = 0.75). Calcite dissolution rates were also measured in dilute and near-saturated MgSO4 (0.1 mol kg-1, aH2O = 1 and 2.7 mol kg-1, aH2O = 0.92, respectively) and MgCl2 (0.1 mol kg-1, aH2O = 1 and 3 mol kg-1, aH2O = 0.73, respectively), while magnesite dissolution rates were measured in dilute and near-saturated CaCl2 (0.1 mol kg-1, aH2O = 1 and 9 mol kg-1, aH2O = 0.35). Initial calcite dissolution rates were fastest in near-saturated MgCl2 brine, while magnesite dissolution rates were fastest in dilute (0.1 mol kg-1) NaCl and CaCl2 solutions. Calcite dissolution rates in near-saturated Na2SO4 were similar to those observed in the dilute solutions (-8.00 ± 0.12 log mol m-2 s-1), while dissolution slowed in both NaCl solutions (0.1 mol kg-1; -8.23 ± 0.10 log mol m-2 s-1 and (5.7 mol kg-1; -8.44 ± 0.11 log mol m-2 s-1), as well as near-saturated MgSO4 brine (2.7 mol kg-1; -8.35 ± 0.05 log mol m-2 s-1). The slowest calcite dissolution rates observed in the near-saturated NaCl brine. Magnesite dissolution rates were ∼5 times faster in the dilute salt solutions relative to UPW, but similar to UPW (-8.47 ± 0.06 log mol m-2 s-1) in near-saturated Na2SO4 brines (-8.41 ± 0.18 log mol m-2 s-1). Magnesite dissolution slowed significantly in near-saturated CaCl2 brine (-9.78 ± 0.10 log mol m-2 s-1), likely due to the significantly lower water activity in these experiments. Overall, magnesite dissolution rates are slower than calcite dissolution rates and follow the trend: All dilute salt solutions >2.5 mol kg-1 Na2SO4 ≈ UPW > 5.7 mol kg-1 NaCl >> 9 mol kg-1 CaCl2. Calcite rates follow the trend 3 mol kg-1 MgCl2 > 2.5 mol kg-1 Na2SO4 ≈ UPW ≈ all dilute salt solutions >2.7 mol kg-1 MgSO4 ≈ 5.7 mol kg-1 NaCl. Magnesite dissolution rates in salt solutions generally decrease with decreasing aH2O in both chloride and sulfate brines, which indicates water molecules act as ligands and participate in the rate-limiting magnesite dissolution step. However, there is no general trend associated with water activity observed in the calcite dissolution rates. Calcite dissolution accelerates in near-saturated MgCl2, but slows in near-saturated NaCl brine despite both brines having similar water activities (aH2O = 0.73 and 0.75, respectively). High Mg calcite was observed as a reaction product in the near-saturated MgCl2, indicating Mg2+ from solution likely substituted for Ca2+ in the initial calcite, releasing additional Ca2+ into solution and increasing the observed calcite dissolution rate. Calcite dissolution rates also increase slightly as Na2SO4 concentration increases, while calcite dissolution rates slow slightly with increasing concentration of MgSO4 and NaCl. However, all of the carbonate rates vary by less than 0.5 log units and are within or near the standard deviation observed for each set of replicate experiments. Carbonate mineral lifetimes in high salinity brines indicate magnesite may be preferentially preserved compared to calcite on Mars. Therefore, Mg-carbonates that have experienced post-depositional aqueous alteration are more likely to preserve paleoenvironmental indicators and potential biosignatures. Rapid weathering of carbonates in circum-neutral pH sulfate brines may provide a potential source of cations for abundant sulfate minerals observed on Mars, Ceres, and other planetary bodies.
Metastable Solution Thermodynamic Properties and Crystal Growth Kinetics
NASA Technical Reports Server (NTRS)
Kim, Soojin; Myerson, Allan S.
1996-01-01
The crystal growth rates of NH4H2PO4, KH2PO4, (NH4)2SO4, KAl(SO4)2 central dot 12H2O, NaCl, and glycine and the nucleation rates of KBr, KCl, NaBr central dot 2H2O, (NH4)2Cl, and (NH4)2SO4 were expressed in terms of the fundamental driving force of crystallization calculated from the activity of supersaturated solutions. The kinetic parameters were compared with those from the commonly used kinetic expression based on the concentration difference. From the viewpoint of thermodynamics, rate expressions based on the chemical potential difference provide accurate kinetic representation over a broad range of supersaturation. The rates estimated using the expression based on the concentration difference coincide with the true rates of crystallization only in the concentration range of low supersaturation and deviate from the true kinetics as the supersaturation increases.
NASA Astrophysics Data System (ADS)
Li, Jun; Duan, Zhenhao
2011-08-01
A thermodynamic model is developed for the calculation of both phase and speciation equilibrium in the H 2O-CO 2-NaCl-CaCO 3-CaSO 4 system from 0 to 250 °C, and from 1 to 1000 bar with NaCl concentrations up to the saturation of halite. The vapor-liquid-solid (calcite, gypsum, anhydrite and halite) equilibrium together with the chemical equilibrium of H+,Na+,Ca, CaHCO3+,Ca(OH)+,OH-,Cl-, HCO3-,HSO4-,SO42-, CO32-,CO,CaCO and CaSO 4(aq) in the aqueous liquid phase as a function of temperature, pressure and salt concentrations can be calculated with accuracy close to the experimental results. Based on this model validated from experimental data, it can be seen that temperature, pressure and salinity all have significant effects on pH, alkalinity and speciations of aqueous solutions and on the solubility of calcite, halite, anhydrite and gypsum. The solubility of anhydrite and gypsum will decrease as temperature increases (e.g. the solubility will decrease by 90% from 360 K to 460 K). The increase of pressure may increase the solubility of sulphate minerals (e.g. gypsum solubility increases by about 20-40% from vapor pressure to 600 bar). Addition of NaCl to the solution may increase mineral solubility up to about 3 molality of NaCl, adding more NaCl beyond that may slightly decrease its solubility. Dissolved CO 2 in solution may decrease the solubility of minerals. The influence of dissolved calcite on the solubility of gypsum and anhydrite can be ignored, but dissolved gypsum or anhydrite has a big influence on the calcite solubility. Online calculation is made available on www.geochem-model.org/model.
Jeong, Sung-Eun; Park, Jae-Kweon; Kim, Jeong-Dong; Chang, In-Jeong; Hong, Seong-Joo; Kang, Sung-Ho; Lee, Choul-Gyun
2008-12-01
Statistical experimental designs; involving (i) a fractional factorial design (FFD) and (ii) a central composite design (CCD) were applied to optimize the culture medium constituents for production of a unique antifreeze protein by the Antartic microalgae Chaetoceros neogracile. The results of the FFD suggested that NaCl, KCl, MgCl2, and Na2SiO3 were significant variables that highly influenced the growth rate and biomass production. The optimum culture medium for the production of an antifreeze protein from C. neogracile was found to be Kalleampersandrsquor;s artificial seawater, pH of 7.0ampersandplusmn;0.5, consisting of 28.566 g/l of NaCl, 3.887 g/l of MgCl2, 1.787 g/l of MgSO4, 1.308 g/l of CaSO4, 0.832 g/l of K2SO4, 0.124 g/l of CaCO3, 0.103 g/l of KBr, 0.0288 g/l of SrSO4, and 0.0282 g/l of H3BO3. The antifreeze activity significantly increased after cells were treated with cold shock (at -5oC) for 14 h. To the best of our knowledge, this is the first report demonstrating an antifreeze-like protein of C. neogracile.
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhuang, Guoshun; Sun, Yele; An, Zhisheng
A 4-year campaign from 2001 to 2004 monitoring PM 2.5 and TSP in the spring season in urban Beijing, China was performed to study the variation of characteristics and the different formation mechanisms of aerosols in dust, haze, and clear days. A total of 315 aerosol samples were collected and used in this study. The aerosols were more basic in dust days and more acidic in haze days. The ions presented in the order of SO42->Ca 2+≫ NO3->Cl -> NH4+>Na + in dust days, and of SO42-> NO3-> NH4+≫Cl ->Ca 2+>K + in haze days. Ions has been classified into three groups, "Na +, Mg 2+, Ca 2+", "K +, SO42-, Cl -", and " NO3-, NH4+", representing crust, pollution-crust, and pollution species, respectively. Crust and pollution ions were the main ion fractions in dust and haze days, respectively. The variation of Ca 2+/Al showed that the increase of dust in dust and haze days was from soil and construction, respectively. "CaCO 3, CaSO 4, and (NH 4) 2SO 4" and "(NH 4) 2SO 4, NH 4NO 3, and Ca(NO 3) 2" were the major species in dust and haze days, respectively. The formation of CaSO 4 on airborne soil particles and the formation of (NH 4) 2SO 4 and NH 4NO 3 were the predominant pathways of sulfate and nitrate formations in dust and haze days, respectively. Sulfate might be mainly formed through heterogeneous reactions in the aqueous surface layer on the pre-existing particles, while nitrate mainly through homogeneous gas-phase reactions in the spring season in Beijing. The formation of sulfate and nitrate was accelerated in dust and haze days.
The effect of sea-water intrusion due to the large scale construction in a coastal region
NASA Astrophysics Data System (ADS)
Hyun, S.; Jin, S.; Woo, N. C.; Lee, J.; Lee, H.; Kim, Y.
2010-12-01
This study was carried out for estimating the seawater intrusion at the disturbed aquifer by a large scale construction when building a power plant in a coastal region, located in southeastern part of the Korean peninsula. Groundwater sampling and vertical profiling of electrical conductivity(EC) for 8 monitoring wells were carried. EC profiling results shows that maximum EC for PW-5, 6 and 7 is over 40 mS/cm, for PZ-1, 3, 4 and 8 is 18.76, 4.46, 26.16, 21.42 mS/cm and for PZ-2 is 0.79 mS/cm,respectively. Chemical composition of water samples shows that water types of Na-Cl for PZ-5, 6, and 7 (excavated and backfilled area), Na-Cl-SO4 for PZ-4 and PZ-8, Na-Ca-Mg-Cl for PZ-1, Ca-Na-SO4-Cl for PZ-2, and Mg-Ca-Na-SO4 for PZ-3. In addition, the bivariate plot of SO4/Cl(meq ratios) and SO4(mmol/L) indicates that PZ-4, 5, 6, 7 and 8 appear to be seawater, PZ-1 is located at mixing zone between freshwater and seawater, and PZ-2 is freshwater. However, based on the high SO42- level and (HCO3-/Sum anions} ratio less than 0.8, groundwater at PZ-3 seems to show the gypsum dissolution. The gypsum dissolution was attributed to the effect of sea-water intrusion on ageing of lean concrete that was used for backfill around the PZ-3. Key words : large scale construction, EC profiling, hydrochemistry, sea-water intrusion, concrete ageing Acknowledgement This study has been carried out under the Nuclear R&D Program [No. 2010-0001070] supported by the Ministry of Education, Science and Technology, Republic of Korea.
The Measurement of Sulfur Oxidation Products and Their Role in Homogeneous Nucleation
NASA Technical Reports Server (NTRS)
Eisele, F. L.
1997-01-01
The loss rate of H2SO4 vapor onto submicron particles was measured for three different particle substrates. The experimental technique involved direct flow tube measurements of H2SO4 decay rates onto a polydisperse aerosol using chemical ionization mass spectroscopic detection. The aerosols of this study were partially hydrated crystalline salts with diameters in the size range of 20 to 400 nm. The mass accommodation coefficients, a, were calculated from the first-order rate constants for H2SO4 loss to be 0.73 + 0.21 and 0.79 + 0.23 for loss onto (NH4)2SO4 and NaCl, respectively. Measurements of the loss rate of H2SO4 onto a NaCl aerosol coated with stearic acid resulted in lower mass accommodation coefficients with values of 0.31 and 0.19 for aerosol with high and low stearic acid coverage, respectively. The observed decrease in a on an aerosol with a hydrocarbon coating suggests that aerosol composition is a key factor in H2SO4 adsorption on to a particle surface.
NASA Astrophysics Data System (ADS)
Stefánsson, Andri; Stefánsson, Gerdur; Keller, Nicole S.; Barsotti, Sara; Sigurdsson, Árni; Thorláksdóttir, Svava Björk; Pfeffer, Melissa Anne; Eiríksdóttir, Eydís. S.; Jónasdóttir, Elín. Björk; von Löwis, Sibylle; Gíslason, Sigurdur R.
2017-02-01
The Holuhraun eruption in 2014-2015 was the largest in Iceland for more than 200 years. It resulted in emissions of large quantities of volcanic gases into the atmosphere (11 megaton (Mt) SO2, 0.1 Mt HCl, and 0.05 Mt HF). During the eruption the volcanic gases had major effects on F, SO4 and to a lesser extent Cl concentrations in precipitaxtion throughout Iceland, effects not observed in recent decades. The concentrations of F, Cl, and SO4 (n = 705) reached values of 444 µm 12,270 µm, and 17,324 µm during the eruption and were on average 20 times higher for F and SO4 and much lower for Cl compared to preeruption times. The concentrations of major cations (Si, Na, K, Ca, Mg, Al, and Fe) (n = 151) in the precipitation were taken as having originated from seawater spray and dissolution of rock dust and aerosol. Based on the mixing model developed here, it is demonstrated that the source of the enrichment of F and SO4 was indeed the volcanic gas emissions with >60-100 mol % of SO4 and F in the precipitation originated from volcanic gas, whereas the Cl originated mostly from seawater spray, making the volcanic gas input of Cl relatively less important than for F and SO4. The results showed that large volcanic eruptions can have major effects on atmospheric chemistry and impact the composition of precipitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, Sven O.; Cole, Jacqueline M.; Waddell, Paul G.
2014-07-24
Thermally-reversible solid-state linkage SO2 photoisomers of three complexes in the [Ru(NH3)4SO2X]tosylate2 family are captured in their metastable states using photocrystallography, where X = pyridine (1), 3-Cl-pyridine (2) and 4-Cl-pyridine (3). This photoisomerism only exists in the single-crystal form; accordingly, the nature of the crystalline environment surrounding the photo-active species controls its properties. In particular, the structural role of the tosylate anion needs to be understood against possible chemical influences due to varying the trans ligand, X. The photo-excited geometries, photoconversion levels and thermal stabilities of the photoisomers that form in 1-3 are therefore studied. 1 and 2 yield two photo-isomersmore » at 100 K: the O-bound end-on n1-SO2 Page 1 of 32 ACS Paragon Plus Environment The Journal of Physical Chemistry (MS1) configuration and the side-bound n2-SO2 (MS2), while 3 only exhibits the more thermally stable MS2 geometry. The decay kinetics of the MS2 geometry for 1-3 demonstrate that the greater the free volume of the GS SO2 ligand for a given counterion, the greater the MS2 thermal stability. Furthermore, a rationalization is sought for the SO2 phototriggered molecular rotation of the phenyl ring in the tosylate anion; this is selectively observed in 2, manifesting as nanomechanical molecular transduction. This molecular transduction was not observed in 1, despite the presence of the MS1 geometry due to the close intermolecular interactions between the MS1 SO2 and the neighbouring tosylate ion. The decay of this anionic molecular rotor in 2, however, follows a non-traditional decay pathway, as determined by time-resolved crystallographic analysis; this contrasts with the well-behaved first-order kinetic decay of its MS1 SO2 phototrigger.« less
Swapnil, Prashant; Rai, Ashwani K
2018-05-01
Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na 2 SO 4 ). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na 2 SO 4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na + concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na + and Ca 2+ and leakage of K + in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca 2+ under different salt treatments, ratio of Ca 2+ /Na + remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.
NASA Astrophysics Data System (ADS)
Oyabu, Ikumi; Iizuka, Yoshinori; Uemura, Ryu; Miyake, Takayuki; Hirabayashi, Motohiro; Motoyama, Hideaki; Sakurai, Toshimitsu; Suzuki, Toshitaka; Hondoh, Takeo
2014-12-01
The flux and chemical composition of aerosols impact the climate. Antarctic ice cores preserve the record of past atmospheric aerosols, providing useful information about past atmospheric environments. However, few studies have directly measured the chemical composition of aerosol particles preserved in ice cores. Here we present the chemical compositions of sulfate and chloride salts from aerosol particles in the Dome Fuji ice core. The analysis method involves ice sublimation, and the period covers the last termination, 25.0-11.0 thousand years before present (kyr B.P.), with a 350 year resolution. The major components of the soluble particles are CaSO4, Na2SO4, and NaCl. The dominant sulfate salt changes at 16.8 kyr B.P. from CaSO4, a glacial type, to Na2SO4, an interglacial type. The sulfate salt flux (CaSO4 plus Na2SO4) inversely correlates with δ18O in Dome Fuji over millennial timescales. This correlation is consistent with the idea that sulfate salt aerosols contributed to the last deglacial warming of inland Antarctica by reducing the aerosol indirect effect. Between 16.3 and 11.0 kyr B.P., the presence of NaCl suggests that winter atmospheric aerosols are preserved. A high NaCl/Na2SO4 fraction between 12.3 and 11.0 kyr B.P. indicates that the contribution from the transport of winter atmospheric aerosols increased during this period.
Ma, Jie; Yang, Yongqi; Jiang, Xianchenghao; Xie, Zhuoting; Li, Xiaoxuan; Chen, Changzhao; Chen, Hongkun
2018-01-01
The present study investigated the impacts of water matrix constituents (CO 3 2- , HCO 3 - , Cl - , Br - , PO 4 3- , HPO 4 2- , H 2 PO 4 - , NO 3 - , SO 4 2- and natural organic matters (NOM) on the oxidation of a mixture of benzene, toluene, ethylbenzene, and xylenes (BTEX) by thermally activated persulfate (PS). In the absence of matrix constituents, the BTEX oxidation rates decreased in the following order: xylenes > toluene ≈ ethylbenzene > benzene. HCO 3 - /CO 3 2- and NOM inhibited the BTEX oxidation and the inhibiting effects became more pronounced as the HCO 3 - /CO 3 2- /NOM concentration increased. SO 4 2- , NO 3 - , PO 4 3- and H 2 PO 4 - did not affect the BTEX oxidation while HPO 4 2- slightly inhibited the reaction. The impacts of Cl - and Br - were complex. Cl - inhibited the benzene oxidation while 100 mM and 500 mM of Cl - promoted the oxidation of m-xylene and p-xylene. Br - completely suppressed the benzene oxidation while 500 mM of Br - strongly promoted the oxidation of xylenes. Detailed explanations on the influence of each matrix constituent were discussed. In addition, various halogenated degradation byproducts were detected in the treatments containing Cl - and Br - . Overall, this study indicates that some matrix constituents such as NOM, HCO 3 - , CO 3 2- , H 2 PO 4 - , Cl - and Br - may reduce the BTEX removal efficiency of sulfate radical-based advanced oxidation process (SR-AOP) and the presence of Cl - and Br - may even lead to the formation of toxic halogenated byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.
AN EXPERIMENTAL STUDY ON ARTIFICIAL CONDENSATION NUCLEI,
NH4Cl, CaCl2, P205, NH4NO3, (NH4)2SO4, etc.) and suspensoids such as camphor , silicon minerals, kaolin, lamp black, and calcium lime (CaO). The...findings reveal that the above mentioned soluble nuclei and camphor powder are active artificial hygroscopic condensation nuclei and that lamp black
Foam Separation of Pseudomonas fluorescens and Bacillus subtilis var. niger
Grieves, R. B.; Wang, S. L.
1967-01-01
An experimental investigation established the effect of the presence of inorganic salts on the foam separation of Pseudomonas fluorescens and of Bacillus subtilis var. niger (B. globigii) from aqueous suspension by use of a cationic surfactant. For P. fluorescens, 5.0 μeq/ml of NaCl, KCl, Na2SO4, K2SO4, CaCl2, CaSO4, MgCl2, or MgSO4 produced increases in the cell concentration in the residual suspension (not carried into the foam) from 2.9 × 105 up to 1.6 × 106 to 2.8 × 107 cells per milliliter (initial suspensions contain from 3.3 × 107 to 4.8 × 107 cells per milliliter). The exceptional influence of magnesium was overcome by bringing the cells into contact first with the surfactant and then the salt. For B. subtilis, the presence of 5.0 μeq/ml of any of the eight salts increased the residual cell concentration by one order of magnitude from 1.2 × 104 to about 4.0 × 105 cells per milliliter. This occurred regardless of the sequence of contact as long as the surfactant contact period was sufficient. The presence of salts increased collapsed foam volumes with P. fluorescens and decreased collapsed foam volumes with B. subtilis. PMID:4961933
Study of the reaction of atomic oxygen with aerosols
NASA Technical Reports Server (NTRS)
Akers, F. I.; Wightman, J. P.
1975-01-01
The rate of disappearance of atomic oxygen was measured at several pressures in a fast flow pyrex reactor system with its walls treated with (NH4)2SO4 (s), H2SO4 (l), and NH4CL (s). Atomic oxygen, P-3 was generated by dissociation of pure, low pressure oxygen in a microwave discharge. Concentrations of atomic oxygen were measured at several stations in the reactor system using chemiluminescent titration with NO2. Recombination efficiencies calculated from experimentally determined wall recombination rate constants are in good agreement with reported values for clean Pyrex and an H2SO4 coated wall. The recombination efficiency for (NH4)2SO4, results in a slightly lower value than for H2S04. A rapid exothermic reaction between atomic oxygen and the NH4Cl wall coating prevented recombination efficiency determination for this coating. The results show that the technique is highly useful for wall recombination measurements and as a means of extrapolating to the case of free stream aerosol-gas interactions.
Li, Wei; Patton, Samuel; Gleason, Jamie M; Mezyk, Stephen P; Ishida, Kenneth P; Liu, Haizhou
2018-06-05
A sequential combination of membrane treatment and UV-based advanced oxidation processes (UV/AOP) has become the industry standard for potable water reuse. Chloramines are used as membrane antifouling agents and therefore carried over into the UV/AOP. In addition, persulfate (S 2 O 8 2- ) is an emerging oxidant that can be added into a UV/AOP, thus creating radicals generated from both chloramines and persulfate for water treatment. This study investigated the simultaneous photolysis of S 2 O 8 2- and monochloramine (NH 2 Cl) on the removal of 1,4-dioxane (1,4-D) for potable-water reuse. The dual oxidant effects of NH 2 Cl and S 2 O 8 2- on 1,4-D degradation were examined at various levels of oxidant dosage, chloride, and solution pH. Results showed that a NH 2 Cl-to-S 2 O 8 2- molar ratio of 0.1 was optimal, beyond which the scavenging by NH 2 Cl of HO • , SO 4 •- , and Cl 2 •- radicals decreased the 1,4-D degradation rate. At the optimal ratio, the degradation rate of 1,4-D increased linearly with the total oxidant dose up to 6 mM. The combined photolysis of NH 2 Cl and S 2 O 8 2- was sensitive to the solution pH due to a disproportionation of NH 2 Cl at pH lower than 6 into less-photoreactive dichloramine (NHCl 2 ) and radical scavenging by NH 4 + . The presence of chloride transformed HO • and SO 4 •- to Cl 2 •- that is less-reactive with 1,4-D, while the presence of dissolved O 2 promoted gaseous nitrogen production. Results from this study suggest that the presence of chloramines can be beneficial to persulfate photolysis in the removal of 1,4-D; however, the treatment efficiency depends on a careful control of an optimal NH 2 Cl dosage and a minimal chloride residue.
Amino Compounds as Inhibitors of De Novo Synthesis of Chlorobenzenes
NASA Astrophysics Data System (ADS)
Wang, Si-Jia; He, Pin-Jing; Lu, Wen-Tao; Shao, Li-Ming; Zhang, Hua
2016-04-01
The inhibitory effects of four amino compounds on the formation of chlorobenzenes (CBzs) - dioxin precursors and indicators, and the inhibitory mechanisms were explored. The results show NH4H2PO4 can decrease the total yields of CBzs (1,2di-CBz, 1,3di-CBz, 1,4di-CBz, penta-CBz and hexa-CBz) by 98.1%±1.6% and 96.1%±0.7% under air and nitrogen flow. The inhibitory effects indicated by the total yields of CBzs follow the order NH4H2PO4 > NH4HF2 > (NH4)2SO4 > NH4Br under air flow and NH4H2PO4 ≈ (NH4)2SO4 ≈ NH4HF2 >NH4Br under nitrogen flow. The inhibition mechanism revealed by thermal analysis that CuCl2 was converted to CuPO3 by reacting with NH4H2PO4 below 200 °C, which can block the transfer of chlorine and formation of C-Cl bonds at 350 °C. The effects of the other three inhibitors were weaker because their reactions with CuCl2, which form other copper compounds, and the reaction of CuCl2 with carbon, which forms C-Cl bonds, were almost simultaneous and competitive. Oxygen influenced the yield of CBzs obviously, and the total yield of five CBzs sharply increased with oxygen. Because of their high efficiency, low environmental impact, low cost, and availability, amino compounds - especially NH4H2PO4 - can be utilized as inhibitors of CBzs during incineration.
Development of N(2) Sensor for Determination of PN(2) in Body Tissues.
1986-08-01
NK3)4C1 2 ]Cl Acid -140 -340 Acid -120 -280 +500 . + Zn Amalgam +700 +900 2 cis-Ru(N( 3 )4C1 2 C1 Buffer -130 -305 (major) ,450 + Zn Amalgam -210...increase under N 2 -400 mV under N 2 cis- [1u (en) 2C12 )C1 Buffer -125 -350 Buffer + Zn - so -400 .475 Amalgam +780 cis-(Ru(en)2Br 2 ] r Acid -120...375 Acid + Zn - 0 -280 plateau Amalgam 600-8SO cis- ([ (bipyr)C12 1Cl Buffer .455 +320 Buffer + Zn +575 +380 Nme Amalgam 1Acid = 0.1M H2SO42Buffer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utell, M.J.; Morrow, P.E.; Hyde, R.W.
Recent epidemiologic studies have emphasized a relationship between alteration in lung function, respiratory symptoms in asthmatics, and elevated levels of sulfate air pollutants. In asthmatics, it has been reported that (1) the more acidic sulfate aerosols, sulfuric acid (H/sub 2/SO/sub 4/) and ammonium bisulfate (NH/sub 4/HSO/sub 4/), provoked the greatest changes in lung function and (2) a definite exposure-response relationship exists for H/sub 2/SO/sub 4/ inhalation. To determine if sulfate aerosol exposure caused increased reactivity to a known bronchoconstrictor, normal and asthmatic subjects inhaled subthreshold doses of carbachol after the following sulfates: H/sub 2/SO/sub 4/, Nh/sub 4/HSO/sub 4/ and sodiummore » bisulfate. A NaCl aerosol served as a control. Exposure times averaged 16 minutes with sulfate concentrations ranging from 100 ..mu..g/m/sup 3/ to 1000 ..mu..g/m/sup 3/. In normal subjects, prior inhalation of either 1000 ..mu../m/sup 3/ H/sub 2/SO/sub 4/ or NH/sub 4/HSO/sub 4/ significantly potentiated the bronchoconstrictor action of carbachol on airway conductance compared to NaCl and carbachol or carbachol alone by t-tests. For the asthmatic group, prior inhalation of either 1000 ..mu..g/m/sup 3/ H/sub 2/SO/sub 4/, or 450 ..mu..g/m/sup 3/ H/sub 2/SO/sub 4/ similarly enhanced the carbachol bronchoconstrictor effect compared to NaCl and carbachol. At the low 100 ..mu..g/m/sup 3/, no sulfates altered the effects of carbachol on pulmonary function. Although mean changes between the sulfate groups did not attain significance by an analysis of variance, it was found that the bronchoconstrictor action of carbachol was potentiated by the sulfate aerosols more or less in relation to their acidity.« less
Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars
Marion, G.M.; Catling, D.C.; Kargel, J.S.
2003-01-01
Major uncertainties exist with respect to the aqueous geochemical evolution of the Martian surface. Considering the prevailing cryogenic climates and the abundance of salts and iron minerals on Mars, any attempt at comprehensive modeling of Martian aqueous chemistry should include iron chemistry and be valid at low temperatures and high solution concentrations. The objectives of this paper were to (1) estimate ferrous iron Pitzer-equation parameters and iron mineral solubility products at low temperatures (from < 0 ??C to 25 ??C), (2) incorporate these parameters and solubility products into the FREZCHEM model, and (3) use the model to simulate the surficial aqueous geochemical evolution of Mars. Ferrous iron Pitzer-equation parameters were derived in this work or taken from the literature. Six new iron minerals [FeCl2??4H2O, FeCl2??6H2O, FeSO4??H2O, FeSO4??7H2O, FeCO3, and Fe(OH)3] were added to the FREZCHEM model bringing the total solid phases to 56. Agreement between model predictions and experimental data are fair to excellent for the ferrous systems: Fe-Cl, Fe-SO4, Fe-HCO3, H-Fe-Cl, and H-Fe-SO4. We quantified a conceptual model for the aqueous geochemical evolution of the Martian surface. The five stages of the conceptual model are: (1) carbonic acid weathering of primary ferromagnesian minerals to form an initial magnesium-iron-bicarbonate-rich solution; (2) evaporation and precipitation of carbonates, including siderite (FeCO3), with evolution of the brine to a concentrated NaCl solution; (3) ferrous/ferric iron oxidation; (4) either evaporation or freezing of the brine to dryness; and (5) surface acidification. What began as a dilute Mg-Fe-HCO3 dominated leachate representing ferromagnesian weathering evolved into an Earth-like seawater composition dominated by NaCl, and finally into a hypersaline Mg-Na-SO4-Cl brine. Weathering appears to have taken place initially under conditions that allowed solution of ferrous iron [low O2(g)], but later caused oxidation of iron [high O2(g)]. Surface acidification and/or sediment burial can account for the minor amounts of Martian surface carbonates. This model rests on a large number of assumptions and is therefore speculative. Nevertheless, the model is consistent with current understanding concerning surficial salts and minerals based on Martian meteorites, Mars lander data, and remotely-sensed spectral analyses. ?? 2003 Elsevier Ltd.
Ahmad, Zahoor; Yamamoto, Sadahiro; Honna, Toshimasa
2008-01-01
Concerns over increased phosphorus (P) application with nitrogen (N)-based compost application have shifted the trend to P-based composed application, but focusing on one or two nutritional elements does not serve the goals of sustainable agriculture. The need to understand the nutrient release and uptake from different composts has been further aggravated by the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, we evaluated the leachability and phytoavailability of P, N, and K from a sandy loam soil amended with animal, poultry, and sludge composts when applied on a total P-equivalent basis (200 kg ha(-1)) under Cl(-) (NaCl)- and SO4(2-) (Na2SO4)-dominated irrigation water. Our results showed that the concentration of dissolved reactive P (DRP) was higher in leachates under SO(4)(2-) than Cl(-) treatments. Compost amendments differed for DRP leaching in the following pattern: sludge > animal > poultry > control. Maize (Zea mays L.) growth and P uptake were severely suppressed under Cl(-) irrigation compared with SO4(2-) and non-saline treatments. All composts were applied on a total P-equivalent basis, but maximum plant (shoot + root) P uptake was observed under sludge compost amendment (73.4 mg DW(-1)), followed by poultry (39.3 mg DW(-1)), animal (15.0 mg DW(-1)), and control (1.2 mg DW(-1)) treatment. Results of this study reveal that irrigation water dominated by SO4(2-) has greater ability to replace/leach P, other anions (NO3(-)), and cations (K+). Variability in P release from different bio-composts applied on a total P-equivalent basis suggested that P availability is highly dependent on compost source.
Fast O2 Binding at Dicopper Complexes Containing Schiff-Base Dinucleating Ligands
Company, Anna; Gómez, Laura; Mas-Ballesté, Rubén; Korendovych, Ivan V.; Ribas, Xavi; Poater, Albert; Parella, Teodor; Fontrodona, Xavier; Benet-Buchholz, Jordi; Solà, Miquel; Que, Lawrence; Rybak-Akimova, Elena; Costas, Miquel
2008-01-01
A new family of dicopper(I) complexes [CuI2RL](X)2, (R = H, 1X, R = tBu, 2X and R = NO2, 3X, X = CF3SO3, ClO4, SbF6 or BArF, BArF = [B{3,5-(CF3)2-C6H3}4]−), where RL is a Schiff-base ligand containing two tridentate binding sites linked by a xylyl spacer have been prepared, characterized, and their reaction with O2 studied. The complexes were designed with the aim of reproducing structural aspects of the active site of type 3 dicopper proteins; they contain two three-coordinate copper sites and a rather flexible podand ligand backbone. The solid state structures of 1ClO4, 2CF3SO3, 2ClO4 and 3BArF·CH3CN have been established by single crystal X-ray diffraction analysis. 1ClO4 adopts a polymeric structure in solution while 2CF3SO3, 2ClO4 and 3BArF·CH3CN are monomeric. The complexes have been studied in solution by means of 1H and 19F NMR spectroscopy, which put forward the presence of dynamic processes in solution. 1-3BArF and 1-3CF3SO3 in acetone react rapidly with O2 to generate metaestable [CuIII2(μ-O)2(RL)]2+ 1-3(O2) and [CuIII2(μ-O)2(CF3SO3)(RL)]+ 1-3(O2)(CF3SO3) species, respectively that have been characterized by UV-vis spectroscopy and resonance Raman analysis. Instead, reaction of 1-3BArF with O2 in CH2Cl2 results in intermolecular O2 binding. DFT methods have been used to study the chemical identities and structural parameters of the O2 adducts, and the relative stability of the CuIII2(μ-O)2 form with respect to the CuII2(μ-η2: η2-peroxo) isomer. The reaction of 1X, X = CF3SO3 and BArF with O2 in acetone has been studied by stopped-flow exhibiting an unexpected very fast reaction rate (k = 3.82(4) × 103 M−1s−1, ΔH‡ = 4.9 ± 0.5 kJ·mol−1, ΔS‡ = −148 ± 5 J·K−1·mol−1), nearly three orders of magnitude faster than in the parent [CuI2(m-XYLMeAN)]2+. Thermal decomposition of 1-3(O2) does not result in aromatic hydroxylation. The mechanism and kinetics of O2 binding to 1X (X = CF3SO3 and BArF) is discussed and compared with those associated to selected examples of reported models of O2-processing copper proteins. A synergistic role of the copper ions in O2 binding and activation is clearly established from this analysis. PMID:17500512
Reginato, M; Sosa, L; Llanes, A; Hampp, E; Vettorazzi, N; Reinoso, H; Luna, V
2014-01-01
Halophytes are potential gene sources for genetic manipulation of economically important crop species. This study addresses the physiological responses of a widespread halophyte, Prosopis strombulifera (Lam.) Benth to salinity. We hypothesised that increasing concentrations of the two major salts present in soils of central Argentina (Na2SO4, NaCl, or their iso-osmotic mixture) would produce distinct physiological responses. We used hydroponically grown P. strombulifera to test this hypothesis, analysing growth parameters, water relations, photosynthetic pigments, cations and anions. These plants showed a halophytic response to NaCl, but strong general inhibition of growth in response to iso-osmotic solutions containing Na2SO4. The explanation for the adaptive success of P. strombulifera in high NaCl conditions seems to be related to a delicate balance between Na(+) accumulation (and its use for osmotic adjustment) and efficient compartmentalisation in vacuoles, the ability of the whole plant to ensure sufficient K(+) supply by maintaining high K(+)/Na(+) discrimination, and maintenance of normal Ca(2+) levels in leaves. The three salt treatments had different effects on the accumulation of ions. Findings in bi-saline-treated plants were of particular interest, where most of the physiological parameters studied showed partial alleviation of SO4(2-)-induced toxicity by Cl(-). Thus, discussions on physiological responses to salinity could be further expanded in a way that more closely mimics natural salt environments. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Moore, J.N.; Christenson, B.W.; Allis, R.G.; Browne, P.R.L.; Lutz, S.J.
2004-01-01
Acidic steam condensates in volcanic systems or shallow, oxygenated geothermal environments are typically enriched in SO4 and poor in Cl. These fluids produce distinctive alteration-induced assemblages as they descend. At Karaha - Telaga Bodas, located on the flank of Galunggung Volcano, Indonesia, neutralization of descending acid waters has resulted in the successive appearance of 1) advanced argillic alteration characterized by alunite, clay minerals and pyrite, 2) anhydrite, pyrite and interlayered sheet silicates, and 3) carbonates. Minor tourmaline, fluorite and native sulfur also are present locally, reflecting interactions with discharging magmatic gases. Water rock interactions were modeled at temperatures up to 250??C using the composition of acidic lake water from Telaga Bodas and that of a typical andesite as reactants. The simulations predict mineral distributions consistent with the observed assemblages and a decrease in the freezing-point depression of the fluid with increasing temperature. Fluids trapped in anhydrite, calcite and fluorite display a similar decrease in their freezing-point depressions, from 2.8?? to 1.5??C, as homogenization temperatures increase from 160?? to 205??C. The simulations indicate that the progressive change in fluid composition is due mainly to the incorporation of SO4 into the newly formed hydrothermal minerals. The salinities of fluid inclusions containing Cl-deficient steam condensates are better expressed in terms of H2SO4 equivalents than the commonly used NaCl equivalents. At solute concentrations >1.5 molal, freezing-point depressions represented as NaCl equivalents overestimate the salinity of Cl-poor waters. At lower concentrations, differences between apparent salinities calculated as NaCl and H2SO 4 equivalents are negligible.
Ahmed, Mohammed; Namboodiri, V; Singh, Ajay K; Mondal, Jahur A
2014-10-28
The hydration energy of an ion largely resides within the first few layers of water molecules in its hydration shell. Hence, it is important to understand the transformation of water properties, such as hydrogen-bonding, intermolecular vibrational coupling, and librational freedom in the hydration shell of ions. We investigated these properties in the hydration shell of mono- (Cl(-) and I(-)) and bivalent (SO4(2-) and CO3(2-)) anions by using Raman multivariate curve resolution (Raman-MCR) spectroscopy in the OH stretch, HOH bend, and [bend+librational] combination bands of water. Raman-MCR of aqueous Na-salt (NaCl, NaI, Na2SO4, and Na2CO3) solutions provides ion-correlated spectra (IC-spectrum) which predominantly bear the vibrational characteristics of water in the hydration shell of respective anions. Comparison of these IC-spectra with the Raman spectrum of bulk water in different spectral regions reveals that the water is vibrationally decoupled with its neighbors in the hydration shell. Hydrogen-bond strength and librational freedom also vary with the nature of anion: hydrogen-bond strength, for example, decreases as CO3(2-) > SO4(2-) > bulk water ≈ Cl(-) > I(-); and the librational freedom increases as CO3(2-) ≈ SO4(2-) < bulk water < Cl(-) < I(-). It is believed that these structural perturbations influence the dynamics of coherent energy transfer and librational reorientation of water in the hydration shell of anions.
Purification and some properties of rose (Fructus cynosbati) hips invertase.
Sacan, Ozlem; Yanardag, Refiye
2012-04-01
Invertase was purified from rose (Fructus cynosbati) hips by ammonium sulfate fractionation and hydroxyapatite column chromatography. The enzyme was obtained with a yield of 4.25% and about 10.48-fold purification and had a specific activity of 8.59 U/mg protein. The molecular mass of invertase was estimated to be 66.51 kDa by PAGE and 34 kDa by SDS-PAGE, indicating that the native enzyme was a homodimer. The enzyme was a glycoprotein and contained 5.86% carbohydrate. The K(m) for sucrose was 14.55 mM and the optimum pH and temperature of the enzyme were 4.5 and 40 degrees C, respectively. Sucrose was the most preferred substrate of the enzyme. The enzyme also hydrolyzed D(+) raffinose, D(+) trehalose and inulin (activity 39.88, 8.12 and 4.94%, respectively of that of sucrose), while D(+) lactose, cellobiose and D(+) maltose showed no effect on the enzyme. The substrate specificity was consistent with that for a beta-fructofuranoside, which is the most popular type in the higher plants. The enzyme was completely inhibited by HgCl2, MnCl2, MnSO4, FeCl3, Pb(NO3)2, ammonium heptamolybdate, iodoacetamide and pyridoxine hydrochloride. It was also inhibited by Ba(NO3)2 (86.32%), NH4Cl (84.91%), MgCl2 (74.45%), urea (71.63%), I2 (69.64%), LiCl (64.99%), BaCl2 (50.30%), Mg(NO3)2 (49.90%), CrCl3 (31.90%) and CuSO4 (21.45%) and but was activated by Tris (73.99%) and methionine (12.47%).
Photochemical production of H2SO4 aerosols on Venus
NASA Technical Reports Server (NTRS)
Yuk, L. Yung
1986-01-01
The quantum yields for producing O2(a (1 delta g)) and O2(b(1 sigma g +)) for the reaction, O + ClO yields Cl + O2, are summarized. Also included are results for other simple reactions capable of producing the singlet oxygen states. An episodic injection of SO2 into the upper atmosphere of Venus is considered as a possible explanation for the airglow values.
Foam separation of Pseudomonas fluorescens and Bacillus subtilis var. niger.
Grieves, R B; Wang, S L
1967-01-01
An experimental investigation established the effect of the presence of inorganic salts on the foam separation of Pseudomonas fluorescens and of Bacillus subtilis var. niger (B. globigii) from aqueous suspension by use of a cationic surfactant. For P. fluorescens, 5.0 mueq/ml of NaCl, KCl, Na(2)SO(4), K(2)SO(4), CaCl(2), CaSO(4), MgCl(2), or MgSO(4) produced increases in the cell concentration in the residual suspension (not carried into the foam) from 2.9 x 10(5) up to 1.6 x 10(6) to 2.8 x 10(7) cells per milliliter (initial suspensions contain from 3.3 x 10(7) to 4.8 x 10(7) cells per milliliter). The exceptional influence of magnesium was overcome by bringing the cells into contact first with the surfactant and then the salt. For B. subtilis, the presence of 5.0 mueq/ml of any of the eight salts increased the residual cell concentration by one order of magnitude from 1.2 x 10(4) to about 4.0 x 10(5) cells per milliliter. This occurred regardless of the sequence of contact as long as the surfactant contact period was sufficient. The presence of salts increased collapsed foam volumes with P. fluorescens and decreased collapsed foam volumes with B. subtilis.
NASA Astrophysics Data System (ADS)
Monnin, Christophe
1990-12-01
A model is presented which is used to calculate the effect of pressure on activity coefficients of aqueous solutes in the system Na-Ca-Cl-SO 4-H 2O to 200°C. Literature data for the density and compressibility of aqueous binary solutions of Na 2SO 4 and CaCl 2 to 200°C are used to calculate the first and second pressure derivatives of Pitzer's ion interaction model parameters, as well as the standard molal compressibility and volume of these two salts. Empirical correlations between the apparent molal volume and compressibility of the aqueous electrolytes are used to guide the choice of the temperature dependent expressions used for the numerical representation of the derivatives of Pitzer's parameters with respect to pressure. For sodium sulfate solutions, such correlations are used to extrapolate compressibilities to 200°C. The change in the thermodynamic properties of the-CaSO 04 ion pair with pressure is taken into account by the variation of its dissociation constant. The volumetric properties (partial molal volumes and compressibilities) of multicomponent solutions in the Na-Ca-Cl-SO 4-H 2O system can be predicted from the information generated here and the volumetric equations of ROGERS and PITZER (1982) for NaCl. This model is then combined with the high temperature model of MOLLER (1988) of the same system in order to calculate activity coefficients at high pressures to 200°C. The resulting model is validated by comparing calculated and measured solubilities of anhydrite and gypsum in pure water and in NaCl solutions up to 6 M. The agreement between the calculated and measured solubilities of the calcium sulfates is typically better than 10% up to 200°C and 1 kbar. The relevance of temperature and pressure corrections to the activity coefficients of aqueous solutes is discussed in regard to the assumed accuracy with which geochemical models are able to calculate mineral solubilities.
Measuring and modeling the salting-out effect in ammonium sulfate solutions.
Wang, Chen; Lei, Ying Duan; Endo, Satoshi; Wania, Frank
2014-11-18
The presence of inorganic salts significantly influences the partitioning behavior of organic compounds between environmentally relevant aqueous phases, such as seawater or aqueous aerosol, and other, nonaqueous phases (gas phase, organic phase, etc.). In this study, salting-out coefficients (or Setschenow constants) (KS [M(-1)]) for 38 diverse neutral compounds in ammonium sulfate ((NH4)2SO4) solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The measured KS were all positive, varied from 0.216 to 0.729, and had standard errors in the range of 0.006-0.060. Compared to KS for sodium chloride (NaCl) in the literature, KS values for (NH4)2SO4 are always higher for the same compound, suggesting a higher salting-out effect of (NH4)2SO4. A polyparameter linear free energy relationship (pp-LFER) for predicting KS in (NH4)2SO4 solutions was generated using the experimental data for calibration. pp-LFER predicted KS agreed well with measured KS reported in the literature. KS for (NH4)2SO4 was also predicted using the quantum-chemical COSMOtherm software and the thermodynamic model AIOMFAC. While COSMOtherm generally overpredicted the experimental KS, predicted and experimental values were correlated. Therefore, a fitting factor needs to be applied when using the current version of COSMOtherm to predict KS. AIOMFAC tends to underpredict the measured KS((NH4)2SO4) but always overpredicts KS(NaCl). The prediction error is generally larger for KS(NaCl) than for KS((NH4)2SO4). AIOMFAC also predicted a dependence of KS on the salt concentrations, which is not observed in the experimental data. In order to demonstrate that the models developed and calibrated in this study can be applied to estimate Setschenow coefficients for atmospherically relevant compounds involved in secondary organic aerosol formation based on chemical structure alone, we predicted and compared KS for selected α-pinene oxidation products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babo, Jean-Marie; Department of Civil and Environmental Engineering and Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556; Albrecht-Schmitt, Thomas E., E-mail: talbrechtschmitt@gmail.com
2013-10-15
Cs(UO{sub 2})Cl(SeO{sub 3}) (1), Rb{sub 2}(UO{sub 2}){sub 3}O{sub 2}(SeO{sub 3}){sub 3} (2), and RbNa{sub 5}U{sub 2}(SO{sub 4}){sub 7} (3) single crystals were synthesized using CsCl, RbCl, and a CuCl/NaCl eutectic mixture as fluxes, respectively. Their lattice parameters and space groups are as follows: P2{sub 1}/n (a=6.548(1) Å, b=11.052(2) Å, c=10.666(2) Å and β=93.897(3)°), P1{sup ¯} (a=7.051(2) Å, b=7.198(2) Å, c=8.314(2) Å, α=107.897(3)°, β=102.687(3)° and γ=100.564(3)°) and C2/c (a=17.862(4) Å, b=6.931(1) Å, c=20.133(4) Å and β=109.737(6)°. The small anionic building units found in these compounds are SeO{sub 3}{sup 2−} and SO{sub 4}{sup 2−} tetrahedra, oxide, and chloride. The crystal structure ofmore » the first compound is composed of [(UO{sub 2}){sub 2}Cl{sub 2}(SeO{sub 3}){sub 2}]{sup 2−} chains separated by Cs{sup +} cations. The structure of (2) is constructed from [(UO{sub 2}){sub 3}O{sub 11}]{sup 16−} chains further connected through selenite units into layers stacked perpendicularly to the [0 1 0] direction, with Rb{sup +} cations intercalating between them. The structure of compound (3) is made of uranyl sulfate layers formed by edge and vertex connections between dimeric [U{sub 2}O{sub 16}] and [SO{sub 4}] polyhedra. These layers contain unusual sulfate–metal connectivity as well as large voids. - Graphical abstract: A new family of uranyl selenites and sulfates has been prepared by high-temperature redox reactions. This compounds display new bonding motifs. Display Omitted - Highlights: • Low-dimensional Uranyl Oxoanion compounds. • Conversion of U(IV) to U(VI) at high temperatures. • Dimensional reduction by both halides and stereochemically active lone-pairs.« less
Quinoa Seed Quality Response to Sodium Chloride and Sodium Sulfate Salinity
Wu, Geyang; Peterson, Adam J.; Morris, Craig F.; Murphy, Kevin M.
2016-01-01
Quinoa (Chenopodium quinoa Willd.) is an Andean crop with an edible seed that both contains high protein content and provides high quality protein with a balanced amino acid profile in embryonic tissues. Quinoa is a halophyte adapted to harsh environments with highly saline soil. In this study, four quinoa varieties were grown under six salinity treatments and two levels of fertilization, and then evaluated for quinoa seed quality characteristics, including protein content, seed hardness, and seed density. Concentrations of 8, 16, and 32 dS m-1 of NaCl and Na2SO4, were applied to the soil medium across low (1 g N, 0.29 g P, 0.29 g K per pot) and high (3 g N, 0.85 g P, 0.86 g K per pot) fertilizer treatments. Seed protein content differed across soil salinity treatments, varieties, and fertilization levels. Protein content of quinoa grown under salinized soil ranged from 13.0 to 16.7%, comparable to that from non-saline conditions. NaCl and Na2SO4 exhibited different impacts on protein content. Whereas the different concentrations of NaCl did not show differential effects on protein content, the seed from 32 dS m-1 Na2SO4 contained the highest protein content. Seed hardness differed among varieties, and was moderately influenced by salinity level (P = 0.09). Seed density was affected significantly by variety and Na2SO4 concentration, but was unaffected by NaCl concentration. The samples from 8 dS m-1 Na2SO4 soil had lower density (0.66 g/cm3) than those from 16 dS m-1 and 32 dS m-1 Na2SO4, 0.74 and 0.72g/cm3, respectively. This paper identifies changes in critical seed quality traits of quinoa as influenced by soil salinity and fertility, and offers insights into variety response and choice across different abiotic stresses in the field environment. PMID:27375648
The indoor-outdoor characteristics of water-soluble ion in PM2.5 in Tianjin wintertime.
Wang, Baoqing; Niu, Honghong; Liu, Bowei; Hu, Xinxin; Ren, Zihui
2018-05-15
The indoor and outdoor PM 2.5 mass concentration, water-soluble ion by filter sampler was analyzed on December 3-21, 2015 during wintertime in Tianjin, China. The results indicate that high humidity conditions result in the accumulation of atmospheric pollutants and reduce atmosphere visibility. The I/O ratio for PM 2.5 concentration in dormitory and lab are less than 1 in haze days. Indoor PM 2.5 concentration increases rapidly with outdoor PM 2.5 concentration increasing in haze days. The filtration factors of the dormitory and lab indicate nearly half of the outdoor PM 2.5 enters indoor environment. The human activities in dormitory could cause more the formation of PM 2.5 than those in lab. The concentration of SO 4 2- is the highest ion in water-soluble ion for outdoor PM 2.5 . The SO 4 2- , NO 3 - , NH 4 + , and Cl - are generated mainly by outdoor sources; however, the Na + , Ca 2+ , and Mg 2+ are generated mainly by indoor sources. The NH 4 NO 3 , (NH 4 ) 2 SO 4 , and NH 4 Cl accounts for 20.2~41.8%, 32.0~51.4%, and 6.4~10.6% of the total water-soluble ion in different indoor-outdoor environment. The total secondary aerosols including NH 4 NO 3 , (NH 4 ) 2 SO 4 , and NH 4 Cl in PM 2.5 are 28.3, 42.1, 28.2, 31.0, and 33.9% in outdoor environment for haze days, outdoor environment for non-haze days, dormitory for haze days, dormitory for non-haze days, and lab for haze days, respectively.
Sun, Zhumei; Chai, Liyuan; Liu, Mingshi; Shu, Yude; Li, Qingzhu; Wang, Yunyan; Qiu, Dingfan
2018-03-01
The effect of electronegativity on the electrosorption selectivity of anions during capacitive deionization was investigated via a combination of experimental and theoretical studies. A model was developed based on chemical thermodynamics and the classic Stern's model to reveal the role of the anode potential and to describe electrosorption selectivity behavior during capacitive deionization. The effects of the anode potential on the adsorption of Cl - and ReO 4 - were studied and the obtained data were used to validate the model. Using the validated model, the effects of the anode potential and electronegativity of various anions, including Cl - , ReO 4 - , SO 4 2- and NO 3 - were assessed. The experimental results for the electrosorption of Cl - and ReO 4 - corresponded well with the developed model. The electrosorption capacity demonstrates a logarithmic relationship with the anode potential. The model showed that the electronegativity significantly affects the selectivity. In a mixed Cl - , ReO 4 - , SO 4 2- and NO 3 - solution, ReO 4 - was preferentially adsorbed over the other three anions, and the following selectivity was exhibited: ReO 4 - > NO 3 - > Cl - > SO 4 2- . The results showed that the effect of flow rates on the electrosorption selectivity can be considered negligible when the flow rates are higher than 112 mL min -1 . The anions selectivity can be further enhanced by increasing the anode potential, and electrosorption selectivity is no appreciable decline after 6 experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Cong-Qiang; Lang, Yun-Chao; Satake, Hiroshi; Wu, Jiahong; Li, Si-Liang
2008-08-01
Because of active exchange between surface and groundwater of a karstic hydrological system, the groundwater of Guiyang, the capital city of Guizhou Province, southwest China, has been seriously polluted by anthropogenic inputs of NO3-, SO4(2-), Cl-, and Na+. In this work, delta37Cl of chloride and delta34S variations of sulfate in the karstic surface/groundwater system were studied, with a main focus to identify contaminant sources, including their origins. The surface, ground, rain, and sewage water studied showed variable delta37Cl and delta34S values, in the range of -4.1 to +2.0 per thousand, and -20.4 to +20.9 per thousand for delta37Cl and delta34S (SO4(2-)), respectively. The rainwater samples yielded the lowest delta37Cl values among those observed to date for aerosols and rainwater. Chloride in the Guiyang area rain waters emanated from anthropogenic sources rather than being of marine origin, probably derived from HCl (g) emitted by coal combustion. By plotting 1/SO4(2-) vs delta34S and 1/Cl- vs delta37Cl, respectively, we were able to identify some clusters of data, which were assigned as atmospheric deposition (acid rain component), discharge from municipal sewage, paleo-brine components in clastic sedimentary rocks, dissolution of gypsum mainly in dolomite, oxidation of sulfide minerals in coal-containing clastic rocks, and possibly degradation of chlorine-containing organic matter. We conclude that human activities give a significant input of sulfate and chloride ions, as well as other contaminants, into the studied groundwater system through enhanced atmospheric deposition and municipal sewage, and that multiple isotopic tracers constitute a powerful tool to ascertain geochemical characteristics and origin of complex contaminants in groundwater.
Kim, Jung Hwan; Maitlo, Hubdar Ali; Park, Joo Yang
2017-05-15
Electrocoagulation with an iron-air fuel cell is an innovative arsenate removal system that can operate without an external electricity supply. Thus, this technology is advantageous for treating wastewater in remote regions where it is difficult to supply electricity. In this study, the possibility of real applications of this system for arsenate treatment with electricity production was verified through electrolyte effect investigations using a small-scale fuel cell and performance testing of a liter-scale fuel cell stack. The electrolyte species studied were NaCl, Na 2 SO 4 , and NaHCO 3 . NaCl was overall the most effective electrolyte for arsenate treatment, although Na 2 SO 4 produced the greatest electrical current and power density. In addition, although the current density and power density were proportional to the concentrations of NaCl and Na 2 SO 4 , the use of concentrations above 20 mM of NaCl and Na 2 SO 4 inhibited arsenate treatment due to competition effects between anions and arsenate in adsorption onto the iron hydroxide. The dominant iron hydroxide produced at the iron anode was found to be lepidocrocite by means of Raman spectroscopy. A liter-scale four-stack iron-air fuel cell with 10 mM NaCl electrolyte was found to be able to treat about 300 L of 1 ppm arsenate solution to below 10 ppb during 1 day, based on its 60-min treatment capacity, as well as produce the maximum power density of 250 mW/m 2 . Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.
2015-06-01
Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N- line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.
NASA Astrophysics Data System (ADS)
Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.
2015-10-01
Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.
NASA Astrophysics Data System (ADS)
Li, W.
2016-12-01
Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces absorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the arctic atmosphere, which need to be incorporated into atmospheric chemical models in the arctic troposphere.
Mathur, Praveen; Sharma, Sarita; Soni, Bhupendra
2010-01-01
In the present work, an attempt is made to formulate multiple regression equations using all possible regressions method for groundwater quality assessment of Ajmer-Pushkar railway line region in pre- and post-monsoon seasons. Correlation studies revealed the existence of linear relationships (r 0.7) for electrical conductivity (EC), total hardness (TH) and total dissolved solids (TDS) with other water quality parameters. The highest correlation was found between EC and TDS (r = 0.973). EC showed highly significant positive correlation with Na, K, Cl, TDS and total solids (TS). TH showed highest correlation with Ca and Mg. TDS showed significant correlation with Na, K, SO4, PO4 and Cl. The study indicated that most of the contamination present was water soluble or ionic in nature. Mg was present as MgCl2; K mainly as KCl and K2SO4, and Na was present as the salts of Cl, SO4 and PO4. On the other hand, F and NO3 showed no significant correlations. The r2 values and F values (at 95% confidence limit, alpha = 0.05) for the modelled equations indicated high degree of linearity among independent and dependent variables. Also the error % between calculated and experimental values was contained within +/- 15% limit.
NASA Technical Reports Server (NTRS)
Starik, Alexander M.
1997-01-01
(1) Our results show that under combustion of thermal destruction products of n-C8H18, and other hydrocarbon fuels with air at the equivalent ratio -0.5 and less the chemical equilibrium is not realized at the exit plane of combustion chamber and in the gas turbine and nozzle for most of small components such as NO2, NO3, HNO, HNO2, HNO3, N(x)H(y), HO2, OH. The chemical equilibrium is not realized in the internal flow of ramjet hydrogen combustion engine too. So at the nozzle exit plane both of gas-turbine hydrocarbon combustion engine and of ramjet hydrogen combustion engine the relatively large values of concentration of such small components as NO3, HNO2, N2O, HNO3, HNO, NH, N2H, HO2, H2O2 may be realized. The exact definition of these component concentration as well as concentration of NO(x), OH, SO2, O, H, H2, H2O at the nozzle exit plane is very important for plume chemistry. (2) The results which were obtained for subsonic and hypersonic aircrafts indicate on the considerable change of the composition of the gas mixture along the plume. This change can be caused not only by the mixture of combustion products with the atmosphere air but by proceeding of whole complex of nonequilibrium photochemical reactions. The photodissociation processes begin to influence on the formation of the free atoms and radicals at flight altitude H greater than or equal to 18 km. Neglect of these processes can result in essential (up to 10(exp 4) times) mistakes of values gamma(sub OH), gamma(sub O), gamma(sub H), gamma(sub HSO3) and some products of CFC's disintegration. It was found that penetration of Cl-containing species from the atmosphere into the exhaust flow and its interaction with nitrogen oxides leads to essential increasing of the concentration of Cl, Cl2, ClO2, ClNO3, CH3Cl and sometimes HCl and the decreasing of ClO concentration by comparison with background values. The results of our analysis show that the plume aircraft with both hydrocarbon and hydrogen combustion engine may be source of various pollutant components such as HNO, HNO4,ClO2, CH3NO2, CH3NO3, CH2O, Cl, H2O2, but not only NO, NO2, HNO2, HNO3, N2O5, SO2, SO3, H2SO4 as it was supposed before.
Li, Guoliang; Shen, Boxiong; Li, Yongwang; Zhao, Bin; Wang, Fumei; He, Chuan; Wang, Yinyin; Zhang, Min
2015-11-15
Pyrolyzed biochars from an industrial medicinal residue waste were modified by microwave activation and NH4Cl impregnation. Mercury adsorption of different modified biochars was investigated in a quartz fixed-bed reactor. The results indicated that both physisorption and chemisorption of Hg(0) occurred on the surface of M6WN5 which was modified both microwave and 5wt.% NH4Cl loading, and exothermic chemisorption process was a dominant route for Hg(0) removal. Microwave activation improved pore properties and NH4Cl impregnation introduced good active sites for biochars. The presence of NO and O2 increased Hg(0) adsorption whereas H2O inhibited Hg(0) adsorption greatly. A converse effect of SO2 was observed on Hg(0) removal, namely, low concentration of SO2 promoted Hg(0) removal obviously whereas high concentration of SO2 suppressed Hg(0) removal. The Hg(0) removal by M6WN5 was mainly due to the reaction of the C−Cl with Hg(0) to form HgCl2, and the active state of C−Cl(*) groups might be an intermediate group in this process. Thermodynamic analysis showed that mercury adsorption by the biochars was exothermic process and apparent adsorption energy was 43.3 kJ/mol in the range of chemisorption. In spite of low specific surface area, M6WN5 proved to be a promising Hg(0) sorbent in flue gas when compared with other sorbents. Copyright © 2015. Published by Elsevier B.V.
Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.; Springston, S.; Jayne, J.
2010-03-15
Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+more » rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and <0.05 {micro}g/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model calculations appeared to underestimate sulfate concentrations based on an existing emission inventory. The agreement between observations and model predictions of CO as well as total sulfur is reexamined in this work with a new emission inventory made available recently.« less
Jang, Nulee; Yasin, Muhammad; Kang, Hyunsoo; Lee, Yeubin; Park, Gwon Woo; Park, Shinyoung; Chang, In Seop
2018-05-04
This study investigated the effects of electrolytes (CaCl 2 , K 2 HPO 4 , MgSO 4 , NaCl, and NH 4 Cl) on CO mass transfer and ethanol production in a HFMBR. The hollow fiber membranes (HFM) were found to generate tiny gas bubbles; the bubble coalescence was significantly suppressed in electrolyte solution. The volumetric gas-liquid mass transfer coefficients (k L a) increased up to 414% compared to the control. Saturated CO (C ∗ ) decreased as electrolyte concentrations increased. Overall, the maximum mass transfer rate (R max ) in electrolyte solution ranged from 106% to 339% of the value obtained in water. The electrolyte toxicity on cell growth was tested using Clostridium autoethanogenum. Most electrolytes, except for MgSO 4 , inhibited cell growth. The HFMBR operation using a medium containing 1% MgSO 4 achieved 119% ethanol production compared to that without electrolytes. Finally, a kinetic simulation using the parameters got from the 1% MgSO 4 medium predicted a higher ethanol production compared to the control. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ku, T. C. W.; Walter, L. M.; Coleman, M. L.; Blake, R. E.; Martini, A. M.
1999-10-01
Sulfur cycling in Fe-poor, organic-rich shelf carbonates, known to have rapid rates of SO4-2 reduction, remains poorly studied despite the volumetric significance of shelf deposits in modern and ancient carbon budgets. We investigated sulfur cycling in modern carbonates of the Florida Platform from end-member depositional environments (muddy sands from the Atlantic reef tract and finer-grained mudbank and island flank deposits from Florida Bay). Relations between pore water chemistry (SO4-2, ΣCO2, Ca-2/Cl-) and oxygen and sulfur stable isotope compositions of SO4-2 require direct coupling between sulfur redox cycling and syndepositional carbonate dissolution. Oxygen isotope compositions of pore water sulfate were remarkably shifted away from the established value for marine SO4-2 (+9.5‰), despite near normal SO4-2/Cl- ratios. Chemical evolution was least in reef tract pore waters and greatest in Florida Bay. Relative to overlying seawater, mudbank sediments exhibited sulfate depletion, with δ18OSO4 and δ34SSO4 values both increasing by about 7‰. More bioturbated island flank sediments, colonized by Thalassia grass, had a 5‰ increase in δ18OSO4, variable δ34SSO4 values (+17.7 to +23.3‰) and exceptionally high Ca+2/Cl- ratios. The large excess of Ca+2 (up to 1.7 mM) requires a much larger acid source than the amounts derived from utilization of dissolved O2 (∼0.3 mM) and small degrees of net SO4-2 reduction (<0.5 mM reduced). A conceptual model was constructed using chemical and isotopic data on natural pore waters and on sulfate isotope fractionation factors obtained from sediment incubation experiments. The model outputs show that pore water compositions can be explained by a redox cycle where microbial SO4-2 reduction is followed by very efficient H2S oxidation, thus maintaining virtually invariant SO4-2/Cl- ratios. The enhanced O2 transport may be driven by associated marine grass rhizome systems and microbial communities established in bioturbated sediments. The net result of the cycle is that the rate of sulfide oxidation, which is largely balanced by the rate of microbial sulfate reduction, is stoichiometrically related to the rate of carbonate dissolution. This is consistent with previously reported rates of carbonate dissolution (∼400 μmol/cm2-yr) and average rates of sulfate reduction (∼200 μmol/cm2-yr) from the Florida Platform and a 2:1 stoichiometry.
Trinitromethyl Ethers and Other Derivatives as Superior Oxidizers
2011-08-26
well as comparable or superior energy content, so that its performance will be at least equivalent to that of AP. Oxygen balance (relative to CO2) for...21]: 6 C(NO2)4 + M+Cl – → ClC(NO2)3 + M+NO2 – ClC(NO2)3 + LiBr → BrC(NO2)3 + ClC(NO2)2Br BrC(NO2)3 + LiCl → ClC(NO2)3 + LiBr ...hindrance parameter α > 8.87 would not be stable; where Ustrain is the strain energy or the potential energy of the molecule in the minimum position
Schliesser, Jacob; Lilova, Kristina; Pierce, Eric M.; ...
2017-06-01
Heat capacities of sulfate, perrhenate, chloride, and iodide sodalites with the ideal formula Na 8Al 6Si 6O 24X 2 (X = SO 4, ReO 4, Cl, I) were measured from 2 K to 300 K using a Quantum Design Physical Property Measurement System (PPMS). From the heat capacity data, the standard thermodynamic functions were determined. All four sodalites undergo a phase transition below room temperature for which thermodynamic parameters were determined. Additionally, the heat capacity of one of the constituent compounds (NaReO 4) was measured.
Wang, Shuixian
2013-09-01
The Yanqi Basin in Xinjiang Province is an important agricultural area with a high population density. The extensive agricultural activities in the Yanqi Basin started in the 1950s with flood irrigation techniques. Since then, the groundwater table was raised because of the absence of an efficient drainage system. This obstacle is a crucial factor that restricts sustainable socioeconomic development. Hydrochemical investigations were conducted in the Yanqi Basin, Northwestern China, to determine the chemical composition of groundwater. Sixty groundwater samples were collected from different wells to monitor the water chemistry of various ions. The results of the chemical analysis indicate that the groundwater in the area is generally neutral to slightly alkaline and predominantly contains Na(+) and Ca(2+) cations as well as HCO3(-) and SO4 (2+) anions. High positive correlations between HCO3 (-)-Mg(2+) + Ca(2+), SO 4 (2-)-Mg(2+), SO4 (2-)-Na(+) + K(+), and Cl(-)-Na(+) + K(+) were obtained. The total dissolved solids (TDS) mainly depend on the concentration of major ions such as HCO3(-), SO4 (2-), Cl(-), Ca(2+), Mg(2+), and Na(+) + K(+). The dominant hydrochemical facies for groundwater are Ca(2+)-Mg(2+)-HCO3(-), Mg(2+)-Ca(2+)-SO4 (2-)-Cl(-), Na(+)-K(+)-Cl(-)-SO4 (2-), and Na(+)-K(+)-Mg(2+)-Cl(-)-HCO3(-) types. The hydrochemical processes are the main factors that determine the water quality of the groundwater system. These processes include silicate mineral weathering, dissolution, ion exchange, and, to a lesser extent, evaporation, which seem to be more pronounced downgradient of the flow system. The saturation index (SI), which is calculated according to the ionic ratio plot, indicates that the gypsum-halite dissolution reactions occur during a certain degree of rock weathering. SI also indicates that evaporation is the dominant factor that determines the major ionic composition in the study area. The assessment results of the water samples using various methods indicate that the groundwater in the study area is generally hard, fresh to brackish, high to very high saline, and low alkaline in nature. The high total hardness and TDS of the groundwater in several places indicate the unsuitability of the groundwater for drinking and irrigation. These areas require particular attention, particularly in the construction of adequate drainage as well as in the introduction of an alternative salt tolerance cropping.
Dou, Kun; Fu, Qiang; Chen, Guang; Yu, Fabiao; Liu, Yuxia; Cao, Ziping; Li, Guoliang; Zhao, Xianen; Xia, Lian; Chen, Lingxin; Wang, Hua; You, Jinmao
2017-07-01
Intracellular reactive sulfur species and reactive oxygen species play vital roles in immunologic mechanism. As an emerging signal transmitter, SO 2 can be generated as the anti-oxidant, while SO 2 is also a potential oxidative stress-inducer in organism. Aiming to elucidate in-depth the dichotomous role of SO 2 under oxidative stress, we designed a dual-response fluorescent probe that enabled the respective or successive detection of SO 2 and ClO - . The probe itself emits the red fluorescence (625 nm) which can largely switch to blue (410 nm) and green fluorescence (500 nm) respectively in response to SO 2 and ClO - , allowing the highly selective and accurate ratiometric quantification for both SO 2 and ClO - in cells. Moreover the ultrafast (SO 2 : <60 s; ClO - : within sec) and highly sensitive (detection limits: SO 2 : 3.5 nM; ClO - : 12.5 nM) detection were achieved. With the robust applicability, the developed probe was successfully used to quantify SO 2 and endogenous ClO - in respectively the HeLa cells and the RAW 264.7 cells, as well as to visualize the dynamic of SO 2 /ClO - in zebrafish. The fluorescent imaging studies and flow cytometry analysis confirmed the burst-and-depletion and meanwhile the oxidative-and-antioxidative effects of intracellular SO 2 under the NaClO induced oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Zhiyong; Sun, Xiaoming; Strauss, Harald; Lu, Yang; Gong, Junli; Xu, Li; Lu, Hongfeng; Teichert, Barbara M. A.; Peckmann, Jörn
2017-08-01
Multiple sulfur isotope signatures and secondary ion mass spectroscopy (SIMS) sulfur isotope compositions of pyrite from two seafloor sites (DH-CL11 and HD109) in seepage areas of the South China Sea were measured in order to study isotope effects of sulfate-driven anaerobic oxidation of methane (SO4-AOM). The multiple sulfur isotopes of pyrite reveal variable ranges for both sites (δ34S: between -44.1‰ and -2.9‰ for DH-CL11 and between -43.8‰ and -1.6‰ for HD109; Δ33S: between 0.02‰ and 0.17‰ for DH-CL11 and between -0.03‰ and 0.14‰ for HD109). SIMS analysis reveals an extreme variability of δ34S values (between -50.3‰ and -2.7‰ in DH-CL11; between -50.1 and 52.4‰ in HD109) for three types of pyrite: (1) framboids, (2) zoned aggregates with radial overgrowth surrounding a framboidal core, and (3) euhedral pyrite crystals. The synchronous changes of geochemical proxies (sulfate and methane concentrations, δ34Ssulfate and δ18Osulfate, δ34Spyrite, and pyrite content) at the sulfate-methane transition zone (SMTZ) at site DH-CL11 are interpreted to be induced by SO4-AOM under steady state conditions. In contrast, pyrite content and δ34S value fluctuations throughout core HD109 suggest that the sediment at this site was affected by multiple pyritization events during diagenesis. Multiple sulfur isotope signatures of early diagenetic pyrite (i.e., with low and high δ34S values, the latter above 315 cmbsf in DH-CL11; above 70 cmbsf in HD109) in the upper sediment column suggest that organoclastic sulfate reduction (OSR) and sulfur disproportionation generated the observed isotopic signatures. In contrast to the early diagenetic 34S depleted framboids, the higher SIMS δ34S values of overgrowth and euhedral crystals suggest a late diagenetic 34S enriched pool of dissolved sulfide derived from SO4-AOM at the current and paleo-SMTZs. Interestingly, pyrite resulting from SO4-AOM in the SMTZ at site DH-CL11 reveals a distinct pattern with higher Δ33S values, different from pyrite resulting from OSR and sulfur disproportionation. Therefore, paired δ34S and Δ33S values may allow to differentiate OSR and SO4-AOM, although a full understanding of the isotope effects associated with SO4-AOM is hampered by uncertainties on the actual electron transfer mechanism in the syntrophic SO4-AOM consortium.
Solvent Properties of Water in Aqueous Solutions of Elastin-Like Polypeptide
Ferreira, Luisa A.; Cole, James T.; Reichardt, Christian; Holland, Nolan B.; Uversky, Vladimir N.; Zaslavsky, Boris Y.
2015-01-01
The phase-transition temperatures of an elastin-like polypeptide (ELP) with the (GVGVP)40 sequence and solvent dipolarity/polarizability, hydrogen-bond donor acidity, and hydrogen-bond acceptor basicity in its aqueous solutions were quantified in the absence and presence of different salts (Na2SO4, NaCl, NaClO4, and NaSCN) and various osmolytes (sucrose, sorbitol, trehalose, and trimethylamine N-oxide (TMAO)). All osmolytes decreased the ELP phase-transition temperature, whereas NaCl and Na2SO4 decreased, and NaSCN and NaClO4 increased it. The determined phase-transition temperatures may be described as a linear combination of the solvent’s dipolarity/polarizability and hydrogen-bond donor acidity. The linear relationship established for the phase-transition temperature in the presence of salts differs quantitatively from that in the presence of osmolytes, in agreement with different (direct and indirect) mechanisms of the influence of salts and osmolytes on the ELP phase-transition temperature. PMID:26075870
Nascimento, Fernanda C; Carneiro, Cristine E A; de Santana, Henrique; Zaia, Dimas A M
2014-01-24
The large enhancement of signal observed in surface enhanced Raman spectroscopy (SERS) could be helpful for identifying amino acids on the surface of other planets, in particular for Mars, as well as in prebiotic chemistry experiments of interaction minerals/amino acids. This paper reports the effect of several substances (NaCl, MgCl2, KBr, CaSO4, K2SO4, MgSO4, KI, NH4Cl, SrCl2, CaCl2, Na2SO4, KOH, NaOH, H3BO3) on the SERS spectra of colloid of sodium citrate-CSC and colloid of sodium borohydride-CSB. The effect of four different artificial seawaters and these artificial seawaters plus amino acids (α-Ala-alanine, Gly-glycine, Cys-cysteine, AIB-2-aminoisobutiric acid) on SERS spectra using both CSC and CSB was also studied. For CSC, the effect of water, after dilution of the colloid, was the appearance of several absorption bands belonging to sodium citrate in the SERS spectrum. In general, artificial seawaters enhanced several bands in SERS spectra using CSC and CSB and CSC was more sensitive to those artificial seawaters than CSB. The identification of Gly, α-Ala and AIB using CSC or CSB was not possible because several bands belonging to artificial seawaters, sodium citrate or sodium borohydride were enhanced. On the other hand, artificial seawaters did not interfere in the SERS spectra of Cys using CSC or CSB, although the interaction of Cys with each colloid was different. For CSC the band at 2568 cm(-1) (S-H stretching) of Cys vanished and for CSB the intensity of this band decreased, indicating the -SH of Cys was bonded to Ag to form -S-Ag. Thus SERS spectroscopy could be used for Cys detection on Mars soils using Mars land rovers as well as to study the interaction between Cys and minerals in prebiotic chemistry experiments. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nascimento, Fernanda C.; Carneiro, Cristine E. A.; Santana, Henrique de; Zaia, Dimas A. M.
2014-01-01
The large enhancement of signal observed in surface enhanced Raman spectroscopy (SERS) could be helpful for identifying amino acids on the surface of other planets, in particular for Mars, as well as in prebiotic chemistry experiments of interaction minerals/amino acids. This paper reports the effect of several substances (NaCl, MgCl2, KBr, CaSO4, K2SO4, MgSO4, KI, NH4Cl, SrCl2, CaCl2, Na2SO4, KOH, NaOH, H3BO3) on the SERS spectra of colloid of sodium citrate-CSC and colloid of sodium borohydride-CSB. The effect of four different artificial seawaters and these artificial seawaters plus amino acids (α-Ala-alanine, Gly-glycine, Cys-cysteine, AIB-2-aminoisobutiric acid) on SERS spectra using both CSC and CSB was also studied. For CSC, the effect of water, after dilution of the colloid, was the appearance of several absorption bands belonging to sodium citrate in the SERS spectrum. In general, artificial seawaters enhanced several bands in SERS spectra using CSC and CSB and CSC was more sensitive to those artificial seawaters than CSB. The identification of Gly, α-Ala and AIB using CSC or CSB was not possible because several bands belonging to artificial seawaters, sodium citrate or sodium borohydride were enhanced. On the other hand, artificial seawaters did not interfere in the SERS spectra of Cys using CSC or CSB, although the interaction of Cys with each colloid was different. For CSC the band at 2568 cm-1 (S-H stretching) of Cys vanished and for CSB the intensity of this band decreased, indicating the -SH of Cys was bonded to Ag to form -S-Ag. Thus SERS spectroscopy could be used for Cys detection on Mars soils using Mars land rovers as well as to study the interaction between Cys and minerals in prebiotic chemistry experiments.
Jalife-Jacobo, H; Feria-Reyes, R; Serrano-Torres, O; Gutiérrez-Granados, S; Peralta-Hernández, Juan M
2016-12-05
Diazo dye Congo Red (CR) solutions at 100mg/L, were degraded using different supporting electrolytes in an electrochemical advanced oxidation process (EAOPs), like the anodic oxidation (AOx/BDD). All experiments were carried out in a 3L flow reactor with a Boron-doped diamond (BDD) anode and stainless steel cathode (AISI 304), at 7.5, 15, 30 and 50mA/cm(2) current densities (j). Furthermore, each experiment was carried out under a flow rate of 7L/min. Additionally, HClO4, NaCl, Na2SO4, and H2SO4 were tested as supporting electrolytes at a 50mM concentration. The degradation process was at all times considerably faster in NaCl medium. Solutions containing SO4(2-) or ClO4(-) ions were less prompted to degradation due to the low oxidation power of these species into the bulk. Dissolved organic carbon (DOC) analysis, was carried out to evaluate the mineralization of CR. The degradation of CR, was evaluated with the HPLC analysis of the treated solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oksdath-Mansilla, Gabriela; Peñéñory, Alicia B.; Barnes, Ian; Wiesen, Peter; Teruel, Mariano A.
2014-03-01
The products formed in the gas-phase reactions of Cl atoms with (CH3CH2)2S and CH3CH2SCH3 have been investigated in a large volume reactor in NOx-free air at atmospheric pressure and (298 ± 2) K using long path “in situ” FTIR spectroscopy for the analysis. HCl, SO2 and CH3CHO were identified as the major products for both reactions. For the Cl + CH3CH2SCH3 reaction HCHO was also identified as a major product. The yields of the products obtained for the reaction of Cl with (CH3CH2)2S were (59 ± 2) %, (52 ± 5) % and (103 ± 4) % for HCl, SO2 and CH3CHO, respectively. For the reaction of Cl with CH3CH2SCH3 yields of (43 ± 5) %, (55 ± 3) %, (58 ± 3) % and (53 ± 5) % were obtained for HCl, SO2, CH3CHO and HCHO, respectively. This is the first products and mechanistic study for the gas-phase Cl-initiated oxidation of non-CH3SCH3 alkyl sulfides. Comparison with previous results for the reaction of Cl with dimethyl sulfide is made and simple atmospheric degradation mechanisms are postulated to explain the formation of the observed products.
Lu, Guojin; Zangari, Giovanni
2005-04-28
The electrochemical deposition of Pt on highly oriented pyrolytic graphite (HOPG) from H2PtCl6 solutions was investigated by cyclic voltammetry and chronoamperometry. The effects of deposition overpotential, H2PtCl6 concentration, supporting electrolyte, and anion additions on the deposition process were evaluated. Addition of chloride inhibits Pt deposition due to adsorption on the substrate and blocking of reduction sites, while SO4(2-) and ClO4- slightly promote Pt reduction. By comparing potentiostatic current-time transients with the Scharifker-Hills model, a transition from progressive to instantaneous nucleation was observed when increasing the deposition overpotential. Following addition of chloride anions the fit of experimental transients with the instantaneous nucleation mode improves, while the addition of SO4(2-) induces only small changes. Chloride anions strongly inhibit the reduction process, which is shifted in the cathodic direction. The above results indicate that the most appropriate conditions for growing Pt nanoparticles on HOPG with narrow size distribution are to use an H2PtCl6 solution with HCl as supporting electrolyte and to apply a high cathodic overpotential.
Effective removal of contaminants in landfill leachate membrane concentrates by coagulation.
Long, Yuyang; Xu, Jing; Shen, Dongsheng; Du, Yao; Feng, Huajun
2017-01-01
Leachate membrane concentrates containing high concentrations of organics and trace toxic compounds pose a major threat to the environment, and their treatment is an urgent issue. In this work, various coagulants were used to treat leachate membrane concentrates. Appropriate pH values for treatments with FeCl 2 , FeSO 4 , polyaluminum chloride, and FeCl 3 were 3, 5, 5, and 4, respectively. FeCl 3 achieved the highest total organic carbon (TOC) removal efficiency. The effect of the various anions in ferric coagulants [FeCl 3 , Fe 2 (SO 4 ) 3 , and Fe(NO 3 ) 3 ] on the TOC removal efficiency was negligible. The main organics remaining in the leachate membrane concentrates after coagulation were humic and fulvic acids. The conditions for coagulation with FeCl 3 were optimized using the response surface method (RSM). The highest TOC, chemical oxygen demand (COD), and chromaticity reduction efficiencies, 81%, 82%, and 97%, respectively, were achieved at pH 4 using FeCl 3 (5 g L -1 ) and polyacrylamide (PAM; 0.07 g L -1 ). The COD of leachate membrane concentrates was reduced from 4000 to 718 mg L -1 . The mole ratio of removed COD and Fe(III) (2.4 mol) at 5 g L -1 FeCl 3 (pH 4, PAM 0.07 g L -1 ) was lower than that (3.8 mol) at 3 g L -1 FeCl 3 (pH 4, PAM 0.07 g L -1 ); based on the cost and COD removal efficiency, the latter conditions were the best choice. Our work provides guidelines for the treatment of leachate membrane concentrates in engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Y.; Konecke, B.; Fiege, A.; Simon, A. C.; Becker, U.
2017-12-01
We use ab-initio calculations to investigate the energetics and geometry of incorporation of S with its oxidation states S6+, S4+, and S2- into the apatite end-members fluor-, chlor-, and hydroxylapatite, [Ca10(PO4)6(F,Cl,OH)2]. The reaction energy of the balanced equation indicates the stability of the modeled S-incorporated apatite relative to the host apatite, the source, and sink phases. One possible coupled substitution mechanism involves the replacement of La3+ + PO43- ↔ Ca2+ + SO42-. Our results show that the incorporation of SO42- into La- and Na-bearing apatite, Ca8NaLa(PO4)6(F,Cl,OH)2, is energetically favored over the incorporation into La- and Si-bearing apatite, Ca9La(PO4)5(SiO4)(F,Cl,OH)2. Co-incorporation of SO42- and SO32- is energetically favored when the lone pair electrons of SO32- face towards the anion column site, compared to facing away from it. Full or partial incorporation of S2- is favored on the column anion site in the form of [Ca10(PO4)6S] and [Ca20(PO4)12SX2)], where X = F, Cl, or OH. Upon full incorporation (i.e., replacing all column ions by sulfide ions), S2- is positioned in the anion column at z = 0.5 (half way between the mirror planes at z = 1/4 and z = 3/4) in the energy-optimized structure. The calculated energies for partial incorporation of S2- demonstrate that in an energy-optimized structure, S2- is displaced from the mirror plane at z = 1/4 or 3/4, by 1.0 to 1.6 Å, depending on the surrounding species (F-, Cl- or OH-); however, the probability for S2- to be incorporated into the apatite structure is highest for chlorapatite end-members. Our results describe energetically feasible incorporation mechanisms for all three oxidations states of S (S6+, S4+, S2-) in apatite, along with structural distortion and concurring electronic structure changes. These observations are consistent with recently published experimental results (Konecke et al. 2017) that demonstrate S6+, S4+ and S2- incorporation into apatite, where the ratio of S6+/∑S in apatite is controlled by oxygen fugacity (fO2). The new computational results coupled with published experimental data provide the basis for using S in apatite as a geochemical proxy to trace variations in oxygen fugacity of magmatic and magmatic-hydrothermal systems.
NASA Astrophysics Data System (ADS)
Loganathan, K.; Ahamed, A. Jafar
2017-12-01
The study of groundwater in Amaravathi River basin of Karur District resulted in large geochemical data set. A total of 24 water samples were collected and analyzed for physico-chemical parameters, and the abundance of cation and anion concentrations was in the following order: Na+ > Ca2+ > Mg2+ > K+ = Cl- > HCO3 - > SO4 2-. Correlation matrix shows that the basic ionic chemistry is influenced by Na+, Ca2+, Mg2+, and Cl-, and also suggests that the samples contain Na+-Cl-, Ca2+-Cl- an,d mixed Ca2+-Mg2+-Cl- types of water. HCO3 -, SO4 2-, and F- association is less than that of other parameters due to poor or less available of bearing minerals. PCA extracted six components, which are accountable for the data composition explaining 81% of the total variance of the data set and allowed to set the selected parameters according to regular features as well as to evaluate the frequency of each group on the overall variation in water quality. Cluster analysis results show that groundwater quality does not vary extensively as a function of seasons, but shows two main clusters.
NASA Technical Reports Server (NTRS)
Zhang, Renyi; Jayne, John T.; Molina, Mario J.
1994-01-01
The reaction probabilities for ClONO2+H2O- HOCl + HNO3 and ClONO2+ HCl Cl2 +HNO3 have been investigated on sulfuric acid tetrahydrate (SAT, H2SO4-4H2O)surfaces at temperatures between 190 and 230 K and at reactant concentrations that are typical in the lower stratosphere, using a fast-flow reactor coupled to a quadrupole mass spectrometer. The results indicate that the reaction probabilities as well as HCl uptake depend strongly on the thermodynamic state of SAT surface: they decrease significantly with decreasing H2O partial pressure at a given temperature, and decrease with increasing temperature at a given H2O partial pressure, as the SAT changes from the H2O-rich form to the H2SO4-rich form. For H2O-rich SAT at 195 K gamma(sub 1) approx. = -0.01 and gamma(sub 2) greater or equal to 0.1, whereas the values for H2SO4-rich SAT decrease by more than 2 orders of magnitude. At low concentrations of HCl, close to those found in the stratosphere, the amount of HCl taken up by H2O-rich SAT films corresponds to a coverage of the order of a tenth of a monolayer (approx. = 10(exp 14) molecules/sq cm); H2SO4-rich SAT films take up 2 orders of magnitude less HCl (les than 10(exp 12) molecules/sq cm). Substantial HCl uptake at high HCl concentrations is also observed, as a result of surface melting. The data reveal that frozen stratospheric sulfate aerosols may play an important role in chlorine activation in the winter polar stratosphere via processes similar to those occurring on the surfaces of polar stratospheric cloud particles.
A revised Pitzer model for low-temperature soluble salt assemblages at the Phoenix site, Mars
NASA Astrophysics Data System (ADS)
Toner, J. D.; Catling, D. C.; Light, B.
2015-10-01
The Wet Chemistry Laboratory (WCL) on the Mars Phoenix Lander measured ions in a soil-water extraction and found Na+, K+, H+ (pH), Ca2+, Mg2+, SO42-, ClO4-, and Cl-. Equilibrium models offer insights into salt phases that were originally present in the Phoenix soil, which dissolved to form the measured WCL solution; however, there are few experimental datasets for single cation perchlorates (ClO4-), and none for mixed perchlorates, at low temperatures, which are needed to build models. In this study, we measure ice and salt solubilities in binary and ternary solutions in the Na-Ca-Mg-ClO4 system, and then use this data, along with existing data, to construct a low-temperature Pitzer model for perchlorate brines. We then apply our model to a nominal WCL solution. Previous studies have modeled either freezing of a WCL solution or evaporation at a single temperature. For the first time, we model evaporation at subzero temperatures, which is relevant for dehydration conditions that might occur at the Phoenix site. Our model indicates that a freezing WCL solution will form ice, KClO4, hydromagnesite (3MgCO3·Mg(OH)2·3H2O), calcite (CaCO3), meridianiite (MgSO4·11H2O), MgCl2·12H2O, NaClO4·2H2O, and Mg(ClO4)2·6H2O at the eutectic (209 K). The total water held in hydrated salt phases at the eutectic is ∼1.2 wt.%, which is much greater than hydrated water contents when evaporation is modeled at 298.15 K (∼0.3 wt.%). Evaporation of WCL solutions at lower temperatures (down to 210 K) results in lower water activities and the formation of more dehydrated minerals, e.g. kieserite (MgSO4·H2O) instead of meridianiite. Potentially habitable brines, with water activity aw > 0.6, can occur when soil temperatures are above 220 K and when the soil liquid water content is greater than 0.4 wt.% (100 ×gH2O gsoil-1). In general, modeling indicates that mineral assemblages derived from WCL-type solutions are characteristic of the soil temperature, water content, and water activity conditions under which they formed, and are useful indicators of past environmental conditions.
NASA Technical Reports Server (NTRS)
Tolbert, Margaret A.; Rossi, Michel J.; Golden, David M.
1988-01-01
The heterogeneous interactions of ClONO2, HCl, and HNO3 with sulfuric acid surfaces were studied using a Knudsen cell flow reactor. The surfaces studied, chosen to simulate global stratospheric particulate, were composed of 65-75 percent H2SO4 solutions at temperatures in the range -63 to -43 C. Heterogeneous loss, but not reaction, of HNO3 and HCl occurred on these surfaces; the measured sticking coefficients are reported. Chlorine nitrate reacted on the cold sulfuric acid surfaces, producing gas-phase HOCl and condensed HNO3. CLONO2 also reacted with HCl dissolved in the 65-percent H2SO4 solution at -63 C, forming gaseous Cl2. In all cases studied, the sticking and/or reaction coefficients were much larger for the 65-percent H2SO4 solution at -63 C than for the 75-percent solution at -43 C.
Substitution and Redox Chemistry of [Bu(4)N](2)[Ta(6)Cl(12)(OSO(2)CF(3))(6)].
Prokopuk, Nicholas; Kennedy, Vance O.; Stern, Charlotte L.; Shriver, Duward F.
1998-09-21
Two sequential electrochemical reductions occur for the cluster anion [Ta(6)Cl(12)(OSO(2)CF(3))(6)](2)(-) at 0.89 and 0.29 V vs Ag/AgCl, with the generation [Ta(6)Cl(12)(OSO(2)CF(3))(6)](3)(-) and [Ta(6)Cl(12)(OSO(2)CF(3))(6)](4)(-). Chemical reduction of [Ta(6)Cl(12)(OSO(2)CF(3))(6)](2)(-) by ferrocene produces [Ta(6)Cl(12)(OSO(2)CF(3))(6)](3)(-) with the concomitant shift of the nu(SO(2)) stretch from 1002 to 1018 cm(-)(1). Reaction of [Bu(4)N](2)[Ta(6)Cl(12)(OSO(2)CF(3))(6)] (1) with [Bu(4)N]X (X = Cl, Br, I, NCS) occurs by reduction and substitution, yielding [Bu(4)N](3)[Ta(6)Cl(12)X(6)], where the clusters with X = Br, I, and NCS are new. Spectroscopic (IR and UV-vis) evidence indicates that the reduced cluster core {Ta(6)Cl(12)}(2+) is produced in reaction mixtures of 1 with the halide and pseudohalide ions. Concomitant substitution of the triflate ligands of 1 by X(-) occurs and the rates for the overall reduction and substitution increase in the order X(-) = Cl(-) < Br(-) < NCS(-) < I(-) < CN(-). Reduction of 1 with ferrocene followed by addition of [Bu(4)N]O(2)CCH(3) produces the new cluster [Ta(6)Cl(12)(O(2)CCH(3))(6)](3)(-) isolated as the tetrabutylammonium salt. Cyclic voltammetry and UV-vis spectroscopy on the new clusters [Bu(4)N](3)[Ta(6)Cl(12)X(6)] (X = Br, I, NCS, and O(2)CCH(3)) are reported. Crystal data for [Bu(4)N](3)[Ta(6)Cl(12)(NCS)(6)].CH(2)Cl(2): monoclinic, space group, P2(1)/c (No. 14); a = 25.855(6) Å, b = 21.843(6) Å, c = 16.423(3) Å; beta = 100.03(2) degrees; V = 9133(3) Å(3); Z = 4.
Pant, Ramesh Raj; Zhang, Fan; Rehman, Faizan Ur; Wang, Guanxing; Ye, Ming; Zeng, Chen; Tang, Handuo
2018-05-01
The characterization and assessment of water quality in the head water region of Himalaya is necessary, given the immense importance of this region in sustaining livelihoods of people and maintaining ecological balance. A total of 165 water samples were collected from 55 sites during pre-monsoon, monsoon and post-monsoon seasons in 2016 from the Gandaki River Basin of the Central Himalaya, Nepal. The pH, EC values and TDS concentrations were measured in-situ and the concentrations of major ions (Ca 2+ , Mg 2+ , K + , Na + , Cl - , SO 4 2- , NO 3 - ) and Si were analyzed in laboratory. Correlation matrices, paired t-test, cluster analysis, principal component analysis (PCA), the Piper, Gibbs, and Mixing plots, and saturation index were applied to the measurements for evaluating spatiotemporal variation of the major ions. The results reveal mildly alkaline pH values and the following pattern of average ionic dominance: Ca 2+ >Mg 2+ >Na + >K + for cations and HCO 3 - >SO 4 2 - >Cl - >NO 3 - for anions. The results of PCA, Gibbs plot and the ionic relationships displayed the predominance of geogenic weathering processes in areas with carbonate dominant lithology. This conclusion is supported by geochemically different water facies identified in the Piper plot as Ca-HCO 3 (83.03%), mixed Ca-Mg-Cl (12.73.0%) and Ca-Cl (4.24%). Pronounced spatiotemporal heterogeneity demonstrates the influence of climatic, geogenic and anthropogenic conditions. For instance, the Ca 2+ -SO 4 2- , Mg 2+ -SO 4 2- and Na + -Cl - pairs exhibit strong positive correlation with each other in the upstream region, whereas relatively weak correlation in the downstream region, likely indicating the influence of evapo-crystallization processes in the upstream region. Analyses of the suitability of the water supply for drinking and irrigation reveal that the river has mostly retained its natural water quality but poses safety concern at a few locations. Knowledge obtained through this study can contribute to the sustainable management of water quality in the climatically and lithologically distinct segments of the Himalayan river basins. Copyright © 2017 Elsevier B.V. All rights reserved.
Kinetic studies of the reaction of the SO radical with NO2 and ClO from 210 to 363 K
NASA Technical Reports Server (NTRS)
Brunning, J.; Stief, L. J.
1986-01-01
The rates of the reactions of the SO radical with NO2 and ClO (significant in the upper atmosphere of earth and Venus) were determined in a discharge flow system near 1 torr pressure with detection of radical and molecular species using collision-free sampling mass spectrometry. The rate constants were obtained from the decay of SO radicals in the presence of an excess of NO2 and ClO. The NO2 reaction was examined between 210 and 363 K and found to be temperature invariant: SO + NO2 yields SO2 + NO; k1 = (1.37 + or - 0.10) x 10 to the -11th cu cm/s. In addition, the ClO reaction was observed to be independent of temperature between 248 and 363 K: SO + ClO yields SO2 + Cl; k2 = (3.22 + or - 0.48) x 10 to the -11th cu cm/s. A comparison was made with previous investigations of these reactions at room temperature and with other radical-radical reactions involving SO or ClO.
NASA Astrophysics Data System (ADS)
Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Joo, Sang Woo
2016-03-01
A sensitive, rapid and simple flow-injection chemiluminescence (CL) system based on the light emitted from KMnO4-cadmium sulfide quantum dots (CdS QDs) reaction in the presence of cetyltrimethylammonium bromide (CTAB) in acidic medium was developed as a CL probe for the sensitive determination of atenolol. Optical and structural features of CdS QDs capped with L-cysteine, which synthesized via hydrothermal approach, were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and UV-Vis spectroscopy. The CL intensity of KMnO4-CdS QDs-CTAB was remarkably enhanced in the presence of trace level of atenolol. Under optimum experimental conditions, there is a linear relationship between the increase in CL intensity of KMnO4-CdS QDs-CTAB system and atenolol concentration in a range of 0.001 to 4.0 mg L- 1 and 4.0 to 18.0 mg L- 1, with a detection limit (3σ) of 0.0010 mg L- 1. A possible mechanism for KMnO4-CdS QDs-CTAB-atenolol CL reaction is proposed. To prove the practical application of the KMnO4-CdS QDs-CTAB CL method, the method was applied for the determination of atenolol in spiked environmental water samples and commercial pharmaceutical formulation. Furthermore, corona discharge ionization ion mobility spectrometry (CD-IMS) technique was utilized for determination of atenolol. Figure S2. Optimization of the CL reaction conditions: (a) effect of KMnO4 concentration. Conditions: the concentrations of H2SO4, CdS QDs and atenolol were 1 mol L-1, 0.35 mol L-1, and 4.0 mg L-1, respectively; (b) effect of acidic media. Conditions: the concentrations of KMnO4 was 0.04 mmol L-1, other conditions were as in (a); (c) effect of CdS QDs concentration. Conditions: H2SO4 concentration was 1.0 mol L-1, other conditions were as in (b), and (d) effect of CTAB concentration. Conditions: CdS QDs concentration was 0.35 mmol L-1, other conditions were as in (c). Figure S3. UV-Vis absorption spectra of KMnO4-CdS QDs-atenolol CL system, recorded at different time intervals after their mixing. Conditions: the concentrations of KMnO4, CdS QDs, H2SO4 and atenolol were 0.04 mmol L-1, 0.35 mmol L-1, 1.0 mol L-1 and 4.0 mg L-1, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y. -N.; Springston, S.; Jayne, J.
2014-01-01
The chemical composition of aerosol particles ( D p ≤ 1.5 μm) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated bymore » non-sea-salt SO 4 2−, followed by Na +, Cl −, Org (total organics), NH 4 +, and NO 3 −, in decreasing order of importance; CH 3SO 3 − (MSA), Ca 2+, and K + rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH 4 + to SO 4 2− equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl − deficits caused by both HNO 3 and H 2SO 4, but for the most part were externally mixed with particles, mainly SO 4 2−. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH 3 is present between 72° W and 76° W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol concentrations were negligible. Finally, the very low levels of CH 3SO 3 − observed as well as the correlation between SO 4 2− and NO 3 − (which is thought primarily anthropogenic) suggest a limited contribution of DMS to SO 4 2− aerosol production during VOCALS.« less
Karroum, Morad; Elgettafi, Mohammed; Elmandour, Abdenabi; Wilske, Cornelia; Himi, Mahjoub; Casas, Albert
2017-12-31
Bahira plain is an important area for Morocco due to its agriculture and mining activities. Situated in a sub-arid to arid climate, this plain hosts an aquifer system that represents sequences of carbonates, phosphates, evaporates and alluvial deposits. Groundwater flows from Ganntour plateau (recharge area) to the basin-fill deposits and Zima Lake and Sed Elmejnoun where water evaporates. The objective of this study was to characterize the chemical properties of the groundwater and to assess the processes controlling the groundwater's chemistry. We can divide water samples into three hydrochemical water groups: recharge waters (Ca/Mg-HCO 3 ), transition zone waters (Ca-HCO 3 -SO 4 /Cl) and discharge waters (Na-Cl/SO 4 ). Accordingly, compositions of waters are determined by the availability of easily soluble minerals like calcite (Ca-HCO 3 dominant), halite (Na-Cl dominant) and gypsum (Ca-SO 4 dominant). Cl/Br ratios show that Cl concentration increases from dissolution of natural halite. When groundwater is affected by extreme evaporation Cl/Br ratios may increase up to 1900. High fluoride concentrations are associated with low Ca 2+ concentrations (<100mg/L). That means when recharge waters enter the aquifer, it starts dissolving fluorite since the Ca 2+ concentration is low. Once groundwater becomes saturated with Ca 2+ , the immobilization of fluoride is occurring by precipitation of fluoride-rich minerals like fluoro-apatite. According to the environmental isotope ( 18 O and 2 H) analyses, they are three potential processes affecting groundwater: 1. Evaporation as verified by low slope value, 2. Water-rock interaction, 3. admixture of waters showed different stable isotope compositions and salinities. Copyright © 2017 Elsevier B.V. All rights reserved.
Hagandora, Catherine K; Tudares, Mauro A; Almarza, Alejandro J
2012-03-01
Magnesium has recently been explored as a potential biomaterial for degradable orthopedic implants but its effect on fibrocartilage remains unknown. The objective of this study was to assess the effect of high concentrations of magnesium ions on the matrix production of goat costal fibrochondrocytes in vitro. Cells were cultured using a scaffoldless approach with media containing magnesium chloride (MgCl(2)) or magnesium sulfate (MgSO(4)) at concentrations of 20, 50, and 100 mM in addition to the baseline magnesium concentration of 0.8 mM MgSO(4). At 4 weeks, there were no significant differences in compressive tangent modulus and total matrix production between constructs cultured in 20 mM Mg(2+) and the 0.8 mM Mg(2+) control (435 ± 47 kPa). There was a significant decrease in compressive tangent modulus compared to the 0.8 mM Mg(2+) constructs in the 50 mM MgCl(2) and MgSO(4) groups, while the 100 mM groups were not mechanically testable (p < 0.05). The collagen and glycosaminoglycan (GAG) content of the 50 and 100 mM MgCl(2) and MgSO(4) constructs was significantly lower than the control (6.9 ± 0.5% and 16.5 ± 1.3% per dry weight, respectively) (p < 0.05). The results show that goat costal fibrochondrocytes exhibit a high degree of resiliency to magnesium ion concentrations up to 20 mM in vitro.
Wang, Li-Juan; Tang, Yu-Hai; Liu, Yang-Hao
2011-02-01
A novel flow injection chemiluminescence (CL) method for the determination of loxoprofen and naproxen was proposed based on the CL system of KMnO 4 , and Na 2 SO 3 in acid media. The CL intensity of KMnO 4 -Na 2 SO 3 was greatly enhaneed in the presence of loxoprofen and naproxen. The mechanism of the CL reaction was studied by the kinetic proecss and UV-vis absorption and the conditions were optimized. Under optimized conditions, the CL intensity was linear with loxoprofen and naproxen concentration in the range of 7.0 × 10 -8 - 1.0 × 10 -5 g/mL and 2.0 × 10 -7 - 4.0 × 10 -6 g/mL with the detection limit of 2.0 × 10 -8 g/mL and 3.0 × 10 -8 g/mL (S/N = 3), respectively. Thc relative standard deviations were 2.39% and 1.37% for 5.0 × 10 -7 g/mL naproxen and 5.0 × 10 -7 g/mL loxoprofen ( n = 10), respectively. The proposed method was satisfactorily applied to thc determination of loxoprofen and naproxen in pharmaceutical preparations.
Wedgwood, Janet L; Kresinski, Roman A; Merry, Stephen; Platt, Andrew W G
2003-06-01
The reactions of phosphine Ph(2)P(CH(2))(2)SO(3)Na with Cp(2)M'Cl(2) (M'=Ti, Zr) in aqueous solution give the metallophosphines, Cp(2)Ti(OSO(2)(CH(2))(2)PPh(2))(2) (Cp=cyclopentadienyl) and CpZr(OH)(OSO(2)(CH(2))(2)PPh(2))(2). These react with CODM"Cl(2) (M"=Pd, Pt) (COD=1,5-cyclooctadiene) in dichloromethane to give heterobimetallic complexes Cp(2)Ti(OSO(2)(CH(2))(2)PPh(2))(2)M"Cl(2) and CpZr(OH)(OSO(2)(CH(2))(2) PPh(2))(2)M"Cl(2) respectively. The compounds are characterised by infrared and NMR spectroscopies and elemental analysis. Electrospray mass spectra of the complexes are reported and compared to those of Cp(2)M'Cl(2) in water and dimethylsulfoxide (DMSO). For zirconocene dichloride and its product heterobimetallic complexes, the addition of ethylenediamine tetraacetic acid disodium salt (Na(2)H(2)EDTA) was found to be an effective ionisation enhancement agent for the electrospray mass spectral studies. Cytotoxicity studies for the previously reported Cl(2)Pt(PPh(2)(CH(2))(2)SO(3)H)(2).3.5H(2)O (Wedgwood et al., Inorg. Chim. Acta 290 (1999) 189), and the compounds Cp(2)Ti(OSO(2)(CH(2))(2) PPh(2))(2).1.5H(2)O and Cp(2)Ti(OSO(2)(CH(2))(2)PPh(2))(2)PtCl(2).4H(2)O reported here, have been evaluated by colony formation assay against cisplatin-sensitive and -resistant cell lines L929 and L929/R to highlight potential chemotherapeutic activity. The compound Cl(2)Pt(PPh(2)(CH(2))(2)SO(3)H)(2).3.5H(2)O overcomes cisplatin resistance.
[Effects of antiseptic on the analysis of greenhouse gases concentrations in lake water].
Xiao, Qi-Tao; Hu, Zheng-Hu; James, Deng; Xiao, Wei; Liu, Shou-Dong; Li, Xu-Hui
2014-01-01
To gain insight into antiseptic effects on the concentrations of CO2, CH4, and N2O in lake water, antisepetic (CuSO4 and HgCl2) were added into water sample, and concentrations of greenhouse gases were measured by the gas chromatography based on water equilibrium method. Experiments were conducted as following: the control group without antisepetic (CK), the treatment group with 1 mL CuSO4 solution (T1), the treatment group with 5 mL CuSO4 solution (T2), and the treatment group with 0.5 mL HgCl2 solution (T3). All groups were divided into two batches: immediately analysis (I), and after 2 days analysis (II). Results showed that CuSO4 and HgCl2 significantly increased CO2 concentration, the mean CO2 concentration (Mco2) of CK (I) and CK (II) were (11.5 +/- 1.47) micromol x L(-1) and (14.38 +/- 1.59) micromol x L(-1), respectively; the Mco2 of T1 (I) and T1 (II) were (376 +/- 70) micromol x L(-1) and (448 +/- 246.83) micromol x L(-1), respectively; the Mco2 of T2 (I) and T2 (II) were (885 +/- 51.53) micromol x L(-1) and (988.83 +/- 101.96) micromol x L(-1), respectively; the Mco2 of T3 (I) and T3 (II) were (287.19 +/- 30.01) micromol x L(-1) and (331.33 +/- 22.06) micromol x L(-1), respectively. The results also showed that there was no difference in CH4 and N2O concentrations among treatments. Water samples should be analyzed as soon as possible after pretreatment. Our findings suggest that adding antiseptic may lead an increase in CO2 concentration.
Advances in Constraining Solubilities of H-O-C-S-Cl-bearing Fluids in Silicate Melts
NASA Astrophysics Data System (ADS)
Webster, J. D.
2009-12-01
Magmatic-hydrothermal fluids that are variably enriched in the volatile components H2O, CO2/CH4, H2S/SO2, Cl, F, ± B alter rock; dissolve, transport, and deposit ore metals, and drive volcanism. The efficacy of these processes varies directly with the compositions and quantities, and in particular, with the molar volumes of the fluids involved. Although natural hydrothermal fluids are geochemically diverse, experimental constraints on volatile solubilities in silicate melts are largely limited to two volatiles. Recent experimental research, however, has begun to address mutual solubility relationships of three and four volatiles in felsic to intermediate aluminosilicate melts at shallow crustal pressures. Following well-established correlations demonstrating that as little as a few hundred to thousand ppm CO2 or Cl reduce H2O solubility in melts, and hence enhance the tendency for magma to exsolve one or two fluid phases, recent work shows fundamentally important solubility relationships involving H2O, S, and Cl. Research on rhyodacitic (Botcharnikov et al., 2004) and phonolitic melts at 200 MPa reveals that hundreds to thousands of ppm S will reduce Cl solubility in these melts. Thus, S reduces Cl solubility, which in turn reduces H2O solubility in melts. Other investigations have determined that CaSO4 solubility in oxidizing hydrothermal fluids varies directly with the concentrations of NaCl ± KCl in these fluids (Newton and Manning, 2005; Webster et al., 2009). The CaSO4 contents in the most alkali chloride-enriched fluids exceed 60 wt.%. It follows that some mineralizing saline magmatic fluids are strongly enriched in Ca, Na, K, Cl, SO4, and reduced S species. Research on H2O-, CO2-, and Cl-bearing melts at 200 MPa also highlights critical reciprocal volatile solubility behavior. Work at 1200°C on andesitic melts saturated in two fluids determines that the presence of CO2 enlarges the immiscibility gap for vapor plus brine and increases the activities of H2O and Cl (Botcharnikov et al. 2007). Conversely, other work involving Cl-enriched phonolitic melts plus two fluids at 900°C observes that the presence of Cl strongly reduces CO2 solubility in the melt. In fact, for runs containing as much as 80 mole percent CO2 in the fluid, the CO2/CO3 contents of the melts were reduced to values below the limit of detection for FTIR (< ca. 30-40 ppm). Thus, Cl works to reduce CO2 solubility, which in turn reduces H2O solubility in phonolitic melts. Current work on the solubility of H-O-C-S in haplogranitic melts at 200 MPa demonstrates that the addition of C reduces the (fluid/melt) partition coefficient for S. In addition, these experimentally determined partition coefficients decrease in the order CO2 > S > H2O, and their ranges are virtually identical to and thus confirm modeled values computed (Scaillet and Pichavant, 2003) for pre-eruptive magmatic fluids based on volatile fugacities of volcanic gases of arc-related magmas. Botcharnikov R et al (2004) Chem. Geol. 213, 207-225. Botcharnikov R, Holtz F, Behrens H (2007) Eur. J. Mineral. 19, 671-680. Newton R, Manning C (2005) J. Petrol. 46, 701-716. Scaillet B, Pichavant M (2003) Volcanic Degassing, Geol. Soc. Spec. Pub. 213, 23-52. Webster J, Sintoni M, De Vivo B (2009) Chem. Geol. 263, 19-36.
Vicente, José; Chicote, María-Teresa; Guerrero, Rita; Jones, Peter G.; Ramírez De Arellano, M. Carmen
1997-09-24
The complexes [Au(acac-kappaC(2))(PR(3))] (acac = acetylacetonate, R = Ph, C(6)H(4)OMe-4) react with (NH(4))ClO(4) to give amminegold(I), [Au(NH(3))(PR(3))]ClO(4), amidogold(I), [(AuPR(3))(2)(&mgr;(2)-NH(2))]ClO(4), or nitridogold(I), [(AuPR(3))(4)(&mgr;(4)-N)]ClO(4), complexes, depending on the reaction conditions. Similarly, [Au(acac-kappaC(2))(PPh(3))] reacts with (NH(3)R')OTf (OTf = CF(3)SO(3)) (1:1) or with [H(3)N(CH(2))(2)NH(2)]OTf (1:1) to give (amine)gold(I) complexes [Au(NH(2)R')(PPh(3))]OTf (R' = Me, C(6)H(4)NO(2)-4) or [(AuPPh(3))(2){&mgr;(2)-H(2)N(CH(2))(2)NH(2)}](OTf)(2), respectively. The ammonium salts (NH(2)R'(2))OTf (R' = Et, Ph) react with [Au(acac-kappaC(2))(PR(3))] (R = Ph, C(6)H(4)OMe-4) (1:2) to give, after hydrolysis, the oxonium salts [(AuPR(3))(3)(&mgr;(3)-O)]OTf (R = Ph, C(6)H(4)OMe-4). When NH(3) is bubbled through a solution of [AuCl(tht)] (tht = tetrahydrothiophene), the complex [Au(NH(3))(2)]Cl precipitates. Addition of [Au(NH(3))(2)]Cl to a solution of AgClO(4) or TlOTf leads to the isolation of [Au(NH(3))(2)]ClO(4) or [Au(NH(3))(2)]OTf, respectively. The crystal structure of [(AuPR(3))(3)(&mgr;(3)-O)]OTf.Me(2)CO (R = C(6)H(4)OMe-4) has been determined: triclinic, space group P&onemacr;, a = 14.884(3) Å, b = 15.828(3) Å, c = 16.061(3) Å, alpha = 83.39(3) degrees, beta = 86.28(3) degrees, gamma = 65.54(3) degrees, R1 (wR2) = 0.0370 (0.0788). The [(AuPR(3))(3)(&mgr;(3)-O)](+) cation shows an essentially trigonal pyramidal array of three gold atoms and one oxygen atom with O-Au-P bond angles of ca. 175 degrees and Au.Au contacts in the range 2.9585(7)-3.0505(14) Å. These cations are linked into centrosymmetric dimers through two short Au.Au [2.9585(7), 3.0919(9) Å] contacts. The gold atoms of the dimer form a six-membered ring with a chair conformation.
``Amarna blue'' painted on ancient Egyptian pottery
NASA Astrophysics Data System (ADS)
Uda, M.; Nakamura, M.; Yoshimura, S.; Kondo, J.; Saito, M.; Shirai, Y.; Hasegawa, S.; Baba, Y.; Ikeda, K.; Ban, Y.; Matsuo, A.; Tamada, M.; Sunaga, H.; Oshio, H.; Yamashita, D.; Nakajima, Y.; Utaka, T.
2002-04-01
"Amarna blue" pigments (18 Dynasty, c. 1400 BC) painted on pottery fragments were investigated using the PIXE, XRF and XRD methods in laboratories and also using a portable type of X-ray spectrometer at the sites of excavation. On the blue-colored part enrichment of Na, Al, S, Cl, Ca, Mn, Co, Ni and Zn was found using X-ray spectroscopy, and CaSO 4, NaCl and Co(M)Al 2O 4, M denoting Mn, Fe, Ni and Zn, were found by the help of X-ray diffraction. This means that Amarna blue is a mixture of CaSO 4 and Co(M)Al 2O 4, at least in part.
A mechanism for hydrochloric acid production in cloud
Glenn K. Yue; Volkar A. Mohnen; C. S. Kiang
1976-01-01
A theoretical model describing the general interaction between atmospheric trace gases, such as SO2, NH3, CO2 and O2, chemical reactant gaseous product H2SO4 and hydrometeors containing NaCl is proposed to study a possible mechanism...
NASA Astrophysics Data System (ADS)
Han, Suqin; Fan, Zheyan; Chen, Xiaoxia; Wu, Yunfang; Wang, Jianbo
2017-08-01
The famous weak chemiluminescence (CL) system of potassium permanganate and sodium bisulfite (KMnO4-HSO3-) was enhanced by the hollow fluorescent carbon nanodots (HCNs). The investigation of mechanism revealed that the enhanced CL was induced by the excited-state HCNs (HCNs*), which could be produced from the electron-transfer annihilation of positively charged HCNs (HCNsrad +) and negatively charged HCNs (HCNsrad -) as well as by CL resonance energy transfer (CRET) from excited SO2 (SO2*)/1O2 to HCNs. The dihydralazine sulfate (DHZS) had a diminishing effect on the CL of HCNs-KMnO4-HSO3- system due to the competitive consumption of rad O2-. Under the optimal conditions, the reduced CL signal with the concentration of DHZS was linear in the range of 1.0 × 10- 7-7.0 × 10- 5 mol/L with a detection limit of 3.0 × 10- 8 mol/L. The relative standard deviation for seven repeated determination of 5.0 × 10- 6 mol/L DHZS was 2.1%. The established method was applied to the determination of DHZS in pharmaceutical preparations, human urine and plasma samples with good precision and accuracy.
[Water-soluble anions of atmosphere on Tianwan nuclear power station].
Zhao, Heng-Qiang; He, Ying; Zheng, Xiao-Ling; Chen, Fa-Rong; Pang, Shi-Ping; Wang, Cai-Xia; Wang, Xiao-Ru
2010-11-01
Three major water-soluble anions (Cl-, SO4(2-) and NO3-) in the atmosphere of the Tianwan nuclear power station in Lianyungang were determined by ion chromatography from June 2005 to May 2006. The results showed that the annual average concentration of Cl-, SO4(2-) and NO3- in the atmosphere of Tianwan nuclear power station was (33.12 +/- 53.63) microg x m(-3), (53.34 +/- 30.34) microg x m(-3) and (8.34 +/- 4.47) microg x m(-3), respectively. The concentrations of the three water-soluble anions showed evident trend of seasonal variation. The concentrations of Cl-, SO4(2-) reached the highest level in summer and the lowest level in winter, while the concentration of NO3- in autumn and winter was higher than those in summer and spring. Meteorological parameters such as wind direction, wind speed, temperature and relative humidity were studied and showed definite influence to the anions concentration of the atmosphere. This is the first simultaneous monitoring of corrosive anions in the atmosphere of Chinese coastal nuclear power plant, and it will provide basis for the prevention of marine atmospheric corrosion, which will ensure the safely operating of our nuclear power industry.
Shebl, Magdy
2008-09-01
A tetradentate N2O2 donor Schiff base ligand, H2L, was synthesized by the condensation of 4,6-diacetylresorcinol with benzylamine. The structure of the ligand was elucidated by elemental analyses, IR, 1H NMR, electronic and mass spectra. Reaction of the Schiff base ligand with nickel(II), cobalt(II), iron(III), cerium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded binuclear metal complexes. Also, reaction of the ligand with several copper(II) salts, including Cl-, NO3-, AcO-, ClO4- and SO42- afforded different metal complexes that reflect the non-coordinating or weakly coordinating power of the ClO(4)(-) anion as compared to the strongly coordinating power of SO42- and Cl- anions. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, 1H NMR, electronic, mass and ESR spectra as well as magnetic susceptibility measurements. The metal complexes exhibited different geometrical arrangements such as square planar, octahedral, square pyramidal and pentagonal bipyramidal arrangements. The variety in the geometrical arrangements depends on the nature of both the anion and the metal ion.
ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS
Bailes, R.H.; Ellis, D.A.; Long, R.S.
1958-12-16
Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.
Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern
2012-03-28
Irradiation at 239 ± 20 nm of a p-H(2) matrix containing methoxysulfinyl chloride, CH(3)OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν(1), CH(2) antisymmetric stretching), 2999.5 (ν(2), CH(3) antisymmetric stretching), 2950.4 (ν(3), CH(3) symmetric stretching), 1465.2 (ν(4), CH(2) scissoring), 1452.0 (ν(5), CH(3) deformation), 1417.8 (ν(6), CH(3) umbrella), 1165.2 (ν(7), CH(3) wagging), 1152.1 (ν(8), S=O stretching mixed with CH(3) rocking), 1147.8 (ν(9), S=O stretching mixed with CH(3) wagging), 989.7 (ν(10), C-O stretching), and 714.5 cm(-1) (ν(11), S-O stretching) modes of syn-CH(3)OSO. When CD(3)OS(O)Cl in a p-H(2) matrix was used, lines at 2275.9 (ν(1)), 2251.9 (ν(2)), 2083.3 (ν(3)), 1070.3 (ν(4)), 1056.0 (ν(5)), 1085.5 (ν(6)), 1159.7 (ν(7)), 920.1 (ν(8)), 889.0 (ν(9)), 976.9 (ν(10)), and 688.9 (ν(11)) cm(-1) appeared and are assigned to syn-CD(3)OSO; the mode numbers correspond to those used for syn-CH(3)OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86∕aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH(3)OSO near 2991, 2956, 1152, and 994 cm(-1) to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD(3)OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H(2) such that the Cl atom, produced via UV photodissociation of CH(3)OS(O)Cl in situ, might escape from the original cage to yield isolated CH(3)OSO radicals.
NASA Technical Reports Server (NTRS)
Leu, M. T.; Yung, Y. L.
1987-01-01
A discharge flow apparatus with chemiluminescence detector has been used to study the reaction O + ClO --> Cl + O2, where O2 = O2(a1 delta g) or O2(b1 sigma+ g). The measured quantum yields for producing O2(a1 delta g) and O2(b1 sigma+ g) in the above reaction are less than 2.5 x 10(-2) and equal to (4.4 +/- 1.1) x 10(-4), respectively. The observed O2(a1 delta g) airglow of Venus cannot be explained in the context of standard photochemistry using our experimental results and those reported in recent literature. The possibility of an alternative source of O atoms derived from SO2 photolysis in the mesosphere of Venus is suggested.
Clegg, S L; Wexler, A S
2011-04-21
Calculations of the size and density of atmospheric aerosols are complicated by the fact that they can exist at concentrations highly supersaturated with respect to dissolved salts and supercooled with respect to ice. Densities and apparent molar volumes of solutes in aqueous solutions containing the solutes H(2)SO(4), HNO(3), HCl, Na(2)SO(4), NaNO(3), NaCl, (NH(4))(2)SO(4), NH(4)NO(3), and NH(4)Cl have been critically evaluated and represented using fitted equations from 0 to 50 °C or greater and from infinite dilution to concentrations saturated or supersaturated with respect to the dissolved salts. Using extrapolated densities of high-temperature solutions and melts, the relationship between density and concentration is extended to the hypothetical pure liquid solutes. Above a given reference concentration of a few mol kg(-1), it is observed that density increases almost linearly with decreasing temperature, and comparisons with available data below 0 °C suggest that the fitted equations for density can be extrapolated to very low temperatures. As concentration is decreased below the reference concentration, the variation of density with temperature tends to that of water (which decreases as temperature is reduced below 3.98 °C). In this region below the reference concentration, and below 0 °C, densities are calculated using extrapolated apparent molar volumes which are constrained to agree at the reference concentrations with an equation for the directly fitted density. Calculated volume properties agree well with available data at low temperatures, for both concentrated and dilute solutions. Comparisons are made with literature data for temperatures of maximum density. Apparent molar volumes at infinite dilution are consistent, on a single ion basis, to better than ±0.1 cm(3) mol(-1) from 0 to 50 °C. Volume properties of aqueous NaHSO(4), NaOH, and NH(3) have also been evaluated, at 25 °C only. In part 2 of this work (ref 1 ) an ion interaction (Pitzer) model has been used to calculate apparent molar volumes of H(2)SO(4) in 0-3 mol kg(-1) aqueous solutions of the pure acid and to represent directly the effect of the HSO(4)(-) ↔ H(+) + SO(4)(2-) reaction. The results are incorporated into the treatment of aqueous H(2)SO(4) density described here. Densities and apparent molar volumes from -20 to 50 °C, and from 0 to 100 wt % of solute, are tabulated for the electrolytes listed in the title and have also been incorporated into the extended aerosol inorganics model (E-AIM, http://www.aim.env.uea.ac.uk/aim/aim.php) together with densities of the solid salts and hydrates.
Groundwater quality from a part of Prakasam District, Andhra Pradesh, India
NASA Astrophysics Data System (ADS)
Subba Rao, N.
2018-03-01
Quality of groundwater is assessed from a part of Prakasam district, Andhra Pradesh, India. Groundwater samples collected from thirty locations from the study area were analysed for pH, electrical conductivity (EC), total dissolved solids (TDS), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate ( {HCO}3^{ - } ), chloride (Cl-), sulphate ( {SO}4^{2 - } ), nitrate ( {NO}3^{ - } ) and fluoride (F-). The results of the chemical analysis indicate that the groundwater is alkaline in nature and are mainly characterized by Na+- {HCO}3^{ - } and Na+-Cl- facies. Groundwater chemistry reflects the dominance of rock weathering and is subsequently modified by human activities, which are supported by genetic geochemical evolution and hydrogeochemical relations. Further, the chemical parameters (pH, TDS, Ca2+, Mg2+, Na+, {HCO}3^{ - } , Cl-, {SO}4^{2 - } , {NO}3^{ - } and F-) were compared with the drinking water quality standards. The sodium adsorption ratio, percent sodium, permeability index, residual sodium carbonate, magnesium ratio and Kelly's ratio were computed and USSL, Wilcox and Doneen's diagrams were also used for evaluation of groundwater quality for irrigation. For industrial purpose, the pH, TDS, {HCO}3^{ - } , Cl- and {SO}4^{2 - } were used to assess the impact of incrustation and corrosion activities on metal surfaces. As a whole, it is observed that the groundwater quality is not suitable for drinking, irrigation and industrial purposes due to one or more chemical parameters exceeding their standard limits. Therefore, groundwater management measures were suggested to improve the water quality.
Li, Hongping; Chang, Yonghui; Zhu, Wenshuai; Wang, Changwei; Wang, Chao; Yin, Sheng; Zhang, Ming; Li, Huaming
2015-11-21
The nature of the interaction between deep eutectic solvents (DESs), formed by ChCl and glycerol, and SO2 has been systematically investigated using the M06-2X density functional combined with cluster models. Block-localized wave function energy decomposition (BLW-ED) analysis shows that the interaction between SO2 and DESs is dominated by a charge transfer interaction. After this interaction, the SO2 molecule becomes negatively charged, whereas the ChCl-glycerol molecule is positively charged, which is the result of Lewis acid-base interaction. The current result affords a theoretical proof that it is highly useful and efficient to manipulate the Lewis acidity of absorbents for SO2 capture. Moreover, hydrogen bonding as well as electrostatic interactions may also contribute to the stability of the complex. Structure analysis shows that solvent molecules will adjust their geometries to interact with SO2. In addition, the structure of SO2 is barely changed after interaction. The interaction energy between different cluster models and SO2 ranges from -6.8 to -14.4 kcal mol(-1). It is found that the interaction energy is very sensitive to the solvent structure. The moderate interaction between ChCl-glycerol and SO2 is consistent with the concept that highly efficient solvents for SO2 absorption should not only be solvable but also regenerable.
Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A; Rodríguez, Rosa M; Brillas, Enric
2015-06-15
The decolorization and mineralization of solutions containing 230 mg L(-1) of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H2O2. The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between H2O2 and added Fe(2+). The oxidation ability increased in the sequence EO-H2O2 < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO4(2-), ClO4(-) and NO3(-) media, whereas in Cl(-) medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC-MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO4(2-) medium and three chloroaromatics in Cl(-) solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH4(+), NO3(-) and SO4(2-) ions were released during the mineralization. Copyright © 2015 Elsevier B.V. All rights reserved.
Investigation of the formation of gaseous sodium sulfate in a doped methane-oxygen flame
NASA Technical Reports Server (NTRS)
Stearns, C. A.; Miller, R. A.; Kohl, F. J.; Fryburg, G. C.
1977-01-01
Na2SO4(g) formation was measured at atmospheric pressure in CH4-O2 flames, with high pressure, free-jet expansion, mass spectrometric sampling used to identify and measure reaction products. Measured composition profiles of reaction products for a doped 9.5 mole ratio O2/CH4 flame are presented. Weight percentages of reactants were 4.7 CH4, 89.0 O2, 3.5 H2O, 2.0 SO2 and 0.35 NaCl.
Böhlke, John Karl; Mroczkowski, Stanley J.; Sturchio, Neil C.; Heraty, Linnea J.; Richman, Kent W.; Sullivan, Donald B.; Griffith, Kris N.; Gu, Baohua; Hatzinger, Paul B.
2017-01-01
RationalePerchlorate (ClO4−) is a common trace constituent of water, soils, and plants; it has both natural and synthetic sources and is subject to biodegradation. The stable isotope ratios of Cl and O provide three independent quantities for ClO4− source attribution and natural attenuation studies: δ37Cl, δ18O, and δ17O (or Δ17O or 17Δ) values. Documented reference materials, calibration schemes, methods, and interferences will improve the reliability of such studies.MethodsThree large batches of KClO4 with contrasting isotopic compositions were synthesized and analyzed against VSMOW-SLAP, atmospheric O2, and international nitrate and chloride reference materials. Three analytical methods were tested for O isotopes: conversion of ClO4− to CO for continuous-flow IRMS (CO-CFIRMS), decomposition to O2 for dual-inlet IRMS (O2-DIIRMS), and decomposition to O2 with molecular-sieve trap (O2-DIIRMS+T). For Cl isotopes, KCl produced by thermal decomposition of KClO4 was reprecipitated as AgCl and converted into CH3Cl for DIIRMS.ResultsKClO4 isotopic reference materials (USGS37, USGS38, USGS39) represent a wide range of Cl and O isotopic compositions, including non-mass-dependent O isotopic variation. Isotopic fractionation and exchange can affect O isotope analyses of ClO4− depending on the decomposition method. Routine analyses can be adjusted for such effects by normalization, using reference materials prepared and analyzed as samples. Analytical errors caused by SO42−, NO3−, ReO42−, and C-bearing contaminants include isotope mixing and fractionation effects on CO and O2, plus direct interference from CO2 in the mass spectrometer. The results highlight the importance of effective purification of ClO4− from environmental samples.ConclusionsKClO4 reference materials are available for testing methods and calibrating isotopic data for ClO4− and other substances with widely varying Cl or O isotopic compositions. Current ClO4−extraction, purification, and analysis techniques provide relative isotope-ratio measurements with uncertainties much smaller than the range of values in environmental ClO4−, permitting isotopic evaluation of environmental ClO4− sources and natural attenuation.
Autschbach, Jochen; Sutter, Kiplangat; Truflandier, Lionel A; Brendler, Erica; Wagler, Jörg
2012-10-01
New members of a novel class of metallasilatrane complexes [X-Si-(μ-mt)(4)-M-Y], with M=Ni, Pd, Pt, X=F, Cl, Y=Cl, Br, I, and mt=2-mercapto-1-methylimidazolide, have been synthesized and characterized structurally by X-ray diffraction and by (29)Si solid-state NMR. Spin-orbit (SO) effects on the (29)Si chemical shifts induced by the metal, by the sulfur atoms in the ligand, and by heavy halide ligands Y=Cl, Br, I were investigated with the help of relativistic density functional calculations. Operators used in the calculations were constructed such that SO coupling can selectively be switched off for certain atoms. The unexpectedly large SO effects on the (29)Si shielding in the Ni complex with X=Y=Cl reported recently originate directly from the Ni atom, not from other moderately heavy atoms in the complex. With respect to Pd, SO effects are amplified for Ni owing to its smaller ligand-field splitting, despite the smaller nuclear charge. In the X=Cl, Y=Cl, Br, I series of complexes the Y ligand strongly modulates the (29)Si shift by amplifying or suppressing the metal SO effects. The pronounced delocalization of the partially covalent M←Y bond plays an important role in modulating the (29)Si shielding. We also demonstrate an influence from the X ligand on the (29)Si SO shielding contributions originating at Y. The NMR spectra for [X-Si-(μ-mt)(4)-M-Y] must be interpreted mainly based on electronic and relativistic effects, rather than structural differences between the complexes. The results highlight the sometimes unintuitive role of SO coupling in NMR spectra of complexes containing heavy atoms. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sulfate-enhanced catalytic destruction of 1,1,1-trichlorethane over Pt(111).
Lee, Adam F; Wilson, Karen
2006-01-19
The catalytic destruction of 1,1,1-trichloroethane (TCA) over model sulfated Pt(111) surfaces has been investigated by fast X-ray photoelectron spectroscopy and mass spectrometry. TCA adsorbs molecularly over SO4 precovered Pt(111) at 100 K, with a saturation coverage of 0.4 monolayer (ML) comparable to that on the bare surface. Surface crowding perturbs both TCA and SO4 species within the mixed adlayer, evidenced by strong, coverage-dependent C 1s and Cl and S 2p core-level shifts. TCA undergoes complete dechlorination above 170 K, accompanied by C-C bond cleavage to form surface CH3, CO, and Cl moieties. These in turn react between 170 and 350 K to evolve gaseous CO2, C2H6, and H2O. Subsequent CH3 dehydrogenation and combustion occurs between 350 and 450 K, again liberating CO2 and water. Combustion is accompanied by SO4 reduction, with the coincident evolution of gas phase SO2 and CO2 suggesting the formation of a CO-SOx surface complex. Reactively formed HCl desorbs in a single state at 400 K. Only trace (<0.06 ML) residual atomic carbon and chlorine remain on the surface by 500 K.
Wang, Li-Juan; Tang, Yu-Hai; Liu, Yang-Hao
2012-01-01
A novel flow injection chemiluminescence (CL) method for the determination of loxoprofen and naproxen was proposed based on the CL system of KMnO4, and Na2SO3 in acid media. The CL intensity of KMnO4-Na2SO3 was greatly enhaneed in the presence of loxoprofen and naproxen. The mechanism of the CL reaction was studied by the kinetic proecss and UV-vis absorption and the conditions were optimized. Under optimized conditions, the CL intensity was linear with loxoprofen and naproxen concentration in the range of 7.0 × 10−8 – 1.0 × 10−5 g/mL and 2.0 × 10−7 – 4.0 × 10−6 g/mL with the detection limit of 2.0 × 10−8 g/mL and 3.0 × 10−8 g/mL (S/N = 3), respectively. Thc relative standard deviations were 2.39% and 1.37% for 5.0 × 10−7 g/mL naproxen and 5.0 × 10−7 g/mL loxoprofen (n = 10), respectively. The proposed method was satisfactorily applied to thc determination of loxoprofen and naproxen in pharmaceutical preparations. PMID:29403682
Effect of Ca(OH)2, NaCl, and Na2SO4 on the corrosion and electrochemical behavior of rebar
NASA Astrophysics Data System (ADS)
Jin, Zuquan; Zhao, Xia; Zhao, Tiejun; Hou, Baorong; Liu, Ying
2017-05-01
The corrosion of rebar in reinforced concrete in marine environments causes significant damage to structures built in ocean environments. Studies on the process and mechanism of corrosion of rebar in the presence of multiple ions may help to control damage and predict the service life of reinforced concrete structures in such environments. The effect of interactions between sulfate and chloride ions and calcium hydroxide on the electrochemical behavior of rebar are also important for evaluation of structure durability. In this work, electrochemical impedance spectroscopy (EIS) plots of rebar in Ca(OH)2 solution and cement grout, including NaCl and Na2SO4 as aggressive salts, were measured for diff erent immersion times. The results show that corrosion of rebar was controlled by the rate of charge transfer as the rebar was exposed to chloride solution. In the presence of high concentrations of sulfate ions in the electrolyte, generation and dissolution of the passive film proceeded simultaneously and corrosion was mainly controlled by the diff usion rate. When Na2SO4 and NaCl were added to Ca(OH)2 solution, the instantaneous corrosion rate decreased by a factor of 10 to 20 as a result of the higher pH of the corroding solution.
SO2 absorption in EmimCl-TEG deep eutectic solvents.
Yang, Dezhong; Zhang, Shaoze; Jiang, De-En; Dai, Sheng
2018-06-06
Deep eutectic solvents (DESs) based on 1-ethyl-3-methylimidazolium chloride (EmimCl) and triethylene glycol (TEG) with different molar ratios (from 6 : 1 to 1 : 1) were prepared. FTIR and theoretical calculation indicated that the C2-H on the imidazolium ring form hydrogen bonds with the hydroxyl group rather than the ether O atom of the TEG. The EmimCl-TEG DESs can efficiently capture SO2; in particular, EmimCl-TEG (6 : 1) can capture 0.54 g SO2 per gram of solvent at 0.10 atm and 20 °C, the highest absorption amount for DESs under the same conditions. Theoretical calculation showed that the high SO2 absorption capacity was mainly due to the strong charge-transfer interaction between SO2 and the anion Cl-. Moreover, SO2 desorption in the DESs can be controlled by tuning the interaction between EmimCl and TEG, and the DESs can be cycled many times.
NASA Technical Reports Server (NTRS)
Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.
1996-01-01
Heterogeneous chemistry of nitrous acid (HONO) on liquid sulfuric acid (H2SO4) Was investigated at conditions that prevail in the stratosphere. The measured uptake coefficient (gamma) of HONO on H2SO4 increased with increasing acid content, ranging from 0.03 for 65 wt % to about 0.1 for 74 wt %. In the aqueous phase, HONO underwent irreversible reaction with H2SO4 to form nitrosylsulfuric acid (NO(+)HSO4(-). At temperatures below 230 K, NO(+)HSO4(-) was observed to be stable and accumulated in concentrated solutions (less than 70 wt % H2SO4) but was unstable and quickly regenerated HONO in dilute solutions (less than 70 wt %). HCl reacted with HONO dissolved in sulfuric acid, releasing gaseous nitrosyl chloride (ClNO). The reaction probability between HCl and HONO varied from 0.01 to 0.02 for 60-72 wt % H2SO4. In the stratosphere, ClNO photodissociates rapidly to yield atomic chlorine, which catalytically destroys ozone. Analysis of the laboratory data reveals that the reaction of HCl with HONO on sulfate aerosols can affect stratospheric ozone balance during elevated sulfuric acid loadings after volcanic eruptions or due to emissions from the projected high-speed civil transport (HSCT). The present results may have important implications on the assessment of environmental acceptability of HSCT.
Seasonal variations in the major chemical species of snow at the South East Dome in Greenland
NASA Astrophysics Data System (ADS)
Oyabu, Ikumi; Matoba, Sumito; Yamasaki, Tetsuhide; Kadota, Moe; Iizuka, Yoshinori
2016-03-01
We analyze snow-pit samples collected in May 2015 at the South East Dome (SE Dome) on the Greenland ice sheet. The analysis includes high-resolution records of δD and δ18O, as well as the major ions, CH3SO3-, Cl-, NO3-, SO42-, Na+, NH4+, K+, Ma2+, and Ca2+. We find that the 3.55-m snow pit recorded temperature and aerosol proxies back to summer or autumn of 2014. This indicates a higher accumulation rate than those at other major drilling sites in Greenland. Due to this high accumulation rate, ion concentrations except Na+ are lower than those typical of the central Greenland ice sheet. Concerning seasonal variability, the Na+, Cl-, Ca2+, Mg2+, and NO3- vary similarly to other sites in Greenland, with the Na+ and Cl- peaking in winter to early spring, Ca2+ peaking in spring, Mg2+ peaking in winter to spring, and NO3- towards a peak in summer while showing smaller peaks in winter to spring. The NH4+ increased in spring, and SO42- increased in autumn to winter at SE Dome. On the other hand, the seasonal trend in the Cl-/Na+ ratio differs from those in the inland region. As we did not fully recover one seasonal cycle, some seasonal peaks may have been missed.
NASA Astrophysics Data System (ADS)
Arsene, Cecilia; Olariu, Romeo Iulian; Zarmpas, Pavlos; Kanakidou, Maria; Mihalopoulos, Nikolaos
2011-02-01
Atmospheric loadings of the aerosols coarse (particles of AED > 1.5 μm) and fine fractions (particles of AED < 1.5 μm) were determined in Iasi, north-eastern Romania from January 2007 to March 2008. Concentrations of water soluble ions (SO 42-, NO 3-, Cl -, C 2O 42-, NH 4+, K +, Na +, Ca 2+ and Mg 2+) were measured using ion chromatography (IC). In the coarse particles, calcium and carbonate are the main ionic constituents (˜65%), whereas in the fine particles SO 42-, NO 3-, Cl - and NH 4+ are the most abundant. Temperature and relative humidity (RH) associated with increased concentrations of specific ions might be the main factors controlling the aerosol chemistry at the investigated site. From August 2007 to March 2008 high RH (as high as 80% for about 82% of the investigated period) was prevailing in Iasi and the collected particles were expected to have deliquesced and form an internal mixture. We found that in fine particles ammonium nitrate (NH 4NO 3) is important especially under conditions of NH 4+/SO 42- ratio higher than 1.5 and high RH (RH above deliquescence of NH 4Cl, NH 4NO 3 and (NH 4) 2SO 4). At the investigated site large ammonium artifacts may occur due to inter-particle interaction especially under favorable meteorological conditions. A methodology for estimating the artifact free ambient ammonium concentration is proposed for filter pack sampling data of deliquesced particles. Nitrate and sulfate ions in coarse particles are probably formed via reactions of nitric and sulfuric acid with calcium carbonate and sodium chloride which during specific seasons are abundant at the investigated site. In the fine mode sulfate concentration maximized during summer (due to enhanced photochemistry) and winter (due to high concentration of SO 2 emitted from coal burning). Natural contributions, dust or sea-salt related, prevail mainly in the coarse particles. From May 2007 to August 2007, when air masses originated mainly from Black Sea, in the coarse particles an nss-Cl/Na ratio of 1.11 was measured. Elevated levels of chloride in fine particles have been attributed to waste burning in the proximity of the investigated site or to NaCl salt widely spread on roads during winter. Considering the importance of atmospheric aerosols, this study may constitute a reference point for Eastern Europe.
Luo, Congwei; Ma, Jun; Jiang, Jin; Liu, Yongze; Song, Yang; Yang, Yi; Guan, Yinghong; Wu, Daoji
2015-09-01
This study comparatively investigated atrazine (ATZ) degradation by irradiation at the wavelength of 254 nm in the presence of peroxides including hydrogen peroxide (H2O2), peroxymonosulfate (HSO5(-)), and persulfate (S2O8(2-)) at various initial ATZ concentrations and oxidant dosages. The effects of water matrix, such as carbonate/bicarbonate (HCO3(-)/CO3(2-)), chloride ions (Cl(-)), and natural organic matter (NOM), were evaluated on these three advanced oxidation processes. A simple steady-state kinetic model was developed based on the initial rates of ATZ destruction, which could well describe the apparent pseudo-first-order rate constants (k(app), s(-1)) of ATZ degradation in these three processes. The specific roles of reactive species (i.e., HO·, SO4(-·), CO3(-·), and Cl2(-·)) under various experimental conditions were quantitatively evaluated based on their steady-state concentrations obtained from this model. Modeling results showed that the steady-state concentrations of HO· and SO4(-·) decreased with the increase of CO3(2-)/HCO3(-) concentration, and the relative contribution of HO· to ATZ degradation significantly decreased in UV/H2O2 and UV/HSO5(-) systems. On the other hand, the scavenging effect of HCO3(-)/CO3(2-) on the relative contribution of SO4(-·) to ATZ degradation was lower than that on HO·. The presence of Cl(-) (0.5-10 mM) significantly scavenged SO4(-·) but had slightly scavenging effect on HO· at the present experimental pH, resulting in greater decrease of k(app) in the UV/S2O8(2-) than UV/H2O2 and UV/HSO5(-) systems. Higher levels of Cl2(-·) were generated in the UV/S2O8(2-) than those in the UV/H2O2 and UV/HSO5(-) systems at the same Cl(-) concentrations. NOM significantly decreased k(app) due to its effects of competitive UV absorption and radical scavenging with the latter one being dominant. These results improve the understanding of the effects of water constituents for ATZ degradation in the UV-based oxidation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
INORGANIC PM2.5 AT A U.S. AGRICULTURAL SITE
In this study, we present approximately two years (January 1999–December 2000) of atmospheric NH3, NH4+, HCl, Cl-, HNO3, NO3-, SO2, and SO4= concentrations measured by t...
NASA Astrophysics Data System (ADS)
Soujanya Kamble, B.; Saxena, Praveen Raj
2017-10-01
The aim of the present work was to study the impact of dumpsite leachate on ground-water quality of Jawaharnagar village. Leachate and ground-water samples were investigated for various physico-chemical parameters viz., pH, total dissolved solids (TDS), total hardness (TH), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chloride (Cl-), carbonates (CO3 2-), bicarbonates (HCO3 -), nitrates (NO3 -), and sulphates (SO4 2-) during dry and wet seasons in 2015 and were reported. The groundwater was hard to very hard in nature, and the concentrations of total dissolved solids, chlorides, and nitrates were found to be exceeding the permissible levels of WHO drinking water quality standards. Piper plots revealed that the dominant hydrochemical facies of the groundwater were of calcium chloride (CaCl2) type and alkaline earths (Ca2+ and Mg2+) exceed the alkali (Na+ and SO4 2-), while the strong acids (Cl- and SO4 2-) exceed the weak acids (CO3 2- and HCO3 -). According to USSL diagram, all the ground-water samples belong to high salinity and low-sodium type (C3S1). Overall, the ground-water samples collected around the dumpsite were found to be polluted and are unfit for human consumption but can be used for irrigation purpose with heavy drainage and irrigation patterns to control the salinity.
Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution
Yoon, Seyoon; Ha, Juyoung; Chae, Sejung Rosie; ...
2016-05-21
Monosulfoaluminate (Ca 4Al 2(SO 4)(OH) 12∙6H 2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO 4 2- and OH -) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formedmore » ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.« less
Waxman, Eleanor M; Elm, Jonas; Kurtén, Theo; Mikkelsen, Kurt V; Ziemann, Paul J; Volkamer, Rainer
2015-10-06
Knowledge about Setschenow salting constants, KS, the exponential dependence of Henry's Law coefficients on salt concentration, is of particular importance to predict secondary organic aerosol (SOA) formation from soluble species in atmospheric waters with high salt concentrations, such as aerosols. We have measured KS of glyoxal and methylglyoxal for the atmospherically relevant salts (NH4)2SO4, NH4NO3, NaNO3, and NaCl and find that glyoxal consistently "salts-in" (KS of -0.16, -0.06, -0.065, -0.1 molality(-1), respectively) while methylglyoxal "salts-out" (KS of +0.16, +0.075, +0.02, +0.06 molality(-1)). We show that KS values for different salts are additive and present an equation for use in atmospheric models. Additionally, we have performed a series of quantum chemical calculations to determine the interactions between glyoxal/methylglyoxal monohydrate with Cl(-), NO3(-), SO4(2-), Na(+), and NH4(+) and find Gibbs free energies of water displacement of -10.9, -22.0, -22.9, 2.09, and 1.2 kJ/mol for glyoxal monohydrate and -3.1, -10.3, -7.91, 6.11, and 1.6 kJ/mol for methylglyoxal monohydrate with uncertainties of 8 kJ/mol. The quantum chemical calculations support that SO4(2-), NO3(-), and Cl(-) modify partitioning, while cations do not. Other factors such as ion charge or partitioning volume effects likely need to be considered to fully explain salting effects.
Chemical composition of precipitation in a Mexican Maya region
NASA Astrophysics Data System (ADS)
Bravo, H. A.; Saavedra, M. I. R.; Sánchez, P. A.; Torres, R. J.; Granada, L. M. M.
The chemical characteristics of wet precipitation in Puerto Morelos, Quintana Roo State, Mexico, were measured from April 1994 to December 1995. Puerto Morelos is located in the Caribbean Mayan coastal region of the Peninsula of Yucatan, and is normally exposed to winds from the Caribbean region. Wetfall was analyzed for pH, conductivity and Cl -, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+ ion concentrations. Volume-weighted mean pH for the whole sampling period was 5.35, although values as low as 4.6 were measured in several rain samples. Concentrations of all species correlated negatively with rain volume. Sea-salt aerosols contributed with most of the Na +, Cl -, Mg 2+, K + and SO 42- found in wet precipitation. The mean [SO 42-excess] was 9.7 μEq l -1, which agrees with the background hemispheric values of ≈10 μEq l -1 reported elsewhere. The mean [NO 3-] was 11.4 μEq l -1, almost four times higher than the background hemispheric value of ≈2.5 μEq l -1 reported elsewhere. However, a major component causing the slight acidity character of rain in Puerto Morelos seems to be H 2SO 4.
NASA Astrophysics Data System (ADS)
Marion, Giles M.
2001-06-01
Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4 salts and natron (Na 2CO 3 · 10H 2O) is an incompatible salt assemblage.
Zhang, Xiang; Ma, Jun; Lu, Xixin; Huangfu, Xiaoliu; Zou, Jing
2015-12-30
Comparatively investigated the different effects of Fe2(SO4)3 coagulation-filtration and FeCl3 coagulation-filtration on the removal of Mo (VI). And the influence of calcium, sulfate, silicate, phosphate and humic acid (HA) were also studied. The following conclusions can be obtained: (1) compared with the case of FeCl3, Fe2(SO4)3 showed a higher Mo (VI) removal efficiency at pH 4.00-5.00, but an equal removal efficiency at pH 6.00-9.00. (2) The optimum Mo (VI) removal by Fe2(SO4)3 was achieved at pH 5.00-6.00; (3) The presence of calcium can reduce the removal of Mo (VI) over the entire pH range in the present study; (4) The effect of co-existing background anions (including HA) was dominated by three factors: Firstly the influence of co-existing background anions on the content of Fe intercepted from water (intercepted Fe). Secondly the competition of co-existing anions with Mo (VI) for adsorption sites. Thirdly the influence of co-existing background anions on the Zeta potential of the iron flocs. Copyright © 2015 Elsevier B.V. All rights reserved.
Selective detection of pyrophosphate anion by a simple Cd(II) based terpyridine complex
NASA Astrophysics Data System (ADS)
Purohit, Aditya Kumar; Ghosh, Biswa Nath; Kar, Pravin Kumar
2018-01-01
A simple ratiometric terpyridine-Cd(ll) complex was synthesized by the treatment of CdCl2 with terpyridine ligand 4‧-(4-N,N‧-dimethylaminophenyl)-2,2‧:6‧,2″-terpyridine. The synthesized complex was found to act as a selective fluorescent chemosensor for pyrophosphate P2O74 - (PPi) over other anions like F-, Cl-, Br-, CO32 -, SO32 -, AcO-, NO2-, and H2PO4-. Furthermore, the receptor probe was also successfully employed in HeLa cell for PPi detection, which indicates this can be used as a chemosensor for cells.
Deepak, V; Kalishwaralal, K; Ramkumarpandian, S; Babu, S Venkatesh; Senthilkumar, S R; Sangiliyandi, G
2008-11-01
Response surface methodology and central composite rotary design (CCRD) was employed to optimize a fermentation medium for the production of Nattokinase by Bacillus subtilis at pH 7.5. The four variables involved in this study were Glucose, Peptone, CaCl2, and MgSO4. The statistical analysis of the results showed that, in the range studied; only peptone had a significant effect on Nattokinase production. The optimized medium containing (%) Glucose: 1, Peptone: 5.5, MgSO4: 0.2 and CaCl2: 0.5 resulted in 2-fold increased level of Nattokinase (3194.25U/ml) production compared to initial level (1599.09U/ml) after 10h of fermentation. Nattokinase production was checked with fibrinolytic activity.
Park, Hyun-Woo; Park, Dong-Wha
2017-04-01
Removal kinetics for NO and SO 2 by NaClO 2 solution mist were investigated in a wet electrostatic precipitator. By varying the molar concentrations of NO, SO 2 , and NaClO 2 , the removal rates of NO and SO 2 confirmed to range from 34.8 to 72.9 mmol/m 3 s and 36.6 to 84.7 mmol/m 3 s, respectively, at a fixed gas residence time of 0.25 s. The rate coefficients of NO and SO 2 were calculated to be 0.679 (mmol/m 3 ) -0.33 s -1 and 1.401 (mmol/m 3 ) -0.1 s -1 based on the rates of the individual removal of NO and SO 2 . Simultaneous removal of NO and SO 2 investigated after the evaluation of removal rates for their individual treatment was performed. At a short gas residence time, SO 2 gas removed more quickly by a mist of NaClO 2 solution than NO gas in simultaneous removal experiments. This is because SO 2 gas, which has a relatively high solubility in solution, was absorbed more rapidly at the gas-liquid interface than NO gas. NO and SO 2 gases were absorbed as nitrite [Formula: see text] and sulfite [Formula: see text] ions, respectively, by the NaClO 2 solution mist at the gas-liquid interface. Then, [Formula: see text] and [Formula: see text] were oxidized to nitrate [Formula: see text] and sulfate [Formula: see text], respectively, by reactions with [Formula: see text], ClO 2 , HClO, and ClO in the liquid phase.
Stable Isotope Analysis of Chlorate
NASA Astrophysics Data System (ADS)
Brundrett, M.; Jackson, W. A.; Sturchio, N. C.; Bohlke, J. K.; Hatzinger, P.
2016-12-01
Studies have confirmed the presence of chlorate (ClO3-) throughout terrestrial and extraterrestrial systems generally in excess of perchlorate (ClO4-) [1, 2]. ClO3- occurrence, production, and post depositional transformation has significant implications to our understanding of atmospheric Cl cycling and potential biogeochemical reactions on Earth and Mars. The isotopic composition of oxyanions can be used to evaluate their production mechanisms and post-depositional alteration [3, 4]. However, no information is available on the natural isotopic composition of ClO3-. The objective of this study was to develop a method to measure the stable isotope composition (δ18O, δ17O and δ37Cl) of ClO3- and to determine the isotopic composition of ClO3- in natural desert salt accumulations that have been studied previously for NO3- and ClO4- isotopic composition. The process of ClO3- purification and analysis of δ18O, δ 17O and δ37Cl is problematic but has recently been resolved by adapting previously published methods for ClO4-. Competitive anions (e.g. NO3-, Cl-, ClO4-, and SO4-2) are removed through a series of processes including biological reduction, solid phase extraction, and anion or cation exchange. Initial results for control samples treated with the above method have a maximum variation of ± 2 ‰. These methods are being applied to representative samples to determine if various sources of natural and synthetic ClO3- have distinctive isotopic compositions, as reported previously for ClO4- [3, 4]. Establishing the range of isotopic composition of natural ClO3- also could provide information about atmospheric ClO3- production mechanisms and post-depositional processing, with implications for the atmospheric chemistry of oxychlorine compounds and the global biogeochemical cycling of Cl. [1] Jackson et al. (2015) EPSL 430, 470-476. [2] Rao et al. (2010) ES&T 44, 8429-8434. [3] Jackson et al. (2010) ES&T 44, 4869-4876. [4] Bao and Gu (2004) ES&T 38, 5073-5077.
Chauhan, Awadesh K; Survase, Shrikant A; Kishenkumar, Jyoti; Annapure, Uday S
2009-06-01
This paper deals with the optimization of culture conditions for the production of cholesterol oxidase (COD) by Streptomyces lavendulae NCIM 2499 using the one-factor-at-a-time method, orthogonal array method and response surface methodology (RSM) approaches. The one-factor-at-a-time method was adopted to investigate the effects of medium components (i.e. carbon and nitrogen) and environmental factors (i.e. initial pH) on biomass growth and COD production. Subsequently, an L12 orthogonal matrix was used to evaluate the significance of glycerol, soyabean meal, malt extract, K2HPO4, MgSO4 and NaCl. The effects of media components were ranked according to their effects on the production of COD as malt extract > soyabean meal > K2HPO4 > NaCl > MgSO4 > glycerol. The subsequent optimization of the four most significant factors viz. malt extract, soyabean meal, K2HPO4 and NaCl, was carried out by employing a central composite rotatable design (CCRD) of RSM. There was a 2.48-fold increase in productivity of COD as compared to the unoptimized media by using these statistical approaches.
Su, Jing; Sun, Yuan-Qiang; Huo, Fang-Jun; Yang, Yu-Tao; Yin, Cai-Xia
2010-11-01
A novel strategy for the determination of oxalate anions was successfully established using a copper ion and pyrocatechol violet (PV) ensemble. The sensor ensemble can discriminate oxalate over other common anions including F(-), Cl(-), I(-), Br(-), HPO(4)(2-), PO(4)(3-), AcO(-), CO(3)(2-), SO(4)(2-), ClO(4)(-), P(2)O(7)(4-), S(2-) (deposited by Ag(+)), CN(-) (shielded by Fe(3+)) and can detect oxalate at low microgram levels in quasi-physiological aqueous solutions. The detection of the oxalate anion gives rise to a rapid observable visual color change from blue to yellow.
Mechanistic studies related to the safety of Li/SOCl2 cells
NASA Technical Reports Server (NTRS)
Carter, B. J.; Williams, R. M.; Tsay, F. D.; Rodriguez, A.; Kim, S.; Evans, M. M.; Frank, H.
1985-01-01
Mechanistic studies of the reactions in Li-SOCl2 cells have been undertaken to improve understanding of the safety problems of these cells. The electrochemical reduction of 1.5M LiAlCl4/SOCl2 has been investigated using gas chromatography, electron spin resonance spectroscopy, and infrared spectroscopy. Cl2 and S2Cl2 have been identified as intermediates in the reduction of SOCl2, along with a radical species (g/xx/ = 2.004, g/yy/ = 2.016, g/zz/ = 2.008) and the proposed triplet ground-state dimer of this radical. SO2 and sulfur have been identified as products. Based upon these findings, a mechanism for the electrochemical reduction of 1.5M LiAlCl4/SOCl2 has been proposed, and its implications for safety of Li-SOCl2 cells during discharge to +0.5V at 25-30 C are discussed.
Yang, Yongjie; Zhou, Rui; Yan, Yan; Yu, Yue; Liu, Junqing; Di, Yi'an; Du, Zhenyu; Wu, Dan
2016-02-01
Size-segregated atmospheric particulate matter (PM) samples were collected from July 2012 to September 2013 at Shigatse, high-altitude (3836 m above sea level) site on the south Tibetan Plateau (TP); objectives were to determine the characteristics and size distribution of water-soluble ions (WSIs). Eight major WSIs (Na(+), K(+), Mg(2+), Ca(2+), NH4(+), Cl(-), SO4(2-), and NO3(-)) were detected by ion chromatography. The total concentrations of WSIs were 6370 ± 1916 ng m(-3) in dry season (October - December, January - April), and 5261 ± 769 ng/m(3) during wet phase (May - September). The contribution of K(+) (130 ng m(-3)), Cl(-) (2035 ng m(-3)), SO4(2-) (1176 ng m(-3)), and NO3(-) (706 ng m(-3))(-)were significantly enhanced in dry season, and that of Na(+) (455 ng m(-3)), Mg(2+)(65.4 ng m(-3)), Ca(2+)(1034 ng m(-3)), and NH4(+) (1948 ng m(-3)) were significantly enhanced during wet phase. Mg(2+) and Ca(2+) were concentrated in the coarse mode, and the other ions concentrated in fine mode and coarse mode during two seasons. The correlation coefficients between K(+) and NH4(+), Cl(-), SO4(2-) and NO3(-) were 0.58 (P < 0.01), 0.40 (P < 0.05), 0.82 (P < 0.01) and 0.69 (P < 0.01), indicating their dominant contribution from biomass burning in dry season. The significant correlation between NH4(+) and HCO3(-) which were calculated by ion balance (r = 0.89, P < 0.01), suggesting the source from nitrogen fertilizers during wet phase. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hydrochemical evolution of regional groundwaters to playa brines in central Australia
NASA Astrophysics Data System (ADS)
Jankowski, J.; Jacobson, G.
A large-scale groundwater system in central Australia discharges to a chain of playas. Recharge in calcrete and fractured rock aquifers gives rise to relatively low-salinity HCO 3 Cl SO 4 groundwaters, which evolve through regional saline groundwaters, to highly saline playa brines. The hydrochemical evolution of the groundwaters follows the anionic sequence HCO 3 Cl SO 4 → ClbHCO 3SO 4 → ClSO 4HCO 3 → ClSO 4 → Cl. With increasing salinity, there is a relative increase in Na, K, Mg, Cl and SO 4; however, there is a relative decrease in HCO 3, Ca, and SiO 2 owing to the precipitation of carbonate, sulphate and silicate minerals, and the resultant brines are depleted in these ions. Significant chemical variation in the composition of playa brines is a result of complex processes of solution, evaporative concentration, precipitation and mineralogical change, including dolomitisation. Thermodynamic calculations based on the Pitzer equations have enabled a general model to be developed for these evolutionary processes in saline groundwaters up to the stage of halite saturation. At an early stage the regional groundwaters are saturated with respect to the carbonate minerals, dolomite first, then calcite. With increasing salinity, sulphate minerals begin to precipitate: saturation with respect to gypsum is attained at a chlorinity of 19‰, and saturation with respect to anhydrite is attained at 122‰. The playa brines attain saturation with respect to halite at a chlorinity of 144‰. Solute budgets based on a chloride concentration factor show that final playa brines are 178 times more concentrated than recharge groundwaters, and confirm the virtually complete loss of HCO 3, Ca and SiO 2 through precipitation. There are subtle differences in the hydrochemistry of different central Australian playa brines and also vis-à-vis playa brines described from other parts of the world. Most Australian playas have brines of the ClNa type with SO 4 and Mg also important. The generally accepted Hardie-Eugster model for brine evolution and mineral precipitation sequences has therefore been modified and extended. Three pathways are defined, following calcite precipitation, on the basis of the ratio of molar Ca to alkalinity; these pathways lead to saline waters with different compositions. Subsequent evolution of the brines depends on the ratios between molar SO 4, Mg, Ca and alkalinity.
NASA Astrophysics Data System (ADS)
Rawat, Kishan Singh; Tripathi, Vinod Kumar
2015-06-01
Hydrological and geological aspect of the region play vital role for water resources utilization and development. Protection and management of groundwater resources are possible with the study of spatio-temporal water quality parameters. The study was undertaken to assess the deterioration in groundwater quality, through systematic sampling during post monsoon seasons of the year 2008 by collecting water samples from thirty bore wells located in Dwarka, sub-city of Delhi, India. The average concentrations of groundwater quality parameters namely Calcium (Ca2+), Magnesium (Mg2+), Nitrate (NO3 -), Chloride (Cl-), sulphate (SO4 2-), total hardness (TH), total dissolved solids (TDS), and electrical conductivity were 300, 178, 26.5, 301, 103, 483, 1042 mg/l and 1909 μS/cm respectively. Estimated physico-chemical parameters revealed that 7 % of the groundwater samples shown nitrate concentrations higher than safe limit prescribed by World Health Organization (WHO). Groundwater quality the in study region was poor due to come out result that NO3 - concentration exceeding the threshold value of 50 mg/l, and main cause is disposal of sewage and animal wastes to Najafgarh drain. Dominant cations are Mg2+, Ca2+ and anions are SO4 2- and Cl-. The abundance of the major ions in groundwater is in the order: Ca2+ > Mg2+ and Cl- > SO4 2- > NO3. TH have strong correlation with Ca2+ (r = 0.81), Mg2+ (r = 0.82), Cl- (r = 0.86) but poor correlation with TDS (r = 0.52). Knowledge of correlation values between water quality parameters is helpful to take decision of appropriate management strategy for controlling groundwater pollution.
42 CFR 84.207 - Bench tests; gas and vapor tests; minimum requirements; general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 64 3 50 50 Ammonia Equilibrated NH3 1000 32 4 50 50 Chlorine As received Cl2 500 64 3 5 35 Chlorine... 4 5 50 Sulfur dioxide As received SO2 500 64 3 5 30 Sulfur dioxide Equilibrated SO2 500 32 4 5 30 1... respiratory protection against more than one type of gas or vapor, as for use in ammonia and in chlorine, the...
42 CFR 84.207 - Bench tests; gas and vapor tests; minimum requirements; general.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 64 3 50 50 Ammonia Equilibrated NH3 1000 32 4 50 50 Chlorine As received Cl2 500 64 3 5 35 Chlorine... 4 5 50 Sulfur dioxide As received SO2 500 64 3 5 30 Sulfur dioxide Equilibrated SO2 500 32 4 5 30 1... respiratory protection against more than one type of gas or vapor, as for use in ammonia and in chlorine, the...
Case studies on the chemical composition of fogwater: The influence of local gaseous emissions
NASA Astrophysics Data System (ADS)
Johnson, C. Annette; Sigg, Laura; Zobrist, Jürg
In order to study the mechanisms governing the composition of fogwater, sequential samples were taken during two fog events over several hours and analyzed chemically. In addition, preliminary measurements of gases (HCl, HNO 3, NH 3) and aerosols (H 2SO 4, NH 4NO 3, NH 4Cl and ammonium sulfates) were made. The uptake of gaseous HCl in the fog droplets was a major source of acidity: in extreme cases pH values of 2.08 and 1.94 and Cl - concentrations up to 10 -2 M were observed. HCl originated from a local source, most probably a refuse incinerator from which plumes of the stack gas reached the sampling site. The NH +4, NO -3 and SO -24 concentrations (in the range of 0.1-2 mrnol l-1) were regulated by the inputs of aerosols and the liquid water content of the fog. The contribution of dissolved S(IV) (0.06-0.27 mmol l-1) to the total aqueous sulfur varied with time, according to the pH-dependent solubility of SO 2 and to oxidation reactions.
Yang, Zhe; Xu, Hui; Shan, Chao; Jiang, Zhao; Pan, Bingcai
2017-03-01
Zero-valent iron (ZVI) has been extensively applied in water remediation, and most of the ZVI materials employed in practical applications are iron scraps, which have usually been corroded to certain extent under different conditions. In this study, the effects of brining with six solutions (NaCl, Na 2 SO 4 , NaHCO 3 , Na 2 SiO 3 , NH 4 Cl, and NaH 2 PO 4 ) on the corrosion of ZVI and its performance in the removal of As(III/V)/Se(IV/VI) were systematically investigated. All the studied solutions enhanced the corrosion of ZVI except for Na 2 SiO 3 , and the degrees of corrosion followed the order of NH 4 Cl > NaH 2 PO 4 > Na 2 SO 4 > NaCl > NaHCO 3 > H 2 O > Na 2 SiO 3 . The corrosion products derived from ZVI were identified by SEM and XRD, and the dominant corrosion products varied with the type of brine solution. The positive correlation between the degree of ZVI corrosion and As(III/V)/Se(IV/VI) removal by the pre-corroded ZVI (pcZVI) was verified. In addition, As and Se removal by pcZVI was realized via a comprehensive process including adsorption and reduction, as further supported by the XPS analysis. We believe this study will shed new light upon the selection of iron materials pre-corroded under different saline conditions for practical water remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brown, J. M.; Bollengier, O.; Vance, S.
2017-12-01
Water competes with silicates as the main constituent of solid bodies in the outer solar system. Ganymede and Titan, the Mercury-sized satellites of Jupiter and Saturn, are made up half of water present as massive hydrospheres where pressure can reach up to 1.5 GPa. Geophysical data and planetary models unequivocally support the existence of global aqueous oceans trapped in these hydrospheres. However, the extent of these oceans and their role in the processes governing the internal structure of these moons remain unresolved. At issue is the poor to non-existent characterization, at the relevant pressures, of the properties of the aqueous fluids of significance to the outer solar system (with notably the Na-Mg-Cl-SO4 salts found in primitive chondrites), forcing current models to rely on pure water only. Our team at the University of Washington has developed an experimental apparatus to acquire the speed of sound of aqueous solutions in the 0 - 0.7 GPa and 250 - 350 K pressure and temperature ranges covering most of the conditions of existence of these extra-terrestrial oceans. Speeds of sound measured over a grid of pressures and temperatures allow calculation of the thermodynamic quantities (G, ρ, μ...) required for planetary science. Early analysis of pure water samples indicates our experimental results are on par with (at lower pressures), or better than, the IAPWS water laboratory standard, with sound speeds determined to 0.02% over our entire pressure range. For the first time at the high pressures of interest for large icy moons, we achieved the exploration of H2O-NaCl, H2O-MgSO4, H2O-Na2SO4 and H2O-MgCl2 solutions, from dilute concentrations to saturation. We are now in the process of acquiring the first data for H2O-NaCl-MgSO4 mixtures. We will briefly present our experimental setup and the underlying sound speed theory, and will then compare our results for the four endmembers, with an emphasis on their different association behavior under pressure as revealed by the sound speed data. We also aim to provide the first insights into the mixing behavior of these ions in solution at high pressure, to be compared with common mixing rules. Finally, we will present an application of the thermodynamics of aqueous solutions to calculate liquid-ice equilibria and assess the role of brine densities in the evolution of icy mantles.
Allen, J.L.; Hunn, J.B.
1977-01-01
Channel catfish, Ictalurus punctatus Rafinesque, injected intraperitoneally with 2-methyl-quinoline sulphate (QdSO4) or 3-trifluoromethyl-4-nitrophenol (TFM) eliminate most of the dose of these compounds by extra-renal routes. Patterns of renal excretion of Na+, K+, Ca2+, Mg2+, and Cl- (pEq kg-1 h-1) appeared to be associated with the 'stress' of the urine collection technique rather than with the elimination of either compound. Concentrations of Na+, K+, Ca2+, Mg2+, and Cl- (mEq/1) were determined in urine, plasma and gall bladder bile.
An intercomparison of airborne nitrogen dioxide instruments
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Hoell, J. M., Jr.; Carroll, M. A.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Sandholm, S. T.; Schiff, H. I.; Torres, A. L.
1990-01-01
Results on NO2 instruments are reported from the NASA Global Tropospheric Experiment Chemical Instrumentation Test and Evaluation 2 (CITE 2) program in summer 1986. The instruments tested were (1) a two-photon LIF system using a laser for NO2-NO photolysis, (2) a chemiluminescence (CL) detector using FeSO4 for NO2-NO conversion, (3) a CL detector using an arc lamp for NO2-NO photolysis, and (4) a tunable-laser-diode multipath-absorption system. The procedures for the CITE 2 ground-based and flight tests are described in detail, and the results are presented in extensive graphs. Instrument (2) was eliminated because the FeSO4 converted atmospheric PAN to NO, resulting in spuriously high NO2 values. The remaining instruments gave readings in 30-40-percent agreement at NO2 mixing ratios of 100-200 parts per trillion by volume (pptv). At ratios below 50 pptv, the correlation among the measurements was very poor, with a tendency for system (4) to give higher values than (1) or (3).
Park, J H; Ok, Y S; Kim, S H; Cho, J S; Heo, J S; Delaune, R D; Seo, D C
2015-12-01
The phosphorus (P) adsorption characteristic of sesame straw biochar prepared with different activation agents and pyrolysis temperatures was evaluated. Between 0.109 and 0.300 mg L(-1) in the form of inorganic phosphate was released from raw sesame straw biochar in the first 1 h. The release of phosphate was significantly enhanced from 62.6 to 168.2 mg g(-1) as the pyrolysis temperature increased. Therefore, sesame straw biochar cannot be used as an adsorbent for P removal without change in the physicochemical characteristics. To increase the P adsorption of biochar in aqueous solution, various activation agents and pyrolysis temperatures were applied. The amount of P adsorbed from aqueous solution by biochar activated using different activation agents appeared in the order ZnCl2 (9.675 mg g(-1)) > MgO (8.669 mg g(-1)) ⋙ 0.1N-HCl > 0.1N-H2SO4 > K2SO4 ≥ KOH ≥ 0.1N-H3PO4, showing ZnCl2 to be the optimum activation agent. Higher P was adsorbed by the biochar activated using ZnCl2 under different pyrolysis temperatures in the order 600 °C > 500 °C > 400 °C > 300 °C. Finally, the amount of adsorbed P by activated biochar at different ratios of biochar to ZnCl2 appeared in the order 1:3 ≒ 1:1 > 3:1. As a result, the optimum ratio of biochar to ZnCl2 and pyrolysis temperature were found to be 1:1 and 600 °C for P adsorption, respectively. The maximum P adsorption capacity by activated biochar using ZnCl2 (15,460 mg kg(-1)) was higher than that of typical biochar, as determined by the Langmuir adsorption isotherm. Therefore, the ZnCl2 activation of sesame straw biochar was suitable for the preparation of activated biochar for P adsorption.
Neish, G A; Green, B R
1977-12-14
Saprolegnia diclina DNA has been fractionated using preparative AgNO3/Cs2SO4 and CsCl density gradients. In addition to the previously identified major satellite DNA, there are two minor DNA components banding at 1.682 and 1.701 g - cm(-3) in CsCl. Purified major satellite DNA bands at 1.707 g - cm(-3) giving a base composition of 48% G + C in good agreement with 47% G + C calculated from its Tm value. The nuclear DNA base composition is 58% G + C by both methods. The base composition of the major satellite DNA suggests that it may represent ribosomal DNA cistrons.
Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae.
Maiorella, B L; Blanch, H W; Wilke, C R
1984-10-01
Inhibition by secondary feed components can limit productivity and restrict process options for the production of ethanol by fermentation. New fermentation processes (such as vacuum or extractive fermentation), while selectively removing ethanol, can concentrate nonmetabolized feed components in the remaining broth. Stillage recycle to reduce stillage waste treatment results in the buildup of nonmetabolized feed components. Continuous culture experiments are presented establishing an inhibition order: CaCl(2), (NH(4))(2)xSO(4) > NaCl, NH(4)Cl > KH(2)PO(4) > xylose, MgCl(2) > MgSO(4) > KCl. Reduction of the water activity alone is not an adequate predictor of the variation in inhibitory concentration among the different components tested. As a general trend, specific ethanol productivity increases and cell production decreases as inhibitors are added at higher concentration. We postulate that these results can be interpreted in terms of an increase in energy requirements for cell maintenance under hypertonic (stressed) conditions. Ion and carbohydrate transport and specific toxic effects are reviewed as they relate to the postulated inhibition mechanism. Glycerol production increases under hypertonic conditions and glycerol is postulated to function as a nontoxic osmoregulator. Calcium was the most inhibitory component tested, causing an 80%decline in cell mass production at 0.23 mol Ca(2+)/L and calcium is present at substantial concentration in many carbohydrate sources. For a typical final cane molasses feed, stillage recycle must be limited to less than onethird of the feed rate; otherwise inhibitory effects will be observed.
Verma, Shilpi; Prasad, Basheshwar; Mishra, I M
2012-01-01
The present work describes the physicochemical and thermal characteristics of the sludge generated after thermochemical treatment of wastewater from a petrochemical plant manufacturing purified terephthalic acid (PTA). Although FeCl3 was found to be more effective than CuSO4 in removing COD from wastewater, the settling and filtration characteristics of FeCl3 sludge were poorer. Addition of cationic polyacrylamide (CPAA; 0.050kg/m3) to the FeCl3 wastewater system greatly improved the values of the filter characteristics of specific cake resistance (1.2 x 10(8) m/kg) and resistance of filter medium (9.9 x 10(8) m(-1)) from the earlier values of 1.9 x 10(9) m/kg and 1.7 x 10(8) m(-1), respectively. SEM-EDAX and FTIR studies were undertaken, to understand the sludge structure and composition, respectively. The moisture distribution in the CuSO4 sludge, FeCl3 sludge and FeCl3 + CPAA sludge showed that the amount of bound water content in the CuSO4 and FeCl3 + CPAA sludges is less than that of the FeCl3 sludge and there was a significant reduction in the solid-water bond strength of FeCl3 + CPAA sludge, which was responsible for better settling and filtration characteristics. Due to the hazardous nature of the sludge, land application is not a possible route of disposal. The thermal degradation behaviour of the sludge was studied for its possible use as a co-fuel. The studies showed that degradation behaviour of the sludge was exothermic in nature. Because of the exothermic nature of the sludge, it can be used in making fuel briquettes or it can be disposed of via wet air oxidation.
Mufidah, Elya; Wakayama, Mamoru
2016-12-01
This study investigated the optimization of D-lactic acid production from unutilized biomass, specifically banana peel and corncob by multiple parallel fermentation (MPF) with Leuconostoc mesenteroides and Aspergillus awamori. The factors involved in MPF that were assessed in this study comprised banana peel and corncob, KH 2 PO 4 , Tween 80, MgSO 4 ·7H 2 O, NaCl, yeast extract, and diammonium hydrogen citrate to identify the optimal concentration for D-lactic acid production. Optimization of these component factors was performed using the Taguchi method with an L8 orthogonal array. The optimal concentrations for the effectiveness of MPF using biomass substrates were as follows: (1) banana peel, D-lactic acid production was 31.8 g/L in medium containing 15 % carbon source, 0.5 % KH 2 PO 4 , 0.1 % Tween 80, 0.05 % MgSO 4 ·7H 2 O, 0.05 % NaCl, 1.5 % yeast extract, and 0.2 % diammonium hydrogen citrate. (2) corncob, D-lactic acid production was 38.3 g/L in medium containing 15 % of a carbon source, 0.5 % KH 2 PO 4 , 0.1 % Tween 80, 0.05 % MgSO 4 ·7H 2 O, 0.1 % NaCl, 1.0 % yeast extract, and 0.4 % diammonium hydrogen citrate. Thus, both banana peel and corncob are unutilized potential resources for D-lactic acid production. These results indicate that MPF using L. mesenteroides and A. awamori could constitute part of a potential industrial application of the currently unutilized banana peel and corncob biomass for D-lactic acid production.
NASA Astrophysics Data System (ADS)
Gowda, B. Thimme; Jayalakshmi, K. L.; Shetty, Mahesha
2004-05-01
Thirty N-(p-substituted phenyl)-p-substituted benzenesulphonamides of the general formula, p-X'C6H4SO2NH(p-XC6H4), where X' or X = H, CH3, C2H5, F, Cl or Br, are synthesised and their infrared spectra in the solid state and 1H and 13C NMR spectra in solution are measured. The N-H stretching vibrational frequencies, νN-H vary in the range 3334 - 3219 cm-1, while the asymmetric and symmetric SO2 vibrations appear in the ranges 1377 - 1311 cm-1 and 1182 - 1151 cm-1, respectively. The compounds exhibit S-N and C-N stretching vibrational absorptions in the ranges 937 - 898 cm-1 and 1310 - 1180 cm-1, respectively. There are no particular trends in the variation of these frequencies on substitution with either electron withdrawing or electron donating groups. The 1H and 13C chemical shifts of N-(p-substituted phenyl)-p-substituted benzenesulphonamides,
NASA Astrophysics Data System (ADS)
Guan, Shanshan; Zhang, Shouhai; Liu, Peng; Zhang, Guozhen; Jian, Xigao
2014-03-01
Sulfonated copoly (phthalazinone biphenyl ether sulfone) (SPPBES) composite nanofiltration membranes were fabricated by adding low molecular weight additives into SPPBES coating solutions during a dip coating process. Three selected additives: glycol, glycerol and hydroquinone were used in this work. The effect of additives on the membrane performance was studied and discussed in terms of rejection and permeation flux. Among all the composite membranes, the membrane prepared with glycol as an additive achieved the highest Na2SO4 rejection, and the membrane fabricated with glycerol as an additive exhibited the highest flux. The salts rejection of SPPBES composite membranes increased in the following order MgCl2 < NaCl ≤ MgSO4 < Na2SO4. The morphologies of the SPPBES composite membranes were characterized by SEM, it was found that the membrane prepared with hydroquinone showed a rough membrane surface. Composite membrane fabricated with glycol or glycerol as the additive showed very good chemical stability.
Utilization of GIS modeling in geoenvironmental studies of Qaroun Lake, El Fayoum Depression, Egypt
NASA Astrophysics Data System (ADS)
Attia, Abdelaal H.; El-Sayed, Salah Abdelwahab; El-Sabagh, Moustafa E.
2018-02-01
Qaroun Lake, the study area, is a natural protectorate located at the northern part of El Fayoum Depression, Egypt. An integrated approach including hydrochemistry, mineralogy of sediments and GIS analysis and modeling was conducted in order to determine the different geoenvironmental parameters affecting the lake environmental system. Forty two environmental water and sediment samples were collected from the lake and relevant drains in 2013. The water samples were analyzed for major ions and trace elements and the sediment ones were analyzed for clay and non-clay minerals. This study showed that the saline water of the lake (31490 < TDS < 45100 mg/l) typically is Na-Cl-SO4 water possessing primary salinity properties dominated by alkalies and strong acids. The order of ionic dominance was Na+ > Mg2+ > Ca2+ > K+ - Cl- > SO42- > HCO3- > CO32-. The water salt assemblages were KCl - NaCl - Na2SO4 - MgSO4 - CaSO4 - Ca(HCO3)2 reflecting a mixed water type. The contents of NaCl, Na2SO4 and MgSO4 salts were found to be fully controlled with the lake depths. The hydrogeochemical investigations revealed that the evaporation concentration is the primary process of the lake water evolution. The presence of trace elements in the lake water is essentially of allochtonous origin. The GIS-based maps indicated that the concentrations of Zn, Co, Mo, Pb, F and Cd elements in water had increased in the eastern part of the lake; meanwhile, the contents of NO3- ions had increased in the southwestern part indicating that these parts were the most vulnerable to the potential pollution with such elements. The XRD analysis revealed the existence of different mineral assemblages (quartz, kaolinite, goethite, calcite, halite, hematite, feldspar, gypsum, dolomite and saponite) in bottom sediments. The mineral concentrations varied greatly from place to another place along the lake and their distributions were asymmetric. The dominant minerals were the quartz and calcite. The mineralogical compositions of sediments were highly affected by the natural and man-mad activities. The most effective processes were the type of the water and solid materials coming from the northern geologic formations (by the northern winds) and from the eastern and southern drains. The land coverage change detection maps indicated the positive and negative changes in the lake area and its surroundings during the period of 1987-2000. The positive change in the area of the lake was about 12.63 km2 along the northern part of the lake, while the negative one was about 4.56 km2 in the southern parts. Based on the obtained results, some recommendations were presented to avoid the detrimental effects originated from the natural and human activities.
Synergistic effect among Cl2, SO2 and NO2 in their heterogeneous reactions on gamma-alumina
NASA Astrophysics Data System (ADS)
Huang, Zhenling; Zhang, Zhaohui; Kong, Weiheng; Feng, Shuo; Qiu, Ye; Tang, Siqun; Xia, Chuanqin; Ma, Lingling; Luo, Min; Xu, Diandou
2017-10-01
Severe haze in China has been a global concern in recent years. Most studies about the mechanism of haze formation mare only focused on the heterogeneous reactions of SO2 and NO2 on mineral aerosols. However, little is known about the role of molecular chlorine (Cl2) in those reactions. Here, we investigated the heterogeneous uptake of Cl2, SO2 and NO2 on γ-Al2O3 particles under different conditions using a quartz-based flow reactor. We found that the existence of γ-Al2O3 seed aerosols significantly promotes the formation of secondary chloride, sulfate and nitrate aerosols, and Cl2, NO2 and SO2 have synergistic effects when they react on γ-Al2O3 surface under humid condition. The results also shows that Cl2 can promote the formation of secondary sulfate and nitrate aerosols on γ-Al2O3 surface. Moreover, Cl2 is much easier to react with the surface of γ-Al2O3 and form secondary Cl- aerosol when comparing with NO2 and SO2, suggesting that Cl2 is of great importance in atmospheric chemistry, it has the potential to alter the surface properties (e.g., chemical composition and fraction) of mineral aerosol, enhance the production of secondary inorganic aerosols in the troposphere, and thus cause adverse effects on the climate and human health.
Donnan membrane technique (DMT) for anion measurement.
Vega, Flora Alonso; Weng, Liping; Temminghoff, Erwin J M; Van Riemsdijk, Willem H
2010-04-01
Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl(-), 1-2 days for NO(3)(-), 1-4 days for SO(4)(2-) and SeO(4)(2-), and 1-14 days for H(2)PO(4)(-) in a background of 2-200 mM KCl or K(2)SO(4). The strongest effect of ionic strength on equilibrium time is found for H(2)PO(4)(-), followed by SO(4)(2-) and SeO(4)(2-), and then by Cl(-) and NO(3)(-). The negatively charged organic particles of fulvic and humic acids do not pass the membrane. Two approaches for the measurement of different anion species of the same element, such as SeO(4)(2-) and HSeO(3)(-), using DMT are proposed and tested. These two approaches are based on transport kinetics or response to ionic strength difference. A transport model that was developed previously for cation DMT is applied in this work to analyze the rate-limiting step in the anion DMT. In the absence of mobile/labile complexes, transport tends to be controlled by diffusion in solution at a low ionic strength, whereas at a higher ionic strength, diffusion in the membrane starts to control the transport.
Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona
2012-07-01
Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.
Mukherjee, Biplab; Weaver, James W
2010-05-01
The influence of competing, similarly charged, inorganic ions on the size and charge behavior of suspended titanium-dioxide (nTiO(2)), silver (nAg) and fullerene (nC(60)) nanoparticles (NPs) was investigated. Under pH and ionic conditions similar to natural water bodies, Ca(2+) induced aggregation of nTiO(2) and nAg NPs more strongly than K(+) and Na(+). Although K(+) and Na(+) had a similar effect on aggregation, K(+) provided better screening of the particle surface charge presumably because of its small hydrated radius. These effects were decidedly more prominent for TiO(2) than Ag. Anions (co-ions), SO(4)(2-) and Cl(-), affected the surface charge behavior of nTiO(2) but not of nAg NPs. The zeta potential (ZP) of nTiO(2) NPs was more negative at higher SO(4)(2-)/Cl(-) ratios than lower. When Mg(2+) was the counterion, charge inversion and rapid aggregation of nC(60) NPs occurred under alkaline conditions, with a more pronounced effect for Cl(-) than SO(4)(2-). Response dissimilarities suggest fundamental differences in the interfacial-interaction characteristics of these NPs in the aquatic environment with corresponding differences in transport of these particles. Our study also shows the important role played by the iso-electric point pH (pH(iep)) of the NPs in determining their aggregation kinetics in the environment.
NASA Astrophysics Data System (ADS)
Wang, Dong; Du, Wei; Cheng, Penggao; Tang, Na; Wang, Xuekui
2018-02-01
A large amount of concentrated brine was produced as by-product during the process of the electrodialysis seawater desalination. In this study, the crystallization sequences of different salts from the brine through evaporative crystallization at both atmospheric and subatmospheric pressures were investigated in detail. The profile of the boiling temperature with density and the relationship between the boiling temperature and the pressure were recorded. The combination of Powder X-Ray Diffraction and the polarizing microscope was employed to identify the salts in the solid form. It can be inferred that NaCl crystallized out firstly and then MgSO4·6H2O and CaSO4 precipitate in order at both atmospheric and subatmospheric pressures, and it should be noticed that CaSO4 crystallized as anhydrate at 70°C and 90°C while as dihydrate at 50°C. At the end of all the experiments the precipitation rates of CaSO4 and NaCl have reached to more than 95% while MgSO4 only reached to about 60%.
Smith, David Burl; Zielinski, Robert A.; Taylor, Howard E.
1982-01-01
Leaching of freshly erupted air-fall ash, unaffected by rain, from the May 18, 1.980,eruption of Mount St. Helens volcano, Washington, shows that Ca 2+, Na+, Mg+, SO4 2-, and Cl- are the predominant chemical species released on first exposure of the ash to water. Extremely high correlation of Ca with SO4 and Na with Cl in water leachates suggests the presence of CaSO4 and NaCl salts on the ash. The amount of water soluble material on ash increases with distance from source and with the weight fraction of small (less than 63 micrometers) ash particles of high-surface area. This suggests that surface reactions such as adsorption are responsible for concentrating the soluble material. CaSO4, NaCl, and other salts are probably formed as microscopic crystals in the high-temperature core of the eruption column and are then adsorbed by silicate ash particles. The environmentally important elements Zn, Cu, Cd, F, Pb, and Ba are released by a water leach in concentrations which could pose short-term hazards to some forms of aquatic life. However, calculated concentrations are based on a water-to-ash ratio of 4:1 or less, which is probably an underestimation of the regionally operative ratio. A subsequent leach of ash by warm alkaline solution shows dramatic increases in the amount of dissolved SiO2, U, and V, which are probably caused by increased dissolution of the glassy component of ash. Glass dissolution by alkaline ground water is a mechanism for providing these three elements to sedimentary traps where they may co-accumulate as uraniferous silica or U-V minerals. Leaching characteristics of ash from Mount St. Helens are comparable to characteristics of ash of similar composition from volcanoes in Guatemala. Ashes from each locality show similar ions predominating for a given leachate and similar fractions of a particular element in the ash removed on contact with the leach solution.
Mercury speciation on three European mining districts by XANES techniques
NASA Astrophysics Data System (ADS)
Esbri, J. M.; Garcia-Noguero, E. M.; Guerrero, B.; Kocman, D.; Bernaus, A.; Gaona, X.; Higueras, P.; Alvarez, R.; Loredo, J.; Horvat, M.; Ávila, M.
2009-04-01
The mobility, bioavailability and toxicity of mercury in the environment depend on the chemical species in which is present in soil, sediments, water or air. In this work we used synchrotron radiation to determine mercury species in geological samples of three mercury mining districts: Almadén (Spain), Idria (Slovenia) and Asturias (Spain). The aim of this study was to find differences on mobility and bioavailability of mercury on three mining districts with different type of mineralization. For this porpoises we selected samples of ore, calcines, soils and stream sediments from the three sites, completely characterized by the Almadén School of Mines, Josef Stefan Institute of Ljubljana and Oviedo School of Mines. Speciation of mercury was carried out on Synchrotron Laboratories of Hamburg (HASYLAB) by XANES techniques. Spectra of pure compounds [HgCl2, HgSO4, HgO, CH3HgCl, Hg2Cl2 (calomel), HgSred (cinnabar), HgSblack (metacinnabar), Hg2NCl0.5(SO4)0.3(MoO4)0.1(CO3)0.1(H2O) (mosesite), Hg3S2Cl2 (corderoite), Hg3(SO4)O2 (schuetteite) y Hg2ClO (terlinguaite)] were obtained on transmittance mode. The number and type of the compounds required to reconstruct experimental spectra for each sample was obtained by PCA analysis and linear fitting of minimum quadratics of the pure compounds spectra. This offers a semiquantitative approach to the mineralogical constitution of each analyzed sample. The results put forward differences on the efficiency of roasting furnaces from the three studied sites, evidenced by the presence of metacinnabar on the less efficient (Almadén and Asturias) and absence on the most efficient (Idria). For the three studied sites, sulfide species (cinnabar and metacinnabar) were largely more abundant than soluble species (chlorides and sulfates). On the other hand, recent results on the mobility of both Hg and As on the target sites will be presented. These results correlate with the related chemical species found by XANES techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rank
1942-03-26
When the oven was disassembled after the test, small kernels of porous material were found in both the upper and lower portion of the oven to a depth of about 2 m. The kernels were of various sizes up to 4 mm. From 1,300 metric ..cap alpha..ons of dry coal, there were 330 kg or the residue of 0.025% of the coal input. These kernels brought to mind deposits of spheroidal material termed ''caviar'', since they had rounded tops. However, they were irregularly long. After multiaxis micrography, no growth rings were found as in Leuna's lignite caviar. So, it wasmore » a question of small particles consisting almost totally of ash. The majority of the composition was Al, Fe, Na, silicic acid, S and Cl. The sulfur was found to be in sulfide form and Cl in a volatile form. The remains did not turn to caviar form since the CaO content was slight. The Al, Fe, Na, silicic acid, S and Cl were concentrated in comparison to coal ash and originate apparently from the catalysts (FeSO/sub 4/, Bayermasse, and Na/sub 2/S). It was notable that the Cl content was so high. 2 graphs, 1 table« less
Assessment of groundwater quality from Bankura I and II Blocks, Bankura District, West Bengal, India
NASA Astrophysics Data System (ADS)
Nag, S. K.; Das, Shreya
2017-10-01
Hydrochemical evaluation of groundwater has been conducted in Bankura I and II Blocks to analyze and determining groundwater quality in the area. Thirty-six groundwater samples were analyzed for their physical and chemical properties using standard laboratory methods. The constituents have the following ranges in the water: pH 6.4-8.6, electrical conductivity 80-1900 μS/cm, total hardness 30-730 mg/l, TDS 48-1001 mg/l, Ca2+ 4.2-222.6 mg/l, Na+ 2.33-103.33 mg/l, Mg2+ 1.56-115.36 mg/l, K+ 0.67-14 mg/l and Fe BDL-2.53 mg/l, {HCO}3^{ - } 48.8-1000.4 mg/l, Cl- 5.6-459.86 mg/l and {SO}4^{ = } BDL-99.03 mg/l. Results also show that bicarbonate ions ( {HCO}3^{ - } ) dominate the other anions (Cl- and {SO}4^{2 - } ). Sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium carbonate (RSC), magnesium adsorption ratio (MAR), total hardness (TH), and permeability index (PI) were calculated as derived parameters, to investigate the ionic toxicity. Concerned chemical parameters when plotted in the U.S. Salinity diagram indicate that waters are of C1-S1, C2-S1 and C3-S1 types, i.e., low salinity and low sodium which is good for irrigation. The values of Sodium Adsorption Ratio indicate that the groundwater of the area falls under the category of low sodium hazard. So, there is neither salinity nor toxicity problem of irrigation water, and hence the ground water can safely be used for long-term irrigation. The chemical parameters when plotted in Piper's trilinear diagram are found to concentrate in the central and west central part of the diamond-shaped field. Based on the analytical results, groundwater in the area is found to be generally fresh and hard to very hard. The abundance of the major ions is as follows: HCO3 > Cl > SO4 and Ca > Na > Mg > K > Fe. Results also show that bicarbonate ions ( {HCO}3^{ - } ) dominate the other anions (Cl- and {SO}4^{2 - } ). According to Gibbs diagrams samples fall in the rock dominance field and the chemical quality of groundwater is related to the lithology of the area. The alkaline earth elements (Ca and Mg) occur in greater abundance than alkaline elements (Na and K). A comparative study of our analytical results with the WHO standards of drinking water indicate that the present waters are also good for drinking purposes.
NASA Astrophysics Data System (ADS)
de Moor, J. M.; Fischer, T. P.; Hilton, D. R.; Hauri, E.; Jaffe, L. A.; Camacho, J. T.
2005-08-01
On 10 May 2003, Anatahan volcano (located at 16°21' N 145°40' E on the Mariana arc) entered its first historical eruptive episode, sending ash to > 12 km into the atmosphere. Abundant accretionary lapilli, quenched pumice textures, and hydrothermal minerals in the earliest eruptive deposits indicate hydromagmatic interaction and active mining of the pre-eruptive hydrothermal system. Whole-rock compositions of the products erupted within the first week are chemically homogenous, with SiO 2 ˜61%, MgO ˜2.1%, K 2O ˜1.4%, Na 2O ˜4.1% and Fe 2O 3 ˜9.1%. The products are classified as medium-K andesites with tholeiitic affinity. Slightly more silicic matrix glass compositions (up to 63% SiO 2 in microlite-rich matrices) overlap with whole rock, suggesting limited crystal fractionation with microlite crystallization responsible for the more evolved residual melt. Decreasing corrected LOI values (2.3-1.4 wt.%) upsection are consistent with waning hydrothermal mineral contributions as the eruption progressed. Oxygen fugacity calculations based on the ferric to ferrous iron ratio of bulk samples indicate an oxidized magma with ΔNNO ˜+1. Two-pyroxene equilibrium thermometry suggests magmatic temperatures of 1050-1100 °C. Matrix glass volatile contents show a degassed residual melt, with < 0.5 wt.% H 2O, 1000-2000 ppm Cl, 480-780 ppm F, 50-150 ppm S, and < 5 ppm CO 2. A magmatic SO 2 flux of 3-4.5 kt/day was measured by COSPEC on 21 May. Ash leachate data indicate a decreasing S/Cl ratio (3.3-0.7) in the eruptive plume between 10 and 21 May, with a relatively constant Cl concentration. Assuming a constant Cl flux, an SO 2 flux of 14-22 kt/day is calculated for 10 May. The average S concentration from ash leachates (1230 mg/kg) suggests that at least 25% of the SO 2 (˜60 kt) erupted from Anatahan between 10 and 21 May was removed from the plume by the precipitation of sulphate salts in the eruption column, adsorbtion onto ash particles and subsequent deposition. Molar ratios in ash leachates elucidate CaSO 4 and NaCl as the most likely soluble salts formed in the plume. Total element abundances, molar S/Ca > 1 and Ca, Mg, Na, and K ratios in the leachates suggest a hydrothermal fluid contribution to elements present as water soluble salts adsorbed onto ash. Sulfur budget calculations based on estimates of pre-eruptive magmatic and residual melt S contents, mass of erupted magma, and total SO 2 output fluxes require an additional source of S other than the erupted magma. Multiple lines of evidence, including high SO 2 emissions early in the eruption, the presence of accretionary lapilli and hydrothermal minerals in the early eruptive deposits, quenched pumice textures, and cation and anion ratios and abundances in ash leachates suggest that a S-rich free volatile phase exsolved from a large magma body. Magmatic volatiles were stored as components of the hydrothermal system (pressurized gases, hydrothermal fluids, and/or hydrothermal minerals) to be remobilized early in the eruption to contribute to the total SO 2 output.
Testing a High-Sensitivity ATR FTIR Water Monitor for Ionic CWA Breakdown Products
2003-12-31
for ClO4− (perchlorate) 37 The Limits of Detection for ClO3− (chlorate) 41 The Limits of Detection for PFOS− ( perfluorooctanesulfonate ) 44 The... perfluorooctanesulfonate (PFOS−), C8F17SO3−, perfluorobutanesulfonate (PFBS−), C4F9SO3−, trifluoromethanesulfonate, CF3SO3−, permanganate, MnO4−, perrhenate, ReO4...become a significant environmental concern in many western states.3 Perfluorooctanesulfonate was, for decades a key ingredient in aqueous film
Fu, Rong-Bing
2014-04-01
Chemical oxidation-reduction technology is an important way to quickly remedy contaminated groundwater. Nanoscale zero-valent iron (nZVI) was produced by liquid-phase reduction using FeSO4 and NaBH4, and characterized by SEM and XRD. The remediation of 4-chloronitrobezene (4-CINB) contaminated groundwater at ambient temperature and pressure was conducted with the nZVI catalytic H2O2 process, and the affecting factors and degradation mechanisms were investigated. The results indicated that under initial pH 3.0 at the temperature of 30 degrees C, after 30 mins of reaction, 4-ClNB in groundwater was completely degraded when the concentrations of nZVI and H2O2 were 268.8 mg x L(-1) and 4.90 mmol x L(-1), respectively. 4-chloronitrosobenzene, 4-chlorophenylhydroxylamine, 4-chloroazoxybenzene, 4-chloroaniline, 4-chloroazobenzene, 4-benzoquinone, acetic acid, formic acid, oxalic acid and chlorine ion were identified as the major intermediates of 4-ClNB degradation after the process. A tentative pathway for the degradation of 4-ClNB was proposed.
Fox-Powell, Mark G; Cockell, Charles S
2018-01-01
Current knowledge of life in hypersaline habitats is mostly limited to sodium and chloride-dominated environments. This narrow compositional window does not reflect the diversity of brine environments that exist naturally on Earth and other planetary bodies. Understanding the limits of the microbial biosphere and predicting extraterrestrial habitability demands a systematic effort to characterize ionic specificities of organisms from a representative range of saline habitats. Here, we investigated a strain of Marinococcus isolated from the magnesium and sulfate-dominated Basque Lakes (British Columbia, Canada). This organism was the sole isolate obtained after exposure to exceptionally high levels of Mg 2+ and SO 4 2- ions (2.369 and 2.840 M, respectively), and grew at extremes of ionic strength not normally encountered in Na + /Cl - brines (12.141 mol liter -1 ). Its association at the 16S rDNA level with bacterial halophiles suggests that ancestral halophily has allowed it to adapt to a different saline habitat. Growth was demonstrated in media dominated by NaCl, Na 2 SO 4 , MgCl 2 , and MgSO 4 , yet despite this plasticity the strain was still restricted; requiring either Na + or Cl - to maintain short doubling times. Water activity could not explain growth rate differences between media, demonstrating the importance of ionic composition for dictating microbial growth windows. A new framework for understanding growth in brines is required, that accounts for the geochemical history of brines as well as the various stresses that ions impose on microbes. Studies such as this are required to gain a truly universal understanding of the limits of biological ion tolerance.
Meng, Yao; Jin, Jiagui; Liu, Shuangfeng; Yang, Min; Zhang, Qinglian; Wan, Li; Tang, Kun
2014-02-01
Alpha-glycerophosphate oxidase (alpha-GPO) from Enterococcus casseli flavus was successfully isolated and purified by using polyethylene glycol (PEG)/(NH4)2SO4 aqueous two-phase system (ATPS). The results showed that the chosen PEG/(NH4)2SO4 ATPS could be affected by PEG molecular weight, pH, concentration of PEG and (NH4)2SO4, and inorganic salt as well as additional amount of crude enzyme. After evaluating these influencing factors, the final optimum purification strategy was formed by 16.5% (m/m) PEG2000, 13.2% (m/m) (NH4)2SO4, pH 7.5 and 30% (m/m) additive crude enzyme, respectively. The NaCl was a negative influencing factor which would lead to lower purification fold and activity recovery. These conditions eventually resulted in the activity recovery of 89% (m/m), distribution coefficient of 1.2 and purification fold of 7.0.
Suppression of chlorinated aromatics by nitrogen and sulphur inhibitors in iron ore sintering.
Zhang, Yadi; Buekens, Alfons; Liu, Lina; Zhang, Yibo; Zeng, Xiaolan; Sun, Yifei
2016-07-01
Dioxins generated by iron and steel industry account for the majority of industrial dioxins emissions. This study compares the performance of different additives (including calcium sulphate dehydrate CaSO4·2H2O; calcium polysulphide CaSx; ammonium sulphate (NH4)2SO4; 4-methylthiosemicarbazide H3C-SC(NH)2NH2 and thiourea H2NCSNH2) as suppressant of chlorinated aromatics in iron ore sintering. The formation of chlorobenzenes (CBz) and polychlorinated biphenyls (PCBs), used as surrogates for dioxins, was suppressed significantly in the present of various inhibitors (1 wt%) except for CaSO4·2H2O. Moreover, a larger molar ratio of (S + N)/Cl leads to a higher suppression efficiency, so that the inhibition capacity of (NH4)2SO4 on both CBz and PCBs was weaker than H2NCSNH2. The generation of dioxin-like PCBs (Co- or dl-PCB) was also analysed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wei, Weiqi; Wu, Shubin
2017-10-01
Experiments for cellulose depolymerization by synergy of zinc chloride hydrate (ZnCl 2 ·RH 2 O) and sulfated titania catalyst (SO 4 2- /TiO 2 ) were investigated in this study. The results showed the introduction of sulfate into the TiO 2 significantly enhanced the catalyst acid amount, especially for Brønsted acid site, which is beneficial for subsequent cellulose depolymerization. ZnCl 2 ·RH 2 O hydrate, only a narrow composition range of water, specifically 3.0≤R≤4.0, can dissolve cellulose, which finally resulted the cellulose with low crystallinity and weak intrachain and interchain hydrogen bond network. Coupling of ZnCl 2 ·RH 2 O hydrate and SO 4 2- /TiO 2 catalyst as a mixed reaction system promoted cellulose depolymerization, and the products can be adjusted by the control of reaction conditions, the low temperature (80-100°C) seemed beneficial for glucose formation (maximal yield 50.5%), and the high temperature (120-140°C) favored to produce levulinic acid (maximal yield 43.1%). Besides, the addition of organic co-solvent making HMF as the main product (maximal yield 38.3%). Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johanson, C.E.; Sweeney, S.M.; Parmelee, J.T.
Cerebrospinal fluid formation stems primarily from the transport of Na and Cl in choroid plexus (CP). To characterize properties and modulation of choroidal transporters, we tested diuretics and other agents for ability to alter ion transport in vitro. Adult Sprague-Dawley rats were the source of CPs preincubated with drug for 20 min and then transferred to cerebrospinal fluid (CSF) medium containing 22Na or 36Cl with (3H)mannitol (extracellular correction). Complete base-line curves were established for cellular uptake of Na and Cl at 37 degrees C. The half-maximal uptake occurred at 12 s, so it was used to assess drug effects onmore » rate of transport (nmol Na or Cl/mg CP). Bumetanide (10(-5) and 10(-4) M) decreased uptake of Na and Cl with maximal inhibition (up to 45%) at 10(-5) M. Another cotransport inhibitor, furosemide (10(-4) M), reduced transport of Na by 25% and Cl by 33%. However, acetazolamide (10(-4) M) and atriopeptin III (10(-7) M) significantly lowered uptake of Na (but not Cl), suggesting effect(s) other than on cotransport. The disulfonic stilbene 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 10(-4) M), known to inhibit Cl-HCO3 exchange, substantially reduced the transport of 36Cl. Bumetanide plus DIDS (both 10(-4) M) caused additive inhibition of 90% of Cl uptake, which provides strong evidence for the existence of both cotransport and antiport Cl carriers. Overall, this in vitro analysis, uncomplicated by variables of blood flow and neural tone, indicates the presence in rat CP of the cotransport of Na and Cl in addition to the established Na-H and Cl-HCO3 exchangers.« less
NASA Technical Reports Server (NTRS)
Elrod, M. J.; Koch, R. E.; Kim, J. E.; Molina, M. J.
1995-01-01
Henry's Law solubility constants for HCl have been measured for liquid H2SO4-HNO3-HCl-H2O solutions; the results are in good agreement with predictions from published semiempirical models. The ClONO2 + HCl reaction on the surfaces of such solutions with compositions simulating those of stratospheric aerosols has been investigated; as the composition changes following the temperature drop characteristic of the high-latitude stratosphere the reaction probability gamma increases rapidly. Furthermore, the gamma values remain essentially unchanged when HN03 uptake is neglected; the controlling factor appears to be the solubility of HCl. These results corroborate our earlier suggestion that supercooled liquid sulfate aerosols promote chlorine activation at low temperatures as efficiently as solid polar stratospheric cloud particles.
NASA Technical Reports Server (NTRS)
Russo, R. S.; Talbot, R. W.; Dibb, J. E.; Scheuer, E.; Seid, G.; Jordan, C. E.; Fuelberg, H. E.; Sachse, G. W.; Avery, M. A.; Vay, S. A.
2003-01-01
We characterize the chemical composition of Asian continental outflow observed during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) mission during February-April 2001 in the western Pacific using data collected on the NASA DC-8 aircraft. A significant anthropogenic impact was present in the free troposphere and as far east as 150degE longitude reflecting rapid uplift and transport of continental emissions. Five-day backward trajectories were utilized to identify five principal Asian source regions of outflow: central, coastal, north-northwest(NNW), southeast (SE), and west-southwest (WSW). The maximum mixing ratios for several species, such as CO, C2Cl4, CH3Cl, and hydrocarbons, were more than a factor of 2 larger in the boundary layer of the central and coastal regions due to industrial activity in East Asia. CO was well correlated with C2H2, C2H6, C2Cl4, and CH3Cl at low altitudes in these two regions (r(sup 2) approx. 0.77-0.97). The NNW, WSW, and SE regions were impacted by anthropogenic sources above the boundary layer presumably due to the longer transport distances of air masses to the western Pacific. Frontal and convective lifting of continental emissions was most likely responsible for the high altitude outflow in these three regions. Photochemical processing was influential in each source region resulting in enhanced mixing ratios of O3, PAN, HNO3, H2O2, and CH3OOH. The air masses encountered in all five regions were composed of a complex mixture of photcrchemically aged air with more recent emissions mixed into the outflow as indicated by enhanced hydrocarbon ratios (C2H2/CO greater than or equal to 3 and C3H8/C2H6 greater than or equal to 0.2). Combustion, industrial activities, and the burning of biofuels and biomass all contributed to the chemical composition of air masses from each source region as demonstrated by the H6, SO2, and C2Cl4 were compared for the TRACE-P and PEM-West B missions. In the more northern regions, O3, CO, and SO2 were higher at low altitudes during TRACE-P. In general, mixing ratios were fairly similar between the two missions in the southern regions. A comparison between CO/CO2, CO/CH4, C2H6/C3H8, NO(x)/SO2, and NO(y)/(SO2 + nss-SO4) ratios for the five source regions and for the 2000 Asian emissions summary showed vay close agreement indicating that Asian emissions were well represented by the TRACE-P data and tbe emissions inventory.
NASA Astrophysics Data System (ADS)
Cheng, Jun; Shi, Wenxin; Zhang, Lanhe; Zhang, Ruijun
2017-09-01
A novel polyester thin film composite nanofiltration (NF) membrane was prepared by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC) on polyethersulfone (PES) supporting membrane. The performance of the polyester composite NF membrane was optimized by regulating the preparation parameters, including reaction time, pH of the aqueous phase solution, pentaerythritol concentration and TMC concentration. A series of characterization, including permeation experiments, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM), zeta potential analyzer and chlorine resistance experiments, were employed to study the properties of the optimized membrane. The results showed that the optimized polyester composite NF membrane exhibited very high rejection of Na2SO4 (98.1%), but the water flux is relatively low (6.1 L/m2 h, 0.5 MPa, 25 °C). The order of salt rejections is Na2SO4 > MgSO4 > MgCl2 > NaCl, which indicated the membrane was negatively charged, just consistent with the membrane zeta potential results. After treating by NaClO solutions with different concentrations (100 ppm, 500 ppm, 1000 ppm, 2000 ppm, 3000 ppm) for 48 h, the results demonstrated that the polyester NF membrane had good chlorine resistance. Additionally, the polyester TFC NF membrane exhibits good long-term stability.
Fluid-Evaporation Records Preserved in Meridiani Rocks
NASA Technical Reports Server (NTRS)
Rao, M. N.; Nyquist, Laurence E.; Sutton, S. R.
2009-01-01
We have shown earlier that the high SO3/Cl ratios found in secondary mineral assemblages in shergottite GRIM glasses (Gas-Rich Impact-Melt) likely resulted from interactions of regolith materials with sulfate-rich (and Cl-poor) solutions. The low SO3/Cl ratios determined in secondary salts in nakhalite fracture-fillings presumably formed by rock interactions with chloride-rich (and SO4-poor) solutions near Mars surface. The SO3 and Cl abundances determined by APXS in abraded rocks (RAT) from Endurance, Fram and Eagle craters indicate that these salt assemblages likely formed by evaporative concentration of brine fluids at Meridiani. The SO3/Cl ratios in the abraded rocks are examined here, instead of their absolute abundances, because the abundance ratios might provide better guide-lines for tracking the evolution of evaporating fluids at Meridiani. The SO3/Cl ratios in these samples, in turn, might provide clues for the mobile element ratios of the altering fluids that infiltrated into the Meridiani rocks.
Eisa, Mohamed; El-Refai, Heba; Amin, Magdy
2016-09-01
A new potent Pseudomonas aeruginosa isolate capable for biotransformation of corn oil phytosterol (PS) to 4-androstene-3, 17-dione (AD), testosterone (T) and boldenone (BOL) was identified by phenotypic analysis and 16S rRNA gene sequencing. Sequential statistical strategy was used to optimize the biotransformation process mainly concerning BOL using Factorial design and response surface methodology (RSM). The production of BOL in single step microbial biotransformation from corn oil phytosterols by P. aeruginosa was not previously reported. Results showed that the pH concentration of the medium, (NH 4 ) 2 SO 4 and KH 2 PO 4 were the most significant factors affecting BOL production. By analyzing the statistical model of three-dimensional surface plot, BOL production increased from 36.8% to 42.4% after the first step of optimization, and the overall biotransformation increased to 51.9%. After applying the second step of the sequential statistical strategy BOL production increased to 53.6%, and the overall biotransformation increased to 91.9% using the following optimized medium composition (g/l distilled water) (NH 4 ) 2 SO 4 , 2; KH 2 PO 4 , 4; Na 2 HPO 4 . 1; MgSO 4 ·7H 2 O, 0.3; NaCl, 0.1; CaCl 2 ·2H 2 O, 0.1; FeSO 4 ·7H 2 O, 0.001; ammonium acetate 0.001; Tween 80, 0.05%; corn oil 0.5%; 8-hydroxyquinoline 0.016; pH 8; 200 rpm agitation speed and incubation time 36 h at 30 °C. Validation experiments proved the adequacy and accuracy of model, and the results showed the predicted value agreed well with the experimental values.
First-principles study of anhydrite, polyhalite and carnallite
NASA Astrophysics Data System (ADS)
Weck, Philippe F.; Kim, Eunja; Jové-Colón, Carlos F.; Sassani, David C.
2014-02-01
We report density functional calculations of the structures and properties of anhydrite (CaSO4), polyhalite (K2SO4·MgSO4·2CaSO4·2H2O) and carnallite (KCl·MgCl2·6H2O). Densities of states are systematically investigated and phonon analysis using density functional perturbation theory is performed at constant equilibrium volume for anhydrite and polyhalite in order to derive their isochoric thermal properties. Thermal properties at constant atmospheric pressure are also calculated using the quasi-harmonic approximation. The computed molar entropy and isobaric heat capacity for anhydrite reproduce experimental data up to 800 K to within 3% and 10%, respectively, while further experimental work is needed to assess our theoretical predictions for polyhalite.
NASA Astrophysics Data System (ADS)
Mudgal, Deepa; Singh, Surendra; Prakash, Satya
2015-01-01
Corrosion in incinerators, power plants, and chemical industries are frequently encountered due to the presence of salts containing sodium, sulphur, and chlorine. To obviate this problem, bare and coated alloys were tested under environments simulating the conditions present inside incinerators and power plants. 0.2 wt.% zirconium powder was incorporated in the Cr3C2-(NiCr) coating powder. The original powder and Zr containing powder was sprayed on Superni 718 alloy by D-gun technique. The bare and coated alloys were tested under Na2SO4 + K2SO4 + NaCl + KCl and Na2SO4 + NaCl environment. The corrosion rate of specimens was monitored using weight change measurements. Characterization of the corrosion products has been done using FE-SEM/EDS and XRD techniques. Bare and coated alloys showed very good corrosion resistance under given molten salt environments. Addition of 0.2wt.%Zr in Cr3C2-25%(NiCr) coating further greatly reduced the oxidation rate as well as improved the adherence of oxide scale to the coating surface during the time of corrosion.
Nagata, Maika K C T; Brauchle, Paul S; Wang, Sen; Briggs, Sarah K; Hong, Young Soo; Laorenza, Daniel W; Lee, Andrea G; Westmoreland, T David
2016-08-16
Three new DOTAM (1,4,7,10-tetrakis(acetamido)-1,4,7,10-tetraazacyclododecane) complexes have been synthesized and characterized by X-ray crystallography: [Co(DOTAM)]Cl 2 •3H 2 O, [Ni(DOTAM)]Cl 2 •4H 2 O, and [Cu(DOTAM)](ClO 4 ) 2 •H 2 O. Solid state and solution IR spectroscopic features for a series of [M(DOTAM)] 2+ complexes (M=Mn, Co, Cu, Ni, Ca, Zn) correlate with solid state and solution coordination numbers. [Co(DOTAM)] 2+ , [Ni(DOTAM)] 2+ , and [Zn(DOTAM)] 2+ are demonstrated to be six-coordinate in both the solid state and in solution, while [Mn(DOTAM)] 2+ and [Ca(DOTAM)] 2+ are eight-coordinate in the solid state and remain so in solution. [Cu(DOTAM)] 2+ , which is five-coordinate by X-ray crystallography, is shown to increase its coordination number in solution to six-coordinate.
Geometry of Pt(IV) in H 2PtCl 6 aqueous solution: An X-ray absorption spectroscopic investigation
NASA Astrophysics Data System (ADS)
Chen, Xing; Chu, Wangsheng; Wang, Lei; Wu, Ziyu
2009-02-01
The noble metal ions play an important role in many chemical reactions, but at the present time they represent also potentially new environmental contaminants. There is relatively little information available to adequately assess the potential health hazards, so that to evaluate the potential hazards and identify the necessary actions to reduce the risks associated with exposure to these metals and their compounds it is important to understand the local structure around noble metal ions. In this contribution, the local coordination around platinum (IV) ions e.g., Pt 4+ in aqueous solution, has been investigated by using X-ray absorption spectroscopy (XAS). X-ray absorption near-edge spectra (XANES) of both [PtCl 6] 2- and [PtCl 4(OH) 2] 2- in an aqueous solution have been calculated using FEFF8.2 and both are characterized by an octahedral geometry. From these calculations, we may also assign a characteristic post-edge feature to a contribution of Cl d-states. From the EXAFS analysis we also determined the corresponding Pt bond distances, e.g., 2.33 Å for the Pt-Cl distance and 2.03 Å for the Pt-O distance in these aqueous solutions. The same analysis provides evidence that the peaks in the Fourier transform at about 4.0 Å are due to multiple scattering collinear Cl-Pt-Cl contributions.
Liu, Xing-ren; Ren, Jian-qiang; Li, Sheng-gong; Zhang, Qing-wen
2015-01-01
Effects of simulated nitrogen (N) deposition on soil net nitrogen mineralization (NNM) were examined in situ during two growing seasons, using the resin-core technique in the semiarid meadow steppe in Inner Mongolia, China. The aim of this study is to clarify the effect of N levels (0, 10, and 20 kg N ha−1yr−1) and forms (NH4 + and NO3 -) on soil mineral N and NNM. Our results showed that N levels had no significant differences on soil mineral N and NNM. In the first year, three N treatments ((NH4)2SO4, NH4Cl and KNO3) increased soil NH4 + concentrations but had no significant effects on soil NO3 - concentrations. In the second year, (NH4)2SO4 treatment increased soil NO3 - concentrations, NH4Cl and KNO3 treatments decreased them. Three N treatments significantly decreased soil NH4 + concentrations in the later stages of the second year. As for the soil NNM, three N treatments had no significant effects on the rates of soil NNM (R m) and net nitrification (R n) in the first year, but significantly decreased them in the second year. The contribution of N addition to Rm was higher from (NH4)2SO4 than from NH4Cl and KNO3. However, Soil R m was mainly affected by soil water content (SWC), accumulated temperature (Ta), and soil total N (TN). These results suggest that the short-term atmospheric N deposition may inhibit soil NNM in the meadow steppe of Inner Mongolia. PMID:26218275
Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiorella, B.L.; Blanch, H.W.; Wilke, C.R.
1984-01-01
Inhibition by secondary feed components can limit productivity and restrict process options for the production of ethanol by fermentation. New fermentation processes (such as vacuum or extractive fermentation), while selectively removing ethanol, can concentrate nonmetabolized feed components in the remaining broth. Stillage recycle to reduce stillage waste treatment results in buildup of nonmetabolized feed components. Continuous culture experiments are presented establishing an inhibition order: CaCl/sub 2/, (NH/sub 4/)/sub 2/SO/sub 4/ > NaCl, NH/sub 4/Cl > KH/sub 2/PO/sub 4/ > xylose, MgCl/sub 2/ > MgSO/sub 4/ > KCl. Reduction of the water activity alone is not an adequate predictor of themore » variation in inhibitory concentration among the different components tested. As a general trend, specific ethanol productivity increases and cell production decreases as inhibitors are added at higher concentration. It is postulated that these results can be interpreted in terms of an increase in energy requirements for cell maintenance under hypertonic (stressed) conditions. Ion and carbohydrate transport and specific toxic effects are reviewed as they related to the postulated inhibition mechanism. Glycerol production increases under hypertonic conditions and glycerol is postulated to function as a nontoxic osmoregulator. Calcium was the most inhibitory component tested, causing an 80% decline in cell mass production at 0.23 mol Ca/sup 2 +//L and calcium is present at substantial concentration in many carbohydate sources. For a typical final cane molasses feed, stillage recycle must be limited to less than one-third of the feed rate; otherwise inhibitory effects will be observed.« less
Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.
Combe, Nicole A; Donaldson, D James
2017-09-28
We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO 3 , KCl, MgCl 2 , CaCl 2 ) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4 ) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl 2 ) of the solution evaporation rates are well described by the modified Maxwell equation.
Chavan, Smita P; Lokhande, Vinayak H; Nitnaware, Kirti M; Nikam, Tukaram D
2011-03-01
The present study examined the effects of plant growth hormones, incubation period, biotic (Trametes versicolor, Mucor sp., Penicillium notatum, Rhizopus stolonifer, and Fusarium oxysporum) and abiotic (NaCl, MgSO(4), FeSO(4), ZnSO(4), and FeCl(3)) elicitors on cell growth and α-tocopherol and pigment (red and yellow) productions in Carthamus tinctorius cell cultures. The cell growth and α-tocopherol and pigment contents improved significantly on Murashige and Skoog (MS) liquid medium containing 50.0 μM α-naphthalene acetic acid (NAA) and 2.5 μM 6-Benzyladenine (BA) at 28 days of incubation period. Incorporation of T. versicolor (50 mg l(-1)) significantly enhanced the production of α-tocopherol (12.7-fold) and red pigment (4.24-fold). Similarly, supplementation of 30 mg l(-1) T. versicolor (7.54-fold) and 70 mg l(-1) Mucor sp. (7.40-fold) significantly increased the production of yellow pigment. Among abiotic elicitors, NaCl (50-70 mg l(-1)) and MgSO(4) (10-30 mg l(-1)) significantly improved production of α-tocopherol (1.24-fold) and red pigment (20-fold), whereas yellow pigment content increased considerably by all the abiotic elicitor treatments. Taken together, the present study reports improved productions of α-tocopherol and the pigment as a stress response of safflower cell cultures exposed to these elicitors.
Izmirlioglu, Gulten; Demirci, Ali
2016-06-01
Glucoamylase is one of the most common enzymes used in the food industry to break down starch into its monomers. Glucoamylase production and its activity are highly dependent on medium composition. Starch is well known as a glucoamylase inducer, and utilization of industrial starchy potato waste is an inexpensive way of improving glucoamylase production. Since glucoamylase production is highly dependent on medium composition, in this study medium optimization for glucoamylase production was considered to enhance glucoamylase activity. Among the evaluated microbial species, Aspergillus niger van Tieghem was found to be the best glucoamylase-producing fungus. The Plackett-Burman design was used to screen various medium ingredients, and malt extract, FeSO4 .7H2 O and CaCl2 ·2H2 O were found to have significant effects on glucoamylase production. Finally, malt extract, FeSO4 .7H2 O and CaCl2 .2H2 O were optimized by using a central composite design of response surface methodology. The results showed that the optimal medium composition for A. niger van Tieghem was 50 g L(-1) industrial waste potato mash supplemented with 51.82 g L(-1) malt extract, 9.27 g L(-1) CaCl2 ·2H2 O and 0.50 g L(-1) FeSO4 .7H2 O. At the end of optimization, glucoamylase activity and glucose production were improved 126% and 98% compared to only industrial waste potato mash basal medium; 274.4 U mL(-1) glucoamylase activity and 41.7 g L(-1) glucose levels were achieved, respectively. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
NOAA PMEL Station Chemistry Data
Quinn, Patricia
2008-04-04
Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.
Truesdell, A.H.
1974-01-01
Studies of the effect of dissolved salts on the oxygen isotope activity ratio of water have been extended to 275??C. Dehydrated salts were added to water of known isotope composition and the solutions were equilibrated with CO2 which was sampled for analysis. For comparison similar studies were made using pure water. Results on water nearly coincide with earlier calculations. Salt effects diminish with increasing temperature only for solutions of MgCl2 and LiCl. Other salt solutions show complex behavior due to the temperature-dependent formation of ion pairs of changing character. Equilibrium fractionations (103 ln ??) between 1 molal solutions and pure water at 25, 100, and 275??C are: NaCl 0.0, -1.5, +1.0; KCl 0.0, -1.0, +2.0; LiCl -1.0, -0.6, -0.5; CaCl2 -0.4, -1.8, +0.8; MgCl2 -1.1, -0.7, -0.3; MgSO4 -1.1, +0.1, -; NaF (0.8 m) 0.0, -1.5, -0.3; and NH4Cl (0.55 m) 0.0, -1.2, -1.3. These effects are significant in the isotope study of hot saline fluids responsible for ore deposition and of fluids found in certain geothermal systems. Minor modification of published isotope geothermometers may be required. ?? 1974.
Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest.
Kaspari, Michael; Yanoviak, Stephen P; Dudley, Robert; Yuan, May; Clay, Natalie A
2009-11-17
Sodium (Na) is uncommon in plants but essential to the metabolism of plant consumers, both decomposers and herbivores. One consequence, previously unexplored, is that as Na supplies decrease (e.g., from coastal to inland forests), ecosystem carbon should accumulate as detritus. Here, we show that adding NaCl solution to the leaf litter of an inland Amazon forest enhanced mass loss by 41%, decreased lignin concentrations by 7%, and enhanced decomposition of pure cellulose by up to 50%, compared with stream water alone. These effects emerged after 13-18 days. Termites, a common decomposer, increased 7-fold on +NaCl plots, suggesting an agent for the litter loss. Ants, a common predator, increased 2-fold, suggesting that NaCl effects cascade upward through the food web. Sodium, not chloride, was likely the driver of these patterns for two reasons: two compounds of Na (NaCl and NaPO(4)) resulted in equivalent cellulose loss, and ants in choice experiments underused Cl (as KCl, MgCl(2), and CaCl(2)) relative to NaCl and three other Na compounds (NaNO(3), Na(3)PO(4), and Na(2)SO(4)). We provide experimental evidence that Na shortage slows the carbon cycle. Because 80% of global landmass lies >100 km inland, carbon stocks and consumer activity may frequently be regulated via Na limitation.
Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest
Kaspari, Michael; Yanoviak, Stephen P.; Dudley, Robert; Yuan, May; Clay, Natalie A.
2009-01-01
Sodium (Na) is uncommon in plants but essential to the metabolism of plant consumers, both decomposers and herbivores. One consequence, previously unexplored, is that as Na supplies decrease (e.g., from coastal to inland forests), ecosystem carbon should accumulate as detritus. Here, we show that adding NaCl solution to the leaf litter of an inland Amazon forest enhanced mass loss by 41%, decreased lignin concentrations by 7%, and enhanced decomposition of pure cellulose by up to 50%, compared with stream water alone. These effects emerged after 13–18 days. Termites, a common decomposer, increased 7-fold on +NaCl plots, suggesting an agent for the litter loss. Ants, a common predator, increased 2-fold, suggesting that NaCl effects cascade upward through the food web. Sodium, not chloride, was likely the driver of these patterns for two reasons: two compounds of Na (NaCl and NaPO4) resulted in equivalent cellulose loss, and ants in choice experiments underused Cl (as KCl, MgCl2, and CaCl2) relative to NaCl and three other Na compounds (NaNO3, Na3PO4, and Na2SO4). We provide experimental evidence that Na shortage slows the carbon cycle. Because 80% of global landmass lies >100 km inland, carbon stocks and consumer activity may frequently be regulated via Na limitation. PMID:19884505
NASA Astrophysics Data System (ADS)
Pabalan, Roberto T.; Pitzer, Kenneth S.
1987-09-01
Mineral solubilities in binary and ternary electrolyte mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O are calculated to high temperatures using available thermodynamic data for solids and for aqueous electrolyte solutions. Activity and osmotic coefficients are derived from the ion-interaction model of Pitzer (1973, 1979) and co-workers, the parameters of which are evaluated from experimentally determined solution properties or from solubility data in binary and ternary mixtures. Excellent to good agreement with experimental solubilities for binary and ternary mixtures indicate that the model can be successfully used to predict mineral-solution equilibria to high temperatures. Although there are currently no theoretical forms for the temperature dependencies of the various model parameters, the solubility data in ternary mixtures can be adequately represented by constant values of the mixing term θ ij and values of ψ ijk which are either constant or have a simple temperature dependence. Since no additional parameters are needed to describe the thermodynamic properties of more complex electrolyte mixtures, the calculations can be extended to equilibrium studies relevant to natural systems. Examples of predicted solubilities are given for the quaternary system NaCl-KCl-MgCl 2-H 2O.
Yaldiz, Gulsum
2017-01-01
Silybum marianum L. (Milk thistle) is native to the Mediterranean basin and is now widespread throughout the world. It's sprout is used as a herbal medicine for the treatment of liver disease for centuries. The seeds of milk thistle contain silymarin, an isomeric mixture of flavonolignans [silybin, silychristin, and silydianin]. Silymarin acts as a strong anti-hepatotoxic. The objective of this study was to evaluate the influences of potassium sulfate [K 2 SO 4 ] fertilizer doses on polyphenol content, some nutrient elements, antioxidant and antimicrobial activities of milk thistle at experimental fields of Ordu University in Turkey. The antimicrobial activities of seed ethanol extracts and seed oil were tested in vitro against Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli, (E. coli) Staphylococcus aureus (S. aureus), Aspergillus niger (A. niger) and Candida albicans (C. albicans) using the disc diffusion method. Free radical scavenging activity of the ethanolic extracts of milk thistle was determined spectrophotometrically by monitoring the disappearance of 2, 2-diphenyl-1-picrylhydrazil (DPPH•) at 517 nm according to the method described by Brand-Williams et al .[17] The phenolic contents in the ethanolic extracts of milk thistle were determined according to the procedure described by Slinkard and Singleton[19] with a slight modification of using a Folin-Ciocalteu phenolic reagent. The amount of total flavonoid in the ethanolic extracts was measured by aluminum chloride [AlCl 3 ] colorimetric assay. The ions in aerosol samples were determined by using Dionex ICS 1100 Series ion chromatography. Seed and seed oils obtained from obvious doses of potassium sulfate [0, 30, 60, 90 and 120 kg ha -1 fertilizer applications showed antimicrobial activities against E. coli , A. niger and P. aeruginosa . The application of 90 kg ha -1 of K 2 SO 4 on seed oil resulted in the highest antimicrobial activities. At 100 µg mL -1 and 200 µg mL -1 , except the highest potassium application [120 kg ha -1 extract, all extracts showed high and similar DPPH scavenging activity. The highest phenolic compounds were obtained with 30 kg ha -1 of K 2 SO 4 , whereas the use of 60 kg ha -1 caused the highest total flavonoid content. This plant is a good source of K + , Ca +2 , PO4 -3 , and Cl -1 . In this study, increasing doses of potassium sulfate had significant effect on element, polyphenol content, antioxidant and antimicrobial activities of the milk thistle. All tested extracts were active against all tested microbial species.All extracts have shown high and similar DPPH scavenging activity.There was a gradual increase in the biological properties of the milk thistle seeds with rising levels of potassium sulfate.The milk thistle seeds are rather rich sources of K + , Ca +2 , PO4 -3 and Cl -1 potentially bioavailable for human consumption. Abbreviations used: AlCl 3 : aluminum chloride, Ca +2 : calcium, Cl - : chloride, Cr: chromium CE: catechol equivalents, DPPH: 2,2-diphenylpicrylhydrazyl, ABTS: 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid, DAP: diamonyum fosfat, F - : fluoride, Fe: iron, K 2 SO 4 : potassium sulfate, K+ : potassium, Li+: lithium, Mg +2 : magnesium, NH 4 + : amonyum, Na + : sodium, NO 2 - : nitrite, NO 3 - : nitrate, Ni: nickel, NaNO 2 : sodium nitrite, NaOH: sodium hidroksit. ND: Not detectable, PO4 -3 : phosphorus, Zn: zinc.
Yaldiz, Gulsum
2017-01-01
Background: Silybum marianum L. (Milk thistle) is native to the Mediterranean basin and is now widespread throughout the world. It's sprout is used as a herbal medicine for the treatment of liver disease for centuries. The seeds of milk thistle contain silymarin, an isomeric mixture of flavonolignans [silybin, silychristin, and silydianin]. Silymarin acts as a strong anti-hepatotoxic. Objectives: The objective of this study was to evaluate the influences of potassium sulfate [K2SO4] fertilizer doses on polyphenol content, some nutrient elements, antioxidant and antimicrobial activities of milk thistle at experimental fields of Ordu University in Turkey. Methods: The antimicrobial activities of seed ethanol extracts and seed oil were tested in vitro against Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli, (E. coli) Staphylococcus aureus (S. aureus), Aspergillus niger (A. niger) and Candida albicans (C. albicans) using the disc diffusion method. Free radical scavenging activity of the ethanolic extracts of milk thistle was determined spectrophotometrically by monitoring the disappearance of 2, 2-diphenyl-1-picrylhydrazil (DPPH•) at 517 nm according to the method described by Brand-Williams et al.[17] The phenolic contents in the ethanolic extracts of milk thistle were determined according to the procedure described by Slinkard and Singleton[19] with a slight modification of using a Folin-Ciocalteu phenolic reagent. The amount of total flavonoid in the ethanolic extracts was measured by aluminum chloride [AlCl3] colorimetric assay. The ions in aerosol samples were determined by using Dionex ICS 1100 Series ion chromatography. Results: Seed and seed oils obtained from obvious doses of potassium sulfate [0, 30, 60, 90 and 120 kg ha -1 fertilizer applications showed antimicrobial activities against E. coli, A. niger and P. aeruginosa. The application of 90 kg ha -1 of K2SO4 on seed oil resulted in the highest antimicrobial activities. At 100 µg mL-1 and 200 µg mL-1, except the highest potassium application [120 kg ha -1 extract, all extracts showed high and similar DPPH scavenging activity. The highest phenolic compounds were obtained with 30 kg ha -1 of K2SO4, whereas the use of 60 kg ha -1 caused the highest total flavonoid content. This plant is a good source of K+, Ca+2, PO4-3, and Cl-1. Conclusion: In this study, increasing doses of potassium sulfate had significant effect on element, polyphenol content, antioxidant and antimicrobial activities of the milk thistle. SUMMARY All tested extracts were active against all tested microbial species.All extracts have shown high and similar DPPH scavenging activity.There was a gradual increase in the biological properties of the milk thistle seeds with rising levels of potassium sulfate.The milk thistle seeds are rather rich sources of K+, Ca+2, PO4-3 and Cl-1 potentially bioavailable for human consumption. Abbreviations used: AlCl3: aluminum chloride, Ca+2: calcium, Cl-: chloride, Cr: chromium CE: catechol equivalents, DPPH: 2,2-diphenylpicrylhydrazyl, ABTS: 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid, DAP: diamonyum fosfat, F-: fluoride, Fe: iron, K2SO4: potassium sulfate, K+ : potassium, Li+: lithium, Mg+2 : magnesium, NH4+ : amonyum, Na+: sodium, NO2-: nitrite, NO3-: nitrate, Ni: nickel, NaNO2: sodium nitrite, NaOH: sodium hidroksit. ND: Not detectable, PO4-3: phosphorus, Zn: zinc PMID:28216891
Jehlička, Jan; Culka, Adam; Mana, Lilly; Oren, Aharon
2018-05-03
Cell suspensions of the haloarchaea Halorubrum sodomense and Halobacterium salinarum and the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) in saturated solutions of chlorides and sulfates (NaCl, KCl, MgSO 4 ·7H 2 O, K 2 SO 4 , and (NH 4 )Al(SO 4 ) 2 ·12H 2 O) were left to evaporate to produce micrometric inclusions in laboratory-grown crystals. Raman spectra of these pinkish inclusions were obtained using a handheld Raman spectrometer with green excitation (532 nm). This portable instrument does not include any microscopic tool. Acceptable Raman spectra of carotenoids were obtained in the range of 200-4000 cm -1 . This detection achievement was related to the mode of illumination and collection of scattered light as well as due to resonance Raman enhancement of carotenoid signals under green excitation. The position of diagnostic Raman carotenoid bands corresponds well to those specific carotenoids produced by a given halophile. To our best knowledge, this is the first study of carotenoids included in the laboratory in crystalline chlorides and sulfates, using a miniature portable Raman spectrometer. Graphical abstract ᅟ.
The major-ion composition of Carboniferous seawater
NASA Astrophysics Data System (ADS)
Holt, Nora M.; García-Veigas, Javier; Lowenstein, Tim K.; Giles, Peter S.; Williams-Stroud, Sherilyn
2014-06-01
The major-ion chemistry (Na+, Mg2+, Ca2+, K+, SO42-, and Cl-) of Carboniferous seawater was determined from chemical analyses of fluid inclusions in marine halites, using the cryo scanning electron microscopy (Cryo-SEM) X-ray energy-dispersive spectrometry (EDS) technique. Fluid inclusions in halite from the Mississippian Windsor and Mabou Groups, Shubenacadie Basin, Nova Scotia, Canada (Asbian and Pendleian Substages, 335.5-330 Ma), and from the Pennsylvanian Paradox Formation, Utah, USA, (Desmoinesian Stage 309-305 Ma) contain Na+-Mg2+-K+-Ca2+-Cl- brines, with no measurable SO42-, which shows that the Carboniferous ocean was a “CaCl2 sea”, relatively enriched in Ca2+ and low in SO42- with equivalents Ca2+ > SO42- + HCO3-. δ34S values from anhydrite in the Mississippian Shubenacadie Basin (13.2-14.0 ‰) and the Pennsylvanian Paradox Formation (11.2-12.6 ‰) support seawater sources. Br in halite from the Shubenacadie Basin (53-111 ppm) and the Paradox Basin (68-147 ppm) also indicate seawater parentages. Carboniferous seawater, modeled from fluid inclusions, contained ∼22 mmol Ca2+/kg H2O (Mississippian) and ∼24 mmol Ca2+/kg H2O (Pennsylvanian). Estimated sulfate concentrations are ∼14 mmol SO42-/kg H2O (Mississippian), and ∼12 mmol SO42-/kg H2O (Pennsylvanian). Calculated Mg2+/Ca2+ ratios are 2.5 (Mississippian) and 2.3 (Pennsylvanian), with an estimated range of 2.0-3.2. The fluid inclusion record of seawater chemistry shows a long period of CaCl2 seas in the Paleozoic, from the Early Cambrian through the Carboniferous, when seawater was enriched in Ca2+ and relatively depleted in SO42-. During this ∼200 Myr interval, Ca2+ decreased and SO42- increased, but did not cross the Ca2+-SO42- chemical divide to become a MgSO4 sea (when SO42- in seawater became greater than Ca2+) until the latest Pennsylvanian or earliest Permian (∼309-295 Ma). Seawater remained a MgSO4 sea during the Permian and Triassic, for ∼100 Myr. Fluid inclusions also record a long interval, from the Early Cambrian to the Middle Devonian, when seawater had low Mg2+/Ca2+ ratios (<2) that coincide with calcite seas. The Mg2+/Ca2+ ratio of seawater rose from 0.9 in the Middle Devonian, to 2.5 in the Middle/Late Mississippian, 2.3 in the Middle Pennsylvanian, and 3.5 in the Early Permian. The transition from calcite seas to aragonite seas, established from the mineralogy of oölites and early marine cements, occurred in the Late Mississippian. Fluid inclusions show that seawater Mg2+/Ca2+ ratios rose above 2 by the Middle to Late Mississippian coinciding exactly with the shift to aragonite seas. Aragonite seas existed for ∼100 Myr, from the Late Mississippian until the Late Triassic/Early Jurassic.
The chemistry of the severe acidic precipitation in Shanghai, China
NASA Astrophysics Data System (ADS)
Huang, Kan; Zhuang, Guoshun; Xu, Chang; Wang, Ying; Tang, Aohan
2008-07-01
Seventy-six rain samples from forty-seven rain events and TSP aerosol samples throughout the entire year of 2005 were collected in Shanghai, China. The annual mean pH in rain was 4.49 with the lowest pH of 2.95, and the frequency of acid rain was 71% in 2005. The acidity of rain increased more than 15 times in the past 8 years compared to 1997. The volume-weighted mean ionic concentrations of the acidic ions, SO 42- and NO 3- in rainwater were 199.59 and 49.80 μeq/L with maximum of 832.67 and 236.59 μeq/L, respectively. The concentration of SO 42- was higher than the most polluted cities abroad, indicating Shanghai has been a severe polluted city over the world. The high coal/fuel consumption from urbanization and the rapid increase of vehicles resulted in the high emission of SO 2 and NO x, the precursor of the high concentration of acidic ions, SO 42- and NO 3-, which were the main reason of the severe acid rain in Shanghai. The major ions showed clear temporal variations with higher concentrations of SO 42-, NO 3-, NH 4+, and Ca 2+ in spring/winter, of Na +, Cl -, K +, and Mg 2+ in autumn, and the lowest of all the ions in summer. SO 42- and NO 3- were mainly in the form of CaSO 4 and Ca(NO 3) 2, which showed the dominant neutralization effect of Ca 2+ over NH 4+. Source identification indicated that SO 42-, NO 3-, NH 4+ and most Ca 2+ derived from anthropogenic sources, K +, Mg 2+ and partial Ca 2+ originated from mineral, and almost all the Cl - and Na + from the sea. The chemistry of precipitation in Shanghai was under the influence of local pollution sources and the long- and moderate-range transport through back trajectory analysis.
Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera.
Llanes, A; Bertazza, G; Palacio, G; Luna, V
2013-01-01
The success of Prosopis strombulifera in growing under high NaCl concentrations involves a carefully controlled balance among different processes, including compartmentation of Cl(-) and Na(+) in leaf vacuoles, exclusion of Na(+) in roots, osmotic adjustment and low transpiration. In contrast, Na(2) SO(4) causes growth inhibition and toxicity. We propose that protection of the cytoplasm can be achieved through production of high endogenous levels of specific compatible solutes. To test our hypothesis, we examined endogenous levels of compatible solutes in roots and leaves of 29-, 40- and 48-day-old P. strombulifera plants grown in media containing various concentrations of NaCl, Na(2) SO(4) or in mixtures of both, with osmotic potentials of -1.0,-1.9 and -2.6 MPa, as correlated with changes in hydric parameters. At 24 h after the last pulse plants grown in high NaCl concentrations had higher relative water content and relatively higher osmotic potential than plants grown in Na(2) SO(4) (at 49 days). These plants also had increased synthesis of proline, pinitol and mannitol in the cytoplasm, accompanied by normal carbon metabolism. When the sulphate anion is present in the medium, the capacities for ion compartmentalisation and osmotic adjustment are reduced, resulting in water imbalance and symptoms of toxicity due to altered carbon metabolism, e.g. synthesis of sorbitol instead of mannitol, reduced sucrose production and protein content. This inhibition was partially mitigated when both anions were present together in the solution, demonstrating a detrimental effect of the sulphate ion on plant growth. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Kumar, Raja; Sinha, Alok
2017-02-01
Influence of common dye-bath additives, namely sodium chloride, ammonium sulphate, urea, acetic acid and citric acid, on the reductive decolouration of Direct Green 1 dye in the presence of Fe 0 was investigated. Organic acids improved dye reduction by augmenting Fe 0 corrosion, with acetic acid performing better than citric acid. NaCl enhanced the reduction rate by its 'salting out' effect on the bulk solution and by Cl - anion-mediated pitting corrosion of iron surface. (NH 4 ) 2 SO 4 induced 'salting out' effect accompanied by enhanced iron corrosion by SO 4 2- anion and buffering effect of NH 4 + improved the reduction rates. However, at 2g/L (NH 4 ) 2 SO 4 concentration, complexating of SO 4 2- with iron oxides decreased Fe 0 reactivity. Urea severely compromised the reduction reaction, onus to its chaotropic and 'salting in' effect in solution, and due to it masking the Fe 0 surface. Decolouration obeyed biphasic reduction kinetics (R 2 >0.993 in all the cases) exhibiting an initial rapid phase, when more than 95% dye reduction was observed, preceding a tedious phase. Maximum rapid phase reduction rate of 0.955/min was observed at pH2 in the co-presence of all dye-bath constituents. The developed biphasic model reckoned the influence of each dye-bath additive on decolouration and simulated well with the experimental data obtained at pH2. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Vandorpe, B.; Heubel, J.
1977-01-01
From pure liquid SO3 direct synthesis reactions were carried out with N2O5, NO2Cl, NOCl which yielded N2O54SO3, 3SO3, 2SO3-NO2Cl2SO3-NOCl2SO3 and NOCl2SO3, the latter being obtained for the first time in the pure state. In all cases the crystallized product was obtained by separating the constituents of the mixture and then going through a single viscous liquid phase.
NASA Astrophysics Data System (ADS)
Mansournia, Mohammadreza; Arbabi, Akram
2017-01-01
Shape control of inorganic nanostructures generally requires using surfactants or ligands to passivate certain crystallographic planes. This paper describes a novel additive-free synthesis of cupric oxide nanostructures with different morphologies from the aqueous solutions of copper(II) with Cl-, NO3 -, and SO4 2- as counter ions. Through a one-step approach, CuO nanoleaves, nanoparticles and flower-like microspheres were directly synthesized at 80°C upon exposure to ammonia vapor using a cupric solution as a single precursor. Furthermore, during a two-step process, Cu(OH)2 nanofibers and nanorods were prepared under an ammonia atmosphere, then converted to CuO nanostructures with morphology preservation by heat treatment in air. The as-prepared Cu(OH)2 and CuO nanostructures are characterized using x-ray diffraction, scanning electron microscopy and Fourier transformation infrared spectroscopy techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Paul Charles; Rodriguez, Mark Andrew; Segall, Judith M.
2004-05-01
Exploration of the fundamental chemical behavior of the AlCl{sub 3}/SO{sub 2}Cl{sub 2} catholyte system for the ARDEC Self-Destruct Fuze Reserve Battery Project under accelerated aging conditions was completed using a variety of analytical tools. Four different molecular species were identified in this solution, three of which are major. The relative concentrations of the molecular species formed were found to depend on aging time, initial concentrations, and storage temperature, with each variable affecting the kinetics and thermodynamics of this complex reaction system. We also evaluated the effect of water on the system, and determined that it does not play a rolemore » in dictating the observed molecular species present in solution. The first Al-containing species formed was identified as the dimer [Al({mu}-Cl)Cl{sub 2}]{sub 2}, and was found to be in equilibrium with the monomer, AlCl{sub 3}. The second species formed in the reaction scheme was identified by single crystal X-ray diffraction studies as [Cl{sub 2}Al({mu}-O{sub 2}SCl)]{sub 2} (I), a scrambled AlCl{sub 3}{center_dot}SO{sub 2} adduct. The SO{sub 2}(g) present, as well as CL{sub 2}(g), was formed through decomposition of SO{sub 2}CL{sub 2}. The SO{sub 2}(g) generated was readily consumed by AlCl{sub 3} to form the adduct 1 which was experimentally verified when 1 was also isolated from the reaction of SO{sub 2}(g) and AlCl {sub 3}. The third species found was tentatively identified as a compound having the general formula {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. This was based on {sup 27}Al NMR data that revealed a species with tetrahedrally coordinated Al metal centers with increased oxygen coordination and the fact that the precipitate, or gel, that forms over time was shown by Raman spectroscopic studies to possess a component that is consistent with SOCl{sub 2}. The precursor to the precipitate should have similar constituents, thus the assignment of {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. The precipitate was further identified by solid state {sup 27}Al MAS NMR data to possess predominantly octahedral A1 metal center which implies {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n} must undergo some internal rearrangements. A reaction sequence has been proposed to account for the various molecular species identified in this complex reaction mixture during the aging process. The metallurgical welds were of high quality. These results were all visually determined there was no mechanical testing performed. However, it is recommended that the end plate geometry and weld be changed. If the present weld strength, based on .003' - .005' penetration, is sufficient for unit performance, the end plate thickness can be reduced to .005' instead of the .020' thickness. This will enable the plug to be stamped so that it can form a cap rather than a plug and solve existing problems and increase the amount of catholyte which may be beneficial to battery performance.« less
Lundin, Lisa; Jansson, Stina
2014-01-01
The use of waste wood as an energy carrier has increased during the last decade. However, the higher levels of alkali metals and chlorine in waste wood compared to virgin biomass can promote the formation of deposits and organic pollutants. Here, the effect of fuel composition and the inhibitory effects of ammonium sulfate, (NH4)2SO4, on the concentrations of persistent organic pollutants (POPs) in the flue gas of a lab-scale combustor was investigated. Ammonium sulfate is often used as a corrosion-preventing additive and may also inhibit formation of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). In addition to PCDDs and PCDFs, polychlorinated naphthalenes (PCN) and biphenyls (PCB) were also analyzed. It was found that the flue gas composition changed dramatically when (NH4)2SO4 was added: CO, SO2, and NH3 levels increased, while those of HCl decreased to almost zero. However, the additive's effects on POP formation were less pronounced. When (NH4)2SO4 was added to give an S:Cl ratio of 3, only the PCDF concentration was reduced, indicating that this ratio was not sufficient to achieve a general reduction in POP emissions. Conversely, at an S:Cl ratio of 6, significant reductions in the WHO-TEQ value and the PCDD and PCDF contents of the flue gas were observed. The effect on the PCDF concentration was especially pronounced. PCN formation seemed to be promoted by the elevated CO concentrations caused by adding (NH4)2SO4. Copyright © 2013. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Islam, S. M. Didar-Ul; Bhuiyan, Mohammad Amir Hossain; Rume, Tanjena; Azam, Gausul
2017-12-01
Groundwater acts as a lifeline in the coastal regions to meet out the domestic, drinking, irrigational and industrial needs. To investigate the hydrogeochemical characteristics of groundwater and its suitability, twenty samples were collected from the shallow tubewells of study area having screen depth 21-54 m. The water quality assessment has been carried out by evaluating the physicochemical parameters such as temperature, pH, EC, TDS and major ions i.e., Na+, K+, Ca2+, Mg2+, Cl-, SO4 2-, NO3 -, HCO3 -. Results found that, the water is slightly alkaline and brackish in nature. The trends of cations and anions are Na+ > Ca2+ > Mg2+ > K+ and Cl- > HCO3 - > SO4 2- > NO3 -, respectively and Na-Cl-HCO3 is the dominant groundwater type. The analyzed samples were also characterized with different indices, diagram and permissible limit i.e., electric conductivity (EC), total dissolved solids (TDS), chloride content (Cl), soluble sodium percentage (SSP), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), magnesium adsorption ratio (MAR), Kelley's ratio (KR), Wilcox diagram and USSL diagram, and results showed that groundwater are not suitable for drinking and irrigational use. The factors responsible for the geochemical characterization were also attempted by using standard plot and it was found that mixing of seawater with entrapped water plays a significant role in the study area.
Isolation and characterization of a novel lectin from the mushroom Armillaria luteo-virens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, K.; College of Food Science, Heilongjiang August First Land Reclamation University, Daqing 163319; Liu, Q.H.
2006-07-14
From the dried fruiting bodies of the mushroom Armillaria luteo-virens, a dimeric lectin with a molecular mass of 29.4 kDa has been isolated. The purification procedure involved (NH{sub 4}){sub 2}SO{sub 4} precipitation, ion exchange chromatography on DEAE-cellulose, CM-cellulose, and Q-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. The hemagglutinating activity of the lectin could not be inhibited by simple sugars but was inhibited by the polysaccharide inulin. The activity was stable up to 70 {sup o}C but was acid- and alkali-labile. Salts including FeCl{sub 3}, AlCl{sub 3}, and ZnCl{sub 2} inhibited the activity whereas MgCl{sub 2},more » MnCl{sub 2}, and CaCl{sub 2} did not. The lectin stimulated mitogenic response of mouse splenocytes with the maximal response achieved by 1 {mu}M lectin. Proliferation of tumor cells including MBL2 cells, HeLa cells, and L1210 cells was inhibited by the lectin with an IC{sub 5} of 2.5, 5, and 10 {mu}M, respectively. However, proliferation of HepG2 cells was not affected. The novel aspects of the isolated lectin include a novel N-terminal sequence, fair thermostability, acid stability, and alkali stability, together with potent mitogenic activity toward spleen cells and antiproliferative activity toward tumor cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, A.; Romney, E.M.; Mueller, R.T.
1982-07-01
Atriplex canescens (Pursh) Nutt. ssp. canescens (Caligonum c. Pursh.) and Atriplex polycarpa (Torr.) Wats. (Obione p. Torr.) plants were grown in Yolo loam soil in a glasshouse with different levels of sodium salts. Both species tolerated concentrations of salt equivalent to seawater, using either NaCl or Na/sub 2/SO/sub 4/. Vegetative yields were sightly higher with chloride, particularly with stems of A. polycarpa; SO/sub 4//sup 2 -/ decreased calcium and magnesium concentrations. Atriplex canescens leaves contained less Na, total cations, Cl, S, and Si, but more N than did those of A. polycarpa. The A. polycarpa would have high concentrations ormore » organic acids in leaves. Chloride decreased N concentrations in leaves of A. polycarpa.« less
Widespread presence of naturally occurring perchlorate in high plains of Texas and New Mexico
Rajagopalan, S.; Anderson, T.A.; Fahlquist, L.; Rainwater, Ken A.; Ridley, M.; Jackson, W.A.
2006-01-01
Perchlorate (ClO4-) occurrence in groundwater has previously been linked to industrial releases and the historic use of Chilean nitrate fertilizers. However, recently a number of occurrences have been identified for which there is no obvious anthropogenic source. Groundwater from an area of 155 000 km2 in 56 counties in northwest Texas and eastern New Mexico is impacted by the presence of ClO4-. Concentrations were generally low (<4 ppb), although some areas are impacted by concentrations up to 200 ppb. ClO4- distribution is not related to well type (public water system, domestic, agricultural, or water-table monitoring) or aquifer (Ogallala, Edward Trinity High Plains, Edwards Trinity Plateau, Seymour, or Cenozoic). Results from vertically nested wells strongly indicate a surface source. The source of ClO4- appears to most likely be atmospheric deposition. Evidence supporting this hypothesis primarily relates to the presence of ClO 4- in tritium-free older water, the lack of relation between land use and concentration distribution, the inability of potential anthropogenic sources to account for the estimated mass of ClO4-, and the positive relationship between conserved anions (e.g., IO3-, Cl-, SO4-2) and ClO4-. The ClO4- distribution appears to be mainly related to evaporative concentration and unsaturated transport. This process has led to higher ClO4- and other ion concentrations in groundwater where the water table is relatively shallow, and in areas with lower saturated thickness. Irrigation may have accelerated this process in some areas by increasing the transport of accumulated salts and by increasing the number of evaporative cycles. Results from this study highlight the potential for ClO4- to impact groundwater in arid and semiarid areas through long-term atmospheric deposition. ?? 2006 American Chemical Society.
Bridging cobalt-calixarene subunits into a Co8 entity or a chain with 4,4‧-bipyridyl
NASA Astrophysics Data System (ADS)
Liu, Wei; Liu, Mei; Du, Shangchao; Li, Yafeng; Liao, Wuping
2014-02-01
Two novel calixarene-based compounds, {[Co4Cl(TC4A)(HCOO)3]2(4,4‧-bpy)2} (CIAC-206) and {[Co3(H2O)(SC4A-SO2)(HCOO)2]2(4,4‧-bpy)}n (CIAC-207) (H4TC4A = p-tert-butylthiacalix[4]arene, SC4A-SO2 = p-tert-butylsulfonylcalix[4]arene, 4,4‧-bpy = 4,4‧-bipyridyl) were synthesized under solvothermal conditions, and characterized by single crystal X-ray diffraction analysis, TG-DSC analysis, elemental analysis and IR spectroscopy. These two structures are featured with isolated Z-shaped Co8 entities containing two Co4-TC4A subunits bridged by two parallel 4,4‧-bpy (CIAC-206) and some zigzag chains with [Co3-SC4A-SO2]2 dimers bridged by single 4,4‧-bpy (CIAC-207), respectively. In order to evaluate their properties, the N2 sorption behavior and magnetic property were examined.
Sun, Hanwen; Li, Liqing; Chen, Xueyan
2006-08-01
A novel, rapid and sensitive analytical method is described for determination of ofloxacin and levofloxacin by enhanced chemiluminescence (CL) with flow-injection sampling. The method is based on the CL reaction of the Ce(IV)-Na2S2O4-ofloxacin/levofloxacin-H2SO2 system. The enhanced CL mechanism was developed and the optimum conditions for CL emission were investigated. The CL intensity was correlated linearly (r = 0.9988) with the concentration of ofloxacin (or levofloxacin) in the range of 1.0 x 10(-8) - 1.0 x 10(-7) g ml(-1) and 1.0 x 10(-7) - 6.0 x 10(-6) g ml(-1). The detection limit (S/N = 3) is 7 x 10(-9) g ml(-1). The relative standard derivation (RSD, n = 11) is 2.0% for ofloxacin at 4 x 10(-7) g ml(-1) and for levofloxacin at 6 x 10(-7) g ml(-1). This method has been successfully applied for the determination of ofloxacin and levofloxacin in pharmaceutical preparations and biological fluids with satisfactory results.
Electrodeposited CuGa(Se,Te)2 thin-film prepared from sulfate bath
NASA Astrophysics Data System (ADS)
Oda, Yusuke; Minemoto, Takashi; Takakura, Hideyuki; Hamakawa, Yoshihiro
2006-09-01
CuGa(Se,Te)2 (CGST) thin films were prepared on a soda-lime glass substrate sputter coated with molybdenum by electrodeposition. The aqueous solution which contained CuSO4-5H2O, Ga2(SO4)3-19.3H2O, H2SeO3, H6TeO6, Li2SO4 and gelatin was adjusted to pH 2.6 with dilute H2SO4 and NaOH. It has been observed that (i) a crack-less and smooth CGST film with a composition close to the stoichiometric ratio was deposited at -600 mV (vs. Ag/AgCl) when Te was hardly included in the film and (ii) cracks and products on the surface increased with increasing Te content in the film. Annealing at 600 °C for 10 min improved the crystallinity of the as-deposited films.
Gavina, Jennilee M A; Rubab, Mamoona; Zhang, Huijuan; Zhu, Jiping; Nong, Andy; Feng, Yong-Lai
2011-11-01
DNA damage represents a potential biomarker for determining the exposure risk to chemicals and may provide early warning data for identifying chemical hazards to human health. Here, we have demonstrated a simple chromatography-based method that can be used to rapidly screen for the presence of chemical hazards as well as to determine parameters relevant to hazard assessment. In this proof-of-principle study, a simple in vitro system was used to determine the interaction of pollutants and probable carcinogens, phenyl glycidyl ether (PGE), tetrachlorohydroquinone (Cl(4)HQ), methylmethane sulfonate (MMS), styrene-7,8-oxide (SO), and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a metabolite of benzo[a]pyrene (B[a]P), with single- and double-stranded DNA probes. Differences in potency and reaction kinetics were studied for chemical and DNA type. A relative interaction potency equivalency (PEQ) of a chemical was determined by ratio of interaction potency of a chemical to BPDE as the reference chemical in the reaction with single- and double-stranded oligodeoxynucleotides. PEQs were found to be BPDE > PGE > SO > MMS > Cl(4)HQ for single-stranded oligodeoxynucleotides while they were found to be BPDE > PGE > Cl(4)HQ > MMS > SO for double-stranded oligodeoxynucleotides. Kinetics evaluation revealed that BPDE reacted with both DNA probes at a significantly faster rate, as compared to the remaining test chemicals. Equilibrium was reached within an hour for BPDE, but required a minimum of 48 h for the remaining chemicals. First-order rate constants were (1.61 ± 0.2) × 10(-3) s(-1) and (3.18 ± 0.4) × 10(-4) s(-1) for reaction of BPDE with double- and single-stranded DNA, respectively. The remaining chemicals possessed rate constants from 2 to 13 × 10(-6) s(-1) with a relative kinetic order for reaction with DNA of BPDE ≫ MMS > SO > PGE > Cl(4)HQ for ds-DNA and BPDE ≫ SO ≈ Cl(4)HQ ≈ MMS > PGE for ss-DNA. We further found that the reaction potency, defined by dose-response between chemical pollutants and DNA, depends on the form of DNA present for reaction. Noteworthy, we found that relative PEQ did not follow the same kinetic trends. However, our preliminary findings suggest that reaction kinetics, in combination with relative interaction potency, may be a significant parameter that can be used to evaluate the hazard level of environmental pollutants.
Impact of environmental conditions on aggregation kinetics of hematite and goethite nanoparticles
NASA Astrophysics Data System (ADS)
Xu, Chen-yang; Deng, Kai-ying; Li, Jiu-yu; Xu, Ren-kou
2015-10-01
Hematite and goethite nanoparticles were used as model minerals to investigate their aggregation kinetics under soil environmental conditions in the present study. The hydrodynamic diameters of hematite and goethite nanoparticles were 34.4 and 66.3 nm, respectively. The positive surface charges and zeta potential values for goethite were higher than for hematite. The effective diameter for goethite was much larger than for hematite due to anisotropic sticking of needle-shaped goethite during aggregation. Moreover, the critical coagulation concentration (CCC) values of nanoparticles in solutions of NaNO3, NaCl, NaF, and Na2SO4 were 79.2, 75.0, 7.8, and 0.5 mM for hematite and they were 54.7, 62.6, 5.5, and 0.2 mM for goethite, respectively. The disparity of anions in inducing hematite or goethite aggregation lay in the differences in interfacial interactions. NO3 - and Cl- could decrease the zeta potential and enhance aggregation mainly through increasing ionic strength and compressing electric double layers of hematite and goethite nanoparticles. F- and SO4 2- highly destabilized the suspensions of nanoparticles mainly through specific adsorption and then neutralizing the positive surface charges of nanoparticles. Specific adsorption of cations could increase positive surface charges and stabilize hematite and goethite nanoparticles. The Hamaker constants of hematite and goethite nanoparticles were calculated to be 2.87 × 10-20 and 2.29 × 10-20 J-1, respectively. The predicted CCC values based on DLVO theory were consistent well with the experimentally determined CCC values in NaNO3, NaCl, NaF, and Na2SO4 systems, which demonstrated that DLVO theory could successfully predict the aggregation kinetics even when specific adsorption of ions occurred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern
Irradiation at 239 {+-} 20 nm of a p-H{sub 2} matrix containing methoxysulfinyl chloride, CH{sub 3}OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to {nu}{sub 1}, CH{sub 2} antisymmetric stretching), 2999.5 ({nu}{sub 2}, CH{sub 3} antisymmetric stretching), 2950.4 ({nu}{sub 3}, CH{sub 3} symmetric stretching), 1465.2 ({nu}{sub 4}, CH{sub 2} scissoring), 1452.0 ({nu}{sub 5}, CH{sub 3} deformation), 1417.8 ({nu}{sub 6}, CH{sub 3} umbrella), 1165.2 ({nu}{sub 7}, CH{sub 3} wagging), 1152.1 ({nu}{sub 8}, S=O stretching mixed with CH{sub 3} rocking), 1147.8 ({nu}{sub 9}, S=O stretching mixed with CH{sub 3} wagging),more » 989.7 ({nu}{sub 10}, C-O stretching), and 714.5 cm{sup -1} ({nu}{sub 11}, S-O stretching) modes of syn-CH{sub 3}OSO. When CD{sub 3}OS(O)Cl in a p-H{sub 2} matrix was used, lines at 2275.9 ({nu}{sub 1}), 2251.9 ({nu}{sub 2}), 2083.3 ({nu}{sub 3}), 1070.3 ({nu}{sub 4}), 1056.0 ({nu}{sub 5}), 1085.5 ({nu}{sub 6}), 1159.7 ({nu}{sub 7}), 920.1 ({nu}{sub 8}), 889.0 ({nu}{sub 9}), 976.9 ({nu}{sub 10}), and 688.9 ({nu}{sub 11}) cm{sup -1} appeared and are assigned to syn-CD{sub 3}OSO; the mode numbers correspond to those used for syn-CH{sub 3}OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86/aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH{sub 3}OSO near 2991, 2956, 1152, and 994 cm{sup -1} to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD{sub 3}OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H{sub 2} such that the Cl atom, produced via UV photodissociation of CH{sub 3}OS(O)Cl in situ, might escape from the original cage to yield isolated CH{sub 3}OSO radicals.« less
Gupta, Poulami; De, Bratati
2017-07-03
A GC-MS based analytical approach was undertaken to understand the metabolomic responses of seedlings of 2 salt sensitive (Sujala and MTU 7029) and 2 tolerant varieties (Bhutnath, and Nonabokra) of indica rice (Oryza sativa L.) to NaCl induced stress. The 4 varieties responded differently to NaCl treatment with respect to the conserved primary metabolites (sugars, polyols, amino acids, organic acids and certain purine derivatives) of the leaf of rice seedlings. However, there were significant differences in salt induced production of chorismic acid derivatives. Serotonin level was increased in both the salt tolerant varieties in response to NaCl induced stress. In both the salt tolerant varieties, increased production of the signaling molecule gentisic acid in response to NaCl treatment was noticed. Salt tolerant varieties also produced increased level of ferulic acid and vanillic acid. In the salt sensitive varieties, cinnamic acid derivatives, 4-hydroxycinnamic acid (in Sujala) and 4-hydroxybenzoic acid (in MTU 7029), were elevated in the leaves. So increased production of the 2 signaling molecules serotonin and gentisic acid may be considered as 2 important biomarker compounds produced in tolerant varieties contributing toward NaCl tolerance.
NASA Astrophysics Data System (ADS)
Krishna Kumar, S.; Bharani, R.; Magesh, N. S.; Godson, Prince S.; Chandrasekar, N.
2014-12-01
The present study was carried out to evaluate the groundwater quality and its suitability for drinking purposes in the urban coastal aquifers of part of south Chennai, Tamil Nadu, India. Twenty-three groundwater samples were collected during March 2012. The minimum and maximum values of pH (6.3-8 on scale), electrical conductivity (620-12,150 μS/cm), total dissolved solids (399.28-7,824.6 mg/l), carbonate (0-30 mg/l), bicarbonate (0.9-58.9 mg/l), chloride (70.9-4,067.89 mg/l), sulphate (17.4-105 mg/l), nitrate (0.4-6.0 mg/l), calcium (30-200 mg/l), magnesium (1.2-164 mg/l), sodium (69-1,490 mg/l) and potassium (8-340 mg/l) were recorded in the coastal aquifers of Chennai city. The groundwater samples show that the majority of the sampling points clustered on the NaCl and mixed CaMgCl facies of the piper trilinear diagram. In the Gibbs diagram, the majority of the sampling points fall under rock water and evaporation dominance field. Fuzzy membership classification suggests that the majority of the samples fall under good water type followed by excellent water and poor water categories. Groundwater quality index showing the majority of the samples falls under excellent to poor category of water. A positive correlation was observed with Cl-, SO4 2-, Ca2+, Na+, K+, EC and TDS. The extracted results of the correlation matrix and geochemical analysis suggest that the dominant ions of groundwater (Na+, Ca2+, K+, Cl- and SO4 2-) were derived from seawater intrusion and gypsum dissolution process. Nitrate concentration is most significantly derived from anthropogenic sources.
NASA Astrophysics Data System (ADS)
Wang, Yan; Wai, Ka Ming; Gao, Jian; Liu, Xiaohuan; Wang, Tao; Wang, Wenxing
Ninety precipitation samples were collected from 2004 to 2006 at the summit of the Mt. Tai in order to detect the impacts of regional sources of pollution on precipitation chemistry in the highly polluted North China Plains. The annual volume-weighted pH of the precipitation was found to be 4.7, in contrast to the less-acidic nature (pH>5.6) of precipitation in northern China reported in many past studies. Non-sea-salt (nss)-SO 42- (131.5 μeq L -1), NH 4+ (82.2 μeq L -1) and Ca 2+ (61.4 μeq L -1) were the most abundant species in precipitation. The wide range of the Cl -/Na + ratios (0.2-5.4) in precipitation implied the co-existence of Cl - enrichment and depletion. The nss-SO 42-, NO 3-, NH 4+, Ca 2+ and K + concentrations peaked in spring, but with the lowest acidity. The very strong correlations of Ca 2+ with nss-SO 42- and NO 3- suggested a significant uptake of nss-SO 42- and NO 3- on dust aerosol during spring. Samples with the lowest pH value (4.5) are associated with the stagnant air conditions. The nss-SO 42- and NH 4+ concentrations at Mt. Tai were the highest compared with those at the EANET, NADP and EMEP sites of similar elevations. With relatively high rainfall amount measured at our site, the high wet deposition of the major acidic/alkaline species exerted large loadings to the ecosystem. The associated impacts on agriculture, soil and aquatic systems should be investigated.
Yoo, Jong-Chan; Park, Sang-Min; Yoon, Geun-Seok; Tsang, Daniel C W; Baek, Kitae
2017-10-01
In this study, we evaluated the feasibility of using ferric salts including FeCl 3 and Fe(NO 3 ) 3 as extracting and oxidizing agents for a soil washing process to remediate Pb-contaminated soils. We treated various Pb minerals including PbO, PbCO 3 , Pb 3 (CO 3 ) 2 (OH) 2 , PbSO 4 , PbS, and Pb 5 (PO 4 ) 3 (OH) using ferric salts, and compared our results with those obtained using common washing agents of HCl, HNO 3 , disodium-ethylenediaminetetra-acetic acid (Na 2 -EDTA), and citric acid. The use of 50 mM Fe(NO 3 ) 3 extracted significantly more Pb (above 96% extraction) from Pb minerals except PbSO 4 (below 55% extraction) compared to the other washing agents. In contrast, washing processes using FeCl 3 and HCl were not effective for extraction from Pb minerals because of PbCl 2 precipitation. Yet, the newly formed PbCl 2 could be dissolved by subsequent wash with distilled water under acidic conditions. When applying our washing method to remediate field-contaminated soil from a shooting range that had high concentrations of Pb 3 (CO 3 ) 2 (OH) 2 and PbCO 3 , we extracted more Pb (approximately 99% extraction) from the soil using 100 mM Fe(NO 3 ) 3 than other washing agents at the same process conditions. Our results show that ferric salts can be alternative washing agents for Pb-contaminated soils in view of their extracting and oxidizing abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessment of groundwater quality in Kashipur Block, Purulia district, West Bengal
NASA Astrophysics Data System (ADS)
Kundu, Anindita; Nag, S. K.
2018-03-01
Hydrogeochemical investigation of groundwater resources of Kashipur Block, Purulia district, West Bengal has been carried out to assess the water quality for domestic and irrigation uses. Twenty groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, hardness, major anions (CO3 2-, HCO3 -, Cl-, SO4 2-, F-) and cations (Ca2+, Mg2+, Fe2+, Na+, K+). Study results reveal that the groundwater of the area is mostly acidic in nature. The trend amongst average ionic concentrations of cations and anions is Mg2+ > Ca2+ > Na+ > Fe2+ > K+ and Cl- > HCO3 - > CO3 2- > SO4 2- > F- respectively during the post monsoon whereas the trend for cations and anions are Mg2+ > Ca2+> Na+ > K+ > Fe and Cl- > HCO3 - > SO4 2- > F- > CO3 - in pre monsoon session, respectively. To explore the ionic toxicity of the study area, the derived parameters like sodium adsorption ratio, soluble sodium percentage, residual sodium carbonate, magnesium adsorption ratio, Kelly's ratio and permeability index were calculated. The hydro geochemical data suggest that weathering of rock forming minerals along with secondary contributions from agricultural and anthropogenic sources are mainly controlling the groundwater composition of Kashipur Block, Purulia District. According to piper diagram, water samples of most of the area of the block are fresh water and in some areas sulphate rich throughout the year. All samples are distributed to central rock dominance category. Groundwater chemistry of this block is mainly controlled by the interaction existing between the litho units and the percolating water into the subsurface domain. However, the groundwater quality and suitability of this study area can be termed as good to moderate with a few exceptions which have been encountered on a local scale.
Baranov, Sergei; Haddy, Alice
2017-03-01
Oxygen evolution by photosystem II (PSII) involves activation by Cl - ion, which is regulated by extrinsic subunits PsbQ and PsbP. In this study, the kinetics of chloride activation of oxygen evolution was studied in preparations of PSII depleted of the PsbQ and PsbP subunits (NaCl-washed and Na 2 SO 4 /pH 7.5-treated) over a pH range from 5.3 to 8.0. At low pH, activation by chloride was followed by inhibition at chloride concentrations >100 mM, whereas at high pH activation continued as the chloride concentration increased above 100 mM. Both activation and inhibition were more pronounced at lower pH, indicating that Cl - binding depended on protonation events in each case. The simplest kinetic model that could account for the complete data set included binding of Cl - at two sites, one for activation and one for inhibition, and four protonation steps. The intrinsic (pH-independent) dissociation constant for Cl - activation, K S , was found to be 0.9 ± 0.2 mM for both preparations, and three of the four pK a s were determined, with the fourth falling below the pH range studied. The intrinsic inhibition constant, K I , was found to be 64 ± 2 and 103 ± 7 mM for the NaCl-washed and Na 2 SO 4 /pH7.5-treated preparations, respectively, and is considered in terms of the conditions likely to be present in the thylakoid lumen. This enzyme kinetics analysis provides a more complete characterization of chloride and pH dependence of O 2 evolution activity than has been previously presented.
The hydrogeological conditions in Sahel Hasheesh, Eastern Desert, Eg
NASA Astrophysics Data System (ADS)
Abdalla, Mohamed A.; Mekhemer, Hatem M.; Mabrou, Walid Abdallah
2016-06-01
The groundwater development in Egypt in the present time is of a vital importance than in past few years. A comprehensive plan for new land reclamation projects has been recently established. To achieve these plans new sources of water must be available. This has been done by conducting a number of VES'S where interpreted by a comparison with the existing drilled borehole soil samples. The optimum resistivity model is obtained by matching method using "IPI2Win" Moscow State University 2000 software computer programs for resistivity interpretation. The results of the quantitative interpretation of the resistivity curves has been represented as geoelectric sections, showing the thickness and true electric resistivity values of the different geoelectric layers. The results of quantitative interpretation of the vertical electrical soundings show subsurface five geoelectric units and the aquifer system belongs to lower Miocene and the total salinity of 2451.2 ppm. The depth to water surface is 88.05 m and the total dissolved solids are 2451.2 ppm (Mekhemer well). The salt assemblages in Sahel Hasheesh are NaCl, MgCl2, MgSO4, CaSO4, Ca(HCO3)2. This marine water is of brackish sodium chloride water type (NaCl).
Air quality status during Diwali festival of India: a case study.
Rao, Padma S; Gajghate, D G; Gavane, A G; Suryawanshi, P; Chauhan, C; Mishra, S; Gupta, N; Rao, C V C; Wate, S R
2012-08-01
The PM(2.5) and PM(10) samples were collected during Diwali celebration from study area and characterized for ionic concentration of four anions (NO(3) (-), NO(2) (-), Cl(-), SO(4) (2-)) and five cations (K(+), Mg(2+), NH(4) (+), Ca(2+), Na(+)). The results showed that the ionic concentrations were three times compared to those on pre and post Diwali days. Predominant ions for PM(2.5) were K(+) 33.7 μg/m(3), Mg(+) 31.6 μg/m(3), SO(4) (2-) 22.1 μg/m(3), NH(4) (+) 17.5 μg/m(3) and NO(3) (-) 18 μg/m(3) and for PM(10) the ionic concentrations were Mg(+) 29.6 μg/m(3), K(+) 26 μg/m(3), SO(4) (2-) 19.9 μg/m(3), NH(4) (+) 16.8 μg/m(3) and NO(3) (-) 16 μg/m(3). While concentration of SO(2) and NO(2) were 17.23, 70.33 μg/m(3) respectively.
Partitioning of mercury in aqueous biphasic systems and on ABEC resins.
Rogers, R D; Griffin, S T
1998-06-26
Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABS) can be utilized to separate and recover metal ions in environmental and hydrometallurgical applications. A concurrent study was conducted comparing the partitioning of mercury between aqueous layers in an ABS [Me-PEG-5000/(NH4)2SO4] and partitioning of mercury from aqueous solutions to aqueous biphasic extraction chromatographic (ABEC-5000) resins. In ammonium sulfate solutions, mercury partitions to the salt-rich phase in ABS, but by using halide ion extractants, mercury will partition to the PEG-rich phase after formation of a chloro, bromo or iodo complex. The efficacy of the extractant increases in the order Cl-
Synthesis and oxidation of CpIrIII compounds: functionalization of a Cp methyl group.
Park-Gehrke, Lisa S; Freudenthal, John; Kaminsky, Werner; Dipasquale, Antonio G; Mayer, James M
2009-03-21
[CpIrCl(2)](2) () and new CpIr(III)(L-L)X complexes (L-L = N-O or C-N chelating ligands; X = Cl, I, Me) have been prepared and their reactivity with two-electron chemical oxidants explored. Reaction of with PhI(OAc)(2) in wet solvents yields a new chloro-bridged dimer in which each of the Cp ligands has been singly acetoxylated to form [Cp(OAc)Ir(III)Cl(2)](2) () (Cp(OAc) = eta(5)-C(5)Me(4)CH(2)OAc). Complex and related carboxy- and alkoxy-functionalized Cp(OR) complexes can also be prepared from plus (PhIO)(n) and ROH. [Cp(OAc)Ir(III)Cl(2)](2) () and the methoxy analogue [Cp(OMe)Ir(III)Cl(2)](2) () have been structurally characterized. Treatment of [CpIrCl(2)](2) () with 2-phenylpyridine yields CpIr(III)(ppy)Cl () (ppy = cyclometallated 2-phenylpyridyl) which is readily converted to its iodide and methyl analogues CpIr(III)(ppy)I and CpIr(III)(ppy)Me (). CpIr(III) complexes were also prepared with N-O chelating ligands derived from anthranilic acid (2-aminobenzoic acid) and alpha-aminoisobutyric acid (H(2)NCMe(2)COOH), ligands chosen to be relatively oxidation resistant. These complexes and were reacted with potential two-electron oxidants including PhI(OAc)(2), hexachlorocyclohexadienone (C(6)Cl(6)O), N-fluoro-2,4,6-trimethylpyridinium (Me(3)pyF(+)), [Me(3)O]BF(4) and MeOTf (OTf = triflate, CF(3)SO(3)). Iridium(V) complexes were not observed or implicated in these reactions, despite the similarity of the potential products to known CpIr(V) species. The carbon electrophiles [Me(3)O]BF(4) and MeOTf appear to react preferentially at the N-O ligands, to give methyl esters in some cases. Overall, the results indicate that Cp is not inert under oxidizing conditions and is therefore not a good supporting ligand for oxidizing organometallic complexes.
NASA Astrophysics Data System (ADS)
Zhai, Guangyu; Chai, Guorong; Zhang, Haifeng
2017-08-01
In this paper we aimed to collect water-soluble anion and cationic through rapid capturing system of atmospheric fine particles in order to analyze the source of water-soluble ions of atmospheric PM2.5 in Lanzhou city, and the characteristics of hourly concentration changes in different sand and dust weather processes. The author also applied Hysplit4.8 to conduct backward trajectory analysis. The results showed that the correlation between water-soluble ions is instrumental to infer the forms of water-soluble ions in Lanzhou, such as (NH4) 2 SO4, NH4NO3, CaSO4, and NH4Cl. Lanzhou has been severely polluted by sand and dust apart from the increasing amount of Ca2+ under different dust sources and transmission paths. Na+ was also elevated in March, resulted from the dust going through the Hexi Corridor from the Taklimakan. Furthermore, in April Cl- also increased due to the dust being derived from Outer Mongolia then passing Qaidam Basin. In addition, Na+ dramatically went up in the process of precipitation.
The inorganic speciation of tin(II) in aqueous solution
NASA Astrophysics Data System (ADS)
Cigala, Rosalia Maria; Crea, Francesco; De Stefano, Concetta; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio
2012-06-01
This paper reports new voltammetric measurements on the interactions between tin(II) and the most important natural inorganic ligands, OH-, Cl-, F-, CO32-, SO42- and PO43-. For a better understanding of tin(II) speciation, an analysis is also given of prior data on the same systems from the literature. The formation constants were determined at t = 25 °C in different ionic media and at different ionic strengths, specifically the following: Sn(OH)q (0.1 ⩽ I/mol L-1 ⩽ 1.0 in NaNO3), SnClr and Sn(OH)Cl (0.1 ⩽ I/mol L-1 ⩽ 2.3 in Na(NO3, Cl)), Sn(SO4)r (0.1 ⩽ I/mol L-1 ⩽ 1.6 in Na(NO3, SO4)), SnHqCO3 and SnHqPO4 (0.15 ⩽ I/mol L-1 ⩽ 1.0 in NaNO3), where the subscripts r and q represent the stoichiometric coefficients. Concerning the SnFr species, reliable literature values were considered (0.15 ⩽ I/mol L-1 ⩽ 1.0 in NaClO4). Fifteen voltammetric measurements were performed in synthetic seawater; the total seawater binding ability was evaluated by a model in which synthetic seawater is expressed as a single salt, BA. The formation of species between tin(II) and the anion of the marine salt (A) was also proposed, and the corresponding stability constants at different salinities (5 ⩽ S ⩽ 50) were reported. In addition, studies on the solubility of Sn(OH)2(s) were carried out using voltammetry and light scattering measurements. The "extra-stability" of the mixed species with respect to the parent species was evaluated, in particular for Sn(OH)Cl and the corresponding species involving the anion of the marine salt (A). The dependence of the formation constants on ionic strength was analysed using extended Debye-Hückel and Specific ion Interaction Theory (SIT) type equations. Tin(II) speciation was also evaluated in different natural fluid conditions, where, in all cases, carbonate complexation was predominant, hampering the formation of hydrolytic species throughout the investigated pH range. Moreover, some formation enthalpy changes were calculated for the Sn(OH)+, Sn(OH)2(aq), Sn(OH)2(s), Sn(OH)3-, Sn(OH)22+, Sn(OH)42+, Sn(OH)Cl, SnCl+, SnCl2 and SnCl3- species on the basis of the available literature stability constant values at different temperatures and using the empirical relationships reported in the literature. The ΔH values at t = 25 °C were positive in all cases except for the Sn(OH)2(s) and Sn(OH)3- species, indicating an increase in the stability constant values with increasing temperature. This work represents an advance in the knowledge, understanding and modelling of the inorganic speciation of tin(II) in natural fluids, particularly for solutions containing chloride, fluoride, sulphate, carbonate and phosphate anions.
Sun, Yuanyuan; Yue, Qinyan; Mao, Yanpeng; Gao, Baoyu; Gao, Yuan; Huang, Lihui
2014-01-30
FeCl3, AlCl3 and MnCl2 were used as the assisted activation agent in activated carbon preparation by H3PO4 activation using microwave heating method. The physico-chemical properties of activated carbons were investigated by scanning electron microscope (SEM), N2 adsorption/desorption, Boehm's titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). To investigate the adsorption performances of chromium onto these newly developed activated carbons, a batch of experiments were performed under different adsorption conditions: solution pH, initial Cr(VI) ion concentration, contact time and co-existing ions. The results suggested that carbon with MnCl2 as assisted activation agent displayed the highest BET surface area (1332m(2)/g) and the highest pore volume (1.060cm(3)/g). FeCl3, AlCl3 and MnCl2 had successfully improved Cr(VI) adsorption and activated carbon with FeCl3 as assisted activation agent exhibited the best uptake capacity. To study the transformation of Cr(VI) in adsorption process, total chromium in the aqueous solution was also recorded. The ratio of the amount of Cr(VI) to Cr(III) on each adsorbent was explained by XPS analysis results. Both the co-existing salts (Na2SO4 and NaNO3) demonstrated promoted effects on Cr(VI) removal by four carbons. The pseudo-second-order model and Freundlich equation displayed a good correlation with adsorption data. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dolníček, Zdeněk; René, Miloš; Hermannová, Sylvie; Prochaska, Walter
2014-04-01
The Okrouhlá Radouň shear zone hosted uranium deposit is developed along the contact of Variscan granites and high-grade metasedimentary rocks of the Moldanubian Zone of the Bohemian Massif. The pre-ore pervasive alteration of wall rocks is characterized by chloritization of mafic minerals, followed by albitization of feldspars and dissolution of quartz giving rise to episyenites. The subsequent fluid circulation led to precipitation of disseminated uraninite and coffinite, and later on, post-ore quartz and carbonate mineralization containing base metal sulfides. The fluid inclusion and stable isotope data suggest low homogenization temperatures (˜50-140 °C during pre-ore albitization and post-ore carbonatization, up to 230 °C during pre-ore chloritization), variable fluid salinities (0-25 wt.% NaCl eq.), low fluid δ18O values (-10 to +2 ‰ V-SMOW), low fluid δ13C values (-9 to -15 ‰ V-PDB), and highly variable ionic composition of the aqueous fluids (especially Na/Ca, Br/Cl, I/Cl, SO4/Cl, NO3/Cl ratios). The available data suggest participation of three fluid endmembers of primarily surficial origin during alteration and mineralization at the deposit: (1) local meteoric water, (2) Na-Ca-Cl basinal brines or shield brines, (3) SO4-NO3-Cl-(H)CO3 playa-like fluids. Pre-ore albitization was caused by circulation of alkaline, oxidized, and Na-rich playa fluids, whereas basinal/shield brines and meteoric water were more important during the post-ore stage of alteration.
McCleskey, R. Blaine; Lowenstern, Jacob B.; Schaper, Jonas; Nordstrom, D. Kirk; Heasler, Henry P.; Mahony, Dan
2016-01-01
The combined geothermal discharge from over 10,000 features in Yellowstone National Park (YNP) can be can be estimated from the Cl flux in the Madison, Yellowstone, Falls, and Snake Rivers. Over the last 30 years, the Cl flux in YNP Rivers has been calculated using discharge measurements and Cl concentrations determined in discrete water samples and it has been determined that approximately 12% of the Cl flux exiting YNP is from the Snake River. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes was quantified at a monitoring site located downstream from the thermal inputs in the Snake River. Beginning in 2012, continuous (15 min) electrical conductivity measurements have been made at the monitoring site. Combining continuous electrical conductivity and discharge data, the Cl and other geothermal solute fluxes were determined. The 2013–2015 Cl fluxes (5.3–5.8 kt/yr) determined using electrical conductivity are comparable to historical data. In addition, synoptic water samples and discharge data were obtained from sites along the Snake River under low-flow conditions of September 2014. The synoptic water study extended 17 km upstream from the monitoring site. Surface inflows were sampled to identify sources and to quantify solute loading. The Lewis River was the primary source of Cl, Na, K, Cl, SiO2, Rb, and As loads (50–80%) in the Snake River. The largest source of SO4 was from the upper Snake River (50%). Most of the Ca and Mg (50–55%) originate from the Snake Hot Springs. Chloride, Ca, Mg, Na, K, SiO2, F, HCO3, SO4, B, Li, Rb, and As behave conservatively in the Snake River, and therefore correlate well with conductivity (R2 ≥ 0.97).
Nishiuchi, Shunsaku; Liu, Shenkui; Takano, Tetsuo
2007-08-01
Chloris virgata Swartz (C. virgata) is a gramineous wild plant that is found in alkaline soil areas in northeast China and is highly tolerant to carbonate stress. We constructed a cDNA library from C. virgata seedlings treated with NaHCO(3), and isolated a type 1 metallothionein (MT1) gene (ChlMT1: AB294238) from the library. The amino acid sequence of ChlMT1 contained 12 cysteine residues that constituted the Cys-X-Cys (X = amino acid except Cys) motifs in the N- and C-terminal regions. Northern hybridization showed that expression of ChlMT1 was induced by several abiotic stresses, from salts (NaCl and NaHCO(3)), a ROS inducer (paraquat), and metals (CuSO(4), ZnSO(4), and CoCl(2)). ChlMT1 expression in leaf was induced by 200 mM NaCl and 100 mM NaHCO(3). About 5 microM Paraquat, 500 microM Zn(2+), and 500 microM Co(2+) also induced expression of ChlMT1 in leaf after 6 h, and 100 microM Cu(2+) induced it after 24 h. Saccharomyces cerevisiae when transformed with the ChlMT1 gene had dramatically increased tolerances to salts (NaCl and NaHCO(3)) and ROS.
Carbon Dioxide Removal by Salty Aerosols
NASA Astrophysics Data System (ADS)
Gokturk, H.
2016-12-01
Aerosols consisting of salt ions dissolved in water are observed in nature as sea spray particles generated by breaking waves. Such aerosols can be also generated artificially by spraying seawater to the atmosphere to create clouds, which was suggested as a method of solar radiation management (SRM). Salty aerosols can be utilized not only for SRM, but also for carbon dioxide removal from the atmosphere, if salt ions carrying charges -2 or more negative are added to the seawater. CO2 is a very stable molecule where carbon to oxygen double bond has a bond strength of 8.3 eV (190 kcal/mol). Therefore the approach chosen here to modify CO2 is to further oxidize it to CO3. Quantum mechanical calculations indicate that CO2 reacts readily with hydroxyl minus ion (OH-) or oxygen double minus ion (O-) to form HCO3- or CO3-, respectively. What is studied in this paper is the utilization of hydrated negative salt ions to create OH- and possibly even O-. The negative ions chosen are chlorine minus ion (Cl-), sulfate double minus ion (SO4-), phosphate triple minus ion (PO4--) and silicate quadruple minus ion (SiO4--). The former two ions exist in seawater, but the latter two ions do not, though they are available as part of water soluble salts such as potassium phosphate. Using quantum mechanical calculations, following reactions were investigated: R1: (Cl-) + H2O => HCl + (OH-), R2: (SO4-) + H2O => (HSO4-) + (OH-), R3: (PO4--) + H2O => (HPO4-) + (OH-), R4: (SiO4--) + H2O => (HSiO4--) + (OH-), R5: (HPO4-) + H2O => (H2PO4-) + (OH-), R6: (HSiO4--) + H2O => (H2SiO4-) + (OH-), R7: (H2SiO4-) + H2O => (H3SiO4-) + (OH-), R8: (SiO4--) + H2O => (H2SiO4-) + (O-). Results indicate that singly charged negative salt ions, such as Cl- in R1, cannot create OH-. Doubly charged negative salt ions, such as SO4- in R2, can create OH-, though the amount of SO4- in seawater is relatively small. Triply or quadruply charged negative ions are even more favorable than doubly charged ions in creating OH- (R3, R4, R6). Quadruply charged negative ions can also create O- (R8), however in practice O- is likely to react with other water molecules to create more OH-. In conclusion, seawater fortified with highly charged negative salt ions and sprayed into the atmosphere has the potential to create aerosols containing OH- which can react with the CO2 and modify it to a carbonate.
NASA Astrophysics Data System (ADS)
Aliev, A. R.; Akhmedov, I. R.; Kakagasanov, M. G.; Aliev, Z. A.; Gafurov, M. M.; Rabadanov, K. Sh.; Amirov, A. M.
2018-03-01
The processes of molecular relaxation in binary crystalline systems KNO3-KClO4, KNO3-KNO2, and K2CO3-K2SO4 are studied via differential thermal analysis and Raman spectroscopy. It is found that the relaxation time of the vibrations ν1( A) of anions NO- 3 and CO2- 3 in systems KNO3-KClO4, KNO3-KNO2, and K2CO3-K2SO4 is less than that in KNO3 and K2CO3, respectively. It is shown that the increased rate of relaxation is explained by an additional relaxation mechanism presented in the system. This mechanism is associated with the excitation of vibrations of anions ClO- 4, NO- 2, and SO2- 4 and the lattice phonons that emerge. It is found that this relaxation mechanism requires correspondence of the frequency difference of these vibrations to the region of sufficiently high density of states of the phonon spectrum.
Taking nature into lab: biomineralization by heavy metal-resistant streptomycetes in soil
NASA Astrophysics Data System (ADS)
Schütze, E.; Weist, A.; Klose, M.; Wach, T.; Schumann, M.; Nietzsche, S.; Merten, D.; Baumert, J.; Majzlan, J.; Kothe, E.
2013-06-01
Biomineralization by heavy metal-resistant streptomycetes was tested to evaluate the potential influence on metal mobilities in soil. Thus, we designed an experiment adopting conditions from classical laboratory methods to natural conditions prevailing in metal-rich soils with media spiked with heavy metals, soil agar, and nutrient-enriched or unamended soil incubated with the bacteria. As a result, all strains were able to form struvite minerals (MgNH4PO4• 6H2O) on tryptic soy broth (TSB)-media supplemented with AlCl3, MnCl2 and CuSO4, as well as on soil agar. Some strains additionally formed struvite on nutrient-enriched contaminated and control soil, as well as on metal contaminated soil without addition of media components. In contrast, switzerite (Mn3(PO4)2• 7H2O) was exclusively formed on minimal media spiked with MnCl2 by four heavy metal-resistant strains, and on nutrient-enriched control soil by one strain. Hydrated nickel hydrogen phosphate was only crystallized on complex media supplemented with NiSO4 by most strains. Thus, mineralization is a dominant property of streptomycetes, with different processes likely to occur under laboratory conditions and sub-natural to natural conditions. This new understanding might have implications for our understanding of biological metal resistance mechanisms. We assume that biogeochemical cycles, nutrient storage and metal resistance might be affected by formation and re-solubilization of minerals like struvite in soil at microscale.
NASA Astrophysics Data System (ADS)
Tsuchida, Akihiro; Shimamura, Takeshi; Sawada, Seiya; Sato, Susumu; Serpone, Nick; Horikoshi, Satoshi
2018-06-01
A microwave-inspired device that generates stable in-liquid plasma (LP) in aqueous media and emits narrow light emission lines at 280-320 nm, 660 nm and 780 nm is examined as a light source capable of driving photochemical reactions and advanced oxidation processes in wastewater treatments. The microwave-driven lighting efficiency was improved by decompressing the inside of the reaction vessel, which resulted in lowering the incident power of the microwaves and suppressed the deterioration of the microwave irradiation antenna. This protocol made it possible to generate continuous stable plasma in water. Evaluation of the LP device was carried out by revisiting the decomposition of 1,4-dioxane in aqueous media against the use of such other conventional water treatment processes as (i) UV irradiation alone, (ii) TiO2-assisted photocatalysis with UV irradiation (UV/TiO2), (iii) oxidation with sodium hypochlorite (NaClO), and (iv) UV-assisted decomposition in the presence of NaClO (UV/NaClO). The in-liquid plasma technique proved superior to these four other methods. The influence of pH on the LP protocol was ascertained through experiments in acidified (HCl and H2SO4) and alkaline (NaOH and KOH) aqueous media. Except for H2SO4, decomposition of 1,4-dioxane was enhanced in both acidic and alkaline media.
Ettler, Vojtech; Mihaljevic, Martin; Sebek, Ondrej; Strnad, Ladislav
2005-05-20
Two air-pollution-control (APC) residues--one from flue gas cooling with alkaline water and one from deionized water cooling--from secondary lead metallurgy were submitted to two different standardized short-term leaching protocols: US EPA toxicity characteristic leaching procedure (TCLP) and static leaching according to Czech/European norm EN 12457-2. The experimental procedure was coupled with detailed mineralogical investigation of the solid material (SEM, XRPD) and speciation-solubility calculations using the PHREEQC-2 geochemical code. Both types of residues were considered as hazardous materials exhibiting substantial leaching of Pb (up to 7130 mg/l) and other inorganic contaminants. However, the APC residue produced by flue gas cooling with alkaline water (sample B) exhibits more favourable leaching and environmental characteristics than that produced by simple deionised water cooling (sample A). At pH < 5, primary caracolite (Na3Pb2(SO4)3Cl) and potassium lead chloride (KCl.2PbCl2) are completely or partially dissolved and transformed to residual anglesite (PbSO4), cotunnite (PbCl2) and laurionite (Pb(OH)Cl). At pH 5-6, anglesite is still the principal residual product, whereas at pH > 6, phosgenite (PbCl2.PbCO3) became the dominant secondary phase. The results are consistent with the mineralogical and geochemical studies focused on acidic forest soils highly polluted by smelter emissions, where anglesite, as a unique Pb-bearing phase, has been detected. From the technological point of view, the mixing of APC residue with alkaline water, followed by an increase in the suspension pH and equilibration with atmospheric CO2, may be used to ensure the precipitation of less soluble Pb carbonates, which are more easily recycled in the Pb recovery process in the metallurgical plant.
Maroń, Anna; Czerwińska, Katarzyna; Machura, Barbara; Raposo, Luis; Roma-Rodrigues, Catarina; Fernandes, Alexandra R; Małecki, Jan G; Szlapa-Kula, Agata; Kula, Slawomir; Krompiec, Stanisław
2018-05-08
Structural, spectroscopic and electrochemical properties of six complexes [AuCl(L1)](PF6)2·CH3CN (1), [AuCl(L2)](PF6)2 (2), [PtCl(L1)](BPh4)·CH3CN (3), [PtCl(L2)](SO3CF3) (4), [CuCl2(L1)] (5) and [CuCl2(L2)]·CH3CN (6) with modified 2,2':6',2''-terpyridine ligands, 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine (L1) and 4'-(4-methoxynaphthalen-1-yl)-2,2':6',2''-terpyridine (L2) were thoroughly investigated and a significant role of the substituent (4-methoxyphenyl or 4-methoxynaphthalen-1-yl) and the metal center was demonstrated. The naphthyl-based substituent was found to increase the emission quantum yield of the luminescent Au(iii) and Pt(ii) complexes. Furthermore, the antiproliferative potential of the reported complexes was examined towards human colorectal (HCT116) and ovarian (A2780) carcinoma cell lines as well as towards normal human fibroblasts. The Au(iii) complex 2 and Cu(ii) complex 5 were found to have a higher antiproliferative effect on HCT116 colorectal and A2780 ovarian carcinoma cells when compared with the Pt(ii) complex with the same ligand (4). The order of cytotoxicity in both cell lines is 2 > 6 > 1 > 3 > 4. Complex 2 seems to be more cytotoxic towards HCT116 and A2780 cancer cell lines with IC50 values 300× and 130× higher in normal human fibroblasts compared to the respective cancer cells. The viability loss induced by the complexes agrees with Hoechst 33258 staining and the typical morphological apoptotic characteristics like chromatin condensation and nuclear fragmentation and flow cytometry assay. The induction of apoptosis correlates with the induction of reactive oxygen species (ROS). Fluorescence microscopy analysis indicates that after 3 h of incubation, complexes 1-4 are localized inside HCT116 cells and the high levels of internalization correlate with their cytotoxicity.
Perchlorate in pleistocene and holocene groundwater in North-Central New Mexico
Plummer, Niel; Böhlke, J.K.; Doughten, M.W.
2006-01-01
Groundwater from remote parts of the Middle Rio Grande Basin in north-central New Mexico has perchlorate (ClO4-) concentrations of 0.12-1.8 ??g/L Because the water samples are mostly preanthropogenic in age (0-28 000 years) and there are no industrial sources in the study area, a natural source of the ClO4- is likely. Most of the samples have Br-, Cl-, and SO42- concentrations that are similar to those of modern bulk atmospheric deposition with evapotranspiration (ET) factors of about 7-40. Most of the ET values for Pleistocene recharge were nearly twice that for Holocene recharge. The NO3-/Cl- and ClO4-/Cl- ratios are more variable than those of Br -/Cl- or SO42-/Cl-. Samples thought to have recharged under the most arid conditions in the Holocene have relatively high NO3-/Cl- ratios and low ??15N values (+1 per mil (???)) similar to those of modern bulk atmospheric N deposition. The ??18O values of the NO 3- (-4 to 0 ???) indicate that atmospheric N0 3- was not transmitted directly to the groundwater but may have been cycled in the soils before infiltrating. Samples with nearly atmospheric NO3-/Cl- ratios have relatively high ClO4- concentrations (1.0-1.8 ??g/L) with a nearly constant ClO4-/Cl- mole ratio of (1.4 ?? 0.1) ?? 10-4, which would be consistent with an average ClO 4- concentration of 0.093 ?? 0.005 ??g/L in bulk atmospheric deposition during the late Holocene in north-central NM. Samples thought to have recharged underwetter conditions have higher ??15N values (+3 to +8 ???), lower N03-/Cl- ratios, and lower ClO4-/Cl- ratios than the ones most likely to preserve an atmospheric signal. Processes in the soils that may have depleted atmospherically derived NO3- also may have depleted ClO4- to varying degrees prior to recharge. If these interpretations are correct, then ClO4- concentrations of atmospheric origin as high as 4 ??g/L are possible in preanthropogenic groundwater in parts of the Southwest where ET approaches a factor of 40. Higher ClO4- concentrations in uncontaminated groundwater could occur in recharge beneath arid areas where ET is greater than 40, where long-term accumulations of atmospheric salts are leached suddenly from dry soils, or where other (nonatmospheric) natural sources of ClO/4- exist.
Experimental study of the solubilities of pyrite in NaCl-bearing aqueous solutions at 250-350°C
NASA Astrophysics Data System (ADS)
Ohmoto, Hiroshi; Hayashi, Ken-Ichiro; Kajisa, Yukari
1994-05-01
A total of sixty-three silica capsule experiments were performed to determine the solubilities of pyrite in NaCl-bearing aqueous solutions (0, 0.1, 0.5, 1, 2, 3, and 4 m) at 250, 300, and 350°C at pressures of vapor/liquid coexistence. The starting materials in the capsules were H2O(1) + FeS2( s) + S ° ( s) ± NaCl ( s). After reaction times up to ~ 60 days, the quenched solutions were analyzed for ΣFe, σH2S, ΣSO42-, and pH; the ΣFe content, ranging 5-1,300 ppm, generally increased with increasing temperature and ΣCl content of solution. The calculated solution compositions at the experimental P-T conditions fall mostly in the following ranges: pH = 2.0 to 3.2, logaH2s = -1.9 to -1.0, logaHSO4- = -3.8 to -2.0, and logaH2( aq) = -7.0 to -5.0. Evaluation of the experimental data suggests that the various redox equilibria between solution and mineral were attained in most of the experimental solutions. The pH, aH2S( aq) , and aH2( aq) of the solutions were controlled by the sulfur hydrolysis reaction (48° + 4 H2O( l) = 3 H2S( aq) + HSO4- + H+) and the sulfide/sulfate reaction ( H2S( aq) + 4 H2O( l) = 4 H2( aq) + H+ + HSO4-). The pyrite solubility is controlled by a general reaction: FeS2( s) + nCl- + 2 H+ + H2( aq) = FeCln2- n + 2 H2S( aq). The equilibrium constants for this reaction, as well as those for association of ferrous chloride complexes ( Fe2+ + nCl- = FeCln2- n), were obtained at 250, 300, and 350°C; they were used also to compute the equilibrium constants for the reactions controlling the solubilities of pyrrhotite, magnetite, and hematite: FeS( s) + 2 H+ + nCl- = FeCln2- n + H2S( aq); Fe3O4( s) + 6 H+ + 3 nCl- + H2( aq) = 3 FeCln2- n + H2O( aq); Fe2O3( s) + 4 H+ + 2 nCl- + H2( aq) = 2 FeCln2- n + 3 H2O( aq). Our experimental data suggest that the dominant Fe-Cl complex is FeCl + in solutions of ΣCl ≤ 0.5 m at 250°C and ΣCl ≤ 0.1 m at 300 and 350°C; FeCl 20 is dominant in solutions of the higher ΣCl contents at each temperature. The association constants for FeCl + and FeCl 2 estimated from this study are in good agreement with those estimated recently by HEINRICH and SEWARD (1990), DING and SEYFRIED (1992), Fein et al. (1992), and Palmer and Hyde (1992). Our solubility constants for pyrite are in good agreement with those obtained by CRERAR et al. (1978) and WOOD et al. (1987) for 3 m ΣCl solution at 350°C, but are 0.5-2 orders of magnitude higher than those obtained by them at lower temperatures and/or at lower ΣCl values. Our data suggest that natural hydrothermal fluids that are in equilibrium with pyrite, the most abundant sulfide mineral in the upper crust, are able to transport sufficient amounts (> 10 -m) of both Fe and H 2S to produce pyrite-rich ore deposits at temperatures above 250°C, and possibly at lower temperatures. The solubility of pyrite (and of other Fe-bearing minerals) is affected very little by a change of temperature, provided the pH, aH2( aq), aH2S( aq), and ΣCl values remain constant.
McCleskey, R. Blaine; Clor, Laura; Lowenstern, Jacob B.; Evans, William C.; Nordstrom, D. Kirk; Heasler, Henry; Huebner, Mark
2012-01-01
The thermal output from the Yellowstone magma chamber can be estimated from the Cl flux in the major rivers in Yellowstone National Park; and by utilizing continuous discharge and electrical conductivity measurements the Cl flux can be calculated. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes (Na, SO4, F, HCO3, SiO2, K, Li, B, and As) was quantified at monitoring sites along the Madison, Gibbon, and Firehole Rivers, which receive discharge from some of the largest and most active geothermal areas in Yellowstone. Except for some trace elements, most solutes behave conservatively and the ratios between geothermal solute concentrations are constant in the Madison, Gibbon, and Firehole Rivers. Hence, dissolved concentrations of Cl, Na, SO4, F, HCO3, SiO2, K, Li, Ca, B and As correlate well with conductivity (R2 > 0.9 for most solutes) and most exhibit linear trends. The 2011 flux for Cl, SO4, F and HCO3 determined using automated conductivity sensors and discharge data from nearby USGS gaging stations is in good agreement with those of previous years (1983–1994 and 1997–2008) at each of the monitoring sites. Continuous conductivity monitoring provides a cost- and labor-effective alternative to existing protocols whereby flux is estimated through manual collection of numerous water samples and subsequent chemical analysis. Electrical conductivity data also yield insights into a variety of topics of research interest at Yellowstone and elsewhere: (1) Geyser eruptions are easily identified and the solute flux quantified with conductivity data. (2) Short-term heavy rain events can produce conductivity anomalies due to dissolution of efflorescent salts that are temporarily trapped in and around geyser basins during low-flow periods. During a major rain event in October 2010, 180,000 kg of additional solute was measured in the Madison River. (3) The output of thermal water from the Gibbon River appears to have increased by about 0.2%/a in recent years, while the output of thermal water for the Firehole River shows a decrease of about 10% from 1983 to 2011. Confirmation of these trends will require continuing Cl flux monitoring over the coming decades.
Romero, Jennifer V; Smith, Jock W H; Sullivan, Braden M; Croll, Lisa M; Dahn, J R
2012-01-09
Ternary libraries of 64 ZnO/CuO/CuCl(2) impregnated activated carbon samples were prepared on untreated or HNO(3)-treated carbon and evaluated for their SO(2) and NH(3) gas adsorption properties gravimetrically using a combinatorial method. CuCl(2) is shown to be a viable substitute for HNO(3) and some compositions of ternary ZnO/CuO/CuCl(2) impregnated carbon samples prepared on untreated carbon provided comparable SO(2) and NH(3) gas removal capacities to the materials prepared on HNO(3)-treated carbon. Through combinatorial methods, it was determined that the use of HNO(3) in this multigas adsorbent formulation can be avoided.
Sulfate-bicarbonate exchange in brush-border membranes from rat renal cortex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritchard, J.B.
1987-02-01
Under Na/sup +/-free conditions /sup 35/SO/sub 4//sup 2 -/ uptake by rat renal brush-border membrane (BBM) vesicles could be driven by imposition of a HCO/sup -//sub 3/ gradient (in greater than out). The initial rate of /sup 35/SO/sub 4//sup 2 -/ uptake was stimulated 10-fold, and peak overshoot exceeded equilibrium uptake by 2-3 times. Cl/sup -/, SCN/sup -/, NO/sub 3//sup -/, I/sup -/, and OH/sup -/ were able to substitute for HCO/sub 3//sup -/. Divalent anions, including /sup 35/SO/sub 4//sup 2 -/ itself, were less effective as counterions. HCO/sub 3//sup -/-SO/sub 4//sup 2 -/ exchange was cis-inhibited by disulfonic stilbenes,more » ((SITS)(DIDS)), phloretin, Hg, and S/sub 2/O/sub 3//sup 2 -/. HCO/sub 3//sup -/-driven /sup 35/SO/sub 4//sup 2 -/ uptake was saturable, with an apparent K/sub m/ of 0.4 mM for SO/sub 4//sup 2 -/. Simultaneous imposition of Na/sup +/ and HCO/sub 3//sup -/ gradients produced approximately additive stimulation of /sup 35/SO/sub 4//sup 2 -/ uptake. The HCO/sub 3//sup -/-driven component of /sup 35/SO/sub 4//sup 2 -/ uptake, but not the component driven by Na/sup +/, was inhibited by SITS. Finally, Na/sup +/-driven SO/sub 4//sup 2 -/ accumulation could be reduced by imposing an out greater than in HCO/sub 3//sup +/ gradient, conditions accelerating exchange driven SO/sub 4//sup 2 -/ efflux. These findings indicate the presence of separate Na/sup +/-SO/sub 4//sup 2 -/ cotransport and SO /sub 4//sup 2 -/-anion exchange pathways in the same BBM vesicles.« less
Rain water chemistry in Ankara, Turkey
NASA Astrophysics Data System (ADS)
Tuncel, Semra G.; Ungör, Sevgi
Samples of rain water were collected in Ankara for the period between September 1989 and May 1990, by using wet-only sampler. Concentrations of major cations (H +, Na + K + Ca 2+ and NH 4+) and major anions (Cl -, NO 3- and SO 42-) were determined for the first time in Turkey. The rain water was not acidic owing to high concentrations of alkaline soil particles in the atmosphere. However, the concentrations of acid forming ions, such as SO 4- and N03, were higher than the concentrations expected in a typical urban atmosphere. Most of the SO 4- in rain water was in the form of CaSO 4. Rain-aerosol coupling were examined by simultaneous sampling of aerosols with rain. The ions most efficiently scavenged from the atmosphere were found to be SO 42- and Ca 2+.
Zahid, A.; Hassan, M.Q.; Balke, K.-D.; Flegr, M.; Clark, D.W.
2008-01-01
Dissolved major ions and important heavy metals including total arsenic and iron were measured in groundwater from shallow (25-33 m) and deep (191-318 m) tube-wells in southeastern Bangladesh. These analyses are intended to help describe geochemical processes active in the aquifers and the source and release mechanism of arsenic in sediments for the Meghna Floodplain aquifer. The elevated Cl- and higher proportions of Na+ relative to Ca2+, Mg2+, and K+ in groundwater suggest the influence by a source of Na+ and Cl-. Use of chemical fertilizers may cause higher concentrations of NH 4+ and PO 43- in shallow well samples. In general, most ions are positively correlated with Cl-, with Na+ showing an especially strong correlation with Cl-, indicating that these ions are derived from the same source of saline waters. The relationship between Cl-/HCO 3- ratios and Cl- also shows mixing of fresh groundwater and seawater. Concentrations of dissolved HCO 3- reflect the degree of water-rock interaction in groundwater systems and integrated microbial degradation of organic matter. Mn and Fe-oxyhydroxides are prominent in the clayey subsurface sediment and well known to be strong adsorbents of heavy metals including arsenic. All five shallow well samples had high arsenic concentration that exceeded WHO recommended limit for drinking water. Very low concentrations of SO 42- and NO 3- and high concentrations of dissolved Fe and PO 43- and NH 4+ ions support the reducing condition of subsurface aquifer. Arsenic concentrations demonstrate negative co-relation with the concentrations of SO 42- and NO 3- but correlate weakly with Mo, Fe concentrations and positively with those of P, PO 43- and NH 4+ ions. ?? 2007 Springer-Verlag.
Häller, L Jonas L; Mas-Marzá, Elena; Cybulski, Mateusz K; Sanguramath, Rajashekharayya A; Macgregor, Stuart A; Mahon, Mary F; Raynaud, Christophe; Russell, Christopher A; Whittlesey, Michael K
2017-02-28
Relativistic density functional theory calculations, both with and without the effects of spin-orbit coupling, have been employed to model hydride NMR chemical shifts for a series of [Ru(NHC) 4 (L)H] 0/+ species (NHC = N-heterocyclic carbene; L = vacant, H 2 , N 2 , CO, MeCN, O 2 , P 4 , SO 2 , H - , F - and Cl - ), as well as selected phosphine analogues [Ru(R 2 PCH 2 CH 2 PR 2 ) 2 (L)H] + (R = i Pr, Cy; L = vacant, O 2 ). Inclusion of spin-orbit coupling provides good agreement with the experimental data. For the NHC systems large variations in hydride chemical shift are shown to arise from the paramagnetic term, with high net shielding (L = vacant, Cl - , F - ) being reinforced by the contribution from spin-orbit coupling. Natural chemical shift analysis highlights the major orbital contributions to the paramagnetic term and rationalizes trends via changes in the energies of the occupied Ru d π orbitals and the unoccupied σ* Ru-H orbital. In [Ru(NHC) 4 (η 2 -O 2 )H] + a δ-interaction with the O 2 ligand results in a low-lying LUMO of d π character. As a result this orbital can no longer contribute to the paramagnetic shielding, but instead provides additional deshielding via overlap with the remaining (occupied) d π orbital under the L z angular momentum operator. These two effects account for the unusual hydride chemical shift of +4.8 ppm observed experimentally for this species. Calculations reproduce hydride chemical shift data observed for [Ru( i Pr 2 PCH 2 CH 2 P i Pr 2 ) 2 (η 2 -O 2 )H] + (δ = -6.2 ppm) and [Ru(R 2 PCH 2 CH 2 PR 2 ) 2 H] + (ca. -32 ppm, R = i Pr, Cy). For the latter, the presence of a weak agostic interaction trans to the hydride ligand is significant, as in its absence (R = Me) calculations predict a chemical shift of -41 ppm, similar to the [Ru(NHC) 4 H] + analogues. Depending on the strength of the agostic interaction a variation of up to 18 ppm in hydride chemical shift is possible and this factor (that is not necessarily readily detected experimentally) can aid in the interpretation of hydride chemical shift data for nominally unsaturated hydride-containing species. The synthesis and crystallographic characterization of the BAr F 4 - salts of [Ru(IMe 4 ) 4 (L)H] + (IMe 4 = 1,3,4,5-tetramethylimidazol-2-ylidene; L = P 4 , SO 2 ; Ar F = 3,5-(CF 3 ) 2 C 6 H 3 ) and [Ru(IMe 4 ) 4 (Cl)H] are also reported.
Assessment of Groundwater quality in Krishnagiri and Vellore Districts in Tamil Nadu, India
NASA Astrophysics Data System (ADS)
Shanmugasundharam, A.; Kalpana, G.; Mahapatra, S. R.; Sudharson, E. R.; Jayaprakash, M.
2017-07-01
Groundwater quality is important as it is the main factor determining its suitability for drinking, domestic, agricultural and industrial purposes. The suitability of groundwater for drinking and irrigation has been assessed in north and eastern part of Krishnagiri district, South-western part of Vellore district and contiguous with Andhra Pradesh states, India. A total of 31 groundwater samples were collected in the study area. The groundwater quality assessment has been carried out by evaluating the physicochemical parameters such as pH, EC, TDS, {HCO}3^{ - }, Cl-, {SO}4^{2 - }, Ca2+, Mg2+, Na+ and K+. The dominant cations are in the order of Na+ > K+ > Ca2+ > Mg2+ while the dominant anions have the trends of Cl- > {HCO}3^{ - } > {SO}4^{2 - } > CO3. The quality of the water is evaluated using Wilcox diagram and the results reveals that most of the samples are found to be suitable for irrigation. Based on these parameters, groundwater has been assessed in favor of its suitability for drinking and irrigation purpose.
Gilbert-Wilson, Ryan; Field, Leslie D; Bhadbhade, Mohan M
2012-03-05
The synthesis and characterization of the extremely hindered phosphine ligands, P(CH(2)CH(2)P(t)Bu(2))(3) (P(2)P(3)(tBu), 1), PhP(CH(2)CH(2)P(t)Bu(2))(2) (PhP(2)P(2)(tBu), 2), and P(CH(2)CH(2)CH(2)P(t)Bu(2))(3) (P(3)P(3)(tBu), 3) are reported, along with the synthesis and characterization of ruthenium chloro complexes RuCl(2)(P(2)P(3)(tBu)) (4), RuCl(2)(PhP(2)P(2)(tBu)) (5), and RuCl(2)(P(3)P(3)(tBu)) (6). The bulky P(2)P(3)(tBu) (1) and P(3)P(3)(tBu) (3) ligands are the most sterically encumbered PP(3)-type ligands so far synthesized, and in all cases, only three phosphorus donors are able to bind to the metal center. Complexes RuCl(2)(PhP(2)P(2)(tBu)) (5) and RuCl(2)(P(3)P(3)(tBu)) (6) were characterized by crystallography. Low temperature solution and solid state (31)P{(1)H} NMR were used to demonstrate that the structure of RuCl(2)(P(2)P(3)(tBu)) (4) is probably analogous to that of RuCl(2)(PhP(2)P(2)(tBu)) (5) which had been structurally characterized.
An improved glycerol biosensor with an Au-FeS-NAD-glycerol-dehydrogenase anode.
Mahadevan, Aishwarya; Fernando, Sandun
2017-06-15
An improved glycerol biosensor was developed via direct attachment of NAD + -glycerol dehydrogenase coenzyme-apoenzyme complex onto supporting gold electrodes, using novel inorganic iron (II) sulfide (FeS)-based single molecular wires. Sensing performance factors, i.e., sensitivity, a detection limit and response time of the FeS and conventional pyrroloquinoline quinone (PQQ)-based biosensor were evaluated by dynamic constant potential amperometry at 1.3V under non-buffered conditions. For glycerol concentrations ranging from 1 to 25mM, a 77% increase in sensitivity and a 53% decrease in detection limit were observed for the FeS-based biosensor when compared to the conventional PQQ-based counterpart. The electrochemical behavior of the FeS-based glycerol biosensor was analyzed at different concentrations of glycerol, accompanied by an investigation into the effects of applied potential and scan rate on the current response. Effects of enzyme stimulants ((NH 4 ) 2 SO 4 and MnCl 2 ·4H 2 O) concentrations and buffers/pH (potassium phosphate buffer pH 6-8, Tris buffer pH 8-10) on the current responses generated by the FeS-based glycerol biosensor were also studied. The optimal detection conditions were 0.03M (NH 4 ) 2 SO 4 and 0.3µm MnCl 2 ·4H 2 O in non-buffered aqueous electrolyte under stirring whereas under non-stirring, Tris buffer at pH 10 with 0.03M (NH 4 ) 2 SO 4 and 30µm MnCl 2 ·4H 2 O were found to be optimal detection conditions. Interference by glucose, fructose, ethanol, and acetic acid in glycerol detection was studied. The observations indicated a promising enhancement in glycerol detection using the novel FeS-based glycerol sensing electrode compared to the conventional PQQ-based one. These findings support the premise that FeS-based bioanodes are capable of biosensing glycerol successfully and may be applicable for other enzymatic biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.
Owen, D. Des. R.; Shouakar-Stash, O.; Morgenstern, U.; Aravena, R.
2016-01-01
Using a comprehensive data set (dissolved CH4, δ13C-CH4, δ2H-CH4, δ13C-DIC, δ37Cl, δ2H-H2O, δ18O-H2O, Na, K, Ca, Mg, HCO3, Cl, Br, SO4, NO3 and DO), in combination with a novel application of isometric log ratios, this study describes hydrochemical and thermodynamic controls on dissolved CH4 from a coal seam gas reservoir and an alluvial aquifer in the Condamine catchment, eastern Surat/north-western Clarence-Moreton basins, Australia. δ13C-CH4 data in the gas reservoir (−58‰ to −49‰) and shallow coal measures underlying the alluvium (−80‰ to −65‰) are distinct. CO2 reduction is the dominant methanogenic pathway in all aquifers, and it is controlled by SO4 concentrations and competition for reactants such as H2. At isolated, brackish sites in the shallow coal measures and alluvium, highly depleted δ2H-CH4 (<310‰) indicate acetoclastic methanogenesis where SO4 concentrations inhibit CO2 reduction. Evidence of CH4 migration from the deep gas reservoir (200–500 m) to the shallow coal measures (<200 m) or the alluvium was not observed. The study demonstrates the importance of understanding CH4 at different depth profiles within and between aquifers. Further research, including culturing studies of microbial consortia, will improve our understanding of the occurrence of CH4 within and between aquifers in these basins. PMID:27578542
Ramírez-Vélez, Róbinson; Agredo, Ricardo A; Jerez, Alejandra M; Chapal, Liliam Y
2008-01-01
Studying the quality of life and conditions of health for non-institutionalised elderly patients. This was a cross-sectional study of elderly people aged over 65 years having no physical or psychic limitation disturbing communication between patient and doctor. The patients filled out the validated Spanish versión of the SF-12 health survey. Social-demographic and anthropometric variables were collected from clinical histories or patient interviews. Mean age was 69,2+/-6,4 (69,8-74,3 95 % Cl, p<0.05), height 1,53+/-0,08 metres (1,52-1,54 95 %,CI, p<0,05), body weight 63,8+/-11,0 kg (61,8-64,3 95 % Cl) and body mass Index (BMI) 26,7+/-4,4 kg/m 2 (26,2-27,2 95 % Cl). Waist hip Index (WHI) was 8+/-0,06 cm (83-54 95 % Cl, p<0.05) and waist circumference was 89,0+/-9,5 (104,2-106,5 95 % Cl). The highest scores were awarded regarding vitality (59+/-10,9 %), mental health (52,7+/-12,5 %) and physical health (50,1+/-7 %). The lowest score was given for emotional role (19,2+/-4 %) and social role (24,1+/-4,5 %). There has been an important deterioration in our elderly people's quality of life associated with morbidity risk factors, these being more pronounced on physical scales and slightly so on mental scales. Assessing subjective quality of life should become an every-day tool in our clinical practice.
Emergency Destruction of Information Storing Media. Appendix 2. Destruct Technology Compendium
1987-12-01
L C U) 00 r. C 0 Z EC 0 00 CD CD 00 C4 C ) .0 -F 0 j o ) .0...0 cmc ,go~ S.- .) cm X.3 .1 . 1 1 1 1 1V ,a Ic 00 ON .t CM CI CmcyI CI W! W! U c t!.- CCJ .C-c v4 N OD V t 40 -z -- a- -~ LL A to) N ot SQ0 U. L CL...Y LL CL No LA ILP- LDl a .49 zII ii a A C.0 Am to- • ! t -.- t - - - - lin -sea hi ~ ~~~ CM .-. 2 2 Ll L . C C4 00 L h a so 0~ UP ,nDa gus 0. 1~2’ - - L
NASA Astrophysics Data System (ADS)
Lach, Adeline; Boulahya, Faïza; André, Laurent; Lassin, Arnault; Azaroual, Mohamed; Serin, Jean-Paul; Cézac, Pierre
2016-07-01
The thermal and volumetric properties of complex aqueous solutions are described according to the Pitzer equation, explicitly taking into account the speciation in the aqueous solutions. The thermal properties are the apparent relative molar enthalpy (Lϕ) and the apparent molar heat capacity (Cp,ϕ). The volumetric property is the apparent molar volume (Vϕ). Equations describing these properties are obtained from the temperature or pressure derivatives of the excess Gibbs energy and make it possible to calculate the dilution enthalpy (∆HD), the heat capacity (cp) and the density (ρ) of aqueous solutions up to high concentrations. Their implementation in PHREEQC V.3 (Parkhurst and Appelo, 2013) is described and has led to a new numerical tool, called PhreeSCALE. It was tested first, using a set of parameters (specific interaction parameters and standard properties) from the literature for two binary systems (Na2SO4-H2O and MgSO4-H2O), for the quaternary K-Na-Cl-SO4 system (heat capacity only) and for the Na-K-Ca-Mg-Cl-SO4-HCO3 system (density only). The results obtained with PhreeSCALE are in agreement with the literature data when the same standard solution heat capacity (Cp0) and volume (V0) values are used. For further applications of this improved computation tool, these standard solution properties were calculated independently, using the Helgeson-Kirkham-Flowers (HKF) equations. By using this kind of approach, most of the Pitzer interaction parameters coming from literature become obsolete since they are not coherent with the standard properties calculated according to the HKF formalism. Consequently a new set of interaction parameters must be determined. This approach was successfully applied to the Na2SO4-H2O and MgSO4-H2O binary systems, providing a new set of optimized interaction parameters, consistent with the standard solution properties derived from the HKF equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatzinger, Paul B.; Eres, Gyula; Gu, Baohua
Costs for environmental analysis and monitoring are increasing at a rapid rate and represent a significant percentage of the total and future remedial expenses at many U.S. Department of Defense (DoD) contaminated sites. It has been reported that about 30 to 40% of the remediation budget is usually spent on long-term monitoring (LTM), of which a large percentage represents laboratory analytical costs. Energetics such as perchlorate (ClO 4 -) are among the most frequently detected contaminants in groundwater and surface water at or near military installations due to their persistence and mobility. Currently, the standard protocol entails collecting samples inmore » the field, packaging them, and shipping them overnight to a designated laboratory for analysis. This process requires significant sample preparation and handling, and analytical results may not be available for several days to weeks. In this project, we developed and demonstrated a portable Raman sensor based on surface enhanced Raman scattering (SERS) technology to detect ClO 4 - in contaminated water. We summarize major accomplishments as follows: • A SERS sensor based on elevated gold (Au) nano-ellipse dimer architectures was designed and developed for ClO 4 - with a detection limit of ~10 -6 M (or 100 μg/L); The performance of these sensors was evaluated and optimized through variation of their geometric characteristics (i.e., dimer aspect ratio, dimer separation, etc.). • Large-scale commercial production of SERS substrate sensors via nanoimprinting by Nanova Inc. and Nanoimprint lithography (NIL) technology was successfully demonstrated. This is a substantial step forward toward the commercialization of the SERS sensors and may potentially lead to significantly reduced fabrication costs of SERS substrates. • Commercially produced SERS sensors were demonstrated to detect ClO 4 - at levels above 10 -6 M using a portable Raman analyzer. The performance of the commercial SERS sensors for ClO 4 - detection in the presence and absence of interferences was determined for a series of standard solutions. Sulfate (SO 4 2-) was found to exhibit the greatest interference for the anions tested, which included Cl-, NO 3 -, and SO 4 2-. • Field demonstration of the portable Raman sensor with commercially produced SERS substrates was completed at two Department of Defense (DoD) sites; twice at the Indian Head Naval Surface Warfare Center, Indian Head, MD, and once at Redstone Arsenal, Huntsville, AL. Multiple wells were sampled at both DoD sites, where a standard addition method was employed using the sensor to determine the ClO 4 -4 - and possibly other energetics that are both important for environmental monitoring and of interest for national security. However, we point out that SERS technology is also prone to interferences due to its sensitivity and responses to other ionic species, such as NO 3 -, SO 4 2-, and dissolved organics or co-contaminants present in the groundwater, which could potentially mask the SERS signal of the target analyte (i.e., ClO 4 -). As such, SERS analysis was subject to significant variations (e.g., ±20% or more), and its detection limit for ClO 4 --8 M) and was substantially higher than what we anticipated from laboratory studies. However, despite these complications, the portable Raman sensor developed in this project could be used as a rapid screening tool for ClO 4 - at concentrations above 10 -6 M. Future studies are warranted to further develop the technology and to optimize its performance, and eventually to bring the technology to the market. With additional development and demonstration, the sensor has the potential to reduce analytical costs by eliminating shipping and typical costs associated with laboratory analysis. A cost savings of 30–45% may be realized during a typical sampling event and, more importantly, the technology could allow rapid turn-around of information to decision makers for site characterization and remediation.« less
Wakai, Satoshi; Kidokoro, Shun-ichi; Masaki, Kazuo; Nakasone, Kaoru; Sambongi, Yoshihiro
2013-01-01
A decrease in water activity was thought to result in smaller enthalpy change values during PPi hydrolysis, indicating the importance of solvation for the reaction. However, the physiological significance of this phenomenon is unknown. Here, we combined biochemistry and calorimetry to solve this problem using NaCl, a physiologically occurring water activity-reducing reagent. The pyrophosphatase activities of extremely halophilic Haloarcula japonica, which can grow at ∼4 m NaCl, and non-halophilic Escherichia coli and Saccharomyces cerevisiae were maximal at 2.0 and 0.1 m NaCl, respectively. Thus, halophilic and non-halophilic pyrophosphatases exhibit distinct maximal activities at different NaCl concentration ranges. Upon calorimetry, the same exothermic enthalpy change of −35 kJ/mol was obtained for the halophile and non-halophiles at 1.5–4.0 and 0.1–2.0 m NaCl, respectively. These results show that solvation changes caused by up to 4.0 m NaCl (water activity of ∼0.84) do not affect the enthalpy change in PPi hydrolysis. It has been postulated that PPi is an ATP analog, having a so-called high energy phosphate bond, and that the hydrolysis of both compounds is enthalpically driven. Therefore, our results indicate that the hydrolysis of high energy phosphate compounds, which are responsible for biological energy conversion, is enthalpically driven within the physiological limits of NaCl. PMID:23965994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Gao; Yu, Lin, E-mail: gych@gdut.edu.cn; Lin, Ting
2014-09-15
Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method via a redox reaction between NaClO{sub 3} and MnSO{sub 4} in sulfuric acid solution without using any surfactants or templates. The products were characterized in detail by various techniques including X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, surface area analyzer, field emission scanning electron microscopy and transmission electron microscopy. Results show that the obtained β-MnO{sub 2} nanopincers consist of two sharp nanorods with a diameter of 100–200 nm and a length of 1–2 μm. The concentration of H{sub 2}SO{sub 4} solution plays anmore » important role in controlling the crystal phase and morphology of the final product. A possible formation mechanism for the β-MnO{sub 2} nanopincers was proposed. Moreover, these β-MnO{sub 2} nanostructures exhibited better catalytic performance than the commercial MnO{sub 2} particles to decompose methyl blue (MB) in the presence of H{sub 2}O{sub 2}. - Graphical abstract: Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method through oxidizing MnSO{sub 4} with NaClO{sub 3} in H2SO{sub 4} condition without using any surfactants or templates. - Highlights: {sup •} Branched β-MnO{sub 2} nanopincers were prepared by a facile one-pot hydrothermal method. {sup •} Morphology and crystal phase of MnO{sub 2} were controlled by the H{sub 2}SO{sub 4} concentration. {sup •} A possible formation mechanism for the obtained β-MnO{sub 2} nanopincers was proposed. {sup •} The products showed great catalytic performance in degradation of methylene blue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roccanova, Rachel; Ming, Wenmei; Whiteside, Vincent R.
Here, we report the synthesis, crystal and electronic structures, as well as optical properties of the hybrid organic–inorganic compounds MA 2CdX 4 (MA = CH 3NH 3; X = Cl, Br, I). MA 2CdI 4 is a new compound, whereas, for MA 2CdCl 4 and MA 2CdBr 4, structural investigations have already been conducted but electronic structures and optical properties are reported here for the first time. Single crystals were grown through slow evaporation of MA 2CdX 4 solutions with optimized conditions yielding mm-sized colorless (X = Cl, Br) and pale yellow (X = I) crystals. Single crystal and variablemore » temperature powder X-ray diffraction measurements suggest that MA 2CdCl 4 forms a 2D layered perovskite structure and has two structural transitions at 283 and 173 K. In contrast, MA 2CdBr 4 and MA 2CdI 4 adopt 0D K 2SO 4-derived crystal structures based on isolated CdX 4 tetrahedra and show no phase transitions down to 20 K. The contrasting crystal structures and chemical compositions in the MA 2CdX 4 family impact their air stabilities, investigated for the first time in this work; MA 2CdCl 4 is air-stable, whereas MA 2CdBr 4 and MA 2CdI 4 partially decompose when left in air. Optical absorption measurements suggest that MA 2CdX 4 have large optical band gaps above 3.9 eV. Room temperature photoluminescence spectra of MA 2CdX 4 yield broad peaks in the 375–955 nm range with full width at half-maximum values up to 208 nm. These PL peaks are tentatively assigned to self-trapped excitons in MA 2CdX 4 following the crystal and electronic structure considerations. The bands around the Fermi level have small dispersions, which is indicative of high charge localization with significant exciton binding energies in MA 2CdX 4. On the basis of our combined experimental and computational results, MA 2CdX 4 and related compounds may be of interest for white-light-emitting phosphors and scintillator applications.« less
Roccanova, Rachel; Ming, Wenmei; Whiteside, Vincent R.; ...
2017-11-02
Here, we report the synthesis, crystal and electronic structures, as well as optical properties of the hybrid organic–inorganic compounds MA 2CdX 4 (MA = CH 3NH 3; X = Cl, Br, I). MA 2CdI 4 is a new compound, whereas, for MA 2CdCl 4 and MA 2CdBr 4, structural investigations have already been conducted but electronic structures and optical properties are reported here for the first time. Single crystals were grown through slow evaporation of MA 2CdX 4 solutions with optimized conditions yielding mm-sized colorless (X = Cl, Br) and pale yellow (X = I) crystals. Single crystal and variablemore » temperature powder X-ray diffraction measurements suggest that MA 2CdCl 4 forms a 2D layered perovskite structure and has two structural transitions at 283 and 173 K. In contrast, MA 2CdBr 4 and MA 2CdI 4 adopt 0D K 2SO 4-derived crystal structures based on isolated CdX 4 tetrahedra and show no phase transitions down to 20 K. The contrasting crystal structures and chemical compositions in the MA 2CdX 4 family impact their air stabilities, investigated for the first time in this work; MA 2CdCl 4 is air-stable, whereas MA 2CdBr 4 and MA 2CdI 4 partially decompose when left in air. Optical absorption measurements suggest that MA 2CdX 4 have large optical band gaps above 3.9 eV. Room temperature photoluminescence spectra of MA 2CdX 4 yield broad peaks in the 375–955 nm range with full width at half-maximum values up to 208 nm. These PL peaks are tentatively assigned to self-trapped excitons in MA 2CdX 4 following the crystal and electronic structure considerations. The bands around the Fermi level have small dispersions, which is indicative of high charge localization with significant exciton binding energies in MA 2CdX 4. On the basis of our combined experimental and computational results, MA 2CdX 4 and related compounds may be of interest for white-light-emitting phosphors and scintillator applications.« less
JPRS Report, Soviet Union, Military History Journal, No. 3, March 1988.
1988-06-28
S ) After its combat baptism at Sokolovo the Czechoslovak military unit blazed a glorious combat trail together with the Soviet Army. Kiev, Belaya...1988 15 L2 _Q • >> §§■ ocB La < e . ■ .!= SQ P4 cl so leg E < c . SO > c . SO •1 öS Q CL, . ’ S . *7 co 5< « « u o-a-5...o< CO ZQ 10 s.fc > a . z.fc a OS bs *,» . la V. C o n^E ■Sfi .5! E Ic.E ’ S . ^ O fc ’O £ £ -C T> o£«e CJ c- ü< Ub 5 Q o (L, a
Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica.
Chandran, Rashmi; Sivakumar, A A; Mohandass, S; Aruchami, M
2005-01-01
Heavy metal stress results in the production of O(2)(.-), H(2)O(2) and (.)OH, which affect various cellular processes, mostly the functioning of membrane systems. Cells are normally protected against free oxyradicals by the operation of intricate antioxidant systems. The aim of the present work is to examine the effect of CdCl(2) and ZnSO(4) on antioxidative enzyme activity in the gastropod, Achatina fulica. The concentrations of antioxidant enzymes--superoxide dismutase (SOD), catalase (Cat) and glutathione peroxidase (GPx)--and nonenzymatic antioxidants--glutathione and vitamin-C--were found to be decreased in both digestive gland and kidney of the gastropod, Achatina fulica treated with individual concentrations of 0.5 ppm and 1ppm of CdCl(2) and ZnSO(4), compared to that of control animals. Based on the above study, it is evident that Achatina fulica can be used as a bioindicator to monitor the environmental heavy metal pollution.
Abhayawardhana, Pramuditha L; Marzilli, Patricia A; Fronczek, Frank R; Marzilli, Luigi G
2014-01-21
Tertiary sulfonamide nitrogen-to-metal bonds of normal length are very rare. We recently discovered such a bond in one class of fac-[Re(CO)3(N(SO2R)(CH2Z)2)](n) complexes (Z = 2-pyridyl) with N(SO2R)dpa ligands derived from di-(2-picolyl)amine (N(H)dpa). fac-[M(CO)3(N(SO2R)(CH2Z)2)](n) agents (M = (186/188)Re, (99m)Tc) could find use as radiopharmaceutical bioconjugates when R is a targeting moiety. However, the planar, electron-withdrawing 2-pyridyl groups of N(SO2R)dpa destabilize the ligand to base and create relatively rigid chelate rings, raising the possibility that the rare M-N(sulfonamide) bond is an artifact of a restricted geometry. Also, the hydrophobic 2-pyridyl groups could cause undesirable accumulation in the liver, limiting future use in radiopharmaceuticals. Our goal is to identify a robust, hydrophilic, and flexible N(CH2Z)2 chelate framework. New C2-symmetric ligands, N(SO2R)(CH2Z)2 with (Z = CH2NH2; R = Me, dmb, or tol), were prepared by treating N(H)dien(Boc)2, a protected diethylenetriamine (N(H)dien) derivative, with methanesulfonyl chloride (MeSO2Cl), 3,5-dimethylbenzenesulfonyl chloride (dmbSO2Cl), and 4-methylbenzenesulfonyl chloride (tolSO2Cl). Treatment of fac-[Re(CO)3(H2O)3](+) with these ligands, designated as N(SO2R)dien, afforded new fac-[Re(CO)3(N(SO2R)dien)]PF6 complexes. Comparing the fac-[Re(CO)3(N(SO2Me)dien)]PF6 and fac-[Re(CO)3(N(SO2Me)dpa)]PF6 complexes, we find that the Re(I)-N(sulfonamide) bonds are normal in length and statistically identical and that the methyl (13)C NMR signal has an unusually upfield shift compared to that in the free ligand. We attribute this unusual upfield shift to the fact that the sulfonamide N undergoes an sp(2)-to-sp(3) rehybridization upon coordination to Re(I) in both complexes. Thus, the sulfonamide N of N(SO2R)dien ligands is a good donor, even though the chelate rings are conformationally flexible. Addition of the strongly basic and potentially monodentate ligand, 4-dimethylaminopyridine, did not affect the fac-[Re(CO)3(N(SO2tol)dien)]PF6 complex, even after several weeks. This complex is also stable to heat in aqueous solution. These results indicate that N(SO2R)dien ligands form fac-[Re(CO)3(N(SO2R)dien)]PF6 complexes sufficiently robust to be utilized for radiopharmaceutical development.
Anodic oxidation of slaughterhouse wastewater on boron-doped diamond: process variables effect.
Abdelhay, Arwa; Jum'h, Inshad; Abdulhay, Enas; Al-Kazwini, Akeel; Alzubi, Mashael
2017-12-01
A non-sacrificial boron-doped diamond electrode was prepared in the laboratory and used as a novel anode for electrochemical oxidation of poultry slaughterhouse wastewater. This wastewater poses environmental threats as it is characterized by a high content of recalcitrant organics. The influence of several process variables, applied current density, initial pH, supporting electrolyte nature, and concentration of electrocoagulant, on chemical oxygen demand (COD) removal, color removal, and turbidity removal was investigated. Results showed that raising the applied current density to 3.83 mA/cm 2 has a positive effect on COD removal, color removal, and turbidity removal. These parameters increased to 100%, 90%, and 80% respectively. A low pH of 5 favored oxidants generation and consequently increased the COD removal percentage to reach 100%. Complete removal of COD had occurred in the presence of NaCl (1%) as supporting electrolyte. Na 2 SO 4 demonstrated lower efficiency than NaCl in terms of COD removal. The COD decay kinetics follows the pseudo-first-order reaction. The simultaneous use of Na 2 SO 4 and FeCl 3 decreased the turbidity in wastewater by 98% due to electrocoagulation.
Continuous nanoparticle production by microfluidic-based emulsion, mixing and crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Y.-F.; Kim, H.; Kovenklioglu, S.
2007-09-15
BaSO{sub 4} and 2,2'-dipyridylamine (DPA) nanoparticles were synthesized as reactive crystallization and anti-solvent recrystallization examples, respectively, of using the microfluidic-based emulsion and mixing approach as a new avenue of continuously producing inorganic and organic nanoparticles. BaSO{sub 4} nanoparticles in the size range of 15-100 nm were reactively precipitated within the confinement of an aqueous droplet which was coalesced from two separate aqueous droplets containing BaCl{sub 2} and (NH{sub 4}){sub 2}SO{sub 4} using a three T-junction micromixer configuration constructed with commercially available simple tubing and fitting supplies. Also, DPA nanoparticles of about 200 nm were crystallized by combining DPA+ethanol and watermore » droplets using the same micromixer configuration. - Graphical abstract: BaSO{sub 4} and 2,2'-dipyridylamine (DPA) nanoparticles were synthesized as reactive crystallization and anti-solvent recrystallization examples, respectively, of using the microfluidic-based emulsion and mixing approach as a new avenue of continuously producing inorganic and organic nanoparticles.« less
Isotope systematics of Icelandic thermal fluids
NASA Astrophysics Data System (ADS)
Stefánsson, Andri; Hilton, David R.; Sveinbjörnsdóttir, Árný E.; Torssander, Peter; Heinemeier, Jan; Barnes, Jaime D.; Ono, Shuhei; Halldórsson, Sæmundur Ari; Fiebig, Jens; Arnórsson, Stefán
2017-05-01
Thermal fluids in Iceland range in temperature from < 10 °C to > 440 °C and are dominated by water (> 97 mol%) with a chloride concentration from < 10 ppm to > 20,000 ppm. The isotope systematics of the fluids reveal many important features of the source(s) and transport properties of volatiles at this divergent plate boundary. Studies spanning over four decades have revealed a large range of values for δD (- 131 to + 3.3‰), tritium (- 0.4 to + 13.8 TU), δ18O (- 20.8 to + 2.3‰), 3He/4He (3.1 to 30.4 RA), δ11B (- 6.7 to + 25.0‰), δ13C∑ CO2 (- 27.4 to + 4.6‰), 14C∑ CO2 (+ 0.6 to + 118 pMC), δ13CCH4 (- 52.3 to - 17.8‰), δ15N (- 10.5 to + 3.0‰), δ34S∑ S- II (- 10.9 to + 3.4‰), δ34SSO4 (- 2.0 to + 21.2‰) and δ37Cl (- 1.0 to + 2.1‰) in both liquid and vapor phases. Based on this isotopic dataset, the thermal waters originate from meteoric inputs and/or seawater. For other volatiles, degassing of mantle-derived melts contributes to He, CO2 and possibly also to Cl in the fluids. Water-basalt interaction also contributes to CO2 and is the major source of H2S, SO4, Cl and B in the fluids. Redox reactions additionally influence the composition of the fluids, for example, oxidation of H2S to SO4 and reduction of CO2 to CH4. Air-water interaction mainly controls N2, Ar and Ne concentrations. The large range of many non-reactive volatile isotope ratios, such as δ37Cl and 3He/4He, indicate heterogeneity of the mantle and mantle-derived melts beneath Iceland. In contrast, the large range of many reactive isotopes, such as δ13C∑ CO2 and δ34S∑ S- II, are heavily affected by processes occurring within the geothermal systems, including fluid-rock interaction, depressurization boiling, and isotopic fractionation between secondary minerals and the aqueous and vapor species. Variations due to these geothermal processes may exceed differences observed among various crust and mantle sources, highlighting the importance and effects of chemical reactions on the isotope systematics of reactive elements.
MERCURY REMOVAL FROM STACK GAS BY AQUEOUS SCRUBBING
Fundamental results will be obtained on the reaction kinetics in mass transfer boundary layers for the following systems:
NASA Astrophysics Data System (ADS)
McKellar, Bob; Billinghurst, Brant E.
2015-06-01
Thiophosgene (Cl_2CS) is a favorite model system for studies of photophysics, vibrational dynamics, and intersystem interactions. But at high resolution its infrared spectrum is very congested due to hot bands and multiple isotopic species. Previously, we reported the first high resolution IR study of this molecule, analyzing the νb{2} (504 wn) and νb{4} (471 wn) fundamental bands. Here we continue, with analysis of the νb{1} (1139 wn) and νb{5} (820 wn) fundamentals for the two most abundant isotopologues, 35Cl2CS and 35Cl37ClCS, based on spectra with a resolution of about 0.001 wn obtained at the Canadian Light Source far-infrared beamline using synchrotron radiation and a Bruker IFS125 Fourier transform spectrometer. The νb{2} + νb{4} (942 wn) and νb{2} + 2νb{6} (1104 wn) bands are also studied here. But so far the νb{2} + νb{6} combination band (795 wn) resists analysis, as do the weak νb{3} (292.9 wn) and νb{6} (≈300? wn) fundamentals. A.R.W. McKellar, B.E.Billinghurst, J. Mol. Spectrosc. 260, 66 (2010).
The secretion of organic acids is also regulated by factors other than aluminum.
Ding, Haiyan; Wen, Danni; Fu, Zhengwei; Qian, Haifeng
2014-02-01
As a result of natural processes and human activities, aluminum (Al) toxicity is recognized as a major limiting factor for plant productivity, and the secretion of organic acids facilitated by channel proteins is one of the most important Al resistance mechanisms in plants. The objective of this study was to evaluate the effects of several types of stress, including herbicide (imazethapyr (IM) and diclofop-methyl (DM)), heavy metal (Al and Cu), salt stress (NaCl), and proton stress (HCl), on the release of organic acids in rice. The results showed that 0.05 mg/L IM, 0.1 mg/L DM, 4680 mg/L NaCl, 0.5 mg/L CuSO4, and 18 mg/L AlCl3 significantly inhibited rice root elongation and the root fresh weight. In contrast, no significant inhibitory effects on rice growth were found with HCl (pH = 4.5). Similar to the effect of AlCl3 on organic acid induction, treatment with IM, DM, NaCl, and CuSO4 also induced the synthesis of endogenous citric acid and oxalic acid but decreased endogenous malic acid synthesis in the seedlings, though only citric acid was released into the environment after these treatments. We also analyzed the transcripts of three citrate channel proteins and found they were up-regulated by NaCl, CuSO4, and AlCl3 but not by IM or DM. This study clarified that organic acid secretion in plants might be a common phenomenon when plants are exposed to environmental stress other than Al toxicity.
Growth of sodium chlorate crystals in the presence of potassium sulphate
NASA Astrophysics Data System (ADS)
Kim, E. L.; Tsyganova, A. A.; Vorontsov, D. A.; Ovsetsina, T. I.; Katkova, M. R.; Lykov, V. A.; Portnov, V. N.
2015-09-01
In this work, we investigated the morphology and growth rates of NaClO3 crystals in solutions with K2SO4 additives. NaClO3 crystals were grown using the temperature gradient technique under concentration convection. We found that the crystal habitus changed from cubic to tetrahedral, and the growth of the cubic {100}, tetrahedral {111} and rhomb-dodecahedral {110} faces decelerated with an increase in the concentration of SO42- ions. The {110} face was the most and the {100} face was the least inhibited by sulphate ions. The mechanism of SO42- ions action is their adsorption on the crystal surface, which impedes attachment of the crystal's building units. We conclude that different atomic structure and charge state of various crystal faces determine their sensitivity to the action of the SO42- ions.
[The corrosion of pure iron in five different mediums].
Xu, Li; Zhu, Shengfa; Huang, Nan; Li, Xinchang; Zhang, Yu
2009-08-01
The sectional test was adopted in this study to investigate the corrosion of pure iron in 0.15 mol/L NaCl solution, Ringer solution, PBS(-) solution, SBF solution and M199 cell culture medium at three different times. The result shows that different mediums have different corrosion effects on pure iron. The arrangement according to the medium's corrosion ability from the strongest to weakest is 0.15 mol/L NaCl solution (Ringer solution), PBS(-) solution, SBF solution and M199 cell culture medium. The results of scanning electron microscopy and energy dispersive X-ray spectrum analyses show that the addition of HPO4(2-), H2POC4-, Ca2+, Mg2+, SO4(2-) and the organic component can inhibit the corrosion to some degree.
Luo, Congwei; Jiang, Jin; Ma, Jun; Pang, Suyan; Liu, Yongze; Song, Yang; Guan, Chaoting; Li, Juan; Jin, Yixin; Wu, Daoji
2016-06-01
The transformation efficiency and products of an odorous compound 2,4,6-trichloroanisole (TCA) at the wavelength of 254 nm in the presence of persulfate were investigated for the first time. The effects of water matrix (i.e., natural organic matter (NOM), pH, carbonate/bicarbonate (HCO3(-)/CO3(2-)), and chloride ions (Cl(-))) were evaluated. The second order rate constant of TCA reacting with sulfate radical (SO4(-)) was determined to be (3.72 ± 0.10) × 10(9) M(-1) s(-1). Increasing dosage of persulfate increased the observed pseudo-first-order rate constant for TCA degradation (kobs), and the contribution of SO4(-) to TCA degradation was much higher than that of HO at each experimental condition. Degradation rate of TCA decreased with pH increasing from 4.0 to 9.0, which could be explained by the lower radical scavenging effect of dihydrogen phosphate than hydrogen phosphate in acidic condition (pH < 6). NOM significantly decreased kobs due to the effects of radical scavenging and UV absorption with the former one being dominant. kobs decreased from 2.32 × 10(-3) s(-1) to 0.92 × 10(-3) s(-1) with the CO3(2-)/HCO3(-) concentration increased from 0.5 mM to 10 mM in the UV/persulfate process, while kobs slightly decreased from 2.54 × 10(-3) s(-1) in the absence of Cl(-) to 2.10 × 10(-3) s(-1) in the presence of 10 mM Cl(-). Most of these kinetic results could be described by a steady-state kinetic model. Furthermore, liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry at powerful precursor ion scan approach was used to selectively detect oxidation products of TCA. It was found that 2,4,6-trichorophenol (TCP) was the major oxidation product (i.e., the initial yield of TCP was above 90%). The second order rate constant between TCP and SO4(-) was estimated to be (4.16 ± 0.20) × 10(9) M(-1) s(-1). In addition, three products (i.e., 2,6-dichloro-1,4-benzoquinone and two aromatic ring-opening products) were detected in the reaction of TCP with SO4(-), which also appeared in the oxidation of TCA in the UV/persulfate process. A tentative pathway was proposed, where the initial one-electron oxidation of TCA by SO4(-) and further reactions (e.g., ipso-hydroxylation and aromatic ring-cleavage) of the formed cation intermediate TCA were involved. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Rihayat, T.; Salim, S.; Arlina, A.; Fona, Z.; Jalal, R.; Alam, P. N.; Zaimahwati; Sami, M.; Syarif, J.; Juhan, N.
2018-03-01
Research on determination of value CEC (Cation Exchange Capacity) Bentonite North Aceh and Bener Meriah with three methods has been studied. The purpose of this study was to determine the value of CEC bentonite North Aceh and Bener Meriah. The methods used in this research were pH equilibrium, BaCl2/MgSO4 and the adsorption of methylene blue. These three methods used to determine, compare, and calculation of the CEC value and determine the effect of particle size of bentonite on the value of the CEC. Bentonite North Aceh and Bener Meriah sieved with particle sizes of 80, 100, 150, 200, 250 mesh. The results showed that determination of the value of CEC bentonite North Aceh using BaCl2/MgSO4 with a particle size of 250 mesh is the value of the highest, reaching 79.09 meq/100 g.
Liquefaction of CCA-treated wood and elimination of metals from the solvent by precipitation
Lianzhen Lin; Chung-Yun Hse
2005-01-01
Spent chromated copper arsenate (CCA)-treated wood was liquefied in polyethylene glycol 400/glycerin (2:1 w/w). Sulfuric acid (95-98%) and ferrous salts (FeSO4â¢7H2O or FeCl2â¢4H2O) were used as catalysts and additives, respectively. The resulting liquefied CCA-treated wood was...
NASA Technical Reports Server (NTRS)
Thordarson, Th.; Self, S
1996-01-01
In this study we attempt to quantify the amount of S, Cl and F released by the 1300 cu km Roza member (approximately 14.7 Ma) of the Columbia River Basalt Group, which was produced by a moderate-size flood basalt eruption in the mid-Miocene. Our results are the first indication of the potential atmospheric SO2 yield from a flood basalt eruption, and indicate the mechanism by which flood basalt eruptions may have seriously affected the environment. Glass inclusions in phenocrysts and quenched glass in products from various stages of the eruption were analyzed for concentrations of S, Cl and F and major elements. Glass inclusions contain 1965 +/- 110 ppm S, 295 +/- 65 ppm Cl and 1310 +/- 110 ppm F. Groundmass glass of Roza dike selvages contains considerably lower concentrations: 1110 +/- 90 ppm S, 245 +/- 30 ppm Cl and 1020 +/- 25 ppm F. Scoria clasts from near vent deposits contain 665 +/- 75 ppm S, 175 +/- 5 ppm Cl and 950 +/- 20 ppm F, and the groundmass glass of lava selvages contains 520 +/- 30 ppm S, 190 +/- 30 ppm Cl and 890 +/- 55 ppm F. In crystalline lava, the concentrations are 195 ppm S, 100 ppm Cl and 830 ppm F. Volatile element concentrations in these samples represent the progress of degassing through the eruption and can be used to estimate the potential amount of the volatiles S, Cl and F released by the magma into the atmosphere, as well as to evaluate the amount liberated by various phases of the eruption. The total amount of volatiles released by the Roza eruption is estimated to have been approximately 12,420 MtSO2, approximately 710 MtHCI and approximately 1780 MtHF. The Roza magma liberated approximately 9620 MtSO, (77% of the total volatile mass released), approximately 400 MtHCI (56%) and approximately 1450 MtHF (81%) at the vents and lofted by the eruption columns to altitudes of 7-13 km. Degassing of the lava is estimated to have released an additional approximately 2810 MtSO2, approximately 310 MtHCI and approximately 330 MtHF. The Roza eruption is likely to have lasted for approximately 10 years, indicating an annual H2SO4-mass loading of approximately 1800 Mt. Thus, the atmospheric perturbations associated with the Roza eruption may have been of the magnitude predicted for a severe "nuclear" or "volcanic" winter, but lasting up to a decade or more.
Moon, Jiwon; Kim, Joonghan
2016-09-29
Density functional theory (DFT) and ab initio calculations, including spin-orbit coupling (SOC), were performed to investigate the spin-orbit (SO) effect on the molecular properties of tellurium halides, TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4). SOC elongates the Te-X bond and slightly reduces the vibrational frequencies. Consideration of SOC leads to better agreement with experimental values. Møller-Plesset second-order perturbation theory (MP2) seriously underestimates the Te-X bond lengths. In contrast, B3LYP significantly overestimates them. SO-PBE0 and multireference configuration interactions with the Davidson correction (MRCI+Q), which include SOC via a state-interaction approach, give the Te-I bond length of TeI2 that matches the experimental value. On the basis of the calculated thermochemical energy and optimized molecular structure, TeI4 is unlikely to be stable. The use of PBE0 including SOC is strongly recommended for predicting the molecular properties of Te-containing compounds.
Factors affecting the appearance of the hump charge movement component in frog cut twitch fibers.
Hui, C S
1991-08-01
Charge movement was measured in frog cut twitch fibers with the double Vaseline gap technique. Five manipulations listed below were applied to investigate their effects on the hump component (I gamma) in the ON segments of TEST minus CONTROL current traces. When external Cl-1 was replaced by MeSO3- to eliminate Cl current, I gamma peaked earlier due to a few millivolts shift of the voltage dependence of I gamma kinetics in the negative direction. The Q-V plots in the TEA.Cl and TEA.MeSO3 solutions were well fitted by a sum of two Boltzmann distribution functions. The more steeply voltage-dependent component (Q gamma) had a V approximately 6 mV more negative in the TEA.MeSO3 solution than in the TEA.Cl solution. These voltage shifts were partially reversible. When creatine phosphate in the end pool solution was removed, the I gamma hump disappeared slowly over the course of 20-30 min, partly due to a suppression of Q gamma. The hump reappeared when creatine phosphate was restored. When 0.2-1.0 mM Cd2+ was added to the center pool solution to block inward Ca current, the I gamma hump became less prominent due to a prolongation in the time course of I gamma but not to a suppression of Q gamma. When the holding potential was changed from -90 to -120 mV, the amplitude of I beta was increased, thereby obscuring the I gamma hump. Finally, when a cut fiber was stimulated repetitively, I gamma lost its hump appearance because its time course was prolonged. In an extreme case, a 5-min resting interval was insufficient for a complete recovery of the waveform. In general, a stimulation rate of once per minute had a negligible effect on the shape of I gamma. Of the five manipulations, MeSO3- has the least perturbation on the appearance of I gamma and is potentially a better substitute for Cl- than SO2-(4) in eliminating Cl current if the appearance of the I gamma hump is to be preserved.
NASA Technical Reports Server (NTRS)
Birks, N.
1983-01-01
Sodium chloride is deposited on the surface of alumina substrates and exposed to air containing 1% SO2 at temperatures between 500 C and 700 C. In all cases the sodium chloride was converted to sodium sulfate. The volatilization of sodium chloride from the original salt particles was responsible for the development of a uniform coating of sodium sulfate on the alumina substrate. At temperatures above 625 C, a liquid NaCl-Na2SO4 autectic was formed on the substrate. The mechanisms for these reactions are given. One of the main roles of NaCl in low temperature hot corrosion lies in enabling a corrosive liquid to form.
NASA Astrophysics Data System (ADS)
Zhang, Tiantian; You, Jing; Yu, Jiliang; Fan, Chengcheng; Ma, Yunfei; Cui, Yanjie; Gao, Shanshan; Li, Yongbin; Hu, Songqing; Liu, Huiqin
2017-12-01
Molecular dynamics simulation had been carried out to investigate the influence of CaCl2 on the aggregation behaviour of sodium dodecyl polyoxyethylene sulfonate (A12E2SO3) at the air/water interface. First, structure properties of A12E2SO3 monolayer was studied by analyzing the snapshots of the configuration and density profiles of different components in A12E2SO3 systems. Results showed that Ca2+ could replace some Na+ to combine with the hydrophilic headgroups. Besides, the addition of CaCl2 could reduce the thickness of water layer at the interface. Second, the interactions between A12E2SO3 headgroups and water molecules were studied through calculating radial distribution functions (RDFs) between water molecules and the sulfonate group, as well as the oxyethyl group. Results revealed that Ca2+ could penetrate the hydration layer of the sulfonate group, but could not enter the first hydration layer of the oxygen ethyl group close to the sulfonate group. The addition of CaCl2 could make the degree of hydration more orderly and the thickness of hydration layer in the headgroups of A12E2SO3 molecules increase. Third, the property of interface double layer was studied through analyzing RDFs of the headgroups and counterions. Results showed that the addition of CaCl2 could not only reduce the interaction between the headgroups and the counterions, but also compress the thickness of the electric double layer in A12E2SO3 system.
Factors influencing inactivation of Klebsiella pneumoniae by chlorine and chloramine.
Goel, Sudha; Bouwer, Edward J
2004-01-01
Inactivation of Klebsiella pneumoniae cultures by chlorine and chloramine was evaluated under different growth conditions by varying nutrient media dilution, concentrations of essential inorganic nutrients (FeCl3, MgSO4, phosphate, and ammonium salts), and temperature. All inactivation assays were performed at room temperature (22-23 degrees C) and near neutral pH (7.2-7.5). C*T(99.9) values for chlorine increased >20-fold and for chloramine increased 2.6-fold when cells were grown in 100-fold diluted nutrient broth (2NB) solutions (final TOC of 35-40 mg/L). Background levels of Mg: 6.75 x 10(-2) mM and Fe: 3.58 x 10(-5) mM or high levels of FeCl3 (0.01 mM) and MgSO4 (1 mM) during growth resulted in the highest resistances to chlorine with C*T(99.9) values of 13.06 (+/-0.91) and 13.78 (+/-1.97) mg-min/L, respectively. Addition of low levels of FeCl3 (0.001 mM) and MgSO4 (0.1 mM) to K. pneumoniae cultures during growth resulted in the lowest bacterial resistances to inactivation; C*T(99.9) values ranged from 0.28 (+/-0.06) to 1.88 (+/-0.53)mg-min/L in these cultures. Increase in growth temperature from 22.5 degrees C to 35 degrees C for unamended 2NB cultures resulted in a 42-fold decrease in C*T(99.9) values for chlorine. A similar change in temperature resulted in no significant change in C*T(99.9) values for chloramine. These results indicate that inactivation of K. pneumoniae cultures by chlorine was highly sensitive to changes in growth conditions unlike inactivation by chloramine.
Electrochemical remediation of amoxicillin: Detoxification and reduction of antimicrobial activity.
Brito, Lara Barroso; Garcia, Luane Ferreira; Caetano, Marcos Pereira; Lobón, Germán Sanz; Teles de Oliveira, Mayk; de Oliveira, Rhaul; Sapateiro Torres, Ieda Maria; Yepez, Alfonso; Vaz, Boniek Gontijo; Luque, Rafael; Grisolia, Cesar Koppe; Valadares, Marize Campos; de Souza Gil, Eric; Rodrigues de Oliveira, Gisele Augusto
2018-06-16
Amoxicillin (AMX) is one of the most commonly prescribed antibiotics around the world to treat and prevent several diseases in both human and veterinary medicine. Incomplete removal of AMX during wastewater treatment contributes to its presence in water bodies and drinking water. AMX is an emerging contaminant since its impact on the environment and human health remains uncertain. This contribution was aimed to evaluate the electrochemical oxidation (EO) of AMX using different anodes in tap water, NaCl or Na 2 SO 4 solutions and to evaluate the potential toxicity of remaining AMX and its by-products on zebrafish early-life stages. Chemical intermediates generated after EO were determined by mass spectrometry and their resulting antimicrobial activity was evaluated. AMX did not induce significant mortality in zebrafish during extended exposure but affected zebrafish development (increased body length) from 6.25 mg/L to 25 mg/L and inhibited enzymatic biomarkers. Carbon modified with titanium oxide (TiO 2 @C) anode achieved complete AMX removal in just a few minutes and efficiency of the supported electrolytes occurred in the following order: 0.1 M NaCl > 0.1 M Na 2 SO 4 > 0.01 M NaCl > tap water. The order of potential toxicity to zebrafish early life-stages related to lethal and sublethal effects was as follows: 0.1 M Na 2 SO 4 > 0.1 M NaCl >0.01 M NaCl = tap water. Additionally, the EO of AMX using TiO 2 @C electrode with 0.01 M NaCl was able to inhibit the antimicrobial activity of AMX, reducing the possibility of developing bacterial resistance. Copyright © 2018. Published by Elsevier B.V.
Wang, Lei; Liu, Lian-you; Gao, Shang-yu; Hasi, Eerdun; Wang, Zhi
2006-01-01
Particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. Urban plants play an important role in reducing particulate pollution. Physicochemical characteristics of ambient particles settling upon leaf surfaces of eleven roadside plants at four sites of Beijing were studies. Results showed that density of particles on the leaf surfaces greatly varied with plant species and traffic condition. Fraxinus chinensis, Sophora japonica, A ilanthus altissima, Syringa oblata and Prunus persica had larger densities of particles among the tall species. Due to resuspension of road dust, the densities of particles of Euonymus japonicus and Parthenocissus quinquefolia with low sampling height were 2-35 times to other taller tree species. For test plant species, micro-roughness of leaf surfaces and density of particles showed a close correlation. In general, the larger micro-roughness of leaf surfaces is, the larger density of particles is. Particles settling upon leaf surfaces were dominantly PM, (particulate matter less than 10 microm in aerodynamic diameter; 98.4%) and PM25 (particulate matter less than 2.5 microm in aerodynamic diameter; 64.2%) which were closely relative to human health. Constant elements of particles were C, O, K, Ca, Si, Al, Mg, Na, Fe, S, Cl and minerals with higher content were SiO2, CaCO3, CaMg(CO3)2, NaCI and 2CaSO4 x H20, SiO2. CaCO3 and CaMg(CO3)2 mainly came from resuspension of road dust. 2CaSO4 x H20 was produced by the reaction between CaCO3 derived from earth dust or industrial emission and SO2, H2SO4 or sulfate. NaCl was derived from sea salt.
PM2.5 emissions and source profiles from open burning of crop residues
NASA Astrophysics Data System (ADS)
Ni, Haiyan; Tian, Jie; Wang, Xiaoliang; Wang, Qiyuan; Han, Yongming; Cao, Junji; Long, Xin; Chen, L.-W. Antony; Chow, Judith C.; Watson, John G.; Huang, Ru-Jin; Dusek, Ulrike
2017-11-01
Wheat straw, rice straw, and corn stalks, the major agricultural crop residues in China, were collected from six major crop producing regions, and burned in a laboratory combustion chamber to determine PM2.5 source profiles and speciated emission factors (EFs). Organic carbon (OC) and water-soluble ions (the sum of NH4+, Na+, K+, Mg2+, Ca2+, Cl-, NO3- and SO42-) are major constituents, accounting for 43.1 ± 8.3% and 27.4 ± 14.6% of PM2.5, respectively. Chloride (Cl-) and water-soluble potassium (K+) are the dominant ionic species, with an average abundance of 14.5 ± 8.2% and 6.4 ± 4.4% in PM2.5, respectively. The average K+/Cl- ratio is ∼0.4, lower than 2.8-5.4 for wood combustion. Similarity measures (i.e., Student's t-test, coefficient of divergence, correlations, and residual to uncertainty ratios) show the crop profiles are too similar for the species measured to be resolved from one another by receptor modeling. The largest difference was found between rice straw and corn stalk emissions, with higher OC and lower Cl- and K+ abundances (50%, 8%, and 3% of PM2.5, respectively) for corn stalks; lower OC, and higher Cl- and K+ abundances (38%, 21%, and 10% of PM2.5, respectively) for rice straw. Average EFs were 4.8 ± 3.1 g kg-1 for OC, 1.3 ± 0.8 g kg-1 for Cl- and 0.59 ± 0.56 g kg-1 for K+. Flaming and smoldering combustions resulted in an average modified combustion efficiency (MCE) of 0.92 ± 0.03, and low elemental carbon (EC) EFs (0.24 ± 0.12 g kg-1). OC/EC ratios from individual source profiles ranged from 12.9 ± 4.3 for rice straw to 24.1 ± 13.5 for wheat straw. The average K+/EC ratio was 2.4 ± 1.5, an order of magnitude higher than those from residential wood combustion (0.2-0.76). Elevated emission rates were found for OC (387 Gg yr-1) and Cl- (122 Gg yr-1), accounting for 44% and 14% of 2008 PM2.5 emissions in China.
Comparison of forest edge effects on throughfall deposition in different forest types.
Wuyts, Karen; De Schrijver, An; Staelens, Jeroen; Gielis, Leen; Vandenbruwane, Jeroen; Verheyen, Kris
2008-12-01
This study examined the influence of distance to the forest edge, forest type, and time on Cl-, SO4(2-), NO3(-), and NH4+ throughfall deposition in forest edges. The forests were dominated by pedunculate oak, silver birch, or Corsican/Austrian pine, and were situated in two regions of Flanders (Belgium). Along transects, throughfall deposition was monitored at distances of 0-128 m from the forest edge. A repeated-measures analysis demonstrated that time, forest type, and distance to the forest edge significantly influenced throughfall deposition of the ions studied. The effect of distance to the forest edge depended significantly on forest type in the deposition of Cl-, SO4(2-), and NO3(-): the edge effect was significantly greater in pine stands than in deciduous birch and oak stands. This finding supports the possibility of converting pine plantations into oak or birch forests in order to mitigate the input of nitrogen and potentially acidifying deposition.
Kuramochi, Yusuke; Itabashi, Jun; Fukaya, Kyohei; Enomoto, Akito; Yoshida, Makoto
2015-01-01
Photochemical CO2 reduction catalysed by trans(Cl)–Ru(bpy)(CO)2Cl2 (bpy = 2,2′-bipyridine) efficiently produces carbon monoxide (CO) and formate (HCOO–) in N,N-dimethylacetamide (DMA)/water containing [Ru(bpy)3]2+ as a photosensitizer and 1-benzyl-1,4-dihydronicotinamide (BNAH) as an electron donor. We have unexpectedly found catalyst concentration dependence of the product ratio (CO/HCOO–) in the photochemical CO2 reduction: the ratio of CO/HCOO– decreases with increasing catalyst concentration. The result has led us to propose a new mechanism in which HCOO– is selectively produced by the formation of a Ru(i)–Ru(i) dimer as the catalyst intermediate. This reaction mechanism predicts that the Ru–Ru bond dissociates in the reaction of the dimer with CO2, and that the insufficient electron supply to the catalyst results in the dominant formation of HCOO–. The proposed mechanism is supported by the result that the time-course profiles of CO and HCOO– in the photochemical CO2 reduction catalysed by [Ru(bpy)(CO)2Cl]2 (0.05 mM) are very similar to those of the reduction catalysed by trans(Cl)–Ru(bpy)(CO)2Cl2 (0.10 mM), and that HCOO– formation becomes dominant under low-intensity light. The kinetic analyses based on the proposed mechanism could excellently reproduce the unusual catalyst concentration effect on the product ratio. The catalyst concentration effect observed in the photochemical CO2 reduction using [Ru(4dmbpy)3]2+ (4dmbpy = 4,4′-dimethyl-2,2′-bipyridine) instead of [Ru(bpy)3]2+ as the photosensitizer is also explained with the kinetic analyses, reflecting the smaller quenching rate constant of excited [Ru(4dmbpy)3]2+ by BNAH than that of excited [Ru(bpy)3]2+. We have further synthesized trans(Cl)–Ru(6Mes-bpy)(CO)2Cl2 (6Mes-bpy = 6,6′-dimesityl-2,2′-bipyridine), which bears bulky substituents at the 6,6′-positions in the 2,2′-bipyridyl ligand, so that the ruthenium complex cannot form the dimer due to the steric hindrance. We have found that this ruthenium complex selectively produces CO, which strongly supports the catalytic mechanism proposed in this work. PMID:28706681
NASA Astrophysics Data System (ADS)
Rawat, Kishan Singh; Singh, Sudhir Kumar; Jacintha, T. German Amali; Nemčić-Jurec, Jasna; Tripathi, Vinod Kumar
2017-12-01
A review has been made to understand the hydrogeochemical behaviour of groundwater through statistical analysis of long term water quality data (year 2005-2013). Water Quality Index ( WQI), descriptive statistics, Hurst exponent, fractal dimension and predictability index were estimated for each water parameter. WQI results showed that majority of samples fall in moderate category during 2005-2013, but monitoring site four falls under severe category (water unfit for domestic use). Brownian time series behaviour (a true random walk nature) exists between calcium (Ca^{2+}) and electric conductivity (EC); magnesium (Mg^{2+}) with EC; sodium (Na+) with EC; sulphate (SO4^{2-}) with EC; total dissolved solids (TDS) with chloride (Cl-) during pre- (2005-2013) and post- (2006-2013) monsoon season. These parameters have a closer value of Hurst exponent ( H) with Brownian time series behaviour condition (H=0.5). The result of times series analysis of water quality data shows a persistent behaviour (a positive autocorrelation) that has played a role between Cl- and Mg^{2+}, Cl- and Ca^{2+}, TDS and Na+, TDS and SO4^{2-}, TDS and Ca^{2+} in pre- and post-monsoon time series because of the higher value of H (>1). Whereas an anti-persistent behaviour (or negative autocorrelation) was found between Cl- and EC, TDS and EC during pre- and post-monsoon due to low value of H. The work outline shows that the groundwater of few areas needs treatment before direct consumption, and it also needs to be protected from contamination.
Zhu, Guifen; Gao, Xia; Wang, Xiaolong; Wang, Jianji; Fan, Jing
2018-01-12
To illuminate the influence mechanism of anionic structure of ionic liquids (ILs) on the adsorption performance of surface molecularly imprinted polymers (MIPs), in this work, six newly designed MIPs were prepared on the surface of amino-poly(styrene-divinylbenzene) particles by using imidazolium ILs with the same cation [C 4 mim] + but different anions (Cl, CH 3 SO 3 , PF 6 , BF 4 , C 4 F 7 O 2 , C 4 F 9 SO 3 ) as template molecules, methacrylic acid as functional monomer, and ethylene dimethacrylate as cross-linker. The resulting MIP materials were characterized by IR and SEM, and the influence of hydrogen bond accepting ability of anions on the adsorption performance of the MIPs for the ILs was investigated in acetonitrile. It was found that adsorption capacity of the MIPs towards the ILs decreased in the order MIP [C4mim][Cl] > MIP [C4mim][C4F7O2] ≥ MIP [C4mim][BF4] and MIP [C4mim][CH3SO3] > MIP [C4mim][C4F9SO3] > MIP [C4mim][PF6] , which is in good agreement with the ability of anions of the ILs to form hydrogen bonds. Ultraviolet, 1 H-NMR and 35 Cl-NMR spectroscopy was then used to study the interactions of anions of the ILs with the functional monomer. It was found that the hydrogen bond interaction between anions of the ILs and acidic proton of the functional monomer was the main driving force for the high adsorption selectivity of the imprinted polymers, and the stronger hydrogen bond interaction indicates higher binding capacity and higher selectivity of the polymers towards the ILs. It was also verified that the ILs with stronger hydrogen bond accepting ability of anions could be selectively extracted by the corresponding IL-MIPs. These results may provide new insight into the recognition mechanism of MIPs for ILs, and are also useful for the rational design of this new class of imprinting materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Inducers of Glycinebetaine Synthesis in Barley1
Jagendorf, André T.; Takabe, Tetsuko
2001-01-01
Glycinebetaine is an osmoprotectant accumulated by barley (Hordeum vulgare) plants in response to high levels of NaCl, drought, and cold stress. Using barley seedlings in hydroponic culture, we characterized additional inducers of glycinebetaine accumulation. These included other inorganic salts (KCl, MgCl2, LiCl, and Na2SO4), oxidants (H2O2 and cumene hydroperoxide), and organic compounds (abscisic acid, polymixin B, n-butanol, salicylic acid, and aspirin). Stress symptoms brought on by high NaCl and other inducers, and not necessarily correlated with glycinebetaine accumulation, include wilting, loss of chlorophyll, and increase in thiobarbituric acid reacting substances. For NaCl, Ca2+ ions at 10 to 20 mm decrease these stress symptoms without diminishing, or even increasing, glycinebetaine induction. Abscisic acid induces glycinebetaine accumulation without causing any of the stress symptoms. NaCl, KCl, and H2O2 (but not other inducers) induce glycinebetaine at concentrations below those needed for the other stress symptoms. Mg2+ at 10 to 20 mm induces both stress symptoms and glycinebetaine, but only at low (0.2 mm) Ca2+. Although illumination is needed for optimal induction, a significant increase in the leaf glycinebetaine level is found in complete darkness, also. PMID:11743126
Peters, N.E.; Leavesley, G.H.
1995-01-01
The chemical composition of snowmelt, groundwater, and streamwater was monitored during the spring of 1991 and 1992 in a 200-ha subalpine catchment on the western flank of the Rocky Mountains near Steamboat Springs, Colorado. Most of the snowmelt occurred during a one-month period annually that began in mid-May 1991 and mid-April 1992. The average water quality characteristics of individual sampling sites (meltwater, streamwater, and groundwater) were similar in 1991 and 1992. The major ions in meltwater were differentially eluted from the snowpack, and meltwater was dominated by Ca2+, SO4/2-, and NO3/-. Groundwater and streamwater were dominated by weathering products, including Ca2+, HCO3/- (measured as alkalinity), and SiO2, and their concentrations decreased as snowmelt progressed. One well had extremely high NO3/- concentrations, which were balanced by Ca2+ concentrations. For this well, hydrogen ion was hypothesized to be generated from nitrification in overlying soils, and subsequently exchanged with other cations, particularly Ca2+. Solute concentrations in streamwater also decreased as snowmelt progressed. Variations in groundwater levels and solute concentrations indicate thai most of the meltwater traveled through the surficial materials. A mass balance for 1992 indicated that the watershed retained H+, NH4/+, NO3/-, SO4/2- and Cl- and was the primary source of base cations and other weathering products. Proportionally more SO4/2- was deposited with the unusually high summer rainfall in 1992 compared to that released from snowmelt, whereas NO3/- was higher in snowmelt and Cl- was the same. The sum of snowmelt and rainfall could account for greater than 90% of the H+ and NH4/+ retained by the watershed and greater than 50% of the NO3/-.The chemical composition of snowmelt, groundwater, and streamwater was monitored during the spring of 1991 and 1992 in a 200-ha subalpine catchment on the western flank of the Rocky Mountains near Steamboat Springs, Colorado. The major ions in meltwater were differentially eluted from the snowpack, and meltwater was dominated by Ca2+, SO42-, and NO3-. Groundwater and streamwater were dominated by weathering products and their concentrations decreased as snowmelt progressed. Solute concentrations in streamwater also decreased as snowmelt progressed. A mass balance for 1992 showed that the watershed retained H+, NH4+, NO3-, SO42- and Cl- and was the primary source of base cations and other weathering products.
Halberg, Kenneth Agerlin; Larsen, Kristine Wulff; Jørgensen, Aslak; Ramløv, Hans; Møbjerg, Nadja
2013-04-01
Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion composition and total osmotic concentration of five different species of tardigrades (Echiniscus testudo, Milnesium tardigradum, Richtersius coronifer, Macrobiotus cf. hufelandi and Halobiotus crispae) using high-performance liquid chromatography and nanoliter osmometry. Quantification of the ionic content indicates that Na(+) and Cl(-) are the principal inorganic ions in tardigrade fluids, albeit other ions, i.e. K(+), NH4(+), Ca(2+), Mg(2+), F(-), SO4(2-) and PO4(3-) were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared with that of the external medium (Na(+), ×70-800; K(+), ×20-90; Ca(2+) and Mg(2+), ×30-200; F(-), ×160-1040, Cl(-), ×20-50; PO4(3-), ×700-2800; SO4(2-), ×30-150). In contrast, in the marine species H. crispae, Na(+), Cl(-) and SO4(2-) are almost in ionic equilibrium with (brackish) salt water, while K(+), Ca(2+), Mg(2+) and F(-) are only slightly concentrated (×2-10). An anion deficit of ~120 mEq l(-1) in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg(-1) in R. coronifer to 961±43 mOsm kg(-1) in H. crispae. Concentrations of most inorganic ions are largely identical between active and dehydrated groups of R. coronifer, suggesting that this tardigrade does not lose large quantities of inorganic ions during dehydration. The large osmotic and ionic gradients maintained by both limno-terrestrial and marine species are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis.
NASA Astrophysics Data System (ADS)
Ahmed, Fahad; Fakhruddin, A. N. M.; Imam, MD. Toufick; Khan, Nasima; Abdullah, Abu Tareq Mohammad; Khan, Tanzir Ahmed; Rahman, Md. Mahfuzur; Uddin, Mohammad Nashir
2017-11-01
In this study, multivariate statistical techniques in collaboration with GIS are used to assess the roadside surface water quality of Savar region. Nineteen water samples were collected in dry season and 15 water quality parameters including TSS, TDS, pH, DO, BOD, Cl-, F-, NO3 2-, NO2 -, SO4 2-, Ca, Mg, K, Zn and Pb were measured. The univariate overview of water quality parameters are TSS 25.154 ± 8.674 mg/l, TDS 840.400 ± 311.081 mg/l, pH 7.574 ± 0.256 pH unit, DO 4.544 ± 0.933 mg/l, BOD 0.758 ± 0.179 mg/l, Cl- 51.494 ± 28.095 mg/l, F- 0.771 ± 0.153 mg/l, NO3 2- 2.211 ± 0.878 mg/l, NO2 - 4.692 ± 5.971 mg/l, SO4 2- 69.545 ± 53.873 mg/l, Ca 48.458 ± 22.690 mg/l, Mg 19.676 ± 7.361 mg/l, K 12.874 ± 11.382 mg/l, Zn 0.027 ± 0.029 mg/l, Pb 0.096 ± 0.154 mg/l. The water quality data were subjected to R-mode PCA which resulted in five major components. PC1 explains 28% of total variance and indicates the roadside and brick field dust settle down (TDS, TSS) in the nearby water body. PC2 explains 22.123% of total variance and indicates the agricultural influence (K, Ca, and NO2 -). PC3 describes the contribution of nonpoint pollution from agricultural and soil erosion processes (SO4 2-, Cl-, and K). PC4 depicts heavy positively loaded by vehicle emission and diffusion from battery stores (Zn, Pb). PC5 depicts strong positive loading of BOD and strong negative loading of pH. Cluster analysis represents three major clusters for both water parameters and sampling sites. The site based on cluster showed similar grouping pattern of R-mode factor score map. The present work reveals a new scope to monitor the roadside water quality for future research in Bangladesh.
NASA Astrophysics Data System (ADS)
Symonds, Robert B.; Reed, Mark H.; Rose, William I.
1992-02-01
Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.
Characterization of major pollution events (dust, haze, and two festival events) at Agra, India.
Pachauri, Tripti; Singla, Vyoma; Satsangi, Aparna; Lakhani, Anita; Kumari, K Maharaj
2013-08-01
Total suspended particulate (TSP) samples were collected during dust, haze, and two festival events (Holi and Diwali) from February 2009 to June 2010. Pollutant gases (NO2, SO2, and O3) along with the meteorological parameters were also measured during the four pollution events at Agra. The concentration of pollutant gases decreases during dust events (DEs), but the levels of the gases increase during other pollution events indicating the impact of anthropogenic emissions. The mass concentrations were about two times higher during pollution events than normal days (NDs). High TSP concentrations during Holi and Diwali events may be attributed to anthropogenic activities while increased combustion sources in addition to stagnant meteorological conditions contributed to high TSP mass during haze events. On the other hand, long-range transport of atmospheric particles plays a major role during DEs. In the dust samples, Ca(2+), Cl(-), NO3 (-), and SO4 (2-) were the most abundant ions and Ca(2+) alone accounted for 22 % of the total ionic mass, while during haze event, the concentrations of secondary aerosols species, viz., NO3 (-), SO4 (2-), and NH4 (+), were 3.6, 3.3, and 5.1 times higher than the normal days. During Diwali, SO4 (2-) concentration (17.8 μg m(-3)) was highest followed by NO3 (-), K(+), and Cl(-) while the Holi samples were strongly enriched with Cl(-) and K(+) which together made up 32.7 % of the total water-soluble ions. The ion balances indicate that the haze samples were acidic. On the other hand, Holi, Diwali, and DE samples were enriched with cations. The carbonaceous aerosol shows strong variation with the highest concentration during Holi followed by haze, Diwali, DEs, and NDs. However, the secondary organic carbon concentration follows the order haze > DEs > Diwali > Holi > NDs. The scanning electron microscope/EDX results indicate that KCl and carbon-rich particles were more dominant during Holi and haze events while DE samples were enriched with particles of crustal origin.
Urtiaga, Ane; Soriano, Alvaro; Carrillo-Abad, Jordi
2018-06-01
The concerns about the undesired impacts on human health and the environment of long chain perfluorinated alkyl substances (PFASs) have driven industrial initiatives to replace PFASs by shorter chain fluorinated homologues. 6:2 fluorotelomer sulfonic acid (6:2 FTSA) is applied as alternative to PFOS in metal plating and fluoropolymer manufacture. This study reports the electrochemical treatment of aqueous 6:2 FTSA solutions on microcrystalline BDD anodes. Bench scale batch experiments were performed, focused on assessing the effect of the electrolyte and the applied current density (5-600 A m -2 ) on the removal of 6:2 FTSA, the reduction of total organic carbon (TOC) and the fluoride release. Results showed that at the low range of applied current density (J = 50 A m -2 ), using NaCl, Na 2 SO 4 and NaClO 4 , the electrolyte exerted a minimal effect on removal rates. The formation of toxic inorganic chlorine species such as ClO 4 - was not observed. When using Na 2 SO 4 electrolyte, increasing the applied current density to 350-600 A m -2 promoted a notable enhancement of the 6:2 FTSA removal and defluorination rates, pointing to the positive contribution of electrogenerated secondary oxidants to the overall removal rate. 6:2 FTSA was transformed into shorter-chain PFCAs, and eventually into CO 2 and fluoride, as TOC reduction was >90%. Finally, it was demonstrated that diffusion in the liquid phase was controlling the overall kinetic rate, although with moderate improvements due to secondary oxidants at very high current densities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sorin, Elise; Etienne, Philippe; Maillard, Anne; Zamarreño, Angel-Mari; Garcia-Mina, José-Maria; Arkoun, Mustapha; Jamois, Frank; Cruz, Florence; Yvin, Jean-Claude; Ourry, Alain
2015-10-01
Identification of early sulphur (S) deficiency indicators is important for species such as Brassica napus, an S-demanding crop in which yield and the nutritional quality of seeds are negatively affected by S deficiency. Because S is mostly stored as SO4 (2-) in leaf cell vacuoles and can be mobilized during S deficiency, this study investigated the impact of S deprivation on leaf osmotic potential in order to identify compensation processes. Plants were exposed for 28 days to S or to chlorine deprivation in order to differentiate osmotic and metabolic responses. While chlorine deprivation had no significant effects on growth, osmotic potential and nitrogen metabolism, Brassica napus revealed two response periods to S deprivation. The first one occurred during the first 13 days during which plant growth was maintained as a result of vacuolar SO4 (2-) mobilization. In the meantime, leaf osmotic potential of S-deprived plants remained similar to control plants despite a reduction in the SO4 (2-) osmotic contribution, which was fully compensated by an increase in NO3 (-), PO4 (3-) and Cl(-) accumulation. The second response occurred after 13 days of S deprivation with a significant reduction in growth, leaf osmotic potential, NO3 (-) uptake and NO3 (-) reductase activity, whereas amino acids and NO3 (-) were accumulated. This kinetic analysis of S deprivation suggested that a ([Cl(-)]+[NO3 (-)]+[PO4 (3-)]):[SO4 (2-)] ratio could provide a relevant indicator of S deficiency, modified nearly as early as the over-expression of genes encoding SO4 (2-) tonoplastic or plasmalemmal transporters, with the added advantage that it can be easily quantified under field conditions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
A slow calcium-dependent component of charge movement in Rana temporaria cut twitch fibres.
Hui, C S
1998-06-15
1. Charge movement was studied in highly stretched frog cut twitch fibres in a double Vaseline-gap voltage-clamp chamber, with the internal solution containing either 0.1 mM EGTA or 20 mM EGTA plus 1. 8 mM total Ca2+. 2. Fibres were stimulated with TEST pulses lasting 100-400 ms. Replacement of the external Cl- with an 'impermeant' anion, such as SO42-, CH3SO3-, gluconate or glutamate, greatly reduced the calcium-dependent Cl- current in the ON segment and generated a slowly decaying inward OFF current in charge movement traces. 3. Application of 20 mM EGTA to the internal solution abolished the slow inward OFF current, implying that the activation of the current depended on the presence of Ca2+ in the myoplasm. The possibility that the slow inward OFF current was carried by cations flowing inwards or anions flowing outwards was studied and determined to be unlikely. 4. During a long (2000 ms) TEST pulse, a slowly decaying ON current was also observed. When the slow ON and OFF currents were included as parts of the total charge movement, ON-OFF charge equality was preserved. This slow capacitive current is named Idelta. 5. When Cl- was the major anion in the external solution, the OFF Idelta was mostly cancelled by a slow outward current carried by the inflow of Cl-. 6. The OFF Idelta component showed a rising phase. The average values of the rising time constants in CH3SO3- and SO42- were similar and about half of that in gluconate. 7. The OFF Idelta component in CH3SO3- had a larger magnitude and longer time course than that in SO42-. The maximum amount of Qdelta in CH3SO3- was about three times as much as that in SO42-, whereas the voltage dependence of Qdelta was similar in the two solutions. 8. Since the existence of Qdelta depends on the presence of Ca2+ in the myoplasm, it is speculated that Qdelta could be a function of intracellular calcium release.
Sun, Han-wen; Wu, Yuan-yuan; Li, Li-qing
2009-03-01
A novel trivalence dysprosium(Dy(3+))-sensitized chemiluminescence method was developed for the first time for the determination of enoxacin (ENX) using flow-injection sampling based on the chemiluminescence (CL) associated with the reaction of the Dy(3+)-cerium(Ce(IV))-S(2)O(3) (2-)-ENX system and the Dy(3+)-MnO(4) (-) S(2)O(3) (2-)-ENX system. The analytical conditions for CL emission were investigated and optimized. The relationship between the CL intensity of ENX and its concentration has good linearity, with a correlation coefficient of 0.9984-0.9994. The limit of detection (LOD, 3sigma) was 0.20 ng/mL for the Dy(3+)-ENX-S(2)O(3)(2-)-Ce(IV)-H(2)SO(4) system and 0.22 ng/mL for the Dy(3+)-ENX-S(2)O(3)(2-)-MnO(4) (-)-HNO(3) system. The relative standard deviation (RSD, n = 11) was 1.8% for 11 determinations of 60 ng/mL ENX. The proposed method was applied to the analysis of ENX in injections, serum and urine samples with a recovery of 98%-105%. A possible mechanism for this sensitized CL reaction is discussed by comparing the CL spectra with the fluorescence emission spectra. The proposed method represents a wide linear range, high sensitivity and accuracy, and can be used for the routine determination of ENX in pharmaceutical preparations and biological fluids. Copyright 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Shebl, Magdy; Adly, Omima M. I.; Taha, A.; Elabd, N. N.
2017-11-01
The compound in the title (L) was synthesized and reacted with Cu(II) metal ion with different anions (OAc-, NO3-, SO42-, ClO4-, Cl- and Br-) in absence and presence of auxiliary ligands (L‧); N,O-donor; or N,N-donor; to form binary and ternary Cu(II)-chelates. The metal complexes were fully characterized by analytical and spectral techniques in addition to thermal, conductivity and magnetic susceptibility measurements. The obtained results showed that the ligand behaves as a neutral bidentate, forming chelates with molar ratios: 1:1, 1:2 and 1:3; M:L for binary and 1:2:1 and 1:1:1; M:L:L‧ for ternary complexes, which can be formulated as: [LmCuXn(H2O)y]·zH2O, m = 1 or 2, n = 0, 1 or 2, X = OAc-, SO42-, Cl- or Br-, y = 0 or 2, z = 0 or 0.5; [LmCu(H2O)n]X2·zMeOH, m = 2 or 3, n = 0 or 2, X = ClO4- or NO3-, z = 0 or 1 and [Lm L'Cu(H2O)n](NO3)x·yS, m = 1 or 2, n = 0 or 2, X = 1 or 2, y = 0.5 or 4, S = H2O or MeOH. The ESR spin Hamiltonian parameters of some complexes were calculated. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The structural parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data. The metal complexes exhibited octahedral and square planar geometrical arrangements according to the nature of the anion. The ligand and its metal complexes showed antibacterial activity towards Gram-positive bacteria, Gram-negative bacteria, yeast and fungus.
Synthesis of inorganic fullerene-like molecules.
Bai, Junfeng; Virovets, Alexander V; Scheer, Manfred
2003-05-02
The reaction of [Cp*Fe(eta5-P5)] with Cu(I)Cl in solvent mixtures of CH2Cl2/CH3CN leads to the formation of entirely inorganic fullerene-like molecules of the formula [[Cp*Fe(eta5:eta1:eta1:eta1:eta1:eta1-P5)]12[CuCl]10[Cu2Cl3]5[Cu(CH3CN)2]5] (1) possessing 90 inorganic core atoms. This compound represents a structural motif similar to that of C60: cyclo-P5 rings of [Cp*Fe(eta5-P5)] molecules are surrounded by six-membered P4Cu2 rings that result from the coordination of each of the phosphorus lone pairs to CuCl metal centers, which are further coordinated by P atoms of other cyclo-P5 rings. Thus, five- and six-membered rings alternate in a manner comparable to that observed in the fullerene molecules. The so-formed half shells are joined by [Cu2Cl3]- as well as by [Cu(CH3CN)2]+ units. The spherical body has an inside diameter of 1.25 nanometers and an outside diameter of 2.13 nanometers, which is about three times as large as that of C60.
NASA Astrophysics Data System (ADS)
Yahya, Hameed Saleh Ali; Jilali, Abdelhakim; Mostareh, Mohammed Mohammed Mohammed; Chafik, Zouheir; Chafi, Abdelhafid
2017-12-01
The focus of this study is the physicochemical and bacteriological characteristics of groundwater in the Triffa plain, Morocco. In total, 34 groundwater samples were analyzed for major elements (Tp, pH, EC, K+, Na+, Ca2+, Mg2+, Cl-, SO4 2-, NO3 -, NO2 -, NH4 +, H2PO4 -, CO3, and HCO3 -) and trace metal (Al, Cd, Cu, Fe, and Zn) content. The results show that the pH values range between 6.7 and 8.9, electrical conductivity ranges between 740 and 7340 µS/cm, and nitrate content ranges between 1.7 and 212 mg/l. Hydrochemical facies represented using a Piper diagram indicate an Na-K-Cl type water. All the trace metal concentrations are within the admissible standard range except for Cd. The bacteriological analysis showed that the majority of groundwater samples are contaminated. Generally, the content of total coliforms, fecal coliforms, and fecal streptococci ranged from 0 to 140, 0 to 125, and 0 to 108 CFU/100 ml, respectively. The samples are grouped according to three factors. Factor 1 shows strong positive loadings of EC, Mg, Cl, Na and K with 51.91% of total variance (TV); factor 2 shows strong negative loadings of NO3, SO4 and Ca with 17.98% of TV; and factor 3 shows strong negative loading of HCO3 with 15.56 of TV. We conclude that the quality of this groundwater is suitable for irrigation and domestic use (cleaning house, ect).
Guo, Jianbo; Zhang, Chao; Lian, Jing; Lu, Caicai; Chen, Zhi; Song, Yuanyuan; Guo, Yankai; Xing, Yajuan
2017-11-01
Perchlorate (ClO 4 - ) contamination is more and more concerned due to the hazards to humans. Based on the common primary bacterium (Helicobacteraceae) of both thiosulfate-acclimated sludge (T-Acc) and sulfur-acclimated sludge (S-Acc) for perchlorate reduction, the rapid start-up of sulfur-based perchlorate reduction reactor (SBPRR) was hypothesized by inoculating T-Acc. Furthermore, the performance of SBPRR, the SO 4 2- yield, kinetics of ClO 4 - reduction and the extracellular polymeric substances (EPS) of biofilm confirmed the hypothesis. The start-up time of R3 (reactor inoculating T-Acc) was 0.18 and 0.21 times that of R1 (control) and R2 (reactor with the influent containing thiosulfate), respectively. The SO 4 2- yield of R3 was lower than that of R2 and R1 with perchlorate removal rate 166.7mg/(Lh). The kinetic study and EPS demonstrated that inoculating T-Acc was beneficial for the development of biofilm. Consequently, the present study indicated that SBPRR can be rapidly and successfully started-up via inoculation of T-Acc. Copyright © 2017 Elsevier Ltd. All rights reserved.
AB Initio Study of the Structure and Spectroscopic Properties of Halogenated Thioperoxy Radicals
NASA Technical Reports Server (NTRS)
Munoz, Luis A.; Binning, R. C., Jr.; Weiner, Brad R.; Ishikawa, Yasuyuki
1997-01-01
Thioperoxy (XSO or XOS) radicals exist in a variety of chemical environments, and they have as a consequence drawn some interest. HSO, an important species in the chemistry of the troposphere, has been examined both experimentally. The halogenated (X = F, Cl or Br) peroxy species and isovalent thioperoxy species have been studied less, but they too are potentially interesting because oxidized sulfur species and halogen sources are present in the atmosphere. Learning the fate of XSO and XOS radicals is important to understanding the atmospheric oxidation chemistry of sulfur compounds. Of these, FSO and ClSO are particularly interesting because they have been directly detected spectroscopically. Recent studies in our laboratory on the photochemistry of thionyl halides (X2SO; where X = F or Cl) have suggested new ways to generate XSO species. The laser-induced photodissociation of thionyl fluoride, F2SO, at 193 nm and thionyl chloride, ClSO, at 248 nm is characterized by a radical mechanism, X2SO -> XSO + X. The structure of FSO has been characterized experimentally by Endo et cd. employing microwave spectroscopy. Using the unrestricted Hartree-Fock (UHF) self-consistent field (SCF) method, Sakai and Morokuma computed the electronic structure of the ground (sup 2)A" and the first excited (sup 2)A' states of FSO. Electron correlation was not taken into account in their study. In a laser photodissociation experiment, Huber et al. identified ClSO mass spectromctrically. ClSO has also been detected in low temperature matrices by EPR and in the gas phase by far IR laser magnetic resonance. Although the structure of FSO is known in detail, the only study, experimental or theoretical, of CISO has been an ab initio HFSCF study by Hinchliffe. Electron correlation corrections were also excluded from this study. In order to better understand the isomerization and dissociation dynamics of the radical species, we have performed ab initio correlated studies of the potential energy surfaces (PES) of ClSO and its isomer ClOS at the QCISD(T)/6-31 G* level of theory. For FSO and FOS, more extensive QCISD/6-31 1G(2df) calculations have been possible, and the results are summarized here.
Fernandes, Christiane; Oliveira Moreira, Rafaela; Lube, Leonardo M; Horn, Adolfo; Szpoganicz, Bruno; Sherrod, Stacy; Russell, David H
2010-06-07
We report herein the characterization by electrospray ionization (ESI) mass spectrometry (MS), matrix assisted laser desorption ionization (MALDI-MS) and potentiometric titration of three iron(III) compounds: [Fe(III)(HPClNOL)Cl2]·NO3 (1), [Cl(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)Cl]·Cl2·H2O (2) and [(SO4)(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)(SO4)]·6H2O (3), where HPClNOL= 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol). Despite the fact that the compounds have distinct structures in solid state and non-buffered solution, all compounds present similar ESI and MALDI mass spectra in a buffered medium (pH 7.0). At this pH, the species [(PClNOL)Fe(III)-(μ-O)-Fe(III)(PClNOL)](2+) (m/z 354) was observed for all the compounds under investigation. Potentiometric titration confirms a similar behavior for all compounds, indicating that the dihydroxo form [(OH)(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)(OH)](2+) is the major species at pH 7.0, for all the compounds. The products of the interaction between compounds (1), (2) and (3) and dAMP (2'-deoxyadenosine-5'-monophosphate) in a buffered medium (pH 7.0) were identified by MALDI-MS/MS. The fragmentation data obtained by MS/MS allow one to identify the nature of the interaction between the iron(III) compounds and dAMP, revealing the direct interaction between the iron center and phosphate groups.
Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles.
Arcibar-Orozco, Javier A; Rangel-Mendez, J Rene; Bandosz, Teresa J
2013-02-15
The effect of iron particle size anchored on the surface of commercial activated carbon on the removal of SO(2) from a gas phase was studied. Nanosize iron particles were deposited using forced hydrolysis of FeCl(3) with or without H(3)PO(4) as a capping agent. Dynamic adsorption experiments were carried out on either dry or pre-humidified materials and the adsorption capacities were calculated. The surface of the initial and exhausted materials was extensively characterized by microscopic, porosity, thermogravimetric and surface chemistry. The results indicate that the SO(2) adsorption capacity increased two and half times after the prehumidification process owing to the formation of H(2)SO(4) in the porous system. Iron species enhance the SO(2) adsorption capacity only when very small nanoparticles are deposited on the pore walls as a thin layer. Large iron nanoparticles block the ultramicropores decreasing the accessibility of the active sites and consuming oxygen that rest adsorption centers for SO(2) molecules. Iron nanoparticles of about 3-4 nm provide highly dispersed adsorption sites for SO(2) molecules and thus increase the adsorption capacity of about 80%. Fe(2)(SO(4))(3) was detected on the surface of exhausted samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya, India
NASA Astrophysics Data System (ADS)
Singh, Virendra Bahadur; Ramanathan, Al; Pottakkal, Jose George; Sharma, Parmanand; Linda, Anurag; Azam, Mohd Farooq; Chatterjee, C.
2012-06-01
A detailed analytical study of major cations (Ca2 + , Mg2 + , Na + , K + ) and anions (SO4^{2-}, HCO3-, Cl - , NO3-) of meltwater draining from Gangotri Glacier was carried out to understand major ion chemistry and to get an insight into geochemical weathering processes controlling hydrochemistry of the glacier. In the meltwater, the abundance order of cations and anions varied as follows: Ca2 + > Mg2 + > K + > Na + and SO4^{2-} > HCO3- > Cl - > NO3-, respectively. Calcium and magnesium are dominant cations while sulphate and bicarbonate are dominant anions. Weathering of rocks is the dominant mechanism controlling the hydrochemistry of drainage basin. The relative high contribution of (Ca+Mg) to the total cations (TZ + ), high (Ca+Mg)/(Na+K) ratio (2.63) and low (Na+K)/TZ + ratio (0.29) indicate the dominance of carbonate weathering as a major source for dissolved ions in the glacier meltwater. Sulphide oxidation and carbonation are the main proton supplying geochemical reactions controlling the rock weathering in the study area. Statistical analysis was done to identify various factors controlling the dissolved ionic strength of Gangotri Glacier meltwater.
Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy
NASA Astrophysics Data System (ADS)
Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.
2017-12-01
Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.
NASA Astrophysics Data System (ADS)
Ma, Q.; He, H.
2012-12-01
Internally mixed oxalic acid with mineral dust has been frequently detected in field measurements (Sullivan and Prather, 2007; Wang et al., 2012; Yang et al., 2009). Meanwhile, Furukawa and Takahashi (Furukawa and Takahashi, 2011) found that most of the oxalic acid in mineral mixture is present as metal oxalate complexes in the aerosols, however, the formation mechanism of these complexes is not well known. It was reported that cloud process of H2C2O4/CaCO3 mixture could lead to the formation of calcium oxalate (Gierlus et al., 2012). Recently, we used Raman spectroscopy to investigate the hygroscopic behavior of H2C2O4/CaCO3 mixture below saturation condition as well as the effect of coexisting hygroscopic compositions, e.g. Ca(NO3)2, NaCl, NH4NO3, and (NH4)2SO4. It was found that there was no interaction between H2C2O4 and calcite without third component during humidifying process under ambient condition. In contrast, the presence of coexisting Ca(NO)3, NaCl, or NH4NO3 could promote the reaction between H2C2O4 and calcite by providing an aqueous circumstance after deliquescence, resulting in the formation of calcium oxalate hydrates. Moreover, substitution of strong acid (HNO3) by medium acid (H2C2O4) occurred when water vapor was absorbed in Ca(NO3)2/H2C2O4 mixture (Ma and He, 2012). As for (NH4)2SO4, there existed a competition effect between (NH4)2SO4 and H2C2O4 for the reaction with CaCO3. CaCO3 was preferentially reacted with (NH4)2SO4 to form gypsum in the solution, while the residual NH4+ and C2O42- ions were bonded to (NH4)2C2O4 after efflorescence. These results implies a potential formation pathway of metal oxalate complexes in the atmosphere and also suggests that synergistic effect between different constituents in humidifying process of mixed particles should be considered in future hygroscopic behavior studies.
Beckmann, Jens; Bolsinger, Jens; Duthie, Andrew; Finke, Pamela
2013-09-14
The stoichiometrically controlled halogenation of the intramolecularly coordinated diaryltelluride (8-Me2NC10H6)2Te using SO2Cl2, Br2 and I2 was studied. At an equimolar ratio, the diarylhalotelluronium cations [(8-Me2NC10H6)2TeX](+) (1, X = Cl; 2, X = Br; 3, X = I) formed and were isolated as 1·Cl(-)·H2O·1/2THF, 2·Br(-), and 3·I(-), respectively. When the same reactions were carried out in the presence of KPF6, 1·PF6(-) and 22·Br(-)·PF6(-) were obtained. The chlorination of (8-Me2NC10H6)2Te with an excess of SO2Cl2 occurred with a double electrophilic substitution at the 8-dimethylaminonaphthyl residues (in the ortho- and para-positions) and afforded the diaryltellurium dichloride (5,7-Cl2-8-Me2NC10H4)2TeCl2 (4). The bromination of (8-Me2NC10H6)2Te with three equivalents of Br2 took place with a single electrophilic substitution at the 8-dimethylaminonaphthyl residues (in the para-positions) and provided the diaryltellurium dibromide (5-Br-8-Me2NC10H5)2TeBr2 (5), while an excess of Br2 produced the diarylbromotelluronium cation [(5-Br-8-Me2NC10H5)2TeBr](+) (6) that was isolated as 6·Br3(-). The reaction of (8-Me2NC10H6)2Te with two or three equivalents of iodine provided 3·I3(-) and 3·I3(-)·I2, respectively. In the presence of water, 1·Cl(-)·H2O·1/2THF, 2·Br(-), 3·I(-) and 3·I3(-) hydrolyzed to give the previously known diarylhydroxytelluronium cation [(8-Me2NC10H6)2TeOH](+) (7) that was isolated as 7·Cl(-), 7·Br(-)·H2O·THF, 7·I(-) and 7·I3(-)·H2O, respectively. The molecular structures of 1-7 were investigated in the solid-state by (125)Te MAS NMR spectroscopy and X-ray crystallography and in solution by multinuclear NMR spectroscopy ((1)H, (13)C, (125)Te), electrospray mass spectrometry and conductivity measurements. The stabilization of cations 1-3 by the intramolecular coordination was estimated by DFT calculations at the B3PW91/TZ level of theory.
Loto, Roland Tolulope
2018-01-01
Inhibition effect of trypsin complex (TC) on the pitting corrosion of martensitic stainless steel (type 420) in 1M H2SO4 solution was studied with potentiodynamic polarization, open circuit potential measurement and optical microscopy. TC reduced the corrosion rate of the steel with maximum inhibition efficiency of 80.75%. Corrosion potential shifted anodically due to the electrochemical action of TC. The pitting potential increased from 1.088VAg/AgCl (3M) at 0% TC to 1.365VAg/AgCl(3M) at 4% TC. TC shifts the open circuit corrosion potential from -0.270s at 0% TC concentration to -0.255V at 5% TC. The compound completely adsorbed onto the steel according to Langmuir, Frumkin and Temkin isotherms. ATF-FTIR spectroscopy confirmed the inhibition mode to be through surface coverage. Thermodynamic calculations showed physisorption molecular interaction. Corrosion pits are present on the uninhibited 420 morphology in comparison to TC inhibited surface which slightly deteriorated.
Loto, Roland Tolulope
2018-01-01
Inhibition effect of trypsin complex (TC) on the pitting corrosion of martensitic stainless steel (type 420) in 1M H2SO4 solution was studied with potentiodynamic polarization, open circuit potential measurement and optical microscopy. TC reduced the corrosion rate of the steel with maximum inhibition efficiency of 80.75%. Corrosion potential shifted anodically due to the electrochemical action of TC. The pitting potential increased from 1.088VAg/AgCl (3M) at 0% TC to 1.365VAg/AgCl(3M) at 4% TC. TC shifts the open circuit corrosion potential from -0.270s at 0% TC concentration to -0.255V at 5% TC. The compound completely adsorbed onto the steel according to Langmuir, Frumkin and Temkin isotherms. ATF-FTIR spectroscopy confirmed the inhibition mode to be through surface coverage. Thermodynamic calculations showed physisorption molecular interaction. Corrosion pits are present on the uninhibited 420 morphology in comparison to TC inhibited surface which slightly deteriorated. PMID:29672541
Shahid, Memuna Ghafoor; Nadeem, Muhammad; Baig, Shahjehan; Cheema, Tanzeem Akbar; Atta, Saira; Ghafoor, Gul Zareen
2016-03-01
The present study deals with the production of ergot alkaloids from Penicillium commune and Penicillium citrinum, using surface culture fermentation process. Impact of various inorganic salts was tested on the production of ergot alkaloids during the optimization studies of fermentation medium such as impact of various concentration levels of succinic acid, ammonium chloride, MgSO4, FeSO4, ZnSO4, pH and the effect of various incubation time periods was also determined on the production of ergot alkaloids from Penicillium commune and Penicillium citrinum. Highest yield of ergot alkaloids was obtained when Penicillium commune and Penicillium citrinum that were grown on optimum levels of ingredients such as 2 g succinic acid, 1.5 and 2 g NH4Cl, 1.5 g MgSO4, 1 g FeSO4, 1 and 1.5 g ZnSO4 after 21 days of incubation time period using pH 5 at 25(°)C incubation temperature in the fermentation medium. Ergot alkaloids were determined using Spectrophotometry and Thin Layer Chromatography (TLC) techniques.
NASA Astrophysics Data System (ADS)
Giorgiana Galon-Negru, Alina; Iulian Olariu, Romeo; Arsene, Cecilia
2018-04-01
This study assesses the effects of particle size and season on the content of the major inorganic and organic aerosol ionic components in the Iasi urban area, north-eastern Romania. Continuous measurements were carried out over 2016 using a cascade Dekati low-pressure impactor (DLPI) performing aerosol size classification in 13 specific fractions over the 0.0276-9.94 µm size range. Fine-particulate Cl-, NO3-, NH4+, and K+ exhibited clear minima during the warm season and clear maxima over the cold season, mainly due to trends in emission sources, changes in the mixing layer depth and specific meteorological conditions. Fine-particulate SO42- did not show much variation with respect to seasons. Particulate NH4+ and NO3- ions were identified as critical parameters controlling aerosol chemistry in the area, and their measured concentrations in fine-mode (PM2.5) aerosols were found to be in reasonable good agreement with modelled values for winter but not for summer. The likely reason is that NH4NO3 aerosols are lost due to volatility over the warm season. We found that NH4+ in PM2.5 is primarily associated with SO42- and NO3- but not with Cl-. Actually, indirect ISORROPIA-II estimations showed that the atmosphere in the Iasi area might be ammonia rich during both the cold and warm seasons, enabling enough NH3 to be present to neutralize H2SO4, HNO3, and HCl acidic components and to generate fine-particulate ammonium salts, in the form of (NH4)2SO4, NH4NO3, and NH4Cl. ISORROPIA-II runs allowed us to estimate that over the warm season ˜ 35 % of the total analysed samples had very strongly acidic pH (0-3), a fraction that rose to ˜ 43 % over the cold season. Moreover, while in the cold season the acidity is mainly accounted for by inorganic acids, in the warm ones there is an important contribution by other compounds, possibly organic. Indeed, changes in aerosol acidity would most likely impact the gas-particle partitioning of semi-volatile organic acids. Overall, we estimate that within the aerosol mass concentration the ionic mass brings a contribution as high as 40.6 %, with the rest still being unaccounted for.
Jacob, Jubi; Rajendran, Reshma Uma; Priya, Syama Hari; Purushothaman, Jayamurthy; Saraswathy Amma, Dileep Kumar Bhaskaran Nair
2017-01-01
Streptomyces strains isolated from Nelliyampathy forest soil of Western Ghats, Kerala, India were evaluated for their antibacterial efficacy against two indicator pathogenic bacteria (Escherichia coli and Staphylococcus aureus). Among 140 strains tested, sixteen recorded potent antibacterial properties and were further screened against eleven bacterial pathogens. A strain identified as Streptomyces nogalater and designated as NIIST A30 exhibited maximum inhibition against all the test pathogens. Among the eight fermentation media tested, inorganic salts starch broth recorded the best for antibacterial production. The ethyl acetate crude extract exhibited antioxidant properties with IC50 value of 30 μg/mL and had no cytotoxicity towards L6, H9c2 and RAW 264.7 cell lines up to a concentration of 50 μg/mL. Maximum metabolite production was achieved in pH 7.0 at 35°C after 7 days incubation. The significant media components for maximum metabolite production were optimized through response surface methodology employing Plackett-Burman and Box-Behnken designs. The composition of the final optimized medium was soluble starch, 14.97g; (NH4)2SO4, 2.89g; K2HPO4, 2.07g; MgSO4.7H2O, 1g; NaCl, 1g, CaCO3, 2g; FeSO4.7H2O, 1mg; MnCl2.7H2O, 1mg; and ZnSO4.7H2O, 1mg per litre of distilled water. The optimization resulted an antibacterial activity of 28±1.5mm against S. epidermidis which was in close accordance with the predicted value of 30 mm. It is also evident from the result that an increase of 86.66% antibacterial production was recorded in optimized media. The chosen method was economical, efficient and useful for future antibacterial drug discovery from a broad spectrum metabolite producer like Streptomyces nogalater NIIST A30. PMID:28437452
Xu, Y.; Schoonen, M.A.A.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.
1998-01-01
Thiosulfate (S2O2-3), polythionate (SxO2-6), dissolved sulfide (H2S), and sulfate (SO2-4) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 ??mol/L in neutral and alkaline chloride springs with low sulfate concentrations (C1-/SO2-4 > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl-/SO2-4 < 10), thiosulfate concentrations were also typically lower than 2 ??mol/L. However, in some chloride springs enriched with sulfate (Cl-/SO2-4 between 10 to 25), thiosulfate was found at concentrations ranging from 9 to 95 ??mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 ??mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the hydrothermal discharge is turbulent and has a large surface area.
The effects of inhaled sulfuric acid on pulmonary function in adolescent asthmatics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koenig, J.Q.; Pierson, W.E.; Horike, M.
Ten adolescent subjects with extrinsic asthma and exercise-induced bronchospasm were studied. The subjects were exposed for 30 min at rest followed by 10 min during moderate exercise on a treadmill to either 100 micrograms/m3 sodium chloride (NaCl) or 100 micrograms/m3 sulfuric acid (H/sub 2/SO/sub 4/) droplet aerosols. All exposures were at approximately 75% relative humidity and 22 degrees C. Pulmonary functional measurements were recorded before, during, and after exposure while the subject was seated in a body plethysmograph. Exposure to the NaCl aerosol during exercise produced a small (12%) but significant drop in maximal expiratory flow (V/sub max/75) (p lessmore » than 0.05). However, exposure to the H/sub 2/SO/sub 4/ aerosol produced larger reductions in V/sub max/75 (29%; p less than 0.01) and also significant changes in 3 other parameters of pulmonary function: V/sub max/50, FEV1, and total respiratory resistance (RT). The changes were similar to those reported for exposure to 0.5 ppm of sulfur dioxide in a similar group of adolescents with extrinsic asthma. Our results are the first report of reversible pulmonary functional changes after H/sub 2/SO/sub 4/ exposure in a group of adolescent asthmatic subjects.« less
ERIC Educational Resources Information Center
Kamata, Masahiro; Yajima, Seiko
2013-01-01
An educational experiment illustrates the electrolysis of water and copper chloride to middle school science students. The electrolysis cell is composed of filter paper soaked with Na[subscript 2]SO[subscript 4] or CuCl[subscript 2] aqueous solution sandwiched, along with a sheet of platinum foil, between two coin-type lithium batteries. When the…
Davaatseren, Munkhtugs; Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi; Choi, Mi-Jung
2014-01-01
This study investigated the effects of NaCl replacers (KCl, CaSO4, and MgSO4) on the quality and sensorial properties of pork patty. In the characteristics of spray-dried salt particles, KCl showed the largest particle size with low viscosity in solution. Meanwhile CaSO4 treatment resulted in the smallest particle size and the highest viscosity (p<0.05). In comparison of the qualities of pork patties manufactured by varying level of Na replacers, MgSO4 treatment exhibited low cooking loss comparing to control (p<0.05). Textural properties of KCl and MgSO4 treatments showed similar pattern, i.e., low level of the replacers caused harder and less adhesive texture than those of control (p<0.05), whereas the hardness of these products was not different with control when the replacers were added more than 1.0%. The addition of CaSO4 also manifested harder and less adhesive than control (p<0.05), but the textural properties of CaSO4 treatment was not affected by level of Ca-salt. Eventually, sensorial properties indicated that KCl and CaSO4 influenced negative effects on pork patties. In contrast, MgSO4 showed better sensorial properties in juiciness intensity, tenderness intensity as well as overall acceptability than control, reflecting that MgSO4 was an effective Na-replacer in meat product formulation.
NASA Astrophysics Data System (ADS)
Rastogi, N.; Athiyarath, S.; Sarin, M.; R, R.
2006-12-01
The chemical composition of ambient aerosols, collected during wintertime from four designated sites: Ahmedabad (23.0oN, 72.6oE, 49 m asl), Mt Abu (24.6oN, 72.7oE, 1680 m asl), Hisar (29.2oN, 75.7oE, 216m asl) and Nainital (29.4oN, 79.5oE, 1940 m asl), has been studied to understand the potential role of regional emission sources as well as the long-range transport of chemical constituents through free troposphere. The two high altitude sites, Mt Abu and Nainital, exhibit free tropospheric characteristics during wintertime; whereas the urban sites (Ahmedabad and Hisar) are within boundary layer. The ratios of major ionic species, measured in water extracts of aerosols, are considered to be advantageous in order to remove the effect of aerosol mass loading on the atmospheric concentrations of species at different sites. At low-altitude-urban sites (Ahmedabad and Hisar), geometric mean of Ca2+/Na+ ratios (4.3 and 4.5) and HCO3-/ Ca2+ ratios (1.7 and 1.5) are comparable; whereas significant differences are observed in Cl-/Na+ (1.1 and 0.6), SO42-/Ca2+ (1.5 and 3.5) and SO42-/NO3- (2.1 and 1.0). These differences are attributed to relative dominance of anthropogenic emissions over the northern site (Hisar). In contrast, major differences arise over Mt Abu and Nainital with respect to Cl-/Na+ (1.0 and 0.2), Ca2+/Na+ (9.0 and 4.4) and HCO3-/ Ca2+ (1.8 and 0.9) ratios; whereas SO42-/Ca2+ (2.3 and 3.1) and SO42-/NO3- (5.3 and 5.9) ratios are comparable. Such regional differences for a high altitude site could arise due to semi-arid climate and high abundance of mineral dust at Mt Abu. Higher SO42-/NO3- ratios over high altitude sites than those over low altitude sites are attributed to the relative difference in the size distribution of SO42- (fine mode) and NO3- (coarse mode) aerosols.
Electroreduction of CO{sub 2} using copper-deposited on boron-doped diamond (BDD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panglipur, Hanum Sekar; Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id; Einaga, Yasuaki
Electroreduction of CO{sub 2} was studied at copper-modified boron-doped diamond (Cu-BDD) electrodes as the working electrode. The Cu-BDD electrodes were prepared by electrochemical reduction with various concentrations of CuSO{sub 4} solutions. FE-SEM was utilized to characterize the electrodes. At Cu-BDD electrodes, a reduction peak at around -1.2 V (vs Ag/AgCl) attributtable to CO{sub 2} reductions could be observed by cyclic voltammetry technique of CO{sub 2} bubbled in water containing 0.1M NaCl. Accordingly, electroreduction of CO{sub 2} was conducted at -1.2 V (vs Ag/AgCl) using amperometry technique. The chemical products of the electroreduction analyzed by using HPLC showed the formation of formaldehyde, formicmore » acid, and acetic acid at Cu-BDD electrodes.« less
Zhou, Li-Mei; Guo, Cai-Hong; Fu, Hai-Yan; Jiang, Xiao-Hui; Chen, Hua; Li, Rui-Xiang; Li, Xian-Jun
2012-07-01
The interactions of rhodium complex RhCl(CO)(TPPTS)(2) [TPPTS=P(m-C(6)H(4)SO(3)Na)(3)] with cationic, nonionic, and anionic surfactants have been investigated by UV-vis, fluorescence and (1)H NMR measurements. The presence of four different species of RhCl(CO)(TPPTS)(2) in cationic cetyltrimethylammonium (CTAB) solution has been demonstrated: free rhodium complex, rhodium complex bound to CTAB monomer, rhodium complex bound to CTAB premicelles, rhodium complex bound to CTAB micelles. The spectroscopy data show that RhCl(CO)(TPPTS)(2) can adsorb on the interface of cationic CTAB micelles by strong electrostatic attraction, weakly bind to the nonionic polyoxyethylene (20) sorbitan monolaurate (Tween 20) micelles by hydrophobic interaction, and does not interact with anion sodium dodecyl sulfate (SDS) micelles due to the strong electrostatic repulsion. Copyright © 2012 Elsevier B.V. All rights reserved.
A new pullulan-producing yeast and medium optimization for its exopolysaccharide production
NASA Astrophysics Data System (ADS)
Zhao, Shuangzhi; Chi, Zhenming
2003-04-01
Yeast strain Y68 producing high level of pullulan was isolated from the phyton collected in Toulouse, France. This strain was identified to be Rhodotorula bacarum by BIOLOG analysis. This is the first report that pullulan was produced by Rhodotorula bacarum. The optimal medium (g L-1) for pullulan production by this strain was 80 glucose, 20 soybean cake hydrolysate, 5 K2HPO4, 1 NaCl, 0.2 MgSO4·7H2O, 0.6 (NH4)2SO4, pH 7.0. Under this condition, 54 gL-1 pullulan was produced within 60 h at 30°C. Pullulan is a better starting material for producing marine prodrugs.
Functionalization of metallabenzenes through nucleophilic aromatic substitution of hydrogen.
Clark, George R; Ferguson, Lauren A; McIntosh, Amy E; Söhnel, Tilo; Wright, L James
2010-09-29
The cationic metallabenzenes [Ir(C(5)H(4){SMe-1})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (1) and [Os(C(5)H(4){SMe-1})(CO)(2)(PPh(3))(2)][CF(3)SO(3)] (2) undergo regioselective nucleophilic aromatic substitution of hydrogen at the metallabenzene ring position γ to the metal in a two-step process that first involves treatment with appropriate nucleophiles and then oxidation. Thus, reaction between compound 1 and NaBH(4), MeLi, or NaOEt gives the corresponding neutral iridacyclohexa-1,4-diene complexes Ir(C(5)H(3){SMe-1}{H-3}{Nu-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2) (Nu = H (3), Me (4), OEt (5)). Similarly, reaction between 2 and NaBH(4) or MeLi gives the corresponding osmacyclohexa-1,4-diene complexes Os(C(5)H(3){SMe-1}{H-3}{Nu-3})(CO)(2)(PPh(3))(2) (Nu = H (8), Me (9)). The metallacyclohexa-1,4-diene rings in all these compounds are rearomatized on treatment with the oxidizing agent O(2), CuCl(2), or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Accordingly, the cationic metallabenzene 1 or 2 is returned after reaction between 3 and DDQ/NEt(4)PF(6) or between 8 and DDQ/NaO(3)SCF(3), respectively. The substituted cationic iridabenzene [Ir(C(5)H(3){SMe-1}{Me-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (6) or [Ir(C(5)H(4){SMe-1}{OEt-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (7) is produced in a similar manner through reaction between 4 or 5, respectively, and DDQ/NEt(4)PF(6), and the substituted cationic osmabenzene [Os(C(5)H(3){SMe-1}{Me-3})(CO)(2)(PPh(3))(2)]Cl (10) is formed in good yield on treatment of 9 with CuCl(2). The starting cationic iridabenzene 1 is conveniently prepared by treatment of the neutral iridabenzene Ir(C(5)H(4){SMe-1})Cl(2)(PPh(3))(2) with NaS(2)CNEt(2) and NEt(4)PF(6), and the related starting cationic osmabenzene 2 is obtained by treatment of Os(C(5)H(4){S-1})(CO)(PPh(3))(2) with CF(3)SO(3)CH(3) and CO. The stepwise transformations of 1 into 6 or 7 as well as 2 into 10 provide the first examples in metallabenzene chemistry of regioselective nucleophilic aromatic substitutions of hydrogen by external nucleophiles. DFT calculations have been used to rationalize the preferred sites for nucleophilic attack at the metallabenzene rings of 1 and 2. The crystal structures of 1, 3, 6, and 7 have been obtained.
NASA Technical Reports Server (NTRS)
Birks, N.
1981-01-01
The conversion to Na2SO4 of NaCl deposited on oxide substrates was studied as a function of temperature, in air with various SO2 and H2O partial pressures. The substrate was either a pure oxide or an oxide scale growing on a metal specimen. The progress of the reaction was observed using the SEM-EDAX technique to monitor morphological effects and, as far as possible, establish the rate of the process. The physical characteristics of the interaction between salt and substrate were also examined with particular reference to physical damage to the underlying oxide, especially when this is a scale on a metal specimen. An effort was also made to establish the conditions under which liquid phases may form and the mechanisms by which they form.
NASA Astrophysics Data System (ADS)
Advinda, L.; Fifendy, M.; Anhar, A.
2018-04-01
All Fluorescent pseudomonad is a group of rhyzobacteria which these days often utilized on plant disease control. The growing media is an absolute requirement which needs to be considered for the growth and cultivation of bacteria. The mineral source contained in growing media of bacteria may affect the production of hydrogen cyanide compound. The objectives of the research were to obtain the best source of minerals for biosynthesis of cyanide acid compounds by fluorescent pseudomonad isolates PfPj1, PfPb1, PfPj2, Kd7, Cas, Cas3, and LAHp2. This research is a qualitative experimental research including observation of hydrogen cyanide compound produced after the growing media of fluorescent pseudomonad bacteria added with several mineral sources. The treatments were given: A = ZnSO4.7H2O 0.5 mM addition, B = CoCl2.6H2O 0.5 mM addition, and C = Fe2SO4.7H2O 0.5 mM addition. From the result of the research, it was concluded that the addition of ZnSO4.7H2O mineral resources on the growing media of fluorescent pseudomonad isolate Cas and Cas3 produced the best hydrogen cyanide. Whereas addition of CoCl2.6H2O mineral source on the growing media showed poor hydrogen cyanide production for all fluorescent pseudomonad isolates
Airborne observations of astronomical objects
NASA Technical Reports Server (NTRS)
Sivjee, G. G.
1976-01-01
The UV spectra of the sun, as well as the differences and ratios of planetary and solar spectra, are presented. The results indicate that SO, SO2 and ClO2 may be present in Venus' atmosphere, and Formaldehyde CH2O and ClO2 on Jupiter. The solar UV measurements were analyzed to deduce ozone concentration in the earth's atmosphere.
Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang
2014-07-08
A redox flow battery having a supporting solution that includes Cl.sup.- anions is characterized by an anolyte having V.sup.2+ and V.sup.3+ in the supporting solution, a catholyte having Fe.sup.2+ and Fe.sup.3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO.sub.4.sup.2- and Cl.sup.- anions.
Functional studies of ATP sulfurylase from Penicillium chrysogenum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seubert, P.A.
1985-01-01
ATP sulfurylase from Penicillium chrysogenum has a specific activity (V/sub max/) of 6-7 units x mg protein/sup -1/ determined with the physiological substrates of MgATP and SO/sub 4//sup 2 -/ and assayed by (A) initial velocity measurements with APS kinase and inorganic pyrophosphatase present and (B) analysis of nonlinear reaction progress curves. The fact both assays give the same results show the intrinsic activity of ATP sulfurylase is much higher than previously reported. In initial velocity dead-end inhibition studies, the sulfate analog S/sub 2/O/sub 3//sup 2 -/ is a competitive inhibitor of SO/sub 42/..sqrt.. and a noncompetitive inhibitor of MgATP.more » Monovalent oxyanions such as NO/sub 3//sup -/, ClO/sub 3//sup -/, ClO/sub 4//sup -/, and FSO/sub 3//sup -/ behave as uncompetitive inhibitors of MgATP and thus seem not to be true sulfate analogs. The reverse reaction was assayed by the pyrophosphate dependent release of /sup 35/SO/sub 4//sup 2 -/ from AP/sup 35/S. Product inhibition by MgATP or SO/sub 4//sup 2 -/ is competitive with APS and mixed-type with PP/sub i/. Imidodiphosphate can serve as an alternative substrate for PP/sub i/. ATP sulfurylase binds (but does not hydrolyze) APS. A Scatchard plot of the APS binding is nonlinear, suggesting at least two types of sites. The cumulative results are qualitatively consistent with the random addition of MgATP and SO/sub 4//sup 2 -/ and the ordered release of first MgPP/sub i/ then APS, with APS release being partially rate limiting. Certain quantitative discrepancies suggest either an unknown variable (e.g. enzyme concentration) complicates the analysis or, in light of binding studies that the actual mechanism is more complicated (e.g. alternating sites) than any of the conventional models examined.« less
A re-assessment of aerosol size distributions from Masaya volcano (Nicaragua)
NASA Astrophysics Data System (ADS)
Martin, R. S.; Ilyinskaya, E.; Sawyer, G. M.; Tsanev, V. I.; Oppenheimer, C.
2011-01-01
Cascade impactors were used to sample volcanic aerosol from Masaya (Nicaragua) in 2007, 2009 and 2010. Differences were found in the size distributions of volcanic aerosol between these recent campaigns and with a campaign in 2001: (1) SO 42- showed modes in both the fine (<1 μm; with low Na +/K +) and coarse (>1 μm; with high Na +/K +) fractions in all of the recent campaigns despite being unimodal in 2001 (<1 μm); (2) The modal diameters for SO 42- roughly doubled in 2009, compared to 2007 or 2010; (3) total Cl - was depleted in volcanic aerosol compared to background aerosol in all the more recent campaigns but was enriched in 2001. Other aspects of the volcanic aerosol appear to be persistent, such as a fine SO 42--H +-Na +-K + mode, which was the most abundant mode in all campaigns, and a coarse Cl --F --Mg 2+-Ca 2+ mode of lower abundance. Water uptake and speciation in the aerosol were investigated using the equilibrium model, ISORROPIA II. Results show that the coarse SO 42--rich mode deliquesces at lower relative humidity (40% RH) than the fine SO 42--rich mode (50% RH) due to increased Na +/K + in the former. The aerosol was predicted to be dry at ambient relative humidity in 2009 and dominated by NaHSO 4, KHSO 4, CaSO 4 and MgSO 4. In contrast, model results predict a liquid aerosol at ambient relative humidity in 2010. These results indicate that aerosol emissions from a volcano can vary in ionic composition and even more so in physical speciation (i.e., salts or solutions). These observations are set against a near-constant magmatic gas composition at Masaya, which highlights the significance of atmospheric and dynamic factors in the formation of volcanic aerosols.
The impact of sulphate and magnesium on chloride binding in Portland cement paste
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Weerdt, K., E-mail: klaartje.d.weerdt@ntnu.no; SINTEF Building and Infrastructure, Trondheim; Orsáková, D.
2014-11-15
The effect of magnesium and sulphate present in sea water on chloride binding in Portland cement paste was investigated. Ground well hydrated cement paste was exposed to MgCl{sub 2}, NaCl, NaCl + MgCl{sub 2}, MgSO{sub 4} + MgCl{sub 2} and artificial sea water solutions with a range of concentrations at 20 °C. Chloride binding isotherms are determined and pH of the solutions were measured. A selection of samples was examined by SEM-EDS to identify phase changes upon exposure. The experimental data were compared with calculations of a thermodynamic model. Chloride binding from sea water was similar to chloride binding formore » NaCl solutions. The magnesium content in the sea water lead to a slight decrease in pH, but this did not result in a notable increase in chloride binding. The sulphate present in sea water reduces both chloride binding in C–S–H and AFm phases, as the C–S–H incorporates more sulphates instead of chlorides, and part of the AFm phases converts to ettringite.« less
Soucek, David J; Mount, David R; Dickinson, Amy; Hockett, J Russell
2018-05-01
Field and laboratory studies have shown that mayflies (Ephemeroptera) tend to be relatively sensitive to elevated major ion concentrations, but little is known about how ionic composition influences these responses. The present study evaluated the acute toxicity of major ion salts to the mayfly Neocloeon triangulifer over a range of background water quality conditions. The mayfly was particularly sensitive to Na 2 SO 4 , with the median lethal concentration (LC50) of 1338 mg SO 4 /L being lower than LC50s reported for 7 other species at that hardness. Increasing hardness of the dilution water from 30 to 150 mg/L (as CaCO 3 ) resulted in doubling of LC50s for sodium salts, and an approximately 1.5-fold increase in LC50 for MgSO 4 . Potassium salt toxicity was not strongly influenced by hardness, consistent with findings for other species. When hardness was held constant but the Ca to Mg ratio was manipulated, the ameliorative effect on Na 2 SO 4 and NaCl did not appear as strong as when hardness was varied; but for MgSO 4 the amelioration relative to Ca activity was similar between the 2 experiments. The toxicity of K salts to N. triangulifer was similar to Na salts on a millimolar basis, which contrasts with several other species for which K salts have been much more toxic. In addition, the toxicity of KCl to N. triangulifer was not notably affected by Na concentration, as has been shown for Ceriodaphnia dubia. Finally, plotting LC50s in terms of ion activity (Cl, SO 4 , Na, Mg, or K) over the range of Ca activities in dilution water resulted in significant positive relationships, with comparable slopes to those previously observed for C. dubia over the same range of Ca activities. Environ Toxicol Chem 2018;37:1330-1339. © 2018 SETAC. © 2018 SETAC.
Silveira, Jefferson E; Cardoso, Tais O; Barreto-Rodrigues, Marcio; Zazo, Juan A; Casas, José A
2018-05-01
This work assesses the role of the operational conditions upon the electro-activation of persulfate (PS) using sacrificed iron electrode as a continuous low-cost Fe 2+ source. An aqueous phenol solution (100 mg L -1 ) was selected as model effluent. The studied variables include current density (1-10 mA cm -2 ), persulfate concentration (0.7-2.85 g L -1 ), temperature (30-90°C) and the solution conductivity (2.7-20.7 mS cm -1 ) using Na 2 SO 4 and NaCl as supporting electrolyte. A mineralization degree of around 80% with Na 2 SO 4 and 92% in presence of NaCl was achieved at 30°C using 2.15 g L -1 PS at the lowest current density tested (1 mA cm -2 ). Besides PS concentration, temperature was the main variable affecting the process. In the range of 30-70°C, it showed a positive effect, achieving TOC conversion above 95% (using Na 2 SO 4 under the previous conditions) along with a significant increase in iron sludge, which adversely affects the economy of the process. A lumped and simplified kinetic model based on persulfate consumption and TOC mineralization is suggested. The activation energy obtained for the TOC decay was 29 kJ mol -1 . An estimated operating cost of US$ 3.00 per m 3 was obtained, demonstrating the economic feasibility of this process.
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Zhang, Chenglong; Xue, Chaoyang; Mu, Yujing; Liu, Junfeng; Zhang, Yuanyuan; Tian, Di; Ye, Can; Zhang, Hongxing; Guan, Jian
2017-09-01
A vast area in northern China, especially during wintertime, is currently suffering from severe haze events due to the high levels of atmospheric PM2. 5. To recognize the reasons for the high levels of PM2. 5, daily samples of PM2. 5 were simultaneously collected at the four sampling sites of Beijing city (BJ), Baoding city (BD), Wangdu county (WD) and Dongbaituo (DBT) during the winter and spring of 2014-2015. The concentrations of the typical water-soluble ions (WSIs, such as Cl-, NO3-, SO42- and NH4+) at DBT were found to be remarkably higher than those at BJ in the two winters, but almost the same as those at BJ in the two springs. The evidently greater concentrations of OC, EC and secondary inorganic ions (NO3-, SO42-, NH4+ and Cl-) at DBT than at WD, BD and BJ during the winter of 2015 indicated that the pollutants in the rural area were not due to transportation from neighbouring cities but dominated by local emissions. As the distinct source of atmospheric OC and EC in the rural area, the residential coal combustion also made a contribution to secondary inorganic ions through the emissions of their precursors (NOx, SO2, NH3 and HCl) as well as heterogeneous or multiphase reactions on the surface of OC and EC. The average mass proportions of OC, EC, NO3- and SO42- at BD and WD were found to be very close to those at DBT, but were evidently different from those at BJ, implying that the pollutants in the cities of WD and BD, which are fully surrounded by the countryside, were strongly affected by the residential coal combustion. The OC / EC ratios at the four sampling sites were almost the same value (4.8) when the concentrations of PM2. 5 were greater than 150 µg m-3, suggesting that the residential coal combustion could also make a dominant contribution to atmospheric PM2. 5 at BJ during the severe pollution period when the air parcels were usually from southwest-south regions, where a high density of farmers reside. The evident increase in the number of the species involved in significant correlations (p < 0. 05) from the countryside to the cities further confirmed that residential coal combustion was the dominant source of key species in the rural area. However, the complex sources including local emissions and regional transportation were responsible for the atmospheric species in the cities. Strong correlations among OC, EC, Cl-, NO3- and NH4+ were found at the four sampling sites but only a strong correlation was found between OC (or EC) and SO42- at BJ, implying that the formation rate of SO42- via heterogeneous or multiphase reactions might be relatively slower than those of NO3-, NH4+ and Cl-. Based on the chemical mass closure (CMC) method, the contributions of the primary particle emission from residential coal combustion to atmospheric PM2. 5 at BJ, BD, WD and DBT were estimated to be 32, 49, 43 and 58 %, respectively.
Davarcı, Derya; Gür, Rüştü; Beşli, Serap; Şenkuytu, Elif; Zorlu, Yunus
2016-06-01
The reactions of a flexible ligand hexakis(3-pyridyloxy)cyclotriphosphazene (HPCP) with a variety of silver(I) salts (AgX; X = NO3(-), PF6(-), ClO4(-), CH3PhSO3(-), BF4(-) and CF3SO3(-)) afforded six silver(I) coordination polymers, namely {[Ag2(HPCP)]·(NO3)2·H2O}n (1), {[Ag2(HPCP)(CH3CN)]·(PF6)2}n (2), {[Ag2(HPCP)(CH3CN)]·(ClO4)2}n (3), [Ag3(HPCP)(CH3PhSO3)3]n (4), [Ag2(HPCP)(CH3CN)(BF4)2]n (5) and {[Ag(HPCP)]·(CF3SO3)}n (6). All of the isolated crystalline compounds were structurally determined by X-ray crystallography. Changing the counteranions in the reactions, which were conducted under similar conditions of M/L ratio (1:1), temperature and solvent, resulted in structures with different types of topologies. In complexes (1)-(6), the ligand HPCP shows different coordination modes with Ag(I) ions giving two-dimensional layered structures and three-dimensional frameworks with different topologies. Complex (1) displays a new three-dimensional framework adopting a (3,3,6)-connected 3-nodal net with point symbol {4.6(2)}2{4(2).6(10).8(3)}. Complexes (2) and (3) are isomorphous and have a two-dimensional layered structure showing the same 3,6L60 topology with point symbol {4.2(6)}2{4(8).6(6).8}. Complex (4) is a two-dimensional structure incorporating short Ag...Ag argentophilic interactions and has a uninodal 4-connected sql/Shubnikov tetragonal plane net with {4(4).6(2)} topology. Complex (5) exhibits a novel three-dimensional framework and more suprisingly contains twofold interpenetrated honeycomb-like networks, in which the single net has a trinodal (2,3,5)-connected 3-nodal net with point symbol {6(3).8(6).12}{6(3)}{8}. Complex (6) crystallizes in a trigonal crystal system with the space group R\\bar 3 and possesses a three-dimensional polymeric structure showing a binodal (4,6)-connected fsh net with the point symbol (4(3).6(3))2.(4(6).6(6).8(3)). The effect of the counteranions on the formation of coordination polymers is discussed in this study.
Zhao, Haining; Dilmore, Robert; Allen, Douglas E; Hedges, Sheila W; Soong, Yee; Lvov, Serguei N
2015-02-03
CO2 solubility data in the natural formation brine, synthetic formation brine, and synthetic NaCl+CaCl2 brine were collected at the pressures from 100 to 200 bar, temperatures from 323 to 423 K. Experimental results demonstrate that the CO2 solubility in the synthetic formation brines can be reliably represented by that in the synthetic NaCl+CaCl2 brines. We extended our previously developed model (PSUCO2) to calculate CO2 solubility in aqueous mixed-salt solution by using the additivity rule of the Setschenow coefficients of the individual ions (Na(+), Ca(2+), Mg(2+), K(+), Cl(-), and SO4(2-)). Comparisons with previously published models against the experimental data reveal a clear improvement of the proposed PSUCO2 model. Additionally, the path of the maximum gradient of the CO2 solubility contours divides the P-T diagram into two distinct regions: in Region I, the CO2 solubility in the aqueous phase decreases monotonically in response to increased temperature; in region II, the behavior of the CO2 solubility is the opposite of that in Region I as the temperature increases.
Gaillard, C; Chaumont, A; Billard, I; Hennig, C; Ouadi, A; Wipff, G
2007-06-11
The first coordination sphere of the uranyl cation in room-temperature ionic liquids (ILs) results from the competition between its initially bound counterions, the IL anions, and other anions (e.g., present as impurities or added to the solution). We present a joined spectroscopic (UV-visible and extended X-ray absorption fine structure)-simulation study of the coordination of uranyl initially introduced either as UO2X2 salts (X-=nitrate NO3-, triflate TfO-, perchlorate ClO4-) or as UO2(SO4) in a series of imidazolium-based ILs (C4mimA, A-=PF6-, Tf2N-, BF4- and C4mim=1-methyl-3-butyl-imidazolium) as well as in the Me3NBuTf2N IL. The solubility and dissociation of the uranyl salts are found to depend on the nature of X- and A-. The addition of Cl- anions promotes the solubilization of the nitrate and triflate salts in the C4mimPF6 and the C4mimBF4 ILs via the formation of chloro complexes, also formed with other salts. The first coordination sphere of uranyl is further investigated by molecular dynamics (MD) simulations on associated versus dissociated forms of UO2X2 salts in C4mimA ILs as a function of A- and X- anions. Furthermore, the comparison of UO2Cl(4)2-, 2 X- complexes with dissociated X- anions, to the UO2X2, 4 Cl- complexes with dissociated chlorides, shows that the former is more stable. The case of fluoro complexes is also considered, as a possible result of fluorinated IL anion's degradation, showing that UO2F42- should be most stable in solution. In all cases, uranyl is found to be solvated as formally anionic UO2XnAmClp2-n-m-p complexes, embedded in a cage of stabilizing IL imidazolium or ammonium cations.
[Composition and source of atmosphere aerosol water soluble ions over the East China Sea in winter].
He, Yu-Hui; Yang, Gui-Peng; Zhang, Hong-Hai
2011-08-01
With the ion chromatographic method, the water-soluble ion concentrations of Cl(-), NO3(-), SO4(2-) , CH3SO3(-) (MSA), Na+, K+, NH4+, Mg2+ and Ca2+ in the atmospheric aerosol over the East China Sea in winter 2009 was determined and the sources of these ions was investigated through correlation analysis by SPSS (statistical package for social sciences) software. The results indicated that the concentrations of secondary ions in aerosol were the highest (non-sea-salt sulfates nss-SO4(2-), NO3(-), NH4+), accounting for 78.4% of total determining ions. The calculation results of equivalent concentration of anions and cations showed that the acid ions of aerosol were neutralized inadequately. The stoichiometry of NH4+ in different compounds showed that NH4HSO4 was the main binding form of NH4+ and SO4(2-) in the aerosol. The concentration of methanesulfonic acid (MSA) was low, and the average value was (0.0088 +/- 0.0037) microg x m(-3). According to calculation, the contribution of sea-salt sulfates was 4.5% to total sulfates, and that of biogenous sulfates was 1.4% to non-sea-salt sulfate (nss-SO4(2-)), showing that human input was the main source of sulfates in aerosol over the East China Sea. In addition, nss-SO4(2-)/NO3(-) in the aerosol was 1.08, reflecting that China's energy structure adjustment played an important role in recent years.
Saha, Dipendu; Barakat, Soukaina; Van Bramer, Scott E; Nelson, Karl A; Hensley, Dale K; Chen, Jihua
2016-12-14
In this work, sulfur-functionalized ordered mesoporous carbons were synthesized by activating the soft-templated mesoporous carbons with sulfur bearing salts that simultaneously enhanced the surface area and introduced sulfur functionalities onto the parent carbon surface. XPS analysis showed that sulfur content within the mesoporous carbons were between 8.2% and 12.9%. The sulfur functionalities include C-S, C═S, -COS, and SO x . SEM images confirmed the ordered mesoporosity within the material. The BET surface areas of the sulfur-functionalized ordered mesoporous carbons range from 837 to 2865 m 2 /g with total pore volume of 0.71-2.3 cm 3 /g. The carbon with highest sulfur functionality was examined for aqueous phase adsorption of mercury (as HgCl 2 ), lead (as Pb(NO 3 ) 2 ), cadmium (as CdCl 2 ), and nickel (as NiCl 2 ) ions in both noncompetitive and competitive mode. Under noncompetitive mode and at a pH greater than 7.0 the affinity of sulfur-functionalized carbons toward heavy metals were in the order of Hg > Pb > Cd > Ni. At lower pH, the adsorbent switched its affinity between Pb and Cd. In the noncompetitive mode, Hg and Pb adsorption showed a strong pH dependency whereas Cd and Ni adsorption did not demonstrate a significant influence of pH. The distribution coefficient for noncompetitive adsorption was in the range of 2448-4000 mL/g for Hg, 290-1990 mL/g for Pb, 550-560 mL/g for Cd, and 115-147 for Ni. The kinetics of adsorption suggested a pseudo-second-order model fits better than other models for all the metals. XPS analysis of metal-adsorption carbons suggested that 7-8% of the adsorbed Hg was converted to HgSO 4 , 14% and 2% of Pb was converted to PbSO 4 and PbS/PbO, respectively, and 5% Cd was converted to CdSO 4 . Ni was below the detection limit for XPS. Overall results suggested these carbon materials might be useful for the separation of heavy metals.
Salty taste deficits in CALHM1 knockout mice.
Tordoff, Michael G; Ellis, Hillary T; Aleman, Tiffany R; Downing, Arnelle; Marambaud, Philippe; Foskett, J Kevin; Dana, Rachel M; McCaughey, Stuart A
2014-07-01
Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Salty Taste Deficits in CALHM1 Knockout Mice
Ellis, Hillary T.; Aleman, Tiffany R.; Downing, Arnelle; Marambaud, Philippe; Foskett, J. Kevin; Dana, Rachel M.; McCaughey, Stuart A.
2014-01-01
Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein–coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste–related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH4Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH4Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. PMID:24846212
Fluorescent determination of chloride in nanoliter samples.
García, N H; Plato, C F; Garvin, J L
1999-01-01
Measurements of Cl- in nanoliter samples, such as those collected during isolated, perfused tubule experiments, have been difficult, somewhat insensitive, and/or require custom-made equipment. We developed a technique using a fluorescent Cl- indicator, 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ), to make these measurements simple and reliable. This is a simple procedure that relies on the selectivity of the dye and the fact that Cl-quenches its fluorescence. To measure millimolar quantities of Cl- in nanoliter samples, we prepared a solution of 0.25 mm SPQ and loaded it into the reservoir of a continuous-flow ultramicrofluorometer, which can be constructed from commercially available components. Samples were injected with a calibrated pipette via an injection port, and the resultant peak fluorescent deflections were recorded. The deflections represent a decrease in fluorescence caused by the quenching effect of the Cl- injected. The method yielded a linear response with Cl- concentrations from 5 to 200 mm NaCl. The minimum detectable Cl- concentration was approximately 5 mm. The coefficient of variation between 5 and 200 mm was 1.7%. Resolution, defined as two times the standard error divided by the slope, between 10 and 50 mm and between 50 and 200 mm was 1 mm and 2.6 mm, respectively. Furosemide, diisothiocyanostilbene-2,2'-disulfonic acid and other nonchloride anions (HEPES, HCO3, SO4, and PO4) did not interfere with the assay, whereas 150 mm NaBr resulted in a peak height greater than 150 NaCl. In addition, the ability to measure Cl- did not vary with pH within the physiological range. We developed an easy, accurate, and sensitive method to measure Cl- concentration in small aqueous solution samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Kimberly; Bennett, Philip C.; Wolfe, Will
Dissolution of CO2 into deep subsurface brines for carbon sequestration is regarded as one of the few viable means of reducing the amount of CO2 entering the atmosphere. Ions in solution partially control the amount of CO2 that dissolves, but the mechanisms of the ion's influence are not clearly understood and thus CO2 solubility is difficult to predict. In this study, CO2 solubility was experimentally determined in water, NaCl, CaCl2, Na2SO4, and NaHCO3 solutions and a mixed brine similar to the Bravo Dome natural CO2 reservoir; ionic strengths ranged up to 3.4 molal, temperatures to 140 °C, and CO2 pressuresmore » to 35.5 MPa. Increasing ionic strength decreased CO2 solubility for all solutions when the salt type remained unchanged, but ionic strength was a poor predictor of CO2 solubility in solutions with different salts. A new equation was developed to use ion hydration number to calculate the concentration of electrostricted water molecules in solution. Dissolved CO2 was strongly correlated (R2 = 0.96) to electrostricted water concentration. Strong correlations were also identified between CO2 solubility and hydration enthalpy and hydration entropy. These linear correlation equations predicted CO2 solubility within 1% of the Bravo Dome brine and within 10% of two mixed brines from literature (a 10 wt % NaCl + KCl + CaCl2 brine and a natural Na+, Ca2+, Cl- type brine with minor amounts of Mg2+, K+, Sr2+ and Br-).« less
[Size distributions and source apportionment of soluble ions in aerosol in Nanjing].
Xue, Guo-Qiang; Zhu, Bin; Wang, Hong-Lei
2014-05-01
To explore the seasonal variation and source apportionment of soluble ions in PM10, PM2.1 and PM1.1, the aerosol mass. concentration and soluble ion concentration were investigated during a one-year observation in the urban-district and north suburb. As the results showed, (1)The concentrations of PM10, PM2.1, PM1.1 were in the order of winter > spring > autumn > summer. In spring, summer and autumn, the concentrations of PM10, PM2.1, PM1.1 in the north suburb were higher than in the urban, while the situation, was opposite in winter. (2) SO(2-)(4), NO(-)(3), Ca2+, NH(+)(4), Cl-, K+, Na+, F-, NO;, Mg2+ were measured, and their total concentration in PM10 was 46 microg.m -3 in urban sites and 39.6 microg m in north suburbs. Mass fraction percentage o f water soluble ion in PM2.1-10, PM1 1-2.1, PM1.1 in the urban district increased from 20.4% to 49.5% and 56% , and the value in the north suburb increased from 18.3% to 37. 9% and 42.5%. (3) Major ions, SO(2-)(4), NO(-)(3) , NH(+)(4) , second components and Ca2+ , had significant seasonal variation. In the urban district, the highest concentrations were observed in winter, and the lowest in summer, while in the. north suburb, the highest concentrations were observed in spring, and the lowest in summer. The seasonal changing climate in Nanjing and different anthropogenic influences with land surface in urban-suburb may be the major factors for the ions' seasonal variation. (4) NH(+)(4) , SO(2-)(4) , NO(-)(3) came from secondary chemical reactions of NH3, SO2, NO,, and these precursors mostly came from automobile exhaust in Summer while equally came from automobile exhaust and fossil fuel in winter. Cl- came from biomass burning in Winter . while transported from sea salt with Na+ in Summer. Ca2+ and Mg2+ came from ground dust and construction dust. K+, F- , NO(-)(2) may come from biomass burning and industrial emissions.
Chivarzin, M E; Revelsky, I A; Nikoshina, A V; Buldyzkova, A N; Chepeliansky, D A; Revelsky, A I; Buriak, A K
2016-04-01
The fast method of the simultaneous determination of F(-), Cl(-), Br(-) and SO4(2-) anions in the deionized water on the trace level by ion chromatography using thorough cleaning of respective water containers, 10 μM NaHCO3 water solution as eluent, short Metrohm (50 × 4 mm) separation column and a large water volume injection is proposed. Calculated detection limits are 10(-9)-10(-8)% depending on the element. The method for the fast screening of plant oil samples for the total fluorine-, chlorine-, bromine- and sulfur-organic compounds content (calculated for the respective elements) on the trace level is developed. It is based on the high temperature combustion of oil sample in oxygen flow, absorption of the conversion products in deionized water and whole absorbate volume analysis for F(-), Cl(-), Br(-) and SO4(2-) anions, corresponding to the respective elements, using the developed method of these anions analysis by ion chromatography. The samples of soya, olive, sunflower and cotton seed oil were analyzed. The method detection limits (for 1mg sample) were 2 × 10(-6)%, 2 × 10(-6)%, 5 × 10(-6)% and 5 × 10(-6)% for fluorine, chlorine, bromine and sulfur, respectively. The relative standard deviation was ≤ 15%. The method gives the compressed information about the total content of all target and nontarget fluorine-, chlorine-, bromine- and sulfur-organic compounds in plant oils. Copyright © 2015. Published by Elsevier B.V.
Water-soluble ions measured in fine particulate matter next to cement works
NASA Astrophysics Data System (ADS)
Galindo, N.; Yubero, E.; Nicolás, J. F.; Crespo, J.; Pastor, C.; Carratalá, A.; Santacatalina, M.
2011-04-01
PM2.5 samples were collected for one year in a suburban area close to an industrial complex formed by two cement factories and some quarries in southeastern Spain. Samples were analyzed by ion chromatography to determine the concentrations of major inorganic ions: Cl -, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+. The average PM2.5 concentration (17.6 μg m -3) was within the interval reported for other Mediterranean suburban environments. Concentration peaks were registered during both winter and summer, concurrently with maxima levels of nitrate and sulfate, due to stagnation conditions and African dust episodes, respectively. Sulfate was found to be a main contributor to PM2.5 aerosol mass (4.2 μg m -3, 24%), followed by nitrate and ammonium (1.5 μg m -3, 9% each one). Correlation analyses demonstrated that fine sulfate was present as (NH 4) 2SO 4, CaSO 4 and Na 2SO 4 since ammonium concentrations were not high enough to neutralize both anions. The mean concentration of calcium (1.0 μg m -3), an element commonly found in the coarse fraction, was higher than those found in other locations of the Mediterranean basin. Additionally, the lowest levels were registered during summer, in contrast with previous findings. This was attributed to resuspension and transport of mineral dust from the neighboring quarries and cement plants during fall and winter, which was supported by the results of the CPF analysis. Atmospheric levels of potassium and chloride (0.28 and 0.51 μg m -3 annual average, respectively) also seemed to be affected by cement works, as suggested by correlation and CPF analyses. In the case of Cl -, a marked seasonality was observed, with mean winter concentrations considerably higher than summer ones, indicating a clear prevalence of anthropogenic sources over sea spray emissions.
Room temperature ppb level Cl2 sensing using sulphonated copper phthalocyanine films.
Kumar, Arvind; Singh, A; Debnath, A K; Samanta, S; Aswal, D K; Gupta, S K; Yakhmi, J V
2010-09-15
We present room temperature chemiresistive gas sensing characteristics of drop casted sulphonated copper phthalocyanine (CuTsPc) films. It has been demonstrated that these films are highly selective to Cl(2) and the sensitivity in the 5-2000 ppb range varies linearly between 65 and 625%. However, for concentrations >or=2000 ppb, the response becomes irreversible, which is found to be due to the chemical bond formation between Cl(2) and SO(3)Na group of CuTsPc films. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) data confirms the oxidation of SO(3)Na group by Cl(2) gas. Copyright (c) 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Selvakumar, S.; Ramkumar, K.; Chandrasekar, N.; Magesh, N. S.; Kaliraj, S.
2017-03-01
A total of 20 groundwater samples were collected from both dug and bore wells of southern Tiruchirappalli district and analyzed for various hydrogeochemical parameters. The analyzed physicochemical parameters such as pH, electrical conductivity, total dissolved solids, calcium, magnesium, sodium, potassium, bicarbonate, carbonate, sulfate, chloride, nitrate, and fluoride are used to characterize the groundwater quality and its suitability for drinking and irrigational uses. The results of the chemical analysis indicates that the groundwater in the study area is slightly alkaline and mainly contains Na+, Ca2+, and Mg2+ cations as well as HCO3 2-, Cl-, SO4 2-and NO3 - anions. The total dissolved solids mainly depend on the concentration of major ions such as Ca, Mg, Na, K, HCO3, Cl, and SO4. Based on TDS, 55 % of the samples are suitable for drinking and rest of the samples are unsuitable for drinking. The total hardness indicates that majority of the groundwater samples are found within the permissible limit of WHO. The dominant hydrochemical facies for groundwater are Ca-Mg-Cl, Ca-HCO3, and Ca-Cl type. The USSL graphical geochemical representation of groundwater quality suggests that majority of the water samples belongs to high medium salinity with low alkali hazards. The Gibb's plot indicates that the groundwater chemistry of the study area is mainly controlled by evaporation and rock-water interaction. Spearman's correlation and factor analysis were used to distinguish the statistical relation between different ions and contamination source in the study area.
Yu, Kuo-Hsuan; Wang, Chia-Ching; Chang, I-Hsin; Liu, Yi-Hung; Wang, Yu; Elsevier, Cornelis J; Liu, Shiuh-Tzung; Chen, Jwu-Ting
2014-12-01
Imidazolium salts, [RS(O)-CH2 (C3 H3 N2 )Mes]Cl (R=Me (L1a), Ph (L1b)); Mes=mesityl), make convenient carbene precursors. Palladation of L1a affords the monodentate dinuclear complex, [(PdCl2 {MeS(O)CH2 (C3 H2 N2 )Mes})2 ] (2a), which is converted into trans-[PdCl2 (NHC)2] (trans-4a; N-heterocyclic carbene) with two rotamers in anti and syn configurations. Complex trans-4a can isomerize into cis-4a(anti) at reflux in acetonitrile. Abstraction of chlorides from 4a or 4b leads to the formation of a new dication: trans-[Pd{RS(O)CH2(C3H2N2)Mes}2](PF6)2 (R=Me (5a), Ph (5b)). The X-ray structure of 5a provides evidence that the two bidentate SO-NHC ligands at palladium(II) are in square-planar geometry. Two sulfoxides are sulfur- and oxygen-bound, and constitute five- and six-membered chelate rings with the metal center, respectively. In acetonitrile, complexes 5a or 5b spontaneously transform into cis-[Pd(NHC)2(NCMe)2](PF6)2. Similar studies of thioether-NHCs have also been examined for comparison. The results indicate that sulfoxides are more labile than thioethers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chao; Feng, Kai; Tu, Heng
Four new chalcohalides, namely NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br, and CsBa{sub 2}SnS{sub 4}Cl, have been synthesized by the conventional high temperature solid-state reactions. They crystallize in three different space groups: space group I4/mcm for NaBa{sub 2}SnS{sub 4}Cl and KBa{sub 2}SnS{sub 4}Cl, Pnma for KBa{sub 2}SnS{sub 4}Br, and P2{sub 1}/c for CsBa{sub 2}SnS{sub 4}Cl. In all four compounds, the X{sup −} halide anions are only connected to six alkali metal or Ba cations, and the Sn atoms are only tetrahedrally enjoined to four S atoms. However, the M–X–Ba pseudo layers and the SnS{sub 4} tetrahedra are arrangedmore » in different ways in the three structural types, which demonstrates the interesting effect of ionic radii on the crystal structures. UV–vis–NIR spectroscopy measurements indicate that NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br, and CsBa{sub 2}SnS{sub 4}Cl have band gaps of 2.28, 2.30, 1.95, and 2.06 eV, respectively. - Graphical abstract: A new series of chalcohalides, NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have been obtained. They present three different space groups: NaBa{sub 2}SnS{sub 4}Cl and KBa{sub 2}SnS{sub 4}Cl in space group I4/mcm, KBa{sub 2}SnS{sub 4}Br in Pnma and CsBa{sub 2}SnS{sub 4}Cl in space group P2{sub 1}/c. UV–vis–NIR spectroscopy measurements indicate that NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have band gaps of 2.28, 2.30 1.95, and 2.06 eV, respectively. - Highlights: • Four new chalcohalides, NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl were obtained. • They adopt three different structures owing to different ionic radii and elemental electronegativity. • NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have band gaps of 2.28, 2.30 1.95, and 2.06 eV, respectively.« less
Haloacyl complexes of boron, [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br, I).
Finze, Maik; Bernhardt, Eduard; Willner, Helge; Lehmann, Christian W
2005-11-04
The haloacyltris(trifluoromethyl)borate anions [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br, I) have been synthesized by reacting (CF3)3BCO with either MHal (M=K, Cs; Hal=F) in SO2 or MHal (M=[nBu4N]+, [Et4N]+, [Ph4P]+; Hal=Cl, Br, I) in dichloromethane. Metathesis reactions of the fluoroacyl complex with Me3SiHal (Hal=Cl, Br, I) led to the formation of its higher homologues. The thermal stabilities of the haloacyltris(trifluoromethyl)borates decrease from the fluorine to the iodine derivative. The chemical reactivities decrease in the same order as demonstrated by a series of selected reactions. The new [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br) salts are used as starting materials in the syntheses of novel compounds that contain the (CF3)3B-C fragment. All borate anions [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br, I) have been characterized by multinuclear NMR spectroscopy (11B, 13C, 17O, 19F) and vibrational spectroscopy. [PPh4][(CF3)3BC(O)Br] crystallizes in the monoclinic space group P2/c (no. 13) and the bond parameters are compared with those of (CF3)3BCO and K[(CF3)3BC(O)F]. The interpretation of the spectroscopic and structural data are supported by DFT calculations [B3LYP/6-311+G(d)].
Kim, Jung-Hwan; Kim, Jong Yun; Kim, Soo-Sam
2009-09-01
The Electrokinetic-Fenton (EK-Fenton) process is a powerful technology to remediate organic-contaminated soil. The behavior of salts and acids introduced for the pH control has significant influence on the H(2)O(2) stabilization and destruction of organic contaminants. In this study, the effects of the type and concentration of acids, which were introduced at the anode, were investigated for the treatment of clayey soil contaminated with phenanthrene. In experiments with H(2)SO(4) as the anode solution, H(2)O(2) concentration in the anode reservoir decreased due to reaction between reduced species of sulfate and H(2)O(2), as time elapsed. By contrast, HCl as an electrolyte in the anode reservoir did not decrease the H(2)O(2) concentration in the anode reservoir. The reaction between the reduced species of sulfate and H(2)O(2) hindered the stabilization of H(2)O(2) in the soil and anode reservoir. In experiments with HCl for pH control, Cl(.), and Cl(2)(. -), which could be generated with mineral catalyzed Fenton-like reaction, did not significantly hinder H(2)O(2) stabilization. H(2)O(2) transportation with electro-osmotic flow and mineral catalyzed Fenton-like reaction on the soil surface resulted in the simultaneous transport and degradation of phenanthrene, which are dependent of the advancement rate of the acid front and electro-osmotic flow toward the cathode according to HCl and H(2)SO(4) concentrations in the anode purging solution.
Modeling hot spring chemistries with applications to martian silica formation
NASA Astrophysics Data System (ADS)
Marion, G. M.; Catling, D. C.; Crowley, J. K.; Kargel, J. S.
2011-04-01
Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO 2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100 °C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25 °C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO 4-SO 4-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system up to 100 °C and apply the model to hot springs and silica deposits. A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355 K) led to precipitation of anhydrous minerals (CaSO 4, Na 2SO 4) that was also the case for the high temperature (353 K) low pH case where anhydrous minerals (NaCl, CaSO 4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model.
Modeling hot spring chemistries with applications to martian silica formation
Marion, G.M.; Catling, D.C.; Crowley, J.K.; Kargel, J.S.
2011-01-01
Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100??C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25??C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100??C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model. ?? 2011 Elsevier Inc.
Oxidation of nitroxyl anion to nitric oxide by copper ions
Nelli, Silvia; Hillen, Mark; Buyukafsar, Kansu; Martin, William
2000-01-01
This study made use of a nitric oxide-sensitive electrode to examine possible means of generating nitric oxide from nitroxyl anion (NO−) released upon the decomposition of Angeli's salt. Our results show that copper ions (from CuSO4) catalyze the rapid and efficient oxidation of nitroxyl to nitric oxide. Indeed, the concentrations of copper required to do so (0.1–100 μM) are roughly 100-times lower than those required to generate equivalent amounts of nitric oxide from S-nitroso-N-acetyl-D,L-penicillamine (SNAP). Experiments with ascorbate (1 mM), which reduces Cu2+ ions to Cu+, and with the Cu2+ chelators, EDTA and cuprizone, and the Cu+ chelator, neocuproine, each at 1 mM, suggest that the oxidation is catalyzed by copper ions in both valency states. Some compounds containing other transition metals, i.e. methaemoglobin, ferricytochrome c and Mn(III)TMPyP, were much less efficient than CuSO4 in catalyzing the formation of nitric oxide from nitroxyl, while FeSO4, FeCl3, MnCl2, and ZnSO4 were inactive. Of the copper containing enzymes examined, Cu-Zn superoxide dismutase and ceruloplasmin were weak generators of nitric oxide from nitroxyl, even at concentrations (2500 and 30 u ml−1, respectively) vastly greater than are present endogenously. Two others, ascorbate oxidase (10 u ml−1) and tyrosinase (250 u ml−1) were inactive. Our findings suggest that a copper-containing enzyme may be responsible for the rapid oxidation of nitroxyl to nitric oxide by cells, but the identity of such an enzyme remains elusive. PMID:10991931
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podobaev, N.I.; Atanasyan, T.K.; Lyashenko, L.F.
The protecting action of polethylenepolyamine (PEPA) products was carried out by gravimetric and electrochemical methods in aerated and de-aerated 35 NaCl solutions and simulated waste water containing CaCl/sub 2/, NaCl, NaHCO/sub 3/, Na/sub 2/SO/sub 4/, and KBr, with addition of H/sub 2/S. Gravimetric and electrochemical measurements were carried out and results are presented. The influence on tanning agents on the physicomechanical and photographic properties of the positive emulsion Unibrom, Normal at thermostated aging for two days was shown. The results lead to the conclusion that the use of animals as tanning agents of the emulsion lead to improvement of themore » physicomechanical properties of the emulsion light sensitive layers.« less
NASA Astrophysics Data System (ADS)
Ibrahim, Mohamed M.; Ramadan, Abd El-Motaleb M.; Shaban, Shaban Y.; Mersal, Gaber A. M.; El-Shazly, Samir A.; Al-Juaid, Salih
2017-04-01
A series of mixed-ligand complexes, viz., [CuLL'X]Y {L = bipyridine; L' = glycine; X = 0, Y = ClO4- (1); X = Cl, Y = 2H2O (2); X = H2O, Y = NO3- (3); X = CH3COO-, Y = H2O (4)} and {[Cu(Gly)(BPy)]2-μ-(SO4)}(5)} have been synthesized and characterized by means of elemental analysis, spectroscopic (FT-IR, UV-Vis and ESR), and thermal analysis, as well as magnetic moment measurements. Spectral and X-ray structural features led to the conclusion that complexes 2-5 have square-pyramidal environments around copper(II) center with coordination chromophores CuN3OCl and CuN3O2, respectively. Whereas complex 1 displays square planar geometry. The quasi-reversible CuII/CuI redox couple slightly improves its reversibility with considerable decrease in current intensity. Additionally, the antioxidant (superoxide dismutase and catalase) biomimetic catalytic activities of the obtained complexes have been tested and found to be promising candidates as dual functional mimic enzyme to serve for complete reactive oxygen species (ROS) detoxification, both with respect to the superoxide radicals and the related peroxides.
Influence of magnesium sulfate on HCO3/Cl transmembrane exchange rate in human erythrocytes.
Chernyshova, Ekaterina S; Zaikina, Yulia S; Tsvetovskaya, Galina A; Strokotov, Dmitry I; Yurkin, Maxim A; Serebrennikova, Elena S; Volkov, Leonid; Maltsev, Valeri P; Chernyshev, Andrei V
2016-03-21
Magnesium sulfate (MgSO4) is widely used in medicine but molecular mechanisms of its protection through influence on erythrocytes are not fully understood and are considerably controversial. Using scanning flow cytometry, in this work for the first time we observed experimentally (both in situ and in vitro) a significant increase of HCO3(-)/Cl(-) transmembrane exchange rate of human erythrocytes in the presence of MgSO4 in blood. For a quantitative analysis of the obtained experimental data, we introduced and verified a molecular kinetic model, which describes activation of major anion exchanger Band 3 (or AE1) by its complexation with free intracellular Mg(2+) (taking into account Mg(2+) membrane transport and intracellular buffering). Fitting the model to our in vitro experimental data, we observed a good correspondence between theoretical and experimental kinetic curves that allowed us to evaluate the model parameters and to estimate for the first time the association constant of Mg(2+) with Band 3 as KB~0.07mM, which is in agreement with known values of the apparent Mg(2+) dissociation constant (from 0.01 to 0.1mM) that reflects experiments on enrichment of Mg(2+) at the inner erythrocyte membrane (Gunther, 2007). Results of this work partly clarify the molecular mechanisms of MgSO4 action in human erythrocytes. The method developed allows one to estimate quantitatively a perspective of MgSO4 treatment for a patient. It should be particularly helpful in prenatal medicine for early detection of pathologies associated with the risk of fetal hypoxia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Geochemical signatures of groundwater in the coastal aquifers of Thiruvallur district, south India
NASA Astrophysics Data System (ADS)
Senthilkumar, S.; Balasubramanian, N.; Gowtham, B.; Lawrence, J. F.
2017-03-01
An attempt has been made to identify the chemical processes that control the hydrochemistry of groundwater in the coastal aquifers of Thiruvallur coastal village of Thiruvallur district, Tamil Nadu, south India. The parameters such as pH, EC, TDS and major ion concentrations of Na, K, Ca, Mg, Cl, HCO3, SO4 and NO3 of the groundwater were analyzed. Abundances of these ions are in the following order Na > Ca > Mg > K and HCO3 > Cl > SO4 > NO3. The dominant water types are in the order of NaCl> mixed CaMgCl > CaHCO3 > CaNaHCO3. Water types (mixed CaHCO3, mixed CaMgCl and NaCl) suggest that the mixing of high salinity water caused from surface contamination sources such as irrigation return flow, domestic wastewater and septic tank effluents with existing water followed by ion exchange reaction processes, silicate weathering and evaporation are responsible for the groundwater chemistry of the study area. The above statement is further supported by Gibbs plot where most of the samples fall within the evaporation zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Gan; Zou, Kang-Yu; Yang, Ying
In this work, the rod-like ligand 1,4-bis(imidazol-1-yl)-benzene (bib) has been utilized as a building block to perform counterion researches on the structural diversities of coordination polymers. A series of new manganese compounds, ([Mn(bib){sub 3}(ClO{sub 4}){sub 2}](CHCl{sub 3}){sub 2}){sub n} (1), [Mn(bib){sub 2}(N{sub 3}){sub 2}]{sub n} (2), [Mn(bib){sub 2}(HCO{sub 2}){sub 2}]{sub n} (3), [Mn(bib){sub 2}(Ac){sub 2}]{sub n} (4), ([Mn(bib){sub 2}(CF{sub 3}SO{sub 3}){sub 2}](CH{sub 2}Cl{sub 2}){sub 4}){sub n} (5), and [Mn(bib){sub 2}(SO{sub 4})]{sub n} (6) have been successfully synthesized. Compound 1 shows a 3D interpenetrating α-Po network only based on the bib linker. Compounds 2 and 3 exhibit a 2D (4,4) layermore » with parallel and incline interpenetration, respectively. Compounds 4 and 5 display a parallel-packing 2D (4,4) layer with the porosity of 23.4% and 61.4%, respectively. Compound 6 furnishes a 3D α-Po framework with a 2D (4,4) layer pillared by the μ{sub 2}-SO{sub 4}{sup 2−} ion. The structural diversities among 1–6 have been carefully discussed, and the roles of counterions (from coordination affinity and molecular size) in the self-assembly of coordination polymers have also been well documented. Furthermore, magnetic properties of 6 have been carefully studied. - Graphical abstract: Six new compounds have been successfully synthesized. Structural studies reveal that the topology, entanglement and porosity are tunable by the counterion. Furthermore, the weak ferromagnetic coupling is conducted in 6. - Highlights: • Six new Mn{sup II} compounds have been synthesized. • Compounds 1–3 exhibit diverse interpenetrating frameworks. • Compounds 4 and 5 exhibit 3D packing porous architectures. • The tunable effect of counterion has been documented. • Magnetic properties of 6 have been studied by fitting the data.« less
NASA Astrophysics Data System (ADS)
Galeczka, Iwona; Eiriksdottir, Eydis Salome; Pálsson, Finnur; Oelkers, Eric; Lutz, Stefanie; Benning, Liane G.; Stefánsson, Andri; Kjartansdóttir, Ríkey; Gunnarsson-Robin, Jóhann; Ono, Shuhei; Ólafsdóttir, Rósa; Jónasdóttir, Elín Björk; Gislason, Sigurdur R.
2017-11-01
The chemical composition of Icelandic rain and snow is dominated by marine aerosols, however human and volcanic activity can also affect these compositions. The six month long 2014-15 Bárðarbunga volcanic eruption was the largest in Iceland for more than 200 years and it released into the atmosphere an average of 60 kt/day SO2, 30 kt/day CO2, 500 t/day HCl and 280 t/day HF. To study the effect of this eruption on the winter precipitation, snow cores were collected from the Vatnajökull glacier and the highlands northeast of the glacier. In addition to 29 bulk snow cores from that precipitated from September 2014 until March 2015, two cores were sampled in 21 and 44 increments to quantify the spatial and time evolution of the chemical composition of the snow. The pH and chemical compositions of melted snow samples indicate that snow has been affected by the volcanic gases emitted during the Bárðarbunga eruption. The pH of the melted bulk snow cores ranged from 4.41 to 5.64 with an average value of 5.01. This is four times greater H+ activity than pure water saturated with the atmospheric CO2. The highest concentrations of volatiles in the snow cores were found close to the eruption site as predicted from CALPUFF SO2 gas dispersion quality model. The anion concentrations (SO4, Cl, and F) were higher and the pH was lower compared to equivalent snow samples collected during 1997-2006 from the unpolluted Icelandic Langjökull glacier. Higher SO4 and Cl concentrations in the snow compared with the unpolluted rainwater of marine origin confirm the addition of a non-seawater SO4 and Cl. The δ34S isotopic composition confirms that the sulphur addition is of volcanic aerosol origin. The chemical evolution of the snow with depth reflects changes in the lava effusion and gas emission rates. Those rates were the highest at the early stage of the eruption. Snow that fell during that time, represented by samples from the deepest part of the snow cores, had the lowest pH and highest concentrations of SO4, F, Cl and metals, compared with snow that fell later in the winter. Also the Al concentration, did exceed World Health Organisation drinking water standard of 3.7 μmol/kg in the lower part of the snow core closest to the eruption site. Collected snow represents the precipitation that fell during the eruption period. Nevertheless, only minor environmental impacts are evident in the snow due to its interaction with the volcanic aerosol gases. In addition, the microbial communities identified in the snow that fell during the eruption were similar to those found in snow from other parts of the Arctic, confirming an insignificant impact of this eruption on the snow microecology.
Tularosa Basin Play Fairway Analysis: Water Chemistry
Adam Brandt
2015-12-15
This shapefile contains 409 well data points on Tularosa Basin Water Chemistry, each of which have a location (UTM), temperature, quartz and Potassium/Magnesium geothermometer; as well as concentrations of chemicals like Mn, Fe, Ba, Sr, Cs, Rb, As, NH4, HCO3, SO4, F, Cl, B, SiO2, Mg, Ca, K, Na, and Li.
NASA Astrophysics Data System (ADS)
Nicholson, Wayne L.; McCoy, Lashelle E.; Kerney, Krystal R.; Ming, Douglas W.; Golden, D. C.; Schuerger, Andrew C.
2012-08-01
Because Mars is a primary target for life detection and habitability assessment missions, its exploration is also by necessity a Planetary Protection issue. The recent finding of significant levels of perchlorate (ClO4-) in regolith sampled from the Phoenix landing site raises the question of its potential biotoxicity to putative indigenous martian life, microbial forward contaminants from Earth, or future human visitors. To address this issue, an analogue regolith was constructed based on regolith chemistry data from the Phoenix landing site. A Mars Aqueous Regolith Extract (MARE) was prepared from the Phoenix analogue regolith and analyzed by ion chromatography. The MARE contained (mg/L) the cations Na+ (1411 ± 181), Mg2+ (1051 ± 160), Ca2+ (832 ± 125), and K+ (261 ± 29), and the anions SO42-(5911±993), ClO4-(5316±1767), Cl(171±25) and F- (2.0 ± 0.4). Nitrogen-containing species NO3-(773±113) and NO2-(6.9±2.3) were also present as a result of regolith preparation procedures, but their relevance to Mars is at present unknown. The MARE was tested for potential toxic effects on two model spacecraft contaminants, the spore-forming bacteria Bacillus subtilis strain 168 and Bacillus pumilus strain SAFR-032. In B. subtilis, spore germination and initial vegetative growth (up to ˜5 h) was not inhibited in a rich complex medium prepared with the MARE, but growth after 5 h was significantly suppressed in medium prepared using the MARE. Both B. subtilis and B. pumilus exhibited significantly higher rates of spore germination and growth in the MARE vs. DW with no additions (likely due to endogenous spore nutrients), but germination and growth was further stimulated by addition of glucose and a combination of buffered inorganic salts (K2HPO4, KH2PO4, (NH4)2SO4, and MgSO4). The data indicate that the aqueous environment in the regolith from the Phoenix landing site containing high levels of perchlorate does not pose a significant barrier to growth of putative forward contaminants such as B. subtilis and B. pumilus under Earth laboratory conditions.
S.J. Rowan
1979-01-01
The susceptibility (percentage of seedlings infected) of Pinus taeda seedlings to infection by Cronartium quercuum f. sp. fusiforme was not affected by fertilization with calcium, magnesium, or aluminum-iron. Fertilization with Al as Al2(SO4)2,and Fe as FeCl
Zhu, Chuan-He; Lu, Fu-Ping; He, Ya-Nan; Zhang, Juan-Kun; Du, Lian-Xiang
2007-04-01
A fermentation medium for avilamycin production by Streptomyces viridochromogenes Tü57-1 has been optimized. Important components and their concentrations were investigated using fractional factorial design and Box-Behnken Design. The results showed that soybean flour, soluble starch, MgSO4.7H2O and CaCl2.2H2O are important for avilamycin production. A polynomial model related to medium components and avilamycin yield had been established. A high coefficient of determination (R2 = 0.92) was obtained that indicated good agreement between the experimental and predicted values of avilamycin yield. Student's T-test of each coefficient showed that all the linear and quadratic terms had significant effect (P > |T| < 0.05) on avilamycin yield. The significance of tested components was related to MgSO4.7H2O (0.37 g/L), CaCl2.2H2O (0.39 g/L), soybean flour (21.97 g/L) and soluble starch (37.22 g/L). The yield of avilamycin reached 88.33 +/- 0.94 mg/L (p < 0.05) that was 2.8-fold the initial yield.
Zhang, Ning-Ning; He, Yuan-Qing; Wang, Chun-Feng; Pang, Hong-Xi; He, Xian-Zhong
2011-02-01
1090 precipitation samples were collected from 1989 to 2006 at Lijiang City. The analyzed results indicate that the average pH value is 6.08 at study period, which is higher than the average pH value (5.0) during 1987 to 1989, and the annual pH value show an increasing trend, suggesting there are more alkaline mass input to air after 1989. the concentrations of major ions Cl-, SO4(2-), NO3-, Na+, Ca2+, Mg2+ and NH4+ are 11.56, 32.64, 3.63, 2.54, 50.19, 7.73 and 11.36 microeq x L(-1), respectively. By computed the correlation coefficients and sources contribution among major ions, it find that Ca2+ and Mg2+ are from soil-derived sources, and about 57.2% of SO4(2-) also come from soil-derived sources; 95.4% of total NO3- and 41.9% of SO4(2-) come from anthropogenic sources, and only Na+ and 25.7% of Cl- come from sea source, meaning that the chemical composition of precipitation at Lijiang region is main influenced by regional sources. According to the variation of tour scale at Lijiang city, it can be divided into 3 periods of 1987-1989, 1989-1996 and 1997-2006. The percent of soil-derived ions at different periods is 40%, 53% and 72%, respectively, showing a significant increase trend; but the percent of anthropology-derived ions at different periods is 39%, 36% and 15%, respectively, showing a decrease trend. It explains that more dust input to the air by expending city scale, changing the land form and overusing water resources. But in order to develop tourism, the pollutants related to industries are controlled well.
Relationship of Cell Sap pH to Organic Acid Change During Ion Uptake 1
Hiatt, A. J.
1967-01-01
Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake. PMID:16656506
Xu, Zhengming; Han, Dexia; Li, Yuan; Zhang, Pingling; You, Lijun; Zhao, Zhengang
2018-04-23
In this study, the FPA90-Cl resin was magnetized with supported Fe 3 O 4 particles using a chemical co-precipitation method and its removal performance of bromate and coexisting precursors was explored. The magnetized FPA90-Cl resin was structurally characterized by SEM, FT-IR, and XRD. The effects of the initial concentrations, temperature, and resin dosage on bromate and bromide ion removal in drinking water were investigated using batch experiments. The magnetized FPA90-Cl resin exhibited a high removal efficiency for bromate and bromide ions at three initial concentrations, and the residual bromate concentrations were under the maximum contaminant level (MCL) of 10 μg L -1 after 80 min. The adsorption data of bromate and bromide ion could be well described by a pseudo-first-order kinetic model (R 2 ˃ 0.98). The bromate removal alone was further studied by varying the initial solution pH, temperature, and competitive anions. The results showed that the magnetized FPA90-Cl resin could be used over a wide pH range (4.0-9.0). The maximum sorption capacity of the magnetized FPA90-Cl resin for bromate reached 132.83 mg g -1 at 298 K. The Freundlich and Redlich-Peterson isotherm models fit the bromate adsorption equilibrium better (R 2 ˃ 0.99) than the Langmuir isotherm model (R 2 ˃ 0.98). The thermodynamic analysis showed that the bromate adsorption process was endothermic. The negative ΔG and positive ΔS indicated that the process was spontaneous and that randomness increased after adsorption, respectively. The competition of coexisting anions with bromate was in the order of SO 4 2- > CO 3 2- > Cl - > NO 3 - > HCO 3 - > PO 4 3- . Additionally, the magnetized FPA90-Cl resin could maintain a high bromate and bromide ion adsorption capacity after five cycles of regeneration by a 0.1 M NaCl solution. Graphical abstract ᅟ.
The origin of high sulfate concentrations in a coastal plain aquifer, Long Island, New York
Brown, C.J.; Schoonen, M.A.A.
2004-01-01
Ion-exchange batch experiments were run on Cretaceous (Magothy aquifer) clay cores from a nearshore borehole and an inland borehole on Long Island, NY, to determine the origin of high SO42- concentrations in ground water. Desorption batch tests indicate that the amounts of SO 42- released from the core samples are much greater (980-4700 ??g/g of sediment) than the concentrations in ground-water samples. The locally high SO42- concentrations in pore water extracted from cores are consistent with the overall increase in SO 42- concentrations in ground water along Magothy flow paths. Results of the sorption batch tests indicate that SO42- sorption onto clay is small but significant (40-120 ??g/g of sediment) in the low-pH (<5) pore water of clays, and a significant part of the SO42- in Magothy pore water may result from the oxidation of FeS2 by dissolved Fe(III). The acidic conditions that result from FeS2 oxidation in acidic pore water should result in greater sorption of SO42- and other anions onto protonated surfaces than in neutral-pH pore water. Comparison of the amounts of Cl- released from a clay core sample in desorption batch tests (4 ??g/g of sediment) with the amounts of Cl- sorbed to the same clay in sorption tests (3.7-5 ??g/g) indicates that the high concentrations of Cl- in pore water did not originate from connate seawater but were desorbed from sediment that was previously in contact with seawater. Furthermore, a hypothetical seawater transgression in the past is consistent with the observed pattern of sorbed cation complexes in the Magothy cores and could be a significant source of high SO42- concentrations in Magothy ground water.
In situ interactions between Opalinus Clay and Low Alkali Concrete
NASA Astrophysics Data System (ADS)
Lerouge, Catherine; Gaboreau, Stéphane; Grangeon, Sylvain; Claret, Francis; Warmont, Fabienne; Jenni, Andreas; Cloet, Veerle; Mäder, Urs
2017-06-01
A five-year-old interface between a Low Alkali Concrete (LAC) formulation (CEM III/B containing 66% slag and 10% nano-silica) and Opalinus Clay (OPA) from a field experiment at Mont Terri Underground Rock Laboratory in Switzerland (Jenni et al., 2014) has been studied to decipher the textural, mineralogical and chemical changes that occurred between the two reacting materials. Reactivity between LAC concrete and OPA is found to be limited to a ∼1 mm thick highly porous (ca. 75% porosity) white crust developed on the concrete side. Quantitative mineralogical mapping of the white crust using an electron microprobe and infrared spectroscopy on the cement matrix provides evidence of a Mg-rich phase accounting for approximatively 25 wt % of the matrix associated with 11 wt % of calcite, calcium silicate hydrate (C-S-H) and other cement phases. EDX analyses and electron diffraction combined with transmission electron microscopy of the Mg-rich phase provide evidence for a tri-octahedral 2:1 phyllosilicate with mean composition: (Ca0.5±0.2) (Mg2.0±0.4, Fe0.2±0.1, Al0.5±03, □0.3±0.3) (Al0.9±0.2, Si3.1±0.2) O10 (OH)2, where □ represents vacancies in the octahedral site. Apart from this reactive contact, textural, mineralogical and chemical modifications at the contact with the LAC concrete are limited. OPA mineralogy remains largely unmodified. X-ray micro-fluorescence and EPMA mapping of major elements on the OPA side also provides evidence for a Mg-enriched 300-400 μm thick layer. The cation exchange capacity (CEC) values measured in the OPA in contact with the LAC concrete range between 153 and 175 meq kg-1 of dry OPA, close to the reference value of 170 ± 10 meq kg-1 of dry OPA (Pearson et al., 2003). Changing cation occupancies at the interface with LAC concrete are mainly marked by increased Ca, Mg and K, and decreased Na. Leaching tests performed on OPA with deionized water and at different solid to water ratios strongly suggest that Cl and SO4 have either conservative behaviour or are constrained by the solubility of a precipitated sulfate phase. The Cl and SO4 concentrations measured at 2 cm from the interface are close to concentrations of undisturbed OPA pore waters (SO4: 4.5 ± 1.5 mmol kg-1 of dry OPA; Cl: 7.5 ± 2.1 mmol kg-1of dry OPA), and increase towards the interface with the concrete. The SO4 to Cl ratio also increases towards the interface, suggesting that the increasing anion concentrations are not related to porosity variations but rather to a concentration gradient and sulfate phase precipitation near the interface.
Nazzal, Yousef; Ahmed, Izrar; Al-Arifi, Nassir S N; Ghrefat, Habes; Zaidi, Faisal K; El-Waheidi, Mahmud M; Batayneh, Awni; Zumlot, Taisser
2014-08-01
The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na(+), K(+), Ca(2+), Mg(2+), CO3 (-), HCO3 (-), Cl(-), SO4 (2-), and NO3 (-). Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902 μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 (-) concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 (-) concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper's classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca(2+) and Mg(2+) over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.
Förster, Charlotte; Oberthuer, Dominik; Gao, Jiang; Eichert, André; Quast, Frederick G.; Betzel, Christian; Nitsche, Andreas; Erdmann, Volker A.; Fürste, Jens P.
2009-01-01
Locked nucleic acids (LNAs) are modified nucleic acids which contain a modified sugar such as β-d-2′-O,4′-C methylene-bridged ribofuranose or other sugar derivatives in LNA analogues. The β-d-2′-O,4′-C methylene ribofuranose LNAs in particular possess high stability and melting temperatures, which makes them of interest for stabilizing the structure of different nucleic acids. Aptamers, which are DNAs or RNAs targeted against specific ligands, are candidates for substitution with LNAs in order to increase their stability. A 7-mer helix derived from the terminal part of an aptamer that was targeted against ricin was chosen. The ricin aptamer originally consisted of natural RNA building blocks and showed high affinity in ricin binding. For future stabilization of the aptamer, the terminal helix has been constructed as an ‘all-locked’ LNA and was successfully crystallized in order to investigate its structural properties. Optimization of crystal growth succeeded by the use of different metal salts as additives, such as CuCl2, MgCl2, MnCl2, CaCl2, CoCl2 and ZnSO4. Preliminary X-ray diffraction data were collected and processed to 2.8 Å resolution. The LNA crystallized in space group P65, with unit-cell parameters a = 50.11, b = 50.11, c = 40.72 Å. The crystals contained one LNA helix per asymmetric unit with a Matthews coefficient of 3.17 Å3 Da−1, which implies a solvent content of 70.15%. PMID:19724123
Alonso, R.; Bytnerowicz, A.; Boarman, W.I.
2005-01-01
Air pollutant concentrations and atmospheric dry deposition were monitored seasonally at the Salton Sea, southern California. Measurements of ozone (O 3), nitric acid vapor (HNO3), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO 2) were performed using passive samplers. Deposition rates of NO 3-, NH4+, Cl-, SO 42-, Na+, K+ and Ca2+ to creosote bush branches and nylon filters as surrogate surfaces were determined for one-week long exposure periods. Maximum O3 values were recorded in spring with 24-h average values of 108.8 ??g m-3. Concentrations of NO and NO2 were low and within ranges of the non-urban areas in California (0.4-5.6 and 3.3-16.2 ??g m-3 ranges, respectively). Concentrations of HNO3 (2.0-6.7 ??g m-3) and NH 3 (6.4-15.7 ??g m-3) were elevated and above the levels typical for remote locations in California. Deposition rates of Cl-, SO42-, Na+, K+ and Ca2+ were related to the influence of sea spray or to suspended soil particles, and no strong enrichments caused by ions originated by human activities were detected. Dry deposition rates of NO3- and NH4+ were similar to values registered in areas where symptoms of nitrogen saturation and changes in species composition have been described. Deposition of nitrogenous compounds might be contributing to eutrophication processes at the Salton Sea. ?? 2005 Elsevier Ltd. All rights reserved.
Sun, Jin; Jia, Yongxia; Guo, Shirong; Chen, Lifang
2010-01-01
Analyses of ionic selectivity, compatible solutes, and intracellular ions in the leaves of spinach (Spinacia oleracea L.) plants cultured in the Hoagland's nutrient solution with or.without seawater (40%) were carried out using two cultivars--the Helan No.3 (seawater tolerant) and the Yuanye (seawater sensitive). When both cultivars were subjected to seawater stress, the leaves of the Helan No. 3 spinach preferred potassium (K+), calcium (Ca2+), magnesium (Mg2+), and sulfate (SO4(2-)) over sodium (Na+) and chlorine (Cl-) to keep high ratios of K/Na, Mg/Na, Ca/Na, and SO4(2-)/Cl- compared with the Yanye spinach. Moreover, those of the Helan No. 3 spinach under the seawater stress showed high efficiency of accumulation of compatible solutes (sugars and proline), low degradation of proteins, and suppression of free amino acids. However, the activities of plasma membrane H+ -ATPase and tonoplast H+ -ATPase in the leaves of spinach with the stress were enhanced. Taken together, the Helan No. 3 spinach under the seawater stress seems to acquire a high tolerance to the seawater salinity by inducing a high ion uptake, low concentration of Na+ and Cl-, efficient accumulation of compatible solutes, low decomposition of proteins, and suppression of free amino acids in the leaves.
Salt taste responses of the IXth nerve in Sprague-Dawley rats: lack of sensitivity to amiloride.
Kitada, Y; Mitoh, Y; Hill, D L
1998-03-01
To explore characteristics of the salt taste function of taste receptor cells located on the posterior tongue, we recorded electrophysiological responses from the whole glossopharyngeal nerve in Sprague-Dawley (SD) rats. For all salts, relative response magnitudes increased with increased stimulus concentrations (0.2-2.0 M) of NH4+, K+, and Na+ salts. The order of effectiveness of stimulation for Cl- salts was NH4Cl > KCl > NaCl. For sodium salts, relative response magnitudes were anion dependent. Sodium salts with small anions (NaCl, NaSCN, and NaNO3) had a much stronger stimulating effect than sodium salts with large anion groups (Na2SO4, C2H3O2Na, and C6H11O7Na). The responses of the glossopharyngeal nerve to the Na+ salts of NaCl, C2H3O2Na, and C6H11O7Na were not inhibited by the lingual application of the epithelial sodium transport blocker amiloride. This is in contrast to large amiloride sensitivity of the chorda tympani nerve. Amiloride also failed to inhibit the responses to K+ salts (KCl and KC2H3O2) and to NH4Cl. These results demonstrate that taste receptors innervated by the glossopharyngeal nerve in SD rats lack amiloride sensitivity as observed in the glossopharyngeal nerve of spontaneously hypertensive and Wistar-Kyoto rats. Furthermore, the difference between the small-anion group and the large-anion group of Na+ salts in their effectiveness to produce responses in the glossopharyngeal nerve parallels the effects noted for the anion dependence in the portion of the taste response resistant to amiloride in the chorda tympani nerve. Sodium salts with the smaller anion produced the larger responses in both glossopharyngeal and chorda tympani nerves after amiloride.
NASA Astrophysics Data System (ADS)
Ravikumar, P.; Somashekar, R. K.
2017-05-01
The present study envisages the importance of graphical representations like Piper trilinear diagram and Chadha's plot, respectively to determine variation in hydrochemical facies and understand the evolution of hydrochemical processes in the Varahi river basin. The analytical values obtained from the groundwater samples when plotted on Piper's and Chadha's plots revealed that the alkaline earth metals (Ca2+, Mg2+) are significantly dominant over the alkalis (Na+, K+), and the strong acidic anions (Cl-, SO4 2-) dominant over the weak acidic anions (CO3 2-, HCO3 -). Further, Piper trilinear diagram classified 93.48 % of the samples from the study area under Ca2+-Mg2+-Cl--SO4 2- type and only 6.52 % samples under Ca2+-Mg2+-HCO3 - type. Interestingly, Chadha's plot also demonstrated the dominance of reverse ion exchange water having permanent hardness (viz., Ca-Mg-Cl type) in majority of the samples over recharging water with temporary hardness (i.e., Ca-Mg-HCO3 type). Thus, evaluation of hydrochemical facies from both the plots highlighted the contribution from the reverse ion exchange processes in controlling geochemistry of groundwater in the study area. Further, PCA analysis yielded four principal components (PC1, PC2, PC3 and PC4) with higher eigen values of 1.0 or more, accounting for 65.55, 10.17, 6.88 and 6.52 % of the total variance, respectively. Consequently, majority of the physico-chemical parameters (87.5 %) loaded under PC1 and PC2 were having strong positive loading (>0.75) and these are mainly responsible for regulating the hydrochemistry of groundwater in the study area.
Large Band Gap of alpha-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopy
NASA Astrophysics Data System (ADS)
Sinn, Soobin; Kim, Choong Hyun; Sandilands, Luke; Lee, Kyungdong; Won, Choongjae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won
The Kitaev honeycomb lattice model has attracted great attention because of its possibility to stabilize a quantum spin liquid ground state. Recently, it was proposed that alpha-RuCl3 is its material realization and the first 4 d relativistic Mott insulator from an optical spectrum and LDA + U + SO calculations. Here, we present photoemission and inverse photoemission spectra of alpha-RuCl3. The observed band gap is about 1.8 eV, which suggests that the previously assigned optical gap of 0.3 eV is misinterpreted, and that the strong peak at about 1.2 eV in the optical spectrum may be associated with an actual optical gap. Assuming a strong excitonic effect of 0.6 eV in the optical spectrum, all the structures except for the peak at 0.3 eV are consistent with our electronic spectra. When compared with LDA + U + SO calculations, the value of U should be considerably larger than the previous one, which implies that the spin-orbit coupling is not a necessary ingredient for the insulating mechanism of alpha-RuCl3. We also present angle-resolved photoemission spectra to be compared with LDA + U + SO and LDA +DMFT calculations.
Anderson, John D.
1951-01-01
The plasmodium of Physarum polycephalum reacts to direct current by migration toward the cathode. Cathodal migration was obtained upon a variety of substrata such as baked clay, paper, cellophane, and agar with a current density in the substratum of 1.0 µa./mm.2 Injury was produced by current densities of 8.0 to 12.0 µa./mm.2 The negative galvanotactic response was not due to electrode products. Attempts to demonstrate that the response was due to gradients or orientation in the substratum, pH changes in the mold, cataphoresis, electroosmosis, or endosmosis were not successful. The addition of salts (CaCl2, LiCl, NaCl, Na2SO4, NaHCO3, KCl, MgSO4, sodium citrate, and sea water) to agar indicated that change of cations had more effect than anions upon galvanotaxis and that the effect was upon threshold values. K ion (0.01 M KCl) increased the lower threshold value to 8.0 µa./mm.2 and the upper threshold value to 32.0 µa./mm.2, whereas the Li ion (0.01 M LiCl) increased the lower threshold to only 4.0 µa./mm.2 and the upper threshold to only 16.0 µa./mm.2 The passage of electric current produced no increase in the rate of cathodal migration; neither was there a decrease until injurious current densities were reached. With increase of subthreshold current densities there was a progressive decrease in rate of migration toward the anode until complete anodal inhibition occurred. There was orientation at right angles to the electrodes in alternating current (60 cycle) with current density of 4.0 µa./mm.2 and in direct current of 5.0 µa./mm.2 when polarity of current was reversed every minute. It is concluded that the negative galvanotactic response of P. polycephalum is due to inhibition of migration on the anodal side of the plasmodium and that this inhibition results in the limitation of the normal migration of the mold to a cathodal direction. The mechanism of the anodal inhibition has not been elucidated. PMID:14873916
Chaophilic or chaotolerant fungi: a new category of extremophiles?
Zajc, Janja; Džeroski, Sašo; Kocev, Dragi; Oren, Aharon; Sonjak, Silva; Tkavc, Rok; Gunde-Cimerman, Nina
2014-01-01
It is well known that few halophilic bacteria and archaea as well as certain fungi can grow at the highest concentrations of NaCl. However, data about possible life at extremely high concentrations of various others kosmotropic (stabilizing; like NaCl, KCl, and MgSO4) and chaotropic (destabilizing) salts (NaBr, MgCl2, and CaCl2) are scarce for prokaryotes and almost absent for the eukaryotic domain including fungi. Fungi from diverse (extreme) environments were tested for their ability to grow at the highest concentrations of kosmotropic and chaotropic salts ever recorded to support life. The majority of fungi showed preference for relatively high concentrations of kosmotropes. However, our study revealed the outstanding tolerance of several fungi to high concentrations of MgCl2 (up to 2.1 M) or CaCl2 (up to 2.0 M) without compensating kosmotropic salts. Few species, for instance Hortaea werneckii, Eurotium amstelodami, Eurotium chevalieri and Wallemia ichthyophaga, are able to thrive in media with the highest salinities of all salts (except for CaCl2 in the case of W. ichthyophaga). The upper concentration of MgCl2 to support fungal life in the absence of kosmotropes (2.1 M) is much higher than previously determined to be the upper limit for microbial growth (1.26 M). No fungal representatives showed exclusive preference for only chaotropic salts (being obligate chaophiles). Nevertheless, our study expands the knowledge of possible active life by a diverse set of fungi in biologically detrimental chaotropic environments. PMID:25566222
NASA Astrophysics Data System (ADS)
Delmelle, P.; Bernard, A.
2000-04-01
The crater lake of Kawah Ijen volcano contains extremely low pH (<0.4) waters with high SO4 (∼70000 mg/kg), Cl (∼21000 mg/kg), F (∼1500 mg/kg), Al (∼5000 mg/kg), Fe (∼2000 mg/kg) and trace metal (Cu ∼0.5, Zn ∼4, Pb ∼3 mg/kg) contents. These brines seep outward through the western crater rim and reappear on the other side as streamlets, which form the headwaters of the Banyupahit stream. The Banyupahit first mixes with fresh rivers and thermal springs in the Ijen caldera and then irrigates a coastal agricultural plain which is 30 km from the summit crater. We discuss the downstream composition changes affecting the Banyupahit waters by using stable isotope, chemical and mineralogical data collected from sites along the stream length. The saturation of the stream waters with respect to minerals was evaluated with SOLVEQ and WATEQ4F and compared with the geochemical observations. An aluminous mineralogy (alunogen, pickeringite, tamarugite and kalinite) develops in the upper part of the Banyupahit due to concentration of the headwaters by evaporation. Downstream attenuation of dissolved element concentrations results principally from dilution and from mineral precipitation. The stream pH changes from ∼0 at the source to >4 close to the mouth. The δD and δ18O values and the relative SO4-Cl-F contents of the Banyupahit waters indicate that the tributaries are mostly meteoric. Dissolved SO4 in the acidic stream come only from the crater lake seepages and are not involved later in microbially mediated reactions, as shown by their δ34S and δ18O values. Re-equilibration of the stream SO4 oxygen-isotope composition with H2O from tributaries does not occur. Calcium, SiO2, Al, Fe, K and SO4 behave non-conservatively in the stream waters. Gypsum, silica (amorphous or poorly ordered), a basic aluminum hydroxysulfate (basaluminite?), K-jarosite and amorphous ferric hydroxide may exert a solubility control on these elements along the entire stream length, or in certain stream sections, consistent with the thermochemical model results. Downstream concentration trends and mineral saturation levels suggest that precipitation of Sr-, Pb-rich barite and celestite consume Ba, Sr and Pb, whereas dissolved Cu, Pb and Zn may adsorb onto solid particles, especially after the junctions of the acidic stream with non-acidic rivers. We calculated that significant fluxes of SO4, F, Cl, Al, SiO2, Ti, Mn and Cu may reach the irrigation system, possibly causing serious environmental impacts such as soil acidification and induration.
NASA Astrophysics Data System (ADS)
Tang, Xiong; Zhang, Xiaoshan; Ci, Zhijia; Guo, Jia; Wang, Jiaqi
2016-05-01
In the winter and summer of 2013-2014, we used a sampling system, which consists of annular denuder, back-up filter and thermal desorption set-up, to measure the speciation of major inorganic salts in aerosols and the associated trace gases in Beijing. This sampling system can separate volatile ammonium salts (NH4NO3 and NH4Cl) from non-volatile ammonium salts ((NH4)2SO4), as well as the non-volatile nitrate and chloride. The measurement data was used as input of a thermodynamic equilibrium model (ISORROPIA II) to investigate the gas-aerosol equilibrium characteristics. Results show that (NH4)2SO4, NH4NO3 and NH4Cl were the major inorganic salts in aerosols and mainly existed in the fine particles. The sulfate, nitrate and chloride associated with crustal ions were also important in Beijing where mineral dust concentrations were high. About 19% of sulfate in winter and 11% of sulfate in summer were associated with crustal ions and originated from heterogeneous reactions or direct emissions. The non-volatile nitrate contributed about 33% and 15% of nitrate in winter and summer, respectively. Theoretical thermodynamic equilibrium calculations for NH4NO3 and NH4Cl suggest that the gaseous precursors were sufficient to form stable volatile ammonium salts in winter, whereas the internal mixing with sulfate and crustal species were important for the formation of volatile ammonium salts in summer. The results of the thermodynamic equilibrium model reasonably agreed with the measurements of aerosols and gases, but large discrepancy existed in predicting the speciation of inorganic ammonium salts. This indicates that the assumption on crustal species in the model was important for obtaining better understanding on gas-aerosol partitioning and improving the model prediction.
Synthesis, characterization and antimicrobial investigation of some moxifloxacin metal complexes
NASA Astrophysics Data System (ADS)
Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; El-Attar, Mohamed S.
2011-12-01
The new complexes of moxifloxacin (MOX), with Ti(IV), Y(III), Pd(II) and Ce(IV) have been synthesized. These complexes were then characterized by melting point, magnetic studies and spectroscopic techniques involving infrared spectra (IR), UV-Vis, 1H NMR. C, H, N and halogen elemental analysis and thermal behavior of complexes also investigated. The results suggested that the molar ratio for all complexes is M: MOX = 1:2 where moxifloxacin acts as a bidentate via one of the oxygen atoms of the carboxylate group and through the ring carbonyl group and the complexes have the following formula [Ti(MOX) 2](SO 4) 2·7H 2O, [Y(MOX) 2Cl 2]Cl·12H 2O, [Pd(MOX) 2(H 2O) 2]Cl 2·6H 2O and [Ce(MOX) 2](SO 4) 2·2H 2O. The activation energies, E*, enthalpies, Δ H*, entropies, Δ S* and Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DrTG) curves, using Coats-Redfern (CR) and Horowitz-Metzger (HM) methods. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and three Gram-negative bacteria and compared with the reference drug moxifloxacin. The antibacterial activity of Ti(IV) complex is significant for E. coli K32 and highly significant for S. aureus K1, B. subtilis K22, Br. otitidis K76, P. aeruginosa SW1 and K. oxytoca K42 compared with free moxifloxacin.
NASA Astrophysics Data System (ADS)
Li, Hongbin; Shi, Wenying; Du, Qiyun; Zhou, Rong; Zhang, Haixia; Qin, Xiaohong
2017-06-01
Poly(piperazine amide) composite nanofiltration (NF) membranes were modified through the incorporation of carboxylated graphene oxide (cGO) in the polyamide layer during the interfacial polymerization (IP) process on the polysulfone (PSF)/nonwoven fabric (NWF) ultrafiltration (UF) substrate membrane surface. The composition and morphology of the prepared NF membrane surface were determined by means of ATR-FTIR, SEM-EDX and AFM. The effects of cGO contents on membrane hydrophilicity, separation performance and antifouling properties were investigated through Water Contact Angle (WCA) analysis, the permeance and three-cycle fouling measurements. The growth model of cGO-incorporated polyamide thin-film was proposed. Compared to the original NF membranes, the surface hydrophilicity, water permeability, salt rejection and antifouling properties of the cGO-incorporated NF membrane had all improved. When cGO content was 100 ppm, the MgSO4 rejection of composite NF membrane reached a maximum value of 99.2% meanwhile membrane obtained an obvious enhanced water flux (81.6 L m-2 h-1, at 0.7 MPa) which was nearly three times compared to the virginal NF membrane. The cGO-incorporated NF membrane showed an excellent selectivity of MgSO4 and NaCl with the rejection ratio of MgSO4/NaCl of approximately 8.0.
Ericksen, G.E.; Hosterman, J.W.; St., Amand
1988-01-01
The clay-hill nitrate deposits of the Amargosa River valley, California, are caliche-type accumulations of water-soluble saline minerals in clay-rich soils on saline lake beds of Miocene, Pliocene(?) and Pleistocene age. The soils have a maximum thickness of ??? 50 cm, and commonly consist of three layers: (1) an upper 5-10 cm of saline-free soil; (2) an underlying 15-20 cm of rubbly saline soil; and (3) a hard nitrate-rich caliche, 10-20 cm thick, at the bottom of the soil profile. The saline constituents, which make up as much as 50% of the caliche, are chiefly Cl-, NO-3, SO2-4 and Na+. In addition are minor amounts of K+, Mg2+ and Ca2+, varying, though generally minor, amounts of B2O3 and CO2-3, and trace amounts of I (probably as IO-3), NO-2, CrO2-4 and Mo (probably as MoO2-4). The water-soluble saline materials have an I/Br ratio of ??? 1, which is much higher than nearly all other saline depostis. The principal saline minerals of the caliche are halite (NaCl), nitratite (NaNO3), darapskite (Na3(SO4)(NO3)??H2O), glauberite (Na2Ca(SO4)2), gypsum (CaSO4??2H2O) and anhydrite (CaSO4). Borax (Na2B4O5(OH)4??8H2O), tincalconite (Na2B4O5(OH)4??3H2O) and trona (Na3(CO3)(HCO3)??2H2O) are abundant locally. The clay-hill nitrate deposits are analogous to the well-known Chilean nitrate deposits, and probably are of similar origin. Whereas the Chilean deposits are in permeable soils of the nearly rainless Atacama Desert, the clay-hill deposits are in relatively impervious clay-rich soils that inhibited leaching by rain water. The annual rainfall in the Death Valley region of ??? 5 cm is sufficient to leach water-soluble minerals from the more permeable soils. The clay-hill deposits contain saline materials from the lake beds beneath the nitrate deposits are well as wind-transported materials from nearby clay-hill soils, playas and salt marshes. The nitrate is probably of organic origin, consisting of atmospheric nitrogen fixed as protein by photoautotrophic blue-green algae, which are thought to form crusts on soils at the sites of the deposits when moistened by rainfall. The protein is subsequently transformed to nitrate by autotophic bacteria. ?? 1988.
Wang, Yujuan; Lin, Hui; Jin, Fangyuan; Niu, Junfeng; Zhao, Jinbo; Bi, Ying; Li, Ying
2016-07-01
Batch experiments were conducted to investigate the effects of cathode materials and anions (Cl(-), SO4(2-), NO3(-), and CO3(2-)/HCO3(-)) on perfluorooctanoate (PFOA) removal in electrocoagulation process using zinc anode. The results indicated that the hydroxide flocs generated in-situ in the electrocoagulation process using the stainless steel rod as cathode were more effective than those using aluminum rod as cathode for the removal of PFOA after 20min of electrocoagulation at a current density of 0.5mAcm(-2). Hydroxide flocs generated in-situ in the electrocoagulation in the presence of Cl(-)/NO3(-) could effectively remove PFOA from aqueous solution with the removal ratios of 99.7%/98.1% and 98.9%/97.3% using stainless steel rod and aluminum rod as cathode, respectively. However, the PFOA removal ratios were 96.2%/4.1% and 7.4%/4.6% using stainless steel rod and aluminum rod as cathode, respectively, in the presence of SO4(2-) and CO3(2-)/HCO3(-). The different removal ratios of PFOA during the electrocoagulation process were primarily due to the fact that the hydroxide flocs generated in-situ were different in the presence of diverse cathodes and anions. We firstly demonstrated that Zn0.70Al0.30(OH)2(CO3)0.15·xH2O and ZnO generated in-situ in the electrocoagulation process (except for CO3(2-)/HCO3(-)) using zinc anode and aluminum/stainless steel rod cathode governed the sorption of PFOA. The adsorbent hydroxide flocs in-situ generated in the presence of Cl(-) could effectively remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion at the initial hydroxide flocs concentration of 2000mgL(-1). These results provided an effective and alternative method to remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion. Copyright © 2016 Elsevier B.V. All rights reserved.
Dorđević, Dragana S; Tosić, Ivana; Unkasević, Miroslava; Durasković, Pavle
2010-11-01
Precipitation samples collected from 1995 to 2000 at meteorological station in the eastern outskirts of Herceg Novi (Montenegro) were analysed on Na(+), K(+), Mg(2+), Ca(2+), Cl(-), SO(4) (2-), NO(3)(-) and NH(4)(+). Four-day backward trajectory simulations were conducted during the precipitation period to investigate the regional transport of main ions and their deposition in the region of the southeastern Adriatic Sea. The air mass trajectories were classified into six trajectory categories by the origin and direction of their approach to Herceg Novi. A bottle and funnel with a small net between them was used for sampling at a height of 1.5 m above the ground. The concentrations of Cl(-), NO(3)(-), NH(4)(+) and SO(4)(2-) were determined spectrophotometrically, the concentrations of Na(+) and K(+) were determined by the FAES method and the concentrations of Mg(2+) and Ca(2+) by the FAAS method. The factor analysis technique (PCA analysis) based on the calculation of the factors was employed to differentiate the contribution of emission sources to the content of the main ions in the precipitation. The obtained data sets were processed using the SPSS 11.5 statistical program. The Hybrid Single-Particle Lagrangian Integrated Trajectory model was used to study the air origin for the city of Herceg Novi (42°27'N, 18°33'E), Montenegro. The following origins of the air masses were considered: northern Europe (NE), eastern Europe-northeastern Europe (EE-NE); eastern Mediterranean-southeastern Europe (EM-SE); Africa-Central Mediterranean (A-CM); western Mediterranean (WM); western Europe-Central Europe (WE-CE) and undefined. The heights and frequencies of precipitation coming by air masses from northern Europe and eastern-northeastern Europe are the lowest. On the contrary, the heights and frequencies of precipitation coming by air masses from the western Mediterranean (36.6%) and Africa and the Central Mediterranean (30.6%) are the highest. The sea salt components (Na(+), Cl(-), Mg(2+)) are significantly correlated, except for air masses originating from the northern and eastern European regions. Significant correlations between SO(4)(2-) and NO(3)(-) are found in air masses coming from the western Europe and North Africa, over the Mediterranean. The highest volume-weighted mean (VWM) of: SO(4)(2-), NH(4)(+) and Mg(2+) are for precipitation from EE-NE while the highest values of VWM of Cl(-) are from WM and of K(+) are from WE-CE. Long-range transport of Sahara dust is confirmed. For better estimation of origins of water-soluble ions in precipitation expanding list of analysis on anions of organic acids, such as HCOO(-), CH(3)COO(-), and C(2)H(2)COO(-), could be indicative of volatile organic compounds emitted by vegetation but also traffic. The chemical composition of precipitation together with a study of air backward trajectories is the proper tool for tracking the long-range transport of water-soluble ions and estimating transboundary pollution.
The acute toxicity of major ion salts to Ceriodaphnia dubia: I. ...
The ions Na+, K+, Ca2+, Mg2+, Cl-, SO42-, and HCO3-/CO32- (referred to as “major ions”) are present in all fresh waters and are physiologically required by aquatic organisms, but can be increased to harmful levels by a variety of anthropogenic activities that speed geochemical weathering or otherwise introduce or concentrate ions. While toxicity of these ions to aquatic organisms has been previously shown, it is also known that their toxicity can vary depending on the concentrations of other co-occurring anions, and understanding these relationships is key to predicting toxicity and establishing appropriate environmental limits. In this paper we conduct a series of experiments with Ceriodaphnia dubia to evaluate the acute toxicity of all twelve major ionsalts (pairing one of the cations with one of the anions) and to determine how toxicity of these salts varies as a function of background water chemistry. All salts except CaSO4 and CaCO3 were acutely toxic to C. dubia below saturation, with the lowest LC50s found for K salts. Of the remaining salts, all but CaCl2 showed some degree of decreased toxicity as the ionic content of the background water increased. Experiments that independently varied Ca:Mg ratio, Na:K ratio, Cl:SO4 ratio, and alkalinity/pH were used to show that Ca concentration was the primary factor influencing the toxicities of Na and Mg salts. In contrast, the toxicities of K salts were primarily influenced by the concentration of Na. Th
NASA Astrophysics Data System (ADS)
Young, Li-Hao; Li, Chiao-Hsin; Lin, Ming-Yeng; Hwang, Bing-Fang; Hsu, Hui-Tsung; Chen, Yu-Cheng; Jung, Chau-Ren; Chen, Kuan-Chi; Cheng, Dung-Hung; Wang, Ven-Shing; Chiang, Hung-Che; Tsai, Perng-Jy
2016-11-01
To reduce sampling artifacts and to improve time-resolved measurements of inorganic aerosol system, a recently commercialized semi-continuous In-situ Gas and Aerosol Composition (IGAC) monitoring system was evaluated against a reference annular denuder system (ADS; denuder/two-stage filter pack) at a suburban site over a year, during which the average PM2.5 was 37.0 ± 24.8 μg/m3. A suite of eight ions SO42-, NO3-, Cl-, NH4+, Na+, K+, Ca2+ and Mg2+ and two gases SO2 and NH3 were the target species. In comparison to the reference ADS method, the IGAC performed well in measuring the major ions SO42-, NO3- and NH4+, and the SO2. For those species, the linear slopes, intercepts and R2 values between the two methods all passed the performance evaluation criteria outlined by earlier similar studies. The performance of IGAC on Cl-, Na+, K+ and NH3 was marginally acceptable, whereas Ca2+ and Mg2+ could not be properly evaluated due to the low concentrations (<0.2 μg/m3) and hence inadequate amount of sample size. The ionic balance of the hourly IGAC samples averaged very close to unity, as did the daily ADS samples, though the former was considerably more variable than the latter. The overall performance of the IGAC has been shown to be comparable to other similar monitors and its improvements are discussed.
Burckhardt, B C; Cassola, A C; Frömter, E
1984-05-01
Cell membrane potentials of rat kidney proximal tubules were measured in response to peritubular ion substitutions in vivo with conventional and Cl- sensitive microelectrodes in order to test possible alternative explanations of the bicarbonate dependent cell potential transients reported in the preceding paper. Significant direct effects of bicarbonate on peritubular K+, Na+, and Cl- conductances could be largely excluded by blocking K+ permeability with Ba2+ and replacing all Na+ and Cl- by choline or respectively SO4(2-) isethionate, or gluconate. Under those conditions the cell membrane response to HCO3- was essentially preserved. In addition it was observed that peritubular Cl- conductance is negligibly small, that Cl-/HCO3- exchange - if present at all - is insignificant, and that rheogenic HCO3- flow with coupling to Na+ flow is also absent or insignificant. A transient disturbance of the Na+ pump or a transient unspecific increase of the membrane permeability was also excluded by experiments with ouabain and by the observation that SITS (4-acetamido-4'-isothiocyano-2,2' disulphonic stilbene) blocked the HCO3- response instantaneously. The data strongly support the notion that the potential changes in response to peritubular HCO3- concentration changes arise from passive rheogenic bicarbonate transfer across the peritubular cell membrane, and hence that this membrane has a high conductance for bicarbonate buffer.
Viscosities encountered during the cryopreservation of dimethyl sulphoxide systems.
Kilbride, P; Morris, G J
2017-06-01
This study determined the viscous conditions experienced by cells in the unfrozen freeze concentrated channels between ice crystals in slow cooling protocols. This was examined for both the binary Me 2 SO-water and the ternary Me 2 SO-NaCl-water systems. Viscosity increases from 6.9 ± 0.1 mPa s at -14.4 ± 0.3 °C to 958 ± 27 mPa s at -64.3 ± 0.4 °C in the binary system, and up to 55387 ± 1068 mPa s at -75 ± 0.5 °C in the ternary (10% Me 2 SO, 0.9% NaCl by weight) solution were seen. This increase in viscosity limits molecular diffusion, reducing adsorption onto the crystal plane. These viscosities are significantly lower than observed in glycerol based systems and so cells in freeze concentrated channels cooled to between -60 °C and -75 °C will reside in a thick fluid not a near-solid state as is often assumed. In addition, the viscosities experienced during cooling of various Me 2 SO based vitrification solutions is determined to below -70 °C, as is the impact which additional solutes exert on viscosity. These data show that additional solutes in a cryopreservation system cause disproportionate increases in viscosity. This in turn impacts diffusion rates and mixing abilities of high concentrations of cryoprotectants, and have applications to understanding the fundamental cooling responses of cells to Me 2 SO based cryopreservation solutions. Copyright © 2017 Elsevier Inc. All rights reserved.
Smith, Kirk P.
2017-09-12
The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of the large amount of roadway in the drinking-water source area, the Cambridge water supply is affected by the usage of deicing compounds and by other constituents that are flushed from such impervious areas. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Cambridge Reservoir and Stony Brook Reservoir Basins, which compose the drinking-water source area, since 1997 (water year 1998) through continuous monitoring and the collection of stream-flow samples.In a study conducted by the USGS, in cooperation with the City of Cambridge Water Department, concentrations and loads of calcium (Ca), chloride (Cl), magnesium (Mg), sodium (Na), and sulfate (SO4) were estimated from continuous records of specific conductance and streamflow for streams and tributaries at 10 continuous water-quality monitoring stations. These data were used to characterize current (2015) water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and main-stem streams in the Cambridge Reservoir and Stony Brook Reservoir Basins. These data also were used to describe how stream-water quality is related to various basin characteristics and provide information to guide future management of the drinking-water source area.Water samples from 2009–15 were analyzed for physical properties and concentrations of Ca, Cl, Mg, Na, potassium (K), SO4, and total phosphorus (TP). Values of physical properties and constituent concentrations varied widely, particularly in composite samples of stormflow from tributaries that have high percentages of constructed impervious areas. Median concentrations of Ca, Cl, Mg, Na, and K in samples collected from the tributaries in the Cambridge Reservoir Basin (27.2, 273, 4.7, 154.5, and 2.8 milligrams per liter (mg/L), respectively) were higher than those for the Stony Brook Reservoir Basin (22.2, 128, 4.3, 77.1, and 2.5, respectively). Differences between tributary samples for concentrations of Cl and Na were related to the percentage of developed land and constructed impervious area in the drinking-water source area. Median concentrations of SO4 in samples collected from the tributaries in the Cambridge Reservoir Basin (10.7 mg/L) were lower than those for the Stony Brook Reservoir Basin (18.0 mg/L).Concentrations of dissolved Cl and Na in samples and those concentrations estimated from continuous records of specific conductance (particularly during base flow) often were greater than the U.S. Environmental Protection Agency (EPA) secondary drinking-water standard for Cl (250 mg/L), the chronic aquatic-life guideline for Cl (230 mg/L), and the Massachusetts Department of Environmental Protection drinking-water guideline for Na (20 mg/L). Concentrations of TP (range from 0.008 to 0.69 mg/L in all subbasins) in tributary samples did not differ substantially between the Cambridge Reservoir and Stony Brook Reservoir Basins. About one-half of the concentrations of TP in samples collected during water years 2013–15 exceeded the EPA proposed reference concentration of 0.024 mg/L.For most tributaries, about 70 percent of the annual loads of Ca, Cl, Mg, Na, and SO4 were associated with base flow. Concentrations of major ions were negatively correlated with streamflow, indicating that these constituents were diluted during stormflow and tend to increase during the summer when streamflow is low. In contrast, between 57 and 92 percent of the annual load for TP was transported during stormflows.Mean annual yields of Ca, Cl, Mg, Na, and SO4 in the drinking-water source area were 13, 75, 2.6, 40, and 6.9 metric tons per square kilometer, respectively, for water years 2009–15. The mean annual yield of TP in the drinking-water source area for water years 2013–15 was 0.012 metric tons per square kilometer. Yields for major ions and TP were highest in tributary subbasins adjacent to Interstate 95.Temporal trends in mean annual concentrations for Cl and Na were not significant for water years 1998‒2015 (period of record by the USGS) for the outlet of the Cambridge Reservoir and for the main stem of Stony Brook downstream from the reservoir. Median values of base-flow concentrations of TP at three stations were higher for samples collected during base-flow conditions during water years 2005–7 than for samples collected during water years 2013–15. However, the results were not significant for statistical tests between concentrations in samples collected during storms for the same periods, indicating that the quality of stormwater remains similar.
Vapor saturation and accumulation in magmas of the 1989-1990 eruption of Redoubt Volcano, Alaska
Gerlach, Terrance M.; Westrich, Henry R.; Casadevall, Thomas J.; Finnegan, David L.
1994-01-01
The 1989–1990 eruption of Redoubt Volcano, Alaska, provided an opportunity to compare petrologic estimates of SO2 and Cl emissions with estimates of SO2 emissions based on remote sensing data and estimates of Cl emissions based on plume sampling. In this study, we measure the sulfur and chlorine contents of melt inclusions and matrix glasses in the eruption products to determine petrologic estimates of SO2 and Cl emissions. We compare the results with emission estimates based on COSPEC and TOMS data for SO2 and data for Cl/SO2 in plume samples. For the explosive vent clearing period (December 14–22, 1989), the petrologic estimate for SO2 emission is 21,000 tons, or ~12% of a TOMS estimate of 175,000 tons. For the dome growth period (December 22, 1989 to mid-June 1990), the petrologic estimate for SO2 emission is 18,000 tons, or ~3% of COSPEC-based estimates of 572,000–680,000 tons. The petrologic estimates give a total SO2 emission of only 39,000 tons compared to an integrated TOMS/COSPEC emission estimate of ~1,000,000 tons for the whole eruption, including quiescent degassing after mid-June 1990. Petrologic estimates also appear to underestimate Cl emissions, but apparent HCl scavenging in the plume complicates Cl emission comparisons. Several potential sources of ‘excess sulfur’ often invoked to explain petrologic SO2 deficits are concluded to be unlikely for the 1989–1990 Redoubt eruption — e.g., breakdown of sulfides, breakdown of anhydrite, release of SO2 from a hydrothermal system, degassing of commingled infusions of basalt in the magma chamber, and syn-eruptive degassing of sulfur from melt present in non-erupted magma. Leakage and/or diffusion of sulfur from melt inclusions do not provide convincing explanations for the petrologic SO2 deficits either. The main cause of low petrologic estimates for SO2 is that melt inclusions do not represent the total sulfur content of the Redoubt magmas, which were vapor-saturated magmas carrying most of their sulfur in an accumulated vapor phase. Almost all the sulfur of the SO2 emissions was present prior to emission as accumulated magmatic vapor at 6–10 km depth in the magma that supplied the eruption; whole-rock normalized concentrations of gaseous excess S in these magmas remained at ~0.2 wt.% throughout the eruption, equivalent to ~0.7 vol.% at depth. Data for CO2 emissions during the eruption indicate that CO2 at whole-rock concentrations of ~0.6 wt.% in the erupted magma was a key factor in creating the vapor saturation and accumulation condition making a vapor phase source of excess sulfur possible at depth. When explosive volcanism involves magma with accumulated vapor, melt inclusions do not provide a sufficient basis for predicting SO2 emissions. Thus, petrologic estimates made for SO2 emissions during explosive eruptions of the past may be too low and may significantly underestimate impacts on climate and the chemistry of the atmosphere.
Contribution of an ancient evaporitic-type reservoir to lake vostok chemistry
NASA Astrophysics Data System (ADS)
de Angelis, M.; Thiemens, M. H.; Savarino, J.; Petit, J. R.
2003-04-01
Accretion ice 1 (3538 to 3608 m) contents visible sediment inclusions likely incorporated into ice in a shallow bay upstream Vostok where glacier moves against a relief rise. Ion chromatography measurements indicate that elemental concentrations are linked to inclusions abundances. More than 80% of SO_42- is present as CaSO_4 or MgSO_4. While SO_42- concentrations and the relative proportion of CaSO_4 and MgSO_4 varies in a wide range in accreted ice, concentration profiles of Na and Cl, present as NaCl, are much more regular even along individual crystals. Question rises about the presence of such salts in lake water: The 17O anomaly of sulphate in one samples taken at 3570 m suggests that less than 10% of total sulphate comes from DMS oxidation, ruling out any significant contribution of glacer melt water. Fe concentrations are low (10 ppb) excluding sulphate production from the pyrite oxidation by biogenic in-situ activity. This conclusion is supported by the isotopic signature of 34S. Taken all together, these observations strongly suggest the contribution of an evaporitic-type basin to the lake salinity. Assuming that sediments accumulated in an isolated reservoir prior the lake formation, seismotectonic activated hydrothermal circulation may pulse NaCl rich water with sulphate salts through faults up to their vents in a shallow bay upstream Vostok, where they could be incorporated in the accreted ice and also contribute to lake salinity.
Tacey, Sean A.; Xu, Lang; Mavrikakis, Manos; ...
2016-03-25
Here, the atmospheric lifetime of mercury is greatly impacted by redox chemistry resulting from the high deposition rate of reactive mercury (Hg(II)) compared to elemental mercury (Hg 0). Recent laboratory and field studies have observed the reduction of Hg(II) but the chemical mechanism for this reaction has not been identified. Recent laboratory studies have shown that the reduction reaction is heterogeneous and can occur on iron and sodium chloride aerosol surfaces. This study explores the use of density functional theory calculations to discern the reduction pathways of HgCl 2, HgBr 2, Hg(NO 3) 2, and HgSO 4 on clean Fe(110),more » NaCl(100), and NaCl(111) Na surfaces. In doing so, potential energy surfaces have been prepared for the various reduction pathways, indicating that the reduction pathway leading to the production of gas-phase elemental mercury is highly favorable on Fe(110) and NaCl(111) Na. Moreover, the Fe(110) surface requires an external energy source of approximately 0.5 eV to desorb the reduced mercury, whereas the NaCl(111) Na surface requires no energy input. The results indicate that a number of mercury species can be reduced on metallic iron and sodium chloride surfaces, which are known aerosol components, and that a photochemical reaction involving the aerosol surface is likely needed for the reaction to be catalytic.« less
Cloud condensation nucleation activities of calcium carbonate and its atmospheric ageing products.
Tang, M J; Whitehead, J; Davidson, N M; Pope, F D; Alfarra, M R; McFiggans, G; Kalberer, M
2015-12-28
Aerosol particles can serve as cloud condensation nuclei (CCN) to form cloud droplets, and its composition is a main factor governing whether an aerosol particle is an effective CCN. Pure mineral dust particles are poor CCN; however, changes in chemical composition of mineral dust aerosol particles, due to heterogeneous reactions with reactive trace gases in the troposphere, can modify their CCN properties. In this study we investigated the CCN activities of CaCO3 (as a surrogate for mineral dust) and its six atmospheric ageing products: Ca(NO3)2, CaCl2, CaSO4, Ca(CH3SO3)2, Ca(HCOO)2, and Ca(CH3COO)2. CaCO3 has a very low CCN activity with a hygroscopicity parameter (κ) of 0.001-0.003. The CCN activities of its potential atmospheric ageing products are significantly higher. For example, we determined that Ca(NO3)2, CaCl2 and Ca(HCOO)2 have κ values of ∼0.50, similar to that of (NH4)2SO4. Ca(CH3COO)2 has slightly lower CCN activity with a κ value of ∼0.40, and the κ value of CaSO4 is around 0.02. We further show that exposure of CaCO3 particles to N2O5 at 0% relative humidity (RH) significantly enhances their CCN activity, with κ values increasing to around 0.02-0.04. Within the experimental uncertainties, it appears that the variation in exposure to N2O5 from ∼550 to 15,000 ppbv s does not change the CCN activities of aged CaCO3 particles. This observation indicates that the CaCO3 surface may be already saturated at the shortest exposure. We also discussed the atmospheric implications of our study, and suggested that the rate of change in CCN activities of mineral dust particles in the troposphere is important to determine their roles in cloud formation.
Angle, J. Scott; McGrath, Stephen P.; Chaney, Rufus L.
1991-01-01
A new growth medium which closely approximates the composition of the soil solution is presented. This soil solution equivalent (SSE) medium contains the following components (millimolar): NO3, 2.5; NH4, 2.5; HPO4, 0.005; Na, 2.5; Ca, 4.0; Mg, 2.0; K, 0.503; Cl, 4.0; SO4, 5.0; ethylenediamine-di(o-hydroxyphenylacetic acid), 0.02; and MES [2-(N-morpholino)ethanesulfonic acid] (to maintain the pH at 6.0), 10, plus 0.1% arabinose. The advantages of the SSE medium are discussed. PMID:16348614
NASA Astrophysics Data System (ADS)
Mohamad, Noorlin; Latif, Mohd Talib
2013-11-01
Measurements of PM10 and water-soluble ions were carried out on indoor and outdoor PM10 (particles > 10 μm in aerodynamic diameter) aerosols sampled at selected primary schools of Kuala Lumpur (S1) and Putrajaya (S2), respectively. Samples were collected using a low volume sampler on Teflon filters. The water-soluble ions chloride (Cl-), nitrate (NO3-), sulfate (SO42-), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+) and ammonium (NH4+) was analyzed using ion chromatography. The results showed that the indoor PM10 mass concentrations in S1 and S2 were 96.6 and 69.5 μg/m3, while the outdoor PM10 mass concentrations were 80.1 and 85.2 μg/m3, respectively. This indicated that NO3- were the most dominant ions, followed by SO42-, Ca2+, K+ and Na+, while Cl-, Mg2+ and Na+ were present at low concentrations. Pearson's correlation test applied to all the data showed high correlation between SO42- and NO3-, indicating a common anthropogenic origin. In addition, the correlations between Na+ and Ca2+ indicated crustal origins that significantly contributed to human exposure.
Hydrochemical zonation of the western part of Göksu Delta aquifer system, Southern Turkey
NASA Astrophysics Data System (ADS)
Dokuz, U. E.; Çelik, M.; Arslan, Ş.; Engin, H.
2012-04-01
In general, coastal areas are preferred places for human settlement, especially at places where infrastructure routes benefit from rivers, streets, or harbours. As a result, these areas usually suffer from rising population and endure increasingly high demand on natural resources like water. Göksu Delta, located in southern Turkey, is one of the important wetland areas of Turkey at the Mediterranean coast. It is divided into two parts by Göksu River. The western part of the delta, which is the subject matter of this study, hosts fertile agricultural fields, touristic places and a Special Environmental Protection Area. These properties of the region lead to a water-dependent ecosystem where groundwater has widely been used for agricultural and domestic purposes. When the exploitation of groundwater peaked in the middle of 1990s, the groundwater levels dropped and seawater intruded. General Directorate of State Hydraulic Works tried to stop seawater intrusion by building irrigation channels connected to Göksu River and banned drilling of new wells for groundwater exploitation, although it is hard to control the drilling of wells without official permit. Geological studies show that the delta is composed of terrestrial sediments including clay to coarse sand deposited during Quaternary. The heterogeneous sediments of Göksu Delta cause hydrogeological features of the aquifer systems to be heterogeneous and anisotropic. Hydrogeological investigations, therefore, indicate mainly two different aquifers, shallow and deep, separated by an aquitard. The shallow aquifer is under unconfined to confined conditions from north to south while the deep aquifer is under confined conditions. This study focuses on hydrogeochemical zonation in terms of hydrochemical processes that affect the Göksu Delta aquifer systems. For this purpose, hydrogeochemical and isotopic studies are conducted to understand the salinisation and softening processes of groundwater. The physicochemical and hydrochemical features of the water (EC, TDS, HCO3-, SO4-2, Cl-, Na+, Ca+2, Mg+2, K+, Br-, B+3, Sr+2, NO3-, PO4-3) were evaluated and composition diagrams were plotted (e.g. ion vs Cl-, ion vs TDS, Na+ vs Ca+2, HCO3/Cl vs Cl-). Ratios of HCO3/Cl, Na/Cl, Ca/Cl, SO4/Cl, Br/Cl, B/Cl were calculated and isotope analyses (δ18O, δD and Tritium) were conducted. By these methods, it is possible to differentiate the effects of agricultural land use, seawater intrusion, ion exchange, and softening processes. Hydrochemical analyses indicate that the dominant anion is HCO3- and the dominant cation is Ca+2 for the northern part and Na+ for the southern part of the aquifers. Both EC values (417-2890 µS/cm), Cl- (16-320 mg/l) and Na+ (490,68-558,58 mg/l) concentrations of groundwater increase along the flow path from north to south for the aquifer system. Combined evaluations show that seawater intrusion is still dominant in the southern part of the study area while ion exchange and softening processes control the central part. Both NO3- (up to 19,6 mg/l) and PO4-3 (up to 11 mg/l) contents as well as Br/Cl ratios indicate agricultural pollution at some locations in the study area.
Citric acid production using immobilized conidia of Aspergillus niger TMB 2022
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsay, S.S.; To, K.Y.
1987-02-20
Conidia of Aspergillus niger TMB 2022 were immobilized in calcium alginate for the production of citric acid. A 1-ml condidia suspension containing ca. 2.32 x 10/sup 8/ conidia were entrapped into sodium alginate solution in order to prepare 3% Ca-alginate (w/v) gel bead. Immobilized conidia were inoculated into productive medium containing 14% sucrose, 0.25% (NH/sub 4/)/sub 2/CO/sub 3/, 0.25% KH/sub 2/PO/sub 4/, and 0.025% MgSO/sub 4/.7H/sub 2/O with addition of 0.06 mg/l CuSO/sub 4/.5H/sub 2/O, 0.25 mg/l ZnCl/sub 2/, 1.3 mg/l FeCl/sub 3/.6H/sub 2/O, pH 3.8, and incubated at 35 degrees C for 13 days by surface culture to producemore » 61.53 g/l anhydrous citric acid. Under the same conditions with a batchwise culture, it was found that immobilized conidia could maintain a longer period for citric acid production (31 days): over 70 g/l anhydrous citric acid from runs No. 2-4, with the maximum yield for anhydrous citric acid reaching 77.02 g/l for run No. 2. In contrast, free conidia maintained a shorter acid-producing phase, circa 17 days; the maximum yield for anhydrous citric acid was 71.07 g/l for run No. 2 but dropped quickly as the run number increased. 14 references.« less
Vasseur, M; Caüzac, M; Alvarado, F
1989-01-01
By applying a rapid filtration technique to isolated brush border membrane vesicles from guinea pig ileum, 36Cl uptake was quantified in the presence and absence of electrical, pH and alkali-metal ion gradients. A mixture of 20 mM-Hepes and 40 mM-citric acid, adjusted to the desired pH with Tris base, was found to be the most suitable buffer. Malate and Mes could be used to replace the citrate, but succinate, acetate and maleate proved to be unsuitable. In the absence of a pH gradient (pHout:pHin = 7.5:7.5), Cl- uptake increased slightly when an inside-positive membrane potential was applied, but uphill transport was never observed. A pH gradient (pHout:pHin = 5.0:7.5) induced both a 400% increase in the initial Cl- influx rate and a long-lasting (20 to 300 s) overshoot, indicating that a proton gradient can furnish the driving force for uphill Cl- transport. Under pH gradient conditions, initial Cl- entry rates had the following characteristics. (1) They were unaffected by cis-Na+ and/or -K+, indicating the absence of Cl-/K+, Cl-/Na+ or Cl-/K+/Na+ symport activity. (2) Inhibition by 20-100 mM-trans-Na+ and/or -K+ occurred, independent of the existence of an ion gradient. (3) Cl- entry was practically unaffected by short-circuiting the membrane potential with equilibrated potassium and valinomycin. (4) Carbonyl cyanide m-chlorophenylhydrazone was strongly inhibitory and so, to a lesser extent, was 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid [(SITS)], independent of the sign and size of the membrane potential. (5) Cl- entry was negligibly increased (less than 30%) by either trans-Cl- or -HCO3-, indicating the absence of an obligatory Cl-/anion antiport activity. In contrast, the height of the overshoot at 60 s was increased by trans-Cl-, indicating time-dependent inhibition of 36Cl efflux. That competitive inhibition of 36Cl fluxes by anions is involved here is supported by initial influx rate experiments demonstrating: (1) the saturability of Cl- influx, which was found to exhibit Michaelis-Menten kinetics; and (2) competitive inhibition of influx by cis-Cl- and -Br-. Quantitatively, the conclusion is warranted that over 85% of the total initial Cl- uptake energized by a pH gradient involves an electroneutral Cl-/H+ symporter or its physicochemical equivalent, a Cl-/OH- antiporter, exhibiting little Cl- uniport and either Cl-/Cl- or Cl-/HCO3- antiport activities.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2597129
Ansari, Mohd Asif; Mandal, Abhishek; Paretzki, Alexa; Beyer, Katharina; Fiedler, Jan; Kaim, Wolfgang; Lahiri, Goutam Kumar
2016-06-06
The dinuclear complexes {(μ-H2L)[Ru(bpy)2]2}(ClO4)2 ([3](ClO4)2), {(μ-H2L)[Ru(pap)2]2}(ClO4)2 ([4](ClO4)2), and the asymmetric [(bpy)2Ru(μ-H2L)Ru(pap)2](ClO4)2 ([5](ClO4)2) were synthesized via the mononuclear species [Ru(H3L)(bpy)2]ClO4 ([1]ClO4) and [Ru(H3L)(pap)2]ClO4 ([2]ClO4), where H4L is the centrosymmetric 1,5-diamino-9,10-anthraquinone, bpy is 2,2'-bipyridine, and pap is 2-phenylazopyridine. Electrochemistry of the structurally characterized [1]ClO4, [2]ClO4, [3](ClO4)2, [4](ClO4)2, and [5](ClO4)2 reveals multistep oxidation and reduction processes, which were analyzed by electron paramagnetic resonance (EPR) of paramagnetic intermediates and by UV-vis-NIR spectro-electrochemistry. With support by time-dependent density functional theory (DFT) calculations the redox processes could be assigned. Significant results include the dimetal/bridging ligand mixed spin distribution in 3(3+) versus largely bridge-centered spin in 4(3+)-a result of the presence of Ru(II)-stabilizig pap coligands. In addition to the metal/ligand alternative for electron transfer and spin location, the dinuclear systems allow for the observation of ligand/ligand and metal/metal site differentiation within the multistep redox series. DFT-supported EPR and NIR absorption spectroscopy of the latter case revealed class II mixed-valence behavior of the oxidized asymmetric system 5(3+) with about equal contributions from a radical bridge formulation. In comparison to the analogues with the deprotonated 1,4-diaminoanthraquinone isomer the centrosymmetric H2L(2-) bridge shows anodically shifted redox potentials and weaker electronic coupling between the chelate sites.
Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua
2017-03-07
Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.
1985-10-01
regions one hour 26 following microinjection of YH- choline into the right parietal cortex. II Effect of atropine sulfate (0.3 mg/kg i.v.) on the...Harvard Apparatus model 940). The superfusate consisted of a modified Kreb’s- bicarbonate buffer containing physostigmine to inhibit ACh degradation...in mM: NaCl, 118; CaCI 2 , 1.2; KC01, 4.8; MgSO4, 1.2; NaH 2 PO 4 , 1.2; NaHCO 3 , 25; choline chloride, 0.001; physostigmine, 0.1). The area of the
An optical material for the detection of β-hydroxybutyrate based on a terbium complex
NASA Astrophysics Data System (ADS)
Wang, Xiaomiao; Chen, Huili; Li, Hua
2014-02-01
A novel Tb3+ complex (Tb(C14H10O4)ṡCl, TbL2) based on benzoic acid (L+H) was successfully synthesized, and gave a weak green emission in methanol-water (V:V, 4:1, pH 4.49). With the addition of β-hydroxybutyrate (β-HB) to a semi-aqueous solution of TbL2, an increment of the luminescent intensity at 545 nm assigned to 5D4 → 7F5 transition of Tb3+ was measured, which was evident to the naked eye. The response showed high selectivity for β-HB compared with other common anions including Cl-, NO3-, CO32-, PO43-, HPO42-, HPO4-, CO42-, PO74-, SO42-, lactate, AcO-, citrate, malate therefore it has the potential to be applied as a luminescent sensor for β-HB.
Stable Chloro- and Bromoxenate Cage Anions; [X3(XeO3)3]3- and [X4(XeO3)4]4- (X = Cl or Br).
Goettel, James T; Haensch, Veit G; Schrobilgen, Gary J
2017-06-28
The number of isolable compounds which contain different noble-gas-element bonds is limited for xenon and even more so for krypton. Examples of Xe-Cl bonds are rare, and prior to this work, no Xe-Br bonded compound had been isolated in macroscopic quantities. The syntheses, isolation, and characterization of the first compounds to contain Xe-Br bonds and their chlorine analogues are described in the present work. The reactions of XeO 3 with [N(CH 3 ) 4 ]Br and [N(C 2 H 5 ) 4 ]Br have provided two bromoxenate salts, [N(C 2 H 5 ) 4 ] 3 [Br 3 (XeO 3 ) 3 ] and [N(CH 3 ) 4 ] 4 [Br 4 (XeO 3 ) 4 ], in which the cage anions have Xe-Br bond lengths that range from 3.0838(3) to 3.3181(8) Å. The isostructural chloroxenate anions (Xe-Cl bond lengths, 2.9316(2) to 3.101(4) Å) were synthesized by analogy with their bromine analogues. The bromo- and chloroxenate salts are stable in the atmosphere at room temperature and were characterized in the solid state by Raman spectroscopy and low-temperature single-crystal X-ray diffraction, and in the gas phase by quantum-chemical calculations. They are the only known examples of cage anions that contain a noble-gas element. The Xe-Br and Xe-Cl bonds are very weakly covalent and can be viewed as σ-hole interactions, similar to those encountered in halogen bonding. However, the halogen atoms in these cases are valence electron lone pair donors, and the σ* Xe-O orbitals are lone pair acceptors.
Baskar, Gurunathan; Sathya, Shree Rajesh K Lakshmi Jai; Jinnah, Riswana Begum; Sahadevan, Renganathan
2011-01-01
Response surface methodology was employed to optimize the concentration of four important cultivation media components such as cottonseed oil cake, glucose, NH4Cl, and MgSO4 for maximum medicinal polysaccharide yield by Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum MTCC 1039 in submerged culture. The second-order polynomial model describing the relationship between media components and polysaccharide yield was fitted in coded units of the variables. The higher value of the coefficient of determination (R2 = 0.953) justified an excellent correlation between media components and polysaccharide yield, and the model fitted well with high statistical reliability and significance. The predicted optimum concentration of the media components was 3.0% cottonseed oil cake, 3.0% glucose, 0.15% NH4Cl, and 0.045% MgSO4, with the maximum predicted polysaccharide yield of 819.76 mg/L. The experimental polysaccharide yield at the predicted optimum media components was 854.29 mg/L, which was 4.22% higher than the predicted yield.
Graphene-a promising material for removal of perchlorate (ClO4-) from water.
Lakshmi, Jothinathan; Vasudevan, Subramanyan
2013-08-01
A batch adsorption process was applied to investigate the removal of perchlorate (ClO4 (-)) from water by graphene. In doing so, the thermodynamic adsorption isotherm and kinetic studies were also carried out. Graphene was prepared by a facile liquid-phase exfoliation. Graphene was characterized by Raman spectroscopy, Fourier-transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscope, and zeta potential measurements. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. The adsorption efficiency of graphene was 99.2 %, suggesting that graphene is an excellent adsorbent for ClO4 (-) removal from water. The rate constants for all these kinetic models were calculated, and the results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of ClO4 (-). Equilibrium data were well described by the typical Langmuir adsorption isotherm. The experimental results showed that graphene is an excellent perchlorate adsorbent with an adsorbent capacity of up to 0.024 mg/g at initial perchlorate concentration of 2 mg/L and temperature of 298 K. Thermodynamic studies revealed that the adsorption reaction was a spontaneous and endothermic process. Graphene removed the perchlorate present in the water and reduced it to a permissible level making it drinkable.
Kharitonova, M V; Zheltova, A A; Spasov, A A; Smirnov, A V; Pan'shin, N G; Iezhitsa, I N
2013-01-01
The effect of Mg L-asparaginate (Mg-L-Asp), Mg chloride (MgCl2) and Mg sulfate (MgSO4) on the severity of isoproterenol-induced myocardial injury in Mg-deficient rats has been evaluated. To induce Mg deficiency, twenty-eight rats were placed on a low Mg diet (Mg content < 15 mg/kg) and demineralized water for 10 weeks. Twelve control rats were fed a basal control diet (Mg content = 500 mg/kg) and water (with Mg content 20 mg/l) for equal duration. On day 49 of low Mg diet, Mg-deficient rats were randomly divided into four groups: 1) group that continued to receive low Mg diet; 2) low Mg diet plus oral MgSO4; 3) low Mg diet plus oral Mg-L-Asp and 4) low Mg diet plus oral MgCl2 (50 mg of Mg per kg of body weight). Isoproterenol was injected subcutaneously (30 mg/kg BW, twice, at an interval of 24 hours) on the day 70 of the study, when plasma and erythrocyte Mg level in rats fed a low Mg diet were significantly decreased by 47% and 45% compared to intact animals. Twenty-four hours after second injection of isoproterenol, tests for activities of creatine kinase (CK), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) were run and histopathological study was carried out. Administration of isoproterenol to rats resulted in significantly elevated plasma CK, LDH and AST, however analyses in Mg deficient group demonstrated more dramatically increased activity of CK and AST compared to control rats (3,06 and 4,67 fold in Mg-deficient group vs. 1,91 and 3,92 fold in intact group). Increased leakage of cardiac injury markers was concomitant to increased volume of fuchsinophilic cardiomyocytes (54.2 +/- 1.7% in Mg-deficient group and 38.9 +/- 1.9% in intact group, p < 0.05). However, pretreatment with of MgCl2, MgSO4 and Mg-L-Asp during 21 days favorably decreased sensitivity of myocardium to isoproterenol-induced ischemic injury. All evaluated salts significantly decreased myocyte marker enzymes as well as protected myocardium against isoproterenol-induced histopathological perturbations.
Abraham, K.M.; Alamgir, M.; Choe, H.S.
1995-12-12
This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.
Li, Ailin; Wu, Zihao; Wang, Tingting; Hou, Shaodong; Huang, Bangjie; Kong, Xiujuan; Li, Xuchun; Guan, Yinghong; Qiu, Rongliang; Fang, Jingyun
2018-06-03
The abatement of pharmaceuticals and personal care products (PPCPs), including carbamazepine (CBZ), acetaminophen (ACP) and sulfamethoxazole (SMX), by zero-valent iron (Fe°) activated peroxydisulfate (PDS) system (Fe°/PDS) in pure water and groundwater was investigated. The removal rates of CBZ, ACP and SMX were 85.4%, 100% and 73.1%, respectively, within 10 min by Fe°/PDS in pure water. SO 4 •- , • OH and O 2 •- were identified in the Fe°/PDS system, and O 2 •- was indicated to play an important role in the ACP degradation. The degradation of PPCPs increased with increasing dosages of Fe° and PDS or with decreasing pH and initial PPCP concentrations. Interestingly, the degradation of PPCPs by Fe°/PDS was significantly enhanced in groundwater compared with that in pure water, which was partially attributed to SO 4 2- and Cl - . The first-order constants of CBZ, ACP and SMX increased from 0.021, 0.242 and 0.013 min- 1 to 0.239, 2.536 and 0.259 min -1 , and to 0.172, 1.516 and 0.197 min -1 , respectively, with increasing the concentrations of SO 4 2- and Cl - to 100 mg/L and 10 mg/L, respectively. This study firstly reports the unexpected enhancement of groundwater matrix on the degradation of micropollutants by Fe°/PDS, demonstrating that Fe°/PDS can be an efficient technology for groundwater remediation. Copyright © 2018 Elsevier B.V. All rights reserved.
Wahid, N B A; Latif, M T; Suan, L S; Dominick, D; Sahani, M; Jaafar, S A; Mohd Tahir, N
2014-03-01
This study aims to determine the composition and sources of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) in a semi-urban area. PM10 samples were collected using a high volume sampler. Heavy metals (Fe, Zn, Pb, Mn, Cu, Cd and Ni) and cations (Na(+), K(+), Ca(2+) and Mg(2+)) were detected using inductively coupled plasma mass spectrometry, while anions (SO4 (2-), NO3 (-), Cl(-) and F(-)) were analysed using Ion Chromatography. Principle component analysis and multiple linear regressions were used to identify the source apportionment of PM10. Results showed the average concentration of PM10 was 29.5 ± 5.1 μg/m(3). The heavy metals found were dominated by Fe, followed by Zn, Pb, Cu, Mn, Cd and Ni. Na(+) was the dominant cation, followed by Ca(2+), K(+) and Mg(2+), whereas SO4 (2-) was the dominant anion, followed by NO3 (-), Cl(-) and F(-). The main sources of PM10 were the Earth's crust/road dust, followed by vehicle emissions, industrial emissions/road activity, and construction/biomass burning.
Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.
1995-01-01
This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.
Passivation of MBE grown InGaSb/InAs superlattice photodiodes
NASA Technical Reports Server (NTRS)
Hill, Cory J.; Keo, Sam S.; Mumolo, Jason M.; Gunapala, Sarath D.
2005-01-01
We have performed wet chemical passivation tests on InGaSb/InAs superlattice photodiode structures grown molecular beam epitaxy. The details of the devices growth and characterization as well as the results of chemical passivation involving RuCl3 and H2SO4 with SiO2 dielectric depositions are presented.
High-pressure single-crystal synchrotron X-ray diffraction of kainite (KMg(SO4) Cl 3H2O)
NASA Astrophysics Data System (ADS)
Nazzareni, S.; Comodi, P.; Hanfland, M.
2018-03-01
Kainite (KMg(SO4) Cl 3H2O) is a "mixed-salt" sulfate from the group of evaporitic minerals more soluble than Ca-sulfate hydrate and NaCl. The compressibility and structural modifications of monoclinic (sp. gr. C2/m) kainite up to a pressure of 14 GPa were studied by high-pressure single-crystal synchrotron X-ray diffraction. Kainite remains stable over the investigated pressure range and no phase transition was recognised. The bulk modulus is K 0 = 31.6 (1) GPa, with K' fixed to 4, as obtained by fitting the P-volume data with a second-order Birch-Murnaghan EoS (BM2); instead of using a BM3 EoS, we obtained K 0 = 32.2(5) GPa, K' =3.8 (1). The linear moduli calculated for the lattice parameters fitting the data with a BM3 EoS are for a-axis M 0a = 117(4) GPa, Mpa = 11(1), for b-axis M 0b = 113(2) GPa, Mpc = 8.6(5), and c-axis M 0c = 68.2(3) GPa, Mpc = 14(1). Structure refinements showed a strong compression of the K polyhedra and in particular K(1) and K(3) polyhedra have similar polyhedral bulk moduli: K 0K(1) = 20.8(7) GPa, K'=4.8(3); K 0K(2) = 29(1) GPa, K'=8.1(6); K 0K(3) = 26(1) GPa, K'=4.2(4). The most compressible bond distances are K(1)-Cl(2) with a shortening of about 13%, K(1)-Cl(1) with a shortening of about 10%, K(3)-Ow(6) and K(3)-O8(B) both with a shortening of 9%. S-tetrahedra are almost incompressible and Mg-octahedra bulk moduli are K 0Mg(2) = 102(4) GPa, and K 0Mg(4) = 72(1) GPa, K 0Mg(1) = 41(4) GPa K'= 8.9(1.7), and K 0Mg(3) = 65(5) GPa K'= 10(2). The strain tensor analysis indicates that the most compressible direction of the kainite monoclinic structure is oriented 29.7(2)° from the c-axis in the (0 1 0) plane. The shortening of the K(1)-K(2) distance (from 4.219(4) Å at ambient P to 3.521(7) Å at 11.9 GPa) and the different compressibilities of the octahedra/tetrahedra may explain why the stiffer direction of kainite is in the a-c plane approximatively along the direction where K(1)-K(2) and Mg(4)-Mg(3)-Mg(4) polyhedra align. This may explain the anisotropic compressional behaviour of the crystallographic axes, where c is more compressible (by tetrahedral tilting mechanism) than a and b, where cation-cation repulsion and a more rigid configuration make these directions stiffer. Following the structure modification increasing pressure a new sets of hydrogens bonds could form as oxygens and chlorine atoms get at less than 3 Å distance from the Ow.
NASA Astrophysics Data System (ADS)
Aurioles-López, Verónica; Polo-López, M. Inmaculada; Fernández-Ibáñez, Pilar; López-Malo, Aurelio; Bandala, Erick R.
2016-02-01
The inactivation of Fusarium solani in water was assessed by solar driven Fenton-like processes using three different iron salts: ferric acetylacetonate (Fe(acac)3), ferric chloride (FeCl3) and ferrous sulfate (FeSO4). The experimental conditions tested were [Fe] ≈ 5 mg L-1, [H2O2] ≈ 10 mg L-1 and [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1 mild and high, respectively, and pH 3.0 and 5.0, under solar radiation. The highest inactivation rates were observed at high reaction conditions for the three iron salts tested at pH 5.0 with less than 3.0 kJ L-1 of accumulate energy (QUV) to achieve over 99.9% of F. solani inactivation. Fe(acac)3 was the best iron salt to accomplishing F. solani inactivation. The modified Fermi equation was used to fix the experimental inactivation, data showed it was helpful for modeling the process, adequately describing dose-response curves. Inactivation process using FeSO4 at pH 3.0 was modeled fairly with r2 = 0.98 and 0.99 (mild and high concentration, respectively). Fe(acac)3, FeCl3 and FeSO4 at high concentration (i.e. [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1) and pH 5.0 showed the highest fitting values (r2 = 0.99). Iron salt type showed a remarkable influence on the Fenton-like inactivation process.
Pennington, Edward Ross; Fix, Amy; Sullivan, E Madison; Brown, David A; Kennedy, Anthony; Shaikh, Saame Raza
2017-02-01
Cardiolipin (CL) has a critical role in maintaining mitochondrial inner membrane structure. In several conditions such as heart failure and aging, there is loss of CL content and remodeling of CL acyl chains, which are hypothesized to impair mitochondrial inner membrane biophysical organization. Therefore, this study discriminated how CL content and acyl chain composition influenced select properties of simple and complex mitochondrial mimicking model membranes. We focused on monolayer excess area/molecule (a measure of lipid miscibility), bilayer phase transitions, and microdomain organization. In monolayer compression studies, loss of tetralinoleoyl [(18:2) 4 ] CL content decreased the excess area/molecule. Replacement of (18:2) 4 CL acyl chains with tetraoleoyl [(18:1) 4 ] CL or tetradocosahexaenoyl [(22:6) 4 ] CL generally had little influence on monolayer excess area/molecule; in contrast, replacement of (18:2) 4 CL acyl chains with tetramyristoyl [(14:0) 4 ] CL increased monolayer excess area/molecule. In bilayers, calorimetric studies showed that substitution of (18:2) 4 CL with (18:1) 4 CL or (22:6) 4 CL lowered the phase transition temperature of phosphatidylcholine vesicles whereas (14:0) 4 CL had no effect. Finally, quantitative imaging of giant unilamellar vesicles revealed differential effects of CL content and acyl chain composition on microdomain organization, visualized with the fluorescent probe Texas Red DHPE. Notably, microdomain areas were decreased by differing magnitudes upon lowering of (18:2) 4 CL content and substitution of (18:2) 4 CL with (14:0) 4 CL or (22:6) 4 CL. Conversely, exchanging (18:2) 4 CL with (18:1) 4 CL increased microdomain area. Altogether, these data demonstrate that CL content and fatty acyl composition differentially target membrane physical properties, which has implications for understanding how CL regulates mitochondrial activity and the design of CL-specific therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.
Tripathy, Suman Kumar; Taviti, Ashoka Chary; Dehury, Niranjan; Sahoo, Anupam; Pal, Satyanaryan; Beuria, Tushar Kant; Patra, Srikanta
2015-03-21
Mononuclear half-sandwiched complexes [(p-cym)RuCl(bpmo)](ClO4) {[1](ClO4)} and [(p-cym)RuCl(bpms)](PF6) {[2](PF6)} have been prepared by reacting heteroscorpionate ligands bpmo = 2-methoxyphenyl-bis(3,5-dimethylpyrazol-1-yl)methane and bpms = 2-methylthiophenyl-bis(3,5-dimethylpyrazol-1-yl)methane, respectively, with a dimeric precursor complex [(p-cym)RuCl(μ-Cl)]2 (p-cym = 1-isopropyl-4-methylbenzene) in methanol. The corresponding aqua derivatives [(p-cym)Ru(H2O)(bpmo)](ClO4)2 {[3](ClO4)2} and [(p-cym)Ru(H2O)(bpms)](PF6)2 {[4](PF6)2} are obtained from {[1](ClO4)} and {[2](PF6)}, respectively, via Cl(-)/H2O exchange process in the presence of appropriate equivalents of AgClO4/AgNO3 + KPF6 in a methanol-water mixture. The molecular structures of the complexes {[1]Cl, [3](ClO4)2 and [4](PF6)(NO3)} are authenticated by their single crystal X-ray structures. The complexes show the expected piano-stool geometry with p-cym in the η(6) binding mode. The aqua complexes [3](ClO4)2 and [4](PF6)2 show significantly good antibacterial activity towards E. coli (gram negative) and B. subtilis (gram positive) strains, while chloro derivatives ({[1](ClO4)} and {[2](PF6)} are found to be virtually inactive. The order of antibacterial activity of the complexes according to their MIC values is [1](ClO4) (both 1000 μg mL(-1)) < [2](PF6) (580 μg mL(-1) and 750 μg mL(-1)) < [3](ClO4)2 (both 100 μg mL(-1)) < [4](PF6)2 (30 μg mL(-1) and 60 μg mL(-1)) for E. coli and B. subtilis strains, respectively. Further, the aqua complexes [3](ClO4)2 and [4](PF6)2 show clear zones of inhibition against kanamycin, ampicillin and chloramphenicol resistant E. coli strains. The detailed mechanistic aspects of the aforesaid active aqua complexes [3](ClO4)2 and [4](PF6)2 have been explored, and it reveals that both the complexes inhibit the number of nucleoids per cell in vivo and bind to DNA in vitro. The results indeed demonstrate that both [3](ClO4)2 and [4](PF6)2 facilitate the inhibition of bacterial growth by binding to DNA.
Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig
NASA Astrophysics Data System (ADS)
Santoro, G. J.; Gokoglu, S. A.; Kohl, F. J.; Stearns, C. A.; Rosner, D. E.
The mechanism of deposition of Na2SO4 was studied under controlled laboratory conditions and the results have been compared to a recently developed comprehensive theory of vapor deposition. Thus Na2SO4, NaCl, NaNO3 and simulated sea salt solutions were injected into the combustor of a nominal Mach 0.3 burner rig burning jet fuel at constant fuel/air ratios. The deposits formed on inert collectors, rotation in the cross flow of the combustion gases, were weighed and analyzed. Collector temperature was uniform and could be varied over a large range by internal air cooling. Deposition rates and dew point temperatures were determined. Supplemental testing included droplet size measurements of the atomized salt solutions. These tests along with thermodynamic and transport calculations were utilized in the interpretation of the deposition results.
Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig
NASA Technical Reports Server (NTRS)
Santoro, G. J.; Gokoglu, S. A.; Kohl, F. J.; Stearns, C. A.; Rosner, D. E.
1984-01-01
The mechanism of deposition of Na2SO4 was studied under controlled laboratory conditions and the results have been compared to a recently developed comprehensive theory of vapor deposition. Thus Na2SO4, NaCl, NaNO3 and simulated sea salt solutions were injected into the combustor of a nominal Mach 0.3 burner rig burning jet fuel at constant fuel/air ratios. The deposits formed on inert collectors, rotation in the cross flow of the combustion gases, were weighed and analyzed. Collector temperature was uniform and could be varied over a large range by internal air cooling. Deposition rates and dew point temperatures were determined. Supplemental testing included droplet size measurements of the atomized salt solutions. These tests along with thermodynamic and transport calculations were utilized in the interpretation of the deposition results.
Schwendner, Petra; Bohmeier, Maria; Rettberg, Petra; Beblo-Vranesevic, Kristina; Gaboyer, Frédéric; Moissl-Eichinger, Christine; Perras, Alexandra K.; Vannier, Pauline; Marteinsson, Viggó T.; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Westall, Frances; Riedo, Andreas; Monaghan, Euan P.; Ehrenfreund, Pascale; Cabezas, Patricia; Walter, Nicolas; Cockell, Charles
2018-01-01
Growth in sodium chloride (NaCl) is known to induce stress in non-halophilic microorganisms leading to effects on the microbial metabolism and cell structure. Microorganisms have evolved a number of adaptations, both structural and metabolic, to counteract osmotic stress. These strategies are well-understood for organisms in NaCl-rich brines such as the accumulation of certain organic solutes (known as either compatible solutes or osmolytes). Less well studied are responses to ionic environments such as sulfate-rich brines which are prevalent on Earth but can also be found on Mars. In this paper, we investigated the global metabolic response of the anaerobic bacterium Yersinia intermedia MASE-LG-1 to osmotic salt stress induced by either magnesium sulfate (MgSO4) or NaCl at the same water activity (0.975). Using a non-targeted mass spectrometry approach, the intensity of hundreds of metabolites was measured. The compatible solutes L-asparagine and sucrose were found to be increased in both MgSO4 and NaCl compared to the control sample, suggesting a similar osmotic response to different ionic environments. We were able to demonstrate that Yersinia intermedia MASE-LG-1 accumulated a range of other compatible solutes. However, we also found the global metabolic responses, especially with regard to amino acid metabolism and carbohydrate metabolism, to be salt-specific, thus, suggesting ion-specific regulation of specific metabolic pathways. PMID:29535699
NASA Technical Reports Server (NTRS)
Gidel, L. T.; Crutzen, P. J.; Fishman, J.
1983-01-01
A two-dimensional photochemical model is used to examine changes to the ozone layer caused by emissions of CFCl3, CF2Cl2, CH3CCl3 and CCl4. The influence of a possible secular increase in tropospheric methane up to 2 percent per year was found to be small, although it acts to mask decreases in total ozone caused by the chlorocarbons. Increasing NO(x) emissions caused by industralization also tend to mask decreases in total ozone and may have caused total ozone to increase by about 1 percent. The model-calculated ozone decreases are estimated to be about 3 percent by 1980. This estimate is higher than estimates by similar models, although it is noted that CCl4 and CH3CCl3 emissions are included in the model in addition to CFCl3 and CF2Cl2. This is significant because the model indicates that CCl4 has dominated the ozone depletions so far, and knowledge of the historical emission rate of CCl4 to the atmosphere is incomplete. There remain sufficient significant disagreements between theoretical and observed concentrations and variabilities, particularly for odd nitrogen and ClO, to caution against assigning too much confidence in the calculated ozone depletion.
Imon, M A; White, J F
1981-01-01
1. Isolated Amphiuma small intestine exposed on both surfaces to buffered or unbuffered media generated gradients of pH under short-circuited conditions consistent with secretion of HCO3(-). 2. When unbuffered mucosal medium was maintained at pH 7.4 by addition of acid, alkalinization of the mucosal medium occurred at a rate of 1-2 microequiv/hr cm2 under short-circuit conditions (Isc) and was reduced by anoxia, acetazolamide or removal of CO2. 3. The rate of HCO3(-) secretion (JHCO3(-)) was reduced at a mucosal pH above or below 7.4 and was proportional to serosal HCO3(-). 4. JHCO3(-) was reduced in Na+-free (choline) and Cl-free (SO4(2-) media and after exposure to the stilbene SITS. 5. The difference JHCO3(-)--Isc was consistent with net Cl- absorption. 6. The tissue resistance (Rt) was elevated upon exposure to serosal HCO3(-) and lowered by mucosal HCO3(-). 7. The intestinal mucosa exhibited carbonic anhydrase activity that was sensitive to ethoxazolamide. 8. It is concluded that HCO3(-) secretion is active, influenced by intracellular carbonic anhydrase activity and coupled to Cl- and possibly Na+ absorption. PMID:7310697
Imon, M A; White, J F
1981-05-01
1. Isolated Amphiuma small intestine exposed on both surfaces to buffered or unbuffered media generated gradients of pH under short-circuited conditions consistent with secretion of HCO3(-). 2. When unbuffered mucosal medium was maintained at pH 7.4 by addition of acid, alkalinization of the mucosal medium occurred at a rate of 1-2 microequiv/hr cm2 under short-circuit conditions (Isc) and was reduced by anoxia, acetazolamide or removal of CO2. 3. The rate of HCO3(-) secretion (JHCO3(-)) was reduced at a mucosal pH above or below 7.4 and was proportional to serosal HCO3(-). 4. JHCO3(-) was reduced in Na+-free (choline) and Cl-free (SO4(2-) media and after exposure to the stilbene SITS. 5. The difference JHCO3(-)--Isc was consistent with net Cl- absorption. 6. The tissue resistance (Rt) was elevated upon exposure to serosal HCO3(-) and lowered by mucosal HCO3(-). 7. The intestinal mucosa exhibited carbonic anhydrase activity that was sensitive to ethoxazolamide. 8. It is concluded that HCO3(-) secretion is active, influenced by intracellular carbonic anhydrase activity and coupled to Cl- and possibly Na+ absorption.
Villeneuve, S A; Barbour, S L; Hendry, M J; Carey, S K
2017-12-01
Long term (1999 to 2014) flow and water quality data from a rock drain located at the base of a coal waste rock dump constructed in the Elk Valley, British Columbia was used to characterize the release of three solutes (NO 3 - , Cl - and SO 4 2- ) from the dump and obtain whole dump estimates of net percolation (NP). The concentrations of dump derived solutes in the rock drain water were diluted by snowmelt waters from the adjacent natural watershed during the spring freshet and reached a maximum concentration during the winter baseflow period. Historical peak baseflow concentrations of conservative ions (NO 3 - and Cl - ) increased until 2006/07 after which they decreased. This decrease was attributed to completion of the flushing of the first pore volume of water stored within the dump. The baseflow SO 4 2- concentrations increased proportionally with NO 3 - and Cl - to 2007, but then continued to slowly increase as NO 3 - and Cl - concentrations decreased. This was attributed to ongoing production of SO 4 2- due to oxidation of sulfide minerals within the dump. Based on partitioning of the annual volume of water discharged from the rock drain to waste rock effluent (NP) and water entering the rock drain laterally from the natural watershed, the mean NP values were estimated to be 446±50mm/a (area normalized net percolation/year) for the dump and 172±71mm/a for the natural watershed. The difference was attributed to greater rates of recharge in the dump from summer precipitation compared to the natural watershed where rainfall interception and enhanced evapotranspiration will increase water losses. These estimates included water moving through subsurface pathways. However, given the limitations in quantifying these flows the estimated NP rates for both the natural watershed and the waste rock dump are considered to be low, and could be much higher (e.g. ~450mm/a and ~800mm/a). Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaakkola, J.J.; Vilkka, V.; Marttila, O.
1990-12-01
The paper mills in South Karelia, the southeast part of Finland, are responsible for releasing a substantial amount of malodorous sulfur compounds such as hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and methyl sulfides ((CH3)2S and (CH3)2S2), into ambient air. In the most polluted residential area the annual mean concentrations of hydrogen sulfide and methyl mercaptan are estimated to be 8 and 2 to 5 micrograms/m3 and the highest daily average concentration 100 and 50 micrograms/m3. The annual mean and highest daily concentrations of sulfur dioxide (SO2) are very low. We studied the effects of malodorous sulfur compounds on eye, nasalmore » and respiratory symptoms, and headache in adults. A cross-sectional self-administered questionnaire was distributed in February 1987 and responded to by 488 adults living in a severely (n = 198), a moderately (n = 204), and a nonpolluted community (n = 86). This included questions about occurrence of the symptoms of interest during the previous 4 wk and 12 months and individual, behavioral, and other environmental determinants of the symptoms. The response rate was 83%. The odds ratios (OR) for symptoms experienced often or constantly in severely versus nonpolluted and moderately versus nonpolluted communities were estimated in logistic regression analysis controlling potential confounders. The odds ratios for eye (moderate exposure OR 11.70, Cl95% 2.33 to 58.65; severe exposure OR 11.78, Cl95% 2.35 to 59.09) and nasal symptoms (OR 2.01, Cl95% 0.97 to 4.15; OR 2.19, Cl95% 1.06 to 4.55) and cough (OR 1.89, Cl95% 0.61 to 5.86; OR 3.06, Cl95% 1.02 to 9.29) during the previous 12 months were increased, with a dose-response pattern.« less
Zhang, Shou-juan; Ji, Wei-xiao; Zhang, Chang-wen; Li, Ping; Wang, Pei-ji
2017-01-01
The coexistence of nontrivial topology and giant Rashba splitting, however, has rare been observed in two-dimensional (2D) films, limiting severely its potential applications at room temperature. Here, we through first-principles calculations to propose a series of inversion-asymmetric group-IV films, ABZ2 (A ≠ B = Si, Ge, Sn, Pb; Z = F, Cl, Br), whose stability are confirmed by phonon spectrum calculations. The analyses of electronic structures reveal that they are intrinsic 2D TIs with a bulk gap as large as 0.74 eV, except for GeSiF2, SnSiCl2, GeSiCl2 and GeSiBr2 monolayers which can transform from normal to topological phases under appropriate tensile strain of 4, 4, 5, and 4%, respectively. The nontrivial topology is identified by Z2 topological invariant together with helical edge states, as well as the berry curvature of these systems. Another prominent intriguing feature is the giant Rashba spin splitting with a magnitude reaching 0.15 eV, the largest value reported in 2D films so far. The tunability of Rashba SOC and band topology can be realized through achievable compressive/tensile strains (−4 ~ 6%). Also, the BaTe semiconductor is an ideal substrate for growing ABZ2 films without destroying their nontrivial topology. PMID:28368035
NASA Astrophysics Data System (ADS)
Kato, Zenta; Kashima, Ryo; Tatsumi, Kohei; Fukuyama, Shinnosuke; Izumiya, Koichi; Kumagai, Naokazu; Hashimoto, Koji
2016-12-01
For oxygen formation without forming chlorine in seawater electrolysis for hydrogen production we have been using the anode consisting of three layers of MnO2-type multiple oxide catalyst, intermediate layer and titanium substrate. The intermediate layer was used for prevention of oxidation of the titanium substrate during anodic polarization for oxygen evolution and was prepared by calcination of butanol solutions of H2IrCl6 and SnCl4 coated on titanium. The protectiveness of Ir1-xSnxO2 layer formed was directly examined using Ir1-xSnxO2/Ti anodes in H2SO4 solution changing the preparation conditions of the layer. When the sum of Ir4+ and Sn4+ was 0.1 M, the highest protectiveness was observed at 0.06 M Sn4+. Although an increase in calcination temperature led to the formation of Ir1-x-ySnxTiyO2 triple oxide with a slightly lower catalytic activity for oxygen evolution, the anode calcined at 450 °C showed the highest protectiveness.
Chloromethyl chlorosulfate as a voltage delay inhibitor in lithium cells
Delnick, F.M.
1993-04-13
Chloromethyl chlorosulfate (CMCS) is used as a passive film growth inhibitor in electrochemical cells to minimize voltage delay and low-voltage discharge. Film growth on lithium anodes is significantly diminished when CMCS is added to SOCl[sub 2] and SO[sub 2]Cl[sub 2] electrolytes of lithium batteries. The CMCS also has the effect of extending the shelf-life of Li/SOCl[sub 2] and Li/SO[sub 2]Cl[sub 2] batteries.
Chloromethyl chlorosulfate as a voltage delay inhibitor in lithium cells
Delnick, Frank M.
1993-01-01
Chloromethyl chlorosulfate (CMCS) is used as a passive film growth inhibitor in electrochemical cells to minimize voltage delay and low-voltage discharge. Film growth on lithium anodes is significantly diminished when CMCS is added to SOCl.sub.2 and SO.sub.2 Cl.sub.2 electrolytes of lithium batteries. The CMCS also has the effect of extending the shelf-life of Li/SOCl.sub.2 and Li/SO.sub.2 Cl.sub.2 batteries.
Aqueous Chemistry in the Clouds of Venus: A Possible Source for the UV Absorber
NASA Astrophysics Data System (ADS)
Baines, Kevin H.; Delitsky, M. L.
2013-10-01
The identity and cause of the UV absorber near the Venusian cloudtops 62-70 km altitude) has been an enduring mystery. Given the role of sulfur in Venus’s atmosphere, where, somewhat analogous to water on Earth, it cycles through gas, liquid, and (possibly) solid phases in the atmosphere, it has been a prime suspect as at least a key component, perhaps as long-lived solid poly-sulfur aerosols, Sn, where n > 4. However, the narrow range of altitudes inhabited by the UV absorber (thought to form and reside primarily above 62 km altitude) seems incompatible with Sn, which should vertically disperse after formation. Here, we point to another process that could lead to somewhat more exotic chemistries that favor formation and sequestration at high altitudes: Aqueous chemistry within H2SO4-nH2O cloud particles. Due to (1) the decrease of temperature and (2) the increase in the fraction of water (“n” in the previous formula) of each cloud droplet with altitude, high-altitude particles near the cloudtops are - via the “heterogeneous uptake” process - significantly more capable of capturing and concentrating trace gases, in particular HCl. For example, the heterogeneous uptake of HCl in H2SO4 droplets near the 65-km cloudtops is at least three times greater than that found in the middle of the clouds near 55 km altitude. Other factors such as local mixing ratios and the concentration of other solvents in the droplet also modify the uptake. Within the cloud droplets, solution chemistry between HCl and H2SO4 may lead to the formation of chlorosulfonic acid, ClSO3H, which is a weak acid that readily breaks down into other species, such as SO2Cl2 (sulfuryl chloride) and SOCl2 (thionyl chloride). Together, these three materials have UV-blue absorptions at 0.21, 0.29, 0.39 and 0.47 micron. Thus, H2SO4 aerosols at high altitudes may take on lasting UV absorption characteristics, dependent on temperature (altitude) and other conditions, Balloons floating at benign Earth-surface-like temperature/pressure conditions near 56-km altitude may be able to sample such aerosols and their complex contents as measured in periodic downdrafts of materials from higher altitudes.
Cancrinite-group minerals behavior at non-ambient conditions
NASA Astrophysics Data System (ADS)
Lotti, Paolo; Gatta, G. Diego; Kahlenberg, Volker; Merlini, Marco; Alvaro, Matteo; Cámara, Fernando
2014-05-01
Cancrinite-group minerals occur in the late stages of alkaline (SiO2)-undersaturated magmatism and in related effusive or contact rocks. So far only few studies have been devoted to the description of the thermo-elastic behavior, phase-stability and P /T -structure evolution (at the atomic scale) of this mineral group. Cancrinite-group minerals have an open-framework structure characterized by the [CAN]-topology. The [CAN]-framework shows large 12-ring channels, parallel to the c crystallographic axis, bound by columns of cages, the so-called can units. While very limited chemical variation is observed in the framework composition (the composition is almost always [Si6Al6O24]) a remarkable chemical variability is reported for the extraframework components in the cancrinite-group minerals. Two subgroups can be identified according to the extraframework content of the can units: the cancrinite- and the davyne-subgroups, showing Na-H2O and Ca-Cl chains, respectively. The channels are stuffed by cations, anions and molecules. We aimed to model the thermo-elastic behavior and the mechanisms of the (P ,T)-induced structure evolution of cancrinite-group minerals, with special interest on the role played by the extraframework population. The study was restricted to the following (CO3)-rich and (SO4)-rich end-members: cancrinite sensu stricto {[(Na,Ca)6(CO3)1.2-1.7][Na2(H2O)2][Al6Si6O24]}, vishnevite {[(Na,Ca,K)6(SO4)][Na2(H2O)2][Al6Si6O24]}, balliranoite {[(Na,Ca)6(CO3)1.2-1.7][Ca2Cl2][Al6Si6O24]} and davyne {[(Na,Ca,K)6((SO4),Cl)][Ca2Cl2][Al6Si6O24]}. Their high-P and low-T (T < 293 K) behavior was investigated by means of in-situ single-crystal X-ray diffraction, using diamond-anvil cells and (N2)-cryosystems, respectively. The high-T behavior of cancrinite has also been studied by means of in-situ single-crystal X-ray diffraction with a resistive heater. Cancrinite minerals share a similar volume compressibility and thermal expansivity at ambient conditions (cancrinite has KV 0 = 45(2) GPa and αV,293K = 4.88(8)·10-5 K-1; vishnevite has KV 0 = 49(2) GPa; balliranoite has KV 0 = 48(3) GPa and αV,293K = 4.6(4)·10-5 K-1; davyne has KV 0 = 46.5(11) GPa and αV,293K = 4.2(4)·10-5 K-1). However, these minerals show different thermo-elastic anisotropy schemes, more pronounced in the cancrinite-subgroup minerals. This behavior is governed by different deformation mechanisms of the crystal structure, which likely reflect the different coordination environments of the cage-cations between the minerals of the cancrinite- and davyne-subgroups (i.e. Na+ and Ca2+, respectively). In addition, a P -induced re-organization of the extraframework population is observed, in vishnevite, at P ≥ 3.5 GPa, suggesting that the channel-constituents can also affect the elastic and structural behavior and the phase stability of these minerals at non-ambient conditions. Besides common features likely ascribable to the [CAN]-topology, the nature of the extraframework population appears to control significantly the (P ,T)-induced structure evolution and thermo-elastic behavior of the cancrinite-group compounds. PL, GDG and MM acknowledge the Italian Ministry of Education, MIUR-Project: 'Futuro in Ricerca 2012 - ImPACT- RBFR12CLQD'. MA acknowledges the ERC starting grant N. 307322 to FN.
TiO2 Hollow Spheres: One-Pot Synthesis and Enhanced Photocatalysis
NASA Astrophysics Data System (ADS)
Jia, Changchao; Cao, Yongqiang; Yang, Ping
2013-04-01
Hollow TiO2 microspheres were successfully fabricated by metal salts with low solubility in ethanol acting as intelligent templates using a simple one-pot solvothermal method. Hollow spheres with large diameter were obtained using CuSO4ṡ5H2O as templates while small ones were obtained using Sr(NO3)2 as templates. It is found that titanium precursor plays an important role for the morphology of samples. Solid TiO2 microspheres were prepared by using titanium tetrabutoxide (TBT). In contrast, bowl-like hollow microspheres were obtained by using titanium tetrachloride (TiCl4). Furthermore, the amount of H2O can stimulate the hydrolysis rate of TiCl4 to form solid spheres. Compared with solid microspheres, hollow TiO2 microspheres depending on their interior cavity structure exhibited enhanced photocatalysis efficiency for the UV-light photodegradation of methyl orange. Quantificationally, the apparent photocatalytic degradation pseudo-first-rate constant of the hollow microspheres is 1.25 times of that of the solid ones.
A new method of calculating electrical conductivity with applications to natural waters
McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.; Ball, James W.
2012-01-01
A new method is presented for calculating the electrical conductivity of natural waters that is accurate over a large range of effective ionic strength (0.0004–0.7 mol kg-1), temperature (0–95 °C), pH (1–10), and conductivity (30–70,000 μS cm-1). The method incorporates a reliable set of equations to calculate the ionic molal conductivities of cations and anions (H+, Li+, Na+, K+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+, F-, Cl-, Br-, SO42-, HCO3-, CO32-, NO3-, and OH-), environmentally important trace metals (Al3+, Cu2+, Fe2+, Fe3+, Mn2+, and Zn2+), and ion pairs (HSO4-, NaSO4-, NaCO3-, and KSO4-). These equations are based on new electrical conductivity measurements for electrolytes found in a wide range of natural waters. In addition, the method is coupled to a geochemical speciation model that is used to calculate the speciated concentrations required for accurate conductivity calculations. The method was thoroughly tested by calculating the conductivities of 1593 natural water samples and the mean difference between the calculated and measured conductivities was -0.7 ± 5%. Many of the samples tested were selected to determine the limits of the method and include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. Transport numbers were calculated and H+, Na+, Ca2+, Mg2+, NH4+, K+, Cl-, SO42-, HCO3-, CO32-, F-, Al3+, Fe2+, NO3-, and HSO4- substantially contributed (>10%) to the conductivity of at least one of the samples. Conductivity imbalance in conjunction with charge imbalance can be used to identify whether a cation or an anion measurement is likely in error, thereby providing an additional quality assurance/quality control constraint on water analyses.
A new method of calculating electrical conductivity with applications to natural waters
NASA Astrophysics Data System (ADS)
McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.; Ball, James W.
2012-01-01
A new method is presented for calculating the electrical conductivity of natural waters that is accurate over a large range of effective ionic strength (0.0004-0.7 mol kg-1), temperature (0-95 °C), pH (1-10), and conductivity (30-70,000 μS cm-1). The method incorporates a reliable set of equations to calculate the ionic molal conductivities of cations and anions (H+, Li+, Na+, K+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+, F-, Cl-, Br-, SO42-, HCO3-, CO32-, NO3-, and OH-), environmentally important trace metals (Al3+, Cu2+, Fe2+, Fe3+, Mn2+, and Zn2+), and ion pairs (HSO4-, NaSO4-, NaCO3-, and KSO4-). These equations are based on new electrical conductivity measurements for electrolytes found in a wide range of natural waters. In addition, the method is coupled to a geochemical speciation model that is used to calculate the speciated concentrations required for accurate conductivity calculations. The method was thoroughly tested by calculating the conductivities of 1593 natural water samples and the mean difference between the calculated and measured conductivities was -0.7 ± 5%. Many of the samples tested were selected to determine the limits of the method and include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. Transport numbers were calculated and H+, Na+, Ca2+, Mg2+, NH4+, K+, Cl-, SO42-, HCO3-, CO32-, F-, Al3+, Fe2+, NO3-, and HSO4-substantially contributed (>10%) to the conductivity of at least one of the samples. Conductivity imbalance in conjunction with charge imbalance can be used to identify whether a cation or an anion measurement is likely in error, thereby providing an additional quality assurance/quality control constraint on water analyses.
Polymer-Nanoparticle Hybrid Photovoltaic Research for U.S. Air Force Applications
2010-01-06
6 S S O S S O II xi xiviii xii (69%) (93%) (64%) (92%) 4S SBr Br S S OO OO II S S OO aReagents and Conditions: i.THF, n- BuLi , C6H13Br, -78oC, ii...CHCl3, FeCl3 (cat.), Br2, iii. THF, n- BuLi , B(OBu)3, -78oC, 2 M HCl, iv. Toluene, 1,3-propandiol, Reflux, v. (a) Ether, n- BuLi -78oC, (b) 3...thiophenecarboxaldehyde, vi. (a) n- BuLi (2eqiv.), -23oC, I2 (3eqiv.), (b) Na2SO3 and HI solun, vii. CH2Cl2, P.C.C, r.t, viii. Cu, DMF, Reflux, ix
NASA Astrophysics Data System (ADS)
Marion, Giles M.; Farren, Ronald E.
1999-05-01
The Spencer-Møller-Weare (SMW) (1990) model is parameterized for the Na-K-Mg-Ca-Cl-SO 4-H 2O system over the temperature range from -60° to 25°C. This model is one of the few complex chemical equilibrium models for aqueous solutions parameterized for subzero temperatures. The primary focus of the SMW model parameterization and validation deals with chloride systems. There are problems with the sulfate parameterization of the SMW model, most notably with sodium sulfate and magnesium sulfate. The primary objective of this article is to re-estimate the Pitzer-equation parameters governing interactions among sodium, potassium, magnesium, and calcium with sulfate in the SMW model. A mathematical algorithm is developed to estimate 22 temperature-dependent Pitzer-equation parameters. The sodium sulfate reparameterization reduces the overall standard error (SE) from 0.393 with the SMW Pitzer-equation parameters to 0.155. Similarly, the magnesium sulfate reparameterization reduces the SE from 0.335 to 0.124. In addition to the sulfate reparameterization, five additional sulfate minerals are included in the model, which allows a more complete treatment of sulfate chemistry in the Na-K-Mg-Ca-Cl-SO 4-H 2O system. Application of the model to seawater evaporation predicts gypsum precipitation at a seawater concentration factor (SCF) of 3.37 and halite precipitation at an SCF of 10.56, which are in good agreement with previous experimental and theoretical estimates. Application of the model to seawater freezing helps explain the two pathways for seawater freezing. Along the thermodynamically stable "Gitterman pathway," calcium precipitates as gypsum and the seawater eutectic is -36.2°C. Along the metastable "Ringer-Nelson-Thompson pathway," calcium precipitates as antarcticite and the seawater eutectic is -53.8°C.
Zhao, Yi; Lin, Wen-Chiang
2003-10-01
A multi-functional sorbent is developed for the simultaneous removal of PbCl(2) vapor and sulfur dioxide from the combustion gases. The sorbent is tested in a bench-scale reactor at the temperature of 700 degrees C, using simulated flue gas (SFG) containing controlled amounts of PbCl(2) and SO(2) compounds. The removal characteristics of PbCl(2) and SO(2), individually and in combination, are investigated. The results show that the mechanism of capture by the sorbent is not a simple physical adsorption process but seems to involve a chemical reaction between the Ca-based sorbent and the contaminants from the simulated flue gas. The porous product layer in the case of individual SO(2) sorption is in a molten state at the reaction temperature. In contrast, the combined sorption of lead and sulfur compounds generates a flower-shaped polycrystalline product layer.