Sample records for cladding integrity program

  1. Integrated double-clad photonic crystal fiber amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Gu, Yanran; Chen, Zilun

    2017-10-01

    This paper studies and fabricates an integrated double-clad photonic crystal fiber amplifier, which overcomes the shortcomings of space application and makes full use of excellent property of double-clad photonic crystal fiber. In the experiment, the (6 + 1) × 1 end-pump coupler with DC-PCF is fabricated. The six pump fibers are fabricated with 105 / 125μm (NA = 0.22) multi-mode fiber. The signal fiber is made of ordinary single-mode fiber SMF-28. Then we spliced the tapered fiber bundle to photonic crystal fiber. At last, we produce double-clad photonic crystal fiber with an end-cap that are able to withstand high average power and protect the system. We have fabricated an integrated Yb-double-clad photonic crystal fiber amplifier.

  2. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from abovemore » on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown.« less

  3. Uranium dioxide fuel cladding strain investigation with the use of CYGRO-2 computer program

    NASA Technical Reports Server (NTRS)

    Smith, J. R.

    1973-01-01

    Previously irradiated UO2 thermionic fuel pins in which gross fuel-cladding strain occurred were modeled with the use of a computer program to define controlling parameters which may contribute to cladding strain. The computed strain was compared with measured strain, and the computer input data were studied in an attempt to get agreement with measured strain. Because of the limitations of the program and uncertainties in input data, good agreement with measured cladding strain was not attained. A discussion of these limitations is presented.

  4. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers.

    PubMed

    Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D

    2013-09-01

    We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.

  5. Nuclear fuel elements having a composite cladding

    DOEpatents

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  6. Critical cladding radius for hybrid cladding modes

    NASA Astrophysics Data System (ADS)

    Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann

    2018-05-01

    In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.

  7. Rectangular-cladding silicon slot waveguide with improved nonlinear performance

    NASA Astrophysics Data System (ADS)

    Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong

    2018-04-01

    Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.

  8. An allowable cladding peak temperature for spent nuclear fuels in interim dry storage

    NASA Astrophysics Data System (ADS)

    Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae

    2018-01-01

    Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.

  9. Early implementation of SiC cladding fuel performance models in BISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, Jeffrey J.

    2015-09-18

    SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation duemore » to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.« less

  10. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications

    NASA Astrophysics Data System (ADS)

    Chen, H.; Jin, C.; Huang, B.; Fontaine, N. K.; Ryf, R.; Shang, K.; Grégoire, N.; Morency, S.; Essiambre, R.-J.; Li, G.; Messaddeq, Y.; Larochelle, S.

    2016-08-01

    Space-division multiplexing (SDM), whereby multiple spatial channels in multimode and multicore optical fibres are used to increase the total transmission capacity per fibre, is being investigated to avert a data capacity crunch and reduce the cost per transmitted bit. With the number of channels employed in SDM transmission experiments continuing to rise, there is a requirement for integrated SDM components that are scalable. Here, we demonstrate a cladding-pumped SDM erbium-doped fibre amplifier (EDFA) that consists of six uncoupled multimode erbium-doped cores. Each core supports three spatial modes, which enables the EDFA to amplify a total of 18 spatial channels (six cores × three modes) simultaneously with a single pump diode and a complexity similar to a single-mode EDFA. The amplifier delivers >20 dBm total output power per core and <7 dB noise figure over the C-band. This cladding-pumped EDFA enables combined space-division and wavelength-division multiplexed transmission over multiple multimode fibre spans.

  11. Demonstration of fuel resistant to pellet-cladding interaction. Phase I. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenbaum, H.S.

    1979-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel, and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress, and reactive fission products during reactor service. This is the final report for PHASE 1 of this program. Support tests have shown that the barrier fuel resists PCImore » far better than does the conventional Zircaloy-clad fuel. Power ramp tests thus far have shown good PCI resistance for Cu-barrier fuel at burnup > 12 MWd/kg-U and for Zr-liner fuel > 16 MWd/kg-U. The program calls for continued testing to still higher burnup levels in PHASE 2.« less

  12. A pulse-controlled modified-burst test instrument for accident-tolerant fuel cladding

    DOE PAGES

    Cinbiz, M. Nedim; Brown, Nicholas R.; Terrani, Kurt A.; ...

    2017-06-03

    Pellet-cladding mechanical interaction due to thermal expansion of nuclear fuel pellets during a reactivity-initiated accident (RIA) is a potential mechanism for failure of nuclear fuel cladding. To investigate the mechanical behavior of cladding during an RIA, we developed a mechanical pulse-controlled modified burst test instrument that simulates transient events with a pulse width from 10 to 300 ms. This paper includes validation tests of unirradiated and prehydrided ZIRLO cladding tubes. A ZIRLO cladding sample with a hydrogen content of 168 wt. ppm showed ductile behavior and failed at the maximum limits of the test setup with hoop strain to failuremore » greater than 9.2%. ZIRLO samples showed high resistance to failure even at very high hydrogen contents (1,466 wt. ppm). When the hydrogen content was increased to 1,554 wt. ppm, brittle-like behavior was observed at a hoop strain of 2.5%. Preliminary scoping tests at room temperature with FeCrAl tubes were conducted to imitate the pulse behavior of transient test reactors during integral tests. The preliminary FeCrAl tests are informative from the perspective of characterizing the test rig and supporting the design of integral tests for current and potentially accident tolerant cladding materials.« less

  13. A pulse-controlled modified-burst test instrument for accident-tolerant fuel cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinbiz, M. Nedim; Brown, Nicholas R.; Terrani, Kurt A.

    Pellet-cladding mechanical interaction due to thermal expansion of nuclear fuel pellets during a reactivity-initiated accident (RIA) is a potential mechanism for failure of nuclear fuel cladding. To investigate the mechanical behavior of cladding during an RIA, we developed a mechanical pulse-controlled modified burst test instrument that simulates transient events with a pulse width from 10 to 300 ms. This paper includes validation tests of unirradiated and prehydrided ZIRLO cladding tubes. A ZIRLO cladding sample with a hydrogen content of 168 wt. ppm showed ductile behavior and failed at the maximum limits of the test setup with hoop strain to failuremore » greater than 9.2%. ZIRLO samples showed high resistance to failure even at very high hydrogen contents (1,466 wt. ppm). When the hydrogen content was increased to 1,554 wt. ppm, brittle-like behavior was observed at a hoop strain of 2.5%. Preliminary scoping tests at room temperature with FeCrAl tubes were conducted to imitate the pulse behavior of transient test reactors during integral tests. The preliminary FeCrAl tests are informative from the perspective of characterizing the test rig and supporting the design of integral tests for current and potentially accident tolerant cladding materials.« less

  14. Bonding and Integration of C-C Composite to Cu-Clad-Molybdenum for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Singh, M.; Shpargel, T.P.

    2008-01-01

    Two- and three-dimensional carbon-carbon composites with either resin-derived matrix or CVI matrix were joined to Cu-clad-Mo using active Ag-Cu braze alloys for thermal management applications. The joint microstructure and composition were examined using Field-Emission Scanning Electron Microscopy and Energy-Dispersive Spectroscopy, and the joint hardness was characterized using the Knoop microhardness testing. Observations on the infiltration of the composite with molten braze, dissolution of metal substrate, and solute segregation at the C-C surface have been discussed. The thermal response of the integrated assembly is also briefly discussed.

  15. Effect of laser power on clad metal in laser-TIG combined metal cladding

    NASA Astrophysics Data System (ADS)

    Utsumi, Akihiro; Hino, Takanori; Matsuda, Jun; Tasoda, Takashi; Yoneda, Masafumi; Katsumura, Munehide; Yano, Tetsuo; Araki, Takao

    2003-03-01

    TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.

  16. Final report on accident tolerant fuel performance analysis of APMT-Steel Clad/UO₂ fuel and APMT-Steel Clad/UN-U₃Si₅ fuel concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unal, Cetin; Galloway, Jack D.

    2014-09-12

    In FY2014 our group completed and documented analysis of new Accident Tolerant Fuel (ATF) concepts using BISON. We have modeled the viability of moving from Zircaloy to stainless steel cladding in traditional light water reactors (LWRs). We have explored the reactivity penalty of this change using the MCNP-based burnup code Monteburns, while attempting to minimize this penalty by increasing the fuel pellet radius and decreasing the cladding thickness. Fuel performance simulations using BISON have also been performed to quantify changes to structural integrity resulting from thinner stainless steel claddings. We account for thermal and irradiation creep, fission gas swelling, thermalmore » swelling and fuel relocation in the models for both Zircaloy and stainless steel claddings. Additional models that account for the lower oxidation stainless steel APMT are also invoked where available. Irradiation data for HT9 is used as a fallback in the absence of appropriate models. In this study the isotopic vectors within each natural element are varied to assess potential reactivity gains if advanced enrichment capabilities were levied towards cladding technologies. Recommendations on cladding thicknesses for a robust cladding as well as the constitutive components of a less penalizing composition are provided. In the first section (section 1-3), we present results accepted for publication in the 2014 TOPFUEL conference regarding the APMT/UO₂ ATF concept (J. Galloway & C. Unal, Accident Tolerant and Neutronically Favorable LWR Cladding, Proceedings of WRFPM 2014, Sendai, Japan, Paper No.1000050). Next we discuss our preliminary findings from the thermo-mechanical analysis of UN-U₃Si₅ fuel with APMT clad. In this analysis we used models developed from limited data that need to be updated when the irradiation data from ATF-1 test is available. Initial results indicate a swelling rate less than 1.5% is needed to prevent excessive clad stress.« less

  17. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweet, Ryan; George, Nathan M.; Terrani, Kurt A.

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling themore » integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs

  18. Fuel cladding behavior under rapid loading conditions

    NASA Astrophysics Data System (ADS)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  19. Clad metals by roll bonding for SOFC interconnects

    NASA Astrophysics Data System (ADS)

    Chen, L.; Jha, B.; Yang, Zhenguo; Xia, Guang-Guang; Stevenson, Jeffry W.; Singh, Prabhakar

    2006-08-01

    High-temperature oxidation-resistant alloys are currently considered as a candidate material for construction of interconnects in intermediate-temperature solid oxide fuel cells. Among these alloys, however, different groups of alloys demonstrate different advantages and disadvantages, and few, if any, can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, cladding has been proposed as one approach in fabricating metallic layered interconnect structures. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated. This paper provides a brief overview of the cladding approach and discusses the viability of this technology to fabricate the metallic layered-structure interconnects.

  20. Validation and evaluation of common large-area display set (CLADS) performance specification

    NASA Astrophysics Data System (ADS)

    Hermann, David J.; Gorenflo, Ronald L.

    1998-09-01

    Battelle is under contract with Warner Robins Air Logistics Center to design a Common Large Area Display Set (CLADS) for use in multiple Command, Control, Communications, Computers, and Intelligence (C4I) applications that currently use 19- inch Cathode Ray Tubes (CRTs). Battelle engineers have built and fully tested pre-production prototypes of the CLADS design for AWACS, and are completing pre-production prototype displays for three other platforms simultaneously. With the CLADS design, any display technology that can be packaged to meet the form, fit, and function requirements defined by the Common Large Area Display Head Assembly (CLADHA) performance specification is a candidate for CLADS applications. This technology independent feature reduced the risk of CLADS development, permits life long technology insertion upgrades without unnecessary redesign, and addresses many of the obsolescence problems associated with COTS technology-based acquisition. Performance and environmental testing were performed on the AWACS CLADS and continues on other platforms as a part of the performance specification validation process. A simulator assessment and flight assessment were successfully completed for the AWACS CLADS, and lessons learned from these assessments are being incorporated into the performance specifications. Draft CLADS specifications were released to potential display integrators and manufacturers for review in 1997, and the final version of the performance specifications are scheduled to be released to display integrators and manufacturers in May, 1998. Initial USAF applications include replacements for the E-3 AWACS color monitor assembly, E-8 Joint STARS graphics display unit, and ABCCC airborne color display. Initial U.S. Navy applications include the E-2C ACIS display. For these applications, reliability and maintainability are key objectives. The common design will reduce the cost of operation and maintenance by an estimated 3.3M per year on E-3 AWACS

  1. Cladding burst behavior of Fe-based alloys under LOCA

    DOE PAGES

    Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; ...

    2015-12-17

    Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. Themore » most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.« less

  2. Pellet cladding mechanical interactions of ceramic claddings fuels under light water reactor conditions

    NASA Astrophysics Data System (ADS)

    Li, Bo-Shiuan

    Ceramic materials such as silicon carbide (SiC) are promising candidate materials for nuclear fuel cladding and are of interest as part of a potential accident tolerant fuel design due to its high temperature strength, dimensional stability under irradiation, corrosion resistance, and lower neutron absorption cross-section. It also offers drastically lower hydrogen generation in loss of coolant accidents such as that experienced at Fukushima. With the implementation of SiC material properties to the fuel performance code, FRAPCON, performances of the SiC-clad fuel are compared with the conventional Zircaloy-clad fuel. Due to negligible creep and high stiffness, SiC-clad fuel allows gap closure at higher burnup and insignificant cladding dimensional change. However, severe degradation of SiC thermal conductivity with neutron irradiation will lead to higher fuel temperature with larger fission gas release. High stiffness of SiC has a drawback of accumulating large interfacial pressure upon pellet-cladding mechanical interactions (PCMI). This large stress will eventually reach the flexural strength of SiC, causing failure of SiC cladding instantly in a brittle manner instead of the graceful failure of ductile metallic cladding. The large interfacial pressure causes phenomena that were previously of only marginal significance and thus ignored (such as creep of the fuel) to now have an important role in PCMI. Consideration of the fuel pellet creep and elastic deformation in PCMI models in FRAPCON provide for an improved understanding of the magnitude of accumulated interfacial pressure. Outward swelling of the pellet is retarded by the inward irradiation-induced creep, which then reduces the rate of interfacial pressure buildup. Effect of PCMI can also be reduced and by increasing gap width and cladding thickness. However, increasing gap width and cladding thickness also increases the overall thermal resistance which leads to higher fuel temperature and larger fission

  3. Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Fahy, James; Kolosov, Oleg; Wilbraham, Richard J.; Döbeli, Max; Renevier, Nathalie; Ball, Jonathan; Ritter, Stefan

    2018-05-01

    The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would occur for in-reactor AGR clad in layers of the order of 10 µm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (< 1 dpa). Nonetheless, such zones undergo only nanoscopic swelling and a small hardness increase ( 10%), with no appreciable decrease in fracture strength. Thus, for this fluence and applied conditions, the integrity of the steel cladding is retained despite He2+ implantation.

  4. Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Fahy, James; Kolosov, Oleg; Wilbraham, Richard J.; Döbeli, Max; Renevier, Nathalie; Ball, Jonathan; Ritter, Stefan

    2018-04-01

    The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would occur for in-reactor AGR clad in layers of the order of 10 µm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (< 1 dpa). Nonetheless, such zones undergo only nanoscopic swelling and a small hardness increase ( 10%), with no appreciable decrease in fracture strength. Thus, for this fluence and applied conditions, the integrity of the steel cladding is retained despite He2+ implantation.

  5. Real-time laser cladding control with variable spot size

    NASA Astrophysics Data System (ADS)

    Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.

    2014-03-01

    Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.

  6. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  7. Testing of uranium nitride fuel in T-111 cladding at 1200 K cladding temperature

    NASA Technical Reports Server (NTRS)

    Rohal, R. G.; Tambling, T. N.; Smith, R. L.

    1973-01-01

    Two groups of six fuel pins each were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a tantalum alloy clad. The first group of fuel pins was irradiated for 1500 hours to a maximum burnup of 0.7-atom-percent uranium. The second group of fuel pins was irradiated for about 3000 hours to a maximum burnup of 1.0-atom-percent uranium. The average clad surface temperature during irradiation of both groups of fuel pins was approximately 1200 K. The postirradiation examination revealed the following: no clad failures or fuel swelling occurred; less than 1 percent of the fission gases escaped from the fuel; and the clad of the first group of fuel pins experienced clad embrittlement whereas the second group, which had modified assembly and fabrication procedures to minimize contamination, had a ductile clad after irradiation.

  8. Reactivity Initiated Accident Simulation to Inform Transient Testing of Candidate Advanced Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R; Wysocki, Aaron J; Terrani, Kurt A

    2016-01-01

    Abstract. Advanced cladding materials with potentially enhanced accident tolerance will yield different light water reactor performance and safety characteristics than the present zirconium-based cladding alloys. These differences are due to different cladding material properties and responses to the transient, and to some extent, reactor physics, thermal, and hydraulic characteristics. Some of the differences in reactors physics characteristics will be driven by the fundamental properties (e.g., absorption in iron for an iron-based cladding) and others will be driven by design modifications necessitated by the candidate cladding materials (e.g., a larger fuel pellet to compensate for parasitic absorption). Potential changes in thermalmore » hydraulic limits after transition from the current zirconium-based cladding to the advanced materials will also affect the transient response of the integral fuel. This paper leverages three-dimensional reactor core simulation capabilities to inform on appropriate experimental test conditions for candidate advanced cladding materials in a control rod ejection event. These test conditions are using three-dimensional nodal kinetics simulations of a reactivity initiated accident (RIA) in a representative state-of-the-art pressurized water reactor with both nuclear-grade iron-chromium-aluminum (FeCrAl) and silicon carbide based (SiC-SiC) cladding materials. The effort yields boundary conditions for experimental mechanical tests, specifically peak cladding strain during the power pulse following the rod ejection. The impact of candidate cladding materials on the reactor kinetics behavior of RIA progression versus reference zirconium cladding is predominantly due to differences in: (1) fuel mass/volume/specific power density, (2) spectral effects due to parasitic neutron absorption, (3) control rod worth due to hardened (or softened) spectrum, and (4) initial conditions due to power peaking and neutron transport cross sections in

  9. Magnetostrictive clad steel plates for high-performance vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Zhenjun; Nakajima, Kenya; Onodera, Ryuichi; Tayama, Tsuyoki; Chiba, Daiki; Narita, Fumio

    2018-02-01

    Energy harvesting technology is becoming increasingly important with the appearance of the Internet of things. In this study, a magnetostrictive clad steel plate for harvesting vibration energy was proposed. It comprises a cold-rolled FeCo alloy and cold-rolled steel joined together by thermal diffusion bonding. The performances of the magnetostrictive FeCo clad steel plate and conventional FeCo plate cantilevers were compared under bending vibration; the results indicated that the clad steel plate construct exhibits high voltage and power output compared to a single-plate construct. Finite element analysis of the cantilevers under bending provided insights into the magnetic features of a clad steel plate, which is crucial for its high performance. For comparison, the experimental results of a commercial piezoelectric bimorph cantilever were also reported. In addition, the cold-rolled FeCo and Ni alloys were joined by thermal diffusion bonding, which exhibited outstanding energy harvesting performance. The larger the plate volume, the more the energy generated. The results of this study indicated not only a promising application for the magnetostrictive FeCo clad steel plate as an efficient energy harvester, related to small vibrations, but also the notable feasibility for the formation of integrated units to support high-power trains, automobiles, and electric vehicles.

  10. Fabrication of versatile cladding light strippers and fiber end-caps with CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Steinke, M.; Theeg, T.; Wysmolek, M.; Ottenhues, C.; Pulzer, T.; Neumann, J.; Kracht, D.

    2018-02-01

    We report on novel fabrication schemes of versatile cladding light strippers and end-caps via CO2 laser radiation. We integrated cladding light strippers in SMA-like connectors for reliable and stable fiber-coupling of high-power laser diodes. Moreover, the application of cladding light strippers in typical fiber geometries for high-power fiber lasers was evaluated. In addition, we also developed processes to fuse end-caps to fiber end faces via CO2 laser radiation and inscribe the fibers with cladding light strippers near the end-cap. Corresponding results indicate the great potential of such devices as a monolithic and low-cost alternative to SMA connectors.

  11. Fuels irradiation testing for the SP-100 program

    NASA Technical Reports Server (NTRS)

    Makenas, Bruce J.; Hales, Janell W.; Ward, Alva L.

    1991-01-01

    An SP-100 fuel pin irradiation testing program is well on the way to providing data for performance correlations and demonstrating the lifetime and safety of the fuel system of the compact lithium-cooled reactor. Key SP-100 fuel performance issues addressed are the need for low fuel swelling and low fission gas release to minimize cladding strain, and the need for barrier integrity to prevent fuel/cladding chemical interaction. This paper provides a description of the irradiation test program that addresses these key issues and summarizes recent results of posttest examinations including data obtained at 6 atom percent goal burnup.

  12. Multi-clad black display panel

    DOEpatents

    Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin

    2002-01-01

    A multi-clad black display panel, and a method of making a multi-clad black display panel, are disclosed, wherein a plurality of waveguides, each of which includes a light-transmissive core placed between an opposing pair of transparent cladding layers and a black layer disposed between transparent cladding layers, are stacked together and sawed at an angle to produce a wedge-shaped optical panel having an inlet face and an outlet face.

  13. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    DOE PAGES

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; ...

    2016-07-15

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. In the most challenging cases, U–(7–10wt%)Mo monolithic plate fuel are proposed. The chosen design includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction in service. We investigated zircaloy cladding, specifically Zry–4as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo havemore » similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly between roll passes. Our final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction, either from fabrication or in-reactor testing, and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.54E+21« less

  14. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. In the most challenging cases, U–(7–10wt%)Mo monolithic plate fuel are proposed. The chosen design includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction in service. We investigated zircaloy cladding, specifically Zry–4as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo havemore » similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly between roll passes. Our final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction, either from fabrication or in-reactor testing, and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.54E+21« less

  15. Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency.

    PubMed

    Dubinskii, M; Zhang, J; Ter-Mikirtychev, V

    2009-05-15

    We report the performance of a resonantly cladding-pumped, Yb-free, Er-doped fiber laser. We believe this is the first reported resonantly cladding-pumped fiber-Bragg-grating-based, Er-doped, large-mode-area (LMA) fiber laser. The laser, pumped by fiber-coupled InGaAsP/InP laser diode modules at 1,532.5 nm, delivers approximately 48 W of cw output at 1,590 nm. It is believed to be the highest power ever reported from a Yb-free Er-doped LMA fiber. This fully integrated laser also has the optical-to-optical efficiency of approximately 57%, to the best of our knowledge, the highest efficiency reported for cladding-pumped unidirectionally emitting Er-doped laser.

  16. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.

    PubMed

    Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-03-25

    We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.

  17. Cascaded-cladding-pumped cascaded Raman fiber amplifier.

    PubMed

    Jiang, Huawei; Zhang, Lei; Feng, Yan

    2015-06-01

    The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser.

  18. Ceramic Coatings for Clad (The C 3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sickafus, Kurt E.; Wirth, Brian; Miller, Larry

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectivesmore » of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as

  19. Clad metals, roll bonding and their applications for SOFC interconnects

    NASA Astrophysics Data System (ADS)

    Chen, Lichun; Yang, Zhenguo; Jha, Bijendra; Xia, Guanguang; Stevenson, Jeffry W.

    Metallic interconnects have been becoming an increasingly interesting topic in the development in intermediate temperature solid oxide fuel cells (SOFC). High temperature oxidation resistant alloys are currently considered as candidate materials. Among these alloys however, different groups of alloys demonstrate different advantages and disadvantages, and few if any can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, clad metal has been proposed for SOFC interconnect applications and interconnect structures. This paper gives a brief overview of the cladding approach and its applications, and discuss the viability of this technology to fabricate the metallic layered-structure interconnects. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated.

  20. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    PubMed

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  1. R&D Plan for RISMC Industry Application #1: ECCS/LOCA Cladding Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szilard, Ronaldo Henriques; Zhang, Hongbin; Epiney, Aaron Simon

    The Nuclear Regulatory Commission (NRC) is finalizing a rulemaking change that would revise the requirements in 10 CFR 50.46. In the proposed new rulemaking, designated as 10 CFR 50.46c, the NRC proposes a fuel performance-based equivalent cladding reacted (ECR) criterion as a function of cladding hydrogen content before the accident (pre-transient) in order to include the effects of higher burnup on cladding performance as well as to address other technical issues. A loss of operational margin may result due to the more restrictive cladding embrittlement criteria. Initial and future compliance with the rule may significantly increase vendor workload and licenseemore » costs as a spectrum of fuel rod initial burnup states may need to be analyzed to demonstrate compliance. The Idaho National Laboratory (INL) has initiated a project, as part of the DOE Light Water Reactor Sustainability Program (LWRS), to develop analytical capabilities to support the industry in the transition to the new rule. This project is called the Industry Application 1 (IA1) within the Risk-Informed Safety Margin Characterization (RISMC) Pathway of LWRS. The general idea behind the initiative is the development of an Integrated Evaluation Model (IEM). The motivation is to develop a multiphysics framework to analyze how uncertainties are propagated across the stream of physical disciplines and data involved, as well as how risks are evaluated in a LOCA safety analysis as regulated under 10 CFR 50.46c. This IEM is called LOTUS which stands for LOCA Toolkit for US, and it represents the LWRS Program’s response to the proposed new rule making. The focus of this report is to complete an R&D plan to describe the demonstration of the LOCA/ECCS RISMC Industry Application # 1 using the advanced RISMC Toolkit and methodologies. This report includes the description and development plan for a RISMC LOCA tool that fully couples advanced MOOSE tools already in development in order to characterize and

  2. Femtosecond laser inscription of optical circuits in the cladding of optical fibers

    NASA Astrophysics Data System (ADS)

    Grenier, Jason R.

    The aim of this dissertation was to address the question of whether the cladding of single-mode fibers (SMFs) could be modified to enable optical fibers to serve as a more integrated, highly functional platform for optical circuit devices that can efficiently interconnect with the pre-existing fiber core waveguide. The approach adopted in this dissertation was to employ femtosecond laser direct writing (FLDW), an inherently 3D fabrication technique that harnesses non-linear laser-material interactions to modify the fused silica fiber cladding. A fiber mounting and alignment technique was developed along with oil-immersion focusing to address the strong aberrations caused by the cylindrical fiber shape. The development of real-time device monitoring during the FLDW was instrumental to overcome the acute coupling sensitivity to laser alignment errors of +/-1 ?m positional uncertainty, and thereby opened a new practical direction for the precise fabrication of optical devices inside optical fibers. These powerful and flexible laser fabrication and characterization techniques were successfully employed to optimize optical waveguiding devices positioned within the core and cladding of optical fibers. X-, S-Bend, and directional couplers were developed to enable efficient coupling between the laser-formed cladding devices and the pre-existing core waveguide, enabling up to 62% power transfer over bandwidths up to 300 nm at telecommunication wavelengths. Precise alignment of femtosecond laser modification tracks were positioned inside or near the core waveguide of SMFs was further shown to enable a flexible reshaping of the optical properties to create multimode guiding sections arbitrarily along the fiber length. This core waveguide modification facilitated the precise formation of multimode interferometers along the core waveguide to precisely tailor the modal profiles, and control the spectral and polarization response. In-fiber multimode interference (MMI) splitters

  3. FIBER AND INTEGRATED OPTICS: Radiative losses in single-mode fiber waveguides with a depressed cladding

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurkov, Andrei S.; Miroshnichenko, S. I.; Semenov, V. A.

    1989-11-01

    A comparison was made of the calculated and measured radiative losses suffered by the fundamental and first higher modes in real waveguide structures with a depressed cladding. It was found that in determination of the operating range of single-mode waveguides with a depressed cladding it is essential to allow not only for the increase in the losses due to leaking of the fundamental HE11 mode at long wavelengths, but also for the shift of the cutoff wavelength of the first higher HE21 mode for shorter wavelengths.

  4. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Carson, R. F.

    1985-01-01

    A variety of techniques have been proposed for fabricating integrated optical devices using semiconductors, lithium niobate, and glasses as waveguides and substrates. The use of glass waveguides and their interaction with thin semiconductor cladding layers was studied. Though the interactions of these multilayer waveguide structures have been analyzed here using glass, they may be applicable to other types of materials as well. The primary reason for using glass is that it provides a simple, inexpensive way to construct waveguides and devices.

  5. All fiber cladding mode stripper with uniform heat distribution and high cladding light loss manufactured by CO2 laser ablation

    NASA Astrophysics Data System (ADS)

    Jebali, M. A.; Basso, E. T.

    2018-02-01

    Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.

  6. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals

    NASA Astrophysics Data System (ADS)

    Ajates, Javier G.; Romero, Carolina; Castillo, Gabriel R.; Chen, Feng; Vázquez de Aldana, Javier R.

    2017-10-01

    We have designed and fabricated photonic structures such as, Y-junctions (one of the basic building blocks for construction any integrated photonic devices) and Mach-Zehnder interferometers, based on circular depressed-cladding waveguides by direct femtosecond laser irradiation in Nd:YAG crystal. The waveguides were optically characterized at 633 nm, showing nearly mono-modal behaviour for the selected waveguide radius (9 μm). The effect of the splitting angle in the Y structures was investigated finding a good preservation of the modal profiles up to more than 2°, with 1 dB of additional losses in comparison with straight waveguides. The dependence with polarization of these splitters keeps in a reasonable low level. Our designs pave the way for the fabrication of arbitrarily complex 3D photonic circuits in crystals with cladding waveguides.

  7. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  8. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  9. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Mcwright, G.

    1981-01-01

    The properties of semiconductor-clad optical waveguides based on glass substrates were investigated. Computer modeling studies on four-layer silicon-clad planar dielectric waveguides indicated that the attenuation and mode index should behave as exponentially damped sinusoids as the silicon thickness is decreased below one micrometer. This effect can be explained as a periodic coupling between the guided modes of the lossless structure and the lossy modes supported by the high refractive index silicon. The computer studies also show that both the attenuation and mode index of the propagating mode are significantly altered by conductivity charges in the silicon. Silicon claddings were RF sputtered onto AgNO3-NaNO3 ion exchanged waveguides and preliminary measurements of attenuation were made. An expression was developed which predicts the attenuation of the silicon clad waveguide from the attenuation and phase characteristics of a silicon waveguide. Several applications of these clad waveguides are suggested and methods for increasing the photo response of the RF sputtered silicon films are described.

  10. Strengthening Effect of Incremental Shear Deformation on Ti Alloy Clad Plate with a Ni-Based Alloy Laser-Clad Layer

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Zha, G. C.; Kong, F. X.; Wu, M. L.; Feng, X.; Gao, S. Y.

    2017-05-01

    A Ti-6Al-4V alloy clad plate with a Tribaloy 700 alloy laser-clad layer is subjected to incremental shear deformation, and we evaluate the structural evolution and mechanical properties of the specimens. Results indicate the significance of the incremental shear deformation on the strengthening effect. The wear resistance and Vickers hardness of the laser-clad layer are enhanced due to increased dislocation density. The incremental shear deformation can increase the bonding strength of the laser-clad layer and the corresponding substrate and can break the columnar crystals in the laser-clad layer near the interface. These phenomena suggest that shear deformation eliminates the defects on the interface of the laser-clad layer and the substrate. Substrate hardness is evidently improved, and the strengthening effect is caused by the increased dislocation density and shear deformation. This deformation can then transform the α- and β-phases in the substrate into a high-intensity ω-phase.

  11. Accident tolerant fuel cladding development: Promise, status, and challenges

    NASA Astrophysics Data System (ADS)

    Terrani, Kurt A.

    2018-04-01

    The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.

  12. Protective claddings for high strength chromium alloys

    NASA Technical Reports Server (NTRS)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  13. Polarization characteristics of double-clad elliptical fibers.

    PubMed

    Zhang, F; Lit, J W

    1990-12-20

    A scalar variational analysis based on a Gaussian approximation of the fundamental mode of a double-clad elliptical fiber with a depressed inner cladding is studied. The polarization properties and graphic results are presented; they are given in terms of three parameters: the ratio of the major axis to the minor axis of the core, the ratio of the inner cladding major axis to the core major axis, and the difference between the core index and the inner cladding index. The variations of both the spot size and the field intensity with core ellipticity are examined. It is shown that high birefringence and dispersion-free orthogonal polarization modes can be obtained within the single-mode region and that the field intensity distribution may be more confined to the fiber center than in a single-clad elliptical fiber.

  14. Experimental and statistical study on fracture boundary of non-irradiated Zircaloy-4 cladding tube under LOCA conditions

    NASA Astrophysics Data System (ADS)

    Narukawa, Takafumi; Yamaguchi, Akira; Jang, Sunghyon; Amaya, Masaki

    2018-02-01

    For estimating fracture probability of fuel cladding tube under loss-of-coolant accident conditions of light-water-reactors, laboratory-scale integral thermal shock tests were conducted on non-irradiated Zircaloy-4 cladding tube specimens. Then, the obtained binary data with respect to fracture or non-fracture of the cladding tube specimen were analyzed statistically. A method to obtain the fracture probability curve as a function of equivalent cladding reacted (ECR) was proposed using Bayesian inference for generalized linear models: probit, logit, and log-probit models. Then, model selection was performed in terms of physical characteristics and information criteria, a widely applicable information criterion and a widely applicable Bayesian information criterion. As a result, it was clarified that the log-probit model was the best among the three models to estimate the fracture probability in terms of the degree of prediction accuracy for both next data to be obtained and the true model. Using the log-probit model, it was shown that 20% ECR corresponded to a 5% probability level with a 95% confidence of fracture of the cladding tube specimens.

  15. Electroslag Strip Cladding of Steam Generators With Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consonni, M.; Maggioni, F.; Brioschi, F.

    2006-07-01

    The present paper details the results of electroslag cladding and tube-to-tubesheet welding qualification tests conducted by Ansaldo-Camozzi ESC with Alloy 690 (Alloy 52 filler metal) on steel for nuclear power stations' steam generators shell, tubesheet and head; the possibility of submerged arc cladding on first layer was also considered. Test results, in terms of chemical analysis, mechanical properties and microstructure are reproducible and confidently applicable to production cladding and show that electroslag process can be used for Alloy 52 cladding with exceptionally stable and regular operation and high productivity. The application of submerged arc cladding process to the first layermore » leads to a higher base metal dilution, which should be avoided. Moreover, though the heat affected zone is deeper with electroslag cladding, in both cases no coarsened grain zone is found due to recrystallization effect of second cladding layer. Finally, the application of electroslag process to cladding of Alloy 52 with modified chemical composition, was proved to be highly beneficial as it strongly reduces hot cracking sensitivity, which is typical of submerged arc cladded Alloy 52, both during tube-to-tubesheet welding and first re-welding. (authors)« less

  16. Suspended silica beam splitters on silicon with large core-clad index deference

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomin; Armani, Andrea M.

    2012-03-01

    Optical beam splitters form a fundamental component in integrated optical systems, performing as modulators, interferometers and (de)multiplexers. While silica is a desirable material, because of its low non-linear susceptibility, it is extremely challenging to achieve the requisite core-clad refractive index contrast. In this work, silica splitters with an effective refractive index difference of 25% between the core and clad is demonstrated. The splitter can divide power evenly with low crosstalk from 1520 to 1630nm. In addition, the splitting ratio doesn't change and the output power increases linearly with the input power, which indicates a low susceptibility to thermal effects. The splitter's polarization independent behavior is also verified.

  17. Development of a metal-clad advanced composite shear web design concept

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  18. High temperature gradient cobalt based clad developed using microwave hybrid heating

    NASA Astrophysics Data System (ADS)

    Prasad, C. Durga; Joladarashi, Sharnappa; Ramesh, M. R.; Sarkar, Anunoy

    2018-04-01

    The development of cobalt based cladding on a titanium substrate using microwave cladding technique is benchmark in coating area. The developed cladding would serve the function of a corrosion resistant coating under high temperatures. Clads of thickness 500 µm have been developed by microwave hybrid heating. A microwave furnace of 2.45GHz frequency was used at a 900W power level for processing. Impact of processing time on melting and adhesion of clad has been discussed. The study also extended to static thermal analysis of simple parts with cladding using commercial Finite Element analysis (FEA) software. A comparative study is explored between four variants of the clad being developed. The analysis has been conducted using a square sample. Similar temperature gradient is also shown for a proposed multi-layer coating, which includes a thermal barrier coating yttria stabilized zirconia (YSZ) on top of the corrosion resistant clad. The YSZ coating would protect the corrosion resistant cladding and substrate from high temperatures.

  19. Explosion Clad for Upstream Oil and Gas Equipment

    NASA Astrophysics Data System (ADS)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  20. Fuel pin cladding

    DOEpatents

    Vaidyanathan, S.; Adamson, M.G.

    1983-12-16

    An improved fuel pin cladding, particularly adapted for use in breeder reactors, is described which consist of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel an/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients.

  1. Fuel pin cladding

    DOEpatents

    Vaidyanathan, Swaminathan; Adamson, Martyn G.

    1986-01-01

    An improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients.

  2. Analysis of laser-induction hybrid cladding processing conditions

    NASA Astrophysics Data System (ADS)

    Huang, Yongjun; Zeng, Xiaoyan; Hu, Qianwu

    2007-12-01

    A new cladding approach based on laser-induction hybrid technique on flat sheets is presented in this paper. Coating is produced by means of 5kw cw CO II laser equipped with 100kw high frequent inductor, and the experiments set-up, involving a special machining-head, which can provide laser-induction hybrid heat resources simultaneously. The formation of thick NiCrSiB coating on a steel substrate by off-axial powder feeding is studied from an experimental point of view. A substrate melting energy model is developed to describe the energy relationship between laser-induction hybrid cladding and laser cladding alone quantitatively. By comparing the experimental results with the calculational ones, it is shown that the tendency of fusion zone height of theoretical calculation is in agreement with that of tests in laser-induction hybrid cladding. Via analyses and tests, the conclusions can be lead to that the fusion zone height can be increased easily and the good bond of cladding track can be achieved within wide cladding processing window in laser-induction hybrid processing. It shows that the induction heating has an obvious effect on substrate melting and metallurgical bond.

  3. 46 CFR 111.60-23 - Metal-clad (Type MC) cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Metal-clad (Type MC) cable. 111.60-23 Section 111.60-23...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-23 Metal-clad (Type MC) cable. (a) Metal-clad (Type MC) cable permitted on board a vessel must be continuous corrugated metal-clad cable. (b) The...

  4. 46 CFR 111.60-23 - Metal-clad (Type MC) cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Metal-clad (Type MC) cable. 111.60-23 Section 111.60-23...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-23 Metal-clad (Type MC) cable. (a) Metal-clad (Type MC) cable permitted on board a vessel must be continuous corrugated metal-clad cable. (b) The...

  5. Method and etchant to join ag-clad BSSCO superconducting tape

    DOEpatents

    Balachandran, Uthamalingam; Iyer, Anand N.; Huang, Jiann Yuan

    1999-01-01

    A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO.sub.3 followed by an aqueous solution of NH.sub.4 OH and H.sub.2 O.sub.2 for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO.sub.3 and to a combination of NH.sub.4 OH and H.sub.2 O.sub.2 to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed.

  6. Method and etchant to join Ag-clad BSSCO superconducting tape

    DOEpatents

    Balachandran, U.; Iyer, A.N.; Huang, J.Y.

    1999-03-16

    A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO{sub 3} followed by an aqueous solution of NH{sub 4}OH and H{sub 2}O{sub 2} for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO{sub 3} and to a combination of NH{sub 4}OH and H{sub 2}O{sub 2} to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed. 3 figs.

  7. Nuclear reactor fuel element with vanadium getter on cladding

    DOEpatents

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  8. Clad fiber capacitor and method of making same

    DOEpatents

    Tuncer, Enis

    2013-11-26

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; a ductile, electrically conductive sleeve positioned over the cladding. One or more of the preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  9. Clad fiber capacitor and method of making same

    DOEpatents

    Tuncer, Enis

    2012-12-11

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  10. Risk-Informed Margin Management (RIMM) Industry Applications IA1 - Integrated Cladding ECCS/LOCA Performance Analysis - Problem Statement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szilard, Ronaldo Henriques; Youngblood, Robert; Frepoli, Cesare

    2015-04-01

    The U. S. NRC is currently proposing rulemaking designated as “10 CFR 50.46c” to revise the LOCA/ECCS acceptance criteria to include the effects of higher burnup on cladding performance as well as to address some other issues. The NRC is also currently resolving the public comments with the final rule expected to be issued in the summer of 2016. The impact of the final 50.46c rule on the industry will involve updating of fuel vendor LOCA evaluation models, NRC review and approval, and licensee submittal of new LOCA evaluations or reanalyses and associated technical specification revisions for NRC review andmore » approval. The rule implementation process, both industry and NRC activities, is expected to take 5-10 years following the rule effective date. The need to use advanced cladding designs is expected. A loss of operational margin will result due to the more restrictive cladding embrittlement criteria. Initial and future compliance with the rule may significantly increase vendor workload and licensee cost as a spectrum of fuel rod initial burnup states may need to be analyzed to demonstrate compliance. Consequently there will be an increased focus on licensee decision making related to LOCA analysis to minimize cost and impact, and to manage margin.« less

  11. Evolution of transmission spectra of double cladding fiber during etching

    NASA Astrophysics Data System (ADS)

    Ivanov, Oleg V.; Tian, Fei; Du, Henry

    2017-11-01

    We investigate the evolution of optical transmission through a double cladding fiber-optic structure during etching. The structure is formed by a section of SM630 fiber with inner depressed cladding between standard SMF-28 fibers. Its transmission spectrum exhibits two resonance dips at wavelengths where two cladding modes have almost equal propagation constants. We measure transmission spectra with decreasing thickness of the cladding and show that the resonance dips shift to shorter wavelengths, while new dips of lower order modes appear from long wavelength side. We calculate propagation constants of cladding modes and resonance wavelengths, which we compare with the experiment.

  12. Fuel pin cladding

    DOEpatents

    Vaidyanathan, S.; Adamson, M.G.

    1986-01-28

    Disclosed is an improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients. 2 figs.

  13. Innovative coating of nanostructured vanadium carbide on the F/M cladding tube inner surface for mitigating the fuel cladding chemical interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yong; Phillpot, Simon

    Fuel cladding chemical interactions (FCCI) have been acknowledged as a critical issue in a metallic fuel/steel cladding system due to the formation of low melting intermetallic eutectic compounds between the fuel and cladding steel, resulting in reduction in cladding wall thickness as well as a formation of eutectic compounds that can initiate melting in the fuel at lower temperature. In order to mitigate FCCI, diffusion barrier coatings on the cladding inner surface have been considered. In order to generate the required coating techniques, pack cementation, electroplating, and electrophoretic deposition have been investigated. However, these methods require a high processing temperaturemore » of above 700 oC, resulting in decarburization and decomposition of the martensites in a ferritic/martensitic (F/M) cladding steel. Alternatively, organometallic chemical vapor deposition (OMCVD) can be a promising process due to its low processing temperature of below 600 oC. The aim of the project is to conduct applied and fundamental research towards the development of diffusion barrier coatings on the inner surface of F/M fuel cladding tubes. Advanced cladding steels such as T91, HT9 and NF616 have been developed and extensively studied as advanced cladding materials due to their excellent irradiation and corrosion resistance. However, the FCCI accelerated by the elevated temperature and high neutron exposure anticipated in fast reactors, can have severe detrimental effects on the cladding steels through the diffusion of Fe into fuel and lanthanides towards into the claddings. To test the functionality of developed coating layer, the diffusion couple experiments were focused on using T91 as cladding and Ce as a surrogate lanthanum fission product. By using the customized OMCVD coating equipment, thin and compact layers with a few micron between 1.5 µm and 8 µm thick and average grain size of 200 nm and 5 µm were successfully obtained at the specimen coated between

  14. Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers.

    PubMed

    Huang, Zhihe; Cao, Jianqiu; Guo, Shaofeng; Chen, Jinbao; Xu, Xiaojun

    2014-04-01

    We compare both analytically and numerically the distributed side-coupled cladding-pumped (DSCCP) fiber lasers and double cladding fiber (DCF) lasers. We show that, through optimization of the coupling and absorbing coefficients, the optical-to-optical efficiency of DSCCP fiber lasers can be made as high as that of DCF lasers. At the same time, DSCCP fiber lasers are better than the DCF lasers in terms of thermal management.

  15. Measurement and removal of cladding light in high power fiber systems

    NASA Astrophysics Data System (ADS)

    Walbaum, Till; Liem, Andreas; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas

    2018-02-01

    The amount of cladding light is important to ensure longevity of high power fiber components. However, it is usually measured either by adding a cladding light stripper (and thus permanently modifying the fiber) or by using a pinhole to only transmit the core light (ignoring that there may be cladding mode content in the core area). We present a novel noninvasive method to measure the cladding light content in double-clad fibers based on extrapolation from a cladding region of constant average intensity. The method can be extended to general multi-layer radially symmetric fibers, e.g. to evaluate light content in refractive index pedestal structures. To effectively remove cladding light in high power systems, cladding light strippers are used. We show that the stripping efficiency can be significantly improved by bending the fiber in such a device and present respective experimental data. Measurements were performed with respect to the numerical aperture as well, showing the dependency of the CLS efficiency on the NA of the cladding light and implying that efficiency data cannot reliably be given for a certain fiber in general without regard to the properties of the guided light.

  16. Assembly and Delivery of Rabbit Capsules for Irradiation of Silicon Carbide Cladding Tube Specimens in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, Takaaki; Petrie, Christian M.

    Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Officemore » of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low

  17. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IJ van Rooyen; WR Lloyd; TL Trowbridge

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designsmore » being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between

  18. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    PubMed

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  19. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    PubMed Central

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-01-01

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable. PMID:28772639

  20. Formation of anomalous eutectic in Ni-Sn alloy by laser cladding

    NASA Astrophysics Data System (ADS)

    Wang, Zhitai; Lin, Xin; Cao, Yongqing; Liu, Fencheng; Huang, Weidong

    2018-02-01

    Ni-Sn anomalous eutectic is obtained by single track laser cladding with the scanning velocity from 1 mm/s to 10 mm/s using the Ni-32.5 wt.%Sn eutectic powders. The microstructure of the cladding layer and the grain orientations of anomalous eutectic were investigated. It is found that the microstructure is transformed from primary α-Ni dendrites and the interdendritic (α-Ni + Ni3Sn) eutectic at the bottom of the cladding layer to α-Ni and β-Ni3Sn anomalous eutectic at the top of the cladding layer, whether for single layer or multilayer laser cladding. The EBSD maps and pole figures indicate that the spatially structure of α-Ni phase is discontinuous and the Ni3Sn phase is continuous in anomalous eutectic. The transformation from epitaxial growth columnar at bottom of cladding layer to free nucleation equiaxed at the top occurs, i.e., the columnar to equiaxed transition (CET) at the top of cladding layer during laser cladding processing leads to the generation of anomalous eutectic.

  1. Nuclear-powered pacemaker fuel cladding study. [Difficulty of dissolving cladding and /sup 238/PuO/sub 2/ for obtaining materials for acts of terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoup, R.L.

    1976-07-01

    The fabrication of fuel capsules with refractory metal and alloy clads used in nuclear-powered cardiac pacemakers precludes the expedient dissolution of the clad in inorganic acid solutions. An experiment to measure penetration rates of acids on commonly used fuel pellet clads indicated that it is not impossible, but that it would be very difficult to dissolve the multiple cladding. This work was performed because of a suggestion that a /sup 238/PuO/sub 2/-powered pacemaker could be transformed into a terrorism weapon.

  2. Transversely polarized source cladding for an optical fiber

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1994-01-01

    An optical fiber comprising a fiber core having a longitudinal symmetry axis is provided. An active cladding surrounds a portion of the fiber core and comprises light-producing sources which emit light in response to chemical or light excitation. The cladding sources are oriented transversely with respect to the longitudinal axis of the fiber core. This polarization results in a superior power efficiency compared to active cladding sources that are randomly polarized or longitudinally polarized parallel with the longitudinal symmetry axis.

  3. Composite polymer: Glass edge cladding for laser disks

    DOEpatents

    Powell, H.T.; Wolfe, C.A.; Campbell, J.H.; Murray, J.E.; Riley, M.O.; Lyon, R.E.; Jessop, E.S.

    1987-11-02

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation. 18 figs.

  4. Composite polymer-glass edge cladding for laser disks

    DOEpatents

    Powell, Howard T.; Riley, Michael O.; Wolfe, Charles R.; Lyon, Richard E.; Campbell, John H.; Jessop, Edward S.; Murray, James E.

    1989-01-01

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation.

  5. Hot Forging of a Cladded Component by Automated GMAW Process

    NASA Astrophysics Data System (ADS)

    Rafiq, Muhammad; Langlois, Laurent; Bigot, Régis

    2011-01-01

    Weld cladding is employed to improve the service life of engineering components by increasing corrosion and wear resistance and reducing the cost. The acceptable multi-bead cladding layer depends on single bead geometry. Hence, in first step, the relationship between input process parameters and the single bead geometry is studied and in second step a comprehensive study on multi bead clad layer deposition is carried out. This paper highlights an experimental study carried out to get single layer cladding deposited by automated Gas Metal Arc Welding (GMAW) process and to find the possibility of hot forming of the cladded work piece to get the final hot formed improved structure. GMAW is an arc welding process that uses an arc between a consumable electrode and the welding pool with an external shielding gas and the cladding is done by alongside deposition of weld beads. The experiments for single bead were conducted by varying the three main process parameters wire feed rate, arc voltage and welding speed while keeping other parameters like nozzle to work distance, shielding gas and its flow rate and torch angle constant. The effect of bead spacing and torch orientation on the cladding quality of single layer from the results of single bead deposition was studied. Effect of the dilution rate and nominal energy on the cladded layer hot bending quality was also performed at different temperatures.

  6. Examination of T-111 clad uranium nitride fuel pins irradiated up to 13,000 hours at a clad temperature of 990 C

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.; Siegel, B. L.

    1973-01-01

    The examination of 27 fuel pins irradiated for up to 13,000 hours at 990 C is described. The fuel pin clad was a tantalum alloy with uranium nitride as the nuclear fuel. Two nominal fuel pin diameters were tested with a maximum burnup of 2.34 atom percent. Twenty-two fuel pins were tested for fission gas leaks; thirteen pins leaked. Clad ductility tests indicated clad embrittlement. The embrittlement is attributed to hydrogen from an n,p reaction in the fuel. Fuel swelling was burnup dependent, and the amount of fission gas release was low, generally less than 0.5 percent. No incompatibilities between fuel, liner, and clad were in evidence.

  7. Double-clad nuclear fuel safety rod

    DOEpatents

    McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan

    1984-01-01

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  8. Double-clad nuclear-fuel safety rod

    DOEpatents

    McCarthy, W.H.; Atcheson, D.B.

    1981-12-30

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  9. Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating.

    PubMed

    Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia

    2016-09-11

    An orientation-dependent displacement sensor based on grating inscription over a fiber core and inner cladding has been demonstrated. The device comprises a short piece of multi-cladding fiber sandwiched between two standard single-mode fibers (SMFs). The grating structure is fabricated by a femtosecond laser side-illumination technique. Two well-defined resonances are achieved by the downstream both core and cladding fiber Bragg gratings (FBGs). The cladding resonance presents fiber bending dependence, together with a strong orientation dependence because of asymmetrical distribution of the "cladding" FBG along the fiber cross-section.

  10. Evaluation of Tritium Content and Release from Pressurized Water Reactor Fuel Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Sharon M.; Chattin, Marc Rhea; Giaquinto, Joseph

    2015-09-01

    It is expected that tritium pretreatment will be required in future reprocessing plants to prevent the release of tritium to the environment (except for long-cooled fuels). To design and operate future reprocessing plants in a safe and environmentally compliant manner, the amount and form of tritium in the used nuclear fuel (UNF) must be understood and quantified. Tritium in light water reactor (LWR) fuel is dispersed between the fuel matrix and the fuel cladding, and some tritium may be in the plenum, probably as tritium labelled water (THO) or T 2O. In a standard processing flowsheet, tritium management would bemore » accomplished by treatment of liquid streams within the plant. Pretreating the fuel prior to dissolution to release the tritium into a single off-gas stream could simplify tritium management, so the removal of tritium in the liquid streams throughout the plant may not be required. The fraction of tritium remaining in the cladding may be reduced as a result of tritium pretreatment. Since Zircaloy® cladding makes up roughly 25% by mass of UNF in the United States, processes are being considered to reduce the volume of reprocessing waste for Zircaloy® clad fuel by recovering the zirconium from the cladding for reuse. These recycle processes could release the tritium in the cladding. For Zircaloy-clad fuels from light water reactors, the tritium produced from ternary fission and other sources is expected to be divided between the fuel, where it is generated, and the cladding. It has been previously documented that a fraction of the tritium produced in uranium oxide fuel from LWRs can migrate and become trapped in the cladding. Estimates of the percentage of tritium in the cladding typically range from 0–96%. There is relatively limited data on how the tritium content of the cladding varies with burnup and fuel history (temperature, power, etc.) and how pretreatment impacts its release. To gain a better understanding of how tritium in cladding will

  11. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  12. Fuel Retention Improvement at High Temperatures in Tungsten-Uranium Dioxide Dispersion Fuel Elements by Plasma-Spray Cladding

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.; Caves, Robert M.

    1964-01-01

    An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.

  13. Compact cladding-pumped planar waveguide amplifier and fabrication method

    DOEpatents

    Bayramian, Andy J.; Beach, Raymond J.; Honea, Eric; Murray, James E.; Payne, Stephen A.

    2003-10-28

    A low-cost, high performance cladding-pumped planar waveguide amplifier and fabrication method, for deployment in metro and access networks. The waveguide amplifier has a compact monolithic slab architecture preferably formed by first sandwich bonding an erbium-doped core glass slab between two cladding glass slabs to form a multi-layer planar construction, and then slicing the construction into multiple unit constructions. Using lithographic techniques, a silver stripe is deposited and formed at a top or bottom surface of each unit construction and over a cross section of the bonds. By heating the unit construction in an oven and applying an electric field, the silver stripe is then ion diffused to increase the refractive indices of the core and cladding regions, with the diffusion region of the core forming a single mode waveguide, and the silver diffusion cladding region forming a second larger waveguide amenable to cladding pumping with broad area diodes.

  14. Semipolar III-nitride laser diodes with zinc oxide cladding.

    PubMed

    Myzaferi, Anisa; Reading, Arthur H; Farrell, Robert M; Cohen, Daniel A; Nakamura, Shuji; DenBaars, Steven P

    2017-07-24

    Incorporating transparent conducting oxide (TCO) top cladding layers into III-nitride laser diodes (LDs) improves device design by reducing the growth time and temperature of the p-type layers. We investigate using ZnO instead of ITO as the top cladding TCO of a semipolar (202¯1) III-nitride LD. Numerical modeling indicates that replacing ITO with ZnO reduces the internal loss in a TCO clad LD due to the lower optical absorption in ZnO. Lasing was achieved at 453 nm with a threshold current density of 8.6 kA/cm 2 and a threshold voltage of 10.3 V in a semipolar (202¯1) III-nitride LD with ZnO top cladding.

  15. Fuel clad chemical interactions in fast reactor MOX fuels

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.

    2014-01-01

    Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel-Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ṡ [B/(at.% fission)] ṡ (T/K-705) ṡ [(O/M)i-1.935]} + 20.5) for (O/M)i ⩽ 1.98. A new model is proposed for (O/M)i ⩾ 1.98: d/μm = [B/(at.% fission)] ṡ (T/K-800)0.5 ṡ [(O/M)i-1.94] ṡ [P/(W cm-1)]0.5. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M)i is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.

  16. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGES

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; ...

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  17. An elasto-plastic fracture mechanics based model for assessment of hydride embrittlement in zircaloy cladding tubes

    NASA Astrophysics Data System (ADS)

    Nilsson, Karl-Fredrik; Jakšić, Nikola; Vokál, Vratko

    2010-01-01

    This paper describes a finite element based fracture mechanics model to assess how hydrides affect the integrity of zircaloy cladding tubes. The hydrides are assumed to fracture at a low load whereas the propagation of the fractured hydrides in the matrix material and failure of the tube is controlled by non-linear fracture mechanics and plastic collapse of the ligaments between the hydrides. The paper quantifies the relative importance of hydride geometrical parameters such as size, orientation and location of individual hydrides and interaction between adjacent hydrides. The paper also presents analyses for some different and representative multi-hydride configurations. The model is adaptable to general and complex crack configurations and can therefore be used to assess realistic hydride configurations. The mechanism of cladding failure is by plastic collapse of ligaments between interacting fractured hydrides. The results show that the integrity can be drastically reduced when several radial hydrides form continuous patterns.

  18. Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding

    NASA Astrophysics Data System (ADS)

    Wang, Longfei; He, Dongbing; Hu, Lili; Chen, Danping

    2015-04-01

    The stack-and-draw technique was used to fabricate Nd3+-doped silicate and phosphate glass double-clad step-index fibers with a non-circular inner cladding. For the silicate fiber, a maximum output power of 7.7 W was obtained from a 94 cm fiber. An output power of 1.25 W was also realized with a short length fiber of 8 cm, confirming the application potential of this fiber in single frequency lasers and pulsed amplifiers where an efficient rare-earth-doped fiber with short length is desirable. For the phosphate fiber, a maximum output power of 2.78 W was obtained from a single-mode fiber with a core diameter of up to 35 μm.

  19. Improved synthesis of carbon-clad silica stationary phases.

    PubMed

    Haidar Ahmad, Imad A; Carr, Peter W

    2013-12-17

    Previously, we described a novel method for cladding elemental carbon onto the surface of catalytically activated silica by a chemical vapor deposition (CVD) method using hexane as the carbon source and its use as a substitute for carbon-clad zirconia.1,2 In that method, we showed that very close to exactly one uniform monolayer of Al (III) was deposited on the silica by a process analogous to precipitation from homogeneous solution in order to preclude pore blockage. The purpose of the Al(III) monolayer is to activate the surface for subsequent CVD of carbon. In this work, we present an improved procedure for preparing the carbon-clad silica (denoted CCSi) phases along with a new column packing process. The new method yields CCSi phases having better efficiency, peak symmetry, and higher retentivity compared to carbon-clad zirconia. The enhancements were achieved by modifying the original procedure in three ways: First, the kinetics of the deposition of Al(III) were more stringently controlled. Second, the CVD chamber was flushed with a mixture of hydrogen and nitrogen gas during the carbon cladding process to minimize generation of polar sites by oxygen incorporation. Third, the fine particles generated during the CVD process were exhaustively removed by flotation in an appropriate solvent.

  20. Study and Behaviour of Prefabricated Composite Cladding

    NASA Astrophysics Data System (ADS)

    Sai Avinash, P.; Thiagarajan, N.; Santhi, A. S.

    2017-07-01

    The incessant population rise entailed for an expeditious construction at competitive prices that steered the customary path to the light weight structural components. This lead to construction of structural components using ferrocement. The load bearing structural cladding, sizing 3200x900x100 mm, is chosen for the study, which, is analyzed using the software ABAQUS 6.14 in accordance with the IS:875-87 Part1, IS:875-87 Part2, ACI 549R-97, ACI 318R-08 and NZS:3101-06 Part1 standards. The Ferrocement claddings (FCs) are fabricated to a scaled dimension of 400x115x38 mm. The light weight-high strength phenomena are corroborated by incorporating Glass Fibre Reinforced Polymer Laminates (GFRPL) of thickness 6mm, engineered with the aid of hand layup (wet layup) technique wielding epoxy resin, followed by curing under room temperature. The epoxy resin is employed for fastening ferrocement cladding with the Glass fiber reinforced polymer laminate, with the contemporary methodology. The compressive load carrying capacity of the amalgamated assembly, both in presence and absence of Glass Fibre Reinforced polymer laminates (GFRPL) on either side of Ferrocement cladding, has been experimented.

  1. Clad-pumped Er-nanoparticle-doped fiber laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Baker, Colin C.; Friebele, E. Joseph; Rhonehouse, Daniel L.; Marcheschi, Barbara A.; Peele, John R.; Kim, Woohong; Sanghera, Jasbinder S.; Zhang, Jun; Chen, Youming; Pattnaik, Radha K.; Dubinskii, Mark

    2017-03-01

    Erbium-doped fiber lasers are attractive for directed energy weapons applications because they operate in a wavelength region that is both eye-safer and a window of high atmospheric transmission. For these applications a clad-pumped design is desirable, but the Er absorption must be high because of the areal dilution of the doped core vs. the pump cladding. High Er concentrations typically lead to Er ion clustering, resulting in quenching and upconversion. Nanoparticle (NP) doping of the core overcomes these problems by physically surrounding the Er ions with a cage of Al and O in the NP, which keeps them separated to minimize excited state energy transfer. A significant issue is obtaining high Er concentrations without the NP agglomeration that degrades the optical properties of the fiber core. We have developed the process for synthesizing stable Er-NP suspension which have been used to fabricate EDFs with Er concentrations >90 dB/m at 1532 nm. Matched clad fibers have been evaluated in a core-pumped MOPA with pump and signal wavelengths of 1475 and 1560 nm, respectively, and efficiencies of 72% with respect to absorbed pump have been obtained. We have fabricated both NP- and solution-doped double clad fibers, which have been measured in a clad-pumped laser testbed using a 1532 nm pump. The 1595 nm laser efficiency of the NP-doped fiber was 47.7%, which is high enough for what is believed to be the first laser experiment with the cladding pumped, NP-doped fiber. Further improvements are likely with a shaped cladding and new low-index polymer coatings with lower absorption in the 1500 - 1600 nm range.

  2. Analysis of unclad and sub-clad semi-elliptical flaws in pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irizarry-Quinones, H.; Macdonald, B.D.; McAfee, W.J.

    This study was conducted to support warm prestressing experiments on unclad and sub-clad flawed beams loaded in pure bending. Two cladding yield strengths were investigated: 0.6 Sy and 0.8 Sy, where Sy is the yield strength of the base metal. Cladding and base metal were assumed to be stress free at the stress relief temperature for the 3D elastic-plastic finite element analysis used to model the experiments. The model results indicated that when cooled from the stress relief temperature, the cladding was put in tension due to its greater coefficient of thermal expansion. When cooled, the cladding exhibited various amountsmore » of tensile yielding. The degree of yielding depended on the amount of cooling and the strength of the cladding relative to that of the base metal. When subjected to tensile bending stress, the sub-clad flaw elastic-plastic stress intensity factor, K{sub I}(J), was at first dominated by crack closing force due to tensile yielding in the cladding. Thus, imposed loads initially caused no increase in K{sub I}(J) near the clad-base interface. However, K{sub I}(J) at the flaw depth was little affected. When the cladding residual stress was overcome, K{sub I}(J) gradually increased until the cladding began to flow. Thereafter, the rate at which K{sub I}(J) increased with load was the same as that of an unclad beam. A plastic zone corrected K{sub I} approximation for the unclad flaw was found by the superposition of standard Newman and Raju solutions with those due to a cladding crack closure force approximated by the Kaya and Erdogan solution. These elastic estimates of the effect of cladding in reducing the crack driving force were quite in keeping with the 3D elastic-plastic finite element solution for the sub-clad flaw. The results were also compared with the analysis of clad beam experiments by Keeney and the conclusions by Miyazaki, et al. A number of sub-clad flaw specimens not subjected to warm prestressing were thought to have suffered

  3. Roll Casting of Aluminum Alloy Clad Strip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, R.; Tsuge, H.; Haga, T.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connectedmore » when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.« less

  4. Cladding and duct materials for advanced nuclear recycle reactors

    NASA Astrophysics Data System (ADS)

    Allen, T. R.; Busby, J. T.; Klueh, R. L.; Maloy, S. A.; Toloczko, M. B.

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.

  5. Robust cladding light stripper for high-power fiber lasers using soft metals.

    PubMed

    Babazadeh, Amin; Nasirabad, Reza Rezaei; Norouzey, Ahmad; Hejaz, Kamran; Poozesh, Reza; Heidariazar, Amir; Golshan, Ali Hamedani; Roohforouz, Ali; Jafari, S Naser Tabatabaei; Lafouti, Majid

    2014-04-20

    In this paper we present a novel method to reliably strip the unwanted cladding light in high-power fiber lasers. Soft metals are utilized to fabricate a high-power cladding light stripper (CLS). The capability of indium (In), aluminum (Al), tin (Sn), and gold (Au) in extracting unwanted cladding light is examined. The experiments show that these metals have the right features for stripping the unwanted light out of the cladding. We also find that the metal-cladding contact area is of great importance because it determines the attenuation and the thermal load on the CLS. These metals are examined in different forms to optimize the contact area to have the highest possible attenuation and avoid localized heating. The results show that sheets of indium are very effective in stripping unwanted cladding light.

  6. Laser cladding: repairing and manufacturing metal parts and tools

    NASA Astrophysics Data System (ADS)

    Sexton, Leo

    2003-03-01

    Laser cladding is presently used to repair high volume aerospace, automotive, marine, rail or general engineering components where excessive wear has occurred. It can also be used if a one-off high value component is either required or has been accidentally over-machined. The ultimate application of laser cladding is to build components up from nothing, using a laser cladding system and a 3D CAD drawing of the component. It is thus emerging that laser cladding can be classified as a special case of Rapid Prototyping (RP). Up to this point in time RP was seen, and is still seen, as in intermediately step between the design stage of a component and a finished working product. This can now be extended so that laser cladding makes RP a one-stop shop and the finished component is made from tool-steel or some alloy-base material. The marriage of laser cladding with RP is an interesting one and offers an alternative to traditional tool builders, re-manufacturers and injection mould design/repair industries. The aim of this paper is to discuss the emergence of this new technology, along with the transference of the process out of the laboratory and into the industrial workplace and show it is finding its rightful place in the manufacturing/repair sector. It will be shown that it can be used as a cost cutting, strategic material saver and consequently a green technology.

  7. Experimental Study on Composite Light-weight Microporous Concrete Cladding Panels

    NASA Astrophysics Data System (ADS)

    Lida, Tian; Dongyan, Wang; Kang, Liu

    2018-03-01

    A new type of composite light-weight microporous concrete cladding panel was developed, with the compound function of retaining and heat preservation. Two specimens of the new cladding panel and connection detailing were made for out-of-plane bending experiment. The results indicate that the new cladding panel and its connection detailing are of sufficient stiffness, bearing capacity and deformability under wind load and out-of-plane seismic action.

  8. Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating

    PubMed Central

    Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia

    2016-01-01

    An orientation-dependent displacement sensor based on grating inscription over a fiber core and inner cladding has been demonstrated. The device comprises a short piece of multi-cladding fiber sandwiched between two standard single-mode fibers (SMFs). The grating structure is fabricated by a femtosecond laser side-illumination technique. Two well-defined resonances are achieved by the downstream both core and cladding fiber Bragg gratings (FBGs). The cladding resonance presents fiber bending dependence, together with a strong orientation dependence because of asymmetrical distribution of the “cladding” FBG along the fiber cross-section. PMID:27626427

  9. Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding.

    PubMed

    Rong, Qiangzhou; Qiao, Xueguang; Guo, Tuan; Bao, Weijia; Su, Dan; Yang, Hangzhou

    2014-12-01

    An orientation-sensitive fiber-optic accelerometer based on grating inscription over fiber cladding has been demonstrated. The sensor probe comprises a compact structure in which a short section of thin-core fiber (TCF) stub containing a "cladding" fiber Bragg grating (FBG) is spliced to another single-mode fiber (SMF) without any lateral offset. A femtosecond laser side-illumination technique was utilized to ensure that the grating inscription remains close to the core-cladding interface of the TCF. The core mode and the cladding mode of the TCF are coupled at the core-mismatch junction, and two well-defined resonances in reflection appear from the downstream FBG, in which the cladding resonance exhibits a strong polarization and bending dependence due to the asymmetrical distribution of the cladding FBG along the fiber cross section. Strong orientation dependence of the vibration (acceleration) measurement has been achieved by power detection of the cladding resonance. Meanwhile, the unwanted power fluctuations and temperature perturbations can be referenced out by monitoring the fundamental core resonance.

  10. Cladding for transverse-pumped solid-state laser

    NASA Technical Reports Server (NTRS)

    Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)

    1989-01-01

    In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.

  11. ZIRCONIUM-CLADDING OF THORIUM

    DOEpatents

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  12. Qualification of submerged-arc narrow strip cladding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, P.S.; Gottschling, J.D.; Jeffers, G.K.

    1975-08-01

    An unique narrow strip cladding process for use on both plate and forging material for nuclear components was developed. The qualification testing of this low-heat input process for cladding nuclear components, including those of SA508 Class 2 material is described. The theory that explains the acceptable results of these tests is also given. (auth)

  13. Qualification of submerged-arc narrow strip cladding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, P.S.; Gottschling, J.D.; Jeffers, G.K.

    1976-03-01

    Babcock and Wilcox has developed an unique narrow strip cladding process for use on both plate and forging material for nuclear components. The qualification testing of this low-heat input process for cladding nuclear components is described, including those of SA508 Class 2 material. The theory that explains the acceptable results of these tests is also given.

  14. Beam shaping of laser diode radiation by waveguides with arbitrary cladding geometry written with fs-laser radiation.

    PubMed

    Beckmann, Dennis; Schnitzler, Daniel; Schaefer, Dagmar; Gottmann, Jens; Kelbassa, Ingomar

    2011-12-05

    Waveguides with arbitrary cross sections are written in the volume of Al(2)O(3)-crystals using tightly focused femtosecond laser radiation. Utilizing a scanning system with large numerical aperture, complex cladding geometries are realized with a precision around 0.5 µm and a scanning speed up to 100 mm/s. Individual beam and mode shaping of laser diode radiation is demonstrated by varying the design of the waveguide cladding. The influence of the writing parameters on the waveguide properties are investigated resulting in a numerical aperture of the waveguides in the range of 0.1. This direct laser writing technique enables optical devices which could possibly replace bulky beam shaping setups with an integrated solution.

  15. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.

    PubMed

    Liu, Hongliang; Jia, Yuechen; Vázquez de Aldana, Javier Rodríguez; Jaque, Daniel; Chen, Feng

    2012-08-13

    We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

  16. Screening of advanced cladding materials and UN-U3Si5 fuel

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas R.; Todosow, Michael; Cuadra, Arantxa

    2015-07-01

    In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2-Zr fuel-cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN-U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN-U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN-U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2-Zr fuel-cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to 14N content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels are not expected to have significantly different relative burn-up distributions at discharge relative to the UO2 reference fuel. However, the overall harder spectrum in the UN ceramic composite fuels increases transuranic build-up, which will increase long-term activity in a once-thru fuel cycle but is expected to be a significant advantage in a fuel cycle with continuous recycling of transuranic material. It is recognized that the fuel and cladding properties assumed in

  17. Kilowatt-level cladding light stripper for high-power fiber laser.

    PubMed

    Yan, Ping; Sun, Junyi; Huang, Yusheng; Li, Dan; Wang, Xuejiao; Xiao, Qirong; Gong, Mali

    2017-03-01

    We designed and fabricated a high-power cladding light stripper (CLS) by combining a fiber-etched CLS with a cascaded polymer-recoated CLS. The etched fiber reorganizes the numerical aperture (NA) distribution of the cladding light, leading to an increase in the leakage power and a flatter distribution of the leakage proportion in the cascaded polymer-recoated fiber. The index distribution of the cascaded polymer-recoated fiber is carefully designed to ensure an even leakage of cladding light. More stages near the index of 1.451 are included to disperse the heat. The CLS is capable of working consistently under 1187 W of cladding light with an attenuation of 26.59 dB, and the highest local temperature is less than 35°C.

  18. Oxidation performance of platinum-clad Mo-47Re alloy

    NASA Technical Reports Server (NTRS)

    Clark, Ronald K.; Wallace, Terryl A.

    1994-01-01

    The alloy Mo-47Re has favorable mechanical properties at temperatures above 1400 C, but it undergoes severe oxidation when used in air with no protective coating. To shield the alloy from oxidation, platinum cladding has been evaluated. The unprotected alloy undergoes catastrophic oxidation under static and dynamic oxidation conditions. The platinum cladding provides good protection from static and dynamic oxidation for moderate times at 1260 C. Samples tested for longer times under static oxidation conditions experienced severe oxidation. The data suggest that oxidation results from the transport of oxygen through the grain boundaries and through the pinhole defects of the platinum cladding.

  19. Metal clad aramid fibers for aerospace wire and cable

    NASA Technical Reports Server (NTRS)

    Tokarsky, Edward W.; Dunham, Michael G.; Hunt, James E.; Santoleri, E. David; Allen, David B.

    1995-01-01

    High strength light weight metal clad aramid fibers can provide significant weight savings when used to replace conventional metal wire in aerospace cable. An overview of metal clad aramid fiber materials and information on performance and use in braided electrical shielding and signal conductors is provided.

  20. 45 CFR 1610.8 - Program integrity of recipient.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OF NON-LSC FUNDS, TRANSFERS OF LSC FUNDS, PROGRAM INTEGRITY § 1610.8 Program integrity of recipient. (a) A recipient must have objective integrity and independence from any organization that engages in restricted activities. A recipient will be found to have objective integrity and independence from such an...

  1. The Mechanical Response of Advanced Claddings during Proposed Reactivity Initiated Accident Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinbiz, Mahmut N; Brown, Nicholas R; Terrani, Kurt A

    2017-01-01

    This study investigates the failure mechanisms of advanced nuclear fuel cladding of FeCrAl at high-strain rates, similar to design basis reactivity initiated accidents (RIA). During RIA, the nuclear fuel cladding was subjected to the plane-strain to equibiaxial tension strain states. To achieve those accident conditions, the samples were deformed by the expansion of high strength Inconel alloy tube under pre-specified pressure pulses as occurring RIA. The mechanical response of the advanced claddings was compared to that of hydrided zirconium-based nuclear fuel cladding alloy. The hoop strain evolution during pressure pulses were collected in situ; the permanent diametral strains of bothmore » accident tolerant fuel (ATF) claddings and the current nuclear fuel alloys were determined after rupture.« less

  2. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    DOE PAGES

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; ...

    2015-09-03

    Low-enrichment (U-235 < 20%) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing was comprised of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates that were tested inmore » INL's Advanced Test Reactor (ATR) were subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. Adjacent to the AA6061 cladding were Mg-rich precipitates, which was in close proximity to the region where Xe is observed to be enriched. In samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface were possible indications of porosity/debonding, which suggested that the interface in this location is relatively weak.« less

  3. Laser Cladding of Ti-6Al-4 V Powder on Ti-6Al-4 V Substrate: Effect of Laser Cladding Parameters on Microstructure

    NASA Astrophysics Data System (ADS)

    Cottam, Ryan; Brandt, Milan

    The laser cladding of Ti-6Al-4 V powder on Ti-6Al-4 V substrate has been investigated to determine laser parameters that could be used as a repair technology for Ti-6Al-4 V components. The parameters chosen for the investigation were developed by an analytical laser cladding model. Holding clad height and melt pool depth constant, the traversing speed was varied between 300 mm/min and 1500 mm/min, an associated power for the given speed was calculated by the model. Two different melt pool depths were used in the calculation of laser power for a given process velocity. The resulting microstructures in the clad zone varied from a relatively thin martensitic structure to a dendritic/thick martensitic structure. The heat affected zone (HAZ) showed a refinement of the Widmanstatten microstructure with a decreasing laser traversing speed and a coarser martensitic structure for the sample prepared with a deeper melt pool.

  4. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors

    DOE PAGES

    George, Nathan Michael; Terrani, Kurt A.; Powers, Jeffrey J.; ...

    2014-09-29

    A study analyzed the neutronics of alternate cladding materials in a pressurized water reactor (PWR) environment. Austenitic type 310 (310SS) and 304 stainless steels, ferritic Fe-20Cr-5Al (FeCrAl) and APMT™ alloys, and silicon carbide (SiC)-based materials were considered and compared with Zircaloy-4. SCALE 6.1 was used to analyze the associated neutronics penalty/advantage, changes in reactivity coefficients, and spectral variations once a transition in the cladding was made. In the cases examined, materials containing higher absorbing isotopes invoked a reduction in reactivity due to an increase in neutron absorption in the cladding. Higher absorbing materials produced a harder neutron spectrum in themore » fuel pellet, leading to a slight increase in plutonium production. A parametric study determined the geometric conditions required to match cycle length requirements for each alternate cladding material in a PWR. A method for estimating the end of cycle reactivity was implemented to compare each model to that of standard Zircaloy-4 cladding. By using a thinner cladding of 350 μm and keeping a constant outer diameter, austenitic stainless steels require an increase of no more than 0.5 wt% enriched 235U to match fuel cycle requirements, while the required increase for FeCrAl was about 0.1%. When modeling SiC (with slightly lower thermal absorption properties than that of Zircaloy), a standard cladding thickness could be implemented with marginally less enriched uranium (~0.1%). Moderator temperature and void coefficients were calculated throughout the depletion cycle. Nearly identical reactivity responses were found when coolant temperature and void properties were perturbed for each cladding material. By splitting the pellet into 10 equal areal sections, relative fission power as a function of radius was found to be similar for each cladding material. FeCrAl and 310SS cladding have a slightly higher fission power near the pellet’s periphery due to the

  5. Some recent studies on laser cladding and dissimilar welding

    NASA Astrophysics Data System (ADS)

    Kaul, Rakesh; Ganesh, P.; Paul, C. P.; Albert, S. K.; Mudali, U. Kamachi; Nath, A. K.

    2006-01-01

    Indigenous development of high power CO II laser technology and industrial application of lasers represent two important mandates of the laser program, being pursued at Centre for Advanced Technology (CAT), India. The present paper describes some of the important laser material processing studies, involving cladding and dissimilar welding, performed in authors' laboratory. The first case study describes how low heat input characteristics of laser cladding process has been successfully exploited for suppressing dilution in "Colmonoy6" (a nickel-base hardfacing alloy) deposits on austenitic stainless steel components. Crack free hardfaced deposits were obtained by controlling heating and cooling rates associated with laser treatment. The results show significant advantage over Colmonoy 6 deposits made by GTAW, where a 2.5 mm thick region of dilution (with reduced hardness) develops next to substrateiclad interface. The next work involves laser-assisted deposition of graded "Stellite6" (a Co-base hardfacing alloy) with smooth transition in chemical composition and hardness for enhanced resistance against cracking, esp. under thermal cycling conditions. The following two case studies demonstrate significant improvement in corrosion properties of type 304L stainless steel by laser surface alloying, achieved through cladding route. The following case study demonstrates engineering of fusion zone microstructure of end plug dissimilar weld (between alloy D9 and type 3 16M stainless steel) by controlled preferential displacement of focused laser beam, which, in-turn, enhanced its resistance against solidification cracking. Crater appearing at the termination point of laser weld is also eliminated by ramping of laser power towards the end of laser welding. The last case study involves engineering of fusion zone microstructure of dissimilar laser weld between type 304 austenitic stainless steel and stabilized 17%Cr ferritic stainless steel by controlling welding parameters.

  6. Results of NDE Technique Evaluation of Clad Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunerth, Dennis C.

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used tomore » detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of

  7. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Medvedev, Pavel; Madden, James; Wachs, Dan; Clark, Curtis; Meyer, Mitch

    2015-09-01

    Low-enrichment (235U < 20 pct) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing consisted of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates were fabricated using a friction bonding process, tested in INL's advanced test reactor (ATR), and then subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. In the samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface, possible indications of porosity/debonding were found, which suggested that the interface in this location is relatively weak.

  8. Microstructure and properties of laser-clad high-temperature wear-resistant alloys

    NASA Astrophysics Data System (ADS)

    Yang, Yongqiang

    1999-02-01

    A 2-kW CO 2 laser with a powder feeder was used to produce alloy coatings with high temperature-wear resistance on the surface of steel substrates. To analyze the microstructure and microchemical composition of the laser-clad layers, a scanning electron microscope (SEM) equipped with an energy dispersive X-ray microanalysis system was employed. X-ray diffraction techniques were applied to characterize the phases formed during the cladding process. The results show that the microstructure of the cladding alloy consists mainly of many dispersed particles (W 2C, (W,Ti)C 1- x, WC), a lamellar eutectic carbide M 12C, and an (f.c.c) matrix. Hardness tested at room and high temperature showed that the laser-clad zone has a moderate room temperature hardness and relatively higher elevated temperature hardness. The application of the laser-clad layer to a hot tool was very successful, and its operational life span was prolonged 1 to 4 times.

  9. The effect of laser process parameters on microstructure and dilution rate of cladding coatings

    NASA Astrophysics Data System (ADS)

    Bin, Liu; Heping, Liu; Xingbin, Jing; Yuxin, Li; Peikang, Bai

    2018-02-01

    In order to broaden the range of application of Q235 steel, it is necessary to repair the surface of steel. High performance 316L stainless steel coating was successfully obtained on Q235 steel by laser cladding technology. The effect of laser cladding parameters on the geometrical size and appearance of single cladding layer was investigated. The experimental results show that laser current has an important influence on the surface morphology of single channel cladding. When the current is from 155A to 165A, the cladding coating becomes smooth. The laser current has an effect on the geometric cross section size and dilution rate of single cladding. The results revealed that with the rising of laser current, the width, height and depth of layer increase gradually. With the rising of laser current, the dilution rate of cladding layer is gradually increasing.

  10. Downscaling of conventional laser cladding technique to microengineering

    NASA Astrophysics Data System (ADS)

    del Val, J.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; Quintero, F.; Pou, J.

    To get an adequate response to the high increase of micro-products demand, new techniques have been developed by different types of industries in the last years. One approach is to adapt the laser surface cladding technique to the scale of microengineering. A new experimental configuration has been developed based on a highly stable high power laser with a high beam quality and a micro-feeder adequate to supply submicron particles. This work collects our efforts to extend the operation range of the laser cladding to the laser micro-cladding in order to produce micro-coatings. The viability of this new technique has been demonstrated by depositing coatings with geometrical characteristics in the micrometer range (minimum values obtained: 32 μm of width and 12 μm of height).

  11. Fabrication and testing of U-7Mo monolithic plate fuel with Zircaloy cladding

    NASA Astrophysics Data System (ADS)

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; Wachs, D. M.; Finlay, M. R.

    2016-10-01

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U-(7-10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry-4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry-4 clad U-7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry-4 and U-(7-10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction-either from fabrication or in-reactor testing-and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm3, 3.8E+21 (peak).

  12. Finite Element Analysis of Laser Engineered Net Shape (LENS™) Tungsten Clad Squeeze Pins

    NASA Astrophysics Data System (ADS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local "squeeze" pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ("soldering"). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS™ process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding.

  13. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.

    In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less

  14. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation

    DOE PAGES

    Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.; ...

    2016-03-16

    In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less

  15. Research on Microstructure and Property of TiC-Co Composite Material Made by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    The experiment of laser cladding on the surface of 2Cr13 steel was made. Titanium carbide (TiC) powder and Co-base alloy powder were used as cladding material. The microstructure and property of laser cladding layer were tested. The research showed that laser cladding layer had better properties such as minute crystals, deeper layer, higher hardness and good metallurgical bonding with base metal. The structure of cladding was supersaturated solid solution with dispersed titanium carbide. The average hardness of cladding zone was 660HV0.2. 2Cr13 steel was widely used in the field of turbine blades. Using laser cladding, the good wear layer would greatly increase the useful life of turbine blades.

  16. Jet slurry erosion performance of composite clad and its characterization

    NASA Astrophysics Data System (ADS)

    B, Lohit R.; Horakeri, Gururaj S.; Bhovi, Prabakhar M.

    2016-09-01

    In the present work, development of composite cladding consists of Cr23C6 (chromium carbide) as reinforcement particles 20 wt. % in Ni-based matrix 80 wt. % on austenitic stainless steel through exposure of microwave radiation has been carried out. The jet slurry erosion test was performed on microwave composite clad. The functional performance of composite clad has been evaluated for different parametric conditions like varying impingement velocity and impact angle. The increasing weight loss trend was observed with time for the first 30 min. after that the individual trend decreased; at high impingement velocity and maximum impact angle. SEM micrographs of eroded clad samples at various impact angle and impingement velocity were discussed. The maximum weight loss occurred at 90° angle and velocity of 60 m/s, and minimum at 30° angle and velocity of 20 m/s.

  17. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrixmore » composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing« less

  18. Cladding material, tube including such cladding material and methods of forming the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnier, John E.; Griffith, George W.

    A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and highmore » temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.« less

  19. Bending testing and characterization of surrogate nuclear fuel rods made of Zircaloy-4 cladding and aluminum oxide pellets

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wang, Jy-An John

    2016-10-01

    Behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending was studied. Tests were performed under load or moment control at 5 Hz. The surrogate rods fractured under moment amplitudes greater than 10.16 Nm with fatigue lives between 2.4 × 103 and 2.2 × 106 cycles. Fatigue response of Zry-4 cladding was characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition affect surrogate rod failure. Both debonding of PPI/PCI and pellet fracturing contribute to surrogate rod bending fatigue. The effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective gauge length is effective in sensor spacing correction. The database developed and the understanding gained in this study can serve as input to analysis of SNF (spent nuclear fuel) vibration integrity.

  20. Bending testing and characterization of surrogate nuclear fuel rods made of Zircaloy-4 cladding and aluminum oxide pellets

    DOE PAGES

    Wang, Hong; Wang, Jy-An John

    2016-07-20

    We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less

  1. MIUS integration and subsystems test program

    NASA Technical Reports Server (NTRS)

    Beckham, W. S., Jr.; Shows, G. C.; Redding, T. E.; Wadle, R. C.; Keough, M. B.; Poradek, J. C.

    1976-01-01

    The MIUS Integration and Subsystems Test (MIST) facility at the Lyndon B. Johnson Space Center was completed and ready in May 1974 for conducting specific tests in direct support of the Modular Integrated Utility System (MIUS). A series of subsystems and integrated tests was conducted since that time, culminating in a series of 24-hour dynamic tests to further demonstrate the capabilities of the MIUS Program concepts to meet typical utility load profiles for a residential area. Results of the MIST Program are presented which achieved demonstrated plant thermal efficiencies ranging from 57 to 65 percent.

  2. Mechanical behavior of aluminum-bearing ferritic alloys for accident-tolerant fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Guria, Ankan

    Nuclear power currently provides about 13% of electrical power worldwide. Nuclear reactors generating this power traditionally use Zirconium (Zr) based alloys as the fuel cladding material. Exothermic reaction of Zr with steam under accident conditions may lead to production of hydrogen with the possibility of catastrophic consequences. Following the Fukushima-Daiichi incident, the exploration of accident-tolerant fuel cladding materials accelerated. Aluminum-rich (around 5 wt. %) ferritic steels such as Fecralloy, APMT(TM) and APM(TM) are considered as potential materials for accident-tolerant fuel cladding applications. These materials create an aluminum-based oxide scale protecting the alloy at elevated temperatures. Tensile deformation behavior of the above alloys was studied at different temperatures (25-500 °C) at a strain rate of 10-3 s-1 and correlated with microstructural characteristics. Higher strength and decent ductility of APMT(TM) led to further investigation of the alloy at various combination of strain rates and temperatures followed by fractography and detailed microscopic analyses. Serrations appeared in the stress-strain curves of APMT(TM) and Fecralloy steel tested in a limited temperature range (250-400 °C). The appearance of serrations is explained on the basis of dynamic strain aging (DSA) effect due to solute-dislocation interactions. The research in this study is being performed using the funds received from the US DOE Office of Nuclear Energy's Nuclear Energy University Programs (NEUP).

  3. Cladding of Mg alloy with Zr based BMG Alloy

    NASA Astrophysics Data System (ADS)

    Prasada Rao, A. K.; Oh, Y. S.; Faisal, M. K.; Kim, N. J.

    2016-02-01

    In the present work, an attempt has been made to clad AZ31 magnesium alloy with Zr-based bulk metallic glassy alloy (Vit-1), by casting method. The interface studies conducted using SEM-EDS line scan indicate that a good bond is formed at the clad interface of Zr and Mg. And the mechanism involved is discussed herein.

  4. Whales and Hermit Crabs: Integrated Programming and Science.

    ERIC Educational Resources Information Center

    Kataoka, Joy C.; Lock, Robin

    1995-01-01

    This article describes an integrated program in marine biology. The program was implemented in a nongraded inclusive setting with second- to fourth-grade students whose abilities ranged from gifted to learning disabled. The program integrated science, art, music, language arts, and research and computer skills. (DB)

  5. Impact of integrated programs on general surgery operative volume.

    PubMed

    Jensen, Amanda R; Nickel, Brianne L; Dolejs, Scott C; Canal, David F; Torbeck, Laura; Choi, Jennifer N

    2017-03-01

    Integrated residencies are now commonplace, co-existing with categorical general surgery residencies. The purpose of this study was to define the impact of integrated programs on categorical general surgery operative volume. Case logs from categorical general, integrated plastics, vascular, and thoracic surgery residents from a single institution from 2008 to 2016 were collected and analyzed. Integrated residents have increased the number of cases they perform that would have previously been general surgery resident cases from 11 in 2009-2010 to 1392 in 2015-2016. Despite this, there was no detrimental effect on total major cases of graduating chief residents. Multiple integrated programs can co-exist with a general surgery program through careful collaboration and thoughtful consideration to longitudinal needs of individual trainees. As additional programs continue to be created, both integrated and categorical program directors must continue to collaborate to insure the integrity of training for all residents. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. 20-W 1952-nm tandem hybrid single and double clad TDFA

    NASA Astrophysics Data System (ADS)

    Romano, Clément; Tench, Robert E.; Delavaux, Jean-Marc

    2018-02-01

    A simple engineering design is important for achieving high Thulium-doped amplifier (TDFA) performance such as good power conversion, low noise figure (NF), scalable output power, high gain, and stable operation over a large dynamic range. In this paper we report the design, performance, and simulation of two stage high-power 1952 nm hybrid single and double clad TDFAs. The first stage of our hybrid amplifier is a single clad design, and the second stage is a double clad design. We demonstrate TDFAs with an output power greater than 20 W with single-frequency narrow linewidth (i.e. MHz) input signals at both 1952 and 2004 nm. An optical 10 dB bandwidth of 80 nm is derived from the ASE spectrum. The power stage is constructed with 10 μm core active fibers showing a maximum optical slope efficiency greater than 50 %. The experimental results lead to a 1 dB agreement with our simulation tool developed for single clad and double clad TDFAs. Overall this hybrid amplifier offers versatile features with the potential of much higher output power.

  7. High temperature sensor properties of a specialty double cladding fiber

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Pang, Fufei; Wang, Tingyun

    2011-12-01

    A simple high temperature fiber sensor is proposed and demonstrated. The sensor head is made of a short section of specialty double cladding fiber (DCF). The DCF consists of a depressed inner cladding which is boron (B)-doped silica. Through an evanescent wave, the cladding mode can be excited, and thus the transmission presents a resonant spectral dip. The high temperature sensing properties was studied according to the shift of the transmission spectrum shifts. With increasing the temperature from 28 °C to 850 °C, the resonant spectrum shifts to longer wavelengths. The sensitivity is 0.112 nm / °C.

  8. Single-mode fiber laser based on core-cladding mode conversion.

    PubMed

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  9. Corrosion Resistance of Laser Clads of Inconel 625 and Metco 41C

    NASA Astrophysics Data System (ADS)

    Němeček, Stanislav; Fidler, Lukáš; Fišerová, Pavla

    The present paper explores the impact of laser cladding parameters on the corrosion behaviour of the resulting surface. Powders of Inconel 625 and austenitic Metco 41C steel were deposited on steel substrate. It was confirmed that the level of dilution has profound impact on the corrosion resistance and that dilution has to be minimized. However, the chemical composition of the cladding is altered even in the course of the cladding process, a fact which is related to the increase in the substrate temperature. The cladding process was optimized to achieve maximum corrosion resistance. The results were verified and validated using microscopic observation, chemical analysis and corrosion testing.

  10. Laser performance and modeling of RE3+:YAG double-clad crystalline fiber waveguides

    NASA Astrophysics Data System (ADS)

    Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.

    2018-02-01

    We report on laser performance of ceramic Yb:YAG and single crystal Tm:YAG double-clad crystalline fiber waveguide (CFW) lasers towards the goal of demonstrating the design and manufacturing strategy of scaling to high output power. The laser component is a double-clad CFW, with RE3+:YAG (RE = Yb, Tm respectively) core, un-doped YAG inner cladding, and ceramic spinel or sapphire outer cladding. Laser performance of the CFW has been demonstrated with 53.6% slope efficiency and 27.5-W stable output power at 1030-nm for Yb:YAG CFW, and 31.6% slope efficiency and 46.7-W stable output power at 2019-nm for Tm:YAG CFW, respectively. Adhesive-Free Bond (AFB®) technology enables a designable refractive index difference between core and inner cladding, and designable core and inner cladding sizes, which are essential for single transverse mode CFW propagation. To guide further development of CFW designs, we present thermal modeling, power scaling and design of single transverse mode operation of double-clad CFWs and redefine the single-mode operation criterion for the double-clad structure design. The power scaling modeling of double-clad CFW shows that in order to achieve the maximum possible output power limited by the physical properties, including diode brightness, thermal lens effect, and simulated Brillion scattering, the length of waveguide is in the range of 0.5 2 meters. The length of an individual CFW is limited by single crystal growth and doping uniformity to about 100 to 200 mm lengths, and also by availability of starting crystals and manufacturing complexity. To overcome the limitation of CFW lengths, end-to-end proximity-coupling of CFWs is introduced.

  11. High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, Kevin M; Garnier, John E; Sergey Rashkeev

    2013-01-01

    Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a ß-SiC CMC overbraid, and sintered a-SiC weremore » tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.« less

  12. Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.

    As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of themore » cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply

  13. Effects of hydrogen on thermal creep behaviour of Zircaloy fuel cladding

    NASA Astrophysics Data System (ADS)

    Suman, Siddharth; Khan, Mohd Kaleem; Pathak, Manabendra; Singh, R. N.

    2018-01-01

    Zirconium alloys are extensively used for nuclear fuel cladding. Creep is one of the most likely degradation mechanisms for fuel cladding during reactor operating and repository conditions. Fuel cladding tubes undergo waterside corrosion during service and hydrogen is produced as a result of it-a fraction of which is picked up by cladding. Hydrogen remains in solid solution up to terminal solid solubility and it precipitates as brittle hydride phase in the zirconium metal matrix beyond this limiting concentration. Hydrogen, either in solid solution or as precipitated hydride, alters the creep behaviour of zirconium alloys. The present article critically reviews the influence of hydrogen on thermal creep behaviour of zirconium alloys, develops the systematic understanding of this multifaceted phenomenon, and delineates the thrust areas which require further investigations.

  14. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    NASA Astrophysics Data System (ADS)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2017-12-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  15. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    NASA Astrophysics Data System (ADS)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2018-02-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  16. Double-clad fiber with a tapered end for confocal endomicroscopy

    PubMed Central

    Lemire-Renaud, Simon; Strupler, Mathias; Benboujja, Fouzi; Godbout, Nicolas; Boudoux, Caroline

    2011-01-01

    We present a double-clad fiber coupler (DCFC) for use in confocal endomicroscopy to reduce speckle contrast, increase signal collection while preserving optical sectioning. The DCFC is made by incorporating a double-clad tapered fiber (DCTF) to a fused-tapered DCFC for achromatic transmission (from 1265 nm to 1325 nm) of > 95% illumination light trough the single mode (SM) core and collection of > 40% diffuse light through inner cladding modes. Its potential for confocal endomicroscopy is demonstrated in a spectrally-encoded imaging setup which shows a 3 times reduction in speckle contrast as well as 5.5 × increase in signal collection compared to imaging with a SM fiber. PMID:22076259

  17. Double-clad fiber with a tapered end for confocal endomicroscopy.

    PubMed

    Lemire-Renaud, Simon; Strupler, Mathias; Benboujja, Fouzi; Godbout, Nicolas; Boudoux, Caroline

    2011-11-01

    We present a double-clad fiber coupler (DCFC) for use in confocal endomicroscopy to reduce speckle contrast, increase signal collection while preserving optical sectioning. The DCFC is made by incorporating a double-clad tapered fiber (DCTF) to a fused-tapered DCFC for achromatic transmission (from 1265 nm to 1325 nm) of > 95% illumination light trough the single mode (SM) core and collection of > 40% diffuse light through inner cladding modes. Its potential for confocal endomicroscopy is demonstrated in a spectrally-encoded imaging setup which shows a 3 times reduction in speckle contrast as well as 5.5 × increase in signal collection compared to imaging with a SM fiber.

  18. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions

    DOE PAGES

    Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David; ...

    2017-04-30

    Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less

  19. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David

    Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less

  20. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating

    PubMed Central

    Yan, Xiao-Ling; Dong, Shi-Yun; Xu, Bin-Shi; Cao, Yong

    2018-01-01

    Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating. PMID:29438309

  1. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating.

    PubMed

    Yan, Xiao-Ling; Dong, Shi-Yun; Xu, Bin-Shi; Cao, Yong

    2018-02-13

    Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating.

  2. Computer Integrated Manufacturing. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This packet contains a program guide and Career Merit Achievement Plan (Career MAP) for the implementation of a computer-integrated manufacturing program in Florida secondary and postsecondary schools. The program guide describes the program content and structure, provides a program description, lists job titles under the program, and includes a…

  3. Investigation of cladding and coating stripping methods for specialty optical fibers

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ryul; Dhital, Dipesh; Yoon, Dong-Jin

    2011-03-01

    Fiber optic sensing technology is used extensively in several engineering fields, including smart structures, health and usage monitoring, non-destructive testing, minimum invasive sensing, safety monitoring, and other advanced measurement fields. A general optical fiber consists of a core, cladding, and coating layers. Many sensing principles require that the cladding or coating layer should be removed or modified. In addition, since different sensing systems are needed for different types of optical fibers, it is very important to find and sort out the suitable cladding or coating removal method for a particular fiber. This study focuses on finding the cladding and coating stripping methods for four recent specialty optical fibers, namely: hard polymer-clad fiber, graded-index plastic optical fiber, copper/carbon-coated optical fiber, and aluminum-coated optical fiber. Several methods, including novel laser stripping and conventional chemical and mechanical stripping, were tried to determine the most suitable and efficient technique. Microscopic investigation of the fiber surfaces was used to visually evaluate the mechanical reliability. Optical time domain reflectometric signals of the successful removal cases were investigated to further examine the optical reliability. Based on our results, we describe and summarize the successful and unsuccessful methods.

  4. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Buric, Michael; Ohodnicki, Paul R.; Nakano, Jinichiro; Liu, Bo; Chorpening, Benjamin T.

    2018-03-01

    The potential to use single-crystal sapphire optical fiber as an alternative to silica optical fibers for sensing in high-temperature, high-pressure, and chemically aggressive harsh environments has been recognized for several decades. A key technological barrier to the widespread deployment of harsh environment sensors constructed with sapphire optical fibers has been the lack of an optical cladding that is durable under these conditions. However, researchers have not yet succeeded in incorporating a high-temperature cladding process into the typical fabrication process for single-crystal sapphire fibers, which generally involves seed-initiated fiber growth from the molten oxide state. While a number of advances in fabrication of a cladding after fiber-growth have been made over the last four decades, none have successfully transitioned to a commercial manufacturing process. This paper reviews the various strategies and techniques for fabricating an optically clad sapphire fiber which have been proposed and explored in published research. The limitations of current approaches and future prospects for sapphire fiber cladding are discussed, including fabrication methods and materials. The aim is to provide an understanding of the past research into optical cladding of sapphire fibers and to assess possible material systems for future research on this challenging problem for harsh environment sensors.

  5. Medicaid Integrity Program; eligible entity and contracting requirements for the Medicaid Integrity audit program. Final rule.

    PubMed

    2008-09-26

    Section 1936 of the Social Security Act (the Act) (as added by section 6034 of the Deficit Reduction Act of 2005 (DRA) established the Medicaid Integrity Program to promote the integrity of the Medicaid program by requiring CMS to enter into contracts with eligible entities to: (1) Review the actions of individuals or entities furnishing items or services (whether on a fee-for-service, risk, or other basis) for which payment may be made under an approved State plan and/or any waiver of such plan approved under section 1115 of the Act; (2) audit claims for payment of items or services furnished, or administrative services rendered, under a State plan; (3) identify overpayments to individuals or entities receiving Federal funds; and (4) educate providers of services, managed care entities, beneficiaries, and other individuals with respect to payment integrity and quality of care. This final rule will provide requirements for an eligible entity to enter into a contract under the Medicaid integrity audit program. The final rule will also establish the contracting requirements for eligible entities. The requirements will include procedures for identifying, evaluating, and resolving organizational conflicts of interest that are generally applicable to Federal acquisition and procurement; competitive procedures to be used; and procedures under which a contract may be renewed.

  6. 5  W output power from a double-clad hybrid fiber with Yb-doped phosphate core and silicate cladding.

    PubMed

    Wang, Longfei; He, Dongbing; Zhang, Lei; Yu, Chunlei; Feng, Suya; Wang, Meng; Chen, Danping; Hu, Lili

    2017-08-01

    For the first time, to the best of our knowledge, we report on the realization of a laser from a Yb-doped phosphate core/silicate cladding double-clad hybrid fiber. 5 W output power was extracted with 14.6% slope efficiency and a laser spectrum of a 1027 nm central wavelength from a 20 cm long single-mode fiber with a ∼10  μm core diameter in a 20%-4% laser cavity. The laser efficiency can be significantly enhanced by correspondingly adjusting and optimizing the laser oscillator.

  7. Chemical Dissolution of Simulant FCA Cladding and Plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, G.; Pierce, R.; O'Rourke, P.

    The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO 3-KF) flowsheets ofmore » H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.« less

  8. Nanoscale light–matter interactions in atomic cladding waveguides

    PubMed Central

    Stern, Liron; Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2013-01-01

    Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light–matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light–vapour interactions on a chip. Specifically, we demonstrate light–matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime. PMID:23462991

  9. Characteristics of Ni-Cr-Fe laser clad layers on EA4T steel

    NASA Astrophysics Data System (ADS)

    Chen, Wenjing; Chen, Hui; Wang, Yongjing; Li, Congchen; Wang, Xiaoli

    2017-07-01

    The Ni-Cr-Fe metal powder was deposited on EA4T steel by laser cladding technology. The microstructure and chemical composition of the cladding layer were analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bonding ability between the cladding layer and the matrix was measured. The results showed that the bonding between the cladding layer and the EA4T steel was metallurgical bonding. The microstructure of cladding layer was composed of planar crystals, columnar crystals and dendrite, which consisted of Cr2Ni3, γ phase, M23C6 and Ni3B phases. When the powder feeding speed reached 4 g/min, the upper bainite occurred in the heat affected zone (HAZ). Moreover, the tensile strength of the joint increased, while the yield strength and the ductility decreased.

  10. Residual Stress Measurement and the Effect of Heat Treatment in Cladded Control Rod Drive Specimens

    NASA Astrophysics Data System (ADS)

    Bowman, Ashley; Kingston, Ed; Katsuyama, Jinya; Udagawa, Makoto; Onizawa, Kunio

    This paper presents results of residual stress measurements and modelling within the cladding and J-groove weld of Control Rod Drive (CRD) specimens in the as-welded and Post Weld Heat Treated (PWHT) states. Knowledge of the residual stresses present in CRD nozzles is critical when modelling the fracture mechanics of failures of nuclear power plant components to dictate inspections intervals and optimise plant downtime. The specimens comprised of ferritic steel blocks with 309L stainless steel cladding and a single J-groove weld attaching the 304 stainless steel nozzles. Multiple measurements were made through the thickness of the specimens in order to give biaxial residual stress profiles through all the different fusion boundaries. The results show the effect of PWHT in reducing residual stresses both in the weld and ferritic material. The beneficial use of measurements is highlighted to provide confidence in the modelled results and prevent over conservatism in integrity calculations, costing unnecessary time and money.

  11. SOFIP: A Short Orbital Flux Integration Program

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Hebert, J. J.; Butler, E. L.; Barth, J. L.

    1979-01-01

    A computer code was developed to evaluate the space radiation environment encountered by geocentric satellites. The Short Orbital Flux Integration Program (SOFIP) is a compact routine of modular compositions, designed mostly with structured programming techniques in order to provide core and time economy and ease of use. The program in its simplest form produces for a given input trajectory a composite integral orbital spectrum of either protons or electrons. Additional features are available separately or in combination with the inclusion of the corresponding (optional) modules. The code is described in detail, and the function and usage of the various modules are explained. A program listing and sample outputs are attached.

  12. Severe accident modeling of a PWR core with different cladding materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, S. C.; Henry, R. E.; Paik, C. Y.

    2012-07-01

    The MAAP v.4 software has been used to model two severe accident scenarios in nuclear power reactors with three different materials as fuel cladding. The TMI-2 severe accident was modeled with Zircaloy-2 and SiC as clad material and a SBO accident in a Zion-like, 4-loop, Westinghouse PWR was modeled with Zircaloy-2, SiC, and 304 stainless steel as clad material. TMI-2 modeling results indicate that lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would result if SiC was substituted for Zircaloy-2 as cladding. SBO modeling results indicate that the calculated time to RCSmore » rupture would increase by approximately 20 minutes if SiC was substituted for Zircaloy-2. Additionally, when an extended SBO accident (RCS creep rupture failure disabled) was modeled, significantly lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would be generated by substituting SiC for Zircaloy-2 or stainless steel cladding. Because the rate of SiC oxidation reaction with elevated temperature H{sub 2}O (g) was set to 0 for this work, these results should be considered preliminary. However, the benefits of SiC as a more accident tolerant clad material have been shown and additional investigation of SiC as an LWR core material are warranted, specifically investigations of the oxidation kinetics of SiC in H{sub 2}O (g) over the range of temperatures and pressures relevant to severe accidents in LWR 's. (authors)« less

  13. Cyclic furnace oxidation of clad WI-52 systems at 1040 C and 1090 C

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1972-01-01

    Cyclic furnace oxidation studies were conducted on the cobalt alloy WI-52 clad with Ni-30Cr, Fe-25Cr-4A1, and Ni-20Cr-4A1 foils (0.051 to 0.254 mm thick). Tests as long as 400 hours using 1- and 20-hour cycles showed that the Ni-Cr- and Fe-Cr-A1 claddings were about equally protective at both temperatures. The protective ability of these alloys was influenced by exposure temperature and cladding thickness. At both temperatures, they protected WI-52 about as well as, or better than, a widely used commercial aluminide coating. The Ni-Cr-Al claddings did not protect WI-52 nearly as well. Interdiffusion generally influenced the oxidation behavior of all clad WI-52 systems.

  14. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Walker, T. B.; Bruffey, S. H.

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when themore » solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  15. Welding fixture for nuclear fuel pin cladding assemblies

    DOEpatents

    Oakley, David J.; Feld, Sam H.

    1986-01-01

    A welding fixture for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.

  16. Integrated environmental planning in the Philippines: A case study of the Palawan Integrated Environmental Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapin, D.J. Jr.

    1987-01-01

    Integrated environmental planning was analyzed using the case of the Palawan Integrated Environmental Program in the Philippines. The study explores the relationship between development and environmental planning and evaluates the importance of organizational coordination and timing in the integration of these two concerns. Factors affecting the accomplishment of the objectives of integrated environmental planning were also studied. Two planning phases of the Palawan Integrated Environmental Program were observed using the case study approach. Observations of various planning participants-consultants, middle level agency personnel, heads of local agencies-were also considered. The integration of environmental considerations in development planning was found to bemore » beneficial to both environmental and development concerns. The experience showed that such integration requiring tight organizational coordination and the proper timing of activities and outputs. The success of the Palawan Integrated Environmental Program was also found to depend on effective communication, the political functionality of the government, the leadership of its executives, the presence of appropriate structures of authority, sufficiency of funds and manpower and the availability of appropriate environmental planning techniques. Recommendations are provided to further strengthen the integration of environmental considerations in development planning and increase the effectiveness of integrated environmental programs.« less

  17. Risk Assessment of Structural Integrity of Transportation Casks after Extended Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra, Luis; Medina, Ricardo; Yang, Haori

    This study assessed the risk of loss of structural integrity of transportation casks and fuel cladding after extended storage. Although it is known that fuel rods discharged from NPPs have a small percentage of rod cladding defects, the behavior of fuel cladding and the structural elements of assemblies during transportation after long-term storage is not well understood. If the fuel degrades during extended storage, it could be susceptible to damage from vibration and impact loads during transport operations, releasing fission-product gases into the canister or the cask interior (NWTRB 2010). Degradation of cladding may occur due to mechanisms associated withmore » hydrogen embrittlement, delayed hydride cracking, low temperature creep, and stress corrosion cracking (SCC) that may affect fuel cladding and canister components after extended storage of hundreds of years. Over extended periods at low temperatures, these mechanisms affect the ductility, strength, and fracture toughness of the fuel cladding, which becomes brittle. For transportation purposes, the fuel may be transferred from storage to shipping casks, or dual-purpose casks may be used for storage and transportation. Currently, most of the transportation casks will be the former case. A risk assessment evaluation is conducted based on results from experimental tests and simulations with advanced numerical models. A novel contribution of this study is the evaluation of the combined effect of component aging and vibration/impact loads in transportation scenarios. The expected levels of deterioration will be obtained from previous and current studies on the effect of aging on fuel and cask components. The emphasis of the study is placed on the structural integrity of fuel cladding and canisters.« less

  18. Development of Advanced Ods Ferritic Steels for Fast Reactor Fuel Cladding

    NASA Astrophysics Data System (ADS)

    Ukai, S.; Oono, N.; Ohtsuka, S.; Kaito, T.

    Recent progress of the 9CrODS steel development is presented focusing on their microstructure control to improve sufficient high-temperature strength as well as cladding manufacturing capability. The martensitic 9CrODS steel is primarily candidate cladding materials for the Generation IV fast reactor fuel. They are the attractive composite-like materials consisting of the hard residual ferrite and soft tempered martensite, which are able to be easily controlled by α-γ phase transformation. The residual ferrite containing extremely nanosized oxide particles leads to significantly improved creep rupture strength in 9CrODS cladding. The creep strength stability at extended time of 60,000 h at 700 ºC is ascribed to the stable nanosized oxide particles. It was also reviewed that 9CrODS steel has well irradiation stability and fuel pin irradiation test was conducted up to 12 at% burnup and 51 dpa at the cladding temperature of 700ºC.

  19. Integrated Research/Education University Aircraft Design Program Development

    DTIC Science & Technology

    2017-04-06

    iterations and loop shaping compared to MIMO control methods. Despite the drawbacks, loop closure and classical methods are the design methods most commonly...AFRL-AFOSR-VA-TR-2017-0077 Integrated Research/Education University Aircraft Design Program Development Eli Livne UNIVERSITY OF WASHINGTON 4333...SUBTITLE Integrated Research/Education University Aircraft Design Program Development 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0027 5c.  PROGRAM

  20. Vanadium diffusion coating on HT-9 cladding for mitigating the fuel cladding chemical interactions

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Yang; Yang, Yong

    2014-08-01

    Fuel cladding chemical interaction (FCCI) has been identified as one of the crucial issues for developing Ferritic/Martensitic (F/M) stainless steel claddings for metallic fuels in a fast reactor. The anticipated elevated temperature and high neutron flux can significantly aggravate the FCCI, in terms of formation of inter-diffusion and lower melting point eutectic phases. To mitigate the FCCI, vanadium carbide coating as a diffusion barrier was deposited on the HT-9 substrate using a pack cementation diffusion coating (PCDC) method, and the processing temperature was optimized down to 730 °C. A solid metallurgical bonding between the coating layer and substrate was achieved, and the coating is free from through depth cracks. The microstructural characterizations using SEM and TEM show a nanostructured grain structure. EDS/WDS and XRD analysis confirm the phase of coating layer as V2C. Diffusion couple tests at 660 °C for 100 h demonstrate that V2C layer with a thickness of less than 5 μm can effectively eliminate the inter-diffusion between the lanthanide cerium and HT-9 steel.

  1. Methodology for Mechanical Property Testing of Fuel Cladding Using a Expanded Plug Wedge Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Wang, Jy-An John

    2014-01-01

    An expanded plug method was developed earlier for determining the tensile properties of irradiated fuel cladding. This method tests fuel rod cladding ductility by utilizing an expandable plug to radially stretch a small ring of irradiated cladding material. The circumferential or hoop strain is determined from the measured diametrical expansion of the ring. A developed procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves, from which material properties of the cladding can be extracted. However, several deficiencies existed in this expanded-plug test that can impact the accuracy of test results, suchmore » as that the large axial compressive stress resulted from the expansion plug test can potentially induce the shear failure mode of the tested specimen. Moreover, highly nonuniform stress and strain distribution in the deformed clad gage section and significant compressive stresses, induced by bending deformation due to clad bulging effect, will further result in highly nonconservative estimates of the mechanical properties for both strength and ductility of the tested clad. To overcome the aforementioned deficiencies associated with the current expansion plug test, systematic studies have been conducted. By optimizing the specific geometry designs, selecting the appropriate material for the expansion plug, and adding new components into the testing system, a modified expansion plug testing protocol has been developed. A general procedure was also developed to determine the hoop stress in the tested ring specimen. A scaling factor, -factor, was used to convert the ring load Fring into hoop stress , and is written as _ = F_ring/tl , where t is the clad thickness and l is the clad length. The generated stress-strain curve agrees well with the associated tensile test data in both elastic and plastic deformation regions.« less

  2. Development of new ferritic steels as cladding material for metallic fuel fast breeder reactor

    NASA Astrophysics Data System (ADS)

    Tokiwai, Moriyasu; Horie, Masaaki; Kako, Kenji; Fujiwara, Masayuki

    1993-09-01

    The excellent thermal, chemical and neutronic properties of metallic fuel (U-Pu-Zr alloy) will lead to drastic improvements in fast reactor safety and the related fuel cycle economy. Some new high molybdenum 12Cr ferritic stainless steel candidate cladding alloys have been designed to achieve the mechanical properties required for high performance metallic fuel elements. These candidate claddings were irradiated by ion bombardment and tested to determine their strength and creep rupture properties. A 12Cr-8Mo and a 12Cr-8Mo-0.1Y 2O 3 steel were fabricated into cladding via a powder metallurgy process and by a mechanical alloying process, respectively. These claddings had two and three times the creep rupture strength (pressurized at 650°C for 10000 h) of a conventional 12Cr ferritic steel (HT-9). These two steels also showed no void formation up to 350 dpa by Ni 3+ irradiation. A zircaloy-2 lined steel cladding tube has also been fabricated for the purpose of reducing fuel-cladding interdiffusion and chemical interaction.

  3. A systematic review of integrative oncology programs

    PubMed Central

    Seely, D.M.; Weeks, L.C.; Young, S.

    2012-01-01

    Objective This systematic review set out to summarize the research literature describing integrative oncology programs. Methods Searches were conducted of 9 electronic databases, relevant journals (hand searched), and conference abstracts, and experts were contacted. Two investigators independently screened titles and abstracts for reports describing examples of programs that combine complementary and conventional cancer care. English-, French-, and German-language articles were included, with no date restriction. From the articles located, descriptive data were extracted according to 6 concepts: description of article, description of clinic, components of care, administrative structure, process of care, and measurable outcomes used. Results Of the 29 programs included, most were situated in the United States (n = 12, 41%) and England (n = 10, 34%). More than half (n = 16, 55%) operate within a hospital, and 7 (24%) are community-based. Clients come through patient self-referral (n = 15, 52%) and by referral from conventional health care providers (n = 9, 31%) and from cancer agencies (n = 7, 24%). In 12 programs (41%), conventional care is provided onsite; 7 programs (24%) collaborate with conventional centres to provide integrative care. Programs are supported financially through donations (n = 10, 34%), cancer agencies or hospitals (n = 7, 24%), private foundations (n = 6, 21%), and public funds (n = 3, 10%). Nearly two thirds of the programs maintain a research (n = 18, 62%) or evaluation (n = 15, 52%) program. Conclusions The research literature documents a growing number of integrative oncology programs. These programs share a common vision to provide whole-person, patient-centred care, but each program is unique in terms of its structure and operational model. PMID:23300368

  4. High power cladding light stripper using segmented corrosion method: theoretical and experimental studies.

    PubMed

    Yin, Lu; Yan, Mingjian; Han, Zhigang; Wang, Hailin; Shen, Hua; Zhu, Rihong

    2017-04-17

    We present the segmented corrosion method that uses hydrofluoric acid to etch the fiber of a fiber laser for removing high-power cladding light to improve stripping uniformity and power handling capability. For theoretical guidelines, we propose a simulation model of etched-fiber stripping to evaluate the relationship between the etched-fiber parameters and cladding light attenuation and to analyze the stripping uniformity achieved with segmented corrosion. A two-segment etched fiber is fabricated with cladding light attenuation of 19.8 dB and power handling capability up to 670 W. We find that the cladding light is stripped uniformly and the temperature distribution is uniform without the formation of hot spots.

  5. Complete Non-Radioactive Operability Tests for Cladding Hull Chlorination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Emory D; Johnson, Jared A.; Hylton, Tom D.

    2016-04-01

    Non-radioactive operability tests were made to test the metal chlorination reactor and condenser and their accessories using batch chlorinations of non-radioactive cladding samples and to identify optimum operating practices and components that need further modifications prior to installation of the equipment into the hot cell for tests on actual used nuclear fuel (UNF) cladding. The operability tests included (1) modifications to provide the desired heating and reactor temperature profile; and (2) three batch chlorination tests using, respectively, 100, 250, and 500 g of cladding. During the batch chlorinations, metal corrosion of the equipment was assessed, pressurization of the gas inletmore » was examined and the best method for maintaining solid salt product transfer through the condenser was determined. Also, additional accessing equipment for collection of residual ash and positioning of the unit within the hot cell were identified, designed, and are being fabricated.« less

  6. In situ synthesis of hydroxyapatite coating by laser cladding.

    PubMed

    Wang, D G; Chen, C Z; Ma, J; Zhang, G

    2008-10-15

    HA bioceramic coatings were synthesized on titanium substrate by laser cladding using cheap calcium carbonate and calcium hydrogen phosphate. The thermodynamic condition for synthesizing HA was calculated by software Matlab 5.0, the microstructure and phase analysis of laser clad HA bioceramic coatings were studied by electron probe microanalyser (EPMA), X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The theoretical results show that the Gibbs free enthalpy for the synthesis of HA phase is satisfied, and the presence of HA phase in the clad coatings was then further verified by XRD and the selected area diffraction patterns. When the laser power is 600W and the scanning speed is 3.5mm/s, the compact HA bioceramic coatings were obtained, which have cellular dendritic structure and consist of the phases of HA, alpha-Ca(2)P(2)O(7), CaO and CaTiO(3).

  7. Shielding gas effect to diffusion activities of magnesium and copper on aluminum clad

    NASA Astrophysics Data System (ADS)

    Manurung, Charles SP; Napitupulu, Richard AM

    2017-09-01

    Aluminum is the second most metal used in many application, because of its corrosion resistance. The Aluminum will be damaged in over time if it’s not maintained in good condition. That is important to give protection to the Aluminums surface. Cladding process is one of surface protection methodes, especially for metals. Aluminum clad copper (Al/Cu) or copper clad aluminum (Cu/Al) composite metals have been widely used for many years. These mature protection method and well tested clad metal systems are used industrially in a variety application. The inherent properties and behavior of both copper and aluminum combine to provide unique performance advantages. In this paper Aluminum 2024 series will be covered with Aluminum 1100 series by hot rolling process. Observations will focus on diffusion activities of Mg and Cu that not present on Aluminum 1100 series. The differences of clad material samples is the use of shielding gas during heating before hot rolling process. The metallurgical characteristics will be examined by using optical microscopy. Transition zone from the interface cannot be observed but from Energy Dispersive Spectrometry it’s found that Mg and Cu are diffused from base metal (Al 2024) to the clad metal (Al 1100). Hardness test proved that base metals hardness to interface was decrease.

  8. MSFC Skylab program engineering and integration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A technical history and managerial critique of the MSFC role in the Skylab program is presented. The George C. Marshall Space Flight Center had primary hardware development responsibility for the Saturn Workshop Modules and many of the designated experiments in addition to the system integration responsibility for the entire Skylab Orbital Cluster. The report also includes recommendations and conclusions applicable to hardware design, test program philosophy and performance, and program management techniques with potential application to future programs.

  9. High power operation of cladding pumped holmium-doped silica fibre lasers.

    PubMed

    Hemming, Alexander; Bennetts, Shayne; Simakov, Nikita; Davidson, Alan; Haub, John; Carter, Adrian

    2013-02-25

    We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.

  10. Integrated propulsion technology demonstrator. Program plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA and Rockwell have embarked on a cooperative agreement to define, develop, fabricate, and operate an integrated propulsion technology demonstrator (IPTD) for the purpose of validating design, process, and technology improvements of launch vehicle propulsion systems. This program, a result of NRA8-11, Task Area 1 A, is jointly funded by both NASA and Rockwell and is sponsored by the Reusable Launch Vehicle office at NASA Marshall Space flight Center. This program plan provides to the joint NASA/Rockwell integrated propulsion technology demonstrator (IPTD) team a description of the activities within tasks / sub tasks and associated schedules required to successfully achieve program objectives. This document also defines the cost elements and manpower allocations for each sub task for purpose of program control. This plan is updated periodically by developing greater depth of direction for outyear tasks as the program matures. Updating is accomplished by adding revisions to existing pages or attaching page revisions to this plan. In either case, revisions will be identified by appropriate highlighting of the change, or specifying a revision page through the use of footnotes on the bottom right of each change page. Authorization for the change is provided by the principal investigators to maintain control of this program plan document and IPTD program activities.

  11. 25 CFR 39.132 - Can a school integrate Language Development programs into its regular instructional program?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Can a school integrate Language Development programs into... Language Development Programs § 39.132 Can a school integrate Language Development programs into its regular instructional program? A school may offer Language Development programs to students as part of its...

  12. 25 CFR 39.132 - Can a school integrate Language Development programs into its regular instructional program?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Can a school integrate Language Development programs into... Language Development Programs § 39.132 Can a school integrate Language Development programs into its regular instructional program? A school may offer Language Development programs to students as part of its...

  13. Transmission of laser pulses with high output beam quality using step-index fibers having large cladding

    DOEpatents

    Yalin, Azer P; Joshi, Sachin

    2014-06-03

    An apparatus and method for transmission of laser pulses with high output beam quality using large core step-index silica optical fibers having thick cladding, are described. The thick cladding suppresses diffusion of modal power to higher order modes at the core-cladding interface, thereby enabling higher beam quality, M.sup.2, than are observed for large core, thin cladding optical fibers. For a given NA and core size, the thicker the cladding, the better the output beam quality. Mode coupling coefficients, D, has been found to scale approximately as the inverse square of the cladding dimension and the inverse square root of the wavelength. Output from a 2 m long silica optical fiber having a 100 .mu.m core and a 660 .mu.m cladding was found to be close to single mode, with an M.sup.2=1.6. Another thick cladding fiber (400 .mu.m core and 720 .mu.m clad) was used to transmit 1064 nm pulses of nanosecond duration with high beam quality to form gas sparks at the focused output (focused intensity of >100 GW/cm.sup.2), wherein the energy in the core was <6 mJ, and the duration of the laser pulses was about 6 ns. Extending the pulse duration provided the ability to increase the delivered pulse energy (>20 mJ delivered for 50 ns pulses) without damaging the silica fiber.

  14. Research on microstructure properties of the TiC/Ni-Fe-Al coating prepared by laser cladding technology

    NASA Astrophysics Data System (ADS)

    Jiao, Junke; Xu, Zifa; Zan, Shaoping; Zhang, Wenwu; Sheng, Liyuan

    2017-10-01

    In this paper, the laser cladding method was used to preparation the TiC reinforced Ni-Fe-Al coating on the Ni base superalloy. The Ti/Ni-Fe-Al powder was preset on the Ni base superalloy and the powder layer thickness is 0.5mm. A fiber laser was used the melting Ti/Ni-Fe-Al powder in an inert gas environment. The shape of the cladding layer was tested using laser scanning confocal microscope (LSCM) under different cladding parameters such as the laser power, the melting velocity and the defocused amount. The microstructure, the micro-hardness was tested by LSCM, SEM, Vickers hardness tester. The test result showed that the TiC particles was distributed uniformly in the cladding layer and hardness of the cladding layer was improved from 180HV to 320HV compared with the Ni-Fe-Al cladding layer without TiC powder reinforced, and a metallurgical bonding was produced between the cladding layer and the base metal. The TiC powder could make the Ni-Fe-Al cladding layer grain refining, and the more TiC powder added in the Ni-Fe-Al powder, the smaller grain size was in the cladding layer.

  15. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, Emmanuel; Keiser, Jr., Dennis D.; Forsmann, Bryan

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or betweenmore » the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.« less

  16. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    PubMed

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

  17. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Walker, T. B.; Bruffey, Stephanie H.

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-basedmore » cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  18. 75 FR 34805 - Program Integrity Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ...The Secretary proposes to improve integrity in the programs authorized under title IV of the Higher Education Act of 1965, as amended (HEA) by amending the regulations for Institutional Eligibility Under the HEA, the Secretary's Recognition of Accrediting Agencies, the Secretary's Recognition Procedures for State Agencies, the Student Assistance General Provisions, the Federal Family Education Loan (FFEL) Program, the William D. Ford Federal Direct Loan Program, the Teacher Education Assistance for College and Higher Education (TEACH) Grant Program, the Federal Pell Grant Program, and the Academic Competitiveness Grant (AGC) and National Science and Mathematics Access to Retain Talent Grant (National Smart Grant) Programs.

  19. Welding fixture for nuclear fuel pin cladding assemblies

    DOEpatents

    Oakley, D.J.; Feld, S.H.

    1984-02-22

    A welding fixture is described for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.

  20. INTEGRATED AND FIBER OPTICS: Calculation and measurement of waveguide characteristics of single-mode fiber waveguides with a depressed cladding

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurkov, Andrei S.; Chikolini, A. V.

    1989-02-01

    A method was developed for calculating the effective cutoff length, the size of a mode spot, and the chromatic dispersion over the profile of the refractive index (measured in the preform stage) of single-mode fiber waveguides with a depressed cladding. The results of such calculations are shown to agree with the results of measurements of these quantities.

  1. Integrated Outdoor Education and Adventure Programs.

    ERIC Educational Resources Information Center

    Schleien, Stuart J.; And Others

    This guide presents a comprehensive framework for the development and provision of outdoor education and adventure programs for people of all abilities, including those who significantly challenge the service delivery system. Chapter 1 provides a rationale for the integration of disabled persons into outdoor education and adventure programs, and…

  2. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Nathan; Sweet, Ryan; Maldonado, G. Ivan

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behaviormore » of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.« less

  3. Exploring Art and Science Integration in an Afterschool Program

    NASA Astrophysics Data System (ADS)

    Bolotta, Alanna

    Science, technology, engineering, arts and math (STEAM) education integrates science with art, presenting a unique and interesting opportunity to increase accessibility in science for learners. This case study examines an afterschool program grounded in art and science integration. Specifically, I studied the goals of the program, it's implementation and the student experience (thinking, feeling and doing) as they participated in the program. My findings suggest that these programs can be powerful methods to nurture scientific literacy, creativity and emotional development in learners. To do so, this program made connections between disciplines and beyond, integrated holistic teaching and learning practices, and continually adapted programming while also responding to challenges. The program is therefore specially suited to engage the heads, hands and hearts of learners, and can make an important contribution to their learning and development. To conclude, I provide some recommendations for STEAM implementation in both formal and informal learning settings.

  4. Fabrication of stainless steel clad tubing. [gas pressure bonding

    NASA Technical Reports Server (NTRS)

    Kovach, C. W.

    1978-01-01

    The feasibility of producing stainless steel clad carbon steel tubing by a gas pressure bonding process was evaluated. Such a tube product could provide substantial chromium savings over monolithic stainless tubing in the event of a serious chromium shortage. The process consists of the initial assembly of three component tubesets from conventionally produced tubing, the formation of a strong metallurgical bond between the three components by gas pressure bonding, and conventional cold draw and anneal processing to final size. The quality of the tubes produced was excellent from the standpoint of bond strength, mechanical, and forming properties. The only significant quality problem encountered was carburization of the stainless clad by the carbon steel core which can be overcome by further refinement through at least three different approaches. The estimated cost of clad tubing produced by this process is greater than that for monolithic stainless tubing, but not so high as to make the process impractical as a chromium conservation method.

  5. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    DOE PAGES

    Byun, Thak Sang; Yamamoto, Yukinori; Maloy, Stuart A.; ...

    2015-08-25

    Here, one of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) is high resistance of the cladding to plastic deformation and burst failure, since the deformation and burst behavior governs the cooling efficiency of flow channels and the process of fission product release. To simulate and evaluate the deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisting of a high-resolution video camera, a light filteringmore » unit, and monochromatic light sources. The in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. As the first application, ten (10) candidate cladding materials for ATF, i.e., five FeCrAl alloys and five nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800 °C, while negligible strain rates were measured for higher strength alloys.« less

  6. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding ismore » likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.« less

  7. Effects of Synchronous Rolling on Microstructure, Hardness, and Wear Resistance of Laser Multilayer Cladding

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Zha, G. C.; Xi, M. Z.; Gao, S. Y.

    2018-03-01

    A synchronous rolling method was proposed to assist laser multilayer cladding, and the effects of this method on microstructure, microhardness, and wear resistance were studied. Results show that the microstructure and mechanical properties of the traditional cladding layer exhibit periodic inhomogeneity. Synchronous rolling breaks the columnar dendrite crystals to improve the uniformity of the organization, and the residual plastic energy promotes the precipitation of strengthening phases, as CrB, M7C3, etc. The hardness and wear resistance of the extruded cladding layer increase significantly because of the grain refinement, formation of dislocations, and dispersion strengthening. These positive significances of synchronous rolling provide a new direction for laser cladding technology.

  8. Development of data base with mechanical properties of un- and pre-irradiated VVER cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmolov, V.; Yegorova, L.; Kaplar, E.

    1998-03-01

    Analysis of recent RIA test with PWR and VVER high burnup fuel, performed at CABRI, NSRR, IGR reactors has shown that the data base with mechanical properties of the preirradiated cladding is necessary to interpret the obtained results. During 1997 the corresponding cycle of investigations for VVER clad material was performed by specialists of NSI RRC KI and RIAR in cooperation with NRC (USA), IPSN (France) in two directions: measurements of mechanical properties of Zr-1%Nb preirradiated cladding versus temperature and strain rate; measurements of failure parameters for gas pressurized cladding tubes. Preliminary results of these investigations are presented in thismore » paper.« less

  9. Development of Integrated Programs for Aerospace-vehicle design (IPAD): Integrated information processing requirements

    NASA Technical Reports Server (NTRS)

    Southall, J. W.

    1979-01-01

    The engineering-specified requirements for integrated information processing by means of the Integrated Programs for Aerospace-Vehicle Design (IPAD) system are presented. A data model is described and is based on the design process of a typical aerospace vehicle. General data management requirements are specified for data storage, retrieval, generation, communication, and maintenance. Information management requirements are specified for a two-component data model. In the general portion, data sets are managed as entities, and in the specific portion, data elements and the relationships between elements are managed by the system, allowing user access to individual elements for the purpose of query. Computer program management requirements are specified for support of a computer program library, control of computer programs, and installation of computer programs into IPAD.

  10. Lunar-Ultraviolet Telescope Experiment (LUTE) integrated program plan

    NASA Technical Reports Server (NTRS)

    Smith, Janice F. (Compiler); Forrest, Larry

    1993-01-01

    A detailed Lunar Ultraviolet Telescope Experiment (LUTE) program plan representing major decisions and tasks leading to those decisions for program execution are presented. The purpose of this task was to develop an integrated plan of project activities for the LUTE project, and to display the plan as an integrated network that shows the project activities, all critical interfaces, and schedules. The integrated network will provide the project manager with a frame work for strategic planning and risk management throughout the life of the project.

  11. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    NASA Astrophysics Data System (ADS)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  12. 75 FR 66831 - Program Integrity Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ...The Secretary is improving integrity in the programs authorized under title IV of the Higher Education Act of 1965, as amended (HEA), by amending the regulations for Institutional Eligibility Under the HEA, the Secretary's Recognition of Accrediting Agencies, the Secretary's Recognition Procedures for State Agencies, the Student Assistance General Provisions, the Federal Family Education Loan (FFEL) Program, the William D. Ford Federal Direct Loan Program, the Teacher Education Assistance for College and Higher Education (TEACH) Grant Program in part 686, the Federal Pell Grant Program, and the Academic Competitiveness Grant (AGC) and National Science and Mathematics Access to Retain Talent Grant (National Smart Grant) Programs.

  13. Integrated teaching program using case-based learning

    PubMed Central

    Bhardwaj, Pankaj; Bhardwaj, Nikha; Mahdi, Farzana; Srivastava, J P; Gupta, Uma

    2015-01-01

    Background: At present, in a medical school, students are taught in different departments, subject-wise, without integration to interrelate or unify subjects and these results in compartmentalization of medical education, with no stress on case-based learning. Therefore, an effort was made to develop and adopt integrated teaching in order to have a better contextual knowledge among students. Methodology and Implementation: After the faculty orientation training, four “topic committees” with faculty members from different departments were constituted which decided and agreed on the content material to be taught, different methodologies to be used, along with the logical sequencing of the same for the purpose of implementation. Different teaching methodologies used, during the program, were didactic lectures, case stimulated sessions, clinical visits, laboratory work, and small group student's seminar. Results: After the implementation of program, the comparison between two batches as well as between topics taught with integrated learning program versus traditional method showed that students performed better in the topics, taught with integrated approach. Students rated “clinical visits” as very good methodology, followed by “case stimulated interactive sessions.” Students believed that they felt more actively involved, and their queries are better addressed with such interactive sessions. Conclusion: There is a very good perception of students toward integrated teaching. Students performed better if they are taught using this technique. Although majority of faculty found integrated teaching, as useful method of teaching, nevertheless extra work burden and interdepartmental coordination remained a challenging task. PMID:26380204

  14. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    PubMed Central

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times. PMID:29036935

  15. Laser Powder Cladding of Ti-6Al-4V α/β Alloy.

    PubMed

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Hasseb Elnaby, Salah Elden Ibrahim; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-10-15

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm -2 . An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.

  16. 78 FR 9676 - Clad Steel Plate From Japan: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... hot-rolling of the cladding metal to ensure efficient welding to the basic metal; any other method of... welding (e.g., electrocladding), in which the cladding metal (nickel, chromium, etc.) is applied to the...

  17. Testing Method for External Cladding Systems - Incerc Romania

    NASA Astrophysics Data System (ADS)

    Simion, A.; Dragne, H.

    2017-06-01

    This research presents a new testing method in a natural scale for external cladding systems tested on buildings with minimum than 3 floors [1]. The testing method is unique in Romania and it is similar about many fire testing current methods from European Union states. Also, presents the fire propagation and the effect of fire smoke on the building façade composed of thermal insulation. Laboratory of testing and research for building fire safety from National Institute INCERC Bucharest, provides a test method for determining the fire performance characteristics of non-loadbearing external cladding systems and external wall insulation systems when applied to the face of a building and exposed to an external fire under controlled conditions [2]. The fire exposure is representative of an external fire source or a fully-developed (post-flashover) fire in a room, venting through an opening such as a window aperture that exposes the cladding to the effects of external flames, or an external fire source. On the future, fire tests will be experimented for answer demande a number of high-profile fires where the external facade of tall buildings provided a route for vertical fire spread.

  18. 42 CFR 455.232 - Medicaid integrity audit program contractor functions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Medicaid integrity audit program contractor functions. 455.232 Section 455.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS PROGRAM INTEGRITY: MEDICAID Medicaid...

  19. 42 CFR 455.232 - Medicaid integrity audit program contractor functions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Medicaid integrity audit program contractor functions. 455.232 Section 455.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS PROGRAM INTEGRITY: MEDICAID Medicaid...

  20. 42 CFR 455.232 - Medicaid integrity audit program contractor functions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Medicaid integrity audit program contractor functions. 455.232 Section 455.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS PROGRAM INTEGRITY: MEDICAID Medicaid...

  1. 42 CFR 455.232 - Medicaid integrity audit program contractor functions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Medicaid integrity audit program contractor functions. 455.232 Section 455.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS PROGRAM INTEGRITY: MEDICAID Medicaid...

  2. An analytical model to predict and minimize the residual stress of laser cladding process

    NASA Astrophysics Data System (ADS)

    Tamanna, N.; Crouch, R.; Kabir, I. R.; Naher, S.

    2018-02-01

    Laser cladding is one of the advanced thermal techniques used to repair or modify the surface properties of high-value components such as tools, military and aerospace parts. Unfortunately, tensile residual stresses generate in the thermally treated area of this process. This work focuses on to investigate the key factors for the formation of tensile residual stress and how to minimize it in the clad when using dissimilar substrate and clad materials. To predict the tensile residual stress, a one-dimensional analytical model has been adopted. Four cladding materials (Al2O3, TiC, TiO2, ZrO2) on the H13 tool steel substrate and a range of preheating temperatures of the substrate, from 300 to 1200 K, have been investigated. Thermal strain and Young's modulus are found to be the key factors of formation of tensile residual stresses. Additionally, it is found that using a preheating temperature of the substrate immediately before laser cladding showed the reduction of residual stress.

  3. Effects of an Integrated Health Care Program for Children

    PubMed Central

    Kim, Ok Hyun; Park, Jin Kyung

    2017-01-01

    [Purpose] This study examined the effects of an integrated health care program in elementary school students. [Methods] The integrated program comprised exercises (3–4 times/week) and six sessions on nutritional and psychological education. Anthropometric measurements were recorded before the intervention. Additionally, physical fitness, dietary habits, nutrition knowledge, and psychological changes were assessed before and after the program. [Results] In total, 29% of the subjects were overweight and obese before the intervention (32% boys and 26% girls). There was a significant increase in flexibility, endurance, and cardiovascular endurance after the implementation of the program. Additionally, as a result of the program, participants showed improvement in nutrition knowledge and dietary habits. After the training, children tended to exhibit increased self–efficacy and lower stress, but the findings were not statistically significant. [Conclusion] Implementation of an integrated health care program for the prevention and treatment of obesity could have a positive impact on children’s health. It is hoped that continued research on the long-term effects of such programs is conducted along with the development of various programs. PMID:28712260

  4. Theoretical analysis of swelling characteristics of cylindrical uranium dioxide fuel pins with a niobium - 1-percent-zirconium clad

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.

    1973-01-01

    The relations between clad creep strain and fuel volume swelling are shown for cylindrical UO2 fuel pins with a Nb-1Zr clad. These relations were obtained by using the computer code CYGRO-2. These clad-strain - fuel-volume-swelling relations may be used with any fuel-volume-swelling model, provided the fuel volume swelling is isotropic and independent of the clad restraints. The effects of clad temperature (over a range from 118 to 1642 K (2010 to 2960 R)), pin diameter, clad thickness and central hole size in the fuel have been investigated. In all calculations the irradiation time was 500 hours. The burnup rate was varied.

  5. Experimental and numerical investigation on cladding of corrosion-erosion resistant materials by a high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Farahmand, Parisa

    of developed MMC coatings were examined under highly accelerated slurry erosion, corrosion, and wear as the most frequently encountered failure modes of mechanical components. The microstructure, mechanical properties, and the level of induced residual stress on the coating after cladding procedure are closely related to cladding process variables. Study about the effect of processing parameters on clad quality and experienced thermal history and thermally-induced stress evolution requires both theoretical and experimental understanding of the associated physical phenomena. Numerical modeling offers a cost-efficient way to better understand the related complex physics in laser cladding process. It helps to reveal the effects and significance of each processing parameters on the desired characteristics of clad parts. Successful numerical simulation can provide unique insight into complex laser cladding process, efficiently calculate the complex procedure, and help to obtain coating parts with quality integrity. Therefore, current study develops a three-dimensional (3D) transient and uncoupled thermo-elastic-plastic model to study thermal history, molten pool evolution, thermally induced residual stress, and the effect of utilizing an induction heater as a second heat source on the mechanical properties and microstructural properties of final cladded coating.

  6. Fabrication and evaluation of brazed titanium-clad borsic/aluminum skin-stringer panels

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Mcwithey, R. R.

    1980-01-01

    A successful brazing process was developed and evaluated for fabricating full-scale titanium-clad Borsic/aluminum skin-stringer panels. A panel design was developed consisting of a hybrid composite skin reinforced with capped honeycomb-core stringers. Six panels were fabricated for inclusion in the program which included laboratory testing of panels at ambient temperatures and 533 K (500 F) and flight service evaluation on the NASA Mach 3 YF-12 airplane. All panels tested met or exceeded stringent design requirements and no deleterious effects on panel properties were detected followng flight service evaluation on the YF-12 airplane.

  7. Two-Channel SPR Sensor Combined Application of Polymer- and Vitreous-Clad Optic Fibers.

    PubMed

    Wei, Yong; Su, Yudong; Liu, Chunlan; Nie, Xiangfei; Liu, Zhihai; Zhang, Yu; Zhang, Yonghui

    2017-12-09

    By combining a polymer-clad optic fiber and a vitreous-clad optic fiber, we proposed and fabricated a novel optic fiber surface plasmon resonance (SPR) sensor to conduct two-channel sensing at the same detection area. The traditional optic fiber SPR sensor has many disadvantages; for example, removing the cladding requires corrosion, operating it is dangerous, adjusting the dynamic response range is hard, and producing different resonance wavelengths in the sensing area to realize a multi-channel measurement is difficult. Therefore, in this paper, we skillfully used bare fiber grinding technology and reverse symmetry welding technology to remove the cladding in a multi-mode fiber and expose the evanescent field. On the basis of investigating the effect of the grinding angle on the dynamic range change of the SPR resonance valley wavelength and sensitivity, we combined polymer-clad fiber and vitreous-clad fiber by a smart design structure to realize at a single point a two-channel measurement fiber SPR sensor. In this paper, we obtained a beautiful spectral curve from a multi-mode fiber two-channel SPR sensor. In the detection range of the refractive rate between 1.333 RIU and 1.385 RIU, the resonance valley wavelength of channel Ⅰ shifted from 622 nm to 724 nm with a mean average sensitivity of 1961 nm/RIU and the resonance valley wavelength of channel Ⅱ shifted from 741 nm to 976 nm with a mean average sensitivity of 4519 nm/RIU.

  8. Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process

    NASA Astrophysics Data System (ADS)

    Kong, Fanrong; Kovacevic, Radovan

    2010-12-01

    The current work examines the heat-and-mass transfer process in the laser multilayered cladding of H13 tool steel powder by numerical modeling and experimental validation. A multiphase transient model is developed to investigate the evolution of the temperature field and flow velocity of the liquid phase in the molten pool. The solid region of the substrate and solidified clad, the liquid region of the melted clad material, and the gas region of the surrounding air are included. In this model, a level-set method is used to track the free surface motion of the molten pool with the powder material feeding and scanning of the laser beam. An enthalpy-porosity approach is applied to deal with the solidification and melting that occurs in the cladding process. Moreover, the laser heat input and heat losses from the forced convection and heat radiation that occurs on the top surface of the deposited layer are incorporated into the source term of the governing equations. The effects of the laser power, scanning speed, and powder-feed rate on the dilution and height of the multilayered clad are investigated based on the numerical model and experimental measurements. The results show that an increase of the laser power and powder feed rate, or a reduction of the scanning speed, can increase the clad height and directly influence the remelted depth of each layer of deposition. The numerical results have a qualitative agreement with the experimental measurements.

  9. Two-Channel SPR Sensor Combined Application of Polymer- and Vitreous-Clad Optic Fibers

    PubMed Central

    Wei, Yong; Su, Yudong; Liu, Chunlan; Nie, Xiangfei; Liu, Zhihai; Zhang, Yu; Zhang, Yonghui

    2017-01-01

    By combining a polymer-clad optic fiber and a vitreous-clad optic fiber, we proposed and fabricated a novel optic fiber surface plasmon resonance (SPR) sensor to conduct two-channel sensing at the same detection area. The traditional optic fiber SPR sensor has many disadvantages; for example, removing the cladding requires corrosion, operating it is dangerous, adjusting the dynamic response range is hard, and producing different resonance wavelengths in the sensing area to realize a multi-channel measurement is difficult. Therefore, in this paper, we skillfully used bare fiber grinding technology and reverse symmetry welding technology to remove the cladding in a multi-mode fiber and expose the evanescent field. On the basis of investigating the effect of the grinding angle on the dynamic range change of the SPR resonance valley wavelength and sensitivity, we combined polymer-clad fiber and vitreous-clad fiber by a smart design structure to realize at a single point a two-channel measurement fiber SPR sensor. In this paper, we obtained a beautiful spectral curve from a multi-mode fiber two-channel SPR sensor. In the detection range of the refractive rate between 1.333 RIU and 1.385 RIU, the resonance valley wavelength of channel Ⅰ shifted from 622 nm to 724 nm with a mean average sensitivity of 1961 nm/RIU and the resonance valley wavelength of channel Ⅱ shifted from 741 nm to 976 nm with a mean average sensitivity of 4519 nm/RIU. PMID:29232841

  10. An Integrated Development Environment for Adiabatic Quantum Programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; McCaskey, Alex; Bennink, Ryan S

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation enginemore » that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.« less

  11. Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Emory D; DelCul, Guillermo D; Terekhov, Dmitri

    2011-01-01

    Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF claddingmore » are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.« less

  12. Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals

    NASA Astrophysics Data System (ADS)

    Li, Shi-Ling; Huang, Ze-Ping; Ye, Yong-Kai; Wang, Hai-Long

    2018-06-01

    Depressed circular cladding, buried waveguides were fabricated in Nd:LiYF4 crystals with an ultrafast Yb-doped fiber master-oscillator power amplifier laser. Waveguides were optimized by varying the laser writing conditions, such as pulse energy, focus depth, femtosecond laser polarization and scanning velocity. Under optical pump at 799 nm, cladding waveguides showed continuous-wave laser oscillation at 1047 nm. Single- and multi-transverse modes waveguide laser were realized by varying the waveguide diameter. The maximum output power in the 40 μm waveguide is ∼195 mW with a slope efficiency of 34.3%. The waveguide lasers with hexagonal and cubic cladding geometry were also realized.

  13. Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kurt R.; Howard, Richard H.; Daily, Charles R.

    The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designsmore » allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.« less

  14. Restoration of Worn Movable Bridge Props with Use of Bronze Claddings.

    PubMed

    Viňáš, Ján; Vrabeľ, Marek; Greš, Miroslav; Brezina, Jakub; Sabadka, Dušan; Fedorko, Gabriel; Molnár, Vieroslav

    2018-03-21

    This article examined the possibility of using CuSn6P claddings in sliding bearing renovation of movable pontoon bridge props. The bronze layer was welded on cylinders of the high-strength steel S355J0WP EN 10155-93, in an inert atmosphere using an automated welding method (gas tungsten arc welding). Pulsed arc welding was used to minimize the effects of heat on the cladding area, while also accounting for the differences in the physical properties of the joined metals. The sliding bearing was created in two layers. The quality of the cladding layer was evaluated by nondestructive and/or destructive tests. The quality of the surface was assessed by visual inspection (visual testing) in accordance with the EN ISO 17637 standard. The quality of the claddings was evaluated by metallographic analysis, performed using light microscopy. The microhardness values of a few weld areas were determined by Vickers tests, performed according to the EN ISO 9015-2 standard. The analyses confirmed that the welding parameters and filler material used resulted in high-quality weld joints with no internal (subsurface) or metallurgical defects.

  15. Restoration of Worn Movable Bridge Props with Use of Bronze Claddings

    PubMed Central

    Viňáš, Ján; Vrabeľ, Marek; Greš, Miroslav; Brezina, Jakub; Sabadka, Dušan; Fedorko, Gabriel

    2018-01-01

    This article examined the possibility of using CuSn6P claddings in sliding bearing renovation of movable pontoon bridge props. The bronze layer was welded on cylinders of the high-strength steel S355J0WP EN 10155-93, in an inert atmosphere using an automated welding method (gas tungsten arc welding). Pulsed arc welding was used to minimize the effects of heat on the cladding area, while also accounting for the differences in the physical properties of the joined metals. The sliding bearing was created in two layers. The quality of the cladding layer was evaluated by nondestructive and/or destructive tests. The quality of the surface was assessed by visual inspection (visual testing) in accordance with the EN ISO 17637 standard. The quality of the claddings was evaluated by metallographic analysis, performed using light microscopy. The microhardness values of a few weld areas were determined by Vickers tests, performed according to the EN ISO 9015–2 standard. The analyses confirmed that the welding parameters and filler material used resulted in high-quality weld joints with no internal (subsurface) or metallurgical defects. PMID:29561762

  16. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  17. Influence of adding strong-carbide-formation elements multiply on particle-reinforced Fe-matrix composite layer produced by laser cladding

    NASA Astrophysics Data System (ADS)

    Ma, Mingxing; Liu, Wenjin; Zhong, Minlin; Zhang, Hongjun; Zhang, Weiming

    2005-01-01

    In the research hotspot of particle reinforced metal-matrix composite layer produced by laser cladding, in-situ reinforced particles obtained by adding strong-carbide-formation elements into cladding power have been attracting more attention for their unique advantage. The research has demonstrated that when adding strong-carbide-formation elements-Ti into the cladding powder of the Fe-C-Si-B separately, by optimizing the composition, better cladding coating with the characters of better strength and toughness, higher wear resistance and free of cracks. When the microstructure of cladding coating is hypoeutectic microstructure, its comprehensive performance is best. The research discovered that, compositely adding the strong-carbide-formation elements like Ti+V, Ti+Zr or V+Zr into the cladding coating is able to improve its comprehensive capability. All the cladding coatings obtained are hypoeutectic microstructure. The cladding coatings have a great deal of particulates, and its average microhardness reaches HV0.2700-1400. The research also discovered that the cladding coating obtained is of less cracking after adding the Ti+Zr.

  18. [The development of an integrated suicide-violence prevention program for adolescents].

    PubMed

    Park, Hyun Sook

    2008-08-01

    The purpose of this study was to develop an integrated suicide-violence prevention program for adolescents. Another purpose was to evaluate the effects of the integrated suicide-violence prevention program on self-esteem, parent-child communication, aggression, and suicidal ideation in adolescents. The study employed a quasi-experimental design. Participants for the study were high school students, 24 in the experimental group and 25 in the control group. Data was analyzed by using the SPSS/WIN. 11.5 program with chi2 test, t-test, and 2-way ANOVA. Participants in the integrated suicide-violence prevention program reported increased self-esteem scores, which was significantly different from those in the control group. Participants in the integrated suicide-violence prevention program reported decreased aggression and suicidal ideation scores, which was significantly different from those in the control group. The integrated suicide-violence prevention program was effective in improving self-esteem and decreasing aggression and suicidal ideation for adolescents. Therefore, this approach is recommended as the integrated suicide-violence prevention strategy for adolescents.

  19. Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang

    2015-12-01

    Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.

  20. Participatory Research in an Arts Integration Professional Development Program

    ERIC Educational Resources Information Center

    Cawthon, Stephanie W.; Dawson, Kathryn M.; Judd-Glossy, Laura; Ihorn, Shasta

    2012-01-01

    Drama for Schools (DFS) is an arts integration professional development program rooted in critical pedagogy and constructivism that emphasizes partnerships between school districts and a major research university. As a part of the research initiative embedded in this professional development program, DFS began an Arts integration Research Teacher…

  1. The Effect of Rare Earth on the Structure and Performance of Laser Clad Coatings

    NASA Astrophysics Data System (ADS)

    Bao, Ruiliang; Yu, Huijun; Chen, Chuanzhong; Dong, Qing

    Laser cladding is one kind of advanced surface modification technology and has the abroad prospect in making the wear-resistant coating on metal substrates. However, the application of laser cladding technology does not achieve the people's expectation in the practical production because of many defects such as cracks, pores and so on. The addiction of rare earth can effectively reduce the number of cracks in the clad coating and enhance the coating wear-resistance. In the paper, the effects of rare earth on metallurgical quality, microstructure, phase structure and wear-resistance are analyzed in turns. The preliminary discussion is also carried out on the effect mechanism of rare earth. At last, the development tendency of rare earth in the laser cladding has been briefly elaborated.

  2. Integrated Structural Analysis and Test Program

    NASA Technical Reports Server (NTRS)

    Kaufman, Daniel

    2005-01-01

    An integrated structural-analysis and structure-testing computer program is being developed in order to: Automate repetitive processes in testing and analysis; Accelerate pre-test analysis; Accelerate reporting of tests; Facilitate planning of tests; Improve execution of tests; Create a vibration, acoustics, and shock test database; and Integrate analysis and test data. The software package includes modules pertaining to sinusoidal and random vibration, shock and time replication, acoustics, base-driven modal survey, and mass properties and static/dynamic balance. The program is commanded by use of ActiveX controls. There is minimal need to generate command lines. Analysis or test files are selected by opening a Windows Explorer display. After selecting the desired input file, the program goes to a so-called analysis data process or test data process, depending on the type of input data. The status of the process is given by a Windows status bar, and when processing is complete, the data are reported in graphical, tubular, and matrix form.

  3. Integrating Consumer Requests Into Community Organized Programs

    ERIC Educational Resources Information Center

    Brown, Sanford M.

    1977-01-01

    The environmental health administrative problem of reducing and/or eliminating individual complaints or requests by integrating them with the planned community environmental health program is discussed. Four parameters are detailed: problem assessment, priority establishment, activity sequencing and the evaluation of program effectiveness. (BT)

  4. Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings

    NASA Astrophysics Data System (ADS)

    Bouvry, B.; Cheymol, G.; Ramiandrisoa, L.; Javaudin, B.; Gallou, C.; Maskrot, H.; Horny, N.; Duvaut, T.; Destouches, C.; Ferry, L.; Gonnier, C.

    2017-06-01

    Non-contact temperature measurement in a nuclear reactor is still a huge challenge because of the numerous constraints to consider, such as the high temperature, the steam atmosphere, and irradiation. A device is currently developed at CEA to study the nuclear fuel claddings behavior during a Loss-of-Coolant Accident. As a first step of development, we designed and tested an optical pyrometry procedure to measure the surface temperature of nuclear fuel claddings without any contact, under air, in the temperature range 700-850 °C. The temperature of Zircaloy-4 cladding samples was retrieved at various temperature levels. We used Multispectral Radiation Thermometry with the hypothesis of a constant emissivity profile in the spectral ranges 1-1.3 μm and 1.45-1.6 μm. To allow for comparisons, a reference temperature was provided by a thermocouple welded on the cladding surface. Because of thermal losses induced by the presence of the thermocouple, a heat transfer simulation was also performed to estimate the bias. We found a good agreement between the pyrometry measurement and the temperature reference, validating the constant emissivity profile hypothesis used in the MRT estimation. The expanded measurement uncertainty (k = 2) of the temperature obtained by the pyrometry method was ±4 °C, for temperatures between 700 and 850 °C. Emissivity values, between 0.86 and 0.91 were obtained.

  5. Hydride reorientation and its impact on ambient temperature mechanical properties of high burn-up irradiated and unirradiated recrystallized Zircaloy-2 nuclear fuel cladding with an inner liner

    NASA Astrophysics Data System (ADS)

    Auzoux, Q.; Bouffioux, P.; Machiels, A.; Yagnik, S.; Bourdiliau, B.; Mallet, C.; Mozzani, N.; Colas, K.

    2017-10-01

    Precipitation of radial hydrides in zirconium-based alloy cladding concomitant with the cooling of spent nuclear fuel during dry storage can potentially compromise cladding integrity during its subsequent handling and transportation. This paper investigates hydride reorientation and its impact on ductility in unirradiated and irradiated recrystallized Zircaloy-2 cladding with an inner liner (cladding for boiling water reactors) subjected to hydride reorientation treatments. Cooling from 400 °C, hydride reorientation occurs in recrystallized Zircaloy-2 with liner at a lower effective stress in irradiated samples (below 40 MPa) than in unirradiated specimens (between 40 and 80 MPa). Despite significant hydride reorientation, unirradiated recrystallized Zircaloy-2 with liner cladding containing ∼200 wppm hydrogen shows a high diametral strain at fracture (>15%) during burst tests at ambient temperature. This ductile behavior is due to (1) the lower yield stress of the recrystallized cladding materials in comparison to hydride fracture strength (corrected by the compression stress arising from the precipitation) and (2) the hydride or hydrogen-depleted zone as a result of segregation of hydrogen into the liner layer. In irradiated Zircaloy-2 with liner cladding containing ∼340 wppm hydrogen, the conservation of some ductility during ring tensile tests at ambient temperature after reorientation treatment at 400 °C with cooling rates of ∼60 °C/h is also attributed to the existence of a hydride-depleted zone. Treatments at lower cooling rates (∼6 °C/h and 0.6 °C/h) promote greater levels of hydrogen segregation into the liner and allow for increased irradiation defect annealing, both of which result in a significant increase in ductility. Based on this investigation, given the very low cooling rates typical of dry storage systems, it can be concluded that the thermal transients associated with dry storage should not degrade, and more likely should actually

  6. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    NASA Astrophysics Data System (ADS)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  7. Industry Application ECCS / LOCA Integrated Cladding/Emergency Core Cooling System Performance: Demonstration of LOTUS-Baseline Coupled Analysis of the South Texas Plant Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbin; Szilard, Ronaldo; Epiney, Aaron

    Under the auspices of the DOE LWRS Program RISMC Industry Application ECCS/LOCA, INL has engaged staff from both South Texas Project (STP) and the Texas A&M University (TAMU) to produce a generic pressurized water reactor (PWR) model including reactor core, clad/fuel design and systems thermal hydraulics based on the South Texas Project (STP) nuclear power plant, a 4-Loop Westinghouse PWR. A RISMC toolkit, named LOCA Toolkit for the U.S. (LOTUS), has been developed for use in this generic PWR plant model to assess safety margins for the proposed NRC 10 CFR 50.46c rule, Emergency Core Cooling System (ECCS) performance duringmore » LOCA. This demonstration includes coupled analysis of core design, fuel design, thermalhydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results. Within this context, a multi-physics best estimate plus uncertainty (MPBEPU) methodology framework is proposed.« less

  8. FIBER AND INTEGRATED OPTICS: Anisotropic waveguides with an elliptic stress-inducing cladding and a circular core

    NASA Astrophysics Data System (ADS)

    Arutyunyan, Z. É.; Grudinin, A. B.; Gur'yanov, A. N.; Gusovskiĭ, D. D.; Dianov, Evgenii M.; Ignat'ev, S. V.; Smirnov, O. B.

    1990-10-01

    A technology of fabrication of anisotropic single-mode fiber waveguides with an elliptic stress-inducing cladding and a circular core was developed. This technology was used to make fiber waveguides with a birefringence (1-3) × 10 - 4, a coefficient representing the coupling between the polarization modes h = (5-7) × 10 - 5 m - 1, and optical losses a = 0.5 dB/km in the vicinity of 1.6 μm. A comparison was made of the experimental data with the results of a theoretical analysis. It was found that certain mechanisms restricted the ability of these waveguides to maintain a constant polarization of the injected linearly polarized radiation.

  9. Air-clad fibres for astronomical instrumentation: focal-ratio degradation

    NASA Astrophysics Data System (ADS)

    Åslund, Mattias L.; Canning, John

    2009-05-01

    Focal-ratio degradation (FRD) of light launched into high-numerical aperture (NA) single-annulus all-silica undoped air-clad fibres at an NA of 0.54 is reported. The measured annular light distribution remained Gaussian after 30 m of propagation, but the angular FWHM of the output annulus doubled from 4° after 1 m propagation to 8.5° after 30 m, which is significantly larger than that reported of standard doped-silica fibres (NA < 0.22). No significant diffractive effects were observed. The design of air-clad fibres for broad-band, high-NA astrophotonics applications is discussed.

  10. Integrated Broadband Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  11. Characterization of Brazed Joints of C-C Composite to Cu-clad-Molybdenum

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon-carbon composites with either pitch+CVI matrix or resin-derived matrix were joined to copper-clad molybdenum using two active braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward de-lamination in resin-derived C-C composite due to its low inter-laminar shear strength. Extensive braze penetration of the inter-fiber channels in the pitch+CVI C-C composites was observed. The relatively low brazing temperatures (<950 C) precluded melting of the clad layer and restricted the redistribution of alloying elements but led to metallurgically sound composite joints. The Knoop microhardness (HK) distribution across the joint interfaces revealed sharp gradients at the Cu-clad-Mo/braze interface and higher hardness in Ticusil (approx.85-250 HK) than in Cusil-ABA (approx.50-150 HK). These C-C/Cu-clad-Mo joints with relatively low thermal resistance may be promising for thermal management applications.

  12. Parametric Study and Multi-Criteria Optimization in Laser Cladding by a High Power Direct Diode Laser

    NASA Astrophysics Data System (ADS)

    Farahmand, Parisa; Kovacevic, Radovan

    2014-12-01

    In laser cladding, the performance of the deposited layers subjected to severe working conditions (e.g., wear and high temperature conditions) depends on the mechanical properties, the metallurgical bond to the substrate, and the percentage of dilution. The clad geometry and mechanical characteristics of the deposited layer are influenced greatly by the type of laser used as a heat source and process parameters used. Nowadays, the quality of fabricated coating by laser cladding and the efficiency of this process has improved thanks to the development of high-power diode lasers, with power up to 10 kW. In this study, the laser cladding by a high power direct diode laser (HPDDL) as a new heat source in laser cladding was investigated in detail. The high alloy tool steel material (AISI H13) as feedstock was deposited on mild steel (ASTM A36) by a HPDDL up to 8kW laser and with new design lateral feeding nozzle. The influences of the main process parameters (laser power, powder flow rate, and scanning speed) on the clad-bead geometry (specifically layer height and depth of the heat affected zone), and clad microhardness were studied. Multiple regression analysis was used to develop the analytical models for desired output properties according to input process parameters. The Analysis of Variance was applied to check the accuracy of the developed models. The response surface methodology (RSM) and desirability function were used for multi-criteria optimization of the cladding process. In order to investigate the effect of process parameters on the molten pool evolution, in-situ monitoring was utilized. Finally, the validation results for optimized process conditions show the predicted results were in a good agreement with measured values. The multi-criteria optimization makes it possible to acquire an efficient process for a combination of clad geometrical and mechanical characteristics control.

  13. Numerical modelling on stimulated Brillouin scattering characterization for Graphene-clad tapered silica fiber

    NASA Astrophysics Data System (ADS)

    Lee, Hui Jing; Abdullah, Fairuz; Ismail, Aiman

    2017-11-01

    This paper presents finite numerical modelling on the cross-sectional region of tapered single mode fiber and graphene-clad tapered fiber. Surface acoustic wave propagation across the tapered surface region on tapered single mode fiber has a high threshold power at 61.87 W which is challenging to overcome by the incident pump wave. Surface acoustic wave propagation of fiber surface however made tapered wave plausible in the optical sensor application. This research introduces graphene as the cladding layer on tapered fiber, acoustic confinement occurs due to the graphene cladding which lowers the threshold power from 61.87 W to 2.17 W.

  14. The honey insertion cladding to improve the sensitivity of temperature polymer optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Arwani, M.; Kuswanto, H.

    2018-04-01

    The sensitivity of temperature polymer optical fiber (POF) sensor has been studied. Part of cladding (9 cm) was substituted with honey. Polymer cladding was stripped mechanically and the honey inserted into the tube. Plastic gel closed the two end sides of the tubes. The optical power output was detected by Optical Power Meter (OPM). Honey cladding and temperature changing effect to the internal reflection and optical fiber output intensity. Highest output intensity changing at 20°C was shown by optical fiber coated by longan honey as cladding. The range of 10-50° C, as the rise of surroundings temperature, the attenuation was getting smaller. Best sensitivity was fiber with sensing part coated by Longan honey. Best linearity was sensing fiber with sensing part coated by Pracimantoro honey.

  15. Integrated thruster assembly program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program is reported which has provided technology for a long life, high performing, integrated ACPS thruster assembly suitable for use in 100 typical flights of a space shuttle vehicle over a ten year period. The four integrated thruster assemblies (ITA) fabricated consisted of: propellant injector; a capacitive discharge, air gap torch type igniter assembly; fast response igniter and main propellant valves; and a combined regen-dump film cooled chamber. These flightweight 6672 N (1500 lb) thruster assemblies employed GH2/GO2 as propellants at a chamber pressure of 207 N/sq cm (300 psia). Test data were obtained on thrusted performance, thermal and hydraulic characteristics, dynamic response in pulsing, and cycle life. One thruster was fired in excess of 42,000 times.

  16. Computer Integrated Manufacturing Programs in Higher Education.

    ERIC Educational Resources Information Center

    International Business Machines Corp., Milford, CT. Academic Information Systems.

    This publication focuses on computer integrated manufacturing (CIM) programs at several higher education institutions which teach the use of computing in manufacturing. The document describes programs at the following institutions: University of Alabama (where researchers are investigating CIM techniques with a key focus on transferring their…

  17. Cladding For Transversely-Pumped Laser Rod

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.; Fan, Tso Yee

    1989-01-01

    Combination of suitable dimensioning and cladding of neodymium:yttrium aluminum garnet of similar solid-state laser provides for more efficient utilization of transversely-incident pump light from diode lasers. New design overcomes some of limitations of longitudinal- and older transverse-pumping concepts and promotes operation at higher output powers in TEM00 mode.

  18. Developing Metrics in Systems Integration (ISS Program COTS Integration Model)

    NASA Technical Reports Server (NTRS)

    Lueders, Kathryn

    2007-01-01

    This viewgraph presentation reviews some of the complications in developing metrics for systems integration. Specifically it reviews a case study of how two programs within NASA try to develop and measure performance while meeting the encompassing organizational goals.

  19. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    NASA Astrophysics Data System (ADS)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  20. Surface protection of light metals by one-step laser cladding with oxide ceramics

    NASA Astrophysics Data System (ADS)

    Nowotny, S.; Richter, A.; Tangermann, K.

    1999-06-01

    Today, intricate problems of surface treatment can be solved through precision cladding using advanced laser technology. Metallic and carbide coatings have been produced with high-power lasers for years, and current investigations show that laser cladding is also a promising technique for the production of dense and precisely localized ceramic layers. In the present work, powders based on Al2O3 and ZrO2 were used to clad aluminum and titanium light alloys. The compact layers are up to 1 mm thick and show a nonporous cast structure as well as a homogeneous network of vertical cracks. The high adhesive strength is due to several chemical and mechanical bonding mechanisms and can exceed that of plasmasprayed coatings. Compared to thermal spray techniques, the material deposition is strictly focused onto small functional areas of the workpiece. Thus, being a precision technique, laser cladding is not recommended for large-area coatings. Examples of applications are turbine components and filigree parts of pump casings.

  1. Experimental verification of a theoretical model of an active cladding optical fiber fluorosensor

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Briant, Alvin L.; Egalon, Claudio O.; Rogowski, Robert S.; Nankung, Juock S.

    1993-01-01

    Experiments were conducted to verify a theoretical model on the injection efficiency of sources in the cladding of an optical fiber. The theoretical results predicted an increase in the injection efficiency for higher differences in refractive indices between the core and cladding. The experimental apparatus used consisted of a glass rod 50 cm long, coated at one end with a thin film of fluorescent substance. The fluorescent substance was excited with side illumination, perpendicular to the rod axis, using a 476 nm Argon-ion laser. Part of the excited fluorescence was injected into the core and guided to a detector. The signal was measured for several different cladding refractive indices. The cladding consisted of sugar dissolved in water and the refractive index was changed by varying the sugar concentration in the solution. The results indicate that the power injected into the rod, due to evanescent wave injection, increases with the difference in refractive index which is in qualitative agreement with theory.

  2. Effect of the oxidation front penetration on in-clad hydrogen migration

    NASA Astrophysics Data System (ADS)

    Feria, F.; Herranz, L. E.

    2018-03-01

    In LWR fuel claddings the embrittlement due to hydrogen precipitates (i.e., hydrides) is a degrading mechanism that concerns in nuclear safety, particularly in dry storage. A relevant factor is the radial distribution of the hydrogen absorbed, especially the hydride rim formed. Thus, a reliable assessment of fuel performance should account for hydrogen migration. Based on the current state of modelling of hydrogen dynamics in the cladding, a 1D radial model has been derived and coupled with the FRAPCON code. The model includes the effect of the oxidation front progression on in-clad hydrogen migration, based on experimental observations found (i.e., dissolution/diffusion/re-precipitation of the hydrogen in the matrix ahead of the oxidation front). A remarkable quantitative impact of this new contribution has been shown by analyzing the hydrogen profile across the cladding of several high burnup fuel scenarios (>60 GW d/tU); other potential contributions like thermodiffusion and diffusion in the hydride phase hardly make any difference. Comparisons against PIE measurements allow concluding that the model accuracy notably increases when the effect of the oxidation front is accounted for in the hydride rim formation. In spite of the promising results, further validation would be needed.

  3. Integrating computer programs for engineering analysis and design

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.; Crisp, V. K.; Johnson, S. C.

    1983-01-01

    The design of a third-generation system for integrating computer programs for engineering and design has been developed for the Aerospace Vehicle Interactive Design (AVID) system. This system consists of an engineering data management system, program interface software, a user interface, and a geometry system. A relational information system (ARIS) was developed specifically for the computer-aided engineering system. It is used for a repository of design data that are communicated between analysis programs, for a dictionary that describes these design data, for a directory that describes the analysis programs, and for other system functions. A method is described for interfacing independent analysis programs into a loosely-coupled design system. This method emphasizes an interactive extension of analysis techniques and manipulation of design data. Also, integrity mechanisms exist to maintain database correctness for multidisciplinary design tasks by an individual or a team of specialists. Finally, a prototype user interface program has been developed to aid in system utilization.

  4. New metric for optimizing Continuous Loop Averaging Deconvolution (CLAD) sequences under the 1/f noise model

    PubMed Central

    Peng, Xian; Yuan, Han; Chen, Wufan; Ding, Lei

    2017-01-01

    Continuous loop averaging deconvolution (CLAD) is one of the proven methods for recovering transient auditory evoked potentials (AEPs) in rapid stimulation paradigms, which requires an elaborated stimulus sequence design to attenuate impacts from noise in data. The present study aimed to develop a new metric in gauging a CLAD sequence in terms of noise gain factor (NGF), which has been proposed previously but with less effectiveness in the presence of pink (1/f) noise. We derived the new metric by explicitly introducing the 1/f model into the proposed time-continuous sequence. We selected several representative CLAD sequences to test their noise property on typical EEG recordings, as well as on five real CLAD electroencephalogram (EEG) recordings to retrieve the middle latency responses. We also demonstrated the merit of the new metric in generating and quantifying optimized sequences using a classic genetic algorithm. The new metric shows evident improvements in measuring actual noise gains at different frequencies, and better performance than the original NGF in various aspects. The new metric is a generalized NGF measurement that can better quantify the performance of a CLAD sequence, and provide a more efficient mean of generating CLAD sequences via the incorporation with optimization algorithms. The present study can facilitate the specific application of CLAD paradigm with desired sequences in the clinic. PMID:28414803

  5. An Integrated Nutrition Education Program for Dental Students.

    ERIC Educational Resources Information Center

    DePaola, Dominick P.; And Others

    1978-01-01

    Presents a diagonal system of nutrition education in a dental program that integrates didactic, clinical work, and community sites. Discusses the three phases including educational methodology, evaluation strategy, and unique program features. (MA)

  6. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, H. M.

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10{sup 21} n cm{sup {minus}2} to 5.9 x 10{sup 21} n cm{sup {minus}2} (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest claddingmore » were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed.« less

  7. Corrosion inhibition of steam generator tubesheet by Alloy 690 cladding in secondary side environments

    NASA Astrophysics Data System (ADS)

    Hur, Do Haeng; Choi, Myung Sik; Lee, Deok Hyun; Han, Jung Ho; Shim, Hee Sang

    2013-11-01

    Denting is a phenomenon that a steam generator tube is distorted by a volume expansion of corrosion products of the tube support and tubesheet materials adjacent to the tube. Although denting has been mitigated by a modification of the design and material of the tube support structures, it has been an inevitable concern in the crevice region of the top of tubesheet. This paper provides a new technology to prevent denting by cladding the secondary surface of the tubesheet with a corrosion resistant material. In this study, Alloy 690 material was cladded onto the surface of an SA508 tubesheet to a thickness of about 9 mm. The corrosion rates of the original SA508 tubesheet and the Alloy 690 clad material were measured in acidic and alkaline simulated environments. Using Alloy 690 cladding, the corrosion rate of the tubesheet within a magnetite sludge pile decreased by a factor of 680 in 0.1 M NiCl2 solution at 300 °C, and by a factor of 58 in 2 M NaOH solution at 315 °C. This means that denting can drastically be prevented by cladding the secondary tubesheet surface with corrosion resistant materials.

  8. Two Inseparable Facets of Technology Integration Programs: Technology and Theoretical Framework

    ERIC Educational Resources Information Center

    Demir, Servet

    2011-01-01

    This paper considers the process of program development aiming at technology integration for teachers. For this consideration, the paper focused on an integration program which was recently developed as part of a larger project. The participants of this program were 45 in-service teachers. The program continued four weeks and the conduct of the…

  9. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Accomplishments in the Energy Efficient Engine Component Development and Integration program during the period of April 1, 1981 through September 30, 1981 are discussed. The major topics considered are: (1) propulsion system analysis, design, and integration; (2) engine component analysis, design, and development; (3) core engine tests; and (4) integrated core/low spool testing.

  10. Characterizing the effects of cladding on semi-elliptical longitudinal surface flaws in cylindrical vessels subjected to internal pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killian, D.E.; Yoon, K.K.

    1996-12-01

    Flaws on the inside surface of cladded reactor vessels are often analyzed by modelling the carbon steel base metal without consideration of a layer of stainless steel cladding material, thus ignoring the effects of this bimetallic discontinuity. Adding cladding material to the inside surface of a finite element model of a vessel raises concerns regarding adequate mesh refinement in the vicinity of the base metal/cladding interface. This paper presents results of three-dimensional linear stress analysis that has been performed to obtain stress intensity factors for clad and unclad reactor vessels subjected to internal pressure loading. The study concentrates on semi-ellipticalmore » longitudinal surface flaws with a 6 to 1 length-to-depth ratio and flaw depths of 1/8 and 1/4 of the base metal thickness. Various meshing schemes are evaluated for modelling the crack front profile, with particular emphasis on the region near the inside surface and at the base metal/cladding interface. The shape of the crack front profile through the cladding layer and the number of finite elements used to discretize the cladding thickness are found to have a significant influence on typical fracture mechanic measures of the crack tip stress fields. Results suggest that the stress intensity factor at the inner surface of a cladded vessel may be affected as much by the finite element mesh near the surface as by the material discontinuity between the two parts of the structure.« less

  11. The Development of Expansion Plug Wedge Test for Clad Tubing Structure Mechanical Property Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Jiang, Hao

    2016-01-12

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at the Oak Ridge National Laboratory (ORNL) and is described fully in US Patent Application 20060070455, “Expanded plug method for developing circumferential mechanical properties of tubular materials.” This method is designed for testing fuel rod cladding ductility in a hot cell using an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are themore » simplicity of measuring the test component assembly in the hot cell and the direct measurement of the specimen’s strain. It was also found that cladding strength could be determined from the test results.« less

  12. Improved Accident Tolerance of Austenitic Stainless Steel Cladding through Colossal Supersaturation with Interstitial Solutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Frank

    We proposed a program-supporting research project in the area of fuel-cycle R&D, specifically on the topic of advanced fuels. Our goal was to investigate whether SECIS (surface engineering by concentrated interstitial solute – carbon, nitrogen) can improve the properties of austenitic stainless steels and related structural alloys such that they can be used for nuclear fuel cladding in LWRs (light-water reactors) and significantly excel currently used alloys with regard to performance, safety, service life, and accident tolerance. We intended to demonstrate that SECIS can be adapted for post-processing of clad tubing to significantly enhance mechanical properties (hardness, wear resistance, andmore » fatigue life), corrosion resistance, resistance to stress–corrosion cracking (hydrogen-induced embrittlement), and – potentially – radiation resistance (against electron-, neutron-, or ion-radiation damage). To test this hypothesis, we measured various relevant properties of the surface-engineered alloys and compared them with corresponding properties of the non–treated, as-received alloys. In particular, we studied the impact of heat exposure corresponding to BWR (boiling-water reactor) working and accident (loss-of-coolant) conditions and the effect of ion irradiation.« less

  13. BISON Investigation of the Effect of the Fuel- Cladding Contact Irregularities on the Peak Cladding Temperature and FCCI Observed in AFC-3A Rodlet 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Pavel G.

    2016-09-01

    The primary objective of this report is to document results of BISON analyses supporting Fuel Cycle Research and Development (FCRD) activities. Specifically, the present report seeks to provide explanation for the microstructural features observed during post irradiation examination of the helium-bonded annular U-10Zr fuel irradiated during the AFC-3A experiment. Post irradiation examination of the AFC-3A rodlet revealed microstructural features indicative of the fuel-cladding chemical interaction (FCCI) at the fuel-cladding interface. Presence of large voids was also observed in the same locations. BISON analyses were performed to examine stress and temperature profiles and to investigate possible correlation between the voids andmore » FCCI. It was found that presence of the large voids lead to a formation of circumferential temperature gradients in the fuel that may have redirected migrating lanthanides to the locations where fuel and cladding are in contact. Resulting localized increase of lanthanide concentration is expected to accelerate FCCI. The results of this work provide important guidance to the post irradiation examination studies. Specifically, the hypothesis of lanthanides being redirected from the voids to the locations where the fuel and the cladding are in contact should be verified by conducting quantitative electron microscopy or Electron Probe Micro-Analyzer (EPMA). The results also highlight the need for computer models capable of simulating lanthanide diffusion in metallic fuel and establish a basis for validation of such models.« less

  14. Surface modification techniques for increased corrosion tolerance of zirconium fuel cladding

    NASA Astrophysics Data System (ADS)

    Carr, James Patrick, IV

    Corrosion is a major issue in applications involving materials in normal and severe environments, especially when it involves corrosive fluids, high temperatures, and radiation. Left unaddressed, corrosion can lead to catastrophic failures, resulting in economic and environmental liabilities. In nuclear applications, where metals and alloys, such as steel and zirconium, are extensively employed inside and outside of the nuclear reactor, corrosion accelerated by high temperatures, neutron radiation, and corrosive atmospheres, corrosion becomes even more concerning. The objectives of this research are to study and develop surface modification techniques to protect zirconium cladding by the incorporation of a specific barrier coating, and to understand the issues related to the compatibility of the coatings examined in this work. The final goal of this study is to recommend a coating and process that can be scaled-up for the consideration of manufacturing and economic limits. This dissertation study builds on previous accident tolerant fuel cladding research, but is unique in that advanced corrosion methods are tested and considerations for implementation by industry are practiced and discussed. This work will introduce unique studies involving the materials and methods for accident tolerant fuel cladding research by developing, demonstrating, and considering materials and processes for modifying the surface of zircaloy fuel cladding. This innovative research suggests that improvements in the technique to modify the surface of zirconium fuel cladding are likely. Three elements selected for the investigation of their compatibility on zircaloy fuel cladding are aluminum, silicon, and chromium. These materials are also currently being investigated at other labs as alternate alloys and coatings for accident tolerant fuel cladding. This dissertation also investigates the compatibility of these three elements as surface modifiers, by comparing their microstructural and

  15. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, K.

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Associationmore » of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.« less

  16. Integrating Program Theory and Systems-Based Procedures in Program Evaluation: A Dynamic Approach to Evaluate Educational Programs

    ERIC Educational Resources Information Center

    Grammatikopoulos, Vasilis

    2012-01-01

    The current study attempts to integrate parts of program theory and systems-based procedures in educational program evaluation. The educational program that was implemented, called the "Early Steps" project, proposed that physical education can contribute to various educational goals apart from the usual motor skills improvement. Basic…

  17. Development and study the performance of PBA cladding modified fiber optic intrinsic biosensor for urea detection

    NASA Astrophysics Data System (ADS)

    Botewad, S. N.; Pahurkar, V. G.; Muley, G. G.

    2016-05-01

    The fabrication and study of a cladding modified fiber optic intrinsic urea biosensor based on evanescent wave absorbance has been presented. The sensor was prepared using cladding modification technique by removing a small portion of cladding of an optical fiber and modifying with an active cladding of porous polyaniline-boric acid (PBA) matrix to immobilize enzyme-urease through cross-linking via glutaraldehyde. The nature of as-synthesized and deposited PBA film on fiber optic sensing element was studied by ultraviolet-visible (UV-vis) spectroscopy and X-ray diffraction (XRD) analysis. The performance of the developed sensor was studied for different urea concentrations in solutions prepared in phosphate buffer.

  18. CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers.

    PubMed

    Boyd, Keiron; Simakov, Nikita; Hemming, Alexander; Daniel, Jae; Swain, Robert; Mies, Eric; Rees, Simon; Andrew Clarkson, W; Haub, John

    2016-04-10

    We present and characterize a simple CO2 laser processing technique for the fabrication of compact all-glass optical fiber cladding light strippers. We investigate the cladding light loss as a function of radiation angle of incidence and demonstrate devices in a 400 μm diameter fiber with cladding losses of greater than 20 dB for a 7 cm device length. The core losses are also measured giving a loss of <0.008±0.006  dB/cm. Finally we demonstrate the successful cladding light stripping of a 300 W laser diode with minimal heating of the fiber coating and packaging adhesives.

  19. Environmental Impacts of Metal Cladding Operations and Remedial Measures: A Case Study

    NASA Astrophysics Data System (ADS)

    Roy, P. P.; Sawmliana, C.; Singh, R. K.

    2014-04-01

    In metal cladding operations, a mixture of 11 % TNT flakes, 44 % ammonium nitrate (non-explosive) and 45 % dehydrated salt (non-explosive) are mixed uniformly to produce an explosive mixture with velocity of detonation 1,800-2,000 m/s. To study the environmental impacts of such operations which led to serious complaints from neighbouring villagers and even closure of some units, a study was carried out to investigate the levels of ground vibration, air overpressure and noise generated by blasting operations of different explosive charge quantities during the metal cladding operations and their impacts on the surrounding villages. Following the safety norms of Central Pollution Control Board (CPCB, Model Rules of the Factories Act on Noise Pollution Control) [1] and Directorate General of Mines Safety (DGMS, Damage to the structures due to blast induced ground vibration in the mining areas) [2] of India, generalised guidelines for such safe operations were framed. This paper describes the operational aspects of metal cladding, experimental results and scientific analyses of data to propose certain guidelines for safe metal cladding operations.

  20. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2000-12-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Prioritiesmore » and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international

  1. Systems Engineering and Integration for Technology Programs

    NASA Technical Reports Server (NTRS)

    Kennedy, Kruss J.

    2006-01-01

    The Architecture, Habitability & Integration group (AH&I) is a system engineering and integration test team within the NASA Crew and Thermal Systems Division (CTSD) at Johnson Space Center. AH&I identifies and resolves system-level integration issues within the research and technology development community. The timely resolution of these integration issues is fundamental to the development of human system requirements and exploration capability. The integration of the many individual components necessary to construct an artificial environment is difficult. The necessary interactions between individual components and systems must be approached in a piece-wise fashion to achieve repeatable results. A formal systems engineering (SE) approach to define, develop, and integrate quality systems within the life support community has been developed. This approach will allow a Research & Technology Program to systematically approach the development, management, and quality of technology deliverables to the various exploration missions. A tiered system engineering structure has been proposed to implement best systems engineering practices across all development levels from basic research to working assemblies. These practices will be implemented through a management plan across all applicable programs, projects, elements and teams. While many of the engineering practices are common to other industries, the implementation is specific to technology development. An accounting of the systems engineering management philosophy will be discussed and the associated programmatic processes will be presented.

  2. Finite element simulation of a novel composite light-weight microporous cladding panel

    NASA Astrophysics Data System (ADS)

    Tian, Lida; Wang, Dongyan

    2018-04-01

    A novel composite light-weight microporous cladding panel with matched connection detailing is developed. Numerical simulation on the experiment is conducted by ABAQUS. The accuracy and rationality of the finite element model is verified by comparison between the simulation and the experiment results. It is also indicated that the novel composite cladding panel is of desirable bearing capacity, stiffness and deformability under out-of-plane load.

  3. Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser.

    PubMed

    Wang, P; Cooper, L J; Sahu, J K; Clarkson, W A

    2006-01-15

    A novel approach to achieving robust single-spatial-mode operation of cladding-pumped fiber lasers with multimode cores is reported. The approach is based on the use of a fiber geometry in which the core has a helical trajectory within the inner cladding to suppress laser oscillation on higher-order modes. In a preliminary proof-of-principle study, efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser with a 30 microm diameter core and a numerical aperture of 0.087 has been demonstrated. The laser yielded 60.4 W of output at 1043 nm in a beam with M2 < 1.4 for 92.6 W launched pump power from a diode stack at 976 nm. The slope efficiency at pump powers well above threshold was approximately 84%, which compares favorably with the slope efficiencies achievable with conventional straight-core Yb-doped double-clad fiber lasers.

  4. Property Investigation of Laser Cladded, Laser Melted and Electron Beam Melted Ti-Al6-V4

    DTIC Science & Technology

    2006-05-01

    UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Figure 3: Examples of electron beam melted net shape parts; powder bed [3]. 1.4 Laser Cladding ...description, www.arcam.com. [4] K.-H. Hermann, S. Orban, S. Nowotny, Laser Cladding of Titanium Alloy Ti6242 to Restore Damaged Blades, Proceedings...Property Investigation of Laser Cladded , Laser Melted and Electron Beam Melted Ti-Al6-V4 Johannes Vlcek EADS Deutschland GmbH Corporate Research

  5. Integrated Pest Management: A Curriculum for Early Care and Education Programs

    ERIC Educational Resources Information Center

    California Childcare Health Program, 2011

    2011-01-01

    This "Integrated Pest Management Toolkit for Early Care and Education Programs" presents practical information about using integrated pest management (IPM) to prevent and manage pest problems in early care and education programs. This curriculum will help people in early care and education programs learn how to keep pests out of early…

  6. Integrated Healthcare Delivery: A Qualitative Research Approach to Identifying and Harmonizing Perspectives of Integrated Neglected Tropical Disease Programs

    PubMed Central

    Jacobson, Julie; Mosher, Aryc W.; Walson, Judd L.

    2016-01-01

    Background While some evidence supports the beneficial effects of integrating neglected tropical disease (NTD) programs to optimize coverage and reduce costs, there is minimal information regarding when or how to effectively operationalize program integration. The lack of systematic analyses of integration experiences and of integration processes may act as an impediment to achieving more effective NTD programming. We aimed to learn about the experiences of NTD stakeholders and their perceptions of integration. Methodology We evaluated differences in the definitions, roles, perceived effectiveness, and implementation experiences of integrated NTD programs among a variety of NTD stakeholder groups, including multilateral organizations, funding partners, implementation partners, national Ministry of Health (MOH) teams, district MOH teams, volunteer rural health workers, and community members participating in NTD campaigns. Semi-structured key informant interviews were conducted. Coding of themes involved a mix of applying in-vivo open coding and a priori thematic coding from a start list. Findings In total, 41 interviews were conducted. Salient themes varied by stakeholder, however dominant themes on integration included: significant variations in definitions, differential effectiveness of specific integrated NTD activities, community member perceptions of NTD programs, the influence of funders, perceived facilitators, perceived barriers, and the effects of integration on health system strength. In general, stakeholder groups provided unique perspectives, rather than contrarian points of view, on the same topics. The stakeholders identified more advantages to integration than disadvantages, however there are a number of both unique facilitators and challenges to integration from the perspective of each stakeholder group. Conclusions Qualitative data suggest several structural, process, and technical opportunities that could be addressed to promote more effective and

  7. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world's highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding during fabrication and are enhanced during irradiation. One aspect of fuel development and qualification is to demonstrate an appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding and Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 °C). The mechanisms responsible for fission gas release events are discussed.

  8. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world’s highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form during fabrication and are enhanced during irradiation between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding. One aspect of fuel development and qualification is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding andmore » Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 oC). The mechanisms responsible for fission gas release events are discussed.« less

  9. Development and study the performance of PBA cladding modified fiber optic intrinsic biosensor for urea detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botewad, S. N.; Pahurkar, V. G.; Muley, G. G., E-mail: gajananggm@yahoo.co.in

    2016-05-06

    The fabrication and study of a cladding modified fiber optic intrinsic urea biosensor based on evanescent wave absorbance has been presented. The sensor was prepared using cladding modification technique by removing a small portion of cladding of an optical fiber and modifying with an active cladding of porous polyaniline-boric acid (PBA) matrix to immobilize enzyme-urease through cross-linking via glutaraldehyde. The nature of as-synthesized and deposited PBA film on fiber optic sensing element was studied by ultraviolet-visible (UV-vis) spectroscopy and X-ray diffraction (XRD) analysis. The performance of the developed sensor was studied for different urea concentrations in solutions prepared in phosphatemore » buffer.« less

  10. Applications of Laser Cladded WC-Based Wear Resistant Coatings

    NASA Astrophysics Data System (ADS)

    Verwimp, Jo; Rombouts, Marleen; Geerinckx, Eric; Motmans, Filip

    Laser cladding is an additive process wherein a laser source is used to melt metal-based powder or wire on to a metal substrate. The technique is frequently used to produce wear resistant coatings consisting of a metal matrix and a ceramic strengthening phase. In this study mixtures of nickel based powders and various amounts of tungsten carbides have been used as feedstock for laser cladding on a range of steel substrates and for different applications. Crack-free low porosity coatings with a thickness of about 1 mm and carbide concentrations up to 50 vol% have been produced. The evaluation of the wear resistance of the different coatings is performed on lab scale or in the application itself.

  11. Integration of Basic and Clinical Science Courses in US PharmD Programs.

    PubMed

    Islam, Mohammed A; Talukder, Rahmat M; Taheri, Reza; Blanchard, Nicholas

    2016-12-25

    Objective. To determine the current status of and faculty perceptions regarding integration of basic and clinical science courses in US pharmacy programs. Methods. A 25-item survey instrument was developed and distributed to 132 doctor of pharmacy (PharmD) programs. Survey data were analyzed using Mann-Whitney U test or Kruskal-Wallis test. Thematic analysis of text-based comments was performed using the constant comparison method. Results. One hundred twelve programs responded for a response rate of 85%. Seventy-eight (70%) offered integrated basic and clinical science courses. The types of integration included: full integration with merging disciplinary contents (n=25), coordinated delivery of disciplinary contents (n=50), and standalone courses with integrated laboratory (n=3). Faculty perceptions of course integration were positive. Themes that emerged from text-based comments included positive learning experiences as well as the challenges, opportunities, and skepticism associated with course integration. Conclusion. The results suggest wide variations in the design and implementation of integrated courses among US pharmacy programs. Faculty training and buy-in play a significant role in successful implementation of curricular integration.

  12. Integration of Basic and Clinical Science Courses in US PharmD Programs

    PubMed Central

    Talukder, Rahmat M.; Taheri, Reza; Blanchard, Nicholas

    2016-01-01

    Objective. To determine the current status of and faculty perceptions regarding integration of basic and clinical science courses in US pharmacy programs. Methods. A 25-item survey instrument was developed and distributed to 132 doctor of pharmacy (PharmD) programs. Survey data were analyzed using Mann-Whitney U test or Kruskal-Wallis test. Thematic analysis of text-based comments was performed using the constant comparison method. Results. One hundred twelve programs responded for a response rate of 85%. Seventy-eight (70%) offered integrated basic and clinical science courses. The types of integration included: full integration with merging disciplinary contents (n=25), coordinated delivery of disciplinary contents (n=50), and standalone courses with integrated laboratory (n=3). Faculty perceptions of course integration were positive. Themes that emerged from text-based comments included positive learning experiences as well as the challenges, opportunities, and skepticism associated with course integration. Conclusion. The results suggest wide variations in the design and implementation of integrated courses among US pharmacy programs. Faculty training and buy-in play a significant role in successful implementation of curricular integration. PMID:28179715

  13. Bend-resistant large mode area fiber with novel segmented cladding

    NASA Astrophysics Data System (ADS)

    Ma, Shaoshuo; Ning, Tigang; Pei, Li; Li, Jing; Zheng, Jingjing

    2018-01-01

    A novel structure of segment cladding fiber (SCF) with characteristics of bend-resistance and large-mode-area (LMA) is proposed. In this new structure, the high refractive index (RI) core is periodically surrounded by high RI fan-segmented claddings. Numerical investigations show that effective single-mode operation of the proposed fiber with mode field area of 700 μm2 can be achieved when the bending radius is 15 cm. Besides, this fiber is insensitive to the bending orientation at the ranging of [-180°, 180°]. The proposed design shows great potential in high power fiber lasers and amplifiers with compact structure.

  14. Integrating to Learn and Learning to Integrate: A Case Study of an Online Master's Program on Science-Mathematics Integration for Middle School Teachers

    ERIC Educational Resources Information Center

    Lee, Mimi Miyoung; Chauvot, Jennifer; Plankis, Brian; Vowell, Julie; Culpepper, Shea

    2011-01-01

    iSMART (Integration of Science, Mathematics, and Reflective Teaching) Program is an online science and mathematics integrated graduate program for middle school teachers across the state of Texas. As part of a large design-based research project, this paper describes the initial stages of the design process of the iSMART program for its first…

  15. Behavior of polymer cladding materials under extremely high temperatures

    NASA Astrophysics Data System (ADS)

    Clark, Timothy E.; Chang, Selee; Kwak, SeungJo; Oh, Jung Hyun

    2012-01-01

    Polymer claddings with low refractive indices for silica core fibers were developed. Applications include fiber lasers and transmission of high power lasers in surgery. For many applications, operating fibers under high temperatures is desirable. In a previous publication, the results of testing polymer cladded silica core fiber at 150°C for 6400 hours were given, along with 5000 hours of testing polymer films. The results at 150°C were encouraging, with little additional loss measured. Here we test polymers under more severe conditions, at 270°C, for periods up to 10 hours. The polymers' cured indices range from 1.374 to 1.397 (at 852 nm). Changes in Young's modulus, refractive index, yellowing, weight, hardness, strength, and elongation were observed. While these polymers cannot function at 270°C for extended periods, it is possible to expose them for shorter durations without significant damage. Some polymer properties actually improved after 4 hours of heating. Fibers clad with such polymers have been successfully jacketed with extruded materials, and have endured high temperatures for a few minutes. It is possible that a sensor, fiber laser or other fiber device could function in these temperatures for short periods without the coating properties changing beyond values required for operation.

  16. Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface

    NASA Astrophysics Data System (ADS)

    Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.

    2018-03-01

    This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.

  17. Microstructure and Antiwear Property of Laser Cladding Ni–Co Duplex Coating on Copper

    PubMed Central

    Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui

    2016-01-01

    Ni–Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al2O3/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni–Co duplex coatings comprised a Co-based solid solution, Cr7C3, (Fe,Ni)23C6, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni–Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni–Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties. PMID:28773755

  18. Microstructure and Antiwear Property of Laser Cladding Ni-Co Duplex Coating on Copper.

    PubMed

    Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui

    2016-07-28

    Ni-Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al₂O₃/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni-Co duplex coatings comprised a Co-based solid solution, Cr₇C₃, (Fe,Ni) 23 C₆, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni-Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni-Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties.

  19. NUCLEAR REACTOR COMPENENT CLADDING MATERIAL

    DOEpatents

    Draley, J.E.; Ruther, W.E.

    1959-01-27

    Fuel elements and coolant tubes used in nuclear reactors of the heterogeneous, water-cooled type are described, wherein the coolant tubes extend through the moderator and are adapted to contain the fuel elements. The invention comprises forming the coolant tubes and the fuel element cladding material from an alloy of aluminum and nickel, or an alloy of aluminum, nickel, alloys are selected to prevent intergranular corrosion of these components by water at temperatures up to 35O deg C.

  20. High-temperature Chemical Compatibility of As-fabricated TRIGA Fuel and Type 304 Stainless Steel Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Eric Woolstenhulme

    2012-09-01

    Chemical interaction between TRIGA fuel and Type-304 stainless steel cladding at relatively high temperatures is of interest from the point of view of understanding fuel behavior during different TRIGA reactor transient scenarios. Since TRIGA fuel comes into close contact with the cladding during irradiation, there is an opportunity for interdiffusion between the U in the fuel and the Fe in the cladding to form an interaction zone that contains U-Fe phases. Based on the equilibrium U-Fe phase diagram, a eutectic can develop at a composition between the U6Fe and UFe2 phases. This eutectic composition can become a liquid at aroundmore » 725°C. From the standpoint of safe operation of TRIGA fuel, it is of interest to develop better understanding of how a phase with this composition may develop in irradiated TRIGA fuel at relatively high temperatures. One technique for investigating the development of a eutectic phase at the fuel/cladding interface is to perform out-of-pile diffusion-couple experiments at relatively high temperatures. This information is most relevant for lightly irradiated fuel that just starts to touch the cladding due to fuel swelling. Similar testing using fuel irradiated to different fission densities should be tested in a similar fashion to generate data more relevant to more heavily irradiated fuel. This report describes the results for TRIGA fuel/Type-304 stainless steel diffusion couples that were annealed for one hour at 730 and 800°C. Scanning electron microscopy with energy- and wavelength-dispersive spectroscopy was employed to characterize the fuel/cladding interface for each diffusion couple to look for evidence of any chemical interaction. Overall, negligible fuel/cladding interaction was observed for each diffusion couple.« less

  1. Effect of mo Content on Microstructure and Properties of Laser Cladding Fe-BASED Alloy Coatings

    NASA Astrophysics Data System (ADS)

    Xiaoli, Ma; Kaiming, Wang; Hanguang, Fu; Jiang, Ju; Yongping, Lei; Dawei, Yi

    Mo alloying Fe-based coating was fabricated on the surface of Q235 steel by using 6 kW fiber laser. The effects of Mo additions on the microstructure, microhardness and wear resistance of the cladding layer were studied by means of optical microscopy (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS), Vickers hardness tester and M-200 ring block wear tester. Research results showed that the microstructure of Mo-free cladding layer mainly consisted of matrix and eutectic structure. The matrix was martensite and retained austenite. The eutectic structure mainly consisted of M2(B,C) and M7(C,B)3 type of eutectic borocarbides. With the increase of Mo content, there was no significant change in the matrix. However, the eutectic structure was transformed from M2(B,C)- and M7(C,B)3-type borocarbides into M2(B,C)-, M7(C,B)3- and M23(C,B)6-type borocarbides. When the content of Mo is 4.0wt.%, the Mo2C-type carbide appear on the matrix, and parts of the borocarbide networks are broken. The change of microhardness of the cladding layer was not obvious with the increase of Mo content. But the increase of Mo content increases the wear resistance of the cladding layer. The wear resistance of cladding layer with 4.0wt.% Mo is 2.4 times as much as the cladding layer which is Mo-free.

  2. Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad K.; Edrisy, Afsaneh; Urbanic, Jill; Pineault, James

    2017-03-01

    Laser cladding is a surface treatment process which is starting to be employed as a novel additive manufacturing. Rapid cooling during the non-equilibrium solidification process generates non-equilibrium microstructures and significant amounts of internal residual stresses. This paper investigates the laser cladding of 420 martensitic stainless steel of two single beads produced by different process parameters (e.g., laser power, laser speed, and powder feed rate). Metallographic sample preparation from the cross section revealed three distinct zones: the bead zone, the dilution zone, and the heat-affected zone (HAZ). The tensile residual stresses were in the range of 310-486 MPa on the surface and the upper part of the bead zone. The compressive stresses were in the range of 420-1000 MPa for the rest of the bead zone and the dilution zone. The HAZ also showed tensile residual stresses in the range of 140-320 MPa for both samples. The post-cladding heat treatment performed at 565 °C for an hour had significantly reduced the tensile stresses at the surface and in the subsurface and homogenized the compressive stress throughout the bead and dilution zones. The microstructures, residual stresses, and microhardness profiles were correlated for better understanding of the laser-cladding process.

  3. Integral flange design program. [procedure for computing stresses

    NASA Technical Reports Server (NTRS)

    Wilson, J. F.

    1974-01-01

    An automated interactive flange design program utilizing an electronic desk top calculator is presented. The program calculates the operating and seating stresses for circular flanges of the integral or optional type subjected to internal pressure. The required input information is documented. The program provides an automated procedure for computing stresses in selected flange geometries for comparison to the allowable code values.

  4. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding.

    PubMed

    Pang, Xuming; Wei, Qian; Zhou, Jianxin; Ma, Huiyang

    2018-06-19

    In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.

  5. Retrospective dosimetry analyses of reactor vessel cladding samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, L. R.; Soderquist, C. Z.; Fero, A. H.

    2011-07-01

    Reactor pressure vessel cladding samples for Ringhals Units 3 and 4 in Sweden were analyzed using retrospective reactor dosimetry techniques. The objective was to provide the best estimates of the neutron fluence for comparison with neutron transport calculations. A total of 51 stainless steel samples consisting of chips weighing approximately 100 to 200 mg were removed from selected locations around the pressure vessel and were sent to Pacific Northwest National Laboratory for analysis. The samples were fully characterized and analyzed for radioactive isotopes, with special interest in the presence of Nb-93m. The RPV cladding retrospective dosimetry results will be combinedmore » with a re-evaluation of the surveillance capsule dosimetry and with ex-vessel neutron dosimetry results to form a comprehensive 3D comparison of measurements to calculations performed with 3D deterministic transport code. (authors)« less

  6. Microstructure and properties of Fe-based composite coating by laser cladding Fe-Ti-V-Cr-C-CeO2 powder

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zou, Yong; Zou, Zengda; Wu, Dongting

    2015-01-01

    In situ TiC-VC reinforced Fe-based cladding layer was obtained on low carbon steel surface by laser cladding with Fe-Ti-V-Cr-C-CeO2 alloy powder. The microstructure, phases and properties of the cladding layer were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM), potentio-dynamic polarization and electro-chemical impedance spectroscopy (EIS). Results showed Fe-Ti-V-Cr-C-CeO2 alloy powder formed a good cladding layer without defects such as cracks and pores. The phases of the cladding layer were α-Fe, γ-Fe, TiC, VC and TiVC2. The microstructures of the cladding layer matrix were lath martensite and retained austenite. The carbides were polygonal blocks with a size of 0.5-2 μm and distributed uniformly in the cladding layer. High resolution transmission electron microscopy showed the carbide was a complex matter composed of nano TiC, VC and TiVC2. The cladding layer with a hardness of 1030 HV0.2 possessed good wear and corrosion resistance, which was about 16.85 and 9.06 times than that of the substrate respectively.

  7. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.

    PubMed

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Chen, Feng; Vázquez de Aldana, Javier Rodríguez

    2013-08-12

    This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

  8. Industry Application Emergency Core Cooling System Cladding Acceptance Criteria Early Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szilard, Ronaldo H.; Youngblood, Robert W.; Zhang, Hongbin

    2015-09-01

    The U. S. NRC is currently proposing rulemaking designated as “10 CFR 50.46c” to revise the loss-of-coolant-accident (LOCA)/emergency core cooling system (ECCS) acceptance criteria to include the effects of higher burnup on cladding performance as well as to address other technical issues. The NRC is also currently resolving the public comments with the final rule expected to be issued in April 2016. The impact of the final 50.46c rule on the industry may involve updating of fuel vendor LOCA evaluation models, NRC review and approval, and licensee submittal of new LOCA evaluations or re-analyses and associated technical specification revisions formore » NRC review and approval. The rule implementation process, both industry and NRC activities, is expected to take 4-6 years following the rule effective date. As motivated by the new rule, the need to use advanced cladding designs may be a result. A loss of operational margin may result due to the more restrictive cladding embrittlement criteria. Initial and future compliance with the rule may significantly increase vendor workload and licensee cost as a spectrum of fuel rod initial burnup states may need to be analyzed to demonstrate compliance. Consequently, there will be an increased focus on licensee decision making related to LOCA analysis to minimize cost and impact, and to manage margin. The proposed rule would apply to a light water reactor and to all cladding types.« less

  9. Medicaid integrity program; limitation on contractor liability. Final rule.

    PubMed

    2007-11-30

    The Medicaid Integrity Program (the Program) provides that the Secretary promote the integrity of the Medicaid program by entering into contracts with contractors that will review the actions of individuals or entities furnishing items or services (whether fee-for-service, risk, or other basis) for which payment may be made under an approved State plan and/or any waiver of the plan approved under section 1115 of the Social Security Act; audit claims for payment of items or services furnished, or administrative services furnished, under a State plan; identify overpayments of individuals or entities receiving Federal funds; and educate providers of services, managed care entities, beneficiaries, and other individuals with respect to payment integrity and quality of care. This final rule will provide for limitations on a contractor's liability while performing these services under the Program. The final rule will, to the extent possible, employ the same or comparable standards and other substantive and procedural provisions as are contained in section 1157 (Limitation on Liability) of the Social Security Act.

  10. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    NASA Astrophysics Data System (ADS)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong

    2015-08-01

    Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures combined with the crack initiation sites such as the fractured WC particles, pores and solidification cracks. WC particles directly caused clad cracks by particle fracture under the tensile stress. The pores and solidification cracks also affected as initiation sites and provided an easy crack path ways for large brittle fractures.

  11. Structure and tribological properties of steel after non-vacuum electron beam cladding of Ti, Mo and graphite powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bataev, I.A.; Mul, D.O.; Bataev, A.A.

    2016-02-15

    The non-vacuum electron beam cladding technique was used to fabricate layers alloyed with Ti, Mo and C on the surface of low-alloyed steel. Two types of experiments were carried out. In the first experiment, a mixture of Ti and graphite powders was used for cladding; in the second, a mixture of Ti, Mo and graphite powders was used for cladding. CaF{sub 2} powder or a mixture of CaF{sub 2} and LiF powders was used as flux. The thickness of the cladded layers was in the range of 2–2.2 mm. The structure of the layers was studied using optical microscopy, scanningmore » electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The microhardness after cladding of the layers fabricated by cladding of Ti and graphite powders was 8–9 GPa, while the microhardness of layers with Mo additions reached 11–12 GPa. The highest wear resistance at sliding friction and friction in abrasive environment was reached in the samples fabricated using Ti, Mo and graphite mixture due to the higher hardness and the martensite–austenite structure of the matrix. The wear resistance against fixed abrasive particles was 2.4 times higher compared to that of carburized and quenched steel. - Highlights: • Ti, C and Mo mixture of powders was cladded using non-vacuum electron beam treatment. • The depth of the cladded layers was 2.0 … 2.2 mm. • The microhardness of layer with Mo, Ti and C additions reached ~ 11 … 12 GPa. • The hardening of the layers caused by the formation of TiC particles and martensitic matrix • Wear resistance of cladded coatings was 2.4 higher than carburized steel.« less

  12. Cladding pumped Yb-doped HOM power amplifier with high gain

    NASA Astrophysics Data System (ADS)

    Abedin, Kazi S.; Ahmad, Raja; DeSantolo, Anthony M.; Nicholson, Jeffrey W.; Westbrook, Paul S.; Headley, Clifford; DiGiovanni, David J.

    2018-02-01

    Higher-order mode (HOM) fibers have been engineered to allow propagation of linearly polarized symmetric modes LP0,N in a robust way. Compared with the fundamental mode LP(0,1), HOMs exhibits an effective area that can be larger by over two order magnitude, and thus propagating light in these modes could greatly suppress the effect of nonlinear effects. HOM fibers could also be doped with rare earth ions in order to amplify light propagating in these modes, which offers the enormous potential for generating high-intensity pulses. Excitation of HOM gain fiber using cladding pumping with multimode pump source is attractive for ytterbium based amplifiers, because of the availability of low-cost multimode pump diodes in the 975nm wavelength range. One problem associated with cladding pumping which leads to excitation of the large doped core (over 100 μm diameter) is that it could result in a large amount of amplifiedspontaneous- emission (ASE) noise, particularly when the input signal is weak. Optimization of amplifier design is critical in order to suppress ASE and achieve high gain and pump-to-signal conversion efficiency. We conducted numerical modeling of a cladding pumped HOM-amplifier, which revealed that this problem could be mitigated by using a relatively long gain-fiber that allowed reabsorption of the forward propagating ASE resulting in a further amplification of the signal. We demonstrate efficient amplification of a LP0,10 mode with an effective area 3140μm2 in an Yb-doped HOM amplifier cladding pumped at 975nm. We have successfully obtained a 20.2dB gain for 0.95 W 1064 nm input seed signal to more than 105W.

  13. Headwaters: The Next Stage in High School Integrated Programming

    ERIC Educational Resources Information Center

    Elrick, Michael

    2007-01-01

    For 12 years, Centennial High School in Guelph has run an integrated program called the Community Environmental Leadership Program (CELP). In 1995 the program was offered at the grade 11 level. The program ran successfully in the second semester for seven years. In 2001, with the high school system being modified to fit into a four-year model, and…

  14. Development and Validation of Accident Models for FeCrAl Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean

    2016-08-01

    The purpose of this milestone report is to present the work completed in regards to material model development for FeCrAl cladding and highlight the results of applying these models to Loss of Coolant Accidents (LOCA) and Station Blackouts (SBO). With the limited experimental data available (essentially only the data used to create the models) true validation is not possible. In the absence of another alternative, qualitative comparisons during postulated accident scenarios between FeCrAl and Zircaloy-4 cladded rods have been completed demonstrating the superior performance of FeCrAl.

  15. 42 CFR 460.68 - Program integrity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Program integrity. 460.68 Section 460.68 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... of criminal offenses related to their involvement in Medicaid, Medicare, other health insurance or...

  16. 42 CFR 460.68 - Program integrity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Program integrity. 460.68 Section 460.68 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... of criminal offenses related to their involvement in Medicaid, Medicare, other health insurance or...

  17. 42 CFR 460.68 - Program integrity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Program integrity. 460.68 Section 460.68 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... of criminal offenses related to their involvement in Medicaid, Medicare, other health insurance or...

  18. 42 CFR 460.68 - Program integrity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Program integrity. 460.68 Section 460.68 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... of criminal offenses related to their involvement in Medicaid, Medicare, other health insurance or...

  19. 42 CFR 460.68 - Program integrity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Program integrity. 460.68 Section 460.68 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... of criminal offenses related to their involvement in Medicaid, Medicare, other health insurance or...

  20. The Boeing 747 fatigue integrity program

    NASA Technical Reports Server (NTRS)

    Spencer, M. M.

    1972-01-01

    The fatigue integrity program which was established to insure economic operations and to provide foundation data for inspection and maintenance is discussed. Significant features of the 747 fatigue integrity program are: (1) fatigue analyses which are continually updated to reflect design changes, fatigue test results, and static and flight load survey measurements; (2) material selection and detail design by using initial fatigue analyses, service experience, and testing; and (3) fatigue testing to check detail design quality and to verify the analyses, culminated by the test of a structurally complete airframe. Fatigue stress analyses were performed with the aid of experimental as well as analytical procedures. Extensive application was made of the stress severity factor, developed at Boeing, for evaluating peak stresses in complex joints. A frame of reference was established by families of structural fatigue performance curves (S-N curves) encompassing the range of materials and fatigue qualities anticipated for the 747 airplane design.

  1. Method and system for edge cladding of laser gain media

    DOEpatents

    Bayramian, Andrew James; Caird, John Allyn; Schaffers, Kathleen Irene

    2014-03-25

    A gain medium operable to amplify light at a gain wavelength and having reduced transverse ASE includes an input surface and an output surface opposing the input surface. The gain medium also includes a central region including gain material and extending between the input surface and the output surface along a longitudinal optical axis of the gain medium. The gain medium further includes an edge cladding region surrounding the central region and extending between the input surface and the output surface along the longitudinal optical axis of the gain medium. The edge cladding region includes the gain material and a dopant operable to absorb light at the gain wavelength.

  2. Surface modification of SS-316L steel using microwave processed Ni/WC based composite clads

    NASA Astrophysics Data System (ADS)

    Kaushal, Sarbjeet; Singh, Dilkaran; Gupta, Dheeraj; Jain, Vivek; Bhowmick, Hiralal

    2018-04-01

    In the present investigation, the claddings of Ni/WC based composite powder were developed on SS-316L steel through microwave hybrid heating method. The experimental trials were carried out inside a domestic microwave oven working at 2.45 GHz and 900 W. The so developed composite clads were characterized using XRD, Vicker's microhardness measurement, and SEM/EDS. The presence of different phases like Co3W3C, NiW, FeNi3, NiSi was confirmed by XRD analysis. Microstructural analysis revealed that the clad of approximately 0.6 mm thickness was developed with no interfacial cracks and negligible porosity. The WC particles were uniformly distributed in the form of cellular structure inside Ni matrix. The average Vicker's microhardness value of the clad section was observed as 925±50 HV, which is three times that of the SS-316L substrate.

  3. Laser Cladding of TiAl Intermetallic Alloy on Ti6Al4V -Process Optimization and Properties

    NASA Astrophysics Data System (ADS)

    Cárcel, B.; Serrano, A.; Zambrano, J.; Amigó, V.; Cárcel, A. C.

    In order to improve Ti6Al4V high-temperature resistance and its tribological properties, the deposition of TiAl intermetallic (Ti-48Al-2Cr-2Nb) coating on a Ti6Al4V substrate by coaxial laser cladding has been investigated. Laser cladding by powder injection is an emerging laser material processing technique that allows the deposition of thick protective coatings on substrates,using a high power laser beam as heat source. Laser cladding is a multiple-parameter-dependent process. The main process parameters involved (laser power, powder feeding rate, scanning speed and preheating temperature) has been optimized. The microstructure and geometrical quantities (clad area and dilution) of the coating was characterized by optical microscopy and scanning electron microscopy (SEM). In addition the cooling rate of the clad during the process was measured by a dual-color pyrometer. This result has been related to defectology and mechanical coating properties.

  4. Suppression of dilution in Ni-Cr-Si-B alloy cladding layer by controlling diode laser beam profile

    NASA Astrophysics Data System (ADS)

    Tanigawa, Daichi; Funada, Yoshinori; Abe, Nobuyuki; Tsukamoto, Masahiro; Hayashi, Yoshihiko; Yamazaki, Hiroyuki; Tatsumi, Yoshihiro; Yoneyama, Mikio

    2018-02-01

    A Ni-Cr-Si-B alloy layer was produced on a type 304 stainless steel plate by laser cladding. In order to produce cladding layer with smooth surface and low dilution, influence of laser beam profile on cladding layer was investigated. A laser beam with a constant spatial intensity at the focus spot was used to suppress droplet formation during the cladding layer formation. This line spot, formed with a focussing unit designed by our group, suppressed droplet generation. The layer formed using this line spot with a constant spatial intensity had a much smoother surface compared to a layer formed using a line spot with a Gaussian-like beam. In addition, the dilution of the former layer was much smaller. These results indicated that a line spot with a constant spatial intensity was more effective in producing a cladding layer with smooth surface and low dilution because it suppressed droplet generation.

  5. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    PubMed

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The frequency of the canine leukocyte adhesion deficiency (CLAD) allele within the Irish Setter population of Australia.

    PubMed

    Jobling, A I; Ryan, J; Augusteyn, R C

    2003-12-01

    To determine the frequency of the 107G-->C canine leukocyte adhesion deficiency (CLAD) mutation in Irish Setters from the Australian breeding population. Genomic DNA was isolated from 87 Irish Setter blood samples and a region of the beta-2 integrin gene (ITGB2), encompassing the mutation, was amplified using real-time Polymerase Chain Reaction (PCR). Two fluorescently labelled probes were hybridised to the fragment, and fluorescence resonance energy transfer (FRET) was used to detect the 107G-->C mutation responsible for CLAD. Three new heterozygotes were identified among 87 healthy Irish Setters from Australia. All originated from a litter sired by a known heterozygote. A total of seven heterozygotes have now been identified in 92 dogs (7.6%), representing over 90% of all major breeding stock in five Australian states. Two of the heterozygotes were recently imported adult dogs and the others were their offspring. The frequency of the 107C allele in the Australian population of Irish Setters is lower than that in Europe. Selective breeding programs should be adopted to eliminate the mutant allele presently in two breeding lines.

  7. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    NASA Astrophysics Data System (ADS)

    Okafor, A. C.; Natarajan, S.

    2007-03-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  8. Widely tunable asymmetric long-period fiber grating with high sensitivity using optical polymer on laser-ablated cladding.

    PubMed

    Chen, Nan-Kuang; Hsu, Der-Yi; Chi, Sien

    2007-08-01

    We demonstrate high-efficiency, wideband-tunable, laser-ablated long-period fiber gratings that use an optical polymer overlay. Portions of the fiber cladding are periodically removed by CO(2) laser pulses to induce periodic index changes for coupling the core mode into cladding modes. An optical polymer with a high thermo-optic coefficient with a dispersion distinct from that of silica is used on a deep-ablated cladding structure so that the effective indices of cladding modes become dispersive and the resonant wavelengths can be efficiently tuned. The tuning efficiency can be as high as 15.8 nm/ degrees C, and the tuning range can be wider than 105 nm (1545-1650 nm).

  9. Challenges for the aircraft structural integrity program

    NASA Technical Reports Server (NTRS)

    Lincoln, John W.

    1994-01-01

    Thirty-six years ago the United States Air Force established the USAF Aircraft Structural Integrity Program (ASIP) because flight safety had been degraded by fatigue failures of operational aircraft. This initial program evolved, but has been stable since the issuance of MIL-STD-1530A in 1975. Today, the program faces new challenges because of a need to maintain aircraft longer in an environment of reduced funding levels. Also, there is increased pressure to reduce cost of the acquisition of new aircraft. It is the purpose of this paper to discuss the challenges for the ASIP and identify the changes in the program that will meet these challenges in the future.

  10. Developing an Integrated Library Program. Professional Growth Series.

    ERIC Educational Resources Information Center

    Miller, Donna P.; Anderson, J'Lynn

    This book provides teachers, media specialists, and administrators with a step-by-step method for integrating library resources and skills into the classroom curriculum. In this method, all curriculum areas are integrated into major units of study that are team-planned, team-produced, and team-taught. Topics include: components of the program and…

  11. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Yu, Ting; Kovacevic, Radovan

    2017-07-01

    Metal Matrix Composites (MMC) fabricated by the laser cladding process have been widely applied as protective coatings in industries to improve the wear, erosion, and corrosion resistance of components and prolong their service life. In this study, the AISI 420/VC metal matrix composites with different weight percentage (0 wt.%-40 wt.%) of Vanadium Carbide (VC) were fabricated on a mild steel A36 by a high power direct diode laser. An induction heater was used to preheat the substrate in order to avoid cracks during the cladding process. The effect of carbide content on the microstructure, elements distribution, phases, and microhardness was investigated in detail. The erosion resistance of the coatings was tested by using the abrasive waterjet (AWJ) cutting machine. The corrosion resistance of the coatings was studied utilizing potentiodynamic polarization. The results showed that the surface roughness and crack susceptibility of the laser cladded layer were increased with the increase in VC fraction. The volume fraction of the precipitated carbides was increased with the increase in the VC content. The phases of the coating without VC consisted of martensite and austenite. New phases such as precipitated VC, V8C7, M7C3, and M23C6 were formed when the primary VC was added. The microhardness of the clads was increased with the increase in VC. The erosion resistance of the cladded layer was improved after the introduction of VC. The erosion resistance was increased with the increase in the VC content. No obvious improvement of erosion resistance was observed when the VC fraction was above 30 wt.%. The corrosion resistance of the clads was decreased with the increase in the VC content, demonstrating the negative effect of VC on the corrosion resistance of AISI 420 stainless steel

  12. Mode coupling in 340 μm GeO2 doped core-silica clad optical fibers

    NASA Astrophysics Data System (ADS)

    Djordjevich, Alexandar; Savović, Svetislav

    2017-03-01

    The state of mode coupling in 340 μm GeO2 doped core-silica clad optical fibers is investigated in this article using the power flow equation. The coupling coefficient in this equation was first tuned such that the equation could correctly reconstruct previously reported measured output power distributions. It was found that the GeO2 doped core-silica clad optical fiber showed stronger mode coupling than both, glass and popular plastic optical fibers. Consequently, the equilibrium as well as steady state mode distributions were achieved at shorter fiber lengths in GeO2 doped core-silica clad optical fibers.

  13. Features of single tracks in coaxial laser cladding of a NIbased self-fluxing alloy

    NASA Astrophysics Data System (ADS)

    Feldshtein, Eugene; Devojno, Oleg; Kardapolava, Marharyta; Lutsko, Nikolaj

    2017-10-01

    In the present paper, the influence of coaxial laser cladding conditions on the dimensions, microstructure, phases and microhardness of Ni-based self-fluxing alloy single tracks is studied. The height and width of single tracks depend on the speed and distance of the laser cladding: increasing the nozzle distance from the deposited surface 1.4 times reduces the width of the track 1.2 - 1.3 times and increases its height 1.2 times. The increase of the laser spot speed 3 times reduces the track width 1.2 - 1.4 times and the height in 1.5 - 1.6 times. At the same time, the increase of the laser spot speed 3 times reduces the track width 1.2 - 1.4 times and the height 1.5 - 1.6 times. Regularities in the formation of single tracks microstructure with different cladding conditions are defined, as well as regularity of distribution of elements over the track depth and in the transient zone. The patterns of microhardness distribution over the track depth for different cladding conditions are found.

  14. Wear Characteristics of Ni-Based Hardfacing Alloy Deposited on Stainless Steel Substrate by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Awasthi, Reena; Limaye, P. K.; Kumar, Santosh; Kushwaha, Ram P.; Viswanadham, C. S.; Srivastava, Dinesh; Soni, N. L.; Patel, R. J.; Dey, G. K.

    2015-03-01

    In this study, dry sliding wear characteristics of the Ni-based hardfacing alloy (Ni-Mo-Cr-Si) deposited on stainless steel SS316L substrate by laser cladding have been presented. Dry sliding wear behavior of the laser clad layer was evaluated against two different counter bodies, AISI 52100 chromium steel (~850 VHN) and tungsten carbide ball (~2200 VHN) to study both adhesive and abrasive wear characteristics, in comparison with the substrate SS316L using ball on plate reciprocating wear tester. The wear resistance was evaluated as a function of load and sliding speed for a constant sliding amplitude and sliding distance. The wear mechanisms were studied on the basis of wear surface morphology and microchemical analysis of the wear track using SEM-EDS. Laser clad layer of Ni-Mo-Cr-Si on SS316L exhibited much higher hardness (~700 VHN) than that of substrate SS316L (~200 VHN). The laser clad layer exhibited higher wear resistance as compared to SS316L substrate while sliding against both the counterparts. However, the improvement in the wear resistance of the clad layer as compared to the substrate was much higher while sliding against AISI 52100 chromium steel than that while sliding against WC, at the same contact stress intensity.

  15. Structural, mechanical and corrosion studies of Cr-rich inclusions in 152 cladding of dissimilar metal weld joint

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Wang, Jianqiu; Han, En-Hou; Yang, Chengdong

    2018-01-01

    Cr-rich inclusions were discovered in 152 cladding at the inner wall of domestic dissimilar metal weld joint, and their morphologies, microstructures, mechanical properties and corrosion behaviors were systematically characterized by SEM, TEM, nanoindentation and FIB. The results indicate that the Cr-rich inclusions originate from large-size Cr particles in 152 welding electrode flux, and they are 50-150 μm in size in most cases, and there is a continuous transition zone of 2-5 μm in width between the Cr inclusion core and 152 cladding matrix, and the transition zone consists of Ni & Fe-rich dendritic austenite and Cr23C6 and Cr matrix. The transition zone has the highest nanoindentation hardness (7.66 GPa), which is much harder than the inclusion core (5.14 GPa) and 152 cladding (3.71 GPa). In-situ microscopic tensile tests show that cracks initialize preferentially in transition zone, and then propagate into the inclusion core, and creep further into 152 cladding after penetrating the core area. The inclusion core and its transition zone both share similar oxide film structure with nickel-base 152 cladding matrix in simulated primary water, while those two parts present better general corrosion resistance than 152 cladding matrix due to higher Cr concentration.

  16. Structural transformations in hull material clad by nitrogen stainless steel using various methods

    NASA Astrophysics Data System (ADS)

    Sagaradze, V. V.; Kataeva, N. V.; Mushnikova, S. Yu.; Khar'kov, O. A.; Kalinin, G. Yu.; Yampol'skii, V. D.

    2014-02-01

    Specimens of a 10N3KhDMBF shipbuilding hull steel were clad by a 04Kh20N6G11M2AFB nitrogen austenitic steel using various treatment conditions, which included hot rolling, austenitic facing, and explosive welding followed by hot rolling and heat treatment. Between the base and cladding materials, an intermediate layer with variable concentrations of chromium, manganese, and nickel was found, in which a martensitic structure was formed. In all the cases, the strength of bonding of the cladding layer to the hull steel (determined in tests for shear to fracture) was fairly high (σsh = 437-520 MPa). The only exception was the specimen produced by unidirectional facing without subsequent hot rolling (σsh = 308 MPa), in which nonfusions between the faced beads of stainless steel were detected.

  17. An Integrated Theatre Production for School Nutrition Promotion Program.

    PubMed

    Bush, Robert; Capra, Sandra; Box, Selina; McCallum, David; Khalil, Stephanie; Ostini, Remo

    2018-03-02

    In the context of stubbornly high childhood obesity rates, health promotion activities in schools provide a potential avenue to improve children's nutritional behaviours. Theatre production has a rich history as a health behaviour promotion strategy but lacks sound, outcome-based evaluation. This study evaluated the effect of an integrated, two-part, place-based theatre performance program with 212 students in five schools in a regional urban and semi-rural area. The program included a theatre performance and a healthy eating competition. A brief survey assessed student healthy eating knowledge and attitudes at three time points. Nutrition behaviour was measured by scoring the contents of children's lunch boxes before, during and up to six weeks after the intervention. Statistical analysis tested change over time on five variables (Knowledge, Attitude, Sometimes foods, Everyday foods, Overall lunch box score). Results showed that both components of the integrated program improved nutrition knowledge and that the theatre performance improved children's healthy eating attitudes. All three lunch box scores peaked after the integrated program and remained significantly higher than baseline at 4-6 weeks follow-up. Interaction effects were identified for school catchment area on four of the five dependent variables. Evaluation of this integrated theatre production program indicates the potential benefit of taking a "super-setting" approach. It demonstrates an effect from students taking home information they had learned and incorporating it into lunch box preparation. It also showed consistent effects for school geographical catchment. This study suggests that, with careful, theory-based design, theatre productions in schools can improve student nutritional activities.

  18. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties.

    PubMed

    Kim, Dae Woong; Lee, Dong Ho; Kim, Jung-Su; Sohn, Seok Su; Kim, Hyoung Seop; Lee, Sunghak

    2017-08-14

    Pure Ti or Ti alloys are recently spot-lighted in construction industries because they have excellent resistance to corrosions, chemicals, and climates as well as various coloring characteristics, but their wide applications are postponed by their expensiveness and poor formability. We present a new fabrication process of Ti/Al clad sheets by bonding a thin Ti sheet on to a 5052 Al alloy melt during vertical-twin-roll casting. This process has merits of reduced production costs as well as improved tensile properties. In the as-twin-roll-cast clad sheet, the homogeneously cast microstructure existed in the Al alloy substrate side, while the Ti/Al interface did not contain any reaction products, pores, cracks, or lateral delamination, which indicated the successful twin-roll casting. When this sheet was annealed at 350 °C~600 °C, the metallurgical bonding was expanded by interfacial diffusion, thereby leading to improvement in tensile properties over those calculated by a rule of mixtures. The ductility was also improved over that of 5052-O Al alloy (25%) or pure Ti (25%) by synergic effect of homogeneous deformation due to excellent Ti/Al bonding. This work provides new applications of Ti/Al clad sheets to lightweight-alloy clad sheets requiring excellent formability and corrosion resistance as well as alloy cost saving.

  19. Revitalization of Lightweight Cladding of Buildings and Its Impact on Environment

    NASA Astrophysics Data System (ADS)

    Liška, Pavel; Nečasová, Barbora; Kovářová, Barbora; Novotný, Michal

    2017-12-01

    The presented study reveals that the revitalization of lightweight claddings installed before 1990 can have a positive impact on the environment and on the reduction of greenhouse gases in particular. The main focus is placed on the revitalization of a structural system known as OD-001, commonly called the ‘Boleticky panel’ system, which was frequently utilised all around the Czech Republic in the period before 1990. Only revitalization methods utilizing contemporary structural designs and current materials were verified during this study. The ‘Boleticky panel’ system was the type of façade cladding most frequently installed on administrative buildings in what was then Czechoslovakia. It is a panel system where load-bearing structure of the panel itself consists of closed profiles that are suspended from the building’s load-bearing structure. This type of system saw a great deal of use for more than 20 years. From today’s point of view, its thermal and technical properties are completely unsatisfactory and the gradual structural degradation of such systems, with a direct impact on their mechanical resistance, has been monitored over the last few years. However, these defects can be completely eliminated by the selection of a suitable type of revitalization. Cladding revitalization can be divided into three main categories. Each category represents a different level of impact on the structure of the above described cladding system. The first category only involves the replacement of windows, while the second consists in the replacement both of the windows and the existing panel sections. The third category of revitalization entails the complete removal of the existing cladding system and its replacement with a new one. The Life Cycle Assessment method (LCA) was used for environmental impact assessment. The aims and intentions of this method are not to search for the most economical or technically perfect product, service or technology, but to find the

  20. Studies of Lanthanide Transport in Metallic Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinsuo; Taylor, Christopher

    Metallic nuclear fuels were tested in fast reactor programs and performed well. However, metallic fuels have shown the phenomenon of FCCI that are due to deleterious reactions between lanthanide fission products and cladding material. As the burnup is increased, lanthanide fission products that contact with the cladding could react with cladding constituents such as iron and chrome. These reactions produce higher-melting intermetallic compounds and low-melting alloys, and weaken the mechanical integrity.

  1. Implementing Computer Integrated Manufacturing Technician Program.

    ERIC Educational Resources Information Center

    Gibbons, Roger

    A computer-integrated manufacturing (CIM) technician program was developed to provide training and technical assistance to meet the needs of business and industry in the face of the demands of high technology. The Computer and Automated Systems Association (CASA) of the Society of Manufacturing Engineers provided the incentive and guidelines…

  2. Microstructural characterization of AA5183 aluminum clad AISI 1018 steel prepared by electro spark deposition

    NASA Astrophysics Data System (ADS)

    Rastkerdar, E.; Aghajani, H.; Kianvash, A.; Sorrell, C. C.

    2018-04-01

    The application of a simple and effective technique, electro spark deposition (ESD), to create aluminum clad steel plate has been studied. AA5183 aluminum rods were used as the rotating electrode for cladding of the AISI 1018 steel. The microstructure of the interfacial zone including the intermetallic compounds (IMC) layer and the clad metal have been investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM and STEM). According to the results sound aluminum clad with thickness up to 25–30 μm can be achieved. Very thin (<4 μm) IMC layer was formed at the Al/Fe interface and the structural (electron diffraction pattern) and chemical analysis (STEM) conducted by TEM confirmed that the layer is constituted of Fe rich phases, both implying a much improved mechanical properties. Investigation of the orientations of phases at the interfacial zone confirmed absence of any preferred orientation.

  3. Irradiation of three T-111 clad uranium nitride fuel pins for 8070 hours at 990 C (1815 F)

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.; Siegel, B. L.; Gedeon, L.; Galbo, R. J.

    1973-01-01

    The design and successful operation of three tantalum alloy (Ta-8W-2Hf) clad uranium mononitride (UN) fuel pins irradiated for 8070 hr at 990 C (1815 F) is described. Two pin diameters having measured burnups of 0.47 and 0.90 uranium atom percent were tested. No clad failures or swelling was detected; however, postirradiation clad samples tested failed with 1 percent strain. The fuel density decrease was 2 percent, and the fission gas release was less than 0.05 percent. Isotropic fuel swelling, which averaged about 0.5 percent, was less than fuel pin assembly clearances. Thus the clad was not strained. Thermocouples with a modified hot zone operated at average temperatures to 1100 C (2012 F) without failure. Factors that influence the ability to maintain uniform clad temperature as well as the results of the heat transfer calculations are discussed.

  4. Performance evaluation of a semi-active cladding connection for multi-hazard mitigation

    NASA Astrophysics Data System (ADS)

    Gong, Yongqiang; Cao, Liang; Micheli, Laura; Laflamme, Simon; Quiel, Spencer; Ricles, James

    2018-03-01

    A novel semi-active damping device termed Variable Friction Cladding Connection (VFCC) has been previously proposed to leverage cladding systems for the mitigation of natural and man-made hazards. The VFCC is a semi-active friction damper that connects cladding elements to the structural system. The friction force is generated by sliding plates and varied using an actuator through a system of adjustable toggles. The dynamics of the device has been previously characterized in a laboratory environment. In this paper, the performance of the VFCC at mitigating non-simultaneous multi-hazard excitations that includes wind and seismic loads is investigated on a simulated benchmark building. Simulations consider the robustness with respect to some uncertainties, including the wear of the friction surfaces and sensor failure. The performance of the VFCC is compared against other connection strategies including traditional stiffness, passive viscous, and passive friction elements. Results show that the VFCC is robust and capable of outperforming passive systems for the mitigation of multiple hazards.

  5. Novel intercore-cladding lithium niobate thin film coated MOEMS fiber sensor/modulator

    NASA Technical Reports Server (NTRS)

    Jamlson, Tracee L.; Konreich, Phillip; Yu, Chung

    2005-01-01

    A MOEMS fiber modulator/sensor is fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125-micron fibers. Such a MOEMS modulator design is expected to enhance existing lithium niobate undersea acousto-optic sound wave detectors. In our proposed version, the lithium niobate thin film alters the ordinary silica core/cladding boundary conditions such that, when a stress or strain is applied to the fiber, the core light confinement factor changes, leading to modulation of fiber light transmission. Test results of the lithium niobate embedded fiber with a 1550-nm, 4-mW laser source revealed a reduction in light transmission with applied tension. As a comparison, using the same laser source, an ordinary silica core/cladding fiber did not exhibit any reduction in transmitted light when the same strain was applied. Further experimental work and theoretical analysis is ongoing.

  6. Microstructural Evolution of NiCrBSi Coatings Fabricated by Stationary Local Induction Cladding

    NASA Astrophysics Data System (ADS)

    Chen, Xuliang; Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Huang, Feng

    2018-04-01

    The development of induction cladding has been restricted by the complicated geometric characteristics of workpieces and the large heat-affected zone in the cladded workpieces. In this paper, three-dimensional continual local induction cladding (3D-CLIC) was proposed as a potential process to clad coating over a substrate with curved surface, and a stationary local induction cladding (SLIC) experiment was conducted as an exploratory study of 3D-CLIC. The microstructures and microhardness in the coatings were measured by SEM, EDS, XRD and microsclerometer, respectively. The results indicate that the coating is metallurgically bonded with the substrate without any defects. A compositional gradient exists in the diffusion transfer belt (DTB), and it decreases with the increase in induction heating time. The coating is mainly composed of (Fe, Ni), CrB, M7C3, Ni3B, Ni3Si and M23C6 (M = Cr, Ni, Fe). Among the carbides, M7C3 presents several morphologies and M23C6 is always attached to the DTB. A special phenomenon of texture was found in the SLIC coatings. The preferred orientation in (200) crystal plane or the restrained orientation in (111) (200) crystal plane becomes more obvious as the scanning speed increases. The maximum average microhardness is 721 HV when the coating is heated for 5 s. The wear loss of different samples increases with increasing induction heating time. The longer heating time would result in higher dilution in the SLIC coatings due to the complete mixing with the substrate, thus leading to the decrease in microhardness and wear loss.

  7. Microstructural Evolution of NiCrBSi Coatings Fabricated by Stationary Local Induction Cladding

    NASA Astrophysics Data System (ADS)

    Chen, Xuliang; Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Huang, Feng

    2018-05-01

    The development of induction cladding has been restricted by the complicated geometric characteristics of workpieces and the large heat-affected zone in the cladded workpieces. In this paper, three-dimensional continual local induction cladding (3D-CLIC) was proposed as a potential process to clad coating over a substrate with curved surface, and a stationary local induction cladding (SLIC) experiment was conducted as an exploratory study of 3D-CLIC. The microstructures and microhardness in the coatings were measured by SEM, EDS, XRD and microsclerometer, respectively. The results indicate that the coating is metallurgically bonded with the substrate without any defects. A compositional gradient exists in the diffusion transfer belt (DTB), and it decreases with the increase in induction heating time. The coating is mainly composed of (Fe, Ni), CrB, M7C3, Ni3B, Ni3Si and M23C6 (M = Cr, Ni, Fe). Among the carbides, M7C3 presents several morphologies and M23C6 is always attached to the DTB. A special phenomenon of texture was found in the SLIC coatings. The preferred orientation in (200) crystal plane or the restrained orientation in (111) (200) crystal plane becomes more obvious as the scanning speed increases. The maximum average microhardness is 721 HV when the coating is heated for 5 s. The wear loss of different samples increases with increasing induction heating time. The longer heating time would result in higher dilution in the SLIC coatings due to the complete mixing with the substrate, thus leading to the decrease in microhardness and wear loss.

  8. Forest productivity: an integrated research and development program

    Treesearch

    Daniel C. Dey; Thomas R. Crow; Don E. Riemenschneider

    2003-01-01

    In 2000, the North Central Research Station initiated the Forest Productivity Integrated Research Program (North Central Research Station 2001). This program combines the efforts of scientists from across the Station's 13 research work units to examine the current condition of the forests in the North Central Region and their prospects for producing wood and fiber...

  9. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Z.; Chen, Y.; Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes overmore » 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.« less

  10. Integrating the GalileoScope into Successful Outreach Programming

    NASA Astrophysics Data System (ADS)

    Michaud, Peter D.; Slater, S.; Goldstein, J.; Harvey, J.; Garcia, A.

    2010-01-01

    Since 2004, the Gemini Observatory’s week-long Journey Through the Universe (JTtU) program has successfully shared the excitement of scientific research with teachers, students and the public on Hawaii’s Big Island. Based on the national JTtU program started in 1999, the Hawai‘i version reaches an average of 7,000 students annually and each year features a different theme shared with a diverse set of learners. In 2010, the theme includes the integration of the GalileoScope-produced as a keystone project for the International Year of Astronomy. In preparation, a pilot teacher workshop (held in October 2009) introduced local island teachers to the GalileoScope and a 128-page educator’s activity resource book coordinated by the University of Wyoming. Response from this initial teacher’s workshop has been strong and evaluations plus follow-up actions by participating teachers illustrate that the integration of the GalileoScope has been successful based upon this diverse sample. Integrating GalileoScopes into Chilean schools in 2010 is also underway at Gemini South. This program will solicit informal proposals from educators who wish to use the telescopes in classrooms and a Spanish version of the teacher resource book is planned. The authors conclude that integration of the GalileoScope into an existing outreach program is an effective way to keep content fresh, relevant and engaging for both educators and students. This initiative is funded by Gemini Observatory outreach program. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva

  11. Metal-water reaction and cladding deformation models for RELAP5/MOD3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caraher, D.L.; Shumway, R.W.

    1989-06-01

    A model for calculating the reaction of zirconium with steam according to the Cathcart-Pawel correlation has been incorporated into RELAP5/MOD3. A cladding deformation model which computes swelling and rupture of the cladding according to the empirical correlations for Powers and Meyer has also been incorporated into RELAP5/MOD3. This report gives the background of the models, documents their implantation into the RELAP5 subroutines, and reports the developmental assessment done on the models. 4 refs., 9 figs., 9 tabs.

  12. An Integrated Theatre Production for School Nutrition Promotion Program

    PubMed Central

    Bush, Robert; Box, Selina; McCallum, David; Khalil, Stephanie

    2018-01-01

    In the context of stubbornly high childhood obesity rates, health promotion activities in schools provide a potential avenue to improve children’s nutritional behaviours. Theatre production has a rich history as a health behaviour promotion strategy but lacks sound, outcome-based evaluation. This study evaluated the effect of an integrated, two-part, place-based theatre performance program with 212 students in five schools in a regional urban and semi-rural area. The program included a theatre performance and a healthy eating competition. A brief survey assessed student healthy eating knowledge and attitudes at three time points. Nutrition behaviour was measured by scoring the contents of children’s lunch boxes before, during and up to six weeks after the intervention. Statistical analysis tested change over time on five variables (Knowledge, Attitude, Sometimes foods, Everyday foods, Overall lunch box score). Results showed that both components of the integrated program improved nutrition knowledge and that the theatre performance improved children’s healthy eating attitudes. All three lunch box scores peaked after the integrated program and remained significantly higher than baseline at 4–6 weeks follow-up. Interaction effects were identified for school catchment area on four of the five dependent variables. Evaluation of this integrated theatre production program indicates the potential benefit of taking a “super-setting” approach. It demonstrates an effect from students taking home information they had learned and incorporating it into lunch box preparation. It also showed consistent effects for school geographical catchment. This study suggests that, with careful, theory-based design, theatre productions in schools can improve student nutritional activities. PMID:29498690

  13. A menu with prices: Annual per person costs of programs addressing community integration.

    PubMed

    Leff, H Stephen; Cichocki, Ben; Chow, Clifton; Salzer, Mark; Wieman, Dow

    2016-02-01

    Information on costs of programs addressing community integration for persons with serious mental illness in the United States, essential for program planning and evaluation, is largely lacking. To address this knowledge gap, community integration programs identified through directories and snowball sampling were sent an online survey addressing program costs and organizational attributes. 64 Responses were received for which annual per person costs (APPC) could be computed. Programs were categorized by type of services provided. Program types differed in median APPCs, though median APPCs identified were consistent with the ranges identified in the limited literature available. Multiple regression was used to identify organizational variables underlying APPCs such as psychosocial rehabilitation program type, provision of EBPs, number of volunteers, and percentage of budget spent on direct care staff, though effects sizes were moderate at best. This study adds tentative prices to the menu of community integration programs, and the implications of these findings for choosing, designing and evaluating programs addressing community integration are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Delivery of high intensity beams with large clad step-index fibers for engine ignition

    NASA Astrophysics Data System (ADS)

    Joshi, Sachin; Wilvert, Nick; Yalin, Azer P.

    2012-09-01

    We show, for the first time, that step-index silica fibers with a large clad (400 μm core and 720 μm clad) can be used to transmit nanosecond duration pulses in a way that allows reliable (consistent) spark formation in atmospheric pressure air by the focused output light from the fiber. The high intensity (>100 GW/cm2) of the focused output light is due to the combination of high output power (typical of fibers of this core size) with high output beam quality (better than that typical of fibers of this core size). The high output beam quality, which enables tight focusing, is due to the large clad which suppresses microbending-induced diffusion of modal power to higher order modes owing to the increased rigidity of the core-clad interface. We also show that extending the pulse duration provides a means to increase the delivered pulse energy (>20 mJ delivered for 50 ns pulses) without causing fiber damage. Based on this ability to deliver high energy sparks, we report the first reliable laser ignition of a natural gas engine including startup under typical procedures using silica fiber optics for pulse delivery.

  15. Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding

    NASA Astrophysics Data System (ADS)

    Shi, Jianjun; Zhu, Ping; Fu, Geyan; Shi, Shihong

    2018-05-01

    Coaxial laser inside wire cladding method is very promising as it has a very high efficiency and a consistent interaction between the laser and wire. In this paper, the energy and mass conservation law, and the regression algorithm are used together for establishing the mathematical models to study the relationship between the layer geometry characteristics (width, height and cross section area) and process parameters (laser power, scanning velocity and wire feeding speed). At the selected parameter ranges, the predicted values from the models are compared with the experimental measured results, and there is minor error existing, but they reflect the same regularity. From the models, it is seen the width of the cladding layer is proportional to both the laser power and wire feeding speed, while it firstly increases and then decreases with the increasing of the scanning velocity. The height of the cladding layer is proportional to the scanning velocity and feeding speed and inversely proportional to the laser power. The cross section area increases with the increasing of feeding speed and decreasing of scanning velocity. By using the mathematical models, the geometry characteristics of the cladding layer can be predicted by the known process parameters. Conversely, the process parameters can be calculated by the targeted geometry characteristics. The models are also suitable for multi-layer forming process. By using the optimized process parameters calculated from the models, a 45 mm-high thin-wall part is formed with smooth side surfaces.

  16. The implication of integrated training program for medical history education.

    PubMed

    Chen, Shun-Sheng; Chou, Peiyi

    2015-01-01

    A full spectrum of medical education requires not only clinical skills but also humanistic qualities in the medical professionals, which can be facilitated by an integrated training program. An integrated project was created to improve one's medical intellectual and communication competence and to enable them to become docents who can perform well, as well as for development of their humanitarian nature. The aim of this study was to suggest an integrated program that provided approaches for creating positive effects in medical history education. Taiwan Medical Museum conducted a project on medical history lessons and docent training program; 51 participants (24 male and 27 female) attended this plan. Targets took pre-tests before lectures, attended courses of medical history, and then took post-tests. Next, they received a series of lessons on presentation skills and practiced for guiding performance. After all the training processes, the attendees succeeded in all evaluations in order to guide exhibition visitors. Data were analyzed using paired t test. Two types of assessments were followed, i.e., cognitive examination and guiding practice, and both were related to good performance. Reliability (Cronbach's α) was 0.737 for the cognitive examination and 0.87 for the guiding evaluation. It indicated that the integrated program for docent training resulted in a significant difference (p ≦ 0.0001). The participants demonstrated better achievement and knowledge acquisition through the entire process, which led to great performance when approached by the visitors. The whole project helped to shape up a good docent and to accumulate positive learning experiences for medical professionals as well. Therefore, an integrated program is recommended to medical history education in the future.

  17. IPAD: Integrated Programs for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The conference was organized to promote wider awareness of the IPAD program and its coming impact on American industry. The program focuses on technology issues that are critical to computer aided design manufacturing. Included is a description of a representative aerospace design process and its interface with manufacturing, the design of a future IPAD integrated computer aided design system, results to date in developing IPAD products and associated technology, and industry experiences and plans to exploit these products.

  18. The Environment for Application Software Integration and Execution (EASIE), version 1.0. Volume 2: Program integration guide

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Randall, Donald P.; Stallcup, Scott S.; Rowell, Lawrence F.

    1988-01-01

    The Environment for Application Software Integration and Execution, EASIE, provides a methodology and a set of software utility programs to ease the task of coordinating engineering design and analysis codes. EASIE was designed to meet the needs of conceptual design engineers that face the task of integrating many stand-alone engineering analysis programs. Using EASIE, programs are integrated through a relational data base management system. In volume 2, the use of a SYSTEM LIBRARY PROCESSOR is used to construct a DATA DICTIONARY describing all relations defined in the data base, and a TEMPLATE LIBRARY. A TEMPLATE is a description of all subsets of relations (including conditional selection criteria and sorting specifications) to be accessed as input or output for a given application. Together, these form the SYSTEM LIBRARY which is used to automatically produce the data base schema, FORTRAN subroutines to retrieve/store data from/to the data base, and instructions to a generic REVIEWER program providing review/modification of data for a given template. Automation of these functions eliminates much of the tedious, error prone work required by the usual approach to data base integration.

  19. 42 CFR 421.304 - Medicare integrity program contractor functions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... services for which Medicare payment may be made either directly or indirectly. (b) Auditing, settling and.... 421.304 Section 421.304 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM MEDICARE CONTRACTING Medicare Integrity Program...

  20. Reactor Physics Assessment of Thick Silicon Carbide Clad PWR Fuels

    DTIC Science & Technology

    2013-06-01

    Densities ............................................................................................................ 21 2.3 Fuel Mass (Core Total...70 7.1 Geometry, Material Density, and Mass Summary for All Cores...21 Table 3: Fuel Rod Masses for Different Clads

  1. Interfacial Characterization of Dissimilar Joints Between Al/Mg/Al-Trilayered Clad Sheet to High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Macwan, A.; Jiang, X. Q.; Chen, D. L.

    2015-07-01

    Magnesium (Mg) alloys are increasingly used in the automotive and aerospace sectors to reduce vehicle weight. Al/Mg/Al tri-layered clad sheets are deemed as a promising alternative to improve the corrosion resistance and formability of Mg alloys. The structural application of Al/Mg/Al tri-layered clad sheets inevitably involves welding and joining in the multi-material vehicle body manufacturing. This study aimed to characterize the bonding interface microstructure of the Al/Mg/Al-clad sheet to high-strength low-alloy steel with and without Zn coating using ultrasonic spot welding at different levels of welding energy. It was observed that the presence of Zn coating improved the bonding at the interface due to the formation of Al-Zn eutectic structure via enhanced diffusion. At a higher level of welding energy, characteristic flow patterns of Zn into Al-clad layer were observed with an extensive penetration mainly along some high angle grain boundaries. The dissimilar joints without Zn coating made at a high welding energy of 800 J failed partially from the Al/Fe weld interface and partially from the Al/Mg clad interface, while the joints with Zn coating failed from the Al/Mg clad interface due to the presence of brittle Al12Mg17 phase.

  2. Enhancement of pump absorption efficiency by bending and twisting of double clad rare earth doped fibers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Koška, Pavel; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Kasik, Ivan; Podrazký, Ondřej

    2017-05-01

    High-power operation of fiber lasers was enabled by the invention of cladding-pumping in a double-clad fiber structure. Because of existence of so called skew rays in the inner clad of the fiber, pump absorption saturates along the fiber and pumping becomes inefficient. First studies of pump absorption efficiency enhancement were focused on fibers with broken circular symmetry of inner cladding eliminating skew rays [1,2]. Later, techniques of unconventional fiber coiling were proposed [3]. However, theoretical studies were limited to the assumption of a straight fiber. Even recently, the rigorous model accounting for fiber bending and twisting was described [4-6]. It was found that bending of the fiber influences modal spectra of the pump radiation and twisting provides quite efficient mode-scrambling. These effects in a synergic manner significantly enhances pump absorption rate in double clad fibers and improves laser system efficiency. In our contribution we review results of numerical modelling of pump absorption in various types of double-clad fibers, e.g., with cross section shape of hexagon, stadium, and circle; two-fiber bundle (so-called GTWave fiber structure) a panda fibers are also analyzed. We investigate pump field modal spectra evolution in hexagonally shaped fiber in straight, bended, and simultaneously bended and twisted fiber which brings new quality to understanding of the mode-scrambling and pump absorption enhancement. Finally, we evaluate the impact of enhanced pump absorption on signal gain in the fiber. These results can have practical impact in construction of fiber lasers: with pump absorption efficiency optimized by our new model (the other models did not take into account fiber twist), the double-clad fiber of shorter length can be used in the fiber lasers and amplifiers. In such a way the harmful influence of background losses and nonlinear effects can be minimized. [1] Doya, V., Legrand, O., Mortessagne, F., "Optimized absorption in a

  3. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Kumar; Mariani, Robert; Bai, Xianming

    Zirconium-alloy fuel claddings have been used successfully in Light Water Reactors (LWR) for over four decades. However, under high temperature accident conditions, zirconium-alloys fuel claddings exhibit profuse exothermic oxidation accompanied by release of hydrogen gas due to the reaction with water/steam. Additionally, the ZrO 2 layer can undergo monoclinic to tetragonal to cubic phase transformations at high temperatures which can induce stresses and cracking. These events were unfortunately borne out in the Fukushima-Daiichi accident in in Japan in 2011. In reaction to such accident, protective oxidation-resistant coatings for zirconium-alloy fuel claddings has been extensively investigated to enhance safety margins inmore » accidents as well as fuel performance under normal operation conditions. Such surface modification could also beneficially affect fuel rod heat transfer characteristics. Zirconium-silicide, a candidate coating material, is particularly attractive because zirconium-silicide coating is expected to bond strongly to zirconium-alloy substrate. Intermetallic compound phases of zirconium-silicide have high melting points and oxidation of zirconium silicide produces highly corrosion resistant glassy zircon (ZrSiO 4) and silica (SiO 2) which possessing self-healing qualities. Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi 2 coating) during clad quenching experiments is discussed in detail.« less

  4. The Integration and Test Program of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Kimble, Randy

    2012-01-01

    The James Webb Space Telescope (JWST) project has entered into a comprehensive integration and test (I&T) program that over the coming years will assemble the various elements of the observatory (the Optical Telescope Element [OTE], the Integrated Science Instrument Module [ISIM], and the Spacecraft) and verify the readiness of the integrated system for launch. The I&T program as replanned for a 2018 launch readiness date has a number of interesting features. These include a streamlined ISIM cryo-vacuum test program at Goddard Space Flight Center, a streamlined OTIS (OTE + ISIM) test program at Johnson Space Center (JSC), the addition of a second Core cryo-vacuum thermal test, the enhancement of the Pathfinder program at JSC, and enhancement of the subsystem-level testing program for the MIRI cryo-cooler. These latter activities all serve to reduce the risk heading into the end-to-end optical and thermal testing of the telescope at JSC, leading to reduced cost and schedule risk for that critical activity. We report here on the overall I&T program for JWST and on the status of the hardware and plans that support it.

  5. In Situ Production of Hard Metal Matrix Composite Coating on Engineered Surfaces Using Laser Cladding Technique

    NASA Astrophysics Data System (ADS)

    Raza, Mohammad Shahid; Hussain, Manowar; Kumar, Vikash; Das, Alok Kumar

    2017-01-01

    The growing need for high wear-resistant surface with enhanced physical properties has led to extensive researches in the field of surface engineering. Laser cladding emerged to be a promising method to achieve these objectives in a cost-effective way. The present paper studies the viability of cladding of tungsten disulfide (WS2) powder by using 400 W continuous-wave fiber laser. WS2 was used as a coating material, which was decomposed at higher temperature and underwent several chemical reactions. By this process, in situ formation of metal matrix composites and hard face coating on the substrate surface were attained. The characterization of laser cladded surface was done to study its morphological, microstructural, mechanical and tribological properties. It was observed that cladding of WS2 powder on 304 SS resulted in the formation of Cr-W-C-Fe metal matrix composite having improved mechanical and tribological properties. The value of microhardness of the coated surface was found to increase three to four times in comparison with the parent material surface. Wear test results indicated a decrease in wear by 1/9th (maximum) as compared to the parent 304 SS surface. The volume fractions of tungsten particles on the cladded surface were also investigated through EDS analysis.

  6. 3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings.

    PubMed

    Krzyzanowski, Michal; Bajda, Szymon; Liu, Yijun; Triantaphyllou, Andrew; Mark Rainforth, W; Glendenning, Malcolm

    2016-06-01

    Thermal and strain-stress transient fields during laser cladding of bioactive glass coatings on the Ti6Al4V alloy basement were numerically calculated and analysed. Conditions leading to micro-cracking susceptibility of the coating have been investigated using the finite element based modelling supported by experimental results of microscopic investigation of the sample coatings. Consecutive temperature and stress peaks are developed within the cladded material as a result of the laser beam moving along the complex trajectory, which can lead to micro-cracking. The preheated to 500°C base plate allowed for decrease of the laser power and lowering of the cooling speed between the consecutive temperature peaks contributing in such way to achievement of lower cracking susceptibility. The cooling rate during cladding of the second and the third layer was lower than during cladding of the first one, in such way, contributing towards improvement of cracking resistance of the subsequent layers due to progressive accumulation of heat over the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Ice-clad volcanoes

    USGS Publications Warehouse

    Waitt, Richard B.; Edwards, B.R.; Fountain, Andrew G.; Huggel, C.; Carey, Mark; Clague, John J.; Kääb, Andreas

    2015-01-01

    An icy volcano even if called extinct or dormant may be active at depth. Magma creeps up, crystallizes, releases gas. After decades or millennia the pressure from magmatic gas exceeds the resistance of overlying rock and the volcano erupts. Repeated eruptions build a cone that pokes one or two kilometers or more above its surroundings - a point of cool climate supporting glaciers. Ice-clad volcanic peaks ring the northern Pacific and reach south to Chile, New Zealand, and Antarctica. Others punctuate Iceland and Africa (Fig 4.1). To climb is irresistible - if only “because it’s there” in George Mallory’s words. Among the intrepid ascents of icy volcanoes we count Alexander von Humboldt’s attempt on 6270-meter Chimborazo in 1802 and Edward Whymper’s success there 78 years later. By then Cotopaxi steamed to the north.

  8. Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure

    NASA Astrophysics Data System (ADS)

    Xie, Siyao; Li, Ruidi; Yuan, Tiechui; Chen, Chao; Zhou, Kechao; Song, Bo; Shi, Yusheng

    2018-02-01

    Although laser cladding has find its widespread application in surface hardening, this technology has been significantly limited by the solidification crack, which usually initiates along grain boundary due to the brittle precipitation in grain boundary and networks formation during the laser rapid melting/solidification process. This paper proposed a novel laser cladding technology assisted by friction stir processing (FSP) to eliminate the usual metallurgical defects by the thermomechanical coupling effect of FSP with the Ni-Cr-Fe as representative coating material. By the FSP assisted laser cladding, the crack in laser cladding Ni-Cr-Fe coating was eliminated and the coarse networks of laser cladding coating was transformed into dispersed nanoparticles. Moreover, the plastic layers with thicknesses 47-140 μm can be observed, with gradient grain refinement from substrate to the top surface in which grain size reached 300 nm and laser photocoagulation net second phase crushed in the layer. In addition, cracks closed in the plastic zone. The refinement of grain resulted the hardness increased to over 400 HV, much higher than the 300 HV of the laser cladding structure. After FSP, the friction coefficient decreased from 0.6167 to 0.5645 which promoted the wear resistance.

  9. Methodology for Mechanical Property Testing on Fuel Cladding Using an Expanded Plug Wedge Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Jiang, Hao

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at ORNL and is described fully in US Patent Application 20060070455, Expanded plug method for developing circumferential mechanical properties of tubular materials. This method is designed for testing fuel rod cladding ductility in a hot cell utilizing an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the testmore » component assembly in the hot cell and the direct measurement of specimen strain. It was also found that cladding strength could be determined from the test results. The basic approach of this test method is to apply an axial compressive load to a cylindrical plug of polyurethane (or other materials) fitted inside a short ring of the test material to achieve radial expansion of the specimen. The diameter increase of the specimen is used to calculate the circumferential strain accrued during the test. The other two basic measurements are total applied load and amount of plug compression (extension). A simple procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves. However, several deficiencies exist in this expanded-plug loading ring test, which will impact accuracy of test results and introduce potential shear failure of the specimen due to inherited large axial compressive stress from the expansion plug test. First of all, the highly non-uniform stress and strain distribution resulted in the gage section of the clad. To ensure reliable testing and test repeatability, the potential for highly non-uniform stress distribution or displacement/strain deformation has to be eliminated at the gage section of the specimen. Second

  10. Material selection for accident tolerant fuel cladding

    DOE PAGES

    Pint, B. A.; Terrani, K. A.; Yamamoto, Y.; ...

    2015-09-14

    Alternative cladding materials are being investigated for accident tolerance, which can be defined as >100X improvement (compared to current Zr-based alloys) in oxidation resistance in steam environments at ≥1200°C for short (≤4 h) times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti 2AlC form a protective alumina scale in steam. Therefore, commercial Ti 2AlC that is not single phase, formed a much thicker oxide at 1200°Cmore » in steam and significant TiO 2, and therefore may be challenging to use as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation assisted Cr-rich α’ formation. The composition effects and critical limits to retaining protective scale formation at >1400°C are still being evaluated.« less

  11. Affective Aspects of an Age-Integrated Water Exercise Program.

    ERIC Educational Resources Information Center

    Weiss, Caroline R.; Jamieson, Nancy B.

    1987-01-01

    Surveyed 88 female participants of community-based age-integrated water exercise program designed to enhance comfort and social interaction. Affective measures and observation of membership as a support group elicited few differences by age. Members endorsed having age integration in classes and there was little indication that subgroups of…

  12. Temperature influence on the cladding mode distribution in highly localized point-by-point fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Caucheteur, C.; Gonzalez-Vila, A.; Chikh-Bled, H.; Lasri, B.; Kinet, D.; Chah, K.

    2016-05-01

    An infrared femtosecond pulses laser is used to manufacture point-by-point gratings in telecommunication-grade optical fibres. The refractive index modulations are localized close to the core-cladding interface, yielding a strong coupling to cladding mode resonances together with an important photo-induced birefringence. Such gratings have been recently used for refractrometric measurements. In this work, their transmitted amplitude spectrum is measured with polarized light while they are exposed to temperature changes up to 900 °C. Despite an overall good thermal stability of the gratings that confirms their robustness for high-temperature refractometry, we report an interesting polarization effect depending on both the cladding mode resonance family (radially- and azimuthally-polarized modes) and mode order. While the birefringence of the core mode resonance decreases with the temperature, certain cladding mode resonances show an increase of the wavelength splitting between their orthogonally-polarized components. This differential behaviour can be of high interest to develop high-resolution multiparametric sensing platforms.

  13. View of building 11050, showing metal clad addition on east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of building 11050, showing metal clad addition on east elevation, looking southwest. - Naval Ordnance Test Station Inyokern, China Lake Pilot Plant, Machine Shop, C Street, China Lake, Kern County, CA

  14. An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate

    NASA Astrophysics Data System (ADS)

    Nabhani, Mohammad; Razavi, Reza Shoja; Barekat, Masoud

    2018-03-01

    In this article, Ti-6Al-4V powder alloy was directly deposited on Ti-6Al-4V substrate using laser cladding process. In this process, some key parameters such as laser power (P), laser scanning rate (V) and powder feeding rate (F) play important roles. Using linear regression analysis, this paper develops the empirical-statistical relation between these key parameters and geometrical characteristics of single clad tracks (i.e. clad height, clad width, penetration depth, wetting angle, and dilution) as a combined parameter (PαVβFγ). The results indicated that the clad width linearly depended on PV-1/3 and powder feeding rate had no effect on it. The dilution controlled by a combined parameter as VF-1/2 and laser power was a dispensable factor. However, laser power was the dominant factor for the clad height, penetration depth, and wetting angle so that they were proportional to PV-1F1/4, PVF-1/8, and P3/4V-1F-1/4, respectively. Based on the results of correlation coefficient (R > 0.9) and analysis of residuals, it was confirmed that these empirical-statistical relations were in good agreement with the measured values of single clad tracks. Finally, these relations led to the design of a processing map that can predict the geometrical characteristics of the single clad tracks based on the key parameters.

  15. 49 CFR 192.911 - What are the elements of an integrity management program?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...? An operator's initial integrity management program begins with a framework (see § 192.907) and...), by electronic or other means, a copy of the operator's risk analysis or integrity management program... 49 Transportation 3 2012-10-01 2012-10-01 false What are the elements of an integrity management...

  16. 49 CFR 192.911 - What are the elements of an integrity management program?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...? An operator's initial integrity management program begins with a framework (see § 192.907) and...), by electronic or other means, a copy of the operator's risk analysis or integrity management program... 49 Transportation 3 2014-10-01 2014-10-01 false What are the elements of an integrity management...

  17. 49 CFR 192.911 - What are the elements of an integrity management program?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...? An operator's initial integrity management program begins with a framework (see § 192.907) and...), by electronic or other means, a copy of the operator's risk analysis or integrity management program... 49 Transportation 3 2013-10-01 2013-10-01 false What are the elements of an integrity management...

  18. 49 CFR 192.911 - What are the elements of an integrity management program?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...? An operator's initial integrity management program begins with a framework (see § 192.907) and...), by electronic or other means, a copy of the operator's risk analysis or integrity management program... 49 Transportation 3 2011-10-01 2011-10-01 false What are the elements of an integrity management...

  19. Mismatch or cumulative stress: toward an integrated hypothesis of programming effects.

    PubMed

    Nederhof, Esther; Schmidt, Mathias V

    2012-07-16

    This paper integrates the cumulative stress hypothesis with the mismatch hypothesis, taking into account individual differences in sensitivity to programming. According to the cumulative stress hypothesis, individuals are more likely to suffer from disease as adversity accumulates. According to the mismatch hypothesis, individuals are more likely to suffer from disease if a mismatch occurs between the early programming environment and the later adult environment. These seemingly contradicting hypotheses are integrated into a new model proposing that the cumulative stress hypothesis applies to individuals who were not or only to a small extent programmed by their early environment, while the mismatch hypothesis applies to individuals who experienced strong programming effects. Evidence for the main effects of adversity as well as evidence for the interaction between adversity in early and later life is presented from human observational studies and animal models. Next, convincing evidence for individual differences in sensitivity to programming is presented. We extensively discuss how our integrated model can be tested empirically in animal models and human studies, inviting researchers to test this model. Furthermore, this integrated model should tempt clinicians and other intervenors to interpret symptoms as possible adaptations from an evolutionary biology perspective. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. 42 CFR § 414.1460 - Monitoring and program integrity.

    Code of Federal Regulations, 2010 CFR

    2017-10-01

    ... SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Merit-Based Incentive Payment System and Alternative Payment Model Incentive § 414.1460 Monitoring and program integrity. (a) Vetting eligible clinicians prior to payment of the APM Incentive Payment. Prior to...

  1. INTEGRATED COASTAL MONITORING PROGRAM FOR THE GULF OF MEXICO

    EPA Science Inventory

    The Gulf of Mexico Program (GMP) Office in cooperation with Gulf State agencies, EPA Regions 4 and 6, EPA's Office of Water and Office of Research and Development (ORD), and the GMP principal partners are developing an integrated coastal monitoring program for the Gulf of Mexico....

  2. An Examination of Collaborative Learning Assessment through Dialogue (CLAD) in Traditional and Hybrid Human Development Courses

    ERIC Educational Resources Information Center

    McCarthy, Wanda C.; Green, Peter J.; Fitch, Trey

    2010-01-01

    This investigation assessed the effectiveness of using Collaborative Learning Assessment through Dialogue (CLAD) (Fitch & Hulgin, 2007) with students in undergraduate human development courses. The key parts of CLAD are student collaboration, active learning, and altering the role of the instructor to a guide who enhances learning opportunities.…

  3. Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.

  4. Integrated Data Base Program: a status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notz, K.J.; Klein, J.A.

    1984-06-01

    The Integrated Data Base (IDB) Program provides official Department of Energy (DOE) data on spent fuel and radioactive waste inventories, projections, and characteristics. The accomplishments of FY 1983 are summarized for three broad areas: (1) upgrading and issuing of the annual report on spent fuel and radioactive waste inventories, projections, and characteristics, including ORIGEN2 applications and a quality assurance plan; (2) creation of a summary data file in user-friendly format for use on a personal computer and enhancing user access to program data; and (3) optimizing and documentation of the data handling methodology used by the IDB Program and providingmore » direct support to other DOE programs and sites in data handling. Plans for future work in these three areas are outlined. 23 references, 11 figures.« less

  5. Solution-mediated cladding doping of commercial polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Stajanca, Pavol; Topolniak, Ievgeniia; Pötschke, Samuel; Krebber, Katerina

    2018-03-01

    Solution doping of commercial polymethyl methacrylate (PMMA) polymer optical fibers (POFs) is presented as a novel approach for preparation of custom cladding-doped POFs (CD-POFs). The presented method is based on a solution-mediated diffusion of dopant molecules into the fiber cladding upon soaking of POFs in a methanol-dopant solution. The method was tested on three different commercial POFs using Rhodamine B as a fluorescent dopant. The dynamics of the diffusion process was studied in order to optimize the doping procedure in terms of selection of the most suitable POF, doping time and conditions. Using the optimized procedure, longer segment of fluorescent CD-POF was prepared and its performance was characterized. Fiber's potential for sensing and illumination applications was demonstrated and discussed. The proposed method represents a simple and cheap way for fabrication of custom, short to medium length CD-POFs with various dopants.

  6. 77 FR 31834 - Clad Steel Plate from Japan: Final Results of the Expedited Third Sunset Review of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... rolling; simple hot-rolling of the cladding metal to ensure efficient welding to the basic metal; any... process to ensure welding (e.g., electrocladding), in which the cladding metal (nickel, chromium, etc.) is...

  7. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses.

    PubMed

    Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian

    2012-02-13

    A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

  8. Crew-integration and Automation Testbed (CAT)Program Overview and RUX06 Introduction

    DTIC Science & Technology

    2006-09-20

    unlimited Crew-integration and Automation Testbed ( CAT ) Program Overview and RUX06 Introduction 26-27 July 2006 Patrick Nunez, Terry Tierney, Brian Novak...3. DATES COVERED 4. TITLE AND SUBTITLE Crew-integration and Automation Testbed ( CAT )Program Overview and RUX06 Introduction 5a. CONTRACT...Experiment • Capstone CAT experiment – Evaluate effectiveness of CAT program in improving the performance and/or reducing the workload for a mounted

  9. Developing Global Standards Framework and Quality Integrated Models for Cooperative and Work-Integrated Education Programs

    ERIC Educational Resources Information Center

    Khampirat, Buratin; McRae, Norah

    2016-01-01

    Cooperative and Work-integrated Education (CWIE) programs have been widely accepted as educational programs that can effectively connect what students are learning to the world of work through placements. Because a global quality standards framework could be a very valuable resource and guide to establishing, developing, and accrediting quality…

  10. Fabrication of a tantalum-clad tungsten target for LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; O'Toole, J. A.; Valicenti, R. A.; Maloy, S. A.

    2012-12-01

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 °C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta2O5 surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO2, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  11. Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding.

    PubMed

    Zhang, Guang; Zhou, Qinling; Yu, Chunlei; Hu, Lili; Chen, Danping

    2012-06-15

    We report on high-power fiber lasers based on index-guiding, all-solid neodymium-doped (Nd-doped) phosphate photonic crystal fiber (PCF) with a hexagonal-shaped inner cladding. The optimum fiber laser with a 36 cm length active fiber, generated up to 7.92 W output power at 1053 nm, which benefited from a high absorption coefficient for pump power due to its noncircular inner cladding. The guiding properties of the all-solid PCF were also investigated. A stable mode with a donut-shaped profile and a power-dependent laser beam quality have been observed experimentally and analyzed.

  12. Integration of students with physical impairment in Canadian university rehabilitation sciences programs.

    PubMed

    Guitard, Paulette; Duguay, Elise; Thériault, France-Andrée; Sirois, Nathalie Julie; Lajoie, Mélissa

    2010-03-01

    The purpose of this research was two-fold. First, it sought to determine if Canadian rehabilitation science programs are equipped to admit students with physical impairments and, second, to document the experience of these students. A survey (questionnaire) conducted among all Canadian university rehabilitation science programs (n=34) and interviews with students with physical impairments (n=3) from one university help better delineate this problem. Twenty-three programs completed the survey. Of these, 21 (91%) rehabilitation science programs have admitted students with a variety of physical impairments. Programs have access to their university's Special Service Center to help answer the needs of these students. Strategies have been developed to overcome the difficulties encountered and to meet the programs' requirements. Canadian university rehabilitation science programs seem well equipped to facilitate the integration of individuals with physical impairments. Students report a positive university experience; however, they voice several recommendations to smooth the integration process. Although significant efforts have been made to facilitate the integration process of students with physical limitations, adjustments are still warranted.

  13. SiC/SiC Cladding Materials Properties Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Mary A.; Katoh, Yutai; Koyanagi, Takaaki

    When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormalmore » operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.« less

  14. Integrating human resources and program-planning strategies.

    PubMed

    Smith, J E

    1989-06-01

    The integration of human resources management (HRM) strategies with long-term program-planning strategies in hospital pharmacy departments is described. HRM is a behaviorally based, comprehensive strategy for the effective management and use of people that seeks to achieve coordination and integration with overall planning strategies and other managerial functions. It encompasses forecasting of staffing requirements; determining work-related factors that are strong "motivators" and thus contribute to employee productivity and job satisfaction; conducting a departmental personnel and skills inventory; employee career planning and development, including training and education programs; strategies for promotion and succession, including routes of advancement that provide alternatives to the managerial route; and recruitment and selection of new personnel to meet changing departmental needs. Increased competitiveness among hospitals and a shortage of pharmacists make it imperative that hospital pharmacy managers create strategies to attract, develop, and retain the right individuals to enable the department--and the hospital as a whole--to grow and change in response to the changing health-care environment in the United States. Pharmacy managers would be greatly aided in this mission by the establishment of a well-defined, national strategic plan for pharmacy programs and services that includes an analysis of what education and training are necessary for their successful accomplishment. Creation of links between overall program objectives and people-planning strategies will aid hospital pharmacy departments in maximizing the long-term effectiveness of their practice.

  15. Integrated Vehicle Health Management for the 2nd Generation RLV Program

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    2000-01-01

    This viewgraph presentation gives an overview of the Integrated Vehicle Health Management (IVHM) for Second Generation Reusable Launch Vehicle (RLV) program, including details on the second and third RLV programs, IVHM activity at Kennedy Space Center, the NASA X-37 IVHM flight experiment, propulsion and power IVHM, IVHM technologies at the Jet Propulsion Laboratory, structures IVHM for third generation RLVs, and IVHM systems engineering and integration.

  16. Science 26: Teacher Resource Manual. Integrated Occupational Program. Interim 1991.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    The Integrated Occupation Science 26 Program is an optional program designed to allow students in Alberta, Canada to meet the credit requirements of the Certificate of Achievement and facilitate transfer to the General High School Diploma Program. This Teacher Resource Manual is provided to assist classroom teachers to implement the Science 26…

  17. Optimization of cladding parameters for resisting corrosion on low carbon steels using simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Balan, A. V.; Shivasankaran, N.; Magibalan, S.

    2018-04-01

    Low carbon steels used in chemical industries are frequently affected by corrosion. Cladding is a surfacing process used for depositing a thick layer of filler metal in a highly corrosive materials to achieve corrosion resistance. Flux cored arc welding (FCAW) is preferred in cladding process due to its augmented efficiency and higher deposition rate. In this cladding process, the effect of corrosion can be minimized by controlling the output responses such as minimizing dilution, penetration and maximizing bead width, reinforcement and ferrite number. This paper deals with the multi-objective optimization of flux cored arc welding responses by controlling the process parameters such as wire feed rate, welding speed, Nozzle to plate distance, welding gun angle for super duplex stainless steel material using simulated annealing technique. Regression equation has been developed and validated using ANOVA technique. The multi-objective optimization of weld bead parameters was carried out using simulated annealing to obtain optimum bead geometry for reducing corrosion. The potentiodynamic polarization test reveals the balanced formation of fine particles of ferrite and autenite content with desensitized nature of the microstructure in the optimized clad bead.

  18. Emerging Technologies Program Integration Report. Volume 2. Background, Delphi and Workshop Data. Appendices

    DTIC Science & Technology

    1987-05-04

    FTIILE COP’ AD-A196 840 EMERGING TECHNOLOGIES PROGRAM INTEGRATION REPORT VOLUME II BACKGROUND, DELPHI AND WORKSHOP DATA, APPENDICES . -- PREPARED...Security Classification) Emerging Technologies Program Integration Report Volume II: Background, Delphi and Workshop Data; Appendices (U) 12 PERSONAL...volumes of this integration report assess and synthesize information gathered through a Delphi survey, defense needs prioritization workshops, and

  19. International Piping Integrity Research Group (IPIRG) Program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkowski, G.; Schmidt, R.; Scott, P.

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. Tomore » accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.« less

  20. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-08-31

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less

  1. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-08-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33% was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less

  2. Characterizing the magnetic memory signals on the surface of plasma transferred arc cladding coating under fatigue loads

    NASA Astrophysics Data System (ADS)

    Huang, Haihong; Han, Gang; Qian, Zhengchun; Liu, Zhifeng

    2017-12-01

    The metal magnetic memory signals were measured during dynamic tension tests on the surfaces of the cladding coatings by plasma transferred arc (PTA) welding and the 0.45% C steel. Results showed that the slope of the normal component Hp(y) of magnetic signal and the average value of the tangential component Hp(x) reflect the magnetization of the specimens. The signals increased sharply in the few initial cycles; and then fluctuated around a constant value during fatigue process until fracture. For the PTA cladding coating, the slope of Hp(y) was steeper and the average of Hp(x) was smaller, compared with the 0.45% C steel. The hysteresis curves of cladding layer, bonding layer and substrate were measured by vibrating sample magnetometer testing, and then saturation magnetization, initial susceptibility and coercivity were further calculated. The stress-magnetization curves were also plotted based on the J-A model, which showed that the PTA cladding coating has smaller remanence and coercivity compared with the 0.45% C steel. The microstructures of cladding coating confirmed that the dendritic structure and second-phase of alloy hinder the magnetic domain motion, which was the main factor influencing the variation of magnetic signal during the fatigue tests.

  3. Using Research to Design Integrated Education and Training Programs

    ERIC Educational Resources Information Center

    Pappalardo, Michele; Schaffer, William R.

    2016-01-01

    With the passage of the Workforce Innovation and Opportunity Act (WIOA) of 2014, Northampton Community College began the creation of Integrated Education and Training (IE&T) programs in October 2015. After a needs assessment was conducted with the partners, programs were created to address the needs in the hospitality and healthcare sectors.…

  4. Development of integrated programs for Aerospace-vehicle Design (IPAD): Product program management systems

    NASA Technical Reports Server (NTRS)

    Isenberg, J. M.; Southall, J. W.

    1979-01-01

    The Integrated Programs for Aerospace Vehicle Design (IPAD) is a computing system to support company-wide design information processing. This document presents a brief description of the management system used to direct and control a product-oriented program. This document, together with the reference design process (CR 2981) and the manufacture interactions with the design process (CR 2982), comprises the reference information that forms the basis for specifying IPAD system requirements.

  5. Aluminum gallium nitride-cladding-free nonpolar m-plane gallium nitride-based laser diodes

    NASA Astrophysics Data System (ADS)

    Schmidt, Mathew Corey

    The recent demonstration of nonpolar GaN laser diode operation along with rapid device improvements signal a paradigm shift in GaN-based optoelectronic technology. Up until now, GaN optoelectronics have been trapped on the c-plane facet, where built-in polarization fields place limitations on device design and performance. The advent of bulk GaN substrates has allowed for the full exploration of not only the nonpolar m-plane facet, but all crystal orientations of GaN. This dissertation focuses on the development of some of the world's first nonpolar m-plane GaN laser diodes as well as on the AlGaN-cladding-free concept invented at UCSB. The absence of built-in electric fields allows for thicker quantum wells (≥8 nm) than those allowed on c-plane which improves the optical waveguiding characteristics and eliminates the need for AlGaN cladding layers. The benefits of this design include more uniform growth, more reproducible growth, no tensile cracking, lower operating voltages and currents, and higher yields. The first iteration of device design optimization is presented. Design and growth aspects investigated include quantum well number, quantum well thickness, Mg doping of the p-GaN cladding, aluminum composition of the AlGaN cladding layer and the implementation of an InGaN separate confined heterostructure. These optimizations led to threshold current densities as low as 2.4 kA/cm2.

  6. Corrosion Characteristics of Ni-Based Hardfacing Alloy Deposited on Stainless Steel Substrate by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Awasthi, Reena; Abraham, Geogy; Kumar, Santosh; Bhattacharyya, Kaustava; Keskar, Nachiket; Kushwaha, R. P.; Rao, Ramana; Tewari, R.; Srivastava, D.; Dey, G. K.

    2017-06-01

    In this study, corrosion characteristics of a nickel-based Ni-Mo-Cr-Si hardfacing alloy having 32Mo, 15Cr, and 3Si (wt pct) as alloying elements, deposited on stainless steel SS316L substrate by laser cladding, have been presented. Corrosion behavior of the laser clad layer was evaluated in reducing (0.1 M HCl) and oxidizing (0.5 M HNO3) environments, in comparison with the reference substrate SS316L, using electrochemical potentiodynamic technique at room temperature. The corrosion mechanisms have been evaluated on the basis of microstructural and microchemical analysis using scanning electron microscopy attached with energy-dispersive spectrometry. Passivity behavior of the laser clad layer was studied in 0.5 M H2SO4, using the potentiostatic technique and analyzing the passive layer by X-ray photoelectron spectroscopy. Laser clad layer of Ni-Mo-Cr-Si exhibited higher pitting corrosion resistance in chloride (reducing) environment, indicated by much higher breakdown potential ( 0.8 VSCE) and the absence of pitting as compared to substrate SS316L ( 0.3 VSCE). However, in oxidizing (0.5 M HNO3) environment, both the laser clad layer and substrate SS316L showed excellent and similar corrosion resistance exhibiting high breakdown potential ( 0.85 VSCE) and wide passivation range ( 0.8 VSCE) with low passive current density ( 4 to 7 × 10-6 A/cm2). The stable passive layer formed on laser clad layer of Ni-Mo-Cr-Si after exposure in 0.5 M H2SO4 solution at constant potential 0.6 VSCE (within the passive range), consisted oxides of Mo as Mo+4 (MoO2) and Mo+6 (MoO4)-2, Cr as Cr3+ (mixture of both Cr2O3 and Cr (OH)3), and Si as Si4+(SiO2), which have contributed to passivation and repassivation and therefore excellent corrosion behavior.

  7. Integrated Research on Midwestern Landscape Change: A Program Description and Progress Report

    Treesearch

    Paul H. Gobster; Robert G. Haight; David S. Shriner

    2000-01-01

    The USDA Forest Service North Central Research Station has embarked on a new integrated research and development program to identify and understand the development-related aspects of Midwestern landscape change. This paper describes the framework and scope of the Landscape Change Integrated Program and highlights projects begun during the first two years. Partnerships...

  8. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Guoping; Yang, Yong

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pinmore » end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.« less

  9. User's Manual for FSLIP-3, FLEXSTAB Loads Integration Program

    NASA Technical Reports Server (NTRS)

    Sims, R. L.

    1981-01-01

    The FSLIP program documentation and user's manual is presented. As a follow on program to the FLEXSTAB computer analysis system, the primary function of this FORTRAN IV program is to integrate panel pressure coefficients computed by FLEXSTAB to obtain total shear, bending, and torque airloads on various surfaces, summed relative to user specified axes. The program essentially replaces the ALOADS module in FLEXSTAB with expanded capabilities and flexibility. As such, FSLIP is generalized to work on any FLEXSTAB model or other pressure data if in a compatible format.

  10. Project management techniques for highly integrated programs

    NASA Technical Reports Server (NTRS)

    Stewart, J. F.; Bauer, C. A.

    1983-01-01

    The management and control of a representative, highly integrated high-technology project, in the X-29A aircraft flight test project is addressed. The X-29A research aircraft required the development and integration of eight distinct technologies in one aircraft. The project management system developed for the X-29A flight test program focuses on the dynamic interactions and the the intercommunication among components of the system. The insights gained from the new conceptual framework permitted subordination of departments to more functional units of decisionmaking, information processing, and communication networks. These processes were used to develop a project management system for the X-29A around the information flows that minimized the effects inherent in sampled-data systems and exploited the closed-loop multivariable nature of highly integrated projects.

  11. Development of Cu Clad Cu-Zr Based Metallic Glass and Its Solderability

    NASA Astrophysics Data System (ADS)

    Terajima, Takeshi; Kimura, Hisamichi; Inoue, Akihisa

    Soldering is a candidate technique for joining metallic glasses. It can be processed far below the crystallization temperatures of the various metallic glasses so that there is no possibility of crystallization. However, wettability of Cu-Zr based metallic glass by Pb free solder is poor because a strong surface oxide film interferes direct contact between them. To overcome the problem, Cu thin film clad metallic glass was developed. It was preliminary produced by casting a melt of Cu36Zr48Al8Ag8 pre-alloy into Cu mold cavity, inside which Cu thin film with 2 mm in thickness was set on the wall. Cu36Zr48Al8Ag8 metallic glass, whose surface Cu thin film was welded to, was successfully produced. From the microstructure analyses, it was found that reaction layer was formed at the interface between Cu and Cu36Zr48Al8Ag8 metallic glass, however, there was no oxide in the Cu clad layer. Solderability to the metallic glass was drastically increased. The Cu clad layer played an important role to prevent the formation of surface oxide film and consequently improved the solderability.

  12. 78 FR 65573 - Migratory Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... supported approval of the shot and the coatings, and one contained no useful information. Therefore, as... Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot Coatings as Nontoxic for... environmental assessments. SUMMARY: We, the U.S. Fish and Wildlife Service, approve copper-clad iron shot and...

  13. Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida.

    PubMed

    Demirozer, Ozan; Tyler-Julian, Kara; Funderburk, Joe; Leppla, Norm; Reitz, Stuart

    2012-12-01

    The spread of the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), resulted in the worldwide destabilization of established integrated pest management programs for many crops. Efforts to control the pest and the thrips-vectored tospoviruses with calendar applications of broad-spectrum insecticides have been unsuccessful. The result has been a classic '3-R' situation: resistance to numerous insecticides; resurgence of the western flower thrips populations as a result of natural predators and native competitor thrips being eliminated; replacement by various other pests. This paper reports on integrated pest management programs for fruiting vegetables that are effective, economical, ecologically sound and sustainable. The components include the following: define pest status (economic thresholds); increase biotic resistance (natural enemies and competition); integrate preventive and therapeutic tactics (scouting, ultraviolet-reflective technologies, biological control, compatible insecticides, companion plants and fertility); vertically integrate the programs with other pests; continually communicate latest science-based management tactics with end-users. These programs have been widely implemented in Florida and have significantly improved the management of western flower thrips and thrips-transmitted viruses. Copyright © 2012 Society of Chemical Industry.

  14. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  15. STEM integration in middle school career and technical education programs: A Delphi design study

    NASA Astrophysics Data System (ADS)

    Wu-Rorrer, Billy Ray

    The purpose of this qualitative method study with a Delphi research design sought to determine how STEM programs can be effectively integrated into middle school career and technical education programs by local, state, and national educators, administrators, directors, specialists, and curriculum writers. The significance of the study is to provide leaders in CTE with a greater awareness, insight, and strategies about how CTE programs can more effectively integrate academics into career and technical education programs through STEM-related programming. The findings will increase the limited amount of available literature providing best practice strategies for the integration of STEM curriculum into middle school CTE programs. One basic question has guided this research: How can STEM programs be effectively integrated into middle school career and technical education programs? A total of twelve strategies were identified. The strategies of real-world applications and administrative buy-in were the two predominant strategies consistently addressed throughout the review of literature and all three sub-questions in the research study. The Delphi design study consisted of pilot round and three rounds of data collection on barriers, strategies, and professional development for STEM integration in middle school career and technical education programs. Four panelists participated in the pilot round, and 16 panel members not involved in the pilot round participated in the three rounds of questioning and consensus building. In the future, more comprehensive studies can build upon this foundational investigation of middle school CTE programs.

  16. Experimental measurement and numerical analysis of group velocity dispersion in cladding modes of an endlessly single-mode photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Baselt, Tobias; Taudt, Christopher; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter

    2017-06-01

    The optical properties of the guided modes in the core of photonic crystal fibers (PCFs) can be easily manipulated by changing the air-hole structure in the cladding. Special properties can be achieved in this case such as endless singlemode operation. Endlessly single-mode fibers, which enable single-mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode properties. In addition to the guidance of light in the core, different cladding modes occur. The coupling between the core and the cladding modes can affect the endlessly single-mode guides. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion (GVD) of different cladding modes based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array. Based on the scanning electron image, a calculation was made of the optical guiding properties of the microstructured cladding. We compare the calculation with a method to measure the wavelength-dependent time delay. We measure the time delay of defined cladding modes with a homemade supercontinuum light source in a white light interferometric setup. To measure the dispersion of cladding modes of optical fibers with high accuracy, a time-domain white-light interferometer based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelengthdependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the cladding modes of an endlessly single-mode fiber.

  17. Real-time monitoring of laser hot-wire cladding of Inconel 625

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Liu, Wei; Harooni, Masoud; Ma, Junjie; Kovacevic, Radovan

    2014-10-01

    Laser hot-wire cladding (LHWC), characterized by resistance heating of the wire, largely increases the productivity and saves the laser energy. However, the main issue of applying this method is the occurrence of arcing which causes spatters and affects the stability of the process. In this study, an optical spectrometer was used for real-time monitoring of the LHWC process. The corresponding plasma intensity was analyzed under various operating conditions. The electron temperature of the plasma was calculated for elements of nickel and chromium that mainly comprised the plasma plume. There was a correlation between the electron temperature and the stability of the process. The characteristics of the resulted clad were also investigated by measuring the dilution, hardness and microstructure.

  18. Human Research Program Integrated Research Plan. Revision A January 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The Integrated Research Plan (IRP) describes the portfolio of Human Research Program (HRP) research and technology tasks. The IRP is the HRP strategic and tactical plan for research necessary to meet HRP requirements. The need to produce an IRP is established in HRP-47052, Human Research Program - Program Plan, and is under configuration management control of the Human Research Program Control Board (HRPCB). Crew health and performance is critical to successful human exploration beyond low Earth orbit. The Human Research Program (HRP) is essential to enabling extended periods of space exploration because it provides knowledge and tools to mitigate risks to human health and performance. Risks include physiological and behavioral effects from radiation and hypogravity environments, as well as unique challenges in medical support, human factors, and behavioral or psychological factors. The Human Research Program (HRP) delivers human health and performance countermeasures, knowledge, technologies and tools to enable safe, reliable, and productive human space exploration. Without HRP results, NASA will face unknown and unacceptable risks for mission success and post-mission crew health. This Integrated Research Plan (IRP) describes HRP s approach and research activities that are intended to address the needs of human space exploration and serve HRP customers and how they are integrated to provide a risk mitigation tool. The scope of the IRP is limited to the activities that can be conducted with the resources available to the HRP; it does not contain activities that would be performed if additional resources were available. The timescale of human space exploration is envisioned to take many decades. The IRP illustrates the program s research plan through the timescale of early lunar missions of extended duration.

  19. 47 CFR 76.504 - Limits on carriage of vertically integrated programming.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... programming. 76.504 Section 76.504 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... Limits on carriage of vertically integrated programming. (a) Except as otherwise provided in this section... national video programming services owned by the cable operator or in which the cable operator has an...

  20. 47 CFR 76.504 - Limits on carriage of vertically integrated programming.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... programming. 76.504 Section 76.504 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... Limits on carriage of vertically integrated programming. (a) Except as otherwise provided in this section... national video programming services owned by the cable operator or in which the cable operator has an...

  1. Deoxyribonucleic acid (DNA) cladding layers for nonlinear-optic-polymer-based electro-optic devices

    NASA Astrophysics Data System (ADS)

    Grote, James G.; Ogata, Naoya; Diggs, Darnell E.; Hopkins, Frank K.

    2003-07-01

    Nonlinear optic (NLO) polymer based electro-optic devices have been achieving world record low half wave voltages and high frequencies over the last 2-3 years. Part of the advancement is through the use of relatively more conductive polymers for the cladding layers. Based on the current materials available for these cladding materials, however, the desired optical and electromagnetic properites are being balanced for materials processability. One does not want the solvent present in one layer to dissovle the one deposited underneath, or be dissolved by the one being deposited on top. Optimized polymer cladding materials, to further enhance device performance, are continuing to be investigated. Thin films of deoxyribonucleic acid (DNA), derived from salmon sperm, show promise in providing both the desired optical and magnetic properties, as well as the desired resistance to various solvents used for NLO polymer device fabrication. Thin films of DNA were deposited on glass and silicon substrates and the film quality, optical and electromagnetic properties and resistance to various solvents were characterized.

  2. 77 FR 59158 - Migratory Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... June 20, 2012 (77 FR 36980), and one for the fluoropolymer shot coatings on July 6, 2012 (77 FR 39983... Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot Coatings as... approve copper-clad iron shot and fluoropolymer coatings for hunting waterfowl and coots. We published a...

  3. The Integrated Airframe/Propulsion Control System Architecture program (IAPSA)

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Cohen, Gerald C.; Meissner, Charles W.

    1990-01-01

    The Integrated Airframe/Propulsion Control System Architecture program (IAPSA) is a two-phase program which was initiated by NASA in the early 80s. The first phase, IAPSA 1, studied different architectural approaches to the problem of integrating engine control systems with airframe control systems in an advanced tactical fighter. One of the conclusions of IAPSA 1 was that the technology to construct a suitable system was available, yet the ability to create these complex computer architectures has outpaced the ability to analyze the resulting system's performance. With this in mind, the second phase of IAPSA approached the same problem with the added constraint that the system be designed for validation. The intent of the design for validation requirement is that validation requirements should be shown to be achievable early in the design process. IAPSA 2 has demonstrated that despite diligent efforts, integrated systems can retain characteristics which are difficult to model and, therefore, difficult to validate.

  4. RIA simulation tests using driver tube for ATF cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinbiz, Mahmut N.; Brown, N. R.; Lowden, R. R.

    Pellet-cladding mechanical interaction (PCMI) is a potential failure mechanism for accident-tolerant fuel (ATF) cladding candidates during a reactivity-initiated accident (RIA). This report summarizes Fiscal Year (FY) 2017 research activities that were undertaken to evaluate the PCMI-like hoop-strain-driven mechanical response of ATF cladding candidates. To achieve various RIA-like conditions, a modified-burst test (MBT) device was developed to produce different mechanical pulses. The calibration of the MBT instrument was accomplished by performing mechanical tests on unirradiated Generation-I iron-chromium-aluminum (FeCrAl) alloy samples. Shakedown tests were also conducted in both FY 2016 and FY 2017 using unirradiated hydrided ZIRLO™ tube samples. This milestone reportmore » focuses on testing of ATF materials, but the benchmark tests with hydrided ZIRLO™ tube samples are documented in a recent journal article.a For the calibration and benchmark tests, the hoop strain was monitored using strain gauges attached to the sample surface in the hoop direction. A novel digital image correlation (DIC) system composed of a single high-speed camera and an array of six mirrors was developed for the MBT instrument to better resolve the failure behavior of samples and to provide useful data for validation of high-fidelity modeling and simulation tools. The DIC system enable a 360° view of a sample’s outer surface. This feature was added to the instrument to determine the precise failure location on a sample’s surface for strain predictions. The DIC system was tested on several silicon carbide fiber/silicon carbide matrix (SiC/SiC) composite tube samples at various pressurization rates of the driver tube (which correspond to the strain rates for the samples). The hoop strains for various loading conditions were determined for the SiC/SiC composite tube samples. Future work is planned to enhance understanding of the failure behavior of the ATF cladding candidates of

  5. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptancemore » of a thinner nominal cladding than normally used today.« less

  6. 78 FR 7451 - Clad Steel Plate From Japan; Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Japan; Determination On the basis of the record \\1\\ developed in the subject five-year review, the... from Japan would be likely to lead to continuation or recurrence of material injury to an industry in... USITC Publication 4370 (January 2013), entitled Clad Steel Plate from Japan: Investigation No. 731-TA...

  7. Fabrication and evaluation of evanescent wave absorption based polyaniline-cladding modified fiber optic urea biosensor

    NASA Astrophysics Data System (ADS)

    Botewad, S. N.; Pahurkar, V. G.; Muley, G. G.

    2018-01-01

    The fabrication and study of cladding modified intrinsic fiber optic urea biosensor has been reported in the present investigation. A simple cladding modification technique was used to construct the sensor by uncladding the small portion from optical fiber. Further bare core was decorated by supportive porous, chemically and optically sensitive matrix material polyaniline (PANI) as an active cladding for enzyme residency. Enzyme-urease (Urs) was cross-linked on the active cladding region via glutaraldehyde solution. Confirmation of the prepared PANI in proper form determined by ultraviolet-visible and Fourier transform infrared spectroscopic techniques. X-ray diffraction technique was employed for nature and compatibility examination of PANI. Sensor parameters such as sensitivity, selectivity, stability and lower detection limit have been analyzed by absorption variation study in evanescent wave field. The response of prepared sensor was studied towards urea in the wide concentration range 100 nM-100 mM and confirmed its lowest detection limit as 100 nM. The stability of sensor was found 28 days with little variation in response. The fabricated sensor has not shown any response towards interference species like glucose, ascorbic acid, L-alanine, L-arginine and their combination with urea solution and hence found selective for urea solution only.

  8. Occurence and prediction of sigma phase in fuel cladding alloys for breeder reactors. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anantatmula, R.P.

    1982-01-01

    In sodium-cooled fast reactor systems, fuel cladding materials will be exposed for several thousand hours to liquid sodium. Satisfactory performance of the materials depends in part on the sodium compatibility and phase stability of the materials. This paper mainly deals with the phase stability aspect, with particular emphasis on sigma phase formation of the cladding materials upon extended exposures to liquid sodium. A new method of predicting sigma phase formation is proposed for austenitic stainless steels and predictions are compared with the experimental results on fuel cladding materials. Excellent agreement is obtained between theory and experiment. The new method ismore » different from the empirical methods suggested for superalloys and does not suffer from the same drawbacks. The present method uses the Fe-Cr-Ni ternary phase diagram for predicting the sigma-forming tendencies and exhibits a wide range of applicability to austenitic stainless steels and heat-resistant Fe-Cr-Ni alloys.« less

  9. Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar

    2018-02-01

    The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.

  10. All fiber nonlinear microscopy at 1550 nm using a double-clad fiber coupler

    NASA Astrophysics Data System (ADS)

    Perrillat-Bottonet, Thomas; Strupler, Mathias; Leduc, Mikael; Majeau, Lucas; Godbout, Nicolas; Boudoux, Caroline

    2017-02-01

    Nonlinear microscopy has already shown its impact in biological research, namely in the fields of neurobiology, immunology, cancer research and embryology. Typically, these microscopes operate under free space propagation, using a dichroic mirror to separate the nonlinear signals from the excitation laser. While powerful such implementations are difficult to translate from the laboratory to a clinical setting where the environment is less controlled. Therefore, we propose an alignment-free all-fiber nonlinear microscopy system at 1550 nm based on double-clad fibers (DCF). As sectioning is performed through nonlinear effects, nonlinear microscopy does not require a detection pinhole, and. the DCF inner cladding can be used for efficient collection of nonlinear signals. The built system allows for multiplexing second harmonic generation (SHG) and two-photon excitation fluorescence (2PEF), collected from the inner cladding; and reflectance confocal microscopy (RCM), detected from the core acting as the confocal pinhole. Finally, an asymmetric double-clad fiber coupler (DCFC) is used to address efficiently both DCF channels. This all-fiber system is more compact and less sensitive to alignment, but requires carefully managing the transmission of the femtosecond pulse in the fiber. This is addressed using dispersion compensation fiber, pulse compression and solitonic propagation. Additionally, with a source centered at 1550 nm, we benefit from reduced sample scattering thus increasing the depth of field in comparison with systems operating at 800 nm. Overall we believe that the developed system could be transferred in clinics to enable in-vivo and in-situ imaging of human patient.

  11. Integrated Financial Management Program

    NASA Technical Reports Server (NTRS)

    Pho, Susan

    2004-01-01

    Having worked in the Employees and Commercial Payments Branch of the Financial Management Division for the past 3 summers, I have seen the many changes that have occurred within the NASA organization. As I return each summer, I find that new programs and systems have been adapted to better serve the needs of the Center and of the Agency. The NASA Agency has transformed itself the past couple years with the implementation of the Integrated Financial Management Program (IFMP). IFMP is designed to allow the Agency to improve its management of its Financial, Physical, and Human Resources through the use of multiple enterprise module applications. With my mentor, Joseph Kan, being the branch chief of the Employees and Commercial Payments Branch, I have been exposed to several modules, such as Travel Manager, WebTads, and Core Financial/SAP, which were implemented in the last couple of years under the IFMP. The implementation of these agency-wide systems has sometimes proven to be troublesome. Prior to IFMP, each NASA Center utilizes their own systems for Payroll, Travel, Accounts Payable, etc. But with the implementation of the Integrated Financial Management Program, all the "legacy" systems had to be eliminated. As a result, a great deal of enhancement and preparation work is necessary to ease the transformation from the old systems to the new. All this work occurs simultaneously; for example, e-Payroll will "go live" in several months, but a system like Travel Manager will need to have information upgraded within the system to meet the requirements set by Headquarters. My assignments this summer have given me the opportunity to become involved with such work. So far, I have been given the opportunity to participate in projects resulting from a congressional request, several bankcard reconciliations, updating routing lists for Travel Manager, updating the majordomo list for Travel Manager approvers and point of contacts, and a NASA Headquarters project involving

  12. Integrated health practices: development of a graduate nursing program.

    PubMed

    Jossens, Marilyn O R; Ganley, Barbara J

    2006-01-01

    This article describes pedagogical issues in the development of a graduate nursing program in Integrated Health Practices (IHP), reports early experiences in the program, and asserts the importance of a graduate program in the specialty. The experience is described, and unique pedagogical issues encountered are discussed. While noting the contributions made to health and health care by Western medicine and nursing practice, the authors elaborate on the benefits of integrating western health care with less technological, less invasive, and less expensive holistic approaches. Diverse populations often require attention to specific chronic conditions, rather than to acute conditions, and constitutional requirements for overall health may be influenced by diverse health philosophies and practices. These requirements may be grounded in cultural and religious beliefs that must be incorporated into culturally sensitive plans of care. Clinical nurse specialists in IHP can offer knowledge and leadership to nursing practice, which address these complex, yet subtle health care issues.

  13. Human Systems Integration (HSI) Case Studies from the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Baggerman, Susan; Berdich, Debbie; Whitmore, Mihriban

    2009-01-01

    The National Aeronautics and Space Administration (NASA) Constellation Program is responsible for planning and implementing those programs necessary to send human explorers back to the moon, onward to Mars and other destinations in the solar system, and to support missions to the International Space Station. The Constellation Program has the technical management responsibility for all Constellation Projects, including both human rated and non-human rated vehicles such as the Crew Exploration Vehicle, EVA Systems, the Lunar Lander, Lunar Surface Systems, and the Ares I and Ares V rockets. With NASA s new Vision for Space Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, inclusion in trade offs and analyses, and an iterative "prototype/test/ redesign" process. Personnel at the NASA Johnson Space Center are involved in the Constellation Program at both the Program and Project levels as human system integrators. They ensure that the human is considered as a system, equal to hardware and software vehicle systems. Systems to deliver and support extended human habitation on the moon are extremely complex and unique, presenting new opportunities to employ Human Systems Integration, or HSI practices in the Constellation Program. The purpose of the paper is to show examples of where human systems integration work is successfully employed in the Constellation Program and related Projects, such as in the areas of habitation and early requirements and design concepts.

  14. Burst Ductility of Zirconium Clads: The Defining Role of Residual Stress

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kanjarla, A. K.; Lodh, Arijit; Singh, Jaiveer; Singh, Ramesh; Srivastava, D.; Dey, G. K.; Saibaba, N.; Doherty, R. D.; Samajdar, Indradev

    2016-08-01

    Closed end burst tests, using room temperature water as pressurizing medium, were performed on a number of industrially produced zirconium (Zr) clads. A total of 31 samples were selected based on observed differences in burst ductility. The latter was represented as total circumferential elongation or TCE. The selected samples, with a range of TCE values (5 to 35 pct), did not show any correlation with mechanical properties along axial direction, microstructural parameters, crystallographic textures, and outer tube-surface normal ( σ 11) and shear ( τ 13) components of the residual stress matrix. TCEs, however, had a clear correlation with hydrostatic residual stress ( P h), as estimated from tri-axial stress analysis on the outer tube surface. Estimated P h also scaled with measured normal stress ( σ 33) at the tube cross section. An elastic-plastic finite element model with ductile damage failure criterion was developed to understand the burst mechanism of zirconium clads. Experimentally measured P h gradients were imposed on a solid element continuum finite element (FE) simulation to mimic the residual stresses present prior to pressurization. Trends in experimental TCEs were also brought out with computationally efficient shell element-based FE simulations imposing the outer tube-surface P h values. Suitable components of the residual stress matrix thus determined the burst performance of the Zr clads.

  15. Laser Cladding of Ni, Nb, and Mg Alloys for Improved Environmental Resistance at High Temperature

    DTIC Science & Technology

    1989-01-01

    v*LASER CLADDING OF NI , Nb AND Mg ALLOYS < FOR 7IMPR-OVED ENVIIONM ENTAL I RESISTANCE AT HIGH TEMPERATURE Final Report for Research Conducted through...resistance at high temperature. Major emphasis has been on Ni -Cr-Al-Hf system. Microstructural evolution and oxidation properties of Ni and Nb alloys ...metastable crystalline and amorphous structure on a) the high temperature oxidation properties of laser clad Ni and Nb alloys , and b) the corrosion

  16. Integration of safety engineering into a cost optimized development program.

    NASA Technical Reports Server (NTRS)

    Ball, L. W.

    1972-01-01

    A six-segment management model is presented, each segment of which represents a major area in a new product development program. The first segment of the model covers integration of specialist engineers into 'systems requirement definition' or the system engineering documentation process. The second covers preparation of five basic types of 'development program plans.' The third segment covers integration of system requirements, scheduling, and funding of specialist engineering activities into 'work breakdown structures,' 'cost accounts,' and 'work packages.' The fourth covers 'requirement communication' by line organizations. The fifth covers 'performance measurement' based on work package data. The sixth covers 'baseline requirements achievement tracking.'

  17. The Perfect Marriage: Integrated Word Processing and Data Base Management Programs.

    ERIC Educational Resources Information Center

    Pogrow, Stanley

    1983-01-01

    Discussion of database integration and how it operates includes recommendations on compatible brand name word processing and database management programs, and a checklist for evaluating essential and desirable features of the available programs. (MBR)

  18. Microstructural Evolution of AerMet100 Steel Coating on 300M Steel Fabricated by Laser Cladding Technique

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Li, Jia; Cheng, Xu; Wang, Huaming

    2018-02-01

    In this paper, the process of coating AerMet100 steel on forged 300M steel with laser cladding was investigated, with a thorough analysis of the chemical composition, microstructure, and hardness of the substrate and the cladding layer as well as the transition zone. Results show that the composition and microhardness of the cladding layer are macroscopically homogenous with the uniformly distributed bainite and a small amount of retained austenite in martensite matrix. The transition zone, which spans approximately 100 μm, yields a gradual change of composition from the cladding layer to 300M steel matrix. The heat-affected zone (HAZ) can be divided into three zones: the sufficiently quenched zone (SQZ), the insufficiently quenched zone (IQZ), and the high tempered zone (HTZ). The SQZ consists of martensitic matrix and bainite, as for the IQZ and the HTZ the microstructures are martensite + tempered martensite and tempered martensite + ferrite, respectively. These complicated microstructures in the HAZ are caused by different peak heating temperatures and heterogeneous microstructures of the as-received 300M steel.

  19. 77 FR 38825 - Clad Steel Plate From Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping Duty Order on Clad Steel Plate From Japan AGENCY: United States International Trade Commission. ACTION: Notice. SUMMARY: The... order on clad steel plate from Japan would be likely to lead to continuation or recurrence of material...

  20. Integrating primary care into community behavioral health settings: programs and early implementation experiences.

    PubMed

    Scharf, Deborah M; Eberhart, Nicole K; Schmidt, Nicole; Vaughan, Christine A; Dutta, Trina; Pincus, Harold Alan; Burnam, M Audrey

    2013-07-01

    This article describes the characteristics and early implementation experiences of community behavioral health agencies that received Primary and Behavioral Health Care Integration (PBHCI) grants from the Substance Abuse and Mental Health Services Administration to integrate primary care into programs for adults with serious mental illness. Data were collected from 56 programs, across 26 states, that received PBHCI grants in 2009 (N=13) or 2010 (N=43). The authors systematically extracted quantitative and qualitative information about program characteristics from grantee proposals and semistructured telephone interviews with core program staff. Quarterly reports submitted by grantees were coded to identify barriers to implementing integrated care. Grantees shared core features required by the grant but varied widely in terms of characteristics of the organization, such as size and location, and in the way services were integrated, such as through partnerships with a primary care agency. Barriers to program implementation at start-up included difficulty recruiting and retaining qualified staff and issues related to data collection and use of electronic health records, licensing and approvals, and physical space. By the end of the first year, some problems, such as space issues, were largely resolved, but other issues, including problems with staffing and data collection, remained. New challenges, such as patient recruitment, had emerged. Early implementation experiences of PBHCI grantees may inform other programs that seek to integrate primary care into behavioral health settings as part of new, large-scale government initiatives, such as specialty mental health homes.

  1. Integrating Oncology Massage Into Chemoinfusion Suites: A Program Evaluation.

    PubMed

    Mao, Jun J; Wagner, Karen E; Seluzicki, Christina M; Hugo, Audra; Galindez, Laura K; Sheaffer, Heather; Fox, Kevin R

    2017-03-01

    This article reports on the development, implementation, and evaluation of an integrative clinical oncology massage program for patients undergoing chemotherapy for breast cancer in a large academic medical center. We describe the development and implementation of an oncology massage program embedded into chemoinfusion suites. We used deidentified program evaluation data to identify specific reasons individuals refuse massage and to evaluate the immediate impact of massage treatments on patient-reported outcomes using a modified version of the Distress Thermometer delivered via iPad. We analyzed premassage and postmassage data from the Distress Thermometer using paired t test and derived qualitative data from participants who provided written feedback on their massage experiences. Of the 1,090 massages offered, 692 (63%) were accepted. We observed a significant decrease in self-reported anxiety (from 3.9 to 1.7), nausea (from 2.5 to 1.2), pain (from 3.3 to 1.9), and fatigue (from 4.8 to 3.0) premassage and postmassage, respectively (all P < .001). We found that 642 survey participants (93%) were satisfied with their massage, and 649 (94%) would recommend it to another patient undergoing treatment. Spontaneous patient responses overwhelmingly endorsed the massage as relaxing. No adverse events were reported. Among the 398 patients (36%) who declined a massage, top reasons were time concerns and lack of interest. A clinical oncology massage program can be safely and effectively integrated into chemoinfusion units to provide symptom control for patients with breast cancer. This integrative approach overcomes patient-level barriers of cost, time, and travel, and addresses the institutional-level barrier of space.

  2. Novel bidirectional optical subassembly with embedded filter, 45-degree angle polished fiber cladding and etched fiber core

    NASA Astrophysics Data System (ADS)

    Lee, Seihyoung; Lim, Kwon-Seob; Lee, Jong Jin; Kang, Hyun Seo

    2009-10-01

    The optical wavelength-division-multiplex filter for bidirectional optical subassembly (BOSA) is embedded to the fiber core, which results in simplicity of the BOSA module. The fiber cladding is 45-deg angle polished to receive a downstream signal. The core is etched by a femtosecond laser to have a normal core facet and to transmit an upstream signal. The downstream signal, which is core mode, is coupled to the cladding mode by the long-period fiber grating and then detected by a photodiode by means of the total internal reflection effect at the 45-deg angle polished cladding facet. The measured transmitted and received coupling efficiencies are 27.3 and 43.8%, respectively.

  3. Higher-order cladding mode excitation of femtosecond-laser-inscribed tilted FBGs.

    PubMed

    Ioannou, Andreas; Theodosiou, Antreas; Kalli, Kyriacos; Caucheteur, Christophe

    2018-05-01

    We study the modal behavior of plane-by-plane femtosecond laser fabricated tilted fiber Bragg gratings (FBGs). The focus is on the differential strain and temperature sensitivities between the cladding mode resonances of an nth grating order and those of the (n-i)th orders (with i=1-n), which are collocated in the same wavelength range. Whereas the Bragg mode exhibits an axial strain sensitivity of 1.2 pm/μϵ, we experimentally show that the strain sensitivity of ultrahigh-order cladding modes is negative and at -1.99  pm/μϵ in the same spectral window. Using a finite element mode solver, the modal refractive index value is computed to be well below 1, thus confirming that these modes, in reality, are leaky modes.

  4. Process improvement program evolves into compliance program at an integrated delivery system.

    PubMed

    Tyk, R C; Hylton, P G

    1998-09-01

    An integrated delivery system discovered questionable practices when it undertook a process-improvement initiative for its revenue-to-cash cycle. These discoveries served as a wake-up call to the organization that it needed to develop a comprehensive corporate compliance program. The organization engaged legal counsel to help it establish such a program. A corporate compliance officer was hired, and a compliance committee was set up. They worked with counsel to develop the structure and substance of the program and establish a corporate code of conduct that became a part of the organization's policies and procedures. Teams were formed in various areas of the organization to review compliance-related activities and suggest improvements. Clinical and nonclinical staff attended mandatory educational sessions about the program. By approaching compliance systematically, the organization has put itself in an excellent position to avoid fraudulent and abusive activities- and the government scrutiny they invite.

  5. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tome, Carlos N; Caro, J A; Lebensohn, R A

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating themore » phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.« less

  6. Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2017-12-01

    After a tsunami caused plant black out at Fukushima, followed by hydrogen explosions, the US Department of Energy partnered with fuel vendors to study safer alternatives to the current UO2-zirconium alloy system. This accident tolerant fuel alternative should better tolerate loss of cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. General electric, Oak ridge national laboratory, and their partners are proposing to replace zirconium alloy cladding in current commercial light water power reactors with an iron-chromium-aluminum (FeCrAl) cladding such as APMT or C26M. Extensive testing and evaluation is being conducted to determine the suitability of FeCrAl under normal operation conditions and under severe accident conditions. Results show that FeCrAl has excellent corrosion resistance under normal operation conditions and FeCrAl is several orders of magnitude more resistant than zirconium alloys to degradation by superheated steam under accident conditions, generating less heat of oxidation and lower amount of combustible hydrogen gas. Higher neutron absorption and tritium release effects can be minimized by design changes. The implementation of FeCrAl cladding is a near term solution to enhance the safety of the current fleet of commercial light water power reactors.

  7. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billone, M. C.; Burtseva, T. A.

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  8. Evaluation -- Northern Virginia Smart Traffic Center (NVSTC) integration program

    DOT National Transportation Integrated Search

    2002-02-01

    The Northern Virginia Smart Traffic Center (NVSTC) Integration Program was an ambitious undertaking to enhance the effectiveness of intelligent transportation systems (ITS) in the Washington metropolitan area by interconnecting regional systems. The ...

  9. FRAPCON analysis of cladding performance during dry storage operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, David J.; Geelhood, Kenneth J.

    There is an increasing need in the U.S. and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations (ISFSI) or interim storage sites. The NRC limits cladding temperature to 400°C while maintaining cladding hoop stress below 90 MPa in an effort to avoid radial hydride reorientation. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400 °C. Results were representative of the majority of U.S. LWR fuel. They conservativelymore » showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.« less

  10. School-Based Childhood Sexual Abuse Prevention Programs: An Integrative Review

    ERIC Educational Resources Information Center

    Fryda, Candice M.; Hulme, Polly A.

    2015-01-01

    One prevention strategy for childhood sexual abuse (CSA) involves educational programs delivered to children in the school environment. The purpose of this integrative literature review was to determine the state of the science on school-based CSA prevention programs. The authors extracted data from 26 articles that fit inclusion criteria to…

  11. Integrating Neglected Tropical Disease and Immunization Programs: The Experiences of the Tanzanian Ministry of Health

    PubMed Central

    Mwingira, Upendo John; Means, Arianna Rubin; Chikawe, Maria; Kilembe, Bernard; Lyimo, Dafrossa; Crowley, Kathryn; Rusibamayila, Neema; Nshala, Andreas; Mphuru, Alex

    2016-01-01

    Global health practitioners are increasingly advocating for the integration of community-based health-care platforms as a strategy for increasing the coverage of programs, encouraging program efficiency, and promoting universal health-care goals. To leverage the strengths of compatible programs and avoid geographic and temporal duplications in efforts, the Tanzanian Ministry of Health and Social Welfare coordinated immunization and neglected tropical disease programs for the first time in 2014. Specifically, a measles and rubella supplementary vaccine campaign, mass drug administration (MDA) of ivermectin and albendazole, and Vitamin A were provisionally integrated into a shared community-based delivery platform. Over 21 million people were targeted by the integrated campaign, with the immunization program and MDA program reaching 97% and 93% of targeted individuals, respectively. The purpose of this short report is to share the Tanzanian experience of launching and managing this integrated campaign with key stakeholders. PMID:27246449

  12. Research on the transformation mechanism of graphite phase and microstructure in the heated region of gray cast iron by laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Yancong; Zhan, Xianghua; Yi, Peng; Liu, Tuo; Liu, Benliang; Wu, Qiong

    2018-03-01

    A double-track lap cladding experiment involving gray cast iron was established to investigate the transformation mechanism of graphite phase and microstructure in a laser cladding heated region. The graphite phase and microstructure in different heated regions were observed under a microscope, and the distribution of elements in various heated regions was analyzed using an electron probe. Results show that no graphite existed in the cladding layer and in the middle and upper parts of the binding region. Only some of the undissolved small graphite were observed at the bottom of the binding region. Except the refined graphite size, the morphological characteristics of substrate graphite and graphite in the heat-affected zone were similar. Some eutectic clusters, which grew along the direction of heat flux, were observed in the heat-affected zone whose microstructure was transformed into a mixture of austenite, needle-like martensite, and flake graphite. Needle-like martensite around graphite was fine, but this martensite became sparse and coarse when it was away from graphite. Some martensite clusters appeared in the local area near the binding region, and the carbon atoms in the substrate did not diffuse into the cladding layer through laser cladding, which only affected the bonding area and the bottom of the cladding layer.

  13. Weakly modulated silicon-dioxide-cladding gratings for silicon waveguide Fabry-Pérot cavities.

    PubMed

    Grote, Richard R; Driscoll, Jeffrey B; Biris, Claudiu G; Panoiu, Nicolae C; Osgood, Richard M

    2011-12-19

    We show by theory and experiment that silicon-dioxide-cladding gratings for Fabry-Pérot cavities on silicon-on-insulator channel ("wire") waveguides provide a low-refractive-index perturbation, which is required for several important integrated photonics components. The underlying refractive index perturbation of these gratings is significantly weaker than that of analogous silicon gratings, leading to finer control of the coupling coefficient κ. Our Fabry-Pérot cavities are designed using the transfer-matrix method (TMM) in conjunction with the finite element method (FEM) for calculating the effective index of each waveguide section. Device parameters such as coupling coefficient, κ, Bragg mirror stop band, Bragg mirror reflectivity, and quality factor Q are examined via TMM modeling. Devices are fabricated with representative values of distributed Bragg reflector lengths, cavity lengths, and propagation losses. The measured transmission spectra show excellent agreement with the FEM/TMM calculations.

  14. Unpacking vertical and horizontal integration: childhood overweight/obesity programs and planning, a Canadian perspective

    PubMed Central

    2010-01-01

    Background Increasingly, multiple intervention programming is being understood and implemented as a key approach to developing public health initiatives and strategies. Using socio-ecological and population health perspectives, multiple intervention programming approaches are aimed at providing coordinated and strategic comprehensive programs operating over system levels and across sectors, allowing practitioners and decision makers to take advantage of synergistic effects. These approaches also require vertical and horizontal (v/h) integration of policy and practice in order to be maximally effective. Discussion This paper examines v/h integration of interventions for childhood overweight/obesity prevention and reduction from a Canadian perspective. It describes the implications of v/h integration for childhood overweight and obesity prevention, with examples of interventions where v/h integration has been implemented. An application of a conceptual framework for structuring v/h integration of an overweight/obesity prevention initiative is presented. The paper concludes with a discussion of the implications of vertical/horizontal integration for policy, research, and practice related to childhood overweight and obesity prevention multiple intervention programs. Summary Both v/h integration across sectors and over system levels are needed to fully support multiple intervention programs of the complexity and scope required by obesity issues. V/h integration requires attention to system structures and processes. A conceptual framework is needed to support policy alignment, multi-level evaluation, and ongoing coordination of people at the front lines of practice. Using such tools to achieve integration may enhance sustainability, increase effectiveness of prevention and reduction efforts, decrease stigmatization, and lead to new ways to relate the environment to people and people to the environment for better health for children. PMID:20478054

  15. Unpacking vertical and horizontal integration: childhood overweight/obesity programs and planning, a Canadian perspective.

    PubMed

    Maclean, Lynne M; Clinton, Kathryn; Edwards, Nancy; Garrard, Michael; Ashley, Lisa; Hansen-Ketchum, Patti; Walsh, Audrey

    2010-05-17

    Increasingly, multiple intervention programming is being understood and implemented as a key approach to developing public health initiatives and strategies. Using socio-ecological and population health perspectives, multiple intervention programming approaches are aimed at providing coordinated and strategic comprehensive programs operating over system levels and across sectors, allowing practitioners and decision makers to take advantage of synergistic effects. These approaches also require vertical and horizontal (v/h) integration of policy and practice in order to be maximally effective. This paper examines v/h integration of interventions for childhood overweight/obesity prevention and reduction from a Canadian perspective. It describes the implications of v/h integration for childhood overweight and obesity prevention, with examples of interventions where v/h integration has been implemented. An application of a conceptual framework for structuring v/h integration of an overweight/obesity prevention initiative is presented. The paper concludes with a discussion of the implications of vertical/horizontal integration for policy, research, and practice related to childhood overweight and obesity prevention multiple intervention programs. Both v/h integration across sectors and over system levels are needed to fully support multiple intervention programs of the complexity and scope required by obesity issues. V/h integration requires attention to system structures and processes. A conceptual framework is needed to support policy alignment, multi-level evaluation, and ongoing coordination of people at the front lines of practice. Using such tools to achieve integration may enhance sustainability, increase effectiveness of prevention and reduction efforts, decrease stigmatization, and lead to new ways to relate the environment to people and people to the environment for better health for children.

  16. Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding

    NASA Astrophysics Data System (ADS)

    Soleimanipour, Zohre; Baghshahi, Saeid; Shoja-razavi, Reza

    2017-04-01

    In the present study, laser cladding of alumina on the top surface of YSZ thermal barrier coatings (TBC) was conducted via Nd:YAG pulsed laser. The thermal shock behavior of the TBC before and after laser cladding was modified by heating at 1000 °C for 15 min and quenching in cold water. Phase analysis, microstructural evaluation and elemental analysis were performed using x-ray diffractometry, scanning electron microscopy (SEM), and energy-dispersive spectroscopy. The results of thermal shock tests indicated that the failure in the conventional YSZ (not laser clad) and the laser clad coatings happened after 200 and 270 cycles, respectively. The SEM images of the samples showed that delamination and spallation occurred in both coatings as the main mechanism of failure. Formation of TGO was also observed in the fractured cross section of the samples, which is also a main reason for degradation. Thermal shock resistance in the laser clad coatings improved about 35% after cladding. The improvement is due to the presence of continuous network cracks perpendicular to the surface in the clad layer and also the thermal stability and high melting point of alumina in Al2O3/ZrO2 composite.

  17. Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev

    ERIC Educational Resources Information Center

    Park, Hyoung Seo

    2006-01-01

    The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…

  18. Evaluation of the Integrated Services Pilot Program from Western Australia

    ERIC Educational Resources Information Center

    Hancock, Peter; Cooper, Trudi; Bahn, Susanne

    2009-01-01

    Independent evaluation of refugee-focused programs in developed nations is increasingly a mandatory requirement of funding bodies and government agencies. This paper presents an evaluation of the Integrated Services Centre (ISC) Pilot Project that was conducted in Australia in 2007 and early 2008. The purpose of the ISC program was to provide…

  19. 20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm.

    PubMed

    Laroche, M; Cadier, B; Gilles, H; Girard, S; Lablonde, L; Robin, T

    2013-08-15

    We demonstrate a double-clad fiber laser operating at 910 nm with a record power of 20 W. Laser emission on the three-level scheme is enabled by the combination of a small inner cladding-to-core diameter ratio and a high brightness pump source at 808 nm. A laser conversion efficiency as high as 44% was achieved in CW operating regime by using resonant fiber Bragg reflectors at 910 nm that prevent the lasing at the 1060 nm competing wavelength. Furthermore, in a master oscillator power-amplifier scheme, an amplified power of 14.8 W was achieved at 914 nm in the same fiber.

  20. Chemical vapor deposition of Mo tubes for fuel cladding applications

    DOE PAGES

    Beaux, Miles F.; Vodnik, Douglas R.; Peterson, Reuben J.; ...

    2018-01-31

    In this study, chemical vapor deposition (CVD) techniques have been evaluated for fabrication of free-standing 0.25 mm thick molybdenum tubes with the end goal of nuclear fuel cladding applications. In order to produce tubes with the wall thickness and microstructures desirable for this application, long deposition durations on the order of 50 h with slow deposition rates were employed. A standard CVD method, involving molybdenum pentachloride reduction by hydrogen, as well as a fluidized-bed CVD (FBCVD) method was applied towards these objectives. Characterization of the tubes produced in this manner revealed regions of material with fine grain microstructure and wallmore » thickness suitable for fuel cladding applications, but lacking necessary uniformity across the length of the tubes. Finally, a path forward for the production of freestanding molybdenum tubes that possess the desired properties across their entire length has been identified and can be accomplished by future optimization of the deposition system.« less

  1. Chemical vapor deposition of Mo tubes for fuel cladding applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaux, Miles F.; Vodnik, Douglas R.; Peterson, Reuben J.

    In this study, chemical vapor deposition (CVD) techniques have been evaluated for fabrication of free-standing 0.25 mm thick molybdenum tubes with the end goal of nuclear fuel cladding applications. In order to produce tubes with the wall thickness and microstructures desirable for this application, long deposition durations on the order of 50 h with slow deposition rates were employed. A standard CVD method, involving molybdenum pentachloride reduction by hydrogen, as well as a fluidized-bed CVD (FBCVD) method was applied towards these objectives. Characterization of the tubes produced in this manner revealed regions of material with fine grain microstructure and wallmore » thickness suitable for fuel cladding applications, but lacking necessary uniformity across the length of the tubes. Finally, a path forward for the production of freestanding molybdenum tubes that possess the desired properties across their entire length has been identified and can be accomplished by future optimization of the deposition system.« less

  2. Hydrogen motion in Zircaloy-4 cladding during a LOCA transient

    NASA Astrophysics Data System (ADS)

    Elodie, T.; Jean, D.; Séverine, G.; M-Christine, B.; Michel, C.; Berger, P.; Martine, B.; Antoine, A.

    2016-04-01

    Hydrogen and oxygen are key elements influencing the embrittlement of zirconium-based nuclear fuel cladding during the quench phase following a Loss Of Coolant Accident (LOCA). The understanding of the mechanisms influencing the motion of these two chemical elements in the metal is required to fully describe the material embrittlement. High temperature steam oxidation tests were performed on pre-hydrided Zircaloy-4 samples with hydrogen contents ranging between 11 and 400 wppm prior to LOCA transient. Thanks to the use of both Electron Probe Micro-Analysis (EPMA) and Elastic Recoil Detection Analysis (μ-ERDA), the chemical elements partitioning has been systematically quantified inside the prior-β phase. Image analysis and metallographic examinations were combined to provide an average oxygen profile as well as hydrogen profile within the cladding thickness after LOCA transient. The measured hydrogen profile is far from homogeneous. Experimental distributions are compared to those predicted numerically using calculations derived from a finite difference thermo-diffusion code (DIFFOX) developed at IRSN.

  3. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    PubMed Central

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  4. Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler.

    PubMed

    Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E; Boudoux, Caroline

    2015-04-01

    Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett's esophagus.

  5. Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler

    PubMed Central

    Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E.; Boudoux, Caroline

    2015-01-01

    Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett’s esophagus. PMID:25909013

  6. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  7. Integrating Oncology Massage Into Chemoinfusion Suites: A Program Evaluation

    PubMed Central

    Wagner, Karen E.; Seluzicki, Christina M.; Hugo, Audra; Galindez, Laura K.; Sheaffer, Heather; Fox, Kevin R.

    2017-01-01

    Objective: This article reports on the development, implementation, and evaluation of an integrative clinical oncology massage program for patients undergoing chemotherapy for breast cancer in a large academic medical center. Materials and Methods: We describe the development and implementation of an oncology massage program embedded into chemoinfusion suites. We used deidentified program evaluation data to identify specific reasons individuals refuse massage and to evaluate the immediate impact of massage treatments on patient-reported outcomes using a modified version of the Distress Thermometer delivered via iPad. We analyzed premassage and postmassage data from the Distress Thermometer using paired t test and derived qualitative data from participants who provided written feedback on their massage experiences. Results: Of the 1,090 massages offered, 692 (63%) were accepted. We observed a significant decrease in self-reported anxiety (from 3.9 to 1.7), nausea (from 2.5 to 1.2), pain (from 3.3 to 1.9), and fatigue (from 4.8 to 3.0) premassage and postmassage, respectively (all P < .001). We found that 642 survey participants (93%) were satisfied with their massage, and 649 (94%) would recommend it to another patient undergoing treatment. Spontaneous patient responses overwhelmingly endorsed the massage as relaxing. No adverse events were reported. Among the 398 patients (36%) who declined a massage, top reasons were time concerns and lack of interest. Conclusion: A clinical oncology massage program can be safely and effectively integrated into chemoinfusion units to provide symptom control for patients with breast cancer. This integrative approach overcomes patient-level barriers of cost, time, and travel, and addresses the institutional-level barrier of space. PMID:28045616

  8. Human Research Program Integrated Research Plan. Revision C

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2011-01-01

    Crew health and performance are critical to successful human exploration beyond low Earth orbit. The Human Research Program (HRP) is essential to enabling extended periods of space exploration because it provides knowledge and tools to mitigate risks to human health and performance. Risks include physiological effects from radiation and hypogravity environments, as well as unique challenges in medical support, human factors, and behavioral or psychological factors. The Human Research Program (HRP) delivers human health and performance countermeasures, knowledge, technologies and tools to enable safe, reliable, and productive human space exploration. Without HRP results, NASA will face unknown and unacceptable risks for mission success and post-mission crew health. This Integrated Research Plan (IRP) describes (1) HRP's approach and research activities that are intended to address the needs of human space exploration and serve HRP customers and (2) the method of integration for risk mitigation. The scope of the IRP is limited to the activities that can be conducted with the resources available to the HRP; it does not contain activities that would be performed if additional resources were available. The timescale of human space exploration is envisioned to take many decades. The IRP illustrates the program s research plan through the timescale of early lunar missions of extended duration.

  9. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  10. Integrating Cybersecurity into the Program Management Organization

    DTIC Science & Technology

    2015-05-13

    penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 13 MAY 2015 2...Threat to our National Economy DOD Cybersecurity Gaps Could Be Canary in Federal Acquisition Coal Mine Intangible Assets Create Vulnerabilities...operational approach integrates with current or planned CONOPS, BCP, information architecture, programs or initiatives Development  Approach to

  11. Occupational Component. 36-Level Courses. Program of Studies/Curriculum Guide. Integrated Occupational Program.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    The Integrated Occupational Program (IOP) enables students in Alberta (Canada) who have experienced difficulty in learning to develop essential concepts, skills, and attitudes in the context of one or more occupational clusters. The IOP has four levels: occupational awareness (grades 8-9), career exploration (level 16), occupational orientation…

  12. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders

    NASA Astrophysics Data System (ADS)

    Diao, Yunhua; Zhang, Kemin

    2015-10-01

    In the present work, a TiC/TiB2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB2. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB2 intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens' corrosion property is clearly becoming better than that of the substrate.

  13. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martens, M.; Kuhn, C.; Ziffer, E.

    2016-04-11

    Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulkmore » layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al{sub 0.70}Ga{sub 0.30}N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm{sup 2}.« less

  14. Structure Formation and Properties of Weld Overlay Produced by Laser Cladding under the Influence of Nanoparticles of High-melting Compounds

    NASA Astrophysics Data System (ADS)

    Murzakov, M.; Petrovskiy, V.; Birukov, V.; Dzhumaev, P.; Polski, V.; Markushov, Y.; Bykovskiy, D.

    Researches of flat samples using laser cladding technology were carried out. Nickel-based powders with the addition of nanopowders of tantalum carbide and tungsten carbide with water-based hydroxyethylcellulose as the binder, were used for slip cladding. Powders are fused on under local argon protection. The experiments were carried out to determine minimal base metal penetration depth, microhardness distribution over cross section of substrate and deposited layers, enrichment level of cladding metal with base components depending on power density and deposition rate. Metallographic studies of obtained overlays were conducted using a high-precision analytical equipment.

  15. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng

    2016-09-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significantmore » progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.« less

  16. Fabrication of a Porous Fiber Cladding Material Using Microsphere Templating for Improved Response Time with Fiber Optic Sensor Arrays

    PubMed Central

    Henning, Paul E.; Rigo, M. Veronica; Geissinger, Peter

    2012-01-01

    A highly porous optical-fiber cladding was developed for evanescent-wave fiber sensors, which contains sensor molecules, maintains guiding conditions in the optical fiber, and is suitable for sensing in aqueous environments. To make the cladding material (a poly(ethylene) glycol diacrylate (PEGDA) polymer) highly porous, a microsphere templating strategy was employed. The resulting pore network increases transport of the target analyte to the sensor molecules located in the cladding, which improves the sensor response time. This was demonstrated using fluorescein-based pH sensor molecules, which were covalently attached to the cladding material. Scanning electron microscopy was used to examine the structure of the templated polymer and the large network of interconnected pores. Fluorescence measurements showed a tenfold improvement in the response time for the templated polymer and a reliable pH response over a pH range of five to nine with an estimated accuracy of 0.08 pH units. PMID:22654644

  17. Integration of Surveillance for STDs, HIV, Hepatitis, and TB: A Survey of U.S. STD Control Programs.

    PubMed

    Dowell, Deborah; Gaffga, Nicholas H; Weinstock, Hillard; Peterman, Thomas A

    2009-01-01

    Integration of surveillance for sexually transmitted diseases (STDs), human immunodeficiency virus (HIV), hepatitis, and tuberculosis (TB) may improve disease prevention and control. We determined the extent of surveillance integration in these programs, the benefits of integration, and barriers to increased integration. We e-mailed a survey to the 58 federally funded local and state STD control programs and followed up with phone interviews of nine program representatives. The response rate was 81%. Many had compared infections by population subgroup for STDs and HIV (89%), STDs and hepatitis (53%), or STDs and TB (28%). Most (74%) had examined co-infections with HIV and STDs at the individual level and entered STD and HIV surveillance data into the same database (54%). All respondents thought some integration would be useful. Many (72%) used integrated data to disseminate information or change program strategies. The most commonly reported barriers to integration were policies preventing work with HIV data (85%) and incompatible databases (59%). Most STD control programs in the United States have some experience integrating surveillance data, but the degree of integration varies widely. Specific barriers to further integration were identified. The Centers for Disease Control and Prevention can help address these barriers by facilitating access to information and sharing technical solutions. Local and state programs can continue advancing surveillance integration by improving understanding of where integrated data are needed, increasing the use of available data, and pressing for appropriate and secure data sharing.

  18. Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering.

    PubMed

    Zhang, Qian; Yang, Dong; Qi, Jia; Cheng, Ya; Gong, Qihuang; Li, Yan

    2017-06-12

    We report single scan transverse writing of depressed cladding waveguides inside ZBLAN glass with the longitudinally oriented annular ring-shaped focal intensity distribution of the femtosecond laser. The entire region of depressed cladding at the cross section, where a negative change of refraction index is induced, can be modified simultaneously with the ring-shaped focal intensity profile. The fabricated waveguides exhibit good single guided mode.

  19. Combined optical coherence tomography and hyper-spectral imaging using a double clad fiber coupler

    NASA Astrophysics Data System (ADS)

    Guay-Lord, Robin; Lurie, Kristen L.; Attendu, Xavier; Mageau, Lucas; Godbout, Nicolas; Ellerbee Bowden, Audrey K.; Strupler, Mathias; Boudoux, Caroline

    2016-03-01

    This proceedings shows the combination of Optical Coherence Tomography (OCT) and Hyper-Spectral Imaging (HSI) using a double-clad optical fiber. The single mode core of the fiber is used to transmit OCT signals, while the cladding, with its large collection area, provides an efficient way to capture the reflectance spectrum of the sample. The combination of both methods enables three-dimensional acquisition of sample morphology with OCT, enhanced by the molecular information contained in its hyper-spectral image. We believe that the combination of these techniques could result in endoscopes with enhanced tissue identification capability.

  20. A Call for an Integrated Program of Assessment

    PubMed Central

    Regehr, Glenn

    2017-01-01

    An integrated curriculum that does not incorporate equally integrated assessment strategies is likely to prove ineffective in achieving the desired educational outcomes. We suggest it is time for colleges and schools of pharmacy to re-engineer their approach to assessment. To build the case, we first discuss the challenges leading to the need for curricular developments in pharmacy education. We then turn to the literature that informs how assessment can influence learning, introduce an approach to learning assessment that is being used by several medical education programs, and provide some examples of this approach in operation. Finally, we identify some of the challenges faced in adopting such an integrated approach to assessment and suggest that this is an area ripe with research opportunities for pharmacy educators. PMID:28630518

  1. Comments on ""Contact Diffusion Interaction of Materials with Cladding''

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1972-01-01

    A Russian paper by A. A. Babad-Zakhryapina contributes much to the understanding of fuel, clad interactions, and thus to nuclear thermionic technology. In that publication the basic diffusion expression is a simple one. A more general but complicated equation for this mass transport results from the present work. With appropriate assumptions, however, the new relation reduces to Babad-Zakhryapina's version.

  2. Role of innovative institutional structures in integrated governance. A case study of integrating health and nutrition programs in Chhattisgarh, India.

    PubMed

    Kalita, Anuska; Mondal, Shinjini

    2012-01-01

    The aim of this paper is to highlight the significance of integrated governance in bringing about community participation, improved service delivery, accountability of public systems and human resource rationalisation. It discusses the strategies of innovative institutional structures in translating such integration in the areas of public health and nutrition for poor communities. The paper draws on experience of initiating integrated governance through innovations in health and nutrition programming in the resource-poor state of Chhattisgarh, India, at different levels of governance structures--hamlets, villages, clusters, blocks, districts and at the state. The study uses mixed methods--i.e. document analysis, interviews, discussions and quantitative data from facilities surveys--to present a case study analyzing the process and outcome of integration. The data indicate that integrated governance initiatives improved convergence between health and nutrition departments of the state at all levels. Also, innovative structures are important to implement the idea of integration, especially in contexts that do not have historical experience of such partnerships. Integration also contributed towards improved participation of communities in self-governance, community monitoring of government programs, and therefore, better services. As governments across the world, especially in developing countries, struggle towards achieving better governance, integration can serve as a desirable process to address this. Integration can affect the decentralisation of power, inclusion, efficiency, accountability and improved service quality in government programs. The institutional structures detailed in this paper can provide models for replication in other similar contexts for translating and sustaining the idea of integrated governance. This paper is one of the few to investigate innovative public institutions of a and community mobilisation to explore this important, and under

  3. An adolescent weight-loss program integrating family variables reduces energy intake.

    PubMed

    Kitzman-Ulrich, Heather; Hampson, Robert; Wilson, Dawn K; Presnell, Katherine; Brown, Alan; O'Boyle, Mary

    2009-03-01

    Family variables such as cohesion and nurturance have been associated with adolescent weight-related health behaviors. Integrating family variables that improve family functioning into traditional weight-loss programs can provide health-related benefits. The current study evaluated a family-based psychoeducational and behavioral skill-building weight-loss program for adolescent girls that integrated Family Systems and Social Cognitive Theories. Forty-two overweight (> or = 95th percentile) female adolescent participants and parents participated in a 16-week randomized controlled trial comparing three groups: multifamily therapy plus psychoeducation (n=15), psychoeducation-only (n=16), or wait list (control; n=11) group. Body mass index, energy intake, and family measures were assessed at baseline and posttreatment. Adolescents in the psychoeducation-only group demonstrated a greater decrease in energy intake compared to the multifamily therapy plus psychoeducation and control groups (P<0.01). Positive changes in family nurturance were associated with lower levels of adolescent energy intake (P<0.05). No significant effects were found for body mass index. Results provide preliminary support for a psychoeducational program that integrates family variables to reduce energy intake in overweight adolescent girls. Results indicate that nurturance can be an important family variable to target in future adolescent weight-loss and dietary programs.

  4. High temperature integrated ultrasonic shear and longitudinal wave probes

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Jen, C.-K.; Kobayashi, M.

    2007-02-01

    Integrated ultrasonic shear wave probes have been designed and developed using a mode conversion theory for nondestructive testing and characterization at elevated temperatures. The probes consisted of metallic substrates and high temperature piezoelectric thick (>40μm) films through a paint-on method. Shear waves are generated due to mode conversion from longitudinal to shear waves because of reflection inside the substrate having a specific shape. A novel design scheme is proposed to reduce the machining time of substrates and thick film fabrication difficulty. A probe simultaneously generating and receiving both longitudinal and shear waves is also developed and demonstrated. In addition, a shear wave probe using a clad buffer rod consisting of an aluminum core and stainless steel cladding has been developed. All the probes were tested and successfully operated at 150°C.

  5. Parametric Evaluation of SiC/SiC Composite Cladding with UO2 Fuel for LWR Applications: Fuel Rod Interactions and Impact of Nonuniform Power Profile in Fuel Rod

    NASA Astrophysics Data System (ADS)

    Singh, G.; Sweet, R.; Brown, N. R.; Wirth, B. D.; Katoh, Y.; Terrani, K.

    2018-02-01

    SiC/SiC composites are candidates for accident tolerant fuel cladding in light water reactors. In the extreme nuclear reactor environment, SiC-based fuel cladding will be exposed to neutron damage, significant heat flux, and a corrosive environment. To ensure reliable and safe operation of accident tolerant fuel cladding concepts such as SiC-based materials, it is important to assess thermo-mechanical performance under in-reactor conditions including irradiation and realistic temperature distributions. The effect of non-uniform dimensional changes caused by neutron irradiation with spatially varying temperatures, along with the closing of the fuel-cladding gap, on the stress development in the cladding over the course of irradiation were evaluated. The effect of non-uniform circumferential power profile in the fuel rod on the mechanical performance of the cladding is also evaluated. These analyses have been performed using the BISON fuel performance modeling code and the commercial finite element analysis code Abaqus. A constitutive model is constructed and solved numerically to predict the stress distribution in the cladding under normal operating conditions. The dependence of dimensions and thermophysical properties on irradiation dose and temperature has been incorporated into the models. Initial scoping results from parametric analyses provide time varying stress distributions in the cladding as well as the interaction of fuel rod with the cladding under different conditions of initial fuel rod-cladding gap and linear heat rate. It is found that a non-uniform circumferential power profile in the fuel rod may cause significant lateral bowing in the cladding, and motivates further analysis and evaluation.

  6. Novel Accident-Tolerant Fuel Meat and Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert D. Mariani; Pavel G Medvedev; Douglas L Porter

    A novel accident-tolerant fuel meat and cladding are here proposed. The fuel meat design incorporates annular fuel with inserts and discs that are fabricated from a material having high thermal conductivity, for example niobium. The inserts are rods or tubes. Discs separate the fuel pellets. Using the BISON fuel performance code it was found that the peak fuel temperature can be lowered by more than 600 degrees C for one set of conditions with niobium metal as the thermal conductor. In addition to improved safety margin, several advantages are expected from the lower temperature such as decreased fission gas releasemore » and fuel cracking. Advantages and disadvantages are discussed. An enrichment of only 7.5% fully compensates the lost reactivity of the displaced UO2. Slightly higher enrichments, such as 9%, allow uprates and increased burnups to offset the initial costs for retooling. The design has applications for fast reactors and transuranic burning, which may accelerate its development. A zirconium silicide coating is also described for accident tolerant applications. A self-limiting degradation behavior for this coating is expected to produce a glassy, self-healing layer that becomes more protective at elevated temperature, with some similarities to MoSi2 and other silicides. Both the fuel and coating may benefit from the existing technology infrastructure and the associated wide expertise for a more rapid development in comparison to other, more novel fuels and cladding.« less

  7. DITTY - a computer program for calculating population dose integrated over ten thousand years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.

    The computer program DITTY (Dose Integrated Over Ten Thousand Years) was developed to determine the collective dose from long term nuclear waste disposal sites resulting from the ground-water pathways. DITTY estimates the time integral of collective dose over a ten-thousand-year period for time-variant radionuclide releases to surface waters, wells, or the atmosphere. This document includes the following information on DITTY: a description of the mathematical models, program designs, data file requirements, input preparation, output interpretations, sample problems, and program-generated diagnostic messages.

  8. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiationmore » tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO 2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO 2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys, hence promoting

  9. Program test objectives milestone 3. [Integrated Propulsion Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.

    1994-01-01

    The following conclusions have been developed relative to propulsion system technology adequacy for efficient development and operation of recoverable and expendable launch vehicles (RLV and ELV) and the benefits which the integrated propulsion technology demonstrator will provide for enhancing technology: (1) Technology improvements relative to propulsion system design and operation can reduce program cost. Many features or improvement needs to enhance operability, reduce cost, and improve payload are identified. (2) The Integrated Propulsion Technology Demonstrator (IPTD) Program provides a means of resolving the majority of issues associated with improvement needs. (3) The IPTD will evaluate complex integration of vehicle and facility functions in fluid management and propulsion control systems, and provides an environment for validating improved mechanical and electrical components. (4) The IPTD provides a mechanism for investigating operational issues focusing on reducing manpower and time to perform various functions at the launch site. These efforts include model development, collection of data to validate subject models, and ultimate development of complex time line models. (5) The IPTD provides an engine test bed for tri/bi-propellant engine development firings which is representative of the actual vehicle environment. (6) The IPTD provides for only a limited multiengine configuration integration environment for RLV. Multiengine efforts may be simulated for a number of subsystems and a number of subsystems are relatively independent of the multiengine influences.

  10. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner

    NASA Astrophysics Data System (ADS)

    Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Li, Jiawen; Zhang, Jun; Sun, Changsen; Narula, Jagat; Chen, Zhongping

    2012-07-01

    We developed a multimodality fluorescence and optical coherence tomography probe based on a double-clad fiber (DCF) combiner. The probe is composed of a DCF combiner, grin lens, and micromotor in the distal end. An integrated swept-source optical coherence tomography and fluorescence intensity imaging system was developed based on the combined probe for the early diagnoses of atherosclerosis. This system is capable of real-time data acquisition and processing as well as image display. For fluorescence imaging, the inflammation of atherosclerosis and necrotic core formed with the annexin V-conjugated Cy5.5 were imaged. Ex vivo imaging of New Zealand white rabbit arteries demonstrated the capability of the combined system.

  11. The Effect of Dilution on Microsegregation in AWS ER NiCrMo-14 Alloy Welding Claddings

    NASA Astrophysics Data System (ADS)

    Miná, Émerson Mendonça; da Silva, Yuri Cruz; Dille, Jean; Silva, Cleiton Carvalho

    2016-12-01

    Dilution and microsegregation are phenomena inherent to claddings, which, in turn, directly affect their main properties. This study evaluated microsegregation in the fusion zone with different dilution levels. The overlays were welded by the TIG cold wire feed process. Dilution was calculated from the geometric characteristics of the claddings and from the conservation of mass equation using chemical composition measurements. Microsegregation was calculated using energy dispersive X-ray spectroscopy measurements of the dendrites and the chemical composition of the fusion zone. The dilution of the claddings was increased by reducing the wire feed rate. Fe showed potential to be incorporated into the solid phase ( k > 1), and this increased with the increase of dilution. Mo, in turn, was segregated into the liquid phase ( k < 1) and also increased with the increase of dilution. However, Cr and W showed a slight decrease in their partition coefficients ( k) with the increase of dilution.

  12. LSPR and Interferometric Sensor Modalities Combined Using a Double-Clad Optical Fiber.

    PubMed

    Muri, Harald Ian; Bano, Andon; Hjelme, Dag Roar

    2018-01-11

    We report on characterization of an optical fiber-based multi-parameter sensor concept combining localized surface plasmon resonance (LSPR) signal and interferometric sensing using a double-clad optical fiber. The sensor consists of a micro-Fabry-Perot in the form of a hemispherical stimuli-responsive hydrogel with immobilized gold nanorods on the facet of a cleaved double-clad optical fiber. The swelling degree of the hydrogel is measured interferometrically using the single-mode inner core, while the LSPR signal is measured using the multi-mode inner cladding. The quality of the interferometric signal is comparable to previous work on hydrogel micro-Fabry-Perot sensors despite having gold nanorods immobilized in the hydrogel. We characterize the effect of hydrogel swelling and variation of bulk solution refractive index on the LSPR peak wavelength. The results show that pH-induced hydrogel swelling causes only weak redshifts of the longitudinal LSPR mode, while increased bulk refractive index using glycerol and sucrose causes large blueshifts. The redshifts are likely due to reduced plasmon coupling of the side-by-side configuration as the interparticle distance increases with increasing swelling. The blueshifts with increasing bulk refractive index are likely due to alteration of the surface electronic structure of the gold nanorods donated by the anionic polymer network and glycerol or sucrose solutions. The recombination of biotin-streptavidin on gold nanorods in hydrogel showed a 7.6 nm redshift of the longitudinal LSPR. The LSPR response of biotin-streptavidin recombination is due to the change in local refractive index (RI), which is possible to discriminate from the LSPR response due to changes in bulk RI. In spite of the large LSPR shifts due to bulk refractive index, we show, using biotin-functionalized gold nanorods binding to streptavidin, that LSPR signal from gold nanorods embedded in the anionic hydrogel can be used for label-free biosensing. These

  13. An Integrative Review of Pain Resource Nurse Programs.

    PubMed

    Crawford, Cecelia L; Boller, Jan; Jadalla, Ahlam; Cuenca, Emma

    2016-01-01

    Mismanaged pain challenges health care systems. In the early 1990s, pain resource nurse programs were developed by Ferrell and colleagues. Variations of the model have existed for more than 20 years. While results of these programs have been disseminated, conclusive evidence has not been examined via a synthesis of the literature. A structured systematic search using multiple databases was conducted for research studies published 2005-2012. The search identified 11 studies on effective use of a pain resource nurse and/or a pain resource nurse program. The results revealed wide variations existing in program design, research methodology, practice settings, and reported outcomes. Overall, the strength of the evidence on pain resource nurse programs was determined to range from low to moderate quality for making generalizable conclusions. However, 4 key elements were identified as integral to effective pain resource nurse programs and useful for the program design and development: leadership commitment and active involvement in embedding a culture of effective pain management throughout the organization; addressing staff-related and organization-related challenges and barriers to pain management; a combination of strategies to overcome these barriers; and collaborative multidisciplinary teamwork and communication. Specific recommendations are provided for program implementation. Although the evidence was inconclusive, useful information exists to create the design of effective pain resource nurse programs. Collaborative multisite studies on the long-term effects of pain resource nurse programs are recommended.

  14. Let's get technical: Enhancing program evaluation through the use and integration of internet and mobile technologies.

    PubMed

    Materia, Frank T; Miller, Elizabeth A; Runion, Megan C; Chesnut, Ryan P; Irvin, Jamie B; Richardson, Cameron B; Perkins, Daniel F

    2016-06-01

    Program evaluation has become increasingly important, and information on program performance often drives funding decisions. Technology use and integration can help ease the burdens associated with program evaluation by reducing the resources needed (e.g., time, money, staff) and increasing evaluation efficiency. This paper reviews how program evaluators, across disciplines, can apply internet and mobile technologies to key aspects of program evaluation, which consist of participant registration, participant tracking and retention, process evaluation (e.g., fidelity, assignment completion), and outcome evaluation (e.g., behavior change, knowledge gain). In addition, the paper focuses on the ease of use, relative cost, and fit with populations. An examination on how these tools can be integrated to enhance data collection and program evaluation is discussed. Important limitations of and considerations for technology integration, including the level of technical skill, cost needed to integrate various technologies, data management strategies, and ethical considerations, are highlighted. Lastly, a case study of technology use in an evaluation conducted by the Clearinghouse for Military Family Readiness at Penn State is presented and illustrates how technology integration can enhance program evaluation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 30 CFR 250.1916 - What criteria for mechanical integrity must my SEMS program meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What criteria for mechanical integrity must my SEMS program meet? 250.1916 Section 250.1916 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... mechanical integrity must my SEMS program meet? You must develop and implement written procedures that...

  16. Factors Influencing Learning Environments in an Integrated Experiential Program

    NASA Astrophysics Data System (ADS)

    Koci, Peter

    The research conducted for this dissertation examined the learning environment of a specific high school program that delivered the explicit curriculum through an integrated experiential manner, which utilized field and outdoor experiences. The program ran over one semester (five months) and it integrated the grade 10 British Columbian curriculum in five subjects. A mixed methods approach was employed to identify the students' perceptions and provide richer descriptions of their experiences related to their unique learning environment. Quantitative instruments were used to assess changes in students' perspectives of their learning environment, as well as other supporting factors including students' mindfulness, and behaviours towards the environment. Qualitative data collection included observations, open-ended questions, and impromptu interviews with the teacher. The qualitative data describe the factors and processes that influenced the learning environment and give a richer, deeper interpretation which complements the quantitative findings. The research results showed positive scores on all the quantitative measures conducted, and the qualitative data provided further insight into descriptions of learning environment constructs that the students perceived as most important. A major finding was that the group cohesion measure was perceived by students as the most important attribute of their preferred learning environment. A flow chart was developed to help the researcher conceptualize how the learning environment, learning process, and outcomes relate to one another in the studied program. This research attempts to explain through the consideration of this case study: how learning environments can influence behavioural change and how an interconnectedness among several factors in the learning process is influenced by the type of learning environment facilitated. Considerably more research is needed in this area to understand fully the complexity learning

  17. Development of Integrated Programs for Aerospace-Vehicle Design (IPAD)

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Calvery, A. L.; Davis, D. A.; Dickmann, L.; Folger, D. H.; Jochem, E. N.; Kitto, C. M.; Vonlimbach, G.

    1977-01-01

    Integrated Programs for Aerospace Vehicle Design (IPAD) system design requirements are given. The information is based on the IPAD User Requirements Document (D6-IPAD-70013-D) and the Integrated Information Processing Requirements Document (D6-IPAD-70012-D). General information about IPAD and a list of the system design requirements that are to be satisfied by the IPAD system are given. The system design requirements definition is to be considered as a baseline definition of the IPAD system design requirements.

  18. An evaluation of programmed treatment-integrity errors during discrete-trial instruction.

    PubMed

    Carroll, Regina A; Kodak, Tiffany; Fisher, Wayne W

    2013-01-01

    This study evaluated the effects of programmed treatment-integrity errors on skill acquisition for children with an autism spectrum disorder (ASD) during discrete-trial instruction (DTI). In Study 1, we identified common treatment-integrity errors that occur during academic instruction in schools. In Study 2, we simultaneously manipulated 3 integrity errors during DTI. In Study 3, we evaluated the effects of each of the 3 integrity errors separately on skill acquisition during DTI. Results showed that participants either demonstrated slower skill acquisition or did not acquire the target skills when instruction included treatment-integrity errors. © Society for the Experimental Analysis of Behavior.

  19. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    DOE PAGES

    Carmack, W. Jon; Chichester, Heather M.; Porter, Douglas L.; ...

    2016-02-27

    The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important potential comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The irradiations were the beginning tests to qualify U-10wt%Zr as a driver fuel for FFTF. The FFTF core, with a 91.4 cm tall fuel column and a chopped cosine neutron flux profile, operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This then places the peakmore » fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in previous EBR-II experiments that had a 32-cm height core. The MFF-3 and MFF-5 qualification assemblies operated in FFTF to >10 at% burnup, and performed very well with no cladding breaches. The MFF-3 assembly operated to 13.8 at% burnup with a peak inner cladding temperature of 643°C, and the MFF-5 assembly operated to 10.1 at% burnup with a peak inner cladding temperature of 651°C. Because of the very high operating temperatures for both the fuel and the cladding, data from the MFF assemblies are most comparable to the data obtained from the EBR-II X447 experiment, which experienced two pin breaches. The X447 breaches were strongly influenced by a large amount of fuel/cladding chemical interaction (FCCI). The MFF pins benefitted from different axial locations of high burnup and peak cladding temperature, which helped to reduce interdiffusion between rare earth fission products and stainless steel cladding. Post-irradiation examination evidence illustrates this advantage. After comparing other performance data of the long MFF pins to prior EBR-II test data, the MFF fuel inside the cladding grew less axially, and the gas release data did not reveal a definitive difference.« less

  20. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Chichester, H. M.; Porter, D. L.

    2016-05-01

    Abstract The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important potential comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The irradiations were the beginning tests to qualify U-10wt%Zr as a driver fuel for FFTF. The FFTF core, with a 91.4 cm tall fuel column and a chopped cosine neutron flux profile, operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peakmore » fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in previous EBR-II experiments that had a 32-cm height core. The MFF-3 and MFF-5 qualification assemblies operated in FFTF to >10 at% burnup, and performed very well with no cladding breaches. The MFF-3 assembly operated to 13.8 at% burnup with a peak inner cladding temperature of 643°C, and the MFF-5 assembly operated to 10.1 at% burnup with a peak inner cladding temperature of 651°C. Because of the very high operating temperatures for both the fuel and the cladding, data from the MFF assemblies are most comparable to the data obtained from the EBR-II X447 experiment, which experienced two pin breaches. The X447 breaches were strongly influenced by a large amount of fuel/cladding chemical interaction (FCCI). The MFF pins benefitted from different axial locations of high burnup and peak cladding temperature, which helped to reduce interdiffusion between rare earth fission products and stainless steel cladding. Post-irradiation examination evidence illustrates this advantage. Comparing other performance data of the long MFF pins to prior EBR-II test data, the MFF fuel inside the cladding grew less axially, and the gas release data did not reveal a definitive difference.« less