The honey insertion cladding to improve the sensitivity of temperature polymer optical fiber sensor
NASA Astrophysics Data System (ADS)
Arwani, M.; Kuswanto, H.
2018-04-01
The sensitivity of temperature polymer optical fiber (POF) sensor has been studied. Part of cladding (9 cm) was substituted with honey. Polymer cladding was stripped mechanically and the honey inserted into the tube. Plastic gel closed the two end sides of the tubes. The optical power output was detected by Optical Power Meter (OPM). Honey cladding and temperature changing effect to the internal reflection and optical fiber output intensity. Highest output intensity changing at 20°C was shown by optical fiber coated by longan honey as cladding. The range of 10-50° C, as the rise of surroundings temperature, the attenuation was getting smaller. Best sensitivity was fiber with sensing part coated by Longan honey. Best linearity was sensing fiber with sensing part coated by Pracimantoro honey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sickafus, Kurt E.; Wirth, Brian; Miller, Larry
The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectivesmore » of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as the possibilities for enhanced fuel/clad system performance and longevity.« less
NASA Astrophysics Data System (ADS)
Ma, Mingxing; Liu, Wenjin; Zhong, Minlin; Zhang, Hongjun; Zhang, Weiming
2005-01-01
In the research hotspot of particle reinforced metal-matrix composite layer produced by laser cladding, in-situ reinforced particles obtained by adding strong-carbide-formation elements into cladding power have been attracting more attention for their unique advantage. The research has demonstrated that when adding strong-carbide-formation elements-Ti into the cladding powder of the Fe-C-Si-B separately, by optimizing the composition, better cladding coating with the characters of better strength and toughness, higher wear resistance and free of cracks. When the microstructure of cladding coating is hypoeutectic microstructure, its comprehensive performance is best. The research discovered that, compositely adding the strong-carbide-formation elements like Ti+V, Ti+Zr or V+Zr into the cladding coating is able to improve its comprehensive capability. All the cladding coatings obtained are hypoeutectic microstructure. The cladding coatings have a great deal of particulates, and its average microhardness reaches HV0.2700-1400. The research also discovered that the cladding coating obtained is of less cracking after adding the Ti+Zr.
Finite Element Analysis of Laser Engineered Net Shape (LENS™) Tungsten Clad Squeeze Pins
NASA Astrophysics Data System (ADS)
Sakhuja, Amit; Brevick, Jerald R.
2004-06-01
In the aluminum high-pressure die-casting and indirect squeeze casting processes, local "squeeze" pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ("soldering"). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS™ process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding.
High temperature gradient cobalt based clad developed using microwave hybrid heating
NASA Astrophysics Data System (ADS)
Prasad, C. Durga; Joladarashi, Sharnappa; Ramesh, M. R.; Sarkar, Anunoy
2018-04-01
The development of cobalt based cladding on a titanium substrate using microwave cladding technique is benchmark in coating area. The developed cladding would serve the function of a corrosion resistant coating under high temperatures. Clads of thickness 500 µm have been developed by microwave hybrid heating. A microwave furnace of 2.45GHz frequency was used at a 900W power level for processing. Impact of processing time on melting and adhesion of clad has been discussed. The study also extended to static thermal analysis of simple parts with cladding using commercial Finite Element analysis (FEA) software. A comparative study is explored between four variants of the clad being developed. The analysis has been conducted using a square sample. Similar temperature gradient is also shown for a proposed multi-layer coating, which includes a thermal barrier coating yttria stabilized zirconia (YSZ) on top of the corrosion resistant clad. The YSZ coating would protect the corrosion resistant cladding and substrate from high temperatures.
Pang, Xuming; Wei, Qian; Zhou, Jianxin; Ma, Huiyang
2018-06-19
In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.
Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating
Yan, Xiao-Ling; Dong, Shi-Yun; Xu, Bin-Shi; Cao, Yong
2018-01-01
Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating. PMID:29438309
Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating.
Yan, Xiao-Ling; Dong, Shi-Yun; Xu, Bin-Shi; Cao, Yong
2018-02-13
Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating.
NASA Astrophysics Data System (ADS)
Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao
2016-09-01
To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yong; Phillpot, Simon
Fuel cladding chemical interactions (FCCI) have been acknowledged as a critical issue in a metallic fuel/steel cladding system due to the formation of low melting intermetallic eutectic compounds between the fuel and cladding steel, resulting in reduction in cladding wall thickness as well as a formation of eutectic compounds that can initiate melting in the fuel at lower temperature. In order to mitigate FCCI, diffusion barrier coatings on the cladding inner surface have been considered. In order to generate the required coating techniques, pack cementation, electroplating, and electrophoretic deposition have been investigated. However, these methods require a high processing temperaturemore » of above 700 oC, resulting in decarburization and decomposition of the martensites in a ferritic/martensitic (F/M) cladding steel. Alternatively, organometallic chemical vapor deposition (OMCVD) can be a promising process due to its low processing temperature of below 600 oC. The aim of the project is to conduct applied and fundamental research towards the development of diffusion barrier coatings on the inner surface of F/M fuel cladding tubes. Advanced cladding steels such as T91, HT9 and NF616 have been developed and extensively studied as advanced cladding materials due to their excellent irradiation and corrosion resistance. However, the FCCI accelerated by the elevated temperature and high neutron exposure anticipated in fast reactors, can have severe detrimental effects on the cladding steels through the diffusion of Fe into fuel and lanthanides towards into the claddings. To test the functionality of developed coating layer, the diffusion couple experiments were focused on using T91 as cladding and Ce as a surrogate lanthanum fission product. By using the customized OMCVD coating equipment, thin and compact layers with a few micron between 1.5 µm and 8 µm thick and average grain size of 200 nm and 5 µm were successfully obtained at the specimen coated between 300oC and 500 oC, respectively. The coating layer contains both carbon and vanadium elements as quantified by WED, and the phases mainly consist of a mixture of V2C and VC, which was confirmed using X-ray diffraction patterns. In addition, the ratio between V and C varies with processing temperature, and it was observed that a higher temperature promotes the carbon adsorption and increases thickness of the coating. With optimized deposition conditions, we can apply the coating technique toward the actual T91 cladding materials, and provide the possibilities for the real application in sodium-cooled fast reactors (SFRs). Diffusion couple experiments were performed at both 550 oC and 690 oC, which corresponds to normal and aggressive operating temperatures, respectively. The results show that vanadium carbide coating with wider thickness (8 µm) and lower carbon concentration (27 at.%) reduced the width of the inter diffusion region, indicating that vanadium carbide coating can mitigate FCCI effectively. In specific, inter-diffusion between Fe and Ce was prohibited over most area, but Ce diffusion occurred toward the coating and the Fe substrate through thinner coating layer, which needs further optimization in terms of uniform coating thickness. Overall, it is concluded that this coating process can be successfully applied onto the inner surface of HT9 cladding tubes and the FCCI can be effectively mitigated if not totally eliminated.« less
Microstructure and Antiwear Property of Laser Cladding Ni-Co Duplex Coating on Copper.
Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui
2016-07-28
Ni-Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al₂O₃/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni-Co duplex coatings comprised a Co-based solid solution, Cr₇C₃, (Fe,Ni) 23 C₆, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni-Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni-Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties.
Microstructure and Antiwear Property of Laser Cladding Ni–Co Duplex Coating on Copper
Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui
2016-01-01
Ni–Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al2O3/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni–Co duplex coatings comprised a Co-based solid solution, Cr7C3, (Fe,Ni)23C6, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni–Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni–Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties. PMID:28773755
Investigation of cladding and coating stripping methods for specialty optical fibers
NASA Astrophysics Data System (ADS)
Lee, Jung-Ryul; Dhital, Dipesh; Yoon, Dong-Jin
2011-03-01
Fiber optic sensing technology is used extensively in several engineering fields, including smart structures, health and usage monitoring, non-destructive testing, minimum invasive sensing, safety monitoring, and other advanced measurement fields. A general optical fiber consists of a core, cladding, and coating layers. Many sensing principles require that the cladding or coating layer should be removed or modified. In addition, since different sensing systems are needed for different types of optical fibers, it is very important to find and sort out the suitable cladding or coating removal method for a particular fiber. This study focuses on finding the cladding and coating stripping methods for four recent specialty optical fibers, namely: hard polymer-clad fiber, graded-index plastic optical fiber, copper/carbon-coated optical fiber, and aluminum-coated optical fiber. Several methods, including novel laser stripping and conventional chemical and mechanical stripping, were tried to determine the most suitable and efficient technique. Microscopic investigation of the fiber surfaces was used to visually evaluate the mechanical reliability. Optical time domain reflectometric signals of the successful removal cases were investigated to further examine the optical reliability. Based on our results, we describe and summarize the successful and unsuccessful methods.
NASA Astrophysics Data System (ADS)
Soleimanipour, Zohre; Baghshahi, Saeid; Shoja-razavi, Reza
2017-04-01
In the present study, laser cladding of alumina on the top surface of YSZ thermal barrier coatings (TBC) was conducted via Nd:YAG pulsed laser. The thermal shock behavior of the TBC before and after laser cladding was modified by heating at 1000 °C for 15 min and quenching in cold water. Phase analysis, microstructural evaluation and elemental analysis were performed using x-ray diffractometry, scanning electron microscopy (SEM), and energy-dispersive spectroscopy. The results of thermal shock tests indicated that the failure in the conventional YSZ (not laser clad) and the laser clad coatings happened after 200 and 270 cycles, respectively. The SEM images of the samples showed that delamination and spallation occurred in both coatings as the main mechanism of failure. Formation of TGO was also observed in the fractured cross section of the samples, which is also a main reason for degradation. Thermal shock resistance in the laser clad coatings improved about 35% after cladding. The improvement is due to the presence of continuous network cracks perpendicular to the surface in the clad layer and also the thermal stability and high melting point of alumina in Al2O3/ZrO2 composite.
The effect of laser process parameters on microstructure and dilution rate of cladding coatings
NASA Astrophysics Data System (ADS)
Bin, Liu; Heping, Liu; Xingbin, Jing; Yuxin, Li; Peikang, Bai
2018-02-01
In order to broaden the range of application of Q235 steel, it is necessary to repair the surface of steel. High performance 316L stainless steel coating was successfully obtained on Q235 steel by laser cladding technology. The effect of laser cladding parameters on the geometrical size and appearance of single cladding layer was investigated. The experimental results show that laser current has an important influence on the surface morphology of single channel cladding. When the current is from 155A to 165A, the cladding coating becomes smooth. The laser current has an effect on the geometric cross section size and dilution rate of single cladding. The results revealed that with the rising of laser current, the width, height and depth of layer increase gradually. With the rising of laser current, the dilution rate of cladding layer is gradually increasing.
a Study on Microstructure Characteristics of IN SITU Formed TiC Reinforced Composite Coatings
NASA Astrophysics Data System (ADS)
Liu, Peng; Guo, Wei; Luo, Hui
2012-04-01
In situ synthesized TiC reinforced composite coating was fabricated by laser cladding of Al-Ni-Cr-C powders on titanium alloys, which can greatly improve the surface performance of the substrate. In this study, the Al-Ni-Cr-C laser-cladded composite coatings have been researched by means of X-ray diffraction, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). There was a metallurgical combination between the Al-Ni-Cr-C laser-cladded coating and the Ti-6Al-4V substrate, and the micro-hardness of the Al-Ni-Cr-C laser-cladded coating was in the range of 1200-1450 HV0.2, which was 3-4 times higher than that of Ti-6Al-4V substrate. Furthermore, the reinforcement of theAl-Ni-Cr-C laser-cladded coating were mainly contributed to the action of the TiC, Ti3Al, Cr7C3, Al8Cr5 phases and the solution strengthening.
The Effect of Rare Earth on the Structure and Performance of Laser Clad Coatings
NASA Astrophysics Data System (ADS)
Bao, Ruiliang; Yu, Huijun; Chen, Chuanzhong; Dong, Qing
Laser cladding is one kind of advanced surface modification technology and has the abroad prospect in making the wear-resistant coating on metal substrates. However, the application of laser cladding technology does not achieve the people's expectation in the practical production because of many defects such as cracks, pores and so on. The addiction of rare earth can effectively reduce the number of cracks in the clad coating and enhance the coating wear-resistance. In the paper, the effects of rare earth on metallurgical quality, microstructure, phase structure and wear-resistance are analyzed in turns. The preliminary discussion is also carried out on the effect mechanism of rare earth. At last, the development tendency of rare earth in the laser cladding has been briefly elaborated.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... June 20, 2012 (77 FR 36980), and one for the fluoropolymer shot coatings on July 6, 2012 (77 FR 39983... Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot Coatings as... approve copper-clad iron shot and fluoropolymer coatings for hunting waterfowl and coots. We published a...
NASA Astrophysics Data System (ADS)
Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo
2018-02-01
An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.
Laser Cladding of TiAl Intermetallic Alloy on Ti6Al4V -Process Optimization and Properties
NASA Astrophysics Data System (ADS)
Cárcel, B.; Serrano, A.; Zambrano, J.; Amigó, V.; Cárcel, A. C.
In order to improve Ti6Al4V high-temperature resistance and its tribological properties, the deposition of TiAl intermetallic (Ti-48Al-2Cr-2Nb) coating on a Ti6Al4V substrate by coaxial laser cladding has been investigated. Laser cladding by powder injection is an emerging laser material processing technique that allows the deposition of thick protective coatings on substrates,using a high power laser beam as heat source. Laser cladding is a multiple-parameter-dependent process. The main process parameters involved (laser power, powder feeding rate, scanning speed and preheating temperature) has been optimized. The microstructure and geometrical quantities (clad area and dilution) of the coating was characterized by optical microscopy and scanning electron microscopy (SEM). In addition the cooling rate of the clad during the process was measured by a dual-color pyrometer. This result has been related to defectology and mechanical coating properties.
NASA Astrophysics Data System (ADS)
Farahmand, Parisa
In oil and gas industry, soil particles, crude oil, natural gas, particle-laden liquids, and seawater can carry various highly aggressive elements, which accelerate the material degradation of component surfaces by combination of slurry erosion, corrosion, and wear mechanisms. This material degradation results into the loss of mechanical properties such as strength, ductility, and impact strength; leading to detachment, delamination, cracking, and ultimately premature failure of components. Since the failure of high valued equipment needs considerable cost and time to be repaired or replaced, minimizing the tribological failure of equipment under aggressive environment has been gaining increased interest. It is widely recognized that effective management of degradation mechanisms will contribute towards the optimization of maintenance, monitoring, and inspection costs. The hardfacing techniques have been widely used to enhance the resistance of surfaces against degradation mechanisms. Applying a surface coating improves wear and corrosion resistance and ensures reliability and long-term performance of coated parts. A protective layer or barrier on the components avoids the direct mechanical and chemical contacts of tool surfaces with process media and will reduce the material loss and ultimately its failure. Laser cladding as an advanced hardfacing technique has been widely used for industrial applications in order to develop a protective coating with desired material properties. During the laser cladding, coating material is fused into the base material by means of a laser beam in order to rebuild a damaged part's surface or to enhance its surface function. In the hardfacing techniques such as atmospheric plasma spraying (APS), high velocity oxygen-fuel (HVOF), and laser cladding, mixing of coating materials with underneath surface has to be minimized in order to utilize the properties of the coating material most effectively. In this regard, laser cladding offers advantages due to creating coating layers with superior properties in terms of purity, homogeneity, low dilution, hardness, bonding, and microstructure. In the development of modern materials for hardfacing applications, the functionality is often improved by combining materials with different properties into composites. Metal Matrix Composite (MMC) coating is a composite material with two constituent parts, i.e., matrix and the reinforcement. This class of composites are addressing improved mechanical properties such as stiffness, strength, toughness, and tribological and chemical resistance. Fabrication of MMCs is to achieve a combination of properties not achievable by any of the materials acting alone. MMCs have attracted significant attention for decades due to their combination of wear-resistivity, corrosion-resistivity, thermal, electrical and magnetic properties. Presently, there is a strong emphasis on the development of advanced functional coatings for corrosion, erosion, and wear protection for different industrial applications. In this research, a laser cladding system equipped with a high power direct diode laser associated with gas driven metal powder delivery system was used to develop advanced MMC coatings. The high power direct diode laser used in this study offers wider beam spot, shorter wavelength and uniform power distribution. These properties make the cladding set-up ideal for coating due to fewer cladding tracks, lower operation cost, higher laser absorption, and improved coating qualities. In order to prevent crack propagation, porosity, and uniform dispersion of carbides in MMC coating, cladding procedure was assisted by an induction heater as a second heat source. The developed defect free MMC coatings were combined with nano-size particles of WC, rare earth (RE) element (La2O3), and Mo as a refractory metal to enhance mechanical properties, chemical composition, and subsequently improve the tribological performance of the coatings. The resistance of developed MMC coatings were examined under highly accelerated slurry erosion, corrosion, and wear as the most frequently encountered failure modes of mechanical components. The microstructure, mechanical properties, and the level of induced residual stress on the coating after cladding procedure are closely related to cladding process variables. Study about the effect of processing parameters on clad quality and experienced thermal history and thermally-induced stress evolution requires both theoretical and experimental understanding of the associated physical phenomena. Numerical modeling offers a cost-efficient way to better understand the related complex physics in laser cladding process. It helps to reveal the effects and significance of each processing parameters on the desired characteristics of clad parts. Successful numerical simulation can provide unique insight into complex laser cladding process, efficiently calculate the complex procedure, and help to obtain coating parts with quality integrity. Therefore, current study develops a three-dimensional (3D) transient and uncoupled thermo-elastic-plastic model to study thermal history, molten pool evolution, thermally induced residual stress, and the effect of utilizing an induction heater as a second heat source on the mechanical properties and microstructural properties of final cladded coating.
NASA Astrophysics Data System (ADS)
Li, Ruifeng; Li, Zhuguo; Huang, Jian; Zhu, Yanyan
2012-08-01
Ni-Fe-B-Si-Nb coatings have been deposited on mild steel substrates using high power diode laser cladding. Scanning laser beam at high speeds was followed to remelt the surface of the coatings. Different laser cladding powers in the range of 700-1000 W were used to obtain various dilution ratios in the coating. The dilution effect on the chemical characterization, phase composition and microstructure is analyzed by energy dispersive spectroscopy, X-ray diffraction and scanning-electron microscopy. The microhardness distribution of the coatings after laser processing is also measured. The results reveal that Ni-based amorphous composite coatings have successfully been fabricated on mild steel substrate at low dilution ratio when the cladding power was 700 W, 800 W and 900 W. While at high laser power of 1000 W, no amorphous phase was found. The coatings with low dilution ratio exhibit the highest microhardness of 1200 HV0.5 due to their largest volume fraction of amorphous phase.
Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors
NASA Astrophysics Data System (ADS)
Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar
2018-02-01
The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.
Microstructural Evolution of NiCrBSi Coatings Fabricated by Stationary Local Induction Cladding
NASA Astrophysics Data System (ADS)
Chen, Xuliang; Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Huang, Feng
2018-04-01
The development of induction cladding has been restricted by the complicated geometric characteristics of workpieces and the large heat-affected zone in the cladded workpieces. In this paper, three-dimensional continual local induction cladding (3D-CLIC) was proposed as a potential process to clad coating over a substrate with curved surface, and a stationary local induction cladding (SLIC) experiment was conducted as an exploratory study of 3D-CLIC. The microstructures and microhardness in the coatings were measured by SEM, EDS, XRD and microsclerometer, respectively. The results indicate that the coating is metallurgically bonded with the substrate without any defects. A compositional gradient exists in the diffusion transfer belt (DTB), and it decreases with the increase in induction heating time. The coating is mainly composed of (Fe, Ni), CrB, M7C3, Ni3B, Ni3Si and M23C6 (M = Cr, Ni, Fe). Among the carbides, M7C3 presents several morphologies and M23C6 is always attached to the DTB. A special phenomenon of texture was found in the SLIC coatings. The preferred orientation in (200) crystal plane or the restrained orientation in (111) (200) crystal plane becomes more obvious as the scanning speed increases. The maximum average microhardness is 721 HV when the coating is heated for 5 s. The wear loss of different samples increases with increasing induction heating time. The longer heating time would result in higher dilution in the SLIC coatings due to the complete mixing with the substrate, thus leading to the decrease in microhardness and wear loss.
Microstructural Evolution of NiCrBSi Coatings Fabricated by Stationary Local Induction Cladding
NASA Astrophysics Data System (ADS)
Chen, Xuliang; Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Huang, Feng
2018-05-01
The development of induction cladding has been restricted by the complicated geometric characteristics of workpieces and the large heat-affected zone in the cladded workpieces. In this paper, three-dimensional continual local induction cladding (3D-CLIC) was proposed as a potential process to clad coating over a substrate with curved surface, and a stationary local induction cladding (SLIC) experiment was conducted as an exploratory study of 3D-CLIC. The microstructures and microhardness in the coatings were measured by SEM, EDS, XRD and microsclerometer, respectively. The results indicate that the coating is metallurgically bonded with the substrate without any defects. A compositional gradient exists in the diffusion transfer belt (DTB), and it decreases with the increase in induction heating time. The coating is mainly composed of (Fe, Ni), CrB, M7C3, Ni3B, Ni3Si and M23C6 (M = Cr, Ni, Fe). Among the carbides, M7C3 presents several morphologies and M23C6 is always attached to the DTB. A special phenomenon of texture was found in the SLIC coatings. The preferred orientation in (200) crystal plane or the restrained orientation in (111) (200) crystal plane becomes more obvious as the scanning speed increases. The maximum average microhardness is 721 HV when the coating is heated for 5 s. The wear loss of different samples increases with increasing induction heating time. The longer heating time would result in higher dilution in the SLIC coatings due to the complete mixing with the substrate, thus leading to the decrease in microhardness and wear loss.
In situ synthesis of hydroxyapatite coating by laser cladding.
Wang, D G; Chen, C Z; Ma, J; Zhang, G
2008-10-15
HA bioceramic coatings were synthesized on titanium substrate by laser cladding using cheap calcium carbonate and calcium hydrogen phosphate. The thermodynamic condition for synthesizing HA was calculated by software Matlab 5.0, the microstructure and phase analysis of laser clad HA bioceramic coatings were studied by electron probe microanalyser (EPMA), X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The theoretical results show that the Gibbs free enthalpy for the synthesis of HA phase is satisfied, and the presence of HA phase in the clad coatings was then further verified by XRD and the selected area diffraction patterns. When the laser power is 600W and the scanning speed is 3.5mm/s, the compact HA bioceramic coatings were obtained, which have cellular dendritic structure and consist of the phases of HA, alpha-Ca(2)P(2)O(7), CaO and CaTiO(3).
NASA Astrophysics Data System (ADS)
Weng, Fei; Yu, Huijun; Liu, Jianli; Chen, Chuanzhong; Dai, Jingjie; Zhao, Zhihuan
2017-07-01
Ti5Si3/TiC reinforced Co-based composite coatings were fabricated on Ti-6Al-4V titanium alloy by laser cladding with Co42 and SiC mixture. Microstructure and wear property of the cladding coatings with different content of SiC were investigated. During the cladding process, the original SiC dissolved and reacted with Ti forming Ti5Si3 and TiC. The complex in situ formed phases were found beneficial to the improvement of the coating property. Results indicated that the microhardness of the composite coatings was enhanced to over 3 times the substrate. The wear resistance of the coatings also showed distinct improvement (18.4-57.4 times). More SiC gave rise to better wear resistance within certain limits. However, too much SiC (20 wt%) was not good for the further improvement of the wear property.
Improvement in Microstructure Performance of the NiCrBSi Reinforced Coating on TA15 Titanium Alloy
NASA Astrophysics Data System (ADS)
Peng, Li
2012-10-01
This work is based on the dry sliding wear of NiCrBSi reinforced coating deposited on TA15 titanium alloy using the laser cladding technique, the parameters of which were such as to provide almost crack-free coatings with minimum dilution and very low porosity. SEM results indicated that a laser clad coating with metallurgical joint to the substrate was formed. Compared with TA15 substrate, an improvement of the micro-hardness and wear resistance was observed for this composite coating. Rare earth oxide Y2O3 was beneficial in producing of the amorphous phases in laser clad coating. With addition of Y2O3, more amorphous alloys were produced, which increased the micro-hardness and wear resistance of the coating.
Liu, Qibin; Zhu, Weidong; Zou, Longjiang; Zheng, Min; Dong, Chuang
2005-12-01
The gradient bioceramics coating was prepared on the surface of Ti-6Al-4V alloy by using wide-band laser cladding. And the effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating was studied. The experimental results indicated that in the circumstances of size of laser doze D and scanning velocity V being fixed, with the increasement of power P, the density of microstructure in bioceramics coating gradually degraded; with the increasement of power P, the pore rate of bioceramics gradually became high. While P = 2.3 KW, the bioceramics coating with dense structure and lower pore rate (5.11%) was obtained; while P = 2.9 KW, the bioceramics coating with disappointing density was formed and its pore rate was up to 21.32%. The microhardness of bioceramics coating demonstrated that while P = 2.3 KW, the largest value of microhardness of bioceramics coating was 1100 HV. Under the condition of our research work, the optimum technological parameters for preparing gradient bioceramics coating by wide-band laser cladding are: P = 2.3 KW, V = 145 mm/min, D = 16 mm x 2 mm.
NASA Astrophysics Data System (ADS)
Huang, Haihong; Han, Gang; Qian, Zhengchun; Liu, Zhifeng
2017-12-01
The metal magnetic memory signals were measured during dynamic tension tests on the surfaces of the cladding coatings by plasma transferred arc (PTA) welding and the 0.45% C steel. Results showed that the slope of the normal component Hp(y) of magnetic signal and the average value of the tangential component Hp(x) reflect the magnetization of the specimens. The signals increased sharply in the few initial cycles; and then fluctuated around a constant value during fatigue process until fracture. For the PTA cladding coating, the slope of Hp(y) was steeper and the average of Hp(x) was smaller, compared with the 0.45% C steel. The hysteresis curves of cladding layer, bonding layer and substrate were measured by vibrating sample magnetometer testing, and then saturation magnetization, initial susceptibility and coercivity were further calculated. The stress-magnetization curves were also plotted based on the J-A model, which showed that the PTA cladding coating has smaller remanence and coercivity compared with the 0.45% C steel. The microstructures of cladding coating confirmed that the dendritic structure and second-phase of alloy hinder the magnetic domain motion, which was the main factor influencing the variation of magnetic signal during the fatigue tests.
All-Glass Fiber Amplifier Pumped by Ultra-High Brightness Pumps
2016-02-15
coated triple-clad fibers, we are developing triple-clad Yb fiber with gold coating for improved thermal management. 2.1 Pump laser The two...amplifier results using gain fiber with metalized fiber coating . Keywords: Fiber laser , specialty fiber, pump laser , beam combining, fiber metal coating ... coating can exceed its long-term damage threshold. Such a concern obviously does not apply to a fiber with gold protective coating [14]. Thus in
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
... supported approval of the shot and the coatings, and one contained no useful information. Therefore, as... Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot Coatings as Nontoxic for... environmental assessments. SUMMARY: We, the U.S. Fish and Wildlife Service, approve copper-clad iron shot and...
NASA Astrophysics Data System (ADS)
Macwan, A.; Jiang, X. Q.; Chen, D. L.
2015-07-01
Magnesium (Mg) alloys are increasingly used in the automotive and aerospace sectors to reduce vehicle weight. Al/Mg/Al tri-layered clad sheets are deemed as a promising alternative to improve the corrosion resistance and formability of Mg alloys. The structural application of Al/Mg/Al tri-layered clad sheets inevitably involves welding and joining in the multi-material vehicle body manufacturing. This study aimed to characterize the bonding interface microstructure of the Al/Mg/Al-clad sheet to high-strength low-alloy steel with and without Zn coating using ultrasonic spot welding at different levels of welding energy. It was observed that the presence of Zn coating improved the bonding at the interface due to the formation of Al-Zn eutectic structure via enhanced diffusion. At a higher level of welding energy, characteristic flow patterns of Zn into Al-clad layer were observed with an extensive penetration mainly along some high angle grain boundaries. The dissimilar joints without Zn coating made at a high welding energy of 800 J failed partially from the Al/Fe weld interface and partially from the Al/Mg clad interface, while the joints with Zn coating failed from the Al/Mg clad interface due to the presence of brittle Al12Mg17 phase.
NASA Astrophysics Data System (ADS)
Xie, Siyao; Li, Ruidi; Yuan, Tiechui; Chen, Chao; Zhou, Kechao; Song, Bo; Shi, Yusheng
2018-02-01
Although laser cladding has find its widespread application in surface hardening, this technology has been significantly limited by the solidification crack, which usually initiates along grain boundary due to the brittle precipitation in grain boundary and networks formation during the laser rapid melting/solidification process. This paper proposed a novel laser cladding technology assisted by friction stir processing (FSP) to eliminate the usual metallurgical defects by the thermomechanical coupling effect of FSP with the Ni-Cr-Fe as representative coating material. By the FSP assisted laser cladding, the crack in laser cladding Ni-Cr-Fe coating was eliminated and the coarse networks of laser cladding coating was transformed into dispersed nanoparticles. Moreover, the plastic layers with thicknesses 47-140 μm can be observed, with gradient grain refinement from substrate to the top surface in which grain size reached 300 nm and laser photocoagulation net second phase crushed in the layer. In addition, cracks closed in the plastic zone. The refinement of grain resulted the hardness increased to over 400 HV, much higher than the 300 HV of the laser cladding structure. After FSP, the friction coefficient decreased from 0.6167 to 0.5645 which promoted the wear resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Kumar; Mariani, Robert; Bai, Xianming
Zirconium-alloy fuel claddings have been used successfully in Light Water Reactors (LWR) for over four decades. However, under high temperature accident conditions, zirconium-alloys fuel claddings exhibit profuse exothermic oxidation accompanied by release of hydrogen gas due to the reaction with water/steam. Additionally, the ZrO 2 layer can undergo monoclinic to tetragonal to cubic phase transformations at high temperatures which can induce stresses and cracking. These events were unfortunately borne out in the Fukushima-Daiichi accident in in Japan in 2011. In reaction to such accident, protective oxidation-resistant coatings for zirconium-alloy fuel claddings has been extensively investigated to enhance safety margins inmore » accidents as well as fuel performance under normal operation conditions. Such surface modification could also beneficially affect fuel rod heat transfer characteristics. Zirconium-silicide, a candidate coating material, is particularly attractive because zirconium-silicide coating is expected to bond strongly to zirconium-alloy substrate. Intermetallic compound phases of zirconium-silicide have high melting points and oxidation of zirconium silicide produces highly corrosion resistant glassy zircon (ZrSiO 4) and silica (SiO 2) which possessing self-healing qualities. Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi 2 coating) during clad quenching experiments is discussed in detail.« less
NASA Astrophysics Data System (ADS)
Chen, Lin; Bai, Shu-Lin
2018-04-01
Hastelloy C22 coating was prepared on substrate of Q235 steel by high power multilayer laser cladding. The microstructure, hardness and anti-corrosion properties of coating were investigated. The corrosion tests in 3.5% NaCl solution were carried out with variation of impingement angle and velocity, and vibration frequency of sample. The microstructure of coating changes from equiaxed grain at the top surface to dendrites oriented at an angle of 60° to the substrate inside the coating. The corrosion rate of coating increases with the increase of impingement angle and velocity, and vibrant frequency of sample. Corrosion mechanisms relate to repassivation and depassivation of coating according to electrochemical measurements. Above results show that multilayer laser cladding can endow Hastelloy C22 coating with fine microstructures, high hardness and good anti-corrosion performances.
Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding
NASA Astrophysics Data System (ADS)
Wu, Wei; Jiang, Li; Jiang, Hui; Pan, Xuemin; Cao, Zhiqiang; Deng, Dewei; Wang, Tongmin; Li, Tingju
2015-10-01
A series of Al2CrFeNiMo x ( x = 0 to 2.0 at.%) high-entropy alloys coatings was synthesized on stainless steel by laser cladding. The effect of Mo content on the microstructures and mechanical properties of Al2CrFeNiMo x coatings was studied. The results show that the laser clad layer consists of the cladding zone, bonding zone, and heat-affected zone. The Al2CrFeNiMo x coatings are composed of two simple body-center cubic phases and the cladding zone is mainly composed of equiaxed grains. When the content of Mo reaches 2 at.%, a eutectic structure is found in the interdendritic regions. The surface microhardness of the Al2CrFeNiMo2 coating is 678 HV, which is about three times higher than that of the substrate (243 HV). Compared with stainless steel, the wear resistance of the coatings has been improved greatly. The wear mass loss of the Al2CrFeNiMo alloy is 9.8 mg, which is much less than that of the substrate (18.9 mg) and its wear scar width is the lowest among the Al2CrFeNiMo x coatings, indicating that the wear resistance of the Al2CrFeNiMo is the best.
NASA Astrophysics Data System (ADS)
Samoylenko, Vitaliy V.; Lenivtseva, Olga G.; Polyakov, Igor A.; Laptev, Ilya S.
2015-10-01
In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of cladded layers to the substrate, which exceeded cp-titanium strength characteristics.
Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding
Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao
2017-01-01
A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting. PMID:28772519
Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.
Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao
2017-02-10
A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.
Vanadium diffusion coating on HT-9 cladding for mitigating the fuel cladding chemical interactions
NASA Astrophysics Data System (ADS)
Lo, Wei-Yang; Yang, Yong
2014-08-01
Fuel cladding chemical interaction (FCCI) has been identified as one of the crucial issues for developing Ferritic/Martensitic (F/M) stainless steel claddings for metallic fuels in a fast reactor. The anticipated elevated temperature and high neutron flux can significantly aggravate the FCCI, in terms of formation of inter-diffusion and lower melting point eutectic phases. To mitigate the FCCI, vanadium carbide coating as a diffusion barrier was deposited on the HT-9 substrate using a pack cementation diffusion coating (PCDC) method, and the processing temperature was optimized down to 730 °C. A solid metallurgical bonding between the coating layer and substrate was achieved, and the coating is free from through depth cracks. The microstructural characterizations using SEM and TEM show a nanostructured grain structure. EDS/WDS and XRD analysis confirm the phase of coating layer as V2C. Diffusion couple tests at 660 °C for 100 h demonstrate that V2C layer with a thickness of less than 5 μm can effectively eliminate the inter-diffusion between the lanthanide cerium and HT-9 steel.
NASA Astrophysics Data System (ADS)
Li, Qingtang; Lei, Yongping; Fu, Hanguang
2014-10-01
Over the past decade, researchers have demonstrated much interest in laser cladded metal matrix composite coatings for its good wear resistance, corrosion resistance, and high temperature properties. In this paper, in-situ (Ti, Nb)C particle reinforced Fe-based composite coatings were produced by laser cladding. The effects of Ti/Nb(atomic ratio) in the cladding powder on the formation mechanism and distribution characteristics of multiple particle were investigated. The results showed that when Ti/Nb > 1, Ti had a stronger ability to bond with C compared with Nb. (Ti, Nb)C multiple particles with TiC core formed in the molten pool. With the decrease of Ti/Nb, core-shell structure disappeared, the structure of particle got close to that of NbC gradually. It is found that the amount, area ratio and distribution of the reinforced particle in the coating containing Ti and Nb elements were improved, compared with these in the coating containing equal Nb element. When Ti/Nb = 1, the effects above-mentioned is most prominent, and the wear resistance of the coating is promoted obviously.
NASA Technical Reports Server (NTRS)
Grisaffe, Salvatore J.; Caves, Robert M.
1964-01-01
An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.
3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings.
Krzyzanowski, Michal; Bajda, Szymon; Liu, Yijun; Triantaphyllou, Andrew; Mark Rainforth, W; Glendenning, Malcolm
2016-06-01
Thermal and strain-stress transient fields during laser cladding of bioactive glass coatings on the Ti6Al4V alloy basement were numerically calculated and analysed. Conditions leading to micro-cracking susceptibility of the coating have been investigated using the finite element based modelling supported by experimental results of microscopic investigation of the sample coatings. Consecutive temperature and stress peaks are developed within the cladded material as a result of the laser beam moving along the complex trajectory, which can lead to micro-cracking. The preheated to 500°C base plate allowed for decrease of the laser power and lowering of the cooling speed between the consecutive temperature peaks contributing in such way to achievement of lower cracking susceptibility. The cooling rate during cladding of the second and the third layer was lower than during cladding of the first one, in such way, contributing towards improvement of cracking resistance of the subsequent layers due to progressive accumulation of heat over the process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Applications of Laser Cladded WC-Based Wear Resistant Coatings
NASA Astrophysics Data System (ADS)
Verwimp, Jo; Rombouts, Marleen; Geerinckx, Eric; Motmans, Filip
Laser cladding is an additive process wherein a laser source is used to melt metal-based powder or wire on to a metal substrate. The technique is frequently used to produce wear resistant coatings consisting of a metal matrix and a ceramic strengthening phase. In this study mixtures of nickel based powders and various amounts of tungsten carbides have been used as feedstock for laser cladding on a range of steel substrates and for different applications. Crack-free low porosity coatings with a thickness of about 1 mm and carbide concentrations up to 50 vol% have been produced. The evaluation of the wear resistance of the different coatings is performed on lab scale or in the application itself.
NASA Astrophysics Data System (ADS)
Yang, Mao-Sheng; Liu, Xiu-Bo; Fan, Ji-Wei; He, Xiang-Ming; Shi, Shi-Hong; Fu, Ge-Yan; Wang, Ming-Di; Chen, Shu-Fa
2012-02-01
The high temperature self-lubricating wear-resistant NiCr/Cr3C2-30%WS2 coating and wear-resistant NiCr/Cr3C2 coating were fabricated on 0Cr18Ni9 austenitic stainless steel by laser cladding. Phase constitutions and microstructures were investigated, and the tribological properties were evaluated using a ball-on-disc wear tester under dry sliding condition at room-temperature (17 °C), 300 °C and 600 °C, respectively. Results indicated that the laser clad NiCr/Cr3C2 coating consisted of Cr7C3 primary phase and γ-(Fe,Ni)/Cr7C3 eutectic colony, while the coating added with WS2 was mainly composed of Cr7C3 and (Cr,W)C carbides, with the lubricating WS2 and CrS sulfides as the minor phases. The wear tests showed that the friction coefficients of two coatings both decrease with the increasing temperature, while the both wear rates increase. The friction coefficient of laser clad NiCr/Cr3C2-30%WS2 is lower than the coating without WS2 whatever at room-temperature, 300 °C, 600 °C, but its wear rate is only lower at 300 °C. It is considered that the laser clad NiCr/Cr3C2-30%WS2 composite coating has good combination of anti-wear and friction-reducing capabilities at room-temperature up to 300 °C.
NASA Astrophysics Data System (ADS)
Filippov, A. A.; Fomin, V. M.; Orishich, A. M.; Malikov, A. G.; Ryashin, N. S.; Golyshev, A. A.
2017-10-01
In the present work, a combined method is considered for the production of a metal-matrix composite coating based on Ni and B4C. The coating is created by consistently applied methods: cold spray and laser cladding. Main focus of this work aimed to microstructure of coatings, element content and morphology of laser tracks. At this stage, the authors focused on the interaction of the laser unit with the substance without affecting the layer-growing technology products. It is shown that coating has deformed particles of nickel and the significantly decreased content of ceramic particles B4C after cold spray. After laser cladding there are no boundaries between nickel and dramatically changes in ceramic particles.
NASA Astrophysics Data System (ADS)
Raza, Mohammad Shahid; Hussain, Manowar; Kumar, Vikash; Das, Alok Kumar
2017-01-01
The growing need for high wear-resistant surface with enhanced physical properties has led to extensive researches in the field of surface engineering. Laser cladding emerged to be a promising method to achieve these objectives in a cost-effective way. The present paper studies the viability of cladding of tungsten disulfide (WS2) powder by using 400 W continuous-wave fiber laser. WS2 was used as a coating material, which was decomposed at higher temperature and underwent several chemical reactions. By this process, in situ formation of metal matrix composites and hard face coating on the substrate surface were attained. The characterization of laser cladded surface was done to study its morphological, microstructural, mechanical and tribological properties. It was observed that cladding of WS2 powder on 304 SS resulted in the formation of Cr-W-C-Fe metal matrix composite having improved mechanical and tribological properties. The value of microhardness of the coated surface was found to increase three to four times in comparison with the parent material surface. Wear test results indicated a decrease in wear by 1/9th (maximum) as compared to the parent 304 SS surface. The volume fractions of tungsten particles on the cladded surface were also investigated through EDS analysis.
FABRICATION OF IN SITUFe-Ti-B COMPOSITE COATING BY LASER CLADDING
NASA Astrophysics Data System (ADS)
Du, Baoshuai
2013-06-01
Laser cladding was applied to deposit in situFe-Ti-B composite coatings on mild carbon steel with precursor of ferrotitanium, ferroboron and pure Fe alloy powders. The composite coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA). Wear resistance of the laser-cladded Fe-Ti-B coatings was evaluated under dry sliding condition at room temperature using block-on-ring wear tester. Results indicate that in situ reinforcements of TiB2 and Fe2B can be synthesized in the Fe-Ti-B coatings. The amount of TiB2 increases with the increase of content of ferrotitanium and ferroboron in the precursor. Reinforcements are formed through the liquid-precipitation route following the solidification path of the Fe-Ti-B system. Hardness and wear properties of the coatings improved significantly in comparison to the as-received substrate due to the presence of hard reinforcements.
Optimization of laser cladding of cold spray coatings with B4C and Ni powders
NASA Astrophysics Data System (ADS)
Fomin, V. M.; Golyshev, A. A.; Malikov, A. G.; Orishich, A. M.; Filippov, A. A.; Ryashin, N. S.
2017-12-01
In the present work, a combined method is considered for the production of a metal-matrix composite coating based on Ni and B4C. The coating is created by consistently applied methods: cold spray and laser cladding. The conditions of obtaining cermet layers are investigated depending on the parameters of laser cladding and cold spray. It is shown that the laser track structure significantly changes in accordance to the size of ceramic particles ranging 3-75 µm and its concentration. It is shown that the most perspective layers for additive manufacturing could be obtain from cold spray coatings with ceramic concentrations more than 50% by weight treated in the heat-conductivity laser mode.
NASA Astrophysics Data System (ADS)
Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong
2018-05-01
The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.
Lusquiños, F; De Carlos, A; Pou, J; Arias, J L; Boutinguiza, M; León, B; Pérez-Amor, M; Driessens, F C M; Hing, K; Gibson, I; Best, S; Bonfield, W
2003-03-15
The plasma spray (PS) technique is the most popular method commercially in use to produce calcium phosphate (CaP) coatings to promote fixation and osteointegration of the cementless prosthesis. Nevertheless, PS has some disadvantages, such as the poor coating-to-substrate adhesion, low mechanical strength, and brittleness of the coating. In order to overcome the drawbacks of plasma spraying, we introduce in this work a new method to apply a CaP coating on a Ti alloy using a well-known technique in the metallurgical field: laser surface cladding. The physicochemical characterization of the coatings has been carried out by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). The biologic properties of the coatings have been assessed in vitro with human osteoblast-like MG-63 cells. The overall results of this study affirm that the Nd:YAG laser cladding technique is a promising method in the biomedical field. Copyright 2003 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun
2016-12-01
This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility.
Surface protection of light metals by one-step laser cladding with oxide ceramics
NASA Astrophysics Data System (ADS)
Nowotny, S.; Richter, A.; Tangermann, K.
1999-06-01
Today, intricate problems of surface treatment can be solved through precision cladding using advanced laser technology. Metallic and carbide coatings have been produced with high-power lasers for years, and current investigations show that laser cladding is also a promising technique for the production of dense and precisely localized ceramic layers. In the present work, powders based on Al2O3 and ZrO2 were used to clad aluminum and titanium light alloys. The compact layers are up to 1 mm thick and show a nonporous cast structure as well as a homogeneous network of vertical cracks. The high adhesive strength is due to several chemical and mechanical bonding mechanisms and can exceed that of plasmasprayed coatings. Compared to thermal spray techniques, the material deposition is strictly focused onto small functional areas of the workpiece. Thus, being a precision technique, laser cladding is not recommended for large-area coatings. Examples of applications are turbine components and filigree parts of pump casings.
A Novel Inter Core-Cladding Lithium Niobate Thin Film Coated Fiber Modulator/Sensor
NASA Technical Reports Server (NTRS)
Jamison, Tracee L.; Komriech, Phillip; Yu, Chung
2004-01-01
A fiber modulator/sensor has been fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125 micron fiber. The proposed design of lithium niobate cylinder fibers can enhance the existing methodology for detecting sound waves under water utilizing the acoustooptic properties of lithium niobate. Upon application of a stress or strain, light propagating inside the core, according to the principle of total internal reflection, escapes, into the cladding because of the photoelastic boundary layer of lithium niobate. Test results of the lithium niobate fiber reveal a reduction in the 1550 nm, 4mW source with applied tension. The source power from an ordinary quartz fiber under the same stress condition remained invariant to applied tension.
Measure Guideline. Transitioning From Three-Coat Stucco to One-Coat Stucco With EPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brozyna, K.; Davis, G.; Rapport, A.
2012-04-01
This measure guideline has been developed to help builders transition from using a traditional three-coat stucco wall-cladding system to a one-coat stucco wall-cladding system with expanded polystyrene (EPS) insulated sheathing. The one-coat system maintains the look of a traditional stucco system but uses only a base layer and a finish coat over EPS insulation that achieves higher levels of energy efficiency. Potential risks associated with the installation of a one-coat stucco system are addressed in terms of design, installation, and warranty concerns such as cracking and delamination, along with mitigation strategies to reduce these risks.
NASA Astrophysics Data System (ADS)
Liu, Hailang; Zhang, Guopei; Huang, Yiping; Qi, Zhengwei; Wang, Bo; Yu, Zhibiao; Wang, Dezhi
2018-04-01
To improve surface properties of Inconel 617 alloy (referred to as 617 alloy), co-alloy coating metallurgically bonded to substrate was prepared on the surface of 617 alloy by electron beam cladding. The microstructure, phase composition, microhardness, tribological properties and corrosion resistance of the coatings were investigated. The XRD results of the coatings reinforced by co-alloy (Co800) revealed the presence of γ-Co, CoCx and Cr23C6 phase as matrix and new metastable phases of Cr2Ni3 and Co3Mo2Si. These hypoeutectic structures contain primary dendrites and interdendritic eutectics. The metallurgical bonding forms well between the cladding layer and the matrix of 617 alloy. In most studied conditions, the co-alloy coating displays a better hardness, tribological performance, i.e., lower coefficient of frictions and wear rates, corrosion resistance in 1 mol L‑1 HCl solution, than the 617 alloy.
Microstructures and Dry Sliding Wear Resistance of the Laser Ceramics Composite Coating on Pure Ti
NASA Astrophysics Data System (ADS)
Liu, Peng; Zhang, Yuanbin; Luo, Hui; Huo, Yushuang
2012-06-01
In this study, Al-Ti-Co was used to improve the surface performance of pure Ti. Laser cladding is an important surface modification technique, which can be used to improve the surface performance of pure Ti. Laser cladding of the Al-Ti-Co + TiB2 pre-placed powders on pure Ti can form ceramics reinforced the composite coating, which improved the wear resistance of the substrate. Characteristics of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and wear tests. And the laser-cladded coating can also have major dilution from the substrate. Due to the action of the fine grain strengthening and the phase constituent, the wear resistance and microhardness of pure Ti surface were greatly improved.
NASA Astrophysics Data System (ADS)
Obadele, Babatunde Abiodun; Andrews, Anthony; Mathew, Mathew T.; Olubambi, Peter Apata; Pityana, Sisa
2015-08-01
Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H2SO4 solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO2 cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO2 particles. The results obtained show that addition of ZrO2 improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO2 addition, combination of high hardness of Ti2Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions.
NASA Astrophysics Data System (ADS)
Xu, Jiang; Kan, Yide; Liu, Wenjin
In order to improve the wear resistance of aluminum alloy, in-situ synthesized TiB2 and Ti3B4 peritectic composite particulate reinforced metal matrix composite, formed on a 2024 aluminum alloy by laser cladding with a powder mixture of Fe-coated Boron, Ti and Al, was successfully achieved using 3-KW CW CO2 laser. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM, AFM and XRD. The typical microstructure of the composite coating is composed of TiB2, Ti3B4, Al3Ti, Al3Fe and α-Al. The surface hardness of cladding coating increases with the amount of added Fe-coated B and Ti powder which determines the amount of TiB2 and Ti3B4 peritectic composite particulate. The nanohardness and the elastic modulus at the interface of the TiB2 and Ti3B4 peritectic composite particulate/matrix were investigated using the nanoindentation technique. The results showed that the nanohardness and the reduced elastic modulus from the peritectic composite particulate to the matrix is a gradient distribution.
Effect of CeO2 on TiC Morphology in Ni-Based Composite Coating
NASA Astrophysics Data System (ADS)
Cai, Yangchuan; Luo, Zhen; Chen, Yao
2018-03-01
The TiC/Ni composite coating with different content of CeO2 was fabricated on the Cr12MoV steel by laser cladding. The microstructure of cladding layers with the different content of CeO2 from the bottom to the surface is columnar crystal, cellular crystal, and equiaxed crystal. When the content of CeO2 is 0 %, the cladding layer has a coarse and nonuniform microstructure and TiC particles gathering in the cladding layer, and then the wear resistance was reduced. Appropriate rare-earth elements refined and homogenised the microstructure and enhanced the content of carbides, precipitated TiC particles and original TiC particles were spheroidised and refined, the wear resistance of the cladding layer was improved significantly. Excessive rare-earth elements polluted the grain boundaries and made the excessive burning loss of TiC particles that reduced the wear resistance of the cladding layer.
NASA Astrophysics Data System (ADS)
Wang, Miqi; Zhou, Zehua; Wu, Lintao; Ding, Ying; Xu, Feilong; Wang, Zehua
2018-04-01
A new compound Fe-W-C powder for reactive plasma cladding was fabricated by precursor carbonization process using sucrose as a precursor. The application of quadratic general rotary unitized design was highlighted to develop a mathematical model to predict and accomplish the desired surface hardness of plasma-cladded coating. The microstructure and microhardness of the coating with optimal parameters were also investigated. According to the developed empirical model, the optimal process parameters were determined as follows: 1.4 for C/W atomic ratio, 20 wt.% for W content, 130 A for scanning current and 100 mm/min (1.67 mm/s) for scanning rate. The confidence level of the model was 99% according to the results of the F-test and lack-of-fit test. Microstructural study showed that the dendritic structure was comprised of a mechanical mixture of α-Fe and carbides, while the interdendritic structure was a eutectic of α-Fe and carbides in the composite coating with optimal parameters. WC phase generation can be confirmed from the XRD pattern. Due to good preparation parameters, the average microhardness of cladded coating can reach 1120 HV0.1, which was four times the substrate microhardness.
Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel
NASA Astrophysics Data System (ADS)
Fan, Li; Chen, Hai-yan; Dong, Yao-hua; Dong, Li-hua; Yin, Yan-sheng
2018-06-01
The wear and corrosion resistance of Fe72.2Cr16.8Ni7.3Mo1.6Mn0.7C0.2Si1.2 and Fe77.3Cr15.8Ni3.9Mo1.1Mn0.5C0.2Si1.2 coatings laser-cladded on AISI 4130 steel were studied. The coatings possess excellent wear and corrosion resistance despite the absence of expensive yttrium, tungsten, and cobalt and very little molybdenum. The microstructure mainly consists of dendrites and eutectic phases, such as duplex (γ+α)-Fe and the Fe-Cr (Ni) solid solution, confirmed via energy dispersive spectrometry and X-ray diffraction. The cladded Fe-based coatings have lower coefficients of friction, and narrower and shallower wear tracks than the substrate without the cladding, and the main wear mechanism is mild abrasive wear. Electrochemical test results suggest that the soft Fe72.2Cr16.8Ni7.3Mo1.6Mn0.7C0.2Si1.2 coating with high Cr and Ni concentrations has high passivation resistance, low corrosion current, and positive corrosion potential, providing a better protective barrier layer to the AISI 4130 steel against corrosion.
Fang, Liuyang; Yan, Hua; Yao, Yansong; Zhang, Peilei; Gao, Qiushi; Qin, Yang
2017-12-28
The CrS/NbC Co-based self-lubricating composite coatings were successfully fabricated on Cr12MoV steel surface by laser clad Stellite 6, WS₂, and NbC mixed powders. The phase composition, microstructure, and tribological properties of the coatings ware investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS), as well as dry sliding wear testing. Based on the experimental results, it was found reactions between WS₂ and Co-based alloy powder had occurred, which generated solid-lubricant phase CrS, and NbC play a key role in improving CrS nuclear and refining microstructure of Co-based composite coating during laser cladding processing. The coatings were mainly composed of γ-Co, CrS, NbC, Cr 23 C₆, and CoC x . Due to the distribution of the relatively hard phase of NbC and the solid lubricating phase CrS, the coatings had better wear resistance. Moreover, the suitable balance of CrS and NbC was favorable for further decreasing the friction and improving the stability of the contact surfaces between the WC ball and the coatings. The microhardness, friction coefficient, and wear rate of the coating 4 (Clad powders composed of 60 wt % Stellite 6, 30 wt % NbC and 10 wt % WS₂) were 587.3 HV 0.5 , 0.426, and 5.61 × 10 -5 mm³/N·m, respectively.
Alloyed coatings for dispersion strengthened alloys
NASA Technical Reports Server (NTRS)
Wermuth, F. R.; Stetson, A. R.
1971-01-01
Processing techniques were developed for applying several diffusion barriers to TD-Ni and TD-NiCr. Barrier coated specimens of both substrates were clad with Ni-Cr-Al and Fe-Cr-Al alloys and diffusion annealed in argon. Measurement of the aluminum distribution after annealing showed that, of the readily applicable diffusion barriers, a slurry applied tungsten barrier most effectively inhibited the diffusion of aluminum from the Ni-Cr-Al clad into the TD-alloy substrates. No barrier effectively limited interdiffusion of the Fe-Cr-Al clad with the substrates. A duplex process was then developed for applying Ni-Cr-Al coating compositions to the tungsten barrier coated substrates. A Ni-(16 to 32)Cr-3Si modifier was applied by slurry spraying and firing in vacuum, and was then aluminized by a fusion slurry process. Cyclic oxidation tests at 2300 F resulted in early coating failure due to inadequate edge coverage and areas of coating porosity. EMP analysis showed that oxidation had consumed 70 to 80 percent of the aluminum in the coating in less than 50 hours.
NASA Astrophysics Data System (ADS)
Chien, C. S.; Liu, C. W.; Kuo, T. Y.; Wu, C. C.; Hong, T. F.
2016-04-01
Hydroxyapatite (HA) is one of the most commonly used coating materials for metal implants. However, following high-temperature deposition, HA easily decomposes into an unstable phase or forms an amorphous phase, and hence, the long-term stability of the implant is reduced. Accordingly, the present study investigates the use of fluorapatite (FA) fortified with 20 wt% alumina (α-Al2O3) as an alternative biomedical coating material. The coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding process performed with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min and 1200 W/600 mm/min, respectively. The results show that for all of the specimens, a strong metallurgical bond is formed at the interface between the coating layer and the transition layer due to melting and diffusion. The XRD analysis results reveal that the cladding layers in all of the specimens consist mainly of FA, β-TCP, CaF2, Ti and θ-Al2O3 phases. In addition, the cladding layers of the specimens prepared using laser powers of 400 and 800 W also contain CaTiO3 and CaAl2O4, while that of the specimen clad using a power of 1200 W contains TTCP and CaO. Following immersion in simulated body fluid for 14 days, all of the specimens precipitate dense bone-like apatite and exhibit excellent bioactivity. However, among all of the specimens, the specimen that is prepared with a laser power of 800 W shows the best biological activity due to the presence of residual FA, apatite-generating CaTiO3 and a rough cladding layer surface.
Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy
NASA Astrophysics Data System (ADS)
Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang
Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.
Measure Guideline: Transitioning from Three-Coat Stucco to One-Coat Stucco with EPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brozyna, K.; Davis, G.; Rapport, A.
2012-04-01
This Measure Guideline has been developed to help builders transition from using a traditional three-coat stucco wall-cladding system to a one-coat stucco wall-cladding system with expanded polystyrene (EPS) insulated sheathing. The three-coat system uses a base layer, a fill layer, and a finish layer. The one-coat system maintains the look of a traditional stucco system but uses only a base layer and a finish coat over EPS insulation that achieves higher levels of energy efficiency. Potential risks associated with the installation of a one-coat stucco system are addressed in terms of design, installation, and warranty concerns such as cracking andmore » delamination, along with mitigation strategies to reduce these risks.« less
Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Yu, Ting; Kovacevic, Radovan
2017-07-01
Metal Matrix Composites (MMC) fabricated by the laser cladding process have been widely applied as protective coatings in industries to improve the wear, erosion, and corrosion resistance of components and prolong their service life. In this study, the AISI 420/VC metal matrix composites with different weight percentage (0 wt.%-40 wt.%) of Vanadium Carbide (VC) were fabricated on a mild steel A36 by a high power direct diode laser. An induction heater was used to preheat the substrate in order to avoid cracks during the cladding process. The effect of carbide content on the microstructure, elements distribution, phases, and microhardness was investigated in detail. The erosion resistance of the coatings was tested by using the abrasive waterjet (AWJ) cutting machine. The corrosion resistance of the coatings was studied utilizing potentiodynamic polarization. The results showed that the surface roughness and crack susceptibility of the laser cladded layer were increased with the increase in VC fraction. The volume fraction of the precipitated carbides was increased with the increase in the VC content. The phases of the coating without VC consisted of martensite and austenite. New phases such as precipitated VC, V8C7, M7C3, and M23C6 were formed when the primary VC was added. The microhardness of the clads was increased with the increase in VC. The erosion resistance of the cladded layer was improved after the introduction of VC. The erosion resistance was increased with the increase in the VC content. No obvious improvement of erosion resistance was observed when the VC fraction was above 30 wt.%. The corrosion resistance of the clads was decreased with the increase in the VC content, demonstrating the negative effect of VC on the corrosion resistance of AISI 420 stainless steel
NASA Astrophysics Data System (ADS)
Jiao, Junke; Xu, Zifa; Zan, Shaoping; Zhang, Wenwu; Sheng, Liyuan
2017-10-01
In this paper, the laser cladding method was used to preparation the TiC reinforced Ni-Fe-Al coating on the Ni base superalloy. The Ti/Ni-Fe-Al powder was preset on the Ni base superalloy and the powder layer thickness is 0.5mm. A fiber laser was used the melting Ti/Ni-Fe-Al powder in an inert gas environment. The shape of the cladding layer was tested using laser scanning confocal microscope (LSCM) under different cladding parameters such as the laser power, the melting velocity and the defocused amount. The microstructure, the micro-hardness was tested by LSCM, SEM, Vickers hardness tester. The test result showed that the TiC particles was distributed uniformly in the cladding layer and hardness of the cladding layer was improved from 180HV to 320HV compared with the Ni-Fe-Al cladding layer without TiC powder reinforced, and a metallurgical bonding was produced between the cladding layer and the base metal. The TiC powder could make the Ni-Fe-Al cladding layer grain refining, and the more TiC powder added in the Ni-Fe-Al powder, the smaller grain size was in the cladding layer.
NASA Astrophysics Data System (ADS)
Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua
2010-11-01
A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.
NASA Astrophysics Data System (ADS)
Zhang, H. X.; Yu, H. J.; Chen, C. Z.
2015-05-01
The composite coatings were fabricated by laser cladding Al/TiN pre-placed powders on Ti-6Al-4V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β-Ti (Al) and the reinforcements of titanium nitride (TiN), Ti3Al, TiAl and Al3Ti. The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti-6Al-4V substrate. And the wear resistance of sample 4 was four times of the substrate.
NASA Astrophysics Data System (ADS)
Ryashin, N. S.; Malikov, A. G.; Shikalov, V. S.; Gulyaev, I. P.; Kuchumov, B. M.; Klinkov, S. V.; Kosarev, V. F.; Orishich, A. M.
2017-10-01
The paper presents results of the cold spraying of aluminum bronze coatings on substrates profiled with WC/Ni tracks obtained by laser cladding. Reinforcing cermet frames shaped as grids with varied mesh sizes were clad on stainless steel substrates using a CO2 laser machine "Siberia" (ITAM SB RAS, Russia). As a result, surfaces/substrates with heterogeneous shape, composition, and mechanical properties were obtained. Aluminum bronze coatings were deposited from 5lF-NS powder (Oerlikon Metco, Switzerland) on those substrates using cold spraying equipment (ITAM SB RAS). Data of profiling, microstructure diagnostics, EDS analysis, and mechanical tests of obtained composites is reported. Surface relief of the sprayed coatings dependence on substrate structure has been demonstrated.
NASA Astrophysics Data System (ADS)
Li, Ruifeng; Zheng, Qichi; Zhu, Yanyan; Li, Zhuguo; Feng, Kai; Liu, Chuan
2018-01-01
(Ni0.6Fe0.4)65B18Si10Nb4C3 amorphous composite coating was successfully fabricated on AISI 1045 steel substrate by using laser cladding process with coaxial powder feeding equipment. The microstructure and phase distribution of the coating were investigated by using x-ray diffraction, scanning electron microscopy and transmission electron microscope. The mechanical properties of the coating were examined by using microhardness testing and nanoindentation. The experimental results indicated that the volume fraction of amorphous phase increased with the decrease in laser cladding heat input, leading to an improvement of mean microhardness and nanohardness. NbC particles in a size ranging between 150 and 1650 nm were found embedding in the amorphous composite coatings in all situations. The presence of the NbC particles can contribute to an improvement of 96.7 HV in hardness on the basis of experimental results, while theoretical prediction suggests an improvement of 92.5 HV by using Orowan-Ashby equation.
NASA Astrophysics Data System (ADS)
Wang, Lingqian; Zhou, Jiansong; Yu, Youjun; Guo, Chun; Chen, Jianmin
2012-06-01
NiCr + Cr3C2 + Ag + BaF2/CaF2 composite coatings were produced on stainless steel (1Cr18Ni9Ti) substrates by laser cladding. Corresponding powders were prepared by high-energy ball milling technique. The friction and wear behavior at room temperature was investigated through sliding against the Si3N4 ball. The morphologies of the wear debris, worn surfaces of both samples and the Si3N4 ball were analyzed by scanning electron microscopy and three dimensional non-contact surface mapping. Results showed that milling time had a great effect on the size, morphology, uniformity of the powders as well as the microstructure and properties of laser cladding coatings. The wear mechanism of the coatings is dominated by abrasive wear, plastic deformation and slight adhesive wear. The consecutive evolution trend of friction coefficient, wear rate as well as microhardness of the serials of coatings produced with powders of different sizes was presented.
Fang, Liuyang; Yan, Hua; Yao, Yansong; Zhang, Peilei; Gao, Qiushi; Qin, Yang
2017-01-01
The CrS/NbC Co-based self-lubricating composite coatings were successfully fabricated on Cr12MoV steel surface by laser clad Stellite 6, WS2, and NbC mixed powders. The phase composition, microstructure, and tribological properties of the coatings ware investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS), as well as dry sliding wear testing. Based on the experimental results, it was found reactions between WS2 and Co-based alloy powder had occurred, which generated solid-lubricant phase CrS, and NbC play a key role in improving CrS nuclear and refining microstructure of Co-based composite coating during laser cladding processing. The coatings were mainly composed of γ-Co, CrS, NbC, Cr23C6, and CoCx. Due to the distribution of the relatively hard phase of NbC and the solid lubricating phase CrS, the coatings had better wear resistance. Moreover, the suitable balance of CrS and NbC was favorable for further decreasing the friction and improving the stability of the contact surfaces between the WC ball and the coatings. The microhardness, friction coefficient, and wear rate of the coating 4 (Clad powders composed of 60 wt % Stellite 6, 30 wt % NbC and 10 wt % WS2) were 587.3 HV0.5, 0.426, and 5.61 × 10−5 mm3/N·m, respectively. PMID:29283411
Preparation, Microstructure and Performance of Nanoscale Ceramics Reinforced Hard Composite Coating
NASA Astrophysics Data System (ADS)
Li, Peng
2014-11-01
This paper is based on the dry sliding wear of Stellite SF12-B4C-TiN-Mo composite coating deposited on a pure Ti using a laser cladding technique, the parameters of which provide almost crack-free composites with low porosity. To the best of our knowledge, it is the first time that Stellite SF12-B4C-TiN-Mo mixed powders are deposited as the hard composites by a laser cladding technique. Scanning electron microscope images indicate that the nanoscale particles are produced in such coating. The fact that due to the sufficiently rapid heating and cooling rates of the laser cladding technique, the ceramics, such as TiC or TiB2 did not have enough time to grow up, resulting in the formation of the nanoscale particles. Compared with a pure Ti substrate, the increments of the micro-hardness and wear resistance are obtained for such composite coating.
[The experiment research on solution refractive index sensor based on tilted fiber Bragg grating].
Jiang, Qi; Lü, Dan-Dan; Yu, Ming-Hao; Kang, Li-Min; Ouyang, Jun
2013-12-01
The present paper analyzes the sensor's basic principle of the bare tilted fiber Bragg grating (TFBG) and surface plasmon resonance sensor (SPR) that deposited nanoscale gold-coating on the surface of the cladding. We simulated the transmission spectrums and some order cladding mode of TFBG in different concentration solutions by Integration and optical fiber grating software OptiGrating. So by the graphic observation and data analysis, a preliminary conclusion was got that in a certain sensing scope, the cladding modes of TFBG shift slightly to right with the increasing the solution refractive index(SRI),and the relation between resonance peak caused by the coupling of core mode and a certain cladding mode and the SRI was linear. Then the 45 nm thick gold coating was deposited on the surface of the TFBG cladding in a small-scale sputtering chamber KYKY SBC-12, and thermal field scanning electron microscopy presents that the effect of gold-coating was satisfactory to a certain extent in terms of microscopic level. The refractive index(RI) sensing experiments of different concentration solutions of NaCI, MgCI2, CaCI2 were carried out using bare and gold deposited TFBG. The RI sensing characteristics of both bare and gold deposited TFBGs respectively were studied by experiments. Meanwhile, it proved the conclusion that the cladding modes of TFBG drifted to right gradually when the SRI was increasing and the relations between resonance peak caused by the coupling of core mode and a certain cladding mode and the SRI were linear. And by quantitative analysis, we know that SPR sensor with the deposited namoscale gold layer on the surface of cladding enhanced the RI sensitivity dramatically by 2 to 500 nm RIU-1 which is 200 to 300 times larger than that of the bare tilted fiber Bragg grating approximately. The degrees of linear fittings of resonance peak caused by the coupling of core mode and a certain cladding mode and SRI of bare and gold-coating deposited SPR sensor are very good and both of them reach up to more than 0. 99.
NASA Astrophysics Data System (ADS)
Janicki, Damian
2017-09-01
Inconel 625/Cr3C2 composite coatings were produced via a laser cladding process using Cr3C2 reinforcing particles presenting an open porosity of about 60%. A laser cladding system used consisted of a direct diode laser with a rectangular beam spot and the top-hat beam profile, and an off-axis powder injection nozzle. The microstructural characteristics of the coatings was investigated with the use of scanning electron microscopy and X-ray diffraction. A complete infiltration of the porous structure of Cr3C2 reinforcing particles and low degree of their dissolution have been achieved in a very narrow range of processing parameters. Crack-free composite coatings having a uniform distribution of the Cr3C2 particles and their fraction up to 36 vol% were produced. Comparative erosion tests between the Inconel 625/Cr3C2 composite coatings and the metallic Inconel 625 coatings were performed following the ASTM G 76 standard test method. It was found that the composite coatings have a significantly higher erosion resistance to that of metallic coatings for both 30° and 90° impingement angles. Additionally, the erosion performances of composite coatings were similar for both the normal and oblique impact conditions. The erosive wear behaviour of composite coatings is discussed and related to the unique microstructure of these coatings.
Research on residual stress inside Fe-Mn-Si shape memory alloy coating by laser cladding processing
NASA Astrophysics Data System (ADS)
Ju, Heng; Lin, Cheng-xin; Zhang, Jia-qi; Liu, Zhi-jie
2016-09-01
The stainless Fe-Mn-Si shape memory alloy (SMA) coating was prepared on the surface of AISI 304 stainless steel. The principal residual stress measured by the mechanical hole-drilling method indicates that the Fe-Mn-Si SMA cladding specimen possesses a lower residual stress compared with the 304 stainless steel cladding specimen. The mean stress values of the former and the latter on 10-mm-thick substrate are 4.751 MPa and 7.399 MPa, respectively. What's more, their deformation values on 2-mm-thick substrate are about 0° and 15°, respectively. Meanwhile, the variation trend and the value of the residual stress simulated by the ANSYS finite element software consist with experimental results. The X-ray diffraction (XRD) pattern shows ɛ-martensite exists in Fe-Mn-Si SMA coating, which verifies the mechanism of low residual stress. That's the γ→ɛ martensite phase transformation, which relaxes the residual stress of the specimen and reduces its deformation in the laser cladding processing.
A study of TiB2/TiB gradient coating by laser cladding on titanium alloy
NASA Astrophysics Data System (ADS)
Lin, Yinghua; Lei, Yongping; Li, Xueqiao; Zhi, Xiaohui; Fu, Hanguang
2016-07-01
TiB2/TiB gradient coating has been fabricated by a laser cladding technique on the surface of a Ti-6Al-4V substrate using TiB2 powder as the cladding material. The microstructure and mechanical properties of the gradient coating were analyzed by SEM, EPMA, XRD, TEM and an instrument to measure hardness. With the increasing distance from the coating surface, the content of TiB2 particles gradually decreased, but the content of TiB short fibers gradually increased. Meanwhile, the micro-hardness and the elastic modulus of the TiB2/TiB coating showed a gradient decreasing trend, but the fracture toughness showed a gradient increasing trend. The fracture toughness of the TiB2/TiB coating between the center and the bottom was improved, primarily due to the debonding of TiB2 particles and the high fracture of TiB short fibers, and the fracture position of TiB short fiber can be moved to an adjacent position. However, the debonding of TiB2 particles was difficult to achieve at the surface of the TiB2/TiB coating.
Accident tolerant fuel cladding development: Promise, status, and challenges
NASA Astrophysics Data System (ADS)
Terrani, Kurt A.
2018-04-01
The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.
Surface modification techniques for increased corrosion tolerance of zirconium fuel cladding
NASA Astrophysics Data System (ADS)
Carr, James Patrick, IV
Corrosion is a major issue in applications involving materials in normal and severe environments, especially when it involves corrosive fluids, high temperatures, and radiation. Left unaddressed, corrosion can lead to catastrophic failures, resulting in economic and environmental liabilities. In nuclear applications, where metals and alloys, such as steel and zirconium, are extensively employed inside and outside of the nuclear reactor, corrosion accelerated by high temperatures, neutron radiation, and corrosive atmospheres, corrosion becomes even more concerning. The objectives of this research are to study and develop surface modification techniques to protect zirconium cladding by the incorporation of a specific barrier coating, and to understand the issues related to the compatibility of the coatings examined in this work. The final goal of this study is to recommend a coating and process that can be scaled-up for the consideration of manufacturing and economic limits. This dissertation study builds on previous accident tolerant fuel cladding research, but is unique in that advanced corrosion methods are tested and considerations for implementation by industry are practiced and discussed. This work will introduce unique studies involving the materials and methods for accident tolerant fuel cladding research by developing, demonstrating, and considering materials and processes for modifying the surface of zircaloy fuel cladding. This innovative research suggests that improvements in the technique to modify the surface of zirconium fuel cladding are likely. Three elements selected for the investigation of their compatibility on zircaloy fuel cladding are aluminum, silicon, and chromium. These materials are also currently being investigated at other labs as alternate alloys and coatings for accident tolerant fuel cladding. This dissertation also investigates the compatibility of these three elements as surface modifiers, by comparing their microstructural and mechanical properties. To test their application for use in corrosive atmospheres, the corrosion behaviors are also compared in steam, water, and boric-acid environments. Various methods of surface modification were attempted in this investigation, including dip coating, diffusion bonding, casting, sputtering, and evaporation. The benefits and drawbacks of each method are discussed with respect to manufacturing and economic limits. Characterization techniques utilized in this work include optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, nanoindentation, adhesion testing, and atomic force microscopy. The composition, microstructure, hardness, modulus, and coating adhesion were studied to provide encompassing properties to determine suitable comparisons and to choose an ideal method to scale to industrial applications. The experiments, results, and detailed discussions are presented in the following chapters of this dissertation research.
Li, H C; Wang, D G; Chen, C Z; Weng, F
2015-03-01
To solve the lack of strength of bulk biomaterials for load-bearing applications and improve the bioactivity of titanium alloy (Ti-6Al-4V), CaO-SiO2 coatings on titanium alloy were fabricated by laser cladding technique. The effect of CeO2 and Y2O3 on microstructure and properties of laser cladding coating was analyzed. The cross-section microstructure of ceramic layer from top to bottom gradually changes from cellular-dendrite structure to compact cellular crystal. The addition of CeO2 or Y2O3 refines the microstructure of the ceramic layer in the upper and middle regions. The refining effect on the grain is related to the kinds of additives and their content. The coating is mainly composed of CaTiO3, CaO, α-Ca2(SiO4), SiO2 and TiO2. Y2O3 inhibits the formation of CaO. After soaking in simulated body fluid (SBF), the calcium phosphate layer is formed on the coating surface, indicating the coating has bioactivity. After soaking in Tris-HCl solution, the samples doped with CeO2 or Y2O3 present a lower weight loss, indicating the addition of CeO2 or Y2O3 improves the degradability of laser cladding sample. Copyright © 2015 Elsevier B.V. All rights reserved.
Coatings Extend Life of Engines and Infrastructure
NASA Technical Reports Server (NTRS)
2010-01-01
MesoCoat Inc., of Euclid, Ohio, collaborated with Glenn Research Center to provide thermal barrier coating (TBC) technology, developed by Glenn researcher Dongming Zhu, to enhance the lifespan and performance of engines in U.S. Air Force legacy aircraft. The TBC reduces thermal stresses on engine parts, increasing component life by 50 percent. MesoCoat is also producing metal cladding technology that may soon provide similar life-lengthening benefits for the Nation's infrastructure. Through a Space Act Agreement with Glenn, the company employs the Center's high-density infrared arc lamp system to bond its cladding materials for demonstration prototypes; the coating technology can prevent corrosion on metal beams, pipes, and rebar for up to 100 years.
Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication
NASA Technical Reports Server (NTRS)
Mireles, O. R.; Broadway, J.; Hickman, R.
2014-01-01
Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.
NASA Astrophysics Data System (ADS)
Shi, Yan; Li, Yunfeng; Liu, Jia; Yuan, Zhenyu
2018-02-01
In this study, a gradient composite coating was manufactured on 20CrMnTi alloy steel by laser cladding. The laser power, cladding scan velocity and powder flow rate were selected as influencing factors of the orthogonal cladding experiments. The influencing factors were optimized by the comprehensive analysis of Taguchi OA and TOPSIS method. The high significant parameters and the predicted results were confirmed by the ANOVA method. The macromorphology and microstructures are characterized by using laser microscope, SEM, XRD and microhardness tester. Comparison tests of wear resistance of gradient composite coating, 20CrMnTi cemented quenching sample and the 20CrMnTi sample were conducted on the friction-wear tester. The results show that the phases are γ-Co solid solution, Co3B, M23C6 and etc. The interlayers and wear-resisting layer also contain new hard phases as WC, W2C. The microhardness of the gradient coating was increased to 3 times as compared with that of the 20CrMnTi substrate. The wear resistance of the gradient composite coating and 20CrMnTi cemented quenching sample was enhanced to 36.4 and 15.9 times as compared with that of the 20CrMnTi.
Downscaling of conventional laser cladding technique to microengineering
NASA Astrophysics Data System (ADS)
del Val, J.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; Quintero, F.; Pou, J.
To get an adequate response to the high increase of micro-products demand, new techniques have been developed by different types of industries in the last years. One approach is to adapt the laser surface cladding technique to the scale of microengineering. A new experimental configuration has been developed based on a highly stable high power laser with a high beam quality and a micro-feeder adequate to supply submicron particles. This work collects our efforts to extend the operation range of the laser cladding to the laser micro-cladding in order to produce micro-coatings. The viability of this new technique has been demonstrated by depositing coatings with geometrical characteristics in the micrometer range (minimum values obtained: 32 μm of width and 12 μm of height).
Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors
Brehm, Jr., William F.; Colburn, Richard P.
1982-01-01
An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.
Analysis of laser-induction hybrid cladding processing conditions
NASA Astrophysics Data System (ADS)
Huang, Yongjun; Zeng, Xiaoyan; Hu, Qianwu
2007-12-01
A new cladding approach based on laser-induction hybrid technique on flat sheets is presented in this paper. Coating is produced by means of 5kw cw CO II laser equipped with 100kw high frequent inductor, and the experiments set-up, involving a special machining-head, which can provide laser-induction hybrid heat resources simultaneously. The formation of thick NiCrSiB coating on a steel substrate by off-axial powder feeding is studied from an experimental point of view. A substrate melting energy model is developed to describe the energy relationship between laser-induction hybrid cladding and laser cladding alone quantitatively. By comparing the experimental results with the calculational ones, it is shown that the tendency of fusion zone height of theoretical calculation is in agreement with that of tests in laser-induction hybrid cladding. Via analyses and tests, the conclusions can be lead to that the fusion zone height can be increased easily and the good bond of cladding track can be achieved within wide cladding processing window in laser-induction hybrid processing. It shows that the induction heating has an obvious effect on substrate melting and metallurgical bond.
Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.
Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe
2017-03-10
Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.
Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets
Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe
2017-01-01
Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable. PMID:28772639
Wu, Fan; Chen, Tao; Wang, Haojun; Liu, Defu
2017-09-06
Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening.
Chen, Tao; Wang, Haojun
2017-01-01
Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening. PMID:28878190
Zhuang, Qiaoqiao; Zhang, Peilei; Li, Mingchuan; Yan, Hua; Yu, Zhishui; Lu, Qinghua
2017-10-30
The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti₂Ni and Ti₅Si₃ phases exist in all coatings, and some samples have TiSi₂ phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness)) and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti₂Ni and reinforcement phases of Ti₅Si₃ and TiSi₂, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO₂, Al₂O₃ and SiO₂. Phases Ti₂Ni, Ti₅Si₃, TiSi₂ and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.
2007-01-01
laser cladding techniques. Customer: COMSUBPAC NAVSEASYSCOM Pearl Harbor Naval Shipyard...motion device to laser clad and re-dimension the affected tube to original specifications. Benefits: ° Reduce life cycle costs of tube...coatings via cold gas dynamic spraying and EB–PVD ° Spray-formed HT aluminum alloys ° Localized laser HT and cladding for wear
NASA Astrophysics Data System (ADS)
Emamian, Ali; Corbin, Stephen F.; Khajepour, Amir
2012-11-01
In this paper, the effect of powder composition on in situ TiC formation within an Fe-based matrix coating during laser cladding was studied. Different atomic ratios of C:Ti (45% and 55%) were selected in order to adjust the matrix from an Fesbnd Ti-based composition to an Fesbnd C-based one. Fe percentages of 70, 60, 50 and 10 wt% were explored to increase the volume fraction of TiC in the clad. Results showed that chemical composition affects the TiC morphology as well as the TiC distribution and hardness profile in the clad. By increasing the C:Ti ratio from 45 at% to 55 at%, the volume fraction of the formed TiC increases. A higher volume fraction of TiC in the clad resulted in increases clad hardness. SEM and EDS analyses were used to characterize the phases in the clad, while increasing the C ratio promoted the formation of excess graphite in the Fe matrix.
Biocompatibility of a functionally graded bioceramic coating made by wide-band laser cladding.
Weidong, Zhu; Qibin, Liu; Min, Zheng; Xudong, Wang
2008-11-01
The application of plasma spray is the most popular method by which a metal-bioceramic surface composite can be prepared for the repair of biological hard-tissue, but this method has disadvantages. These disadvantages include poor coating-to-substrate adhesion, low mechanical strength, and brittleness of the coating. In the investigation described in this article, a gradient bioceramic coating was prepared on a Ti-6Al-4V titanium alloy surface using a gradient composite design and wide-band laser cladding techniques. Using a trilayer-structure composed of a substratum, an alloy and bioceramics, the coating was chemically and metallurgically bonded with the substratum. The coating, which contains beta-tricalcium phosphate and hydroxyapatite, showed favorable biocompatibility with the bone tissue and promoted in vivo osteogenesis.
Li, Huan-cai; Wang, Dian-gang; Chen, Chuan-zhong; Weng, Fei; Shi, Hua
2015-09-25
The bioceramic coating is fabricated on titanium alloy (Ti6Al4V) by laser cladding the preplaced wollastonite (CaSiO3) powders. The coating on Ti6Al4V is characterized by x-ray diffraction, scanning electron microscopy coupled with energy dispersive spectroscopy, and attenuated total reflection Fourier-transform infrared. The interface bonding strength is measured using the stretching method using an RGD-5-type electronic tensile machine. The microhardness distribution of the cross-section is determined using an indentation test. The in vitro bioactivity of the coating on Ti6Al4V is evaluated using the in vitro simulated body fluid (SBF) immersion test. The microstructure of the laser cladding sample is affected by the process parameters. The coating surface is coarse, accidented, and microporous. The cross-section microstructure of the ceramic layer from the bottom to the top gradually changes from cellular crystal, fine cellular-dendrite structure to underdeveloped dendrite crystal. The coating on Ti6Al4V is composed of CaTiO3, CaO, α-Ca2SiO4, SiO2, and TiO2. After soaking in the SBF solution, the calcium phosphate layer is formed on the coating surface.
Škarohlíd, Jan; Ashcheulov, Petr; Škoda, Radek; Taylor, Andrew; Čtvrtlík, Radim; Tomáštík, Jan; Fendrych, František; Kopeček, Jaromír; Cháb, Vladimír; Cichoň, Stanislav; Sajdl, Petr; Macák, Jan; Xu, Peng; Partezana, Jonna M; Lorinčík, Jan; Prehradná, Jana; Steinbrück, Martin; Kratochvílová, Irena
2017-07-25
In this work, we demonstrate and describe an effective method of protecting zirconium fuel cladding against oxygen and hydrogen uptake at both accident and working temperatures in water-cooled nuclear reactor environments. Zr alloy samples were coated with nanocrystalline diamond (NCD) layers of different thicknesses, grown in a microwave plasma chemical vapor deposition apparatus. In addition to showing that such an NCD layer prevents the Zr alloy from directly interacting with water, we show that carbon released from the NCD film enters the underlying Zr material and changes its properties, such that uptake of oxygen and hydrogen is significantly decreased. After 100-170 days of exposure to hot water at 360 °C, the oxidation of the NCD-coated Zr plates was typically decreased by 40%. Protective NCD layers may prolong the lifetime of nuclear cladding and consequently enhance nuclear fuel burnup. NCD may also serve as a passive element for nuclear safety. NCD-coated ZIRLO claddings have been selected as a candidate for Accident Tolerant Fuel in commercially operated reactors in 2020.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Xiaodong; Wu, Hong, E-mail: wuhong927@126.com
Metallic glass composite coatings Ti{sub 45}Cu{sub 41}Ni{sub 9}Zr{sub 5} and Ti{sub 45}Cu{sub 41}Ni{sub 6}Zr{sub 5}Sn{sub 3} (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni{sub 2}SnTimore » phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.« less
NASA Astrophysics Data System (ADS)
Devojno, O. G.; Feldshtein, E.; Kardapolava, M. A.; Lutsko, N. I.
2018-07-01
In the present paper, the influence of laser cladding conditions on the powder flow conditions, as well as the microstructure, phases and microhardness of an Ni-based self-fluxing alloy coating are described. The optimal granulations of a self-fluxing alloy powder and the relationship between the flow of powder of various fractions and the flow rate and pressure of the transporting gas have been determined. The laser beam speed, track pitch and the distance from the nozzle to the coated surface influence the height and width of single tracks. Regularities in the formation of microstructure under different cladding conditions are defined, as well as regularity of distribution of elements over the track depth and in the transient zone. The patterns of microhardness distribution over the track depth for different cladding conditions are found. These patterns as well as the optimal laser spot pitch allowed obtaining a uniform cladding layer.
NASA Astrophysics Data System (ADS)
Chien, C. S.; Hong, T. F.; Han, T. J.; Kuo, T. Y.; Liao, T. Y.
2011-01-01
The laser clad coating technique can help to produce metallurgical bonding with high bonding strength between the coating layer and the substrate, which has been gradually applied for hydroxyapatite (HA) coating on metallic substrates. In this study, HA powder is mixed with two different binders, namely water glass (WG) and polyvinyl alcohol (PVA), respectively, and is then clad on Ti-6Al-4V substrates using an Nd:YAG laser system under various processing conditions. The microstructure, chemical composition and hardness of the coating layer and transition layer of the various samples are then systematically explored. The experimental results show that the coating layers of the various samples all contain both cellular dendrites and rod-like piled structures, while the transition layers contain only cellular dendrites. For all samples, the coating layer consists mostly of CaTiO 3, Ca 2P 2O 7, CaO and HA phases, whereas the transition layer contains primarily CaTiO 3, Ca 2P 2O 7, Ti 3P, Ti and HA phases. In addition, the transition layer of the WG samples also contains SiO 2 and Si 2Ti phases. In all of the specimens, the transition layer has a higher average hardness than the substrate or coating layer. Moreover, the transition layer in the WG sample is harder than that in the PVA sample.
Nuclear reactor fuel element with vanadium getter on cladding
Johnson, Carl E.; Carroll, Kenneth G.
1977-01-01
A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.
Influence of laser radiation on structure and properties of steels and alloys
NASA Astrophysics Data System (ADS)
Tarasova, T.; Popova, E.
2013-03-01
In present study, and laser alloying of different steels and laser cladding of Ti and SiC powders mixtures was carried out, and microstructure, as well as microhardness profile and wear properties were examined. Research of the influence of lasers alloying modes on the elastic and plastic characteristics of the surface was conducted. As a result of chemical reactions in the cladded layer, a new phase (TiC) was synthesized during cladding process. The results showed that, in the clad layer, TiC was solidified to form dendrites in the clad zone. Produced coatings have high microhardness values in the upper and middle clad areas, about two time higher than clad matrix microhardness.
Surface Modifications with Laser Synthesized Mo Modified Coating
NASA Astrophysics Data System (ADS)
Sun, Lu; Chen, Hao; Liu, Bo
2013-01-01
Mg-Cu-Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg-Cu-Al-B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. Compared with TA15 alloy substrate, an improvement of wear resistance was observed for this composite coating due to the actions of fine grain, amorphous and hard phase strengthening.
Laser cladding of bioactive glass coatings.
Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J
2010-03-01
Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Laser Cladding of Ti-6Al-4V Alloy with Ti-Al2O3 Coating for Biomedical Applications
NASA Astrophysics Data System (ADS)
Mthisi, A.; Popoola, A. P. I.; Adebiyi, D. I.; Popoola, O. M.
2018-05-01
The indispensable properties of Ti-6Al-4V alloy coupled with poor tribological properties and delayed bioactivity make it a subject of interest to explore in biomedical application. A quite number of numerous coatings have been employed on titanium alloys, with aim to overcome the poor properties exhibited by this alloy. In this work, the possibility of laser cladding different ad-mixed powders (Ti - 5 wt.% Al2O3 and Ti - 8wt.% Al2O3) on Ti-6Al-4V at various laser scan speed (0.6 and 0.8 m/min) were investigated. The microstructure, phase constituents and corrosion of the resultant coatings were characterized by scanning electron microscope (SEM), Optical microscope, X-Ray diffractometer (XRD) and potentiostat respectively. The electrochemical behaviour of the produced coatings was studied in a simulated body fluid (Hanks solution). The microstructural results show that a defect free coating is achieved at low scan speed and ad-mixed of Ti-5 wt. % Al2O3. Cladding of Ti - Al2O3 improved the corrosion resistance of Ti-6Al-4V alloy regardless of varying neither scan speed nor ad-mixed percentage. However, Ti-5 wt.% Al2O3 coating produced at low scan speed revealed the highest corrosion resistance among the coatings due to better quality coating layer. Henceforth, this coating may be suitable for biomedical applications.
NASA Astrophysics Data System (ADS)
Yang, Yuling; Cao, Shiyin; Zhang, Shuai; Xu, Chuan; Qin, Gaowu
2017-07-01
Ti-Cu-N coatings with three different Cu contents on Ti-6Al-4V alloy (TC4) were obtained via laser cladding together with laser nitriding (LC/LN) technology. Phase constituents, microstructure, microhardness, and wear resistance of the coatings were investigated. The evolution of the coefficients of friction for the three coatings was measured under dry sliding conditions as a function of the revolutions until the coating failure. The results show that the coatings are mainly composed of TiN, CuTi3 and some TiO6 phases dispersed in the matrix. A good metallurgical bonding between the coating and substrate has been successfully obtained. The prepared Ti-Cu-N composite coatings almost doubly enhance the microhardness of the TC4 alloy and reduce the friction down to 1/4-1/2 of the TC4 alloy, and thus significantly improve the wear resistance. The coefficient of friction depends on the Cu content in the coating.
NASA Astrophysics Data System (ADS)
Yan, Hua; Zhang, Peilei; Yu, Zhishui; Li, Chonggui; Li, Ruidi
2012-07-01
To improve the wear resistance of copper components, laser surface cladding (LSC) was applied to deposit (Ti,W)C reinforced Ni-30Cu alloy composite coating on copper using a cladding interlayer of Ni-30Cu alloy by Nd:YAG laser. The microstructure and phases of the composite coating were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray energy dispersive microanalysis (EDX). Microhardness tester and pin-on-disc wear tester were employed to evaluate the hardness and dry-sliding wear resistance. The results show that crack-free composite coating with metallurgical bonding to the copper substrate is obtained. Phases identified in the (Ti,W)C-reinforced Ni-30Cu alloy composite layer are composed of TiWC2 reinforcements and (Ni,Cu) solid solution. TiWC2 reinforcements are distributed uniformly in the (Ni,Cu) solid solution matrix with dendritic morphology in the upper region and with particles in the mid-lower region. The microhardness and wear properties of the composite coating are improved significantly in comparison to the as-received copper substrate due to the addition of 50 wt% (Ti,W)C multicarbides.
Phase 1A Final Report for the AREVA Team Enhanced Accident Tolerant Fuels Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrell, Mike E.
In response to the Department of Energy (DOE) funded initiative to develop and deploy lead fuel assemblies (LFAs) of Enhanced Accident Tolerant Fuel (EATF) into a US reactor within 10 years, AREVA put together a team to develop promising technologies for improved fuel performance during off normal operations. This team consisted of the University of Florida (UF) and the University of Wisconsin (UW), Savannah River National Laboratory (SRNL), Duke Energy and Tennessee Valley Authority (TVA). This team brought broad experience and expertise to bear on EATF development. AREVA has been designing; manufacturing and testing nuclear fuel for over 50 yearsmore » and is one of the 3 large international companies supplying fuel to the nuclear industry. The university and National Laboratory team members brought expertise in nuclear fuel concepts and materials development. Duke and TVA brought practical utility operating experience. This report documents the results from the initial “discovery phase” where the team explored options for EATF concepts that provide enhanced accident tolerance for both Design Basis (DB) and Beyond Design Basis Events (BDB). The main driver for the concepts under development were that they could be implemented in a 10 year time frame and be economically viable and acceptable to the nuclear fuel marketplace. The economics of fuel design make this DOE funded project very important to the nuclear industry. Even incremental changes to an existing fuel design can cost in the range of $100M to implement through to LFAs. If this money is invested evenly over 10 years then it can take the fuel vendor several decades after the start of the project to recover their initial investment and reach a breakeven point on the initial investment. Step or radical changes to a fuel assembly design can cost upwards of $500M and will take even longer for the fuel vendor to recover their investment. With the projected lifetimes of the current generation of nuclear power plants large scale investment by the fuel vendors is difficult to justify. Specific EATF enhancements considered by the AREVA team were; Improved performance in DB and BDB conditions; Reduced release to the environment in a catastrophic accident; Improved performance during normal operating conditions; Improved performance if US reactors start to load follow; Equal or improved economics of the fuel; and Improvements to the fuel behavior to support future transportation and storage of the used nuclear fuel (UNF). In pursuit of the above enhancements, EATF technology concepts that our team considered were; Additives to the fuel pellets which included; Chromia doping to increase fission gas retention. Chromia doping has the potential to improve load following characteristics, improve performance of the fuel pellet during clad failure, and potentially lock up cesium into the fuel matrix; Silicon Carbide (SiC) Fibers to improve thermal heat transfer in normal operating conditions which also improves margin in accident conditions and the potential to lock up iodine into the fuel matrix; Nano-diamond particles to enhance thermal conductivity; Coatings on the fuel cladding; and Nine coatings on the existing Zircaloy cladding to increase coping time and reduce clad oxidation and hydrogen generation during accident conditions, as well as reduce hydrogen pickup and mitigate hydride reorientation in the cladding. To facilitate the development process AREVA adopted a formal “Gate Review Process” (GR) that was used to review results and focus resources onto promising technologies to reduce costs and identify the technologies that would potentially be carried forward to LFAs within a 10 year period. During the initial discovery phase of the project AREVA took the decision to be relatively hands off and allow our university and National Laboratory partners to be free thinking and consider options that would not be constrained by preconceived ideas from the fuel vendor. To counter this and to keep the partners focused, the GR process was utilized. During this GR process each of the team members presented their findings to a board made up of technical experts from utilities, fuel manufacturing experts, fuel technical experts, and fuel research and development (R&D) experts. During the initial 2 years of the project there were several major accomplishments. These accomplishments, along with the implications for successfully implementing EATF, are; The experimental spark plasma sintering process (SPS) process was successfully used to produce fuel pellets containing either 10% SiC whiskers or nano-diamond particles. The ability to use this process enables the thermal margin enhancements of the fuel additives to be realized. Without the SPS process, the conventional process cannot support adding pellet additives in the required quantities; Coatings of Ti2AlC were successfully applied to Zircaloy-4 cladding. Testing of Ti2AlC coatings at Loss of Cooling Accident (LOCA) conditions showed reduced cladding oxidation compared to present un-coated Zircaloy-4 cladding. This achievement allows the presently used cladding system to be retained so that the 10 year schedule can be met. Having to implement a new cladding material will extend the development schedule beyond 10 years; Several documents were produced to support future development, testing, and licensing of EATF, including a design requirements traceability matrix, a draft business plan, a draft test plan, a draft regulatory plan, and the acceptance criteria for lead fuel assembly insertion into a commercial reactor. This preparatory work lays the foundation for ensuring the future development plans address all the areas required to test, license, and manufacture the new EATF; and In addition, the high velocity oxy-fuel and electrophoretic deposition (EPD) coating application processes were dropped from further consideration due to their inability to meet manufacturing criteria. This allows the resources to be focused on the most promising EATF concepts identified. Future development opportunities that were identified during this work include; The use of SiC or diamond requires that a new pellet production technique (Spark Plasma Sintering), be developed. This entails investment in developing, proving and implementing a new commercial pellet production process. Development of the process to apply thinner coatings is required; Coatings cannot be too “thick” or they will displace a significant volume of water in the core resulting in reduced thermal hydraulic characteristics; Application of the coating at high temperature can affect the Zircaloy substrate. This will require the development and implementation of a new cladding coating manufacturing process; and Replace the Cold Spray (CS) cladding coating application with the Physical Vapor Deposition (PVD) process to eliminate duplication of work and provide greater control over coating thicknesses. This can result in a reduction in the final cycle economic penalty of coatings.« less
Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders
NASA Astrophysics Data System (ADS)
Diao, Yunhua; Zhang, Kemin
2015-10-01
In the present work, a TiC/TiB2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB2. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB2 intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens' corrosion property is clearly becoming better than that of the substrate.
Corrosive sliding wear behavior of laser clad Mo 2Ni 3Si/NiSi intermetallic coating
NASA Astrophysics Data System (ADS)
Lu, X. D.; Wang, H. M.
2005-05-01
Many ternary metal silicides such as W 2Ni 3Si, Ti 2Ni 3Si and Mo 2Ni 3Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2Ni 3Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2Ni 3Si/NiSi composite coating have a fine microstructure of Mo 2Ni 3Si primary dendrites and the interdendritic Mo 2Ni 3Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments.
Johnson, Carl E.; Crouthamel, Carl E.
1980-01-01
A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.
Metal/Dielectric Multilayers for High Resolution Imaging
2012-08-07
of a silicon waveguide coated by thin metal film. The proposed PWG structure consists of narrow silicon waveguide clad by gold film without top...where the waveguide thickness is 220nm and the lower oxide cladding is 2μm. The device consists of main waveguide (of waveguide width WSOI=450nm...evaporation, where 3nm thick titanium was used as adhesion layer before 40nm gold deposition took place. Finally, the samples were spun coated with
Method and etchant to join ag-clad BSSCO superconducting tape
Balachandran, Uthamalingam; Iyer, Anand N.; Huang, Jiann Yuan
1999-01-01
A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO.sub.3 followed by an aqueous solution of NH.sub.4 OH and H.sub.2 O.sub.2 for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO.sub.3 and to a combination of NH.sub.4 OH and H.sub.2 O.sub.2 to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed.
NASA Astrophysics Data System (ADS)
Lu, Xiao-Long; Liu, Xiu-Bo; Yu, Peng-Cheng; Zhai, Yong-Jie; Qiao, Shi-Jie; Wang, Ming-Di; Wang, Yong-Guang; Chen, Yao
2015-11-01
Laser clad Ni60/h-BN self-lubricating anti-wear composite coating on 304 stainless steel were heat treated at 600 °C (stress relief annealing) for 1 h and 2 h, respectively. Effects of the phase compositions, microstructure, microhardness, nano-indentation and tribological properties of the composite coatings with and without heat treatment had been investigated systemically. Results indicated that three coatings mainly consist of the matrix γ-(Ni, Fe) solid solution, the CrB ceramic phases and the h-BN lubricating phases. The maximum microhardness of the coatings was first increased from 667.7 HV0.5 to 765.0 HV0.5 after heat treatment for 1 h, and then decreased to 698.3 HV0.5 after heat treatment for 2 h. The hardness of γ-(Ni, Fe) solid solution without heat treatment and after heat treatment 1 h and 2 h were 5.09 GPa, 7.20 GPa and 3.77 GPa, respectively. Compared with the coating without heat treatment, the friction coefficients of the coating after heat treatment were decreased obviously. Effects of the heat treatment time on friction coefficient were negligible, but were significant on wear volume loss. Comparatively speaking, the laser clad self-lubricating anti-wear composite coating after heat treatment for 1 h presented the best anti-wear and friction reduction properties.
Microstructure and tribological properties of TiAg intermetallic compound coating
NASA Astrophysics Data System (ADS)
Guo, Chun; Chen, Jianmin; Zhou, Jiansong; Zhao, Jierong; Wang, Linqian; Yu, Youjun; Zhou, Huidi
2011-10-01
TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.
Laser Cladding of Composite Bioceramic Coatings on Titanium Alloy
NASA Astrophysics Data System (ADS)
Xu, Xiang; Han, Jiege; Wang, Chunming; Huang, Anguo
2016-02-01
In this study, silicon nitride (Si3N4) and calcium phosphate tribasic (TCP) composite bioceramic coatings were fabricated on a Ti6Al4V (TC4) alloy using Nd:YAG pulsed laser, CO2 CW laser, and Semiconductor CW laser. The surface morphology, cross-sectional microstructure, mechanical properties, and biological behavior were carefully investigated. These investigations were conducted employing scanning electron microscope, energy-dispersive x-ray spectroscopy, and other methodologies. The results showed that both Si3N4 and Si3N4/TCP composite coatings were able to form a compact bonding interface between the coating and the substrate by using appropriate laser parameters. The coating layers were dense, demonstrating a good surface appearance. The bioceramic coatings produced by laser cladding have good mechanical properties. Compared with that of the bulk material, microhardness of composite ceramic coatings on the surface significantly increased. In addition, good biological activity could be obtained by adding TCP into the composite coating.
Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding
NASA Astrophysics Data System (ADS)
Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang
2016-05-01
There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.
NASA Astrophysics Data System (ADS)
Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.
2017-09-01
Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.
NASA Astrophysics Data System (ADS)
Liu, Jian; Li, Jia; Cheng, Xu; Wang, Huaming
2018-02-01
In this paper, the process of coating AerMet100 steel on forged 300M steel with laser cladding was investigated, with a thorough analysis of the chemical composition, microstructure, and hardness of the substrate and the cladding layer as well as the transition zone. Results show that the composition and microhardness of the cladding layer are macroscopically homogenous with the uniformly distributed bainite and a small amount of retained austenite in martensite matrix. The transition zone, which spans approximately 100 μm, yields a gradual change of composition from the cladding layer to 300M steel matrix. The heat-affected zone (HAZ) can be divided into three zones: the sufficiently quenched zone (SQZ), the insufficiently quenched zone (IQZ), and the high tempered zone (HTZ). The SQZ consists of martensitic matrix and bainite, as for the IQZ and the HTZ the microstructures are martensite + tempered martensite and tempered martensite + ferrite, respectively. These complicated microstructures in the HAZ are caused by different peak heating temperatures and heterogeneous microstructures of the as-received 300M steel.
Zhuang, Qiaoqiao; Zhang, Peilei; Li, Mingchuan; Yan, Hua; Yu, Zhishui; Lu, Qinghua
2017-01-01
The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti2Ni and Ti5Si3 phases exist in all coatings, and some samples have TiSi2 phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness)) and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti2Ni and reinforcement phases of Ti5Si3 and TiSi2, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO2, Al2O3 and SiO2. Phases Ti2Ni, Ti5Si3, TiSi2 and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding. PMID:29084174
Microfabricated bragg waveguide
Fleming, James G.; Lin, Shawn-Yu; Hadley, G. Ronald
2004-10-19
A microfabricated Bragg waveguide of semiconductor-compatible material having a hollow core and a multilayer dielectric cladding can be fabricated by integrated circuit technologies. The microfabricated Bragg waveguide can comprise a hollow channel waveguide or a hollow fiber. The Bragg fiber can be fabricated by coating a sacrificial mandrel or mold with alternating layers of high- and low-refractive-index dielectric materials and then removing the mandrel or mold to leave a hollow tube with a multilayer dielectric cladding. The Bragg channel waveguide can be fabricated by forming a trench embedded in a substrate and coating the inner wall of the trench with a multilayer dielectric cladding. The thicknesses of the alternating layers can be selected to satisfy the condition for minimum radiation loss of the guided wave.
Method and etchant to join Ag-clad BSSCO superconducting tape
Balachandran, U.; Iyer, A.N.; Huang, J.Y.
1999-03-16
A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO{sub 3} followed by an aqueous solution of NH{sub 4}OH and H{sub 2}O{sub 2} for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO{sub 3} and to a combination of NH{sub 4}OH and H{sub 2}O{sub 2} to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed. 3 figs.
Microstructure and Corrosion Behavior of Laser Synthesized Cobalt Based Powder on Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Adesina, O. S.; Popoola, A. P. I.; Pityana, S. L.; Oloruntoba, D. T.
2018-05-01
The corrosion behavior of titanium alloys when used for various dynamic offshore components has been a major concern of titanium drilling risers in deepwater energy extraction. A way of achieving specified requirement is the development of coatings suitable to protect the base material against corrosion. In this work, laser cladding technique which is known as a leading edge due to its distinctive properties and outcomes was used in synthesizing Co-based powder on titanium alloy. The processing parameters used were laser power of 900W; scan speed of 0.6 to 1.2 m/min; powderfeedrate1.0g/min;beamspotsize3mm;gasflowrate1.2L/min.The effects of cobalt addition and laser parameters on corrosion behavior of laser clad Ti6AL4V coating in 0.5M sulfuric medium were investigated using linear potentiodynamic polarization. The changes in microstructure and corrosion behavior were analyzed using scanning electron microscopy (SEM) while the X –ray diffraction (XRD) indicates the intermetallics in the coatings. Results showed that the coatings displayed good metallurgical bonding with dendritic formations between the coatings and the substrate. The anodic current density increased with lower scan speed. However, the corrosion current densities of laser-clad samples were lower than Ti6Al4V alloy.
Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings
Kong, Dejun; Song, Renguo
2018-01-01
Al-TiC-CeO2 composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV0.2. In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance. PMID:29373555
Microstructures and Properties of Laser Cladding Al-TiC-CeO₂ Composite Coatings.
He, Xing; Kong, Dejun; Song, Renguo
2018-01-26
Al-TiC-CeO₂ composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV 0.2 . In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance.
Outer skin protection of columbium Thermal Protection System (TPS) panels
NASA Technical Reports Server (NTRS)
Culp, J. D.
1973-01-01
A coated columbium alloy material system 0.04 centimeter thick was developed which provides for increased reliability to the load bearing character of the system in the event of physical damage to and loss of the exterior protective coating. The increased reliability to the load bearing columbium alloy (FS-85) was achieved by interposing an oxidation resistant columbium alloy (B-1) between the FS-85 alloy and a fused slurry silicide coating. The B-1 alloy was applied as a cladding to the FS-85 and the composite was fused slurry silicide coated. Results of material evaluation testing included cyclic oxidation testing of specimens with intentional coating defects, tensile testing of several material combinations exposed to reentry profile conditions, and emittance testing after cycling of up to 100 simulated reentries. The clad material, which was shown to provide greater reliability than unclad materials, holds significant promise for use in the thermal protection system of hypersonic reentry vehicles.
Compatibility studies on Mo-coating systems for nuclear fuel cladding applications
NASA Astrophysics Data System (ADS)
Koh, Huan Chin; Hosemann, Peter; Glaeser, Andreas M.; Cionea, Cristian
2017-12-01
To improve the safety factor of nuclear power plants in accident scenarios, molybdenum (Mo), with its high-temperature strength, is proposed as a potential fuel-cladding candidate. However, Mo undergoes rapid oxidation and sublimation at elevated temperatures in oxygen-rich environments. Thus, it is necessary to coat Mo with a protective layer. The diffusional interactions in two systems, namely, Zircaloy-2 (Zr2) on a Mo tube, and iron-chromium-aluminum (FeCrAl) on a Mo rod, were studied by aging coated Mo substrates in high vacuum at temperatures ranging from 650 °C to 1000° for 1000 h. The specimens were characterized using scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and nanoindentation. In both systems, pores in the coating increased in size and number with increasing temperature over time, and cracks were also observed; intermetallic phases formed between the Mo and its coatings.
Structure for monolithic optical circuits
NASA Technical Reports Server (NTRS)
Evanchuk, Vincent L. (Inventor)
1984-01-01
A method for making monolithic optical circuits, with related optical devices as required or desired, on a supporting surface (10) consists of coating the supporting surface with reflecting metal or cladding resin, spreading a layer of liquid radiation sensitive plastic (12) on the surface, exposing the liquid plastic with a mask (14) to cure it in a desired pattern of light conductors (16, 18, 20), washing away the unexposed liquid plastic, and coating the conductors thus formed with reflective metal or cladding resin. The index of refraction for the cladding (22) is selected to be lower than for the conductors so that light in the conductors will be reflected by the interface with the cladding. For multiple level conductors, as where one conductor must cross over another, the process may be repeated to fabricate a bridge with columns (24, 26) of conductors to the next level, and conductor (28) between the columns. For more efficient transfer of energy over the bridge, faces at 45.degree. may be formed to reflect light up and across the bridge.
NASA Astrophysics Data System (ADS)
Pu, Yuping; Guo, Baogang; Zhou, Jiansong; Zhang, Shitang; Zhou, Huidi; Chen, Jianmin
2008-12-01
TiC, TiN, and SiC reinforced Ti 3Al intermetallic matrix composite (IMC) coatings were in situ synthesized on a pure Ti substrate by laser cladding. It was found that the surface hardness and the wear resistance of the Ti 3Al coating were improved by the formation of these Ti 3Al IMC coatings. The surface hardness and the wear resistance of the TiC/Ti 3Al IMC coatings increased with the increasing volume fraction of TiC powder. Under the same dry sliding test conditions, the wear resistance of TiC, TiN, and SiC reinforced Ti 3Al IMC coatings with 40 vol.% reinforced powder was in the following order: TiN/Ti 3Al IMC coating > TiC/Ti 3Al IMC coating > SiC/Ti 3Al IMC coating. It should be noted that both the TiC/Ti 3Al IMC coating with 40 vol.% TiC powder and the TiN/Ti 3Al coating with 40 vol.% TiN powder showed excellent wear resistance under 5 N normal load.
Ceramics reinforced metal base composite coatings produced by CO II laser cladding
NASA Astrophysics Data System (ADS)
Yang, Xichen; Wang, Yu; Yang, Nan
2008-03-01
Due to the excellent performance in high strength, anti-temperature and anti-wear, ceramics reinforced metal base composite material was used in some important fields of aircraft, aerospace, automobile and defense. The traditional bulk metal base composite materials are the expensive cost, which is limited in its industrial application. Development of laser coating of ceramics reinforced metal base composite is very interesting in economy. This paper is focused on three laser cladding ceramics coatings of SiC particle /Al matrix , Al IIO 3 powder/ Al matrix and WC + Co/mild steel matrix. Powder particle sizes are of 10-60μm. Chemical contents of aluminum matrix are of 3.8-4.0% Cu, 1.2-1.8% Mg, 0.3-0.99% Mn and balance Al. 5KW CO II laser, 5 axes CNC table, JKF-6 type powder feeder and co-axis feeder nozzle are used in laser cladding. Microstructure and performance of laser composite coatings have been respectively examined with OM,SEM and X-ray diffraction. Its results are as follows : Microstructures of 3C-,6H- and 5H- SiC particles + Al + Al 4SiC 4 + Si in SiC/Al composite, hexagonal α-Al IIO 3 + cubic γ-Al IIO 3 + f.c.c Al in Al IIO 3 powder/ Al composite and original WC particles + separated WC particles + eutectic WC + γ-Co solid solution + W IIC particles in WC + Co/steel coatings are respectively recognized. New microstructures of 5H-SiC in SiC/Al composite, cubic γ-Al IIO 3 in Al IIO 3 composite and W IIC in WC + Co/ steel composite by laser cladding have been respectively observed.
Advanced Optical Fibers for High power Fiber lasers
2015-08-24
crystal fiber cladding . Advanced Optical Fibers for High Power Fiber Lasers http://dx.doi.org/10.5772/58958 223 lengths above the second-order mode cut...brightness multimode diode lasers for a given pump waveguide dimen‐ sion. In conventional double- clad fibers, low-index polymer coatings are typically used to...was below 0.2. The fiber was passive and there was no laser demonstration in this first attempt. The first cladding - pumping demonstration in an
Heat suppression of the fiber coating on a cladding light stripper in high-power fiber laser.
Yan, Ming-Jian; Wang, Zheng; Meng, Ling-Qiang; Yin, Lu; Han, Zhi-Gang; Shen, Hua; Wang, Hai-Lin; Zhu, Ri-Hong
2018-01-20
We present a theoretical model for the thermal effect of the fiber coating on a high-power cladding light stripper, which is fabricated by chemical etching. For the input and output of the fiber coating, a novel segmented corrosion method and increasing attenuation method are proposed for heat suppression, respectively. The relationship between the attenuation and temperature rise of the fiber coating at the output is experimentally demonstrated. The temperature distribution of the fiber coating at the input as well as the return light power caused by scattering are measured for the etched fiber with different surface roughness values. The results suggest that the rise in temperature is primarily caused by the scattering light propagating into the coating. Finally, an attenuation of 27 dB is achieved. At a room temperature of 23°C and input pump power of 438 W, the highest temperature of the input fiber coating decreases from 39.5°C to 27.9°C by segmented corrosion, and the temperature rise of the output fiber coating is close to 0.
NASA Astrophysics Data System (ADS)
Jebali, M. A.; Basso, E. T.
2018-02-01
Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.
Effect of mo Content on Microstructure and Properties of Laser Cladding Fe-BASED Alloy Coatings
NASA Astrophysics Data System (ADS)
Xiaoli, Ma; Kaiming, Wang; Hanguang, Fu; Jiang, Ju; Yongping, Lei; Dawei, Yi
Mo alloying Fe-based coating was fabricated on the surface of Q235 steel by using 6 kW fiber laser. The effects of Mo additions on the microstructure, microhardness and wear resistance of the cladding layer were studied by means of optical microscopy (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS), Vickers hardness tester and M-200 ring block wear tester. Research results showed that the microstructure of Mo-free cladding layer mainly consisted of matrix and eutectic structure. The matrix was martensite and retained austenite. The eutectic structure mainly consisted of M2(B,C) and M7(C,B)3 type of eutectic borocarbides. With the increase of Mo content, there was no significant change in the matrix. However, the eutectic structure was transformed from M2(B,C)- and M7(C,B)3-type borocarbides into M2(B,C)-, M7(C,B)3- and M23(C,B)6-type borocarbides. When the content of Mo is 4.0wt.%, the Mo2C-type carbide appear on the matrix, and parts of the borocarbide networks are broken. The change of microhardness of the cladding layer was not obvious with the increase of Mo content. But the increase of Mo content increases the wear resistance of the cladding layer. The wear resistance of cladding layer with 4.0wt.% Mo is 2.4 times as much as the cladding layer which is Mo-free.
NASA Astrophysics Data System (ADS)
Yang, Liuqing; Li, Zhiyong; Zhang, Yingqiao; Wei, Shouzheng; Liu, Fuqiang
2018-03-01
Al + (Ti + B4C) composite coating was cladded on AZ91D magnesium alloy by a low power pulsed Nd-YAG laser. The Ti+B4C mixed powder is with the ratio of Ti: B4C = 5:1, which was then mixed with Al powder by weight fraction of 10%, 15% and 20%, respectively. Scanning electron microscopy, energy dispersive spectrometer and X-ray diffraction were used to study the microstructure, chemical composition and phase composition of the coating. Results showed that the coating had satisfied metallurgical bonding with the magnesium substrate. Al3Mg2, Al12Mg17, Al3Ti and TiC were formed by in-situ reaction. The coatings have micro-hardness of 348HV, which is about 5-6 times higher than that of AZ91D. The wear resistance and corrosion resistance of the coatings are enhanced with the addition of the mixed powder.
NASA Astrophysics Data System (ADS)
Tang, D. M.; Zhang, D. C.; Peng, W.; Luo, Z. C.; Wu, X. Q.; Wang, Y. M.; Lin, J. G.
2014-02-01
A thin strip of a Zr-based alloy with a composition of Zr60Cu25Fe5Al10 (in atom percent) was used as a raw material, and the composite coatings containing Zr-based amorphous phase and crystallites on Ti substrate were fabricated by a one-step laser cladding method without protection. The microstructure, phase constitution, microhardness and wear properties of the coatings were investigated. The results indicate that the microstructure of the coatings is strongly dependent on the laser scanning speed under the conditions of the laser power of 1300 W and laser beam diameter of 6 mm, and the composite coating mainly containing amorphous phase with a small amount of the crystallites can be obtained at the laser scanning speed of 10 mm/s. The composite coating exhibits much higher microhardness than the pure Ti substrate, and thus it behaves superior wear resistance in comparison with the substrate.
Physical and Microstructure Properties of MgAl2C2 Matrix Composite Coating on Titanium
NASA Astrophysics Data System (ADS)
Li, Peng
2014-12-01
This work is based on the dry sliding wear of the MgAl2C2-TiB2-FeSi composite coating deposited on a pure Ti using a laser cladding technique. Scanning electron microscope images indicate that the nanocrystals and amorphous phases are produced in such coating. X-ray diffraction result indicated that such coating mainly consists of MgAl2C2, Ti-B, Ti-Si, Fe-Al, Ti3SiC2, TiC and amorphous phases. The high resolution transmission electron microscope image indicated that the TiB nanorods were produced in the coating, which were surrounded by other fine precipitates, favoring the formation of a fine microstructure. With increase of the laser power from 0.85 kW to 1.00 kW, the micro-hardness decreased from 1350 1450 HV0.2 to 1200 1300 HV0.2. The wear volume loss of the laser clad coating was 1/7 of pure Ti.
Electroplating chromium on CVD SiC and SiCf-SiC advanced cladding via PyC compatibility coating
NASA Astrophysics Data System (ADS)
Ang, Caen; Kemery, Craig; Katoh, Yutai
2018-05-01
Electroplating Cr on SiC using a pyrolytic carbon (PyC) bond coat is demonstrated as an innovative concept for coating of advanced fuel cladding. The quantification of coating stress, SEM morphology, XRD phase analysis, and debonding test of the coating on CVD SiC and SiCf-SiC is shown. The residual tensile stress (by ASTM B975) of electroplated Cr is > 1 GPa prior to stress relaxation by microcracking. The stress can remove the PyC/Cr layer from SiC. Surface etching of ∼20 μm and roughening to Ra > 2 μm (by SEM observation) was necessary for successful adhesion. The debonding strength (by ASTM D4541) of the coating on SiC slightly improved from 3.6 ± 1.4 MPa to 5.9 ± 0.8 MPa after surface etching or machining. However, this improvement is limited due to the absence of an interphase, and integrated CVI processing may be required for further advancement.
CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers.
Boyd, Keiron; Simakov, Nikita; Hemming, Alexander; Daniel, Jae; Swain, Robert; Mies, Eric; Rees, Simon; Andrew Clarkson, W; Haub, John
2016-04-10
We present and characterize a simple CO2 laser processing technique for the fabrication of compact all-glass optical fiber cladding light strippers. We investigate the cladding light loss as a function of radiation angle of incidence and demonstrate devices in a 400 μm diameter fiber with cladding losses of greater than 20 dB for a 7 cm device length. The core losses are also measured giving a loss of <0.008±0.006 dB/cm. Finally we demonstrate the successful cladding light stripping of a 300 W laser diode with minimal heating of the fiber coating and packaging adhesives.
Cyclic furnace oxidation of clad WI-52 systems at 1040 C and 1090 C
NASA Technical Reports Server (NTRS)
Gedwill, M. A.
1972-01-01
Cyclic furnace oxidation studies were conducted on the cobalt alloy WI-52 clad with Ni-30Cr, Fe-25Cr-4A1, and Ni-20Cr-4A1 foils (0.051 to 0.254 mm thick). Tests as long as 400 hours using 1- and 20-hour cycles showed that the Ni-Cr- and Fe-Cr-A1 claddings were about equally protective at both temperatures. The protective ability of these alloys was influenced by exposure temperature and cladding thickness. At both temperatures, they protected WI-52 about as well as, or better than, a widely used commercial aluminide coating. The Ni-Cr-Al claddings did not protect WI-52 nearly as well. Interdiffusion generally influenced the oxidation behavior of all clad WI-52 systems.
Harman, C.G.; O'Bannon, L.S.
1958-07-15
A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.
NASA Astrophysics Data System (ADS)
Lin, Yinghua; Yao, Jianhua; Lei, Yongping; Fu, Hanguang; Wang, Liang
2016-11-01
TiB2 particle and TiB short fiber reinforced titanium matrix composite coatings were prepared utilizing in situ synthesized technique by laser cladding on the surface of Ti6Al4V alloy. Through the experiment, it was found that the surface of the single-track coatings appeared in the depression, but it can be improved by laser track overlapping. With the increase of laser power density, the amount of TiB short fiber was increased, and the distribution of TiB2 and TiB became more uniform from the top to bottom. The micro-hardness of TiB2/TiB coating showed a gradient decreasing trend, and the average micro-hardness of the coatings was two-fold higher than that of the substrate. Due to the strengthening effect of TiB2 particle and TiB short fiber, the wear volume loss of the center of the coating was approximately 30% less than that of the Ti-6Al-4V substrate, and the wear mechanism of the coating was mild fatigue particle detachment.
Zhang, Peilei; Li, Mingchuan; Yu, Zhishui
2018-05-23
Three Ni-Cr-Si coatings were synthesized on the surface of copper by laser cladding. The microstructures of the coatings were characterized by optical microscopy (OM), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS). According to the analysis results of phase compositions, Gibbs free energy change and microstructures, the phases of three coatings appeared were Cr₃Si+γ-Ni+Cu ss (Coating 1, Ni-26Cr-29Si), Cr₆Ni 16 Si₇+Ni₂Si+Cu ss (Coating 2, Ni-10Cr-30Si) and Cr₃Ni₅Si₂+Cr₂Ni₃+Cu ss (Coating 3, Ni-29Cr-16Si). The crystal growth in the solidification process was analyzed with a modified model, which is a combination of Kurz-Giovanola-Trivedi (KGT) and Lipton-Kurz-Trivedi (LKT) models. The dendrite tip undercooling in Coating 2 was higher than those of Coating 1 and Coating 3. Well-developed dendrites were found in Coating 2. A modification of Hunt’s model was adopted to describe the morphological differences in the three coatings. The results show that Coating 1 was in the equiaxed dendrite region, while Coatings 2 and 3 were in the columnar dendrite region. The average friction coefficients of the three coatings were 0.45, 0.5 and 0.4, respectively. Obvious plastic deformation could be found in the subsurface zone of Coatings 2 and 3.
Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heuser, Brent; Stubbins, James; Kozlowski, Tomasz
The DOE NEUP sponsored IRP on accident tolerant fuel (ATF) entitled Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel involved three academic institutions, Idaho National Laboratory (INL), and ATI Materials (ATI). Detailed descriptions of the work at the University of Illinois (UIUC, prime), the University of Florida (UF), the University of Michigan (UMich), and INL are included in this document as separate sections. This summary provides a synopsis of the work performed across the IRP team. Two ATF solution pathways were initially proposed, coatings on monolithic Zr-based LWR cladding material and selfhealing modifications of Zr-based alloys.more » The coating pathway was extensively investigated, both experimentally and in computations. Experimental activities related to ATF coatings were centered at UIUC, UF, and UMich and involved coating development and testing, and ion irradiation. Neutronic and thermal hydraulic aspects of ATF coatings were the focus of computational work at UIUC and UMich, while materials science aspects were the focus of computational work at UF and INL. ATI provided monolithic Zircaloy 2 and 4 material and a binary Zr-Y alloy material. The selfhealing pathway was investigated with advanced computations only. Beryllium was identified as a valid self-healing additive early in this work. However, all attempts to fabricate a Zr-Be alloy failed. Several avenues of fabrication were explored. ATI ultimately declined our fabrication request over health concerns associated with Be (we note that Be was not part of the original work scope and the ATI SOW). Likewise, Ames Laboratory declined our fabrication request, citing known litigation dating to the 1980s and 1990s involving the U.S. Federal government and U.S. National Laboratory employees involving the use of Be. Materion (formerly, Brush Wellman) also declined our fabrication request, citing the difficulty in working with a highly reactive Zr and Be. International fabrication options were explored in Europe and Asia, but this proved to be impractical, if not impossible. Consequently, experimental investigation of the Zr-Be binary system was dropped and exploration binary Zr-Y binary system was initiated. The motivation behind the Zr-Y system is the known thermodynamic stability of yttria over zirconia.« less
NASA Astrophysics Data System (ADS)
Wang, Mi-qi; Zhou, Ze-hua; Wu, Lin-tao; Ding, Ying; Wang, Ze-hua
2018-04-01
The precursor carbonization method was first applied to prepare W-C compound powder to perform the in-situ synthesis of the WC phase in a Fe-based alloy coating. The in-situ formation mechanism during the cladding process is discussed in detail. The results reveal that fine and obtuse WC particles were successfully generated and distributed in Fe-based alloy coating via Fe/W-C compound powders. The WC particles were either surrounded by or were semi-enclosed in blocky M7C3 carbides. Moreover, net-like structures were confirmed as mixtures of M23C6 and α-Fe; these structures were transformed from M7C3. The coarse herringbone M6C carbides did not only derive from the decomposition of M7C3 but also partly originated from the chemical reaction at the α-Fe/M23C6 interface. During the cladding process, the phase evolution of the precipitated carbides was WC → M7C3 → M23C6 + M6C.
Zumwalt, L.R.
1961-08-01
Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)
Method of making and structure for monolithic optical circuits
NASA Technical Reports Server (NTRS)
Evanchuk, Vincent L. (Inventor)
1983-01-01
A method for making monolithic optical circuits, with related optical devices as required or desired, on a supporting surface (10) consists of coating the supporting surface with reflecting metal or cladding resin, spreading a layer of liquid radiation senstivie plastic (12) on the surface, exposing the liquid plastic with a mask (14) to cure it in a desired pattern of light conductors (16, 18, 20), washing away the unexposed liquid plastic, and coating the conductors thus formed with reflective metal or cladding resin. The index of refraction for the cladding (22) is selected to be lower than for the conductors so that light in the conductors will be reflected by the interface with the cladding. For multiple level conductors, as where one conductor must cross over another, the process may be repeated to fabricate a bridge with columns (24, 26) of conductors to the next level, and conductor (28) between the columns. For more efficient transfer of energy over the bridge, faces at 45.degree. may be formed to reflect light up and across the bridge.
Microstructure and Properties of (TiB2 + NiTi)/Ti Composite Coating Fabricated by Laser Cladding
NASA Astrophysics Data System (ADS)
Lin, Yinghua; Lei, Yongping; Fu, Hanguang; Lin, Jian
2015-10-01
Agglomerated TiB2 particle and network-like structure-reinforced titanium matrix composite coatings were prepared by laser cladding of the Ni + TiB2 + Ti preplaced powders on Ti-6Al-4V alloy. The network-like structure mainly consisted of NiTi and Ni3Ti. Through the experiment, it was found that the size of agglomerated particle gradually decreased with the increase of Ti content, but the number of the network-like structure first increased and then disappeared. In-situ reaction competition mechanism and the formation of network-like structure were discussed. The average micro-hardness gradually decreased with the increase of Ti content, but the average fracture toughness gradually increased. Meanwhile, the wear resistance of the coatings is higher than that of the substrate, but the wear loss of the coatings is gradually increased with the increase of Ti content.
Microstructure and wear properties of laser clad Ti2Ni3Si/Ni3Ti multiphase intermetallic coatings
NASA Astrophysics Data System (ADS)
Wang, H. M.; Tang, H. B.; Cai, L. X.; Cao, F.; Zhang, L. Y.; Yu, R. L.
2005-05-01
Wear resistant Ti2Ni3Si/Ni3Ti multiphase intermetallic coatings with a microstructure consisting of Ti2Ni3Si primary dendrites and interdendritic Ti2Ni3Si/Ni3Ti eutectic were fabricated on a substrate of 0.2% C plain carbon steel by a laser cladding process with Ti-Ni-Si alloy powders. The Ti2Ni3Si/Ni3Ti coatings have excellent wear resistance and a low coefficient of friction under metallic dry sliding wear test conditions with hardened 0.45% C carbon steel as the silide-mating counterpart. The excellent tribological properties of the coating are attributed to the high hardness, strong covalent-dominant atomic bonds of the ternary metal silicide Ti2Ni3Si and to the high yield strength and strong yield anomaly of the intermetallic compound Ni3Ti.
Oxidation performance of platinum-clad Mo-47Re alloy
NASA Technical Reports Server (NTRS)
Clark, Ronald K.; Wallace, Terryl A.
1994-01-01
The alloy Mo-47Re has favorable mechanical properties at temperatures above 1400 C, but it undergoes severe oxidation when used in air with no protective coating. To shield the alloy from oxidation, platinum cladding has been evaluated. The unprotected alloy undergoes catastrophic oxidation under static and dynamic oxidation conditions. The platinum cladding provides good protection from static and dynamic oxidation for moderate times at 1260 C. Samples tested for longer times under static oxidation conditions experienced severe oxidation. The data suggest that oxidation results from the transport of oxygen through the grain boundaries and through the pinhole defects of the platinum cladding.
NASA Astrophysics Data System (ADS)
Wan, M. Q.; Shi, J.; Lei, L.; Cui, Z. Y.; Wang, H. L.; Wang, X.
2018-04-01
Ni- and Fe-based composite coatings were laser cladded on 40Cr steel to improve the surface mechanical property and corrosion resistance, respectively. The microstructure and phase composition were analyzed by x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) equipped with an energy-dispersive spectrometer (EDS). The micro-hardness, tribological properties and electrochemical corrosion behavior of the coatings were evaluated. The results show that the thickness of both the coatings is around 0.7 mm, the Ni-based coating is mainly composed of γ-(Ni, Fe), FeNi3, Ni31Si12, Ni3B, CrB and Cr7C3, and the Fe-based coating is mainly composed of austenite and (Fe, Cr)7C3. Micro-hardness of the Ni-based composite coating is about 960 HV0.3, much higher than that of Fe-based coating (357.4 HV0.3) and the 40Cr substrate (251 HV0.3). Meanwhile, the Ni-based composite coating possesses better wear resistance than the Fe-based coating validated by the worn appearance and the wear loss. Electrochemical results suggested that Ni-based coating exhibited better corrosion resistance than the Fe-based coating. The 40Cr substrate could be well protected by the Ni-based coating.
NASA Astrophysics Data System (ADS)
Yang, Sen; Liu, Wenjin; Zhong, Minlin
2003-03-01
Different weight ratio of nickel based alloy, titanium and graphite powders were mixed and then laser cladded onto carbon steel substrate to produce a surface metal matrix composite layer. The experimental results showed that the coating was uniform, continuous and free of cracks. An excellent bonding between the coating and the carbon steel substrate was ensured by the strong metallurgical interface. The microstructures of the coating were mainly composed of γ-Ni dendrite, M23C6, a small amount of CrB, and dispersed TiC particles, and the in-situ generated TiCp/matrix interfaces were clean and free from deleterious surface reaction. The morphologies of TiC particles changed from the global, cluster to flower-like shape, the volume fraction of TiCp and the microhardness gradually increased from the bottom to the top of the coating layer, and the maximum microhardness of the coating was about HV0.2850, 3 times larger than that of steel substrate. The volume fraction of TiC particles increased with increasing of volume fraction of Ti and C too.
TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding
Liu, Yanhui; Qu, Weicheng; Su, Yu
2016-01-01
In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α-Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage. PMID:28773934
NASA Astrophysics Data System (ADS)
Murzakov, M. A.; Chirikov, S. N.; Markushov, Y. V.
2016-09-01
The paper is aimed at research of coatings, which are achieved by means of laser cladding with additives of nanoparticles of high-melting compounds in form of tungsten carbide and tantalum (WC and TaC). In the course of experiment, various ceramic powder concentrations were tested. Main technological characteristics were determined. Power density amounted to 0.68-0.98 MW/cm2. During the coating wear resistance measurement, it was discovered that increase in nanopowder concentration extended wear resistance of coating 2-6 times. Wear resistance measurement and wear coefficient calculation were performed using Brinell-Howarth method. The load was 15 N, load time was 10 minutes. Optical metallographic microscope Neophot-30 was used to study microstructure of the deposited coatings. To reveal microstructure of the deposited coatings, the samples were exposed to chemical etching. Elemental composition of the samples was determined by the methods of X- ray microanalysis in testing solution using electron microscope EVO-50 under acceleration voltage 10-20 kV (probe current 5-50 nA) using energy- and wavelength-dispersive spectrometers.
TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding.
Liu, Yanhui; Qu, Weicheng; Su, Yu
2016-09-30
In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α -Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.
NASA Astrophysics Data System (ADS)
Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying; Zhong, Chuan; Dong, Xinyong; Tong, Limin
2016-07-01
A fiber optic relative humidity (RH) sensor based on the tilted fiber Bragg grating (TFBG) coated with graphene oxide (GO) film was presented. Amplitudes of the cladding mode resonances of the TFGB varies with the water sorption and desorption processes of the GO film, because of the strong interactions between the excited backward propagating cladding modes and the GO film. By detecting the transmission intensity changes of the cladding mode resonant dips at the wavelength of 1557 nm, the maximum sensitivity of 0.129 dB/%RH with a linear correlation coefficient of 99% under the RH range of 10-80% was obtained. The Bragg mode of TFBG can be used as power or wavelength references, since it is inherently insensitive to RH changes. In addition, the proposed humidity sensor shows a good performance in repeatability and stability.
Development of Protective Coatings for Chromium-Base Alloys
NASA Technical Reports Server (NTRS)
English, J. J.; MacMillan, C. A.; Williams, D. N.; Bartlett, E. S.
1966-01-01
Chromium alloy sheet was clad with 5 to 10-mil-thick oxidation-resistant nickel-base alloy foils. Specimens also contained 1/2 to 1-mil-thick intermediate layers of platinum, tungsten, and/or W-25Re. Cladding was done by the isostatic hot gas-pressure bonding,.process. The clad chromium-alloy specimens were cyclic oxidation tested at 2100 F and 2300 F for up to 200 hours to determine the effectiveness of these metal claddings in protecting the chromium alloy Cr-5W from oxidation and contamination. Cladding systems consisting of 5-mil-thick Ni-20Cr-20W modified with 3 to 5 weight percent aluminum and containing a 1 /2-mil tungsten diffusion barrier demonstrated potential for long-time service at temperatures as high as 2300 F.
In situ synthesis of Fe-based alloy clad coatings containing TiB2-TiN-(h-BN)
NASA Astrophysics Data System (ADS)
Jiang, Shao-qun; Wang, Gang; Ren, Qing-wen; Yang, Chuan-duo; Wang, Ze-hua; Zhou, Ze-hua
2015-06-01
Fe-based alloy coatings containing TiB2-TiN-(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti/h-BN mass ratio on interfacial bonds between the coating and substrate along with the microstructures and microhardnesses of the coatings were investigated. The results show that the Ti/h-BN mass ratio is a vital factor in the formation of the coatings. Free h-BN can be introduced into the coatings by adding an excess amount of h-BN into the precursor. Decreases in the Ti/h-BN mass ratio improve the microstructural uniformity and compactness and enhance the interfacial bonds of the coatings. At a Ti/h-BN mass ratio of 10/20, the coating is free of cracks and micropores, and mainly consists of Fe-Cr, Fe3B, TiB2, TiN, Ti2N, TiB, FeN, FeB, Fe2B, and h-BN phases. Its average microhardness in the zone between 0.1-2.8 mm from the coating surface is about Hv0.2 551.5.
NASA Astrophysics Data System (ADS)
Regina, Jonathan R.
The current study investigated the effect of chromium additions on the hydrogen cracking susceptibility of Fe-Al weld overlay claddings containing chromium additions. It was found that the weldability of FeAlCr claddings was a function of both the aluminum and chromium concentrations of the weld coatings. Weld overlay compositions that were not susceptible to hydrogen cracking were identified and the underlying mechanism behind the hydrogen cracking phenomenon was investigated further. It was concluded that the cracking behavior of the FeAlCr welds depended strongly on the microstructure of the weld fusion zone. Although it was found that the cracking susceptibility was influenced by the presence of Fe-Al intermetallic phases (namely Fe3 Al and FeAl), the cracking behavior of FeAlCr weld overlay claddings also depended on the size and distribution of carbide and oxide particles present within the weld structure. These particles acted as hydrogen trapping sites, which are areas where free hydrogen segregates and can no longer contribute to the hydrogen embrittlement of the metal. It was determined that in practical applications of these FeAlCr weld overlay coatings, carbon should be present within these welds to reduce the amount of hydrogen available for hydrogen cracking. Based on the weldability results of the FeAlCr weld claddings, coating compositions that were able to be deposited crack-free were used for long-term corrosion testing in a simulated low NOx environment. These alloys were compared to a Ni-based superalloy (622), which is commonly utilized as boiler tube coatings in power plant furnaces for corrosion protection. It was found that the FeAlCr alloys demonstrated superior corrosion resistance when compared to the Ni-based superalloy. Due to the excellent long-term corrosion behavior of FeAlCr weld overlays that were immune to hydrogen cracking, it was concluded that select FeAlCr weld overlay compositions would make excellent corrosion resistant coatings for boiler tubes located in low NOx burning environments.
Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D
2013-09-01
We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.
Crack Free Tungsten Carbide Reinforced Ni(Cr) Layers obtained by Laser Cladding
NASA Astrophysics Data System (ADS)
Amado, J. M.; Tobar, M. J.; Yáñez, A.; Amigó, V.; Candel, J. J.
The development of hardfacing coatings has become technologically significant in many industries A common approach is the production of metal matrix composites (MMC) layers. In this work NiCr-WC MMC hardfacing layers are deposited on C25 steel by means of laser cladding. Spheroidal fused tungsten carbides is used as reinforcement phase. Three different NiCr alloys with different Cr content were tested. Optimum conditions to obtain dense, uniform carbide distribution and hardness close to nominal values were defined. The effect of Cr content respect to the microstructure, susceptibility for cracking and the wear rate of the resulting coating will also be discussed.
DOT National Transportation Integrated Search
2013-08-01
The corrosion resistance of 2304 stainless steel reinforcement and stainless steel clad reinforcement was compared to conventional and epoxy-coated reinforcement (ECR). 2304 stainless steel was tested in both the as-received condition (dark mottled f...
Chen, Tao; Liu, Defu; Wu, Fan; Wang, Haojun
2017-12-31
To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO₂ powders as the basic pre-placed materials. A certain amount of CeO₂ powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO₂ additive on the phase constituents, microstructures and wear resistance of the TiC coatings were researched in detail. Although the effect of CeO₂ on the phase constituents of the coatings was slight, it had a significant effect on the microstructure and wear resistance of the coatings. The crystalline grains in the TiC coatings, observed by a scanning electron microscope (SEM), were refined due to the effect of the CeO₂. With the increase of CeO₂ additive content in the pre-placed powders, finer and more compact dendrites led to improvement of the micro-hardness and wear resistance of the TiC coatings. Also, 5 wt % content of CeO₂ additive in the pre-placed powders was the best choice for improving the wear properties of the TiC coatings.
Accident-tolerant oxide fuel and cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariani, Robert D.
Systems and methods for accident tolerant oxide fuel. One or more disks can be placed between fuel pellets comprising UO.sub.2, wherein such disks possess a higher thermal conductivity material than that of the UO.sub.2 to provide enhanced heat rejection thereof. Additionally, a cladding coating comprising zircaloy coated with a material that provides stability and high melting capability can be provided. The pellets can be configured as annular pellets having an annulus filled with the higher thermal conductivity material. The material coating the zircaloy can be, for example, Zr.sub.5Si.sub.4 or another silicide such as, for example, a Zr-Silicide that limits corrosion.more » The aforementioned higher thermal conductivity material can be, for example, Si, Zr.sub.xSi.sub.y, Zr, or Al.sub.2O.sub.3.« less
In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding
NASA Astrophysics Data System (ADS)
Savalani, M. M.; Ng, C. C.; Li, Q. H.; Man, H. C.
2012-01-01
Titanium metal matrix composite coatings are considered to be important candidates for high wear resistance applications. In this study, TiC reinforced Ti matrix composite layers were fabricated by laser cladding with 5, 10, 15 and 20 wt% carbon-nanotube. The effects of the carbon-nanotube content on phase composition, microstructure, micro-hardness and dry sliding wear resistance of the coating were studied. Microstructural observation using scanning electron microscopy showed that the coatings consisted of a matrix of alpha-titanium phases and the reinforcement phase of titanium carbide in the form of fine dendrites, indicating that titanium carbide was synthesized by the in situ reaction during laser irradiation. Additionally, measurements on the micro-hardness and dry sliding wear resistance of the coatings indicated that the mechanical properties were affected by the amount of carbon-nanotube in the starting precursor materials and were enhanced by increasing the carbon-nanotube content. Results indicated that the composite layers exhibit high hardness and excellent wear resistance.
A Review to the Laser Cladding of Self-Lubricating Composite Coatings
NASA Astrophysics Data System (ADS)
Quazi, M. M.; Fazal, M. A.; Haseeb, A. S. M. A.; Yusof, Farazila; Masjuki, H. H.; Arslan, A.
2016-06-01
Liquid lubricants are extremely viable in reducing wear damage and friction of mating components. However, due to the relentless pressure and the recent trend towards higher operating environments in advanced automotive and aerospace turbo-machineries, these lubricants cease to perform and hence, an alternate system is required for maintaining the self-lubricating environment. From the viewpoint of tribologist, wear is related to near-surface regions and hence, surface coatings are considered suitable for improving the functioning of tribo-pairs. Wear resistant coatings can be fabricated with the addition of various solid lubricants so as to reduce friction drag. In order to protect bulk substrates, self-lubricating wear resistant composite coatings have been fabricated by employing various surface coating techniques such as electrochemical process, physical and chemical vapor depositions, thermal and plasma spraying, laser cladding etc. Studies related to laser-based surface engineering approaches have remained vibrant and are recognized in altering the near surface regions. In this work, the latest developments in laser based self-lubricating composite coatings are highlighted. Furthermore, the effect of additives, laser processing parameters and their corresponding influence on mechanical and tribological performance is briefly reviewed.
NASA Astrophysics Data System (ADS)
Chen, J. L.; Li, J.; Song, R.; Bai, L. L.; Shao, J. Z.; Qu, C. C.
2015-09-01
Laser cladding composite coatings were fabricated on the surface of the Ti6Al4V substrate by fiber laser cladding the NiCrBSi alloy powder. The influences of scanning speed on the dilution rate and microstructure of the coatings were investigated in detail by X-ray diffraction (XRD), optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). Combined with the analyses of microhardness and fracture toughness, the wear behaviors of the coatings obtained at different scanning speeds were revealed. Results indicated that the dilution rates of the coatings were similar (about 64.23%) with variations in scanning speed ranging from 5 mm/s to 15 mm/s. An abrupt decrease in dilution rate (37.06%) was observed at the scanning speed of 20 mm/s. Microstructural observation showed that the blocky TiB2 and the cellular dendrite TiC particles were uniformly dispersed in the TiNi-Ti2Ni dual-phase intermetallic compound matrix at scanning speeds of 5-15 mm/s. When the scanning speed was further increased to 20 mm/s, the stripe-shaped CrB, gray irregular-shaped Cr3C2 and black blocky TiC particles uniformly dispersed in the γ(Ni) matrix were synthesized in situ. The particles became finer with the increase in scanning speed. The average microhardness of the coating (1026.5 HV0.2) at the scanning speed of 20 mm/s was enhanced significantly compared with that of the other three coatings (about 886.4 HV0.2). The lowest average friction coefficient (about 0.371) was obtained at the scanning speed of 20 mm/s and was relatively stable with the change in sliding time. The lowest wear loss of the coating was also obtained at the scanning speed of 20 mm/s. Analyses of the worn surfaces showed that the coating prepared at the scanning speed of 20 mm/s was in good condition because of its excellent combination of resistance to micro-cutting and brittle debonding. Comparatively speaking, the coating produced at the scanning speed of 20 mm/s possessed excellent comprehensive mechanical properties.
Microstructure and properties of laser-clad high-temperature wear-resistant alloys
NASA Astrophysics Data System (ADS)
Yang, Yongqiang
1999-02-01
A 2-kW CO 2 laser with a powder feeder was used to produce alloy coatings with high temperature-wear resistance on the surface of steel substrates. To analyze the microstructure and microchemical composition of the laser-clad layers, a scanning electron microscope (SEM) equipped with an energy dispersive X-ray microanalysis system was employed. X-ray diffraction techniques were applied to characterize the phases formed during the cladding process. The results show that the microstructure of the cladding alloy consists mainly of many dispersed particles (W 2C, (W,Ti)C 1- x, WC), a lamellar eutectic carbide M 12C, and an (f.c.c) matrix. Hardness tested at room and high temperature showed that the laser-clad zone has a moderate room temperature hardness and relatively higher elevated temperature hardness. The application of the laser-clad layer to a hot tool was very successful, and its operational life span was prolonged 1 to 4 times.
Microstructure and Dry Sliding Wear Resistance of Laser Cladding Ti-Al-Si Composite Coating
NASA Astrophysics Data System (ADS)
Zhang, H. X.; Yu, H. J.; Chen, C. Z.; Dai, J. J.
In order to improve the wear resistance of Ti alloys, different mass ratios of Ti-Si-Al powders were designed to fabricate hard phases reinforced intermetallic matrix composite coatings on the Ti-6Al-4V substrate by laser cladding. The corresponding coatings were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and high resolution transmission microscopy (HRTEM). The HV-1000 hardness tester and MM200 wear test machine were employed to test the hardness and the wear resistance of the composite coatings, respectively. The composite coatings mainly consisted of the reinforcements of Ti5Si3, Ti3AlC2 and Ti7Al5Si12 and the matrix of Ti3Al, TiAl, TiAl3 and α-Ti. The micro-hardness of the Ti-35Al-15Si coating was from 956 HV0.2 to 1130 HV0.2, which was approximately 3-4 times of the substrate and the highest in the three samples. The wear rate of the Ti-35Al-15Si coating was 0.023cm3ṡmin-1, which was about 1/4 of the Ti-6Al-4V substrate. It was the lowest in the three samples.
Microstructure characteristics of Ni/WC composite cladding coatings
NASA Astrophysics Data System (ADS)
Yang, Gui-rong; Huang, Chao-peng; Song, Wen-ming; Li, Jian; Lu, Jin-jun; Ma, Ying; Hao, Yuan
2016-02-01
A multilayer tungsten carbide particle (WCp)-reinforced Ni-based alloy coating was fabricated on a steel substrate using vacuum cladding technology. The morphology, microstructure, and formation mechanism of the coating were studied and discussed in different zones. The microstructure morphology and phase composition were investigated by scanning electron microscopy, optical microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In the results, the coating presents a dense and homogeneous microstructure with few pores and is free from cracks. The whole coating shows a multilayer structure, including composite, transition, fusion, and diffusion-affected layers. Metallurgical bonding was achieved between the coating and substrate because of the formation of the fusion and diffusion-affected layers. The Ni-based alloy is mainly composed of γ-Ni solid solution with finely dispersed Cr7C3/Cr23C6, CrB, and Ni+Ni3Si. WC particles in the composite layer distribute evenly in areas among initial Ni-based alloying particles, forming a special three-dimensional reticular microstructure. The macrohardness of the coating is HRC 55, which is remarkably improved compared to that of the substrate. The microhardness increases gradually from the substrate to the composite zone, whereas the microhardness remains almost unchanged in the transition and composite zones.
In vitro testing of Nd:YAG laser processed calcium phosphate coatings.
De Carlos, A; Lusquiños, F; Pou, J; León, B; Pérez-Amor, M; Driessens, F C M; Hing, K; Best, S; Bonfield, W
2006-11-01
Nd:YAG laser cladding is a new method for deposition of a calcium phosphate onto metallic surfaces of interest in implantology. The aim of this study was to compare the biologic response of MG-63 human osteoblast-like cells grown on Ti-6Al-4V substrates coated with a calcium phosphate layer applied using different methods: plasma spraying as reference material and Nd:YAG laser cladding as test material. Tissue culture polystyrene was used as negative control. The Nd:YAG laser clad material showed a behaviour similar to the reference material, plasma spray, respective to cell morphology (SEM observations), cell proliferation (AlamarBlue assay) and cytotoxicity of extracts (MTT assay). Proliferation, as measured by the AlamarBlue assay, showed little difference in the metabolic activity of the cells on the materials over an 18 day culture period. There were no significant differences in the cellular growth response on the test material when compared to the ones exhibited by the reference material. In the solvent extraction test all the extracts had some detrimental effect on cellular activity at 100% concentration, although cells incubated in the test material extract showed a proliferation rate similar to that of the reference material. To better understand the scope of these results it should be taken into account that the Nd:YAG clad coating has recently been developed. The fact that its in vitro performance is comparable to that produced by plasma spray, a material commercially available for more than ten years, indicates that this new laser based method could be of commercial interest in the near future.
Model of a thin film optical fiber fluorosensor
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1991-01-01
The efficiency of core-light injection from sources in the cladding of an optical fiber is modeled analytically by means of the exact field solution of a step-profile fiber. The analysis is based on the techniques by Marcuse (1988) in which the sources are treated as infinitesimal electric currents with random phase and orientation that excite radiation fields and bound modes. Expressions are developed based on an infinite cladding approximation which yield the power efficiency for a fiber coated with fluorescent sources in the core/cladding interface. Marcuse's results are confirmed for the case of a weakly guiding cylindrical fiber with fluorescent sources uniformly distributed in the cladding, and the power efficiency is shown to be practically constant for variable wavelengths and core radii. The most efficient fibers have the thin film located at the core/cladding boundary, and fibers with larger differences in the indices of refraction are shown to be the most efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru
2015-10-27
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to anmore » enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.« less
NASA Astrophysics Data System (ADS)
Malyutina, Yulia N.; Lazurenko, Daria V.; Bataev, Ivan A.; Movtchan, Igor A.
2015-10-01
In this paper an influence of the tantalum content on the structure and properties of surface layers of the titanium alloy doped using a laser treatment technology was investigated. It was found that an increase of a quantity of filler powder per one millimeter of a track length contributed to a rise of the content of undissolved particles in coatings. The maximum thickness of a cladded layer was reached at the mass of powder per the length unit equaled to 5.5 g/cm. Coatings were characterized by the formation of a dendrite structure with attributes of segregation. The width of a quenched fusion zone grew with an increase in the rate of powder feed to the treated area. Significant strengthening of the titanium surface layer alloyed with tantalum was not observed; however, the presence of undissolved tantalum particles can decrease the hardness of titanium surface layers.
NASA Astrophysics Data System (ADS)
Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.
2015-10-01
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Zou, Yong; Zou, Zengda; Wu, Dongting
2015-01-01
In situ TiC-VC reinforced Fe-based cladding layer was obtained on low carbon steel surface by laser cladding with Fe-Ti-V-Cr-C-CeO2 alloy powder. The microstructure, phases and properties of the cladding layer were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM), potentio-dynamic polarization and electro-chemical impedance spectroscopy (EIS). Results showed Fe-Ti-V-Cr-C-CeO2 alloy powder formed a good cladding layer without defects such as cracks and pores. The phases of the cladding layer were α-Fe, γ-Fe, TiC, VC and TiVC2. The microstructures of the cladding layer matrix were lath martensite and retained austenite. The carbides were polygonal blocks with a size of 0.5-2 μm and distributed uniformly in the cladding layer. High resolution transmission electron microscopy showed the carbide was a complex matter composed of nano TiC, VC and TiVC2. The cladding layer with a hardness of 1030 HV0.2 possessed good wear and corrosion resistance, which was about 16.85 and 9.06 times than that of the substrate respectively.
Analytical Modeling Tool for Design of Hydrocarbon Sensitive Optical Fibers
Vahdati, Nader; Lawand, Lydia
2017-01-01
Pipelines are the main transportation means for oil and gas products across large distances. Due to the severe conditions they operate in, they are regularly inspected using conventional Pipeline Inspection Gages (PIGs) for corrosion damage. The motivation for researching a real-time distributed monitoring solution arose to mitigate costs and provide a proactive indication of potential failures. Fiber optic sensors with polymer claddings provide a means of detecting contact with hydrocarbons. By coating the fibers with a layer of metal similar in composition to that of the parent pipeline, corrosion of this coating may be detected when the polymer cladding underneath is exposed to the surrounding hydrocarbons contained within the pipeline. A Refractive Index (RI) change occurs in the polymer cladding causing a loss in intensity of a traveling light pulse due to a reduction in the fiber’s modal capacity. Intensity losses may be detected using Optical Time Domain Reflectometry (OTDR) while pinpointing the spatial location of the contact via time delay calculations of the back-scattered pulses. This work presents a theoretical model for the above sensing solution to provide a design tool for the fiber optic cable in the context of hydrocarbon sensing following corrosion of an external metal coating. Results are verified against the experimental data published in the literature. PMID:28956847
Analytical Modeling Tool for Design of Hydrocarbon Sensitive Optical Fibers.
Al Handawi, Khalil; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia
2017-09-28
Pipelines are the main transportation means for oil and gas products across large distances. Due to the severe conditions they operate in, they are regularly inspected using conventional Pipeline Inspection Gages (PIGs) for corrosion damage. The motivation for researching a real-time distributed monitoring solution arose to mitigate costs and provide a proactive indication of potential failures. Fiber optic sensors with polymer claddings provide a means of detecting contact with hydrocarbons. By coating the fibers with a layer of metal similar in composition to that of the parent pipeline, corrosion of this coating may be detected when the polymer cladding underneath is exposed to the surrounding hydrocarbons contained within the pipeline. A Refractive Index (RI) change occurs in the polymer cladding causing a loss in intensity of a traveling light pulse due to a reduction in the fiber's modal capacity. Intensity losses may be detected using Optical Time Domain Reflectometry (OTDR) while pinpointing the spatial location of the contact via time delay calculations of the back-scattered pulses. This work presents a theoretical model for the above sensing solution to provide a design tool for the fiber optic cable in the context of hydrocarbon sensing following corrosion of an external metal coating. Results are verified against the experimental data published in the literature.
Wang, Haojun
2017-01-01
To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO2 powders as the basic pre-placed materials. A certain amount of CeO2 powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO2 additive on the phase constituents, microstructures and wear resistance of the TiC coatings were researched in detail. Although the effect of CeO2 on the phase constituents of the coatings was slight, it had a significant effect on the microstructure and wear resistance of the coatings. The crystalline grains in the TiC coatings, observed by a scanning electron microscope (SEM), were refined due to the effect of the CeO2. With the increase of CeO2 additive content in the pre-placed powders, finer and more compact dendrites led to improvement of the micro-hardness and wear resistance of the TiC coatings. Also, 5 wt % content of CeO2 additive in the pre-placed powders was the best choice for improving the wear properties of the TiC coatings. PMID:29301218
Enlarged-taper tailored Fiber Bragg grating with polyvinyl alcohol coating for humidity sensing
NASA Astrophysics Data System (ADS)
Liang, Yanhong; Yan, Guofeng; He, Sailing
2015-08-01
In this paper, a novel optical fiber sensor based on an enlarged-taper tailored fiber Bragg grating (FBG) is proposed and experimentally demonstrated for the measurement of relative humidity. The enlarged-taper works as a multifunctional joint that not only excites cladding modes but also recouples the cladding modes reflected by the FBG back into the leading single mode fiber. Due to the fact that cladding modes have a strong evanescent field penetrating into the ambient medium, the intensity of the reflected cladding modes is greatly influenced by the refractive index (RI) of the ambient medium. Polyvinyl alcohol (PVA) film is plated on the fiber surface by dip-coating technique, as a humidity-to-refractive index transducer, whose RI variance from 1.49 to 1.34 when the ambient humidity increases from 20%RH to 95%RH. The relative humidity response of the sensing structure is investigated in our home-made humidity chamber with a commercial hygrometer. By monitoring the intensity of the reflected cladding modes, the RH variance can be demodulated. Experimental results show that RH sensitivity depends on the RH value, and a sensitivity up to 1.2 dB/%RH can be achieved within the RH range of 30-90%. A fast and reversible time response has also been investigated. Such a probe-type and reusable fiber-optic RH sensor is a very promising technology for biochemical sensing applications, e.g., breath analysis, chemical reaction monitoring.
Resistive coating for current conductors in cryogenic applications
Hirayama, Chikara; Wagner, George R.
1982-05-18
This invention relates to a resistive or semiconducting coating for use on current conductors in cryogenic applications. This includes copper-clad superconductor wire, copper wire used for stabilizing superconductor magnets, and for hyperconductors. The coating is a film of cuprous sulfide (Cu.sub.2 S) that has been found not to degrade the properties of the conductors. It is very adherent to the respective conductors and satisfies the mechanical, thermal and electrical requirements of coatings for the conductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, J.H.; Li, X.; Lei, T.C.
The microstructure of a laser-clad TiC-Ni particle-reinforced coating on 1045 steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ion microprobe mass spectroscopy (IMMS). The microstructural constituents of the clad layers (CLs) were analyzed to be TiC particles, {gamma}-Ni primary dendrites, and interdendritic eutectics of {gamma}{sub E}-Ni plus M{sub 23}(CB){sub 6} and M{sub 6}(CB) carboborides. Three growth mechanisms of the original TiC particles were found: (1) stepped lateral growth at the edges, (2) radiated and cylindrically coupled growth at the edges, and (3) bridging growth of the clustered particles. Ordered and modulated structures were found inmore » the original TiC particles. In addition to the original TiC particles, fine TiC particles precipitated from the liquid phase and {gamma}-Ni solid solution during laser cladding. The microstructures of the bonding zones (BZs) were intimately associated with laser processing parameters. The BZs of the clad coatings can be categorized into three types according to the combination of the CL with heat-affected zone (HAZ): (1) straight interface combination, (2) zigzag connection, and (3) combination by partial melting of prior austenitic grain boundaries of the substrate. The microstructural evolution of the CLs was discussed. The formation and phase transformation models of the BZs were proposed.« less
Chien, Chi-Sheng; Liu, Cheng-Wei; Kuo, Tsung-Yuan
2016-05-17
Hydroxyapatite (HA) is one of the most commonly used materials for the coating of bioceramic titanium (Ti) alloys. However, HA has poor mechanical properties and a low bonding strength. Accordingly, the present study replaces HA with a composite coating material consisting of fluorapatite (FA) and 20 wt % yttria (3 mol %) stabilized zirconia (ZrO₂, 3Y-TZP). The FA/ZrO₂ coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min, and 1200 W/600 mm/min, respectively. The experimental results show that a significant inter-diffusion of the alloying elements occurs between the coating layer (CL) and the transition layer (TL). Consequently, a strong metallurgical bond is formed between them. During the cladding process, the ZrO₂ is completely decomposed, while the FA is partially decomposed. As a result, the CLs of all the specimens consist mainly of FA, Ca₄(PO₄)₂O (TTCP), CaF₂, CaZrO₃, CaTiO₃ and monoclinic phase ZrO₂ (m-ZrO₂), together with a small amount of θ-Al₂O₃. As the laser power is increased, CaO, CaCO₃ and trace amounts of tetragonal phase ZrO₂ (t-ZrO₂) also appear. As the laser power increases from 400 to 800 W, the CL hardness also increases as a result of microstructural refinement and densification. However, at the highest laser power of 1200 W, the CL hardness reduces significantly due to the formation of large amounts of relatively soft CaO and CaCO₃ phase.
NASA Astrophysics Data System (ADS)
Tao, Yang-Feng; Li, Jun; Lv, Ying-Hao; Hu, Lie-Feng
2017-12-01
The TiNi/Ti2Ni based composite coatings reinforced by TiC and TiB2 were prepared on Ti6Al4V at different circumstance temperatures (25 °C, 400 °C, 600 °C, and 800 °C) by laser cladding, then were preserved for 3 h. Macromorphologies and microstructures of the coatings were examined through an optical microscope (OM), an X-ray diffractometer (XRD), a scanning electron microscope (SEM), and an energy dispersive spectrometer (EDS). Residual stresses along the depth direction of the coatings were measured by the nanoindentation method, and wear behaviors of the coatings were also investigated using an ultra-functional wear testing machine. Results showed that the coatings were mainly composed of TiNi/Ti2Ni as the matrix and TiC/TiB2 as the reinforcement. A small amount of Cr2Ti was formed in the coatings prepared at 400 °C and 600 °C. Besides that, Ti3Al was also observed in the coating prepared at 800 °C. The tensile stress existed in the coatings prepared at 25 °C, 400 °C and 600 °C when the coating prepared at 800 °C was regarded as the stress-free reference. The average residual stress in the surface of coating prepared at 25 °C reached the largest value of about 2.79 GPa and presented a decreasing tendency with increasing the circumstance temperature (1.03 GPa at 400 °C, 0.52 GPa at 600 °C, and 0 GPa at 800 °C). It revealed that the rise in circumstance temperature contributed to the reduction in cracking susceptibility in the laser cladding coating. However, the wear volumes of the coatings were increased with increasing the circumstance temperature (0.1912 mm3 at 25 °C, 0.2828 mm3 at 400 °C, 0.3732 mm3 at 600 °C, and 0.6073 mm3 at 800 °C) due to the weakening in strain-hardening effect and the reduction in reinforcement density. The wear mechanism of the coatings was transformed from the single brittle-debonding into the combination of micro-cutting and brittle-debonding when the circumstance temperature was changed from room temperature to high temperature. The suitable circumstance temperature should be 600 °C, at which a comparatively high wear resistance was maintained on the premise that the residual stress was effectively relieved.
NASA Astrophysics Data System (ADS)
Yeom, Hwasung; Lockhart, Cody; Mariani, Robert; Xu, Peng; Corradini, Michael; Sridharan, Kumar
2018-02-01
This study investigates steam corrosion of bulk ZrSi2, pure Si, and zirconium-silicide coatings as well as water quenching behavior of ZrSi2 coatings to evaluate its feasibility as a potential accident-tolerant fuel cladding coating material in light water nuclear reactor. The ZrSi2 coating and Zr2Si-ZrSi2 coating were deposited on Zircaloy-4 flats, SiC flats, and cylindrical Zircaloy-4 rodlets using magnetron sputter deposition. Bulk ZrSi2 and pure Si samples showed weight loss after the corrosion test in pure steam at 400 °C and 10.3 MPa for 72 h. Silicon depletion on the ZrSi2 surface during the steam test was related to the surface recession observed in the silicon samples. ZrSi2 coating (∼3.9 μm) pre-oxidized in 700 °C air prevented substrate oxidation but thin porous ZrO2 formed on the coating. The only condition which achieved complete silicon immobilization in the oxide scale in aqueous environments was the formation of ZrSiO4 via ZrSi2 coating oxidation in 1400 °C air. In addition, ZrSi2 coatings were beneficial in enhancing quenching heat transfer - the minimum film boiling temperature increased by 6-8% in the three different environmental conditions tested. During repeated thermal cycles (water quenching from 700 °C to 85 °C for 20 s) performed as a part of quench tests, no spallation and cracking was observed and the coating prevented oxidation of the underlying Zircaloy-4 substrate.
Fiber optic evanescent wave (FOEW) microbial sensor for dental application
NASA Astrophysics Data System (ADS)
Kishen, Anil; John, M. S.; Chen, Jun-Wei; Lim, Chu S.; Hu, Xiao; Asundi, Anand K.
2001-10-01
In this work a new approach based on the fiber Optic Evanescent Wave (FOEW) Spectroscopy is developed for the effective determination of dental caries activity in human saliva. The biosensor design utilized the exponentially decaying wave that extends to the lower index region of the optical fiber's core-cladding interface. In order to achieve this, a short length of the cladding is removed and the fiber core surface is coated with a porous glass medium using sol-gel technique. The acidogenic profile resulting from the Streptococcus mutans activity in the human saliva is monitored using an indicator, which was encapsulated within the porous coating. These investigations display the potential benefits of FOEW based microbial sensor to monitor caries activity in human saliva.
NASA Astrophysics Data System (ADS)
Zhang, Zhihao; Zhang, Chunxi; Xu, Xiaobin
2017-09-01
Small diameter (cladding and coating diameter of 100 and 135 μm) polarization maintaining photonic crystal fibres (SDPM-PCFs) possess many unique properties and are extremely suitable for applications in fibre optic gyroscopes. In this study, we have investigated and measured the stress characteristics of an SDPM-PCF using the finite-element method and a Mach-Zehnder interferometer, respectively. Our results reveal a radial and axial sensitivity of 0.315 ppm/N/m and 25.2 ppm per 1 × 105 N/m2, respectively, for the SDPM-PCF. These values are 40% smaller than the corresponding parameters of conventional small diameter (cladding and coating diameter of 80 and 135 μm) panda fibres.
Solar Power Wires Based on Organic Photovoltaic Materials
NASA Astrophysics Data System (ADS)
Lee, Michael R.; Eckert, Robert D.; Forberich, Karen; Dennler, Gilles; Brabec, Christoph J.; Gaudiana, Russell A.
2009-04-01
Organic photovoltaics in a flexible wire format has potential advantages that are described in this paper. A wire format requires long-distance transport of current that can be achieved only with conventional metals, thus eliminating the use of transparent oxide semiconductors. A phase-separated, photovoltaic layer, comprising a conducting polymer and a fullerene derivative, is coated onto a thin metal wire. A second wire, coated with a silver film, serving as the counter electrode, is wrapped around the first wire. Both wires are encased in a transparent polymer cladding. Incident light is focused by the cladding onto to the photovoltaic layer even when it is completely shadowed by the counter electrode. Efficiency values of the wires range from 2.79% to 3.27%.
Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid
NASA Astrophysics Data System (ADS)
Yang, Dexing; Du, Lei; Xu, Zengqi; Jiang, Yajun; Xu, Jian; Wang, Meirong; Bai, Yang; Wang, Haiyan
2014-02-01
A magnetic field sensor based on a tilted fiber Bragg grating (TFBG) coated with magnetic fluid is proposed and demonstrated experimentally. The sensing element is made by injecting the magnetic fluid into a capillary tube which contains a TFBG. The resonant wavelengths of the cladding modes of TFBG shift by varying the magnetic field which is perpendicular to the axis of TFBG. The results indicate that the resonant wavelength shifts of the cladding modes show a nonlinear dependence on the magnetic field. As the magnetic field increases to 32 mT, the largest resonant wavelength shift reaches to 106 pm. Moreover, this sensor shows good repeatability when it is used for magnetic field sensing.
Guo, Yanbing; Yao, Chengwu; Feng, Kai; Li, Zhuguo; Chu, Paul K.; Wu, Yixiong
2017-01-01
The growth and propagation behavior of austenite-to-bainite isothermal transformation in laser-cladded, Si-rich, and Fe-based coatings is investigated. The crystallographic features, orientation relationship at different isothermal temperatures, and the morphology of the nanostructured bainite are determined. The Nishiyama-Wassermann type orientation relationship is observed at a high temperature and at a low temperature, and mixed Nishiyama-Wassermann and Kurdjumov-Sach mechanisms are seen. The growth direction is investigated by the partial dislocation theory and an extrapolated model based on the repeated formation of lenticular-shaped subunits and pile-up along the close-packed directions of the close-packed planes. The variants of the bainite growth directions would be more selective at the high transformation temperature. PMID:28773161
Initial experimental evaluation of crud-resistant materials for light water reactors
NASA Astrophysics Data System (ADS)
Dumnernchanvanit, I.; Zhang, N. Q.; Robertson, S.; Delmore, A.; Carlson, M. B.; Hussey, D.; Short, M. P.
2018-01-01
The buildup of fouling deposits on nuclear fuel rods, known as crud, continues to challenge the worldwide fleet of light water reactors (LWRs). Crud causes serious operational problems for LWRs, including axial power shifts, accelerated fuel clad corrosion, increased primary circuit radiation dose rates, and in some instances has led directly to fuel failure. Numerous studies continue to attempt to model and predict the effects of crud, but each assumes that it will always be present. In this study, we report on the development of crud-resistant materials as fuel cladding coatings, to reduce or eliminate these problems altogether. Integrated loop testing experiments at flowing LWR conditions show significantly reduced crud adhesion and surface crud coverage, respectively, for TiC and ZrN coatings compared to ZrO2. The loop testing results roughly agree with the London dispersion component of van der Waals force predictions, suggesting that they contribute most significantly to the adhesion of crud to fuel cladding in out-of-pile conditions. These results motivate a new look at ways of reducing crud, thus avoiding many expensive LWR operational issues.
Experimental verification of a theoretical model of an active cladding optical fiber fluorosensor
NASA Technical Reports Server (NTRS)
Albin, Sacharia; Briant, Alvin L.; Egalon, Claudio O.; Rogowski, Robert S.; Nankung, Juock S.
1993-01-01
Experiments were conducted to verify a theoretical model on the injection efficiency of sources in the cladding of an optical fiber. The theoretical results predicted an increase in the injection efficiency for higher differences in refractive indices between the core and cladding. The experimental apparatus used consisted of a glass rod 50 cm long, coated at one end with a thin film of fluorescent substance. The fluorescent substance was excited with side illumination, perpendicular to the rod axis, using a 476 nm Argon-ion laser. Part of the excited fluorescence was injected into the core and guided to a detector. The signal was measured for several different cladding refractive indices. The cladding consisted of sugar dissolved in water and the refractive index was changed by varying the sugar concentration in the solution. The results indicate that the power injected into the rod, due to evanescent wave injection, increases with the difference in refractive index which is in qualitative agreement with theory.
Laser Cladding of γ-TiAl Intermetallic Alloy on Titanium Alloy Substrates
NASA Astrophysics Data System (ADS)
Maliutina, Iuliia Nikolaevna; Si-Mohand, Hocine; Piolet, Romain; Missemer, Florent; Popelyukh, Albert Igorevich; Belousova, Natalya Sergeevna; Bertrand, Philippe
2016-01-01
The enhancement of titanium and titanium alloy's tribological properties is of major interest in many applications such as the aerospace and automotive industry. Therefore, the current research paper investigates the laser cladding of Ti48Al2Cr2Nb powder onto Ti6242 titanium alloy substrates. The work was carried out in two steps. First, the optimal deposition parameters were defined using the so-called "combined parameters," i.e., the specific energy E specific and powder density G. Thus, the results show that those combined parameters have a significant influence on the geometry, microstructure, and microhardness of titanium aluminide-formed tracks. Then, the formation of dense, homogeneous, and defect-free coatings based on optimal parameters has been investigated. Optical and scanning electron microscopy techniques as well as energy-dispersive spectroscopy and X-ray diffraction analyses have shown that a duplex structure consisting of γ-TiAl and α 2-Ti3Al phases was obtained in the coatings during laser cladding. Moreover, it was shown that produced coatings exhibit higher values of microhardness (477 ± 9 Hv0.3) and wear resistance (average friction coefficient is 0.31 and volume of worn material is 5 mm3 after 400 m) compared to those obtained with bare titanium alloy substrates (353 Hv0.3, average friction coefficient is 0.57 and a volume of worn material after 400 m is 35 mm3).
Novel Accident-Tolerant Fuel Meat and Cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert D. Mariani; Pavel G Medvedev; Douglas L Porter
A novel accident-tolerant fuel meat and cladding are here proposed. The fuel meat design incorporates annular fuel with inserts and discs that are fabricated from a material having high thermal conductivity, for example niobium. The inserts are rods or tubes. Discs separate the fuel pellets. Using the BISON fuel performance code it was found that the peak fuel temperature can be lowered by more than 600 degrees C for one set of conditions with niobium metal as the thermal conductor. In addition to improved safety margin, several advantages are expected from the lower temperature such as decreased fission gas releasemore » and fuel cracking. Advantages and disadvantages are discussed. An enrichment of only 7.5% fully compensates the lost reactivity of the displaced UO2. Slightly higher enrichments, such as 9%, allow uprates and increased burnups to offset the initial costs for retooling. The design has applications for fast reactors and transuranic burning, which may accelerate its development. A zirconium silicide coating is also described for accident tolerant applications. A self-limiting degradation behavior for this coating is expected to produce a glassy, self-healing layer that becomes more protective at elevated temperature, with some similarities to MoSi2 and other silicides. Both the fuel and coating may benefit from the existing technology infrastructure and the associated wide expertise for a more rapid development in comparison to other, more novel fuels and cladding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyutina, Yulia N., E-mail: iuliiamaliutina@gmail.ru; Lazurenko, Daria V., E-mail: pavlyukova-87@mail.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru
2015-10-27
In this paper an influence of the tantalum content on the structure and properties of surface layers of the titanium alloy doped using a laser treatment technology was investigated. It was found that an increase of a quantity of filler powder per one millimeter of a track length contributed to a rise of the content of undissolved particles in coatings. The maximum thickness of a cladded layer was reached at the mass of powder per the length unit equaled to 5.5 g/cm. Coatings were characterized by the formation of a dendrite structure with attributes of segregation. The width of a quenchedmore » fusion zone grew with an increase in the rate of powder feed to the treated area. Significant strengthening of the titanium surface layer alloyed with tantalum was not observed; however, the presence of undissolved tantalum particles can decrease the hardness of titanium surface layers.« less
Bunn, Jonathan Kenneth; Fang, Randy L; Albing, Mark R; Mehta, Apurva; Kramer, Matthew J; Besser, Matthew F; Hattrick-Simpers, Jason R
2015-07-10
High-temperature alloy coatings that can resist oxidation are urgently needed as nuclear cladding materials to mitigate the danger of hydrogen explosions during meltdown. Here we apply a combination of computationally guided materials synthesis, high-throughput structural characterization and data analysis tools to investigate the feasibility of coatings from the Fe–Cr–Al alloy system. Composition-spread samples were synthesized to cover the region of the phase diagram previous bulk studies have identified as forming protective oxides. The metallurgical and oxide phase evolution were studied via in situ synchrotron glancing incidence x-ray diffraction at temperatures up to 690 K. A composition region with an Al concentration greater than 3.08 at%, and between 20.0 at% and 32.9 at% Cr showed the least overall oxide growth. Subsequently, a series of samples were deposited on stubs and their oxidation behavior at 1373 K was observed. The continued presence of a passivating oxide was confirmed in this region over a period of 6 h.
NASA Astrophysics Data System (ADS)
Wang, Xinhong; Zhang, Min; Qu, Shiyao
2010-09-01
In this study, in situ multiple carbides reinforced Fe-based surface composite coatings were fabricated successfully by laser cladding a precursor mixture of graphite, ferrotitanium (Fe-Ti) and ferromolybdenum (Fe-Mo) powders. The results showed that (Ti, Mo)C particles with flower-like and cuboidal shapes were in situ formed during the solidification and most shapes of (Ti, Mo)C particles were diversiform according to different contents of Fe-Mo powder in the Fe-Ti-Mo-C system. The growth morphology of the reinforcing (Ti, Mo)C carbide has typically faceted features, indicating that the lateral growth mechanism is still predominant growth mode under rapid solidification conditions. Increasing the amount of Fe-Mo in the reactants led to a decrease of carbide size and an increase of volume fraction of carbides. The coatings had good cracking resistance when the amounts of Fe-Mo were controlled within a range of 15 wt%.
NASA Astrophysics Data System (ADS)
Birukov, V. P.; Fichkov, A. A.
2017-12-01
In the present work the experiments on laser cladding of powder Fe-B-Cr-6-2 on samples of steel 20. Metallographic studies of geometric parameters of deposited layers and the depth of the heat affected zone (HAZ). Using is the method of full factorial experiment (FFE) mathematical dependences of the geometrical sizes of the deposited layers of processing modes. Deviation of calculated values from experimental data is not more than 3%.
Basnar, Bernhard; Schartner, Stephan; Austerer, Maximilian; Andrews, Aaron Maxwell; Roch, Tomas; Schrenk, Werner; Strasser, Gottfried
2008-06-09
We present a novel approach for the reversible switching of the emission wavelength of a quantum cascade laser (QCL) using a halochromic cladding. An air-waveguide laser ridge is coated with a thin layer of polyacrylic acid. This cladding introduces losses corresponding to the absorption spectrum of the polymer. By changing the state of the polymer, the absorption spectrum and losses change, inducing a shift of 7 cm(-1) in the emission wavelength. This change is induced by exposure to acidic or alkaline vapors under ambient conditions and is fully reversible. Such lasers can be used as multi-color light source and as sensor for atmospheric pH.
Ling, Qiang; Gu, Zhengtian; Gao, Kan
2018-04-01
This paper presents a smart design way for the long-period fiber grating (LPFG) refractive index sensor, which is based on high sensitivity of LPFG near phase-matching turning point (PMTP) to the surrounding refractive index (SRI). On the basis of the coupled mode theory of LPFG, cladding etching and film coating have opposite effects on the shift of the dual peaks. Therefore, an LPFG can be controlled by the cladding etching and film coating successively, until it operates near PMTP. Experimentally, an LPFG operating near PMTP was fabricated, and the glycerol solution concentration monitoring test was performed. The results show that the sensitivity of this LPFG to the SRI is as high as 5602 nm/refractive index unit.
NASA Astrophysics Data System (ADS)
Song, R.; Li, J.; Shao, J. Z.; Bai, L. L.; Chen, J. L.; Qu, C. C.
2015-11-01
The Ti2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC was fabricated on the Ti6Al4V substrate by laser cladding. Phase constituents were confirmed by a theoretical prediction combined with X-ray diffraction (XRD) analyses. From the surface to the bottom of the coating, a regular evolution of the reinforcements' microstructure, namely TiCp+(TiB+TiC)e, (TiB+TiC)e and TiBp+(TiB+TiC)e (p and e were the abbreviations of primary and eutectic, respectively), was investigated by scanning electron microscopy (SEM). The coating possessed the higher microhardness than that of the substrate. An in situ dynamic method (in situ continuing tests at different time intervals) was designed to reveal wear behaviors at different wear stages. A quantitative calculation formula was established by a mathematic model to predict wear losses under different sliding time and applied loads in a definite precision. The wear mechanism was transformed from brittle debonding (at 10 N) to the joint action of brittle debonding and micro-cutting (at 20 N and 30 N) due to the microstructural evolution across the depth from the surface of the coating.
Carbide-reinforced metal matrix composite by direct metal deposition
NASA Astrophysics Data System (ADS)
Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.
Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.
Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding
NASA Astrophysics Data System (ADS)
Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad
The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.
NASA Astrophysics Data System (ADS)
Muvvala, Gopinath; Patra Karmakar, Debapriya; Nath, Ashish Kumar
2017-01-01
Laser cladding, basically a weld deposition technique, is finding applications in many areas including surface coatings, refurbishment of worn out components and generation of functionally graded components owing to its various advantages over conventional methods like TIG, PTA etc. One of the essential requirements to adopt this technique in industrial manufacturing is to fulfil the increasing demand on product quality which could be controlled through online process monitoring and correlating the signals with the mechanical and metallurgical properties. Rapid thermo-cycle i.e. the fast heating and cooling rates involved in this process affect above properties of the deposited layer to a great extent. Therefore, the current study aims to monitor the thermo-cycles online, understand its variation with process parameters and its effect on different quality aspects of the clad layer, like microstructure, elemental segregations and mechanical properties. The effect of process parameters on clad track geometry is also studied which helps in their judicious selection to deposit a predefined thickness of coating. In this study Inconel 718, a nickel based super alloy is used as a clad material and AISI 304 austenitic steel as a substrate material. The thermo-cycles during the cladding process were recorded using a single spot monochromatic pyrometer. The heating and cooling rates were estimated from the recorded thermo-cycles and its effects on microstructures were characterised using SEM and XRD analyses. Slow thermo-cycles resulted in severe elemental segregations favouring Laves phase formation and increased γ matrix size which is found to be detrimental to the mechanical properties. Slow cooling also resulted in termination of epitaxial growth, forming equiaxed grains near the surface, which is not preferred for single crystal growth. Heat treatment is carried out and the effect of slow cooling and the increased γ matrix size on dissolution of segregated elements in metal matrix is studied.
Kao, Hung Pin; Schoeniger, Joseph; Yang, Nancy
2001-01-01
A technique for increasing the excitation and collection of evanescent fluorescence radiation emanating from a fiber optic sensor having a high refractive index (n.sub.r), dielectric thin film coating has been disclosed and described. The invention comprises a clad optical fiber core whose cladding is removed on a distal end, the distal end coated with a thin, non-porous, titanium dioxide sol-gel coating. It has been shown that such a fiber will exhibit increased fluorescence coupling due in part by 1) increasing the intensity of the evanescent field at the fiber core surface by a constructive interference effect on the propagating light, and 2) increasing the depth of penetration of the field in the sample. The interference effect created by the thin film imposes a wavelength dependence on the collection of the fluorescence and also suggests a novel application of thin films for color filtering as well as increasing collected fluorescence in fiber sensors. Collected fluorescence radiation increased by up to 6-fold over that of a bare fused silica fiber having a numerical aperture (N.A.) of O.6.
Veligdan, James T.
1997-01-01
An optical display includes a plurality of stacked optical waveguides having first and second opposite ends collectively defining an image input face and an image screen, respectively, with the screen being oblique to the input face. Each of the waveguides includes a transparent core bound by a cladding layer having a lower index of refraction for effecting internal reflection of image light transmitted into the input face to project an image on the screen, with each of the cladding layers including a cladding cap integrally joined thereto at the waveguide second ends. Each of the cores is beveled at the waveguide second end so that the cladding cap is viewable through the transparent core. Each of the cladding caps is black for absorbing external ambient light incident upon the screen for improving contrast of the image projected internally on the screen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Elizabeth Sooby; Parker, Stephen Scott; Nelson, Andrew Thomas
The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials,more » or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi 2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi 2 was identified based on its high temperature oxidation resistance in O 2 atmospheres (e.g. air and “wet air”). However, its behavior in H 2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi 2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O 2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi 2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670-773 K water vapor, a temperature range in which the material pests in dry O 2 environments. From 877-1084 K in water vapor, MoSi 2 undergoes rapid mass gain resulting in oxidation throughout the bulk of the sample at 980 K and 1084 K. The resulting material displays swelling and warping after the 980-1084 K exposures. A pre-passivation heat treatment performed at 1395 K was found capable of producing a coarse SiO 2 layer that limited pesting at lower temperatures in water vapor over the time periods investigated.« less
Chien, Chi-Sheng; Liu, Cheng-Wei; Kuo, Tsung-Yuan
2016-01-01
Hydroxyapatite (HA) is one of the most commonly used materials for the coating of bioceramic titanium (Ti) alloys. However, HA has poor mechanical properties and a low bonding strength. Accordingly, the present study replaces HA with a composite coating material consisting of fluorapatite (FA) and 20 wt % yttria (3 mol %) stabilized zirconia (ZrO2, 3Y-TZP). The FA/ZrO2 coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min, and 1200 W/600 mm/min, respectively. The experimental results show that a significant inter-diffusion of the alloying elements occurs between the coating layer (CL) and the transition layer (TL). Consequently, a strong metallurgical bond is formed between them. During the cladding process, the ZrO2 is completely decomposed, while the FA is partially decomposed. As a result, the CLs of all the specimens consist mainly of FA, Ca4(PO4)2O (TTCP), CaF2, CaZrO3, CaTiO3 and monoclinic phase ZrO2 (m-ZrO2), together with a small amount of θ-Al2O3. As the laser power is increased, CaO, CaCO3 and trace amounts of tetragonal phase ZrO2 (t-ZrO2) also appear. As the laser power increases from 400 to 800 W, the CL hardness also increases as a result of microstructural refinement and densification. However, at the highest laser power of 1200 W, the CL hardness reduces significantly due to the formation of large amounts of relatively soft CaO and CaCO3 phase. PMID:28773503
NASA Astrophysics Data System (ADS)
Stolov, Andrei A.; Slyman, Brian E.; Burgess, David T.; Hokansson, Adam S.; Li, Jie; Allen, R. Steve
2013-03-01
Optical fibers with different types of polymer coatings were exposed to three sterilization conditions: multiple autoclaving, treatment with ethylene oxide and treatment with gamma rays. Effects of different sterilization techniques on key optical and mechanical properties of the fibers are reported. The primary attention is given to behavior of the coatings in harsh sterilization environments. The following four coating/buffer types were investigated: (i) dual acrylate, (ii) polyimide, (iii) silicone/PEEK and (iv) fluoroacrylate hard cladding/ETFE.
NASA Astrophysics Data System (ADS)
Martinelli, Vincent P.; Squires, Emily M.; Watkins, James J.
1994-03-01
Corning has introduced a new polarization-maintaining optical fiber to satisfy customer requirements for a range of commercial and military FOG applications. This fiber has an elliptical core, matched-clad design, and is intended for operation in the 780 to 850 nm wavelength region. The fiber has a beat length less than 1.5 mm, attenuation rate less than 10 dB/km, and a typical coiled h-parameter less than 1.5 X 10-4 m-1 in the designated operating wavelength range. It has a cladding diameter of 80 micrometers and a coating diameter of 185 micrometers . The coating is an acrylate system, similar to that used in telecommunications optical fibers. We report on the performance of this elliptical core fiber for a variety of environmental exposures representative of an automotive application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killian, D.E.; Yoon, K.K.
1996-12-01
Flaws on the inside surface of cladded reactor vessels are often analyzed by modelling the carbon steel base metal without consideration of a layer of stainless steel cladding material, thus ignoring the effects of this bimetallic discontinuity. Adding cladding material to the inside surface of a finite element model of a vessel raises concerns regarding adequate mesh refinement in the vicinity of the base metal/cladding interface. This paper presents results of three-dimensional linear stress analysis that has been performed to obtain stress intensity factors for clad and unclad reactor vessels subjected to internal pressure loading. The study concentrates on semi-ellipticalmore » longitudinal surface flaws with a 6 to 1 length-to-depth ratio and flaw depths of 1/8 and 1/4 of the base metal thickness. Various meshing schemes are evaluated for modelling the crack front profile, with particular emphasis on the region near the inside surface and at the base metal/cladding interface. The shape of the crack front profile through the cladding layer and the number of finite elements used to discretize the cladding thickness are found to have a significant influence on typical fracture mechanic measures of the crack tip stress fields. Results suggest that the stress intensity factor at the inner surface of a cladded vessel may be affected as much by the finite element mesh near the surface as by the material discontinuity between the two parts of the structure.« less
Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr
NASA Astrophysics Data System (ADS)
Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong
2015-08-01
Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures combined with the crack initiation sites such as the fractured WC particles, pores and solidification cracks. WC particles directly caused clad cracks by particle fracture under the tensile stress. The pores and solidification cracks also affected as initiation sites and provided an easy crack path ways for large brittle fractures.
NASA Astrophysics Data System (ADS)
Farrakhov, R. G.; Mukaeva, V. R.; Fatkullin, A. R.; Gorbatkov, M. V.; Tarasov, P. V.; Lazarev, D. M.; Babu, N. Ramesh; Parfenov, E. V.
2018-01-01
This research is aimed at improvement of corrosion properties for Zr-1Nb alloy via plasma electrolytic oxidation (PEO). The coatings obtained in DC, pulsed unipolar and pulsed bipolar modes were assessed using SEM, XRD, PDP and EIS techniques. It was shown that pulsed unipolar mode provides the PEO coatings having promising combination of the coating thickness, surface roughness, porosity, corrosion potential and current density, and charge transfer resistance, all contributing to corrosion protection of the zirconium alloy for advanced fuel cladding applications.
Femtosecond laser direct-write of optofluidics in polymer-coated optical fiber
NASA Astrophysics Data System (ADS)
Joseph, Kevin A. J.; Haque, Moez; Ho, Stephen; Aitchison, J. Stewart; Herman, Peter R.
2017-03-01
Multifunctional lab in fiber technology seeks to translate the accomplishments of optofluidic, lab on chip devices into silica fibers. a robust, flexible, and ubiquitous optical communication platform that can underpin the `Internet of Things' with distributed sensors, or enable lab on chip functions deep inside our bodies. Femtosecond lasers have driven significant advances in three-dimensional processing, enabling optical circuits, microfluidics, and micro-mechanical structures to be formed around the core of the fiber. However, such processing typically requires the stripping and recoating of the polymer buffer or jacket, increasing processing time and mechanically weakening the device. This paper reports on a comprehensive assessment of laser damage in urethane-acrylate-coated fiber. The results show a sufficient processing window is available for femtosecond laser processing of the fiber without damaging the polymer jacket. The fiber core, cladding, and buffer could be simultaneously processed without removal of the buffer jacket. Three-dimensional lab in fiber devices were successfully fabricated by distortion-free immersionlens focusing, presenting fiber-cladding optical circuits and progress towards chemically-etched channels, microfluidic cavities, and MEMS structure inside buffer-coated fiber.
Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.
Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M
2013-02-01
During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.
NASA Astrophysics Data System (ADS)
Li, G. J.; Li, J.; Luo, X.
2015-01-01
The composite coatings were produced on the Ti6Al4V alloy substrate by laser cladding. Subsequently, the coatings were heated at 500 °C for 1 h and 2 h and then cooled in air. Effects of post-heat treatment on microstructure, microhardness and fracture toughness of the coatings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), optical microscopy (OM). Wear resistance of the coatings was evaluated under the dry sliding reciprocating friction condition at room temperature. The results indicated that the coatings mainly consist of a certain amount of coarse white equiaxed WC particles surrounded by the white-bright W2C, a great deal of fine dark spherical TiC particles and the matrix composed of the α(Ti), Ti2Ni and TiNi phases. Effects of the post-heat treatment on phase constituents and microstructure of the coatings were almost negligible due to the low temperature. However, the post-heat treatment could decrease the residual stress and increase fracture toughness of the coatings, and fracture toughness of the coatings was improved from 2.77 MPa m1/2 to 3.80 MPa m1/2 and 4.43 MPa m1/2 with the heat treatment for 1 h and 2 h, respectively. The mutual role would contribute to the reduction in cracking susceptibility. Accompanied with the increase in fracture toughness, microhardness of the coatings was reduced slightly. The dominant wear mechanism for all the coatings was abrasive wear, characterized by micro-cutting or micro-plowing. The heat treatment could significantly decrease the average friction coefficient and reduce the fluctuation of the friction coefficient with the change in sliding time. The appropriate heat treatment time (approximately 1 h) had a minimal effect on wear mass loss and volume loss. Moreover, the improvement in fracture toughness will also be beneficial to wear resistance of the coatings under the long service.
Characteristics of laser clad α-Ti/TiC+(Ti,W)C1-x/Ti2SC+TiS composite coatings on TA2 titanium alloy
NASA Astrophysics Data System (ADS)
Zhai, Yong-Jie; Liu, Xiu-Bo; Qiao, Shi-Jie; Wang, Ming-Di; Lu, Xiao-Long; Wang, Yong-Guang; Chen, Yao; Ying, Li-Xia
2017-03-01
TiC reinforced Ti matrix composite coating with Ti2SC/TiS lubricant phases in-situ synthesized were prepared on TA2 titanium alloy by laser cladding with different powder mixtures: 40%Ti-19.5%TiC-40.5%WS2, 40%Ti-25.2%TiC-34.8%WS2, 40%Ti-29.4%TiC-30.6%WS2 (wt%). The phase compositions, microstructure, microhardness and tribological behaviors and wear mechanisms of coatings were investigated systematically. Results indicate that the main phase compositions of three coatings are all continuous matrix α-Ti, reinforced phases of (Ti,W)C1-x and TiC, lubricant phases of Ti2SC and TiS. The microhardness of the three different coatings are 927.1 HV0.5, 1007.5 HV0.5 and 1052.3 HV0.5, respectively. Compared with the TA2 titanium alloy (approximately 180 HV0.5), the microhardness of coatings have been improved dramatically. The coefficients of friction and the wear rates of those coatings are 0.41 and 30.98×10-5 mm3 N-1 m-1, 0.30 and 18.92×10-5 mm3 N-1 m-1, 0.34 and 15.98×10-5 mm3 N-1 m-1, respectively. Comparatively speaking, the coating fabricated with the powder mixtures of 40%Ti-25.2%TiC-34.8%WS2 presents superior friction reduction and anti-wear properties and the main wear mechanisms of that are slight plastic deformation and adhesive wear.
NASA Astrophysics Data System (ADS)
Tian, Jia-Jia; Wei, Ying-Kang; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu
2018-01-01
Corrosion of metal plays a detrimental role in service lifetime of parts or systems. Therefore, coating a protective film which is fully dense and defects free on the base metal is an effective approach to protect the base metal from corrosion. In this study, a dense NiCr-20Mo coating with excellent lamellar interface bonding was deposited by plasma spraying of the novel shell-core-structured Mo-clad-NiCr powders, and then post-spray shot peening treatment by cold spraying of steel shots was applied to the plasma-sprayed NiCr-20Mo coating to obtain a fully dense coating through eliminating possibly existed pores and un-bonded interfaces within the NiCr-20Mo coating. Corrosion behaviors of the NiCr-20Mo coatings before and after shot peening were tested to investigate the effect of the post-spray shot peening on the corrosion behavior of the NiCr-20Mo coating. Results showed that a much dense and uniform plasma-sprayed NiCr-20Mo coating with perfect lamellar bonding at most of interfaces was deposited. However, the electrochemical tests revealed the existence of through-thickness pores in the as-plasma-sprayed NiCr-20Mo coating. Through the post-spray shot peening treatment, a completely dense top layer in the coating was formed, and with the increase in the shot peening intensity from one pass to three passes, the dense top layer became thicker from 100 μm to reach 300 μm of the whole coating thickness. Thus, a fully dense bulk-like coating was obtained. Corrosion test results showed that the dense coating layer resulting from densification of shot peening can act as an effective barrier coating to prevent the penetration of the corrosive medium and consequently protect the substrate from corrosion effectively. Therefore, a fully dense bulk-like NiCr-20Mo coating with excellent corrosion resistance can be achieved through the plasma spraying of Mo-clad-NiCr powders followed by appropriate post-spray shot peening treatment.
Influence of Process Parameters on the Process Efficiency in Laser Metal Deposition Welding
NASA Astrophysics Data System (ADS)
Güpner, Michael; Patschger, Andreas; Bliedtner, Jens
Conventionally manufactured tools are often completely constructed of a high-alloyed, expensive tool steel. An alternative way to manufacture tools is the combination of a cost-efficient, mild steel and a functional coating in the interaction zone of the tool. Thermal processing methods, like laser metal deposition, are always characterized by thermal distortion. The resistance against the thermal distortion decreases with the reduction of the material thickness. As a consequence, there is a necessity of a special process management for the laser based coating of thin parts or tools. The experimental approach in the present paper is to keep the energy and the mass per unit length constant by varying the laser power, the feed rate and the powder mass flow. The typical seam parameters are measured in order to characterize the cladding process, define process limits and evaluate the process efficiency. Ways to optimize dilution, angular distortion and clad height are presented.
NASA Astrophysics Data System (ADS)
Li, Ruidi; Yuan, Tiechui; Qiu, Zili
2014-07-01
A gradient-nanograin surface layer of Co-base alloy was prepared by friction stir processing (FSP) of laser-clad coating in this work. However, it is lack of a quantitatively function relationship between grain refinement and FSP conditions. Based on this, an analytic model is derived for the correlations between carbide size, hardness and rotary speed, layer depth during in-situ FSP of laser-clad Co-Cr-Ni-Mo alloy. The model is based on the principle of typical plastic flow in friction welding and dynamic recrystallization. The FSP experiment for modification of laser-clad Co-based alloy was conducted and its gradient nanograin and hardness were characterized. It shows that the model is consistent with experimental results.
Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding
NASA Astrophysics Data System (ADS)
Yang, Rongjuan; Liu, Zongde; Wang, Yongtian; Yang, Guang; Li, Hongchuan
2013-02-01
The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.
NASA Astrophysics Data System (ADS)
Tanigawa, Daichi; Abe, Nobuyuki; Tsukamoto, Masahiro; Hayashi, Yoshihiko; Yamazaki, Hiroyuki; Tatsumi, Yoshihiro; Yoneyama, Mikio
2018-02-01
Laser cladding is one of the most useful surface coating methods for improving the wear and corrosion resistance of material surfaces. Although the heat input associated with laser cladding is small, a heat affected zone (HAZ) is still generated within the substrate because this is a thermal process. In order to reduce the area of the HAZ, the heat input must therefore be reduced. In the present study, we examined the effects of the powdered raw material particle size on the heat input and the extent of the HAZ during powder bed laser cladding. Ni-Cr-Si-B alloy layers were produced on C45 carbon steel substrates in conjunction with alloy powders having average particle sizes of 30, 40 and 55 μm, while measuring the HAZ area by optical microscopy. The heat input required for layer formation was found to decrease as smaller particles were used, such that the HAZ area was also reduced.
Novel intercore-cladding lithium niobate thin film coated MOEMS fiber sensor/modulator
NASA Technical Reports Server (NTRS)
Jamlson, Tracee L.; Konreich, Phillip; Yu, Chung
2005-01-01
A MOEMS fiber modulator/sensor is fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125-micron fibers. Such a MOEMS modulator design is expected to enhance existing lithium niobate undersea acousto-optic sound wave detectors. In our proposed version, the lithium niobate thin film alters the ordinary silica core/cladding boundary conditions such that, when a stress or strain is applied to the fiber, the core light confinement factor changes, leading to modulation of fiber light transmission. Test results of the lithium niobate embedded fiber with a 1550-nm, 4-mW laser source revealed a reduction in light transmission with applied tension. As a comparison, using the same laser source, an ordinary silica core/cladding fiber did not exhibit any reduction in transmitted light when the same strain was applied. Further experimental work and theoretical analysis is ongoing.
Surface Properties of the IN SITU Formed Ceramics Reinforced Composite Coatings on TI-3AL-2V Alloys
NASA Astrophysics Data System (ADS)
Liu, Peng; Guo, Wei; Hu, Dakui; Luo, Hui; Zhang, Yuanbin
2012-04-01
The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.
Microstructure and tribological properties of TiCu2Al intermetallic compound coating
NASA Astrophysics Data System (ADS)
Guo, Chun; Zhou, Jiansong; Zhao, Jierong; Wang, Linqian; Yu, Youjun; Chen, Jianmin; Zhou, Huidi
2011-04-01
TiCu2Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu2Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu2Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu2Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.
Optical fiber sensors for damage analysis in aerospace materials
NASA Technical Reports Server (NTRS)
Schindler, Paul; May, Russell; Claus, Richard
1995-01-01
Under this grant, fiber optic sensors were investigated for use in the nondestructive evaluation of aging aircraft. Specifically, optical fiber sensors for detection and location of impacts on a surface, and for detection of corrosion in metals were developed. The use of neural networks was investigated for determining impact location by processing the output of a network of fiberoptic strain sensors distributed on a surface. This approach employs triangulation to determine location by comparing the arrival times at several sensors, of the acoustic signal generated by the impact. For this study, a neural network simulator running on a personal computer was used to train a network using a back-propagation algorithm. Fiber optic extrinsic Fabry-Perot interferometer (EFPI) strain sensors are attached to or embedded in the surface, so that stress waves emanating from an impact can be detected. The ability of the network to determine impact location by time-or-arrival of acoustic signals was assessed by comparing network outputs with actual experimental results using impacts on a panel instrumented with optical fiber sensors. Using the neural network to process the sensor outputs, the impact location can be inferred to centimeter range accuracy directly from the arrival time data. In addition, the network can be trained to determine impact location, regardless of material anisotropy. Results demonstrate that a back-propagation network identifies impact location for an anisotropic graphite/bismaleimide plate with the same accuracy as that for an isotropic aluminum plate. Two different approaches were investigated for the development of fiber optic sensors for corrosion detection in metals, both utilizing optical fiber sensors with metal coatings. In the first approach, an extrinsic Fabry-Perot interferometric fiber optic strain sensor was placed under tensile stress, and while in the resulting strained position, a thick coating of metal was applied. Due to an increase in the quantity of material, the sensor does not return to its original position upon removal of the applied stress, and some residual strain is maintained within the sensor element. As the metal thickness decreases due to corrosion, this strain is released, providing the sensing mechanism for corrosion detection. In the second approach, photosensitive optical fibers with long period Bragg gratings in the core were coated with metal. The Bragg gratings serve to couple core modes at discrete wavelengths to cladding modes. Since cladding modes interact with the metal coating surrounding the fiber cladding, the specific wavelengths coupled from core to cladding depend on the refractive index of the metal coating. Therefore, as the metal corrodes, the resulting change in index of the coating may be measured by measuring the change in wavelength of the coupled mode. Results demonstrate that both approaches can be successfully used to track the loss in metal coating on the optical fiber sensors due to corrosion.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-29
... Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping Duty Order on Clad Steel Plate From Japan AGENCY: United States International Trade Commission. ACTION: Notice. SUMMARY: The... order on clad steel plate from Japan would be likely to lead to continuation or recurrence of material...
Real-time laser cladding control with variable spot size
NASA Astrophysics Data System (ADS)
Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.
2014-03-01
Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.
Micro-Structures and High-Temperature Friction-Wear Performances of Laser Cladded Cr–Ni Coatings
2018-01-01
Cr–Ni coatings with the mass ratios of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni were fabricated on H13 hot work mould steel using a laser cladding (LC). The surface–interface morphologies, chemical elements, surface roughness and phase composition of the obtained Cr–Ni coatings were analysed using a scanning electron microscope (SEM), energy disperse spectroscopy (EDS), atomic force microscope (AFM) and X–ray diffractometer (XRD), respectively. The friction–wear properties and wear rates of Cr–Ni coatings with the different mass ratios of Cr and Ni at 600 °C were investigated, and the worn morphologies and wear mechanism of Cr–Ni coatings were analysed. The results show that the phases of Cr–Ni coatings with mass ratios of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni are composed of Cr + Ni single-phases and their compounds at the different stoichiometry, the porosities on the Cr–Ni coatings increase with the Cr content increasing. The average coefficient of friction (COF) of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% coatings are 1.10, 0.33 and 0.87, respectively, in which the average COF of 20% Cr–80% Ni coating is the lowest, exhibiting the better anti-friction performance. The wear rate of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni coatings is 4.533 × 10−6, 5.433 × 10−6, and 1.761 × 10−6 N−1·s−1, respectively, showing the wear resistance of Cr–Ni coatings at a high temperature increases with the Cr content, in which the wear rate is 24% Cr–76% Ni coating with the better reducing wear. The wear mechanism of 17% Cr–83% Ni and 20% Cr–80% Ni and 24% Cr–76% coatings at 600 °C is primarily adhesive wear, and that of 24% Cr–76% coating is also accompanied by oxidative wear. PMID:29342948
Nuclear fuel elements having a composite cladding
Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.
1983-09-20
An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.
Low temperature and UV curable sol-gel coatings for long lasting optical fiber biosensors
NASA Astrophysics Data System (ADS)
Otaduy, D.; Villar, A.; Gomez-Herrero, E.; Goitandia, A. M.; Gorritxategi, E.; Quintana, I.
2010-04-01
The use of optical fibers as sensing element is increasing in clinical, pharmaceutical and industrial applications. Excellent light delivery, long interaction length, low cost and ability not only to excite the target molecules but also to capture the emitted light from the targets are the hallmarks of optical fiber as biosensors. In biosensors based on fiber optics the interaction with the analyte can occur within an element of the optical fiber. One of the techniques for this kind of biosensors is to remove the fiber optic cladding and substitute it for biological coatings that will interact with the parameter to sensorize. The deposition of these layers can be made by sol-gel technology. The sol-gel technology is being increasingly used mainly due to the high versatility to tailor their optical features. Incorporation of suitable chemical and biochemical sensing agents have allowed determining pH, gases, and biochemical species, among others. Nonetheless, the relatively high processing temperatures and short lifetime values mean severe drawbacks for a successful exploitation of sol-gel based coated optical fibres. With regard to the latter, herein we present the design, preparation and characterization of novel sol-gel coated optical fibres. Low temperature and UV curable coating formulations were optimized to achieve a good adhesion and optical performance. The UV photopolymerizable formulation was comprised by glycidoxypropyltrimethoxysilane (GLYMO), Tetraethylorthosilicate (TEOS) and an initiator. While the thermoset coating was prepared by using 3-aminopropyltrimethoxysilane, GLYMO, and TEOS as main reagents. Both curable sol-gel coated fibres were analysed by FTIR, SEM and optical characterization. Furthermore, in the present work a new technique for silica cladding removal has been developed by ultra-short pulses laser processing, getting good dimensional accuracy and surface integrity.
NASA Astrophysics Data System (ADS)
Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui
2015-05-01
Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.
NASA Astrophysics Data System (ADS)
Zakharchenko, K. V.; Zubkov, V. P.; Kapustin, V. I.; Maksimovski, E. A.; Talanin, A. V.
2017-10-01
The article is devoted to the research on influence of coating technologies on stress-strain characteristics of a heterogeneous sample (the substrate-coating system) at periodic stress-controlled loading. The comparison of stress-strain characteristics of samples with three types of surface layer showed that the coatings lead to the change in stress at which inelastic phenomena appear in the material. Apart stress-strain characteristics of samples, microrelief on the samples’ surface and formation of a slipband in the grain structure of the coatings were studied in the experiment. It is stated that cold dynamic spraying, which is performed by centrifugal acceleration of particles in vacuum, makes it possible to obtain a coating with better strength and stress-strain characteristics in comparison with cladding.
Fuel development for gas-cooled fast reactors
NASA Astrophysics Data System (ADS)
Meyer, M. K.; Fielding, R.; Gan, J.
2007-09-01
The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.
NASA Astrophysics Data System (ADS)
Farahmand, Parisa; Kovacevic, Radovan
2014-12-01
In laser cladding, the performance of the deposited layers subjected to severe working conditions (e.g., wear and high temperature conditions) depends on the mechanical properties, the metallurgical bond to the substrate, and the percentage of dilution. The clad geometry and mechanical characteristics of the deposited layer are influenced greatly by the type of laser used as a heat source and process parameters used. Nowadays, the quality of fabricated coating by laser cladding and the efficiency of this process has improved thanks to the development of high-power diode lasers, with power up to 10 kW. In this study, the laser cladding by a high power direct diode laser (HPDDL) as a new heat source in laser cladding was investigated in detail. The high alloy tool steel material (AISI H13) as feedstock was deposited on mild steel (ASTM A36) by a HPDDL up to 8kW laser and with new design lateral feeding nozzle. The influences of the main process parameters (laser power, powder flow rate, and scanning speed) on the clad-bead geometry (specifically layer height and depth of the heat affected zone), and clad microhardness were studied. Multiple regression analysis was used to develop the analytical models for desired output properties according to input process parameters. The Analysis of Variance was applied to check the accuracy of the developed models. The response surface methodology (RSM) and desirability function were used for multi-criteria optimization of the cladding process. In order to investigate the effect of process parameters on the molten pool evolution, in-situ monitoring was utilized. Finally, the validation results for optimized process conditions show the predicted results were in a good agreement with measured values. The multi-criteria optimization makes it possible to acquire an efficient process for a combination of clad geometrical and mechanical characteristics control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bataev, I.A.; Mul, D.O.; Bataev, A.A.
2016-02-15
The non-vacuum electron beam cladding technique was used to fabricate layers alloyed with Ti, Mo and C on the surface of low-alloyed steel. Two types of experiments were carried out. In the first experiment, a mixture of Ti and graphite powders was used for cladding; in the second, a mixture of Ti, Mo and graphite powders was used for cladding. CaF{sub 2} powder or a mixture of CaF{sub 2} and LiF powders was used as flux. The thickness of the cladded layers was in the range of 2–2.2 mm. The structure of the layers was studied using optical microscopy, scanningmore » electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The microhardness after cladding of the layers fabricated by cladding of Ti and graphite powders was 8–9 GPa, while the microhardness of layers with Mo additions reached 11–12 GPa. The highest wear resistance at sliding friction and friction in abrasive environment was reached in the samples fabricated using Ti, Mo and graphite mixture due to the higher hardness and the martensite–austenite structure of the matrix. The wear resistance against fixed abrasive particles was 2.4 times higher compared to that of carburized and quenched steel. - Highlights: • Ti, C and Mo mixture of powders was cladded using non-vacuum electron beam treatment. • The depth of the cladded layers was 2.0 … 2.2 mm. • The microhardness of layer with Mo, Ti and C additions reached ~ 11 … 12 GPa. • The hardening of the layers caused by the formation of TiC particles and martensitic matrix • Wear resistance of cladded coatings was 2.4 higher than carburized steel.« less
Clad-pumped Er-nanoparticle-doped fiber laser (Conference Presentation)
NASA Astrophysics Data System (ADS)
Baker, Colin C.; Friebele, E. Joseph; Rhonehouse, Daniel L.; Marcheschi, Barbara A.; Peele, John R.; Kim, Woohong; Sanghera, Jasbinder S.; Zhang, Jun; Chen, Youming; Pattnaik, Radha K.; Dubinskii, Mark
2017-03-01
Erbium-doped fiber lasers are attractive for directed energy weapons applications because they operate in a wavelength region that is both eye-safer and a window of high atmospheric transmission. For these applications a clad-pumped design is desirable, but the Er absorption must be high because of the areal dilution of the doped core vs. the pump cladding. High Er concentrations typically lead to Er ion clustering, resulting in quenching and upconversion. Nanoparticle (NP) doping of the core overcomes these problems by physically surrounding the Er ions with a cage of Al and O in the NP, which keeps them separated to minimize excited state energy transfer. A significant issue is obtaining high Er concentrations without the NP agglomeration that degrades the optical properties of the fiber core. We have developed the process for synthesizing stable Er-NP suspension which have been used to fabricate EDFs with Er concentrations >90 dB/m at 1532 nm. Matched clad fibers have been evaluated in a core-pumped MOPA with pump and signal wavelengths of 1475 and 1560 nm, respectively, and efficiencies of 72% with respect to absorbed pump have been obtained. We have fabricated both NP- and solution-doped double clad fibers, which have been measured in a clad-pumped laser testbed using a 1532 nm pump. The 1595 nm laser efficiency of the NP-doped fiber was 47.7%, which is high enough for what is believed to be the first laser experiment with the cladding pumped, NP-doped fiber. Further improvements are likely with a shaped cladding and new low-index polymer coatings with lower absorption in the 1500 - 1600 nm range.
Characteristic optimization of 1.55-μm InGaAsP/InP high-power diode laser
NASA Astrophysics Data System (ADS)
Ke, Qing; Tan, Shaoyang; Zhai, Teng; Zhang, Ruikang; Lu, Dan; Ji, Chen
2014-11-01
A comprehensive design optimization of 1.55-μm high power InGaAsP/InP board area lasers is performed aiming at increasing the internal quantum efficiency (IQE) while maintaing a low internal loss of the device as well. The P-doping profile and separate confinement heterostructure (SCH) layer band gap are optimized respectively with commercial software Crosslight. Analysis of lasers with different p-doping profiles shows that, although heavy doping in P-cladding layer increases the internal loss of the device, it ensures a high IQE because higher energy barrier at the SCH/P-cladding interface as a result of heavy doping helps reduce the carrier leakage from the waveguide to the InP-cladding layer. The band gap of the SCH layer are also optimized for high slope efficiency. Smaller band gap helps reduce the vertical carrier leakage from the waveguide to the P-cladding layer, but the corresponding higher carrier concentration in SCH layer will cause some radiative recombination, thus influencing the IQE. And as the injection current increases, the carrier concentration increases faster with smaller band gap, therefore, the output power saturates sooner. An optimized band gap in SCH layer of approximately 1.127eV and heavy doping up to 1e18/cm3 at the SCH/P-cladding interface are identified for our high power laser design, and we achieved a high IQE of 94% and internal loss of 2.99/cm for our design.
Double-clad nuclear fuel safety rod
McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan
1984-01-01
A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.
Double-clad nuclear-fuel safety rod
McCarthy, W.H.; Atcheson, D.B.
1981-12-30
A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samoylenko, Vitaliy V., E-mail: samoylenko.vitaliy@mail.ru; Lenivtseva, Olga G., E-mail: lenivtseva-olga@mail.ru; Polyakov, Igor A., E-mail: status9@mail.ru
In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of claddedmore » layers to the substrate, which exceeded cp-titanium strength characteristics.« less
NASA Astrophysics Data System (ADS)
Savrai, R. A.; Makarov, A. V.; Gorkunov, E. S.; Soboleva, N. N.; Kogan, L. Kh.; Malygina, I. Yu.; Osintseva, A. L.; Davydova, N. A.
2017-12-01
The possibilities of the eddy-current method for testing the fatigue degradation under contact loading of gas powder laser clad NiCrBSi-Cr3C2 composite coating with 15 wt.% of Cr3C2 additive have been investigated. It is shown that the eddy-current testing of the fatigue degradation under contact loading of the NiCrBSi-15%Cr3C2 composite coating can be performed at high excitation frequencies 72-120 kHz of the eddy-current transducer. At that, the dependences of the eddy-current instrument readings on the number of loading cycles have both downward and upward branches, with the boundary between the branches being 3×105 cycles in the given loading conditions. This is caused, on the one hand, by cracking, and, on the other hand, by cohesive spalling and compaction of the composite coating, which affect oppositely the material resistivity and, correspondingly, the eddy-current instrument readings. The downward branch can be used to monitor the processes of crack formation and growth, the upward branch - to monitor the degree of cohesive spalling, while taking into account in the testing methodology an ambiguous character of the dependences of the eddy-current instrument readings on the number of loading cycles.
Carbide and nitride precipitation during laser cladding of Inconel 718 alloy coatings
NASA Astrophysics Data System (ADS)
Zhang, Yaocheng; Li, Zhuguo; Nie, Pulin; Wu, Yixiong
2013-11-01
The microstructure of the laser clad Inconel 718 alloy coating was observed by scanning electron microscope (SEM). The chemical composition of precipitation phases was investigated by energy dispersive spectrometer (EDS) and solid phase microextraction (SPME). The crystal structure and lattice constants of precipitation are determined by transmission electron microscope (TEM). Vickers hardness of the coatings and the nanohardness of the interstitial phases were measured. The insular carbide (MC) and the tetragonal nitride (MN) with face-centered cubic (FCC) structure are rich in Ti and Nb but depleted in Ni, Fe and Cr due to the interdiffusion and redistribution of alloying elements between MC and MN and supersaturated matrix. MC and MN were precipitated in the forms of (Nb0.12Ti0.88)C1.5 and (Nb0.88Ti0.12)N1.5, and the Gibbs free energies of formation can be expressed as Δ G [ (Nb0.12Ti0.88)C1.5 ] 0 = - 122.654 - 3.1332 T (kJ /mol) and Δ G [ (Nb0.88Ti0.12)N1.5 ] 0 = - 157.814 - 3.0251 T (kJ /mol). The nanohardness and Young's modulus of the MC and MN were much higher than the matrix, and the plastic deformation energy of interstitial phases was lower than the matrix. The precipitation of MC and MN is beneficial to the mechanical properties of coating.
NASA Astrophysics Data System (ADS)
Wang, Lingqian; Zhou, Jiansong; Xin, Benbin; Yu, Youjun; Ren, Shufang; Li, Zhen
2017-08-01
Ag-MoO3 contained NiCrAlY based composite coating was successfully prepared on GH4169 stainless steel substrate by high energy ball milling and laser cladding. The microstructure and phase transformation were investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction spectrum (XRD). The tribological behavior and mechanism from room temperature to 800 °C were investigated. Results showed that MoO3 in the composite powders transformed to Mo2C reinforcement under the high energy density of laser, and a series of opposite transformation occurred during friction process. The coating showed the lowest friction coefficient and low wear rate at 600 °C and 800 °C due to the generation of Ag2MoO4 during tribo-chemical reactions and the formation of lubrication glaze on the worn surface. Ag made effective lubrication when the temperature rose up to 200 °C. The coating displayed a relatively high friction coefficient (about 0.51) at 400 °C, because though MoO3 (oxidation products of Mo2C) and Ag2MoO4 were detected on the worn surface, they could not realize effective lubrication at this temperature. Abrasive wear, adhesive wear and plastic deformation contributed to the increased friction and wear.
Early implementation of SiC cladding fuel performance models in BISON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, Jeffrey J.
2015-09-18
SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation duemore » to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.« less
Semipolar III-nitride laser diodes with zinc oxide cladding.
Myzaferi, Anisa; Reading, Arthur H; Farrell, Robert M; Cohen, Daniel A; Nakamura, Shuji; DenBaars, Steven P
2017-07-24
Incorporating transparent conducting oxide (TCO) top cladding layers into III-nitride laser diodes (LDs) improves device design by reducing the growth time and temperature of the p-type layers. We investigate using ZnO instead of ITO as the top cladding TCO of a semipolar (202¯1) III-nitride LD. Numerical modeling indicates that replacing ITO with ZnO reduces the internal loss in a TCO clad LD due to the lower optical absorption in ZnO. Lasing was achieved at 453 nm with a threshold current density of 8.6 kA/cm 2 and a threshold voltage of 10.3 V in a semipolar (202¯1) III-nitride LD with ZnO top cladding.
NASA Astrophysics Data System (ADS)
Stockdale, Andrew
The use of low NOx boilers in coal fired power plants has resulted in sulfidizing corrosive conditions within the boilers and a reduction in the service lifetime of the waterwall tubes. As a solution to this problem, Ni-based weld overlays are used to provide the necessary corrosion resistance however; they are susceptible to corrosion fatigue. There are several metallurgical factors which give rise to corrosion fatigue that are associated with the localized melting and solidification of the weld overlay process. Coextruded coatings offer the potential for improved corrosion fatigue resistance since coextrusion is a solid state coating process. The corrosion and corrosion fatigue behavior of alloy 622 weld overlays and coextruded claddings was investigated using a Gleeble thermo-mechanical simulator retrofitted with a retort. The experiments were conducted at a constant temperature of 600°C using a simulated combustion gas of N2-10%CO-5%CO2-0.12%H 2S. An alternating stress profile was used with a minimum tensile stress of 0 MPa and a maximum tensile stress of 300 MPa (ten minute fatigue cycles). The results have demonstrated that the Gleeble can be used to successfully simulate the known corrosion fatigue cracking mechanism of Ni-based weld overlays in service. Multilayer corrosion scales developed on each of the claddings that consisted of inner and outer corrosion layers. The scales formed by the outward diffusion of cations and the inward diffusion of sulfur and oxygen anions. The corrosion fatigue behavior was influenced by the surface finish and the crack interactions. The initiation of a large number of corrosion fatigue cracks was not necessarily detrimental to the corrosion fatigue resistance. Finally, the as-received coextruded cladding exhibited the best corrosion fatigue resistance.
NASA Astrophysics Data System (ADS)
Zheng, Haizhong; Li, Bingtian; Tan, Yong; Li, Guifa; Shu, Xiaoyong; Peng, Ping
2018-01-01
Yttria-stabilized zirconia YSZ@Ni core-shell nanoparticles were used to prepare a thermal barrier coating (TBC) on a GH4169 alloy by laser cladding. Microstructural analysis showed that the TBC was composed of two parts: a ceramic and a bonding layer. In places where the ZrO2/Al2O3 eutectic structure was present in the ceramic layer, the Ni atoms diffused into the bonding layer, as confirmed by energy-dispersive X-ray spectroscopy (EDS). The derivative effect of laser cladding results in the original YSZ@Ni core-shell nanoparticles being translated into the Al2O3 crystal, activating the YSZ. The mechanism of ceramic/metal interface cohesion was studied in depth via first-principles and molecular dynamics simulation. The results show that the trend in the diffusion coefficients of Ni, Fe, Al, and Ti is DNi > DFe > DTi > DAl in the melting or solidification process of the material. The enthalpy of formation for Al2O3 is less than that of TiO2, resulting in a thermally grown oxide (TGO) Al2O3 phase transformation. With regard to the electronic structure, the trend in Mulliken population is QO-Ni > QZr-O > QO-Al. Although the bonding is slightly weakened between ZrO2/Al2O3 (QZr-O = 0.158 < QO-Ni = 0.220) compared to that in ZrO2/Ni, TGO Al2O3 can improve the oxidation resistance of the metal matrix. Thus, by comparing the connective and diffusive processes, our findings lay the groundwork for detailed and comprehensive studies of the laser cladding process for the production of composite materials.
Cladding burst behavior of Fe-based alloys under LOCA
Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; ...
2015-12-17
Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. Themore » most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.« less
Fiber-Type Random Laser Based on a Cylindrical Waveguide with a Disordered Cladding Layer.
Zhang, Wei Li; Zheng, Meng Ya; Ma, Rui; Gong, Chao Yang; Yang, Zhao Ji; Peng, Gang Ding; Rao, Yun Jiang
2016-05-25
This letter reports a fiber-type random laser (RL) which is made from a capillary coated with a disordered layer at its internal surface and filled with a gain (laser dye) solution in the core region. This fiber-type optical structure, with the disordered layer providing randomly scattered light into the gain region and the cylindrical waveguide providing confinement of light, assists the formation of random lasing modes and enables a flexible and efficient way of making random lasers. We found that the RL is sensitive to laser dye concentration in the core region and there exists a fine exponential relationship between the lasing intensity and particle concentration in the gain solution. The proposed structure could be a fine platform of realizing random lasing and random lasing based sensing.
Negative axial strain sensitivity in gold-coated eccentric fiber Bragg gratings
Chah, Karima; Kinet, Damien; Caucheteur, Christophe
2016-01-01
New dual temperature and strain sensor has been designed using eccentric second-order fiber Bragg gratings produced in standard single-mode optical fiber by point-by-point direct writing technique with tight focusing of 800 nm femtosecond laser pulses. With thin gold coating at the grating location, we experimentally show that such gratings exhibit a transmitted amplitude spectrum composed by the Bragg and cladding modes resonances that extend in a wide spectral range exceeding one octave. An overlapping of the first order and second order spectrum is then observed. High-order cladding modes belonging to the first order Bragg resonance coupling are close to the second order Bragg resonance, they show a negative axial strain sensitivity (−0.55 pm/με) compared to the Bragg resonance (1.20 pm/με) and the same temperature sensitivity (10.6 pm/°C). With this well conditioned system, temperature and strain can be determined independently with high sensitivity, in a wavelength range limited to a few nanometers. PMID:27901059
HRTEM and chemical study of an ion-irradiated chromium/zircaloy-4 interface
NASA Astrophysics Data System (ADS)
Wu, A.; Ribis, J.; Brachet, J.-C.; Clouet, E.; Leprêtre, F.; Bordas, E.; Arnal, B.
2018-06-01
Chromium-coated zirconium alloys are being studied as Enhanced Accident Tolerant Fuel Cladding for Light Water Reactors (LWRs). Those materials are especially studied to improve the oxidation resistance of LWRs current fuel claddings in nominal and at High Temperature (HT) for hypothetical accidental conditions such as LOss of Coolant Accident. Beyond their HT behavior, it is essential to assess the materials behavior under irradiation. A first generation chromium/Zircaloy-4 interface was thus irradiated with 20 MeV Kr8+ ions at 400 °C up to 10 dpa. High-Resolution Transmission Electron Microscopy and chemical analysis (EDS) were conducted at the Cr/Zr interface. The atomic structure of the interface reveals the presence of Zr(Fe, Cr)2 Laves phase, displaying both C14 and C15 structure. After irradiation, only the C14 structure was observed and atomic row matching was preserved across the different interfaces, thus ensuring a good adhesion of the coating after irradiation.
IN SITU Deposition of Fe-TiC Nanocomposite on Steel by Laser Cladding
NASA Astrophysics Data System (ADS)
Razavi, Mansour; Rahimipour, Mohammad Reza; Ganji, Mojdeh; Ganjali, Mansoreh; Gangali, Monireh
The possibility of deposition of Fe-TiC nanocomposite on the surface of carbon steel substrate with the laser coating method had been investigated. Mechanical milling was used for the preparation of raw materials. The mixture of milled powders was used as a coating material on the substrate steel surface and a CO2 laser was used in continuous mode for coating. Microstructural studies were performed by scanning electron microscopy. Determinations of produced phases, crystallite size and mean strain have been done by X-ray diffraction. The hardness and wear resistance of coated samples were measured. The results showed that the in situ formation of Fe-TiC nanocomposite coating using laser method is possible. This coating has been successfully used to improve the hardness and wear resistance of the substrate so that the hardness increased by about six times. Coated iron and titanium carbide crystallite sizes were in the nanometer scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guang Jie; Li, Jun, E-mail: jacob_lijun@sina.com; Luo, Xing
2014-12-15
Laser-clad composite coatings on the Ti6Al4V substrate were heat-treated at 700, 800, and 900 °C for 1 h. The effects of post-heat treatment on the microstructure, microhardness, and fracture toughness of the coatings were investigated by scanning electron microscopy, X-ray diffractometry, energy dispersive spectroscopy, and optical microscopy. The wear resistance of the coatings was evaluated under dry reciprocating sliding friction at room temperature. The coatings mainly comprised some coarse gray blocky (W,Ti)C particles accompanied by the fine white WC particles, a large number of black TiC cellular/dendrites, and the matrix composed of NiTi and Ni{sub 3}Ti; some unknown rich Ni-more » and Ti-rich particles with sizes ranging from 10 nm to 50 nm were precipitated and uniformly distributed in the Ni{sub 3}Ti phase to form a thin granular layer after heat treatment at 700 °C. The granular layer spread from the edge toward the center of the Ni{sub 3}Ti phase with increasing temperature. A large number of fine equiaxed Cr{sub 23}C{sub 6} particles with 0.2–0.5 μm sizes were observed around the edges of the NiTi supersaturated solid solution when the temperature was further increased to 900 °C. The microhardness and fracture toughness of the coatings were improved with increased temperature due to the dispersion-strengthening effect of the precipitates. Dominant wear mechanisms for all the coatings included abrasive and delamination wear. The post-heat treatment not only reduced wear volume and friction coefficient, but also decreased cracking susceptibility during sliding friction. Comparatively speaking, the heat-treated coating at 900 °C presented the most excellent wear resistance. - Highlights: • TiC + WC reinforced intermetallic compound matrix composite coatings were produced. • The formation mechanism of the reinforcements was analyzed. • Two precipitates were generated at elevated temperature. • Cracking susceptibility and microhardness of the coatings were improved. • Post-heat treatment enhances wear resistance of the coatings.« less
Metal Matrix Composite Material by Direct Metal Deposition
NASA Astrophysics Data System (ADS)
Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.
Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.
NASA Astrophysics Data System (ADS)
Li, Jianing; Chen, Chuanzhong; Squartini, Tiziano; He, Qingshan
2010-12-01
Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti 3Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti 3Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti 3Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti 3Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.
NASA Astrophysics Data System (ADS)
Hans, Michael; Támara, Juan Carlos; Mathews, Salima; Bax, Benjamin; Hegetschweiler, Andreas; Kautenburger, Ralf; Solioz, Marc; Mücklich, Frank
2014-11-01
Copper and silver are used as antimicrobial agents in the healthcare sector in an effort to curb infections caused by bacteria resistant to multiple antibiotics. While the bactericidal potential of copper and silver alone are well documented, not much is known about the antimicrobial properties of copper-silver alloys. This study focuses on the antibacterial activity and material aspects of a copper-silver model alloy with 10 wt% Ag. The alloy was generated as a coating with controlled intermixing of copper and silver on stainless steel by a laser cladding process. The microstructure of the clad was found to be two-phased and in thermal equilibrium with minor Cu2O inclusions. Ion release and killing of Escherichia coli under wet conditions were assessed with the alloy, pure silver, pure copper and stainless steel. It was found that the copper-silver alloy, compared to the pure elements, exhibited enhanced killing of E. coli, which correlated with an up to 28-fold increased release of copper ions. The results show that laser cladding with copper and silver allows the generation of surfaces with enhanced antimicrobial properties. The process is particularly attractive since it can be applied to existing surfaces.
The truth about laser fiber diameters.
Kronenberg, Peter; Traxer, Olivier
2014-12-01
To measure the various diameters of laser fibers from various manufacturers and compare them with the advertised diameter. Fourteen different unused laser fibers from 6 leading manufacturers with advertised diameters of 200, 270, 272, 273, 365, and 400 μm were measured by light microscopy. The outer diameter (including the fiber coating, cladding, and core), cladding diameter (including the cladding and the fiber core), and core diameter were measured. Industry representatives of the manufacturers were interviewed about the diameter of their fibers. For all fibers, the outer and cladding diameters differed significantly from the advertised diameter (P <.00001). The outer diameter, which is of most practical relevance for urologists, exhibited a median increase of 87.3% (range, 50.7%-116.7%). The outer, cladding, and core diameters of fibers with equivalent advertised diameters differed by up to 180, 100, and 78 μm, respectively. Some 200-μm fibers had larger outer diameters than the 270- to 273-μm fibers. All packaging material and all laser fibers lacked clear and precise fiber diameter information labels. Of 12 representatives interviewed, 8, 3, and 1 considered the advertised diameter to be the outer, the cladding, and the core diameter, respectively. Representatives within the same company frequently gave different answers. This study suggests that, at present, there is a lack of uniformity between laser fiber manufacturers, and most of the information conveyed to urologists regarding laser fiber diameter may be incorrect. Because fibers larger than the advertised laser fibers are known to influence key interventional parameters, this misinformation can have surgical repercussions. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Venkatesh, Lakshmi Narayanan; Suresh Babu, Pitchuka; Gundakaram, Ravi Chandra; Doherty, Roger D.; Joshi, Shrikant V.; Samajdar, Indradev
2017-04-01
Microstructural evolution with superheating was studied in chromium carbide-nickel coatings deposited by laser cladding. At lower superheating, selective growth of <0001> direction from the high density of Cr7C3 grains nucleated resulted in a columnar structure with (0001) texture. Increased superheating lead to the loss of columnar structure as well as the (0001) texture. The hexagonal Cr7C3 showed an unusual isotropic nanoindentation hardness evidently correlated with its low c/ a ratio. However, the rod-like morphology of the carbide dendrites resulted in significant anisotropy in the hardness of the composite.
Femtosecond FBG Written through the Coating for Sensing Applications.
Habel, Joé; Boilard, Tommy; Frenière, Jean-Simon; Trépanier, François; Bernier, Martin
2017-11-02
Type I fiber Bragg gratings (FBG) written through the coating of various off-the-shelf silica fibers with a femtosecond laser and the phase-mask technique are reported. Inscription through most of the common coating compositions (acrylate, silicone and polyimide) is reported as well as writing through the polyimide coating of various fiber cladding diameters, down to 50 µm. The long term annealing behavior of type I gratings written in a pure silica core fiber is also reported as well as a comparison of the mechanical resistance of type I and II FBG. The high mechanical resistance of the resulting type I FBG is shown to be useful for the fabrication of various distributed FBG arrays written using a single period phase-mask. The strain sensing response of such distributed arrays is also presented.
Investigation of Experimental Lightweight Firewall Materials for A/C Engine Bay Applications.
1985-04-01
umidity conditions. The metal clad Johns - Manville samples were basically qual. They do not provide a vapor barrier in the configurations tested, but an be...made to by the use of coatings or backings. The flexibility of the 3M nd Johns - Manville samples make them excellent choices for subsystem fire
Fabrication of ZnO and doped ZnO waveguides deposited by Spin Coating
NASA Astrophysics Data System (ADS)
Mohan, Rosmin Elsa; R, Neha P.; T, Shalu; C, Darshana K.; Sreelatha, K. S.
2015-02-01
In this paper, the synthesis of ZnO and doped Zn1-xAgxO (where x=0.03) nanoparticles by co- precipitation is reported. The precursors used were Zinc Nitrate and Potassium hydroxide pellets. For doping, 3% AgNO3 in ZnNO3 was considered as a separate buffer solution. The prepared nanoparticles were subsequently spin coated onto silica glass substrates at a constant chuck rate of 3000 rpm. The substrate acts as the lower cladding of a waveguide structure. The upper cladding is assumed to be air in the present investigation. The nanostructures of the ZnO powders in the doped and undoped cases were studied using X-ray Diffraction patterns. There was a decrease in the grain size with doping which increase the tunability of the powders to be used as photoluminescent devices. The optical characteristics of the sample were also investigated using UV-Visible spectrophotometer at 200-900 nm wavelengths. The photoluminescence peaks also report a dramatic increase in intensity at the same wavelength for the doped case compared to the undoped one.
Reducing tool wear by partial cladding of critical zones in hot form tool by laser metal deposition
NASA Astrophysics Data System (ADS)
Vollmer, Robert; Sommitsch, Christof
2017-10-01
This paper points out a production method to reduce tool wear in hot stamping applications. Usually tool wear can be observed at locally strongly stressed areas superimposed with gliding movement between blank and tool surface. The shown solution is based on a partial laser cladding of the tool surface with a wear resistant coating to increase the lifespan of tool inserts. Preliminary studies showed good results applying a material combination of tungsten carbide particles embedded in a metallic matrix. Different Nickel based alloys welded on hot work tool steel (1.2343) were tested mechanically in the interface zone. The material with the best bonding characteristic is chosen and reinforced with spherical tungsten carbide particles in a second laser welding step. Since the machining of tungsten carbides is very elaborate a special manufacturing strategy is developed to reduce the milling effort as much as possible. On special test specimens milling tests are carried out to proof the machinability. As outlook a tool insert of a b-pillar is coated to perform real hot forming tests.
Selective laser processing of ink-jet printed nano-scaled tin-clad copper particles
NASA Astrophysics Data System (ADS)
Yung, K. C.; Plura, T. S.
2010-11-01
The deposition of tin-clad nano-size copper particles was carried out by means of ink-jet printing. Curing the particles on Polyimide (PI) turned them into soldered structures using an Nd-YAG laser. Area coverage of 55% was achieved for a single-layer print. Subsequent laser sintering increased this value to 95%. A Butanol-based copper ink and an aqueous tin (Sn)-clad Copper (Cu) ink were produced and were ink-jetted in this work. These nano-metallic inks showed excellent suspension stability with particle weight concentrations as high as 5%. The ink components were examined by measuring the particle size distribution in a dispersed condition, and the melting temperature. A piezo ink-jet print head was used to deposit the inks onto a moveable substrate. The thermal effect of the laser irradiation allowed approaching and connecting adjacent particles by melting the particle’s tin coating. The results were examined with regard to structure and soldering properties using EDX, SEM and optical microscopy.
NASA Astrophysics Data System (ADS)
Hou, Baoping; Yang, Zhao; Yang, Yuling; Zhang, Erlin; Qin, Gaowu
2018-03-01
The present study aimed to in-situ fabricate Ca-Si-based coatings doped with copper particles (Cu-CS coatings) to enhance in vitro bioactivity, tribological property, and antibacterial ability of Ti-6Al-4V alloy. The effects of copper addition on the multiple properties were evaluated. Our results showed that Ca2SiO4, CaTiO3, and Cu2O were in-situ fabricated after laser processing. The Cu-CS coatings exhibited an excellent wear resistance and enhanced wettability. Regarding the in vitro bioactivity, after soaking in simulated body fluid, Cu-CS coatings developed an apatite surface layer that was reduced in the coatings with higher weight percent Cu addition. The Cu-CS coatings enhanced the inhibitory action against E. coli strains, especially for the coating with a higher concentration of Cu in it. Hence, the synthesized Cu-CS coatings present excellent tribological properties, enhanced bioactivity, and antibacterial property, and, therefore, would be used to modify the surface properties of Ti-6Al-4V implants for bone tissue engineering applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veselov, D. A., E-mail: dmitriy90@list.ru; Shashkin, I. S.; Bakhvalov, K. V.
Semiconductor lasers based on MOCVD-grown AlGaInAs/InP separate-confinement heterostructures are studied. It is shown that raising only the energy-gap width of AlGaInAs-waveguides without the introduction of additional barriers results in more pronounced current leakage into the cladding layers. It is found that the introduction of additional barrier layers at the waveguide–cladding-layer interface blocks current leakage into the cladding layers, but results in an increase in the internal optical loss with increasing pump current. It is experimentally demonstrated that the introduction of blocking layers makes it possible to obtain maximum values of the internal quantum efficiency of stimulated emission (92%) and continuouswavemore » output optical power (3.2 W) in semiconductor lasers in the eye-safe wavelength range (1400–1600 nm).« less
NASA Astrophysics Data System (ADS)
Zhong, Yi-ming; Du, Xiao-dong; Wu, Gang
2017-05-01
A WC-reinforced composite coating was fabricated on the surface of 45 steel samples by plasma, cladding process with WC powder added to the molten pool synchronously or in the tail of the molten pool. The microstructure, phase composition, and element distribution in the coating were analyzed. The results show that the undissolved WC particles and crystallized carbide (WC, W2C) were distributed uniformly in the sub-eutectic matrix in both cases. Fewer of the WC particles are dissolved in the matrix when they are injected into the tail of the molten pool. There are fewer needle-like tungsten carbide formations seen in the composite coating fabricated by back-feeding process than in that formed by synchronous feeding. The former results in a finer microstructure and a higher concentration gradient of elements near the interface between the WC particles and the coating matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konyashov, Vadim V.; Krasnov, Alexander M.
Results are provided of the experimental investigation of radioactive fission product (RFP) release, i.e., krypton, xenon, and iodine radionuclides from fuel elements with initial defects during long-term (3 to 5 yr) irradiation under low linear power (5 to 12 kW/m) and during special experiments in the VK-50 vessel-type boiling water reactor.The calculation model for the RFP release from the fuel-to-cladding gap of the defective fuel element into coolant was developed. It takes into account the convective transport in the fuel-to-cladding gap and RFP sorption on the internal cladding surface and is in good agreement with the available experimental data. Anmore » approximate analytical solution of the transport equation is given. The calculation dependencies of the RFP release coefficients on the main parameters such as defect size, fuel-to-cladding gap, temperature of the internal cladding surface, and radioactive decay constant were analyzed.It is shown that the change of the RFP release from the fuel elements with the initial defects during long-term irradiation is, mainly, caused by fuel swelling followed by reduction of the fuel-to-cladding gap and the fuel temperature. The calculation model for the RFP release from defective fuel elements applicable to light water reactors (LWRs) was developed. It takes into account the change of the defective fuel element parameters during long-term irradiation. The calculation error according to the program does not exceed 30% over all the linear power change range of the LWR fuel elements (from 5 to 26 kW/m)« less
Refractory clad transient internal probe for magnetic field measurements in high temperature plasmas
NASA Astrophysics Data System (ADS)
Kim, Hyundae; Cellamare, Vincent; Jarboe, Thomas R.; Mattick, Arthur T.
2005-05-01
The transient internal probe (TIP) is a diagnostic for local internal field measurements in high temperature plasmas. A verdet material, which rotates the polarization angle of the laser light under magnetic fields, is launched into a plasma at about 1.8km/s. A linearly polarized Ar+ laser illuminates the probe in transit and the light retroreflected from the probe is analyzed to determine the local magnetic field profiles. The TIP has been used for magnetic field measurements on the helicity injected torus where electron temperature Te⩽80eV. In order to apply the TIP in higher temperature plasmas, refractory clad probes have been developed utilizing a sapphire tube, rear disc, and a MgO window on the front. The high melting points of these refractory materials should allow probe operation at plasma electron temperatures up to Te˜300eV. A retroreflecting probe has also been developed using "catseye" optics. The front window is replaced with a plano-convex MgO lens, and the back surface of the probe is aluminized. This approach reduces spurious polarization effects and provides refractory cladding for the probe entrance face. In-flight measurements of a static magnetic field demonstrate the ability of the clad probes to withstand gun-launch acceleration, and provide high accuracy measurements of magnetic field.
NASA Astrophysics Data System (ADS)
Bai, L. L.; Li, J.; Chen, J. L.; Song, R.; Shao, J. Z.; Qu, C. C.
2016-01-01
TiNi/Ti2Ni-based composite coatings reinforced by TiC and TiB2 were produced on Ti6Al4V by laser cladding the mixture of a Ni-based alloy and different contents of B4C (0 wt%, 5 wt%, 15 wt%, and 25 wt%). The macromorphologies and microstructures of the coatings were examined through optical microscopy, X-ray diffractometry, scanning electron microscopy, and energy dispersive spectrometry. The microhardness, fracture toughness, and wear behaviors of the coatings were also investigated by using a microhardness tester and an ultra-functional wear testing machine. Results showed that the coatings were mainly composed of TiNi/Ti2Ni and TiC/TiB2 as the matrix and reinforcement particles, respectively. The phase constituents of the coatings were not influenced by addition of different contents of B4C. The microstructure of the reinforcements in the coatings presented the following evolution: hypereutectic consisting of blocky (TiC+TiB2)e eutectic and primary TiCp cellular dendrites (0 wt% B4C), mixture of hypereutectic and willow-shaped (TiB2+TiC)p pseudoeutectic (5 wt% B4C), and pseudoeutectic (15 and 25 wt% B4C). With increasing B4C content, the volume fraction and size of the pseudoeutectic structures as well as the average microhardness of the coatings (850, 889, 969, and 1002 HV0.2) were increased. By contrast, the average fracture toughness of the coatings was gradually decreased (4.47, 4.21, 4.06, and 3.85 Mpa m1/2) along with their wear volumes (0 wt%, 5 wt%, and 15 wt% B4C). The increase in B4C content to 25 wt% did not further reduce wear loss. The wear mechanism transformed from micro-cutting (0 wt% B4C) into a combination of micro-cutting and brittle debonding (5 wt% B4C) and finally led to brittle debonding (15 wt% and 25 wt% B4C). Coatings with suitable contents of B4C (less than 15 wt%) showed excellent comprehensive mechanical properties.
NASA Astrophysics Data System (ADS)
Lv, Y. H.; Li, J.; Tao, Y. F.; Hu, L. F.
2017-04-01
TiNi/Ti2Ni matrix composite coatings were produced on Ti6Al4V surfaces by laser cladding the mixed powders of Ni-based alloy and different contents of TaC (0, 5, 10, 15, 20, 30 and 40 wt.%). Microstructures of the coatings were investigated. High-temperature wear tests of the substrate and the coatings were carried out at 600 °C in air for 30 min. High-temperature oxidation tests of the substrate and the coatings were performed at 1000 °C in air for 50 h. Wear and oxidation mechanisms were revealed in detail. The results showed that TiNi/Ti2Ni as the matrix and TiC/TiB2/TiB as the reinforcements are the main phases of the coatings. The friction coefficients of the substrate and the coatings with different contents of TaC were 0.431 (the substrate), 0.554 (0 wt.%), 0.486 (5 wt.%), 0.457 (10 wt.%), 0.458 (15 wt.%), 0.507 (20 wt.%), 0.462 (30 wt.%) and 0.488 (40 wt.%). The wear rates of the coatings were decreased by almost 83%-98% than that of the substrate and presented a decreasing tendency with increasing TaC content. The wear mechanism of the substrate was a combination of serious oxidation, micro-cutting and brittle debonding. For the coatings, oxidation and slight scratching were predominant during wear, accompanied by slight brittle debonding in partial zones. With the increase in content of TaC, the oxidation film better shielded the coatings from destruction due to the effective friction-reducing role of Ta2O5. The oxidation rates of the substrate and the coatings with different contents of TaC at 1000 °C were 12.170 (the substrate), 5.886 (0 wt.%), 4.937 (5 wt.%), 4.517 (10 wt.%), 4.394 (15 wt.%), 3.951 (20 wt.%), 4.239 (30 wt.%) and 3.530 (40 wt.%) mg2 cm-4 h-1, respectively. The oxidation film formed outside the coating without adding TaC was composed of TiO2, NiO, Cr2O3, Al2O3 and SiO2. When TaC was added, Ta2O5 and TaC were also detected, which effectively improved the oxidation resistance of the coatings. The addition of TaC contributed to the improvement in high-temperature wear and oxidation resistance.
Femtosecond FBG Written through the Coating for Sensing Applications
Habel, Joé; Boilard, Tommy; Frenière, Jean-Simon; Bernier, Martin
2017-01-01
Type I fiber Bragg gratings (FBG) written through the coating of various off-the-shelf silica fibers with a femtosecond laser and the phase-mask technique are reported. Inscription through most of the common coating compositions (acrylate, silicone and polyimide) is reported as well as writing through the polyimide coating of various fiber cladding diameters, down to 50 µm. The long term annealing behavior of type I gratings written in a pure silica core fiber is also reported as well as a comparison of the mechanical resistance of type I and II FBG. The high mechanical resistance of the resulting type I FBG is shown to be useful for the fabrication of various distributed FBG arrays written using a single period phase-mask. The strain sensing response of such distributed arrays is also presented. PMID:29099077
Toward single-mode active crystal fibers for next-generation high-power fiber devices.
Lai, Chien-Chih; Gao, Wan-Ting; Nguyen, Duc Huy; Ma, Yuan-Ron; Cheng, Nai-Chia; Wang, Shih-Chang; Tjiu, Jeng-Wei; Huang, Chun-Ming
2014-08-27
We report what we believe to be the first demonstration of a facile approach with controlled geometry for the production of crystal-core ceramic-clad hybrid fibers for scaling fiber devices to high average powers. The process consists of dip coating a solution of polycrystalline alumina onto a high-crystallinity 40-μm-diameter Ti:sapphire single-crystalline core followed by thermal treatments. Comparison of the measured refractive index with high-resolution transmission electron microscopy reveals that a Ca/Si-rich intragranular layer is precipitated at grain boundaries by impurity segregation and liquid-phase formation due to the relief of misfit strain energy in the Al2O3 matrix, slightly perturbing the refractive index and hence the optical properties. Additionally, electron backscatter diffractions supply further evidence that the Ti:sapphire single-crystalline core provides the template for growth into a sacrificial polycrystalline cladding, bringing the core and cladding into a direct bond. The thus-prepared doped crystal core with the undoped crystal cladding was achieved through the abnormal grain-growth process. The presented results provide a general guideline both for controlling crystal growth and for the performance of hybrid materials and provides insights into how one might design single-mode high-power crystal fiber devices.
Behavior of polymer cladding materials under extremely high temperatures
NASA Astrophysics Data System (ADS)
Clark, Timothy E.; Chang, Selee; Kwak, SeungJo; Oh, Jung Hyun
2012-01-01
Polymer claddings with low refractive indices for silica core fibers were developed. Applications include fiber lasers and transmission of high power lasers in surgery. For many applications, operating fibers under high temperatures is desirable. In a previous publication, the results of testing polymer cladded silica core fiber at 150°C for 6400 hours were given, along with 5000 hours of testing polymer films. The results at 150°C were encouraging, with little additional loss measured. Here we test polymers under more severe conditions, at 270°C, for periods up to 10 hours. The polymers' cured indices range from 1.374 to 1.397 (at 852 nm). Changes in Young's modulus, refractive index, yellowing, weight, hardness, strength, and elongation were observed. While these polymers cannot function at 270°C for extended periods, it is possible to expose them for shorter durations without significant damage. Some polymer properties actually improved after 4 hours of heating. Fibers clad with such polymers have been successfully jacketed with extruded materials, and have endured high temperatures for a few minutes. It is possible that a sensor, fiber laser or other fiber device could function in these temperatures for short periods without the coating properties changing beyond values required for operation.
NASA Astrophysics Data System (ADS)
Lee, Seihyoung; Lim, Kwon-Seob; Lee, Jong Jin; Kang, Hyun Seo
2009-10-01
The optical wavelength-division-multiplex filter for bidirectional optical subassembly (BOSA) is embedded to the fiber core, which results in simplicity of the BOSA module. The fiber cladding is 45-deg angle polished to receive a downstream signal. The core is etched by a femtosecond laser to have a normal core facet and to transmit an upstream signal. The downstream signal, which is core mode, is coupled to the cladding mode by the long-period fiber grating and then detected by a photodiode by means of the total internal reflection effect at the 45-deg angle polished cladding facet. The measured transmitted and received coupling efficiencies are 27.3 and 43.8%, respectively.
Optical gain at 650 nm from a polymer waveguide with dye-doped cladding
NASA Astrophysics Data System (ADS)
Reilly, M. A.; Coleman, B.; Pun, E. Y. B.; Penty, R. V.; White, I. H.; Ramon, M.; Xia, R.; Bradley, D. D. C.
2005-12-01
Signal amplification at the polymer optical fiber low-loss window of 650 nm is reported in an SU8 rib waveguide coated with Rhodamine-640 doped poly(methyl methacrylate). A signal beam is end-fired into the facet of a 7×100μm waveguide and amplified by top pumping of the 2-μm-thick cladding region with a pulsed pump source focused into a 9-mm-long stripe. A gain of 14dB and a minimum signal-to-noise ratio of around 2 dB are achieved in a 15-mm-long device with a low threshold pump intensity of 0.25μJ/mm2, which is an order of magnitude lower than previously reported.
NASA Astrophysics Data System (ADS)
Losinskaya, A. A.; Lozhkina, E. A.; Bardin, A. I.
2017-12-01
At the present time, the actual problem of materials science is the increase in the steels performance characteristics. In the paper some mechanical properties of the case-hardened materials received by non-vacuum electron-beam cladding of carbon fibers are determined. The depth of the hardened layers varies from 1.5 to 3 mm. The impact strength of the samples exceeds 50 J/cm2. The wear resistance of the coatings obtained exceeds the properties of steel 20 after cementation and quenching with low tempering. The results of a study of the microhardness of the resulting layers and the microstructure are also given. The hardness of the surface layers exceeds 5700 MPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyanagi, Takaaki; Petrie, Christian M.
Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Officemore » of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low and high heat flux configurations have been assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. These rabbits contain a wide variety of specimens including monolith tubes, SiC fiber SiC matrix (SiC/SiC) composites, duplex specimens (inner composite, outer monolith), and specimens with a variety of metallic or ceramic coatings on the outer surface. The rabbits are targeted for insertion during HFIR cycle 475, which is scheduled for September 2017.« less
NASA Astrophysics Data System (ADS)
Ju, Yao; Ning, Shougui; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan
2018-07-01
We propose and demonstrate a coating-enhanced dual-microspheric structure fiber sensor that measures temperature and refractive index simultaneously. The claddings of the two microspheric structured fibers are spliced together and the ends of the fibers are coated with a layer of gold film to increase reflection, thereby forming a dual-microspheric structure sensor head. Our experimental results show that the temperature sensitivity and the refractive index can reach 65.77 pm °C‑1 and ‑19.7879 nm RIU‑1, respectively. Compared with the uncoated sensor, the refractive index sensitivity is significantly improved by the gold film. This work suggests a low-cost, high-resolution and convenient fiber-based method to achieve multifunctional sensing applications.
Color Anodizing of Titanium Coated Rolled Carbon Steel Plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarajan, Zohair; Mobarakeh, Hooman Nikbakht; Namiranian, Sohrab
As an important kind of structural materials, the titanium cladded steel plates have the advantages of both metals and have been applied in aviation, spaceflight, chemical and nuclear industries. In this study, the specimens which were prepared under soldering mechanism during rolling were anodized by electrochemical process under a given conditions. The color anodizing takes place by physical phenomenon of color interference. Part of incident light on the titanium oxide is reflected and the other part reflects inside coated titanium layer. Major part of the light which reflects from titanium-oxide interface, reflects again inside of the oxide layer.
NASA Astrophysics Data System (ADS)
Stolov, Andrei A.; Warych, Edward T.; Smith, William P.; Fournier, Paula L.; Hokansson, Adam S.; Li, Jie; Allen, R. Steve
2014-02-01
Optical fibers and terminations were subjected to different sterilization techniques, including multiple autoclaving and treatments with peracetic acid, E-beam and UV radiation. Effects of different sterilization techniques on key optical and mechanical properties of the fibers and the terminations were revealed. The primary attention was given to behavior of the coatings on the fibers and adhesives used in the terminations in harsh sterilization environments. The optical fibers with following four coating/buffer types were investigated: (i) dual acrylate, (ii) polyimide, (iii) silicone/PEEK and (iv) fluoroacrylate hard cladding/ETFE.
Corrosion monitoring along infrastructures using distributed fiber optic sensing
NASA Astrophysics Data System (ADS)
Alhandawi, Khalil B.; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia
2016-04-01
Pipeline Inspection Gauges (PIGs) are used for internal corrosion inspection of oil pipelines every 3-5 years. However, between inspection intervals, rapid corrosion may occur, potentially resulting in major accidents. The motivation behind this research project was to develop a safe distributed corrosion sensor placed inside oil pipelines continuously monitoring corrosion. The intrinsically safe nature of light provided motivation for researching fiber optic sensors as a solution. The sensing fiber's cladding features polymer plastic that is chemically sensitive to hydrocarbons within crude oil mixtures. A layer of metal, used in the oil pipeline's construction, is deposited on the polymer cladding, which upon corrosion, exposes the cladding to surrounding hydrocarbons. The hydrocarbon's interaction with the cladding locally increases the cladding's refractive index in the radial direction. Light intensity of a traveling pulse is reduced due to local reduction in the modal capacity which is interrogated by Optical Time Domain Reflectometery. Backscattered light is captured in real-time while using time delay to resolve location, allowing real-time spatial monitoring of environmental internal corrosion within pipelines spanning large distances. Step index theoretical solutions were used to calculate the power loss due changes in the intensity profile. The power loss is translated into an attenuation coefficient characterizing the expected OTDR trace which was verified against similar experimental results from the literature. A laboratory scale experiment is being developed to assess the validity of the model and the practicality of the solution.
NASA Astrophysics Data System (ADS)
Yeom, Hwasung
Experimental results investigating the feasibility of zirconium-silicide coating for accident tolerance of LWR fuel cladding coating was presented. The oxidation resistance of ZrSi2 appeared to be superior to bare Zircaloy-4 in high temperature air. It was shown that micro- and nanostructures consisting of alternating SiO2 and ZrO2 evolved during transient oxidation of ZrSi2, which was explained by spinodal phase decomposition of Zr-Si-O oxide. Coating optimization regarding oxidation resistance was performed mainly using magnetron sputter deposition method. ZrSi 2 coatings ( 3.9 microm) showed improvement of almost two orders of magnitude when compared to bare Zircaloy-4 after air-oxidation at 700 °C for 20-hours. Pre-oxidation of ZrSi2 coating at 700 °C for 5 h significantly mitigated oxygen diffusion in air-oxidation tests at 1000 °C for 1-hour and 1200 °C for 10-minutes. The ZrSi2 coating with the pre-oxidation was found to be the best condition to prevent oxide formation in Zircaloy-4 substrate in the steam condition even if the top surface of the coating was degraded by formation of zirconium-rich oxide layer. Only the ZrSiO4 phase, formed by exposing the ZrSi2 coating at 1400 °C in air, allowed for immobilization of silicon species in the oxide scale in the aqueous environments. A quench test facility was designed and built to study transient boiling heat transfer of modified Zircaloy-4 surfaces (e.g., roughened surfaces, oxidized surfaces, ZrSi2 coated surfaces) at various system conditions (e.g., elevated pressures and water subcooling). The minimum film boiling temperature increased with increasing system pressure and water subcooling, consistent with past literature. Quenching behavior was affected by the types of surface modification regardless of the environmental conditions. Quenching heat transfer was improved by the ZrSi 2 coating, a degree of surface oxidation (deltaox = 3 to 50 microm), and surface roughening (Ra 20 microm). A plausible hypothesis based on transient heat conduction models for liquid-solid contact in quenching process was proposed to explain the enhanced quenching performance. The theoretical model incorporated localized temperature behavior on superheated surface and elucidated bubble dynamics qualitatively, and predicts minimum film boiling temperature of oxidized Zirc-4 surfaces, which were in good agreement with experimental data.
Fiber Optic Sensors for Cure/Health Monitoring of Composite Materials
NASA Technical Reports Server (NTRS)
Wood, K. H.; Brown, T. L.; Wu, M. C.; Gause, C. B.
2004-01-01
The objective of the current program is to develop techniques for using optical fibers to monitor the cure of composite materials in real time during manufacture and to monitor the in-service structural health of composite structures. Single and multimode optical fibers containing Bragg gratings have been used to perform Near Infrared (NIR) spectroscopy on high refractive index resins and show promise as embedded sensors. In order for chemical spectroscopy to be possible, intimate contact must be achieved between the fiber core and the composite resin. This contact is often achieved by stripping the cladding off of a portion of the fiber, thus making it brittle and easily broken in the composite processing environment. To avoid weakening the fiber to this extent, high refractive index fibers have been fabricated that use a low refractive index acrylate coating which serves as the cladding. This is ideal, as the coating is easily solvent stripped and intimate contact with the glass core can be achieved. Real time resin and composite chemical spectra have been obtained, with possible multifunctional capability using Bragg gratings to assess physical properties such as strain, modulus and other parameters of interest.
Butt, Muhammad Shoaib; Bai, Jing; Wan, Xiaofeng; Chu, Chenglin; Xue, Feng; Ding, Hongyan; Zhou, Guanghong
2017-01-01
Full biodegradable magnesium alloy (AZ31) strengthened poly-lactic acid (PLA) composite rods for potential application for bone fracture fixation were prepared by plastic injection process in this work. Their surface/interfacial morphologies, mechanical properties and vitro degradation were studied. In comparison with untreated Mg rod, porous MgO ceramic coating on Mg surface formed by Anodizing (AO) and micro-arc-oxidation (MAO)treatment can significantly improve the interfacial binding between outer PLA cladding and inner Mg rod due to the micro-anchoring action, leading to better mechanical properties and degradation performance of the composite rods.With prolonging immersion time in simulated body fluid (SBF) solution until 8weeks, the MgO porous coating were corroded gradually, along with the disappearance of original pores and the formation of a relatively smooth surface. This resulted in a rapidly reduction in mechanical properties for corresponding composite rods owing to the weakening of interfacial binding capacity. The present results indicated that this new PLA-clad Mg composite rods show good potential biomedical applications for implants and instruments of orthopedic inner fixation. Copyright © 2016 Elsevier B.V. All rights reserved.
Study of interface influence on bending performance of CFRP with embedded optical fibers
NASA Astrophysics Data System (ADS)
Liu, Rong-mei; Liang, Da-kai
2008-11-01
Studies showed that the bending strength of composite would be affected by embedded optical fibers. Interface strength between the embedded optical fiber and the matrix was studied in this paper. Based on the single fiber pull out tests, the interfacial shear strength between the coating and the clad is the weakest. The shear strength of the optical fiber used in this study is near to 0.8MPa. In order to study the interfacial effect on bending property of generic smart structure, a quasi-isotropic composite laminates were produced from Toray T300C/ epoxy prepreg. Optical fibers were embedded within different orientation plies of the plates, with the optical fibers embedded in the same direction. Accordingly, five different types of plates were produced. Impact tests were carried out on the 5 different plate types. It is shown that when the fiber was embedded at the upper layer, the bending strength drops mostly. The bending normal stress on material arrives at the maximum. So does the normal stress applied on the optical fiber at the surface. Therefore, destructions could originate at the interface between the coating and the clad foremost. The ultimate strength of the smart structure will be affected furthest.
COMPARTMENTED REACTOR FUEL ELEMENT
Cain, F.M. Jr.
1962-09-11
A method of making a nuclear reactor fuel element of the elongated red type is given wherein the fissionable fuel material is enclosed within a tubular metal cladding. The method comprises coating the metal cladding tube on its inside wall with a brazing alloy, inserting groups of cylindrical pellets of fissionable fuel material into the tube with spacing members between adjacent groups of pellets, sealing the ends of the tubes to leave a void space therewithin, heating the tube and its contents to an elevated temperature to melt the brazing alloy and to expand the pellets to their maximum dimensions under predetermined operating conditions thereby automatically positioning the spacing members along the tube, and finally cooling the tube to room temperature whereby the spacing disks become permanently fixed at their edges in the brazing alloy and define a hermetically sealed compartment for each fl group of fuel pellets. Upon cooling, the pellets contract thus leaving a space to accommodate thermal expansion of the pellets when in use in a reactor. The spacing members also provide lateral support for the tubular cladding to prevent collapse thereof when subjected to a reactor environment. (AEC)
NASA Astrophysics Data System (ADS)
Azzam, Rasheed M. A.; Angel, Wade W.
1992-12-01
A reflective division-of-wavefront polarizing beam splitter is described that uses a dual- thickness transparent thin-film coating on a metal substrate. A previous design that used a partially clad substrate at the principal angle of the metal [Azzam, JOSA A 5, 1576 (1988)] is replaced by a more general one in which the substrate is coated throughout and the film thickness alternates between two non-zero levels. The incident linear polarization azimuth is chosen near, but not restricted to, 45 degree(s) (measured from the plane of incidence), and the angle of incidence may be selected over a range of values. The design procedure, which uses the two-dimensional Newton-Raphson method, is applied to the SiO2-Au film- substrate system at 633 nm wavelength, as an example, and the characteristics of the various possible coatings are presented.
Development of strain gages for use to 1311 K (1900 F)
NASA Technical Reports Server (NTRS)
Lemcoe, M. M.
1974-01-01
A high temperature electric resistance strain gage system was developed and evaluated to 1366 K (2000 F) for periods of at least one hour. Wire fabricated from a special high temperature strain gage alloy (BCL-3), was used to fabricate the gages. Various joining techniques (NASA butt welding, pulse arc, plasma needle arc, and dc parallel gap welding) were investigated for joining gage filaments to each other, gage filaments to lead-tab ribbons, and lead-tab ribbons to lead wires. The effectiveness of a clad-wire concept as a means of minimizing apparent strain of BCL-3 strain gages was investigated by sputtering platinum coatings of varying thicknesses on wire samples and establishing the optimum coating thickness--in terms of minimum resistivity changes with temperature. Finally, the moisture-proofing effectiveness of barrier coatings subjected to elevated temperatures was studied, and one commercial barrier coating (BLH Barrier H Waterproofing) was evaluated.
Cracking of a layered medium on an elastic foundation under thermal shock
NASA Technical Reports Server (NTRS)
Rizk, Abd El-Fattah A.; Erdogan, Fazil
1988-01-01
The cladded pressure vessel under thermal shock conditions which is simulated by using two simpler models was studied. The first model (Model 1) assumes that, if the crack size is very small compared to the vessel thickness, the problem can be treated as a semi-infinite elastic medium bonded to a very thin layer of different material. However, if the crack size is of the same order as the vessel thickness, the curvature effects may not be negligible. In this case it is assumed that the relatively thin walled hollow cylinder with cladding can be treated as a composite beam on an elastic foundation (Model 2). In both models, the effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. The calculated results include the transient temperature, thermal stresses in the uncracked medium and stress intensity factors which are presented as a function of time, and the duration of cooling ramp. The stress intensity factors are also presented as a function of the size and the location of the crack. The problem is solved for two bonded materials of different thermal and mechanical properties. The mathematical formulation results in two singular integral equations which are solved numerically. The results are given for two material pairs, namely an austenitic steel layer welded on a ferritic steel substrate, and a ceramic coating on ferritic steel. In the case of the yielded clad, the stress intensity factors for a crack under the clad are determined by using a plastic strip model and are compared with elastic clad results.
Self-sensing E-glass-fiber-reinforced composites
NASA Astrophysics Data System (ADS)
Brooks, David; Hayes, Simon A.; Khan, N. A.; Zolfaghar, K.; Fernando, Gerard F.
1997-06-01
Conventional E-glass fibers were surface treated to enable them to act as light guides for short distances. The reinforcing fiber light guides were embedded in glass fiber reinforced epoxy prepregs and processed into composites. The resultant composite was termed the self-sensing composite as any damage to these fibers or its interface would result in the attenuation of the transmitted light. Epoxy, silicone, fluoropolymer and sol-gel derived cladding materials were evaluated as potential cladding materials. RFLGs with a silicone coating was found to give the best light transmission. The self-sensing fibers were capable of detecting a 0.5 J direct impact. The feasibility of using the RFLGs for impact damage location was also demonstrated successfully as bleeding-light could be seen in the vicinity of the impact.
NASA Astrophysics Data System (ADS)
Borisov, V. M.; Trofimov, V. N.; Sapozhkov, A. Yu.; Kuzmenko, V. A.; Mikhaylov, V. B.; Cherkovets, V. Ye.; Yakushkin, A. A.; Yakushin, V. L.; Dzhumayev, P. S.
2016-12-01
The treatment conditions of fuel claddings of the E110 alloy by using powerful UV or IR laser radiation, which lead to the increase in the corrosion resistance at the high-temperature ( T = 1100°C) oxidation simulating a loss-of-coolant accident, are determined. The possibility of the complete suppression of corrosion under these conditions by using pulsed laser deposition of a Cr layer is demonstrated. The behavior of protective coatings of Al, Al2O3, and Cr planted on steel EP823 by pulsed laser deposition, which is planned to be used in the BREST-OD-300, is studied. The methods of the almost complete suppression of corrosion in liquid lead to the temperature of 720°C are shown.
Restrictive allograft syndrome (RAS): a novel form of chronic lung allograft dysfunction.
Sato, Masaaki; Waddell, Thomas K; Wagnetz, Ute; Roberts, Heidi C; Hwang, David M; Haroon, Ayesha; Wagnetz, Dirk; Chaparro, Cecilia; Singer, Lianne G; Hutcheon, Michael A; Keshavjee, Shaf
2011-07-01
Bronchiolitis obliterans syndrome (BOS) with small-airway pathology and obstructive pulmonary physiology may not be the only form of chronic lung allograft dysfunction (CLAD) after lung transplantation. Characteristics of a form of CLAD consisting of restrictive functional changes involving peripheral lung pathology were investigated. Patients who received bilateral lung transplantation from 1996 to 2009 were retrospectively analyzed. Baseline pulmonary function was taken as the time of peak forced expiratory volume in 1 second (FEV(1)). CLAD was defined as irreversible decline in FEV(1) < 80% baseline. The most accurate threshold to predict irreversible decline in total lung capacity and thus restrictive functional change was at 90% baseline. Restrictive allograft syndrome (RAS) was defined as CLAD meeting this threshold. BOS was defined as CLAD without RAS. To estimate the effect on survival, Cox proportional hazards models and Kaplan-Meier analyses were used. Among 468 patients, CLAD developed in 156; of those, 47 (30%) showed the RAS phenotype. Compared with the 109 BOS patients, RAS patients showed significant computed tomography findings of interstitial lung disease (p < 0.0001). Prevalence of RAS was approximately 25% to 35% of all CLAD over time. Patient survival of RAS was significantly worse than BOS after CLAD onset (median survival, 541 vs 1,421 days; p = 0.0003). The RAS phenotype was the most significant risk factor of death among other variables after CLAD onset (hazard ratio, 1.60; confidential interval, 1.23-2.07). RAS is a novel form of CLAD that exhibits characteristics of peripheral lung fibrosis and significantly affects survival of lung transplant patients. Copyright © 2011 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jia-Ning; Gong, Shui-Li; Shi, Yi-Ning; Suo, Hong-Bo; Wang, Xi-Chang; Deng, Yun-Hua; Shan, Fei-Hu; Li, Jian-Quan
2014-02-01
A Zn modified amorphous-nanocrystalline coating was fabricated on a Ti-6Al-4V alloy by laser cladding of the Co-Ti-B4C-Zn-Y2O3 mixed powders. Such coating was researched by means of a scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM), etc. Experimental results indicated that the Co5Zn21 and TiB2 nanocrystalline phases were produced through in situ metallurgical reactions, which blocked the motion of dislocation, and TiB2 grew along (010), (111) and (024). The Co5Zn21 nanocrystals were produced attached to the ceramics, which mainly consisted of the Co nanoparticles embedded in a heterogeneous zinc, and had varied crystalline orientations.
Chemical Sensors Based on Optical Ring Resonators
NASA Technical Reports Server (NTRS)
Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander
2005-01-01
Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring res
Composite ceramic superconducting wires for electric motor applications
NASA Astrophysics Data System (ADS)
Halloran, John W.
1988-12-01
This is the Second Quarterly report on a project to develop HTSC wire for an HTSC motor. The raw material for fiber production is an improved YBa2Cu3O(7-x) powder. Continuous spools of green YBa2Cu3O(7-x) fiber are being produced. The major effort in fiber spinning is aimed at improving fiber quality and reducing fiber. Binder burnout and sintering has been intensively investigated. Fiber sintering fibers is done by the rapid zone sintering method. A continuous furnace received near the end of this Quarter will be used for continuous sintering. Continuous silver coated green fiber are produced. We have made progress toward continuous cladding using the mechanical cladding concept. The melt spinning process was successfully applied to YBa2Cu3O(7-x) powders at 50 vol percent solids loadings. The cladding work centered on mechanical cladding of silver treated filaments by solder bonding to copper strips. Aluminum deposits on YBa2Cu3O(7-x) filament surfaces were produced by MOCVD at ATM, but the superconductivity was degraded. Electrical characterization work focused on methods of making low resistance contacts on YBa2Cu3O(7-x) filaments. Emerson Motor Division has begun work on DC heteropolar and homopolar motor designs. The mechanical stresses on conventional copper wires during winding have been characterized to determine the mechanical parameters of motor building.
NASA Astrophysics Data System (ADS)
Amado, J. M.; Tobar, M. J.; Alvarez, J. C.; Lamas, J.; Yáñez, A.
2009-03-01
The abrasive nature of the mechanical processes involved in mining and mineral industry often causes significant wear to the associated equipment and derives non-negligible economic costs. One of the possible strategies to improve the wear resistance of the various components is the deposition of hardfacing layers on the bulk parts. The use of high power lasers for hardfacing (laser cladding) has attracted a great attention in the last decade as an alternative to other more standard methods (arc welding, oxy-fuel gas welding, thermal spraying). In laser cladding the hardfacing material is used in powder form. For high hardness applications Ni-, Co- or Fe-based alloys containing hard phase carbides at different ratios are commonly used. Tungsten carbides (WC) can provide coating hardness well above 1000 HV (Vickers). In this respect, commercially available WC powders normally contain spherical micro-particles consisting of crushed WC agglomerates. Some years ago, Spherotene ® powders consisting of spherical-fused monocrystaline WC particles, being extremely hard, between 1800 and 3000 HV, were patented. Very recently, mixtures of Ni-based alloy with Spherotene powders optimized for laser processing were presented (Technolase ®). These mixtures have been used in our study. Laser cladding tests with these powders were performed on low carbon steel (C25) substrates, and results in terms of microstructure and hardness will be discussed.
Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings
NASA Astrophysics Data System (ADS)
Alidokht, S. A.; Vo, P.; Yue, S.; Chromik, R. R.
2017-12-01
Ni-WC composites are ideal protective coatings against wear and are often fabricated using laser cladding and thermal spray processes, but the high temperatures of these processes result in decarburization, which deteriorates the performance of the coating. Cold spray has the potential to deposit Ni-WC composite coatings and retain the composition of the initial WC feedstock. However, the insignificant plastic deformation of hard WC particles makes it difficult to build up a high WC content coating by cold spray. By using three different WC powder sizes, the effect of feedstock powder size on WC retention was tested. To improve WC retention, a WC/Ni composite powder in mixture with Ni was also sprayed. Microstructural characterization, including the deformed structure of Ni splats, retention, distribution, and fragmentation of WC, was performed by scanning electron microscopy. An improvement in WC retention was achieved using finer WC particles. Significant improvement in WC particles retention was achieved using WC/Ni composite powder, with the WC content in the coating being close to that of the feedstock.
Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding
NASA Astrophysics Data System (ADS)
Alat, Ece; Motta, Arthur T.; Comstock, Robert J.; Partezana, Jonna M.; Wolfe, Douglas E.
2016-09-01
In an attempt to develop an accident-tolerant fuel (ATF) that can delay the deleterious consequences of loss-of-coolant-accidents (LOCA), multilayer coatings were deposited onto ZIRLO® coupon substrates by cathodic arc physical vapor deposition (CA-PVD). Coatings were composed of alternating TiN (top) and Ti1-xAlxN (2-layer, 4-layer, 8-layer and 16-layer) layers. The minimum TiN top coating thickness and coating architecture were optimized for good corrosion and oxidation resistance. Corrosion tests were performed in static pure water at 360 °C and 18.7 MPa for up to 90 days. The optimized coatings showed no spallation/delamination and had a maximum of 6 mg/dm2 weight gain, which is 6 times smaller than that of a control sample of uncoated ZIRLO® which showed a weight gain of 40.2 mg/dm2. The optimized architecture features a ∼1 μm TiN top layer to prevent boehmite phase formation during corrosion and a TiN/TiAlN 8-layer architecture which provides the best corrosion performance.
Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings.
Bialiayeu, A; Bottomley, A; Prezgot, D; Ianoul, A; Albert, J
2012-11-09
A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ~100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xunxiang; Ang, Caen K.; Singh, Gyanender P.
Driven by the need to enlarge the safety margins of nuclear fission reactors in accident scenarios, research and development of accident-tolerant fuel has become an important topic in the nuclear engineering and materials community. A continuous-fiber SiC/SiC composite is under consideration as a replacement for traditional zirconium alloy cladding owing to its high-temperature stability, chemical inertness, and exceptional irradiation resistance. An important task is the development of characterization techniques for SiC/SiC cladding, since traditional work using rectangular bars or disks cannot directly provide useful information on the properties of SiC/SiC composite tubes for fuel cladding applications. At Oak Ridge Nationalmore » Laboratory, experimental capabilities are under development to characterize the modulus, microcracking, and hermeticity of as-fabricated, as-irradiated SiC/SiC composite tubes. Resonant ultrasound spectroscopy has been validated as a promising technique to evaluate the elastic properties of SiC/SiC composite tubes and microcracking within the material. A similar technique, impulse excitation, is efficient in determining the basic mechanical properties of SiC bars prepared by chemical vapor deposition; it also has potential for application in studying the mechanical properties of SiC/SiC composite tubes. Complete evaluation of the quality of the developed coatings, a major mitigation strategy against gas permeation and hydrothermal corrosion, requires the deployment of various experimental techniques, such as scratch indentation, tensile pulling-off tests, and scanning electron microscopy. In addition, a comprehensive permeation test station is being established to assess the hermeticity of SiC/SiC composite tubes and to determine the H/D/He permeability of SiC/SiC composites. This report summarizes the current status of the development of these experimental capabilities.« less
Cold Spraying of Cu-Al-Bronze for Cavitation Protection in Marine Environments
NASA Astrophysics Data System (ADS)
Krebs, S.; Gärtner, F.; Klassen, T.
2015-01-01
Traveling at high speeds, ships have to face the problem of rudder cavitation-erosion. At present, the problem is countered by fluid dynamically optimized rudders, synthetic, and weld-cladded coatings on steel basis. Nevertheless, docking and repair is required after certain intervals. Bulk Cu-Al-bronzes are in use at ships propellers to withstand corrosion and cavitation. Deposited as coatings with bulk-like properties, such bronzes could also enhance rudder life times. The present study investigates the coating formation by cold spraying CuAl10Fe5Ni5 bronze powders. By calculations of the impact conditions, the range of optimum spray parameters was preselected in terms of the coating quality parameter η on steel substrates with different temperatures. As-atomized and annealed powders were compared to optimize cavitation resistance of the coatings. Results provide insights about the interplay between the mechanical properties of powder and substrate for coating formation. Single particle impact morphologies visualize the deformation behavior. Coating performance was assessed by analyzing microstructures, bond strength, and cavitation resistance. These first results demonstrate that cold-sprayed bronze coatings have a high potential for ensuring a good performances in rudder protection. With further optimization, such coatings could evolve towards a competitive alternative to existing anti-cavitation procedures.
Chemical Dissolution of Simulant FCA Cladding and Plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, G.; Pierce, R.; O'Rourke, P.
The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO 3-KF) flowsheets ofmore » H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.« less
The jellification of north temperate lakes
Jeziorski, Adam; Tanentzap, Andrew J.; Yan, Norman D.; Paterson, Andrew M.; Palmer, Michelle E.; Korosi, Jennifer B.; Rusak, James A.; Arts, Michael T.; Keller, Wendel (Bill); Ingram, Ron; Cairns, Allegra; Smol, John P.
2015-01-01
Calcium (Ca) concentrations are decreasing in softwater lakes across eastern North America and western Europe. Using long-term contemporary and palaeo-environmental field data, we show that this is precipitating a dramatic change in Canadian lakes: the replacement of previously dominant pelagic herbivores (Ca-rich Daphnia species) by Holopedium glacialis, a jelly-clad, Ca-poor competitor. In some lakes, this transformation is being facilitated by increases in macro-invertebrate predation, both from native (Chaoborus spp.) and introduced (Bythotrephes longimanus) zooplanktivores, to which Holopedium, with its jelly coat, is relatively invulnerable. Greater representation by Holopedium within cladoceran zooplankton communities will reduce nutrient transfer through food webs, given their lower phosphorus content relative to daphniids, and greater absolute abundances may pose long-term problems to water users. The dominance of jelly-clad zooplankton will likely persist while lakewater Ca levels remain low. PMID:25411451
Nanostructured sapphire optical fiber for sensing in harsh environments
NASA Astrophysics Data System (ADS)
Chen, Hui; Liu, Kai; Ma, Yiwei; Tian, Fei; Du, Henry
2017-05-01
We describe an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an allalumina nanostructured sapphire optical fiber (NSOF) that overcomes decades-long challenges faced in the field of sapphire fiber optics. The strategy entails fiber coating with metal Al followed by subsequent anodization to form anodized alumina oxide (AAO) cladding of highly organized pore channel structure. We show that Ag nanoparticles entrapped in AAO show excellent structural and morphological stability and less susceptibility to oxidation for potential high-temperature surface-enhanced Raman Scattering (SERS). We reveal, with aid of numerical simulations, that the AAO cladding greatly increases the evanescent-field overlap both in power and extent and that lower porosity of AAO results in higher evanescent-field overlap. This work has opened the door to new sapphire fiber-based sensor design and sensor architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borisov, V. M., E-mail: borisov@triniti.ru; Trofimov, V. N.; Sapozhkov, A. Yu.
2016-12-15
The treatment conditions of fuel claddings of the E110 alloy by using powerful UV or IR laser radiation, which lead to the increase in the corrosion resistance at the high-temperature (T = 1100°C) oxidation simulating a loss-of-coolant accident, are determined. The possibility of the complete suppression of corrosion under these conditions by using pulsed laser deposition of a Cr layer is demonstrated. The behavior of protective coatings of Al, Al{sub 2}O{sub 3}, and Cr planted on steel EP823 by pulsed laser deposition, which is planned to be used in the BREST-OD-300, is studied. The methods of the almost complete suppressionmore » of corrosion in liquid lead to the temperature of 720°C are shown.« less
Ascorbe, Joaquin; Corres, Jesus M; Del Villar, Ignacio; Matias, Ignacio R
2018-06-07
Here, we present a novel method to fabricate long period gratings using standard single mode optical fibers (SMF). These optical devices were fabricated in a three-step process, which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations were performed in order to select the appropriate parameters for the experiments. The responses of two different devices to different external refractive indices was studied, and the maximum sensitivity obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.
Restoration of Worn Movable Bridge Props with Use of Bronze Claddings.
Viňáš, Ján; Vrabeľ, Marek; Greš, Miroslav; Brezina, Jakub; Sabadka, Dušan; Fedorko, Gabriel; Molnár, Vieroslav
2018-03-21
This article examined the possibility of using CuSn6P claddings in sliding bearing renovation of movable pontoon bridge props. The bronze layer was welded on cylinders of the high-strength steel S355J0WP EN 10155-93, in an inert atmosphere using an automated welding method (gas tungsten arc welding). Pulsed arc welding was used to minimize the effects of heat on the cladding area, while also accounting for the differences in the physical properties of the joined metals. The sliding bearing was created in two layers. The quality of the cladding layer was evaluated by nondestructive and/or destructive tests. The quality of the surface was assessed by visual inspection (visual testing) in accordance with the EN ISO 17637 standard. The quality of the claddings was evaluated by metallographic analysis, performed using light microscopy. The microhardness values of a few weld areas were determined by Vickers tests, performed according to the EN ISO 9015-2 standard. The analyses confirmed that the welding parameters and filler material used resulted in high-quality weld joints with no internal (subsurface) or metallurgical defects.
Restoration of Worn Movable Bridge Props with Use of Bronze Claddings
Viňáš, Ján; Vrabeľ, Marek; Greš, Miroslav; Brezina, Jakub; Sabadka, Dušan; Fedorko, Gabriel
2018-01-01
This article examined the possibility of using CuSn6P claddings in sliding bearing renovation of movable pontoon bridge props. The bronze layer was welded on cylinders of the high-strength steel S355J0WP EN 10155-93, in an inert atmosphere using an automated welding method (gas tungsten arc welding). Pulsed arc welding was used to minimize the effects of heat on the cladding area, while also accounting for the differences in the physical properties of the joined metals. The sliding bearing was created in two layers. The quality of the cladding layer was evaluated by nondestructive and/or destructive tests. The quality of the surface was assessed by visual inspection (visual testing) in accordance with the EN ISO 17637 standard. The quality of the claddings was evaluated by metallographic analysis, performed using light microscopy. The microhardness values of a few weld areas were determined by Vickers tests, performed according to the EN ISO 9015–2 standard. The analyses confirmed that the welding parameters and filler material used resulted in high-quality weld joints with no internal (subsurface) or metallurgical defects. PMID:29561762
Material selection for accident tolerant fuel cladding
Pint, B. A.; Terrani, K. A.; Yamamoto, Y.; ...
2015-09-14
Alternative cladding materials are being investigated for accident tolerance, which can be defined as >100X improvement (compared to current Zr-based alloys) in oxidation resistance in steam environments at ≥1200°C for short (≤4 h) times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti 2AlC form a protective alumina scale in steam. Therefore, commercial Ti 2AlC that is not single phase, formed a much thicker oxide at 1200°Cmore » in steam and significant TiO 2, and therefore may be challenging to use as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation assisted Cr-rich α’ formation. The composition effects and critical limits to retaining protective scale formation at >1400°C are still being evaluated.« less
Particle control and plasma performance in the Lithium Tokamak eXperimenta)
NASA Astrophysics Data System (ADS)
Majeski, R.; Abrams, T.; Boyle, D.; Granstedt, E.; Hare, J.; Jacobson, C. M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D. P.; Lucia, M.; Merino, E.; Schmitt, J.; Stotler, D.; Biewer, T. M.; Canik, J. M.; Gray, T. K.; Maingi, R.; McLean, A. G.; Kubota, S.; Peebles, W. A.; Beiersdorfer, P.; Clementson, J. H. T.; Tritz, K.
2013-05-01
The Lithium Tokamak eXperiment is a small, low aspect ratio tokamak [Majeski et al., Nucl. Fusion 49, 055014 (2009)], which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350 °C. Several gas fueling systems, including supersonic gas injection and molecular cluster injection, have been studied and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 ms. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 ms. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak—thin, evaporated, liquefied coatings of lithium—does not produce an adequately clean surface.
Hydrogen transport behavior of metal coatings for plasma-facing components
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Holland, D. F.; Longhurst, G. R.
1990-12-01
Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D +3 ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5 × 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs.
Angel, S.M.
1987-02-27
Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.
Development of LWR Fuels with Enhanced Accident Tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahoda, Edward J.; Boylan, Frank A.
2015-10-30
Significant progress was made on the technical, licensing, and business aspects of the Westinghouse Electric Company’s Enhanced Accident Tolerant Fuel (ATF) by the Westinghouse ATF team. The fuel pellet options included waterproofed U 15N and U 3Si 2 and the cladding options SiC composites and zirconium alloys with surface treatments. Technology was developed that resulted in U 3Si 2 pellets with densities of >94% being achieved at the Idaho National Laboratory (INL). The use of U 3Si 2 will represent a 15% increase in U235 loadings over those in UO₂ fuel pellets. This technology was then applied to manufacture pelletsmore » for 6 test rodlets which were inserted in the Advanced Test Reactor (ATR) in early 2015 in zirconium alloy cladding. The first of these rodlets are expected to be removed in about 2017. Key characteristics to be determined include verification of the centerline temperature calculations, thermal conductivity, fission gas release, swelling and degree of amorphization. Waterproofed UN pellets have achieved >94% density for a 32% U 3Si 2/68% UN composite pellet at Texas A&M University. This represents a U235 increase of about 31% over current UO 2 pellets. Pellets and powders of UO 2, UN, and U 3Si 2the were tested by Westinghouse and Los Alamos National Laboratory (LANL) using differential scanning calorimetry to determine what their steam and 20% oxygen corrosion temperatures were as compared to UO 2. Cold spray application of either the amorphous steel or the Ti 2AlC was successful in forming an adherent ~20 micron coating that remained after testing at 420°C in a steam autoclave. Tests at 1200°C in 100% steam on coatings for Zr alloy have not been successful, possibly due to the low density of the coatings which allowed steam transport to the base zirconium metal. Significant modeling and testing has been carried out for the SiC/SiC composite/SiC monolith structures. A structure with the monolith on the outside and composite on the inside was developed which is the current baseline structure and a SiC to SiC tube closure approach. Permeability tests and mechanical tests were developed to verify the operation of the SiC cladding. Steam autoclave (420°C), high temperature (1200°C) flowing steam tests and quench tests were carried out with minimal corrosion, mechanical or hermeticity degradation effect on the SiC cladding or end plug closure. However, in-reactor loop tests carried out in the MIT reactor indicated an unacceptable degree of corrosion, likely due to the corrosive effect of radiolysis products which attacked the SiC.« less
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Sankhyabrata; Basumallick, Nandini; Bysakh, Sandip; Dey, Tanoy Kumar; Biswas, Palas; Bandyopadhyay, Somnath
2018-06-01
In this paper studies on the design and fabrication of a long period fiber grating (LPFG) with a self mono layer of gold nanoparticle (AuNP) has been presented. Refractive index (RI) sensitivity of a dispersed cladding mode (DCM) near turn around point (TAP) of its phase matching curve (PMC) has been investigated with and also without AuNP coated LPFG. The typical role played by the intermediate layer of AuNP on the effective index and thus on the sensitivity of the cladding mode to the surrounding RI has also been explored by carrying out coupled mode analysis of the requisite multilayer waveguide. Deposition of AuNP enhanced the sensitivity by more than a factor of 2. Measured sensitivity was found to be ∼3928 nm/refractive index unit (RIU) in the range of 1.3333-1.3428.
Multiplexed displacement fiber sensor using thin core fiber exciter.
Chen, Zhen; Hefferman, Gerald; Wei, Tao
2015-06-01
This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.
The jellification of north temperate lakes.
Jeziorski, Adam; Tanentzap, Andrew J; Yan, Norman D; Paterson, Andrew M; Palmer, Michelle E; Korosi, Jennifer B; Rusak, James A; Arts, Michael T; Keller, Wendel Bill; Ingram, Ron; Cairns, Allegra; Smol, John P
2015-01-07
Calcium (Ca) concentrations are decreasing in softwater lakes across eastern North America and western Europe. Using long-term contemporary and palaeo-environmental field data, we show that this is precipitating a dramatic change in Canadian lakes: the replacement of previously dominant pelagic herbivores (Ca-rich Daphnia species) by Holopedium glacialis, a jelly-clad, Ca-poor competitor. In some lakes, this transformation is being facilitated by increases in macro-invertebrate predation, both from native (Chaoborus spp.) and introduced (Bythotrephes longimanus) zooplanktivores, to which Holopedium, with its jelly coat, is relatively invulnerable. Greater representation by Holopedium within cladoceran zooplankton communities will reduce nutrient transfer through food webs, given their lower phosphorus content relative to daphniids, and greater absolute abundances may pose long-term problems to water users. The dominance of jelly-clad zooplankton will likely persist while lakewater Ca levels remain low. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
METHOD OF MAKING WIRE FUEL ELEMENTS
Zambrow, J.L.
1960-08-01
A method is given for making a nuclear reactor fuel element in the form of a uranium-bearing wire clad with zirconium. A uranium bar is enclosed in a zirconium sheath which is coated with an oxide of magnesium, beryllium, or zirconium. The sheathed bar is then placed in a steel tube and reduced to the desired diameter by swaging at 800 to 900 deg C, after which the steel and oxide are removed.
ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM
Wick, J.J.
1959-09-22
A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ang, Caen K.; Burns, Joseph R.; Terrani, Kurt A.
2016-09-01
There is a need to increase the safety margins of current and future light water reactors (LWRs) due to the unfortunate events at Fukushima Daiichi Nuclear Plant. Safety is crucial to restore public confidence in nuclear energy, acknowledged as an economical, high-density energy solution to climate change. The development of accident-tolerant fuel (ATF) concepts is crucial to this endeavor. The objective of ATF is to delay the consequences of accident progression, being inset in high temperature steam and maintaining high thermomechanical strength for radionuclide retention. The use of advanced SiCf-SiC composite as a substitute for zircaloy-based cladding is being considered.more » However, at normal operations, SiC is vulnerable to the reactor coolant and may corrode at an unacceptable rate. As a ceramic-matrix composite material, it is likely to undergo microcracking operation, which may compromise the ability to contain gaseous fission products. A proposed solution to both issues is the application of mitigation coatings for use in normal operations. At Oak Ridge National Laboratory (ORNL), three coating technologies have been investigated with industry collaborators and vendors. These are electrochemical deposition, cathodic arc physical vapor deposition (PVD hereafter) and vacuum plasma spray (VPS). The objective of this document is to summarize these processing technologies, the resultant as-processed microstructures and properties of the coatings. In all processes, substrate constraint resulted in substantial tensile stresses within the coating layer. Each technology must mitigate this tensile stress. Electrochemical coatings use chromium as the coolant facing material, and are deposited on a nickel or carbon “bond coat”. This is economical but suffers microcracking in the chromium layer. PVD-based coatings use chromium and titanium in both metallic form and nitrides, and can be deposited defense-in-depth as multilayers. This vapor method eliminated tensile stress during processing and coatings were up to ~30 μm thick without microcracking. VPS produced coatings based on Zircaloy-2, which has a proven reactor-compatibility. The tensile stresses appearred to be partially mitigated by annealing. Analysis showed that VPS coatings required further optimizations to prevent adverse reactions with the substrate and need a minimum thickness of ~50 μm. In addition, development of coatings are constrained by neutronic depletion analysis, which clearly indicated enrichment as an issue if the coating is too thick. Based on the present work, the cathodic arc PVD technology was considered ready for the extensive testing and evaluation on cladding materials due to their ability to mitigate the excessive tensile stresses and the reasonable coating quality achieved. The VPS Zircaloy-2 coating technology required additional development toward mitigation of issues related to the substrate reaction and porosity. In the future, PVD and VPS will have be scaled upon successful development and demonstration. Electrochemical coatings, which are proven scalability, currently require development to mitigate issues related to the tensile stress after deposition.« less
High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers.
Jackson, Stuart D; Bugge, Frank; Erbert, Götz
2007-11-15
We demonstrate high-power operation from a singly Ho3+-doped silica fiber laser that is cladding pumped directly with diode lasers operating at 1150 nm. Internal slope efficiencies approaching the Stokes limit were produced, and the maximum output power was 2.2W. This result was achieved using a low Ho3+-ion concentration and La3+-ion codoping, which together limit the transfer of energy between excited Ho3+ ions.
NASA Astrophysics Data System (ADS)
Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.
2018-02-01
During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.
NASA Astrophysics Data System (ADS)
Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang
2018-03-01
We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).
NASA Astrophysics Data System (ADS)
Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.
2009-03-01
Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.
Ultralow chirp photonic crystal fiber Mach-Zehnder interferometer.
Carvalho, William O F; Spadoti, Danilo H; Silvestre, Enrique; Beltran-Mejia, Felipe
2018-05-20
A photonic crystal fiber Mach-Zehnder interferometer design was optimized to obtain high performance and ultralow chirp. Two long-period gratings were used to excite the cladding modes, and the rich structure of the cladding was tailored to obtain a slightly chirped free spectral range, as required by the Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T) Norm G.694.1. Finally, a fabrication tolerance analysis was performed. The advantages of the proposed device are an ultralow chirp, high bandwidth, and fabrication robustness tolerance.
In-pile Hydrothermal Corrosion Evaluation of Coated SiC Ceramics and Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, David; Ang, Caen; Katoh, Yutai
2017-09-01
Hydrothermal corrosion accelerated by water radiolysis during normal operation is among the most critical technical feasibility issues remaining for silicon carbide (SiC) composite-based cladding that could provide enhanced accident-tolerance fuel technology for light water reactors. An integrated in-pile test was developed and performed to determine the synergistic effects of neutron irradiation, radiolysis, and pressurized water flow, all of which are relevant to a typical pressurized water reactor (PWR). The test specimens were chosen to cover a range of SiC materials and a variety of potential options for environmental barrier coatings. This document provides a summary of the irradiation vehicle design,more » operations of the experiment, and the specimen loading into the irradiation vehicle.« less
Steam Oxidation Testing in the Severe Accident Test Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pint, Bruce A.; McMurray, Jake W.
2016-08-01
Since 2011, Oak Ridge National Laboratory (ORNL) has been conducting high temperature steam oxidation testing of candidate alloys for accident tolerant fuel (ATF) cladding. These concepts are designed to enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the US ATF community, the Severe Accident Test Station (SATS) has been evaluating candidate materials (including coatings) since 2012. Compared to the current UO 2/Zr-based alloy fuel system, alternative cladding materials need to offer slower oxidation kinetics and a smaller enthalpy of oxidation in order to significantly reduce the rate of heat and hydrogen generation in the coremore » during a coolant-limited severe accident. The steam oxidation behavior of candidate materials is a key metric in the evaluation of ATF concepts and also an important input into models. However, prior modeling work of FeCrAl cladding has used incomplete information on the physical properties of FeCrAl. Also, the steam oxidation data being collected at 1200°-1700°C is unique as no prior work has considered steam oxidation of alloys at such high temperatures. In some cases, the results have been difficult to interpret and more fundamental information is needed such as the stability of alumina in flowing steam at 1400°-1500°C. This report summarizes recent work to measure the steam oxidation kinetics of candidate alloys, the evaporation rate of alumina in steam and the development of integral data on FeCrAl compared to conventional Zr-based cladding.« less
NASA Astrophysics Data System (ADS)
Gleener, R. E.; Cheerova, M. N.; Shadiev, B. Sh.; Katyukhin, E. B.
2017-07-01
Special features of formation of the grain structure and mechanical properties of copper during recrystallization annealing after cold deformation with a wide range of reduction are studied. The constants of the Hall-Petch equation are determined for copper, the microstructure of which forms in the course of plastic deformation and subsequent heat treatment. The results of the study are allowed for in the process of production of claddings for jet charges.
1980-06-01
program is to develop, on a timely basis, manufacturing processes, techniques and equipment for use in production of Army materiel. Comments are...solicited on the potential utilization of the information contained herein as applied to present and/or future production programs. Such comments should be...manufacturers in this report shall not be construed as advertising nor as an official indorsement or approval of such products or companies by the United
2007-12-01
Projects Agency (DARPA). The program evaluated HVOF, physical vapor deposition (PVD) and laser cladding , and concluded that HVOF was the best overall...components such as titanium flap tracks. 5 2.0 TECHNOLOGY DESCRIPTION 2.1 TECHNOLOGY DEVELOPMENT AND APPLICATION Technology background and...theory of operation: High-velocity oxygen-fuel (HVOF) is a standard commercial thermal spray process in which a powder of the material to be sprayed
NASA Technical Reports Server (NTRS)
Ponce, Adrian (Inventor); Kossakovski, Dmitri A. (Inventor); Bearman, Gregory H. (Inventor)
2010-01-01
Optical time domain reflectometry caused by absorption of a volatile or analyte into the fiber optic cladding is used as an optical nose. The fiber optics (14) are covered with a gas permeable film (44) which is patterned to leave millimeter wide gas permeable notches (48a-48d). The notches contain a sensing polymer that responds to different gases by expanding or contracting.
Evaluation of inorganic zinc-rich primers using Electrochemical Impedance Spectroscopy (EIS)
NASA Technical Reports Server (NTRS)
Calle, Luz M.
1993-01-01
This investigation explores the use of Electrochemical Impedance Spectroscopy (EIS) in combination with beach exposure as a short term method for analyzing the performance of twenty-one zinc-rich primers. The twenty-one zinc-rich primers were: Carboline CZ-11, Ameron Devoe-Marine Catha-Coat 304, Briner V-65, Ameron D-21-9, Sherwin Williams Zinc Clad II, Carboline CZ-D7, Ameron D-4, Dupont Ganicin 347WB, Porter TQ-4374H, Inorganic Coatings IC-531, Subox Galvanox IV, Southern Coatings Chemtec 600, Glidden Glidzinc 5530, Byco SP-101, Tnemec 90E-75, Devoe Catha-Coat 302H, Glidden Glidzinc 5536, Koppers 701, Ameron D-21-5, Coronado 935-152, and Subox Galvanoz V. Data were also collected on galvanized steel for comparison purposes. A library of Bode magnitude plots was generated for each coating including curves for the initial time and after each week of atmospheric exposure as Beach Corrosion Test Site near the Space Shuttle launch pad at the Kennedy Space Center for up to three weeks. An examination of the variation of the Bode magnitude plots with atmospheric exposure revealed no clearly identifiable trend at this point that could distinguish between the good and the poor coatings. The test will be continued by including EIS measurements after six months and one year of atmospheric exposure.
Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel
NASA Astrophysics Data System (ADS)
Alam, Mohammad K.; Edrisy, Afsaneh; Urbanic, Jill; Pineault, James
2017-03-01
Laser cladding is a surface treatment process which is starting to be employed as a novel additive manufacturing. Rapid cooling during the non-equilibrium solidification process generates non-equilibrium microstructures and significant amounts of internal residual stresses. This paper investigates the laser cladding of 420 martensitic stainless steel of two single beads produced by different process parameters (e.g., laser power, laser speed, and powder feed rate). Metallographic sample preparation from the cross section revealed three distinct zones: the bead zone, the dilution zone, and the heat-affected zone (HAZ). The tensile residual stresses were in the range of 310-486 MPa on the surface and the upper part of the bead zone. The compressive stresses were in the range of 420-1000 MPa for the rest of the bead zone and the dilution zone. The HAZ also showed tensile residual stresses in the range of 140-320 MPa for both samples. The post-cladding heat treatment performed at 565 °C for an hour had significantly reduced the tensile stresses at the surface and in the subsurface and homogenized the compressive stress throughout the bead and dilution zones. The microstructures, residual stresses, and microhardness profiles were correlated for better understanding of the laser-cladding process.
Review of CTF s Fuel Rod Modeling Using FRAPCON-4.0 s Centerline Temperature Predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toptan, Aysenur; Salko, Robert K; Avramova, Maria
Coolant Boiling in Rod Arrays Two Fluid (COBRA-TF), or CTF1 [1], is a nuclear thermal hydraulic subchannel code used throughout academia and industry. CTF s fuel rod modeling is originally developed for VIPRE code [2]. Its methodology is based on GAPCON [3] and FRAP [4] fuel performance codes, and material properties are included from MATPRO handbook [5]. This work focuses on review of CTF s fuel rod modeling to address shortcomings in CTF s temperature predictions. CTF is compared to FRAPCON which is U.S. NRC s steady-state fuel performance code for light-water reactor fuel rods. FRAPCON calculates the changes inmore » fuel rod variables and temperatures including the eects of cladding hoop strain, cladding oxidation, hydriding, fuel irradiation swelling, densification, fission gas release and rod internal gas pressure. It uses fuel, clad and gap material properties from MATPRO. Additionally, it has its own models for fission gas release, cladding corrosion and cladding hydrogen pickup. It allows finite dierence or finite element approaches for its mechanical model. In this study, FRAPCON-4.0 [6] is used as a reference fuel performance code. In comparison, Halden Reactor Data for IFA432 Rod 1 and Rod 3. CTF simulations are performed in two ways; informing CTF with gap conductance value from FRAPCON, and using CTF s dynamic gap conductance model. First case is chosen to show temperature is predicted correctly with CTF s models for thermal and cladding conductivities once gap conductance is provided. Latter is to review CTF s dynamic gap conductance model. These Halden test cases are selected to be representative of cases with and without any physical contact between fuel-pellet and clad while reviewing functionality of CTF s dynamic gap conductance model. Improving the CTF s dynamic gap conductance model will allow prediction of fuel and cladding thermo-mechanical behavior under irradiation, and better temperature feedbacks from CTF in transient calculations.« less
Wear Test Results of Candidate Materials for the OK-542 Towed Array Handling Machine Level Winder
1994-12-29
Stainless Steel, Inconel 625 , Nickel-Aluminum-Bronze, and Titanium. The specialty materials: Inconel 625 , Monel, Stainless and Stellite, were clad-welded...metals on a base of 1040 Carbon Steel. Finally, an economic carbide coating was deposited on a 316 Stainless Steel and Inconel 625 sample. Within a...damage in the shortest period of time. The Inconel 625 bar stock that was tested performed the best. It sustained the least amount of damage for one
Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer.
Xu, Yanping; Lu, Ping; Qin, Zengguang; Harris, Jeremie; Baset, Farhana; Lu, Ping; Bhardwaj, Vedula Ravi; Bao, Xiaoyi
2013-02-11
In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katoh, Yutai; Hu, Xunxiang; Koyanagi, Takaaki
Driven by the need to enlarge the safety margins of light water reactors in both design-basis and beyond-design-basis accident scenarios, the research and development of accident-tolerant fuel (ATF) has become an importance topic in the nuclear engineering and materials community. Continuous SiC fiber-reinforced SiC matrix ceramic composites are under consideration as a replacement for traditional zirconium alloy cladding owing to their high-temperature stability, chemical inertness, and exceptional irradiation resistance. Among the key technical feasibility issues, potential failure of the fission product containment due to probabilistic penetrating cracking has been identified as one of the two most critical feasibility issues, togethermore » with the radiolysisassisted hydrothermal corrosion of SiC. The experimental capability to evaluate the hermeticity of SiC-based claddings is an urgent need. In this report, we present the development of a comprehensive permeation testing station established in the Low Activation Materials Development and Analysis laboratory at Oak Ridge National Laboratory. Preliminary results for the hermeticity evaluation of un-irradiated monolithic SiC tubes, uncoated and coated SiC/SiC composite tubes, and neutron-irradiated monolithic SiC tubes at room temperature are exhibited. The results indicate that this new permeation testing station is capable of evaluating the hermeticity of SiC-based tubes by determining the helium and deuterium permeation flux as a function of gas pressure at a high resolution of 8.07 x 10 -12 atm-cc/s for helium and 2.83 x 10 -12 atm-cc/s for deuterium, respectively. The detection limit of this system is sufficient to evaluate the maximum allowable helium leakage rate of lab-scale tubular samples, which is linearly extrapolated from the evaluation standard used for a commercial as-manufactured light water reactor fuel rod at room temperature. The un-irradiated monolithic SiC tube is hermetic, as is manifested by the un-detectable deuterium permeation flux at various feeding gas pressures. A large helium leakage rate was detected for the uncoated SiC/SiC composite tube exposed to atmosphere, indicating it is inherently not hermetic. The hermeticity of coated SiC/SiC composite tubes is strongly dependent on the coating materials and the preparation of the substrate SiC/SiC composite samples. To simulate the practical application environment, monolithic CVD SiC tubes were exposed to neutron irradiation at the High Flux Isotope Reactor under high heat flux from the internal surface to the external surface. Although finite element analysis and resonant ultrasound spectroscopy measurement indicated that the combined neutron irradiation and high heat flux gave rise to a high probability of cracking within the sample, the hermeticity evaluation of the tested sample still exhibited gas tightness, emphasizing that SiC cracking is inherently a statistical phenomenon. The developed permeation testing station is capable of measuring the gas permeation flux in the range of interest with full confidence based on the presented results. It is considered a critical pre- /post-irradiation examination technique to characterize SiC-based cladding materials in asreceived and irradiated states to aid the research and development of ATF.« less
Technology Solutions Case Study: Cladding Attachment Over Thick Exterior Insulating Sheathing
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. Insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased airtightness and improved water management. Although the approach has proven effective, there is resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved in the development of the verticalmore » displacement resistance capacity. In addition, the long-term in-service performance of the system has been questioned due to potential creep effects of the assembly under the sustained dead load of the cladding and effects of varying environmental conditions. In addition, the current International Building Code (IBC) and International Residential Code (IRC) do not have a provision that specifically allows this assembly. In this project, researchers from Building Science Corporation, a Building America team, investigated these issues to better understand the mechanics behind this method of cladding attachment« less
NASA Astrophysics Data System (ADS)
Class, G.; Meyder, R.; Stratmanns, E.
1985-12-01
The large data base for validation and development of computer codes for two-phase flow, generated at the COSIMA facility, is reviewed. The aim of COSIMA is to simulate the hydraulic, thermal, and mechanical conditions in the subchannel and the cladding of fuel rods in pressurized water reactors during the blowout phase of a loss of coolant accident. In terms of fuel rod behavior, it is found that during blowout under realistic conditions only small strains are reached. For cladding rupture extremely high rod internal pressures are necessary. The behavior of fuel rod simulators and the effect of thermocouples attached to the cladding outer surface are clarified. Calculations performed with the codes RELAP and DRUFAN show satisfactory agreement with experiments. This can be improved by updating the phase separation models in the codes.
Photonic-crystal fiber as a multifunctional optical sensor and sample collector.
Konorov, Stanislav; Zheltikov, Aleksei; Scalora, Michael
2005-05-02
Two protocols of optical sensing realized with the same photonic-crystal fiber are compared. In the first protocol, diode-laser radiation is delivered to a sample through the central core of a dual-cladding photonic-crystal fiber with a diameter of a few micrometers, while the large-diameter fiber cladding serves to collect the fluorescent response from the sample and to guide it to a detector in the backward direction. In the second scheme, liquid sample is collected by a microcapillary array in the fiber cladding and is interrogated by laser radiation guided in the fiber modes. For sample fluids with refractive indices exceeding the refractive index of the fiber material, fluid channels in photonic-crystal fibers can guide laser light by total internal reflection, providing an 80% overlap of interrogating radiation with sample fluid.
Angel, S. Michael
1989-01-01
Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.
NASA Technical Reports Server (NTRS)
Bouillie, Remy (Editor)
1986-01-01
Papers are presented on outside vapor deposition, the plasma activated CVD process for large scale production of telecommunication fibers, axial lateral plasma deposition technology from plastic clad silica, coatings for optical fibers, primary coating characterization, and radiation-induced time dependent attenuation in a fiber. Topics discussed include fibers with high tensile strength, the characteristics and specifications of airborne fiber optic components, the baseband frequency response of multimode fibers, and fibers for local and broadband networks. Consideration is given to industrial measurements for single mode and multimode fibers, the characterization of source power distribution in a multimode fiber by a splice offset technique, the measurement of chromatic dispersion in a single mode optical, and the effect of temperature on the refracted near-field optical fiber profiling technique.
NASA Astrophysics Data System (ADS)
Glazoff, Michael Vasily
In the post-Fukushima world, thermal and structural stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry will continue using zirconium (Zr) cladding for the foreseeable future, it becomes critical to gain a fundamental understanding of several interconnected problems. First, what are the thermodynamic and kinetic factors affecting oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings could be used in order to gain valuable time at off-normal conditions (temperature exceeds ~1200°C (2200°F)? Thirdly, the kinetics of the coating's oxidation must be understood. Lastly, one needs automated inspection algorithms allowing identifying cladding's defects. This work attempts to explore the problem from a computational perspective, utilizing first principles atomistic simulations, computational thermodynamics, plasticity theory, and morphological algorithms of image processing for defect identification. It consists of the four parts dealing with these four problem areas preceded by the introduction. In the 1st part, computational thermodynamics and ab initio calculations were used to shed light upon the different stages of zircaloy oxidation and hydrogen pickup, and microstructure optimization to increase thermal stability. The 2 nd part describes the kinetic theory of oxidation of the several materials considered to be perspective coatings for Zr alloys: SiC and ZrSiO4. The 3rd part deals with understanding the respective roles of the two different plasticity mechanisms in Zr nuclear alloys: twinning (at low T) and crystallographic slip (higher T's). For that goal, an advanced plasticity model was proposed. In the 4th part projectional algorithms for defect identification in zircaloy coatings are described. Conclusions and recommendations are presented in the 5th part. This integrative approach's value is in developing multi-faceted understanding of complex processes taking place in nuclear fuel rods. It helped identify several problems pertaining to the safe operations with nuclear fuel: limits of temperature that should be strictly obeyed in storage to retard zircaloy hydriding; understanding the benefits and limitations of coatings; developing in-depth understanding of Zr plasticity; developing original algorithms for defect identification in SiC-braided zircaloy. The obtained results will be useful for the nuclear industry.
NASA Astrophysics Data System (ADS)
Lin, Yinghua; Yao, Jianhua; Wang, Liang; Zhang, Qunli; Li, Xueqiao; Lei, Yongping; Fu, Hanguang
2018-03-01
In this study, particle and short fiber-reinforced titanium matrix composite coatings are prepared via laser in situ technique using (0.5 and 50 μm) TiB2 and Ti powder as cladding materials. The microstructure and properties of the composite coatings are studied, and the changing mechanism of the microstructure is discussed. The results reveal that particle agglomeration is prone to appear with using fine TiB2 particles. Decomposition of the particles preferentially occurs with using coarse TiB2 particles. The cracks and pores on the surface of the coating are formed at a lower laser energy density. With the increase in the laser energy density, cracking on the surface of the coating diminishes, but the coating exhibits depression behavior. The depression extent of the coating using fine TiB2 particle as the reinforcement is much less than that of the coating using coarse TiB2 particle. Moreover, the size of the aggregate and the tendency of cracking can be reduced with the increase in Ti addition. Meanwhile, short TiB fiber bundles are formed by the diffusion mechanism of rod aggregate, and randomly oriented TiB short fibers are formed mainly by the dissolution-precipitation mechanism of fine TiB2 particles. Moreover, the growth of short TiB fibers can be in an alternating manner between B27 and Bf structures. The micro-hardness and wear resistance of the coatings are evidently higher than that of the titanium alloy substrate. The wear resistance of the large size TiB2 coating is higher than that of the small size TiB2 coating under the condition of low load.
Use of ion beams to simulate reaction of reactor fuels with their cladding
NASA Astrophysics Data System (ADS)
Birtcher, R. C.; Baldo, P.
2006-01-01
Processes occurring within reactor cores are not amenable to direct experimental observation. Among major concerns are damage, fission gas accumulation and reaction between the fuel and its cladding all of which lead to swelling. These questions can be investigated through simulation with ion beams. As an example, we discuss the irradiation driven interaction of uranium-molybdenum alloys, intended for use as low-enrichment reactor fuels, with aluminum, which is used as fuel cladding. Uranium-molybdenum coated with a 100 nm thin film of aluminum was irradiated with 3 MeV Kr ions to simulate fission fragment damage. Mixing and diffusion of aluminum was followed as a function of irradiation with RBS and nuclear reaction analysis using the 27Al(p,γ)28Si reaction which occurs at a proton energy of 991.9 keV. During irradiation at 150 °C, aluminum diffused into the uranium alloy at a irradiation driven diffusion rate of 30 nm2/dpa. At a dose of 90 dpa, uranium diffusion into the aluminum layer resulted in formation of an aluminide phase at the initial interface. The thickness of this phase grew until it consumed the aluminum layer. The rapid diffusion of Al into these reactor fuels may offer explanation of the observation that porosity is not observed in the fuel particles but on their periphery.
Simulation of two-dimensional adjustable liquid gradient refractive index (L-GRIN) microlens
NASA Astrophysics Data System (ADS)
Le, Zichun; Wu, Xiang; Sun, Yunli; Du, Ying
2017-07-01
In this paper, a two-dimensional liquid gradient refractive index (L-GRIN) microlens is designed which can be used in adjusting focusing direction and focal spot of light beam. Finite element method (FEM) is used to simulate the convection diffusion process happening in core inlet flow and cladding inlet flow. And the ray tracing method shows us the light beam focusing effect including the extrapolation of focal length and output beam spot size. When the flow rates of the core and cladding fluids are held the same between the internal and external, left and right, and upper and lower inlets, the focal length varied from 313 μm to 53.3 μm while the flow rate of liquids ranges from 500 pL/s to 10,000 pL/s. While the core flow rate is bigger than the cladding inlet flow rate, the light beam will focus on a light spot with a tunable size. By adjusting the ratio of cladding inlet flow rate including Qright/Qleft and Qup/Qdown, we get the adjustable two-dimensional focus direction rather than the one-dimensional focusing. In summary, by adjusting the flow rate of core inlet and cladding inlet, the focal length, output beam spot and focusing direction of the input light beam can be manipulated. We suppose this kind of flexible microlens can be used in integrated optics and lab-on-a-chip system.
Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface
NASA Astrophysics Data System (ADS)
Zhao, Kai; Jia, Zhenyuan; Ma, Jianwei; Liu, Wei; Wang, Ling
2014-12-01
Metal coating with functional pattern on engineering plastics surface plays an important role in industry applications; it can be obtained by adding or removing certain area of metal coating on engineering plastics surface. However, the manufacturing requirements are improved continuously and the plastic substrate presents three-dimensional (3D) structure-many of these parts cannot be fabricated by conventional processing methods, and a new manufacturing method is urgently needed. As the laser-processing technology has many advantages like high machining accuracy and constraints free substrate structure, the machining of the parts is studied through removing certain area of metal coating based on the nanosecond multi-pulse laser milling. To improve the edge quality of the functional pattern, generation mechanism and corresponding avoidance strategy of the processing defects are studied. Additionally, a prediction model for the laser ablation depth is proposed, which can effectively avoid the existence of residual metal coating and reduces the damage of substrate. With the optimal machining parameters, an equiangular spiral pattern on copper-clad polyimide (CCPI) is machined based on the laser milling at last. The experimental results indicate that the edge of the pattern is smooth and consistent, the substrate is flat and without damage. The achievements in this study could be applied in industrial production.
On the interdiffusion in multilayered silicide coatings for the vanadium-based alloy V-4Cr-4Ti
NASA Astrophysics Data System (ADS)
Chaia, N.; Portebois, L.; Mathieu, S.; David, N.; Vilasi, M.
2017-02-01
To provide protection against corrosion at high temperatures, silicide diffusion coatings were developed for the V-4Cr-4Ti alloy, which can be used as the fuel cladding in next-generation sodium-cooled fast breeder reactors. The multilayered coatings were prepared by halide-activated pack cementation using MgF2 as the transport agent and pure silicon (high activity) as the master alloy. Coated pure vanadium and coated V-4Cr-4Ti alloy were studied and compared as substrates. In both cases, the growth of the silicide layers (V3Si, V5Si3, V6Si5 and VSi2) was controlled exclusively by solid-state diffusion, and the growth kinetics followed a parabolic law. Wagner's analysis was adopted to calculate the integrated diffusion coefficients for all silicides. The estimated values of the integrated diffusion coefficients range from approximately 10-9 to 10-13 cm2 s-1. Then, a diffusion-based numerical approach was used to evaluate the growth and consumption of the layers when the coated substrates were exposed at critical temperatures. The estimated lifetimes of the upper VSi2 layer were 400 h and 280 h for pure vanadium and the V-4Cr-4Ti alloy, respectively. The result from the numeric simulation was in good agreement with the layer thicknesses measured after aging the coated samples at 1150 °C under vacuum.
On the origin and removal of interference patterns in coated multimode fibres
NASA Astrophysics Data System (ADS)
Padilla Michel, Yazmin; Pulwer, Silvio; Saffari, Pouneh; Ksianzou, Viachaslau; Schrader, Sigurd
2016-07-01
In this study, we present the experimental investigations on interference patterns, such as those already reported in VIMOS-IFU, and up to now no appropriate explanation has been presented. These interference patterns are produced in multimode fibres coated with acrylate or polyimide, which is the preferred coating material for the fibres used in IFUs. Our experiments show that, under specific conditions, cladding modes interact with the coating and produce interference. Our results show that the conditions at which the fibre is held during data acquisition has an impact in the output spectrum. Altering the positioning conditions of the fibre leads to the changes into the interference pattern, therefore, fibres should be carefully manipulated in order to minimise this potential problem and improve the performance of these instruments. Finally we present a simple way of predicting and modelling this interference produced from the visible to the near infrared spectra. This model can be included in the data reduction pipeline in order to remove the interference patterns. These results should be of interest for the optimisation of the data reduction pipelines of instruments using optical fibres. Considering these results will benefit innovations and developments of high performance fibre systems.
Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings
NASA Astrophysics Data System (ADS)
Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin
2018-03-01
Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.
Bharathan, Gayathri; Woodward, Robert I; Ams, Martin; Hudson, Darren D; Jackson, Stuart D; Fuerbach, Alex
2017-11-27
We report the development of a widely tunable all-fiber mid-infrared laser system based on a mechanically robust fiber Bragg grating (FBG) which was inscribed through the polymer coating of a Ho 3+ -Pr 3+ co-doped double clad ZBLAN fluoride fiber by focusing femtosecond laser pulses into the core of the fiber without the use of a phase mask. By applying mechanical tension and compression to the FBG while pumping the fiber with an 1150 nm laser diode, a continuous wave (CW) all-fiber laser with a tuning range of 37 nm, centered at 2870 nm, was demonstrated with up to 0.29 W output power. These results pave the way for the realization of compact and robust mid-infrared fiber laser systems for real-world applications in spectroscopy and medicine.
Multi-Storey Air-Supported Building Construction
ERIC Educational Resources Information Center
Pohl, J. G.; Cowan, H. J.
1972-01-01
Multistory buildings, supported by internal air pressure and surrounded by a thin, flexible or rigid membrane acting both as structural container and external cladding, are feasible and highly economical for a number of building applications. (Author)
Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. The location of the insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased airtightness and improved water management. For thick layers of exterior insulation (more than 1.5 in.), the use of wood furring strips attached through the insulation back to the structure has been usedmore » by many contractors and designers as a means to provide a convenient cladding attachment location. Although the approach has proven effective, there is significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved in the development of the vertical displacement resistance capacity. In addition, the long-term in-service performance of the system has been questioned due to potential creep effects of the assembly under the sustained dead load of the cladding and effects of varying environmental conditions. In addition, the current International Building Code (IBC) and International Residential Code (IRC) do not have a provision that specifically allows this assembly.« less
Lightweight Long Life Heat Exchanger
NASA Technical Reports Server (NTRS)
Moore, E. K.
1976-01-01
A shuttle orbiter flight configuration aluminum heat exchanger was designed, fabricated, and tested. The heat exchanger utilized aluminum clad titanium composite parting sheets for protection against parting sheet pin hole corrosion. The heat exchanger, which is fully interchangeable with the shuttle condensing heat exchanger, includes slurpers (a means for removing condensed water from the downstream face of the heat exchanger), and both the core air passes and slurpers were hydrophilic coated to enhance wettability. The test program included performance tests which demonstrated the adequacy of the design and confirmed the predicted weight savings.
The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drory, N.; MacDonald, N.; Byler, N.
2015-02-01
We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 10{sup 4} local galaxies covering 360–1030 nm at R∼2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3–7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffermore » fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput and fiber metrology. Future applications include larger IFUs, higher fill factors with stripped buffer, de-cladding, and lenslet coupling.« less
The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5 m Telescope
NASA Astrophysics Data System (ADS)
Drory, N.; MacDonald, N.; Bershady, M. A.; Bundy, K.; Gunn, J.; Law, D. R.; Smith, M.; Stoll, R.; Tremonti, C. A.; Wake, D. A.; Yan, R.; Weijmans, A. M.; Byler, N.; Cherinka, B.; Cope, F.; Eigenbrot, A.; Harding, P.; Holder, D.; Huehnerhoff, J.; Jaehnig, K.; Jansen, T. C.; Klaene, M.; Paat, A. M.; Percival, J.; Sayres, C.
2015-02-01
We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 104 local galaxies covering 360-1030 nm at R˜ 2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3-7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput and fiber metrology. Future applications include larger IFUs, higher fill factors with stripped buffer, de-cladding, and lenslet coupling.
Internal coating of air cooled gas turbine blades
NASA Technical Reports Server (NTRS)
Ahuja, P. L.
1979-01-01
Six coating systems were evaluated for internal coating of decent stage (DS) eutectic high pressure turbine blades. Sequential deposition of electroless Ni by the hydrazine process, slurry Cr, and slurry Al, followed by heat treatment provided the coating composition and thickness for internal coating of DS eutectic turbine blades. Both NiCr and NiCrAl coating compositions were evaluated for strain capability and ductile to brittle transition temperature.
NASA Astrophysics Data System (ADS)
Switzner, Nathan
Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid-state mixing. Thirdly, the corrosion resistance of multiple austenitic stainless steels (types 304, 316, and 309) processed in varying ways was compared for acid chloride environments using advanced electrochemical techniques. Physical simulation of fusion claddings and friction weld claddings (wrought stainless steels) was used for sample preparation to determine compositional and microstructural effects. Pitting resistance correlated firstly with Cr content, with N and Mo additions providing additional benefits. The high ferrite fraction of as-welded samples reduced their corrosion resistance. Wrought type 309L outperformed as-welded type 309L in dissolved mass loss and reverse corrosion rate from the potentiodynamic scan in 1.0 N HCl/3.5% NaCl solution. Electrochemical impedance results indicated that wrought 309L and 316L developed a corrosion resistant passive film more rapidly than other alloys in 0.1 N HCl/3.5% NaCl, and also performed well in long term (160-day) corrosion testing in the same environment. Fourthly, to prove the concept of internal CR lining by friction welding, a conical work piece of 304L stainless steel was friction welded internally to 1018 steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, Shannon Michelle
The Organization for Economic Cooperation and Development /Nuclear Energy Agency (OECD/NEA) Nuclear Science Committee approved the formation of an Expert Group on Accident Tolerant Fuel (ATF) for LWRs (EGATFL) in 2014. Chaired by Kemal Pasamehmetoglu, INL Associate Laboratory Director for Nuclear Science and Technology, the mandate for the EGATFL defines work under three task forces: (1) Systems Assessment, (2) Cladding and Core Materials, and (3) Fuel Concepts. Scope for the Systems Assessment task force includes definition of evaluation metrics for ATF, technology readiness level definition, definition of illustrative scenarios for ATF evaluation, parametric studies, and selection of system codes. Themore » Cladding and Core Materials and Fuel Concepts task forces will identify gaps and needs for modeling and experimental demonstration; define key properties of interest; identify the data necessary to perform concept evaluation under normal conditions and illustrative scenarios; identify available infrastructure (internationally) to support experimental needs; and make recommendations on priorities. Where possible, considering proprietary and other export restrictions (e.g., International Traffic in Arms Regulations), the Expert Group will facilitate the sharing of data and lessons learned across the international group membership. The Systems Assessment Task Force is chaired by Shannon Bragg-Sitton (INL), while the Cladding Task Force will be chaired by a representative from France (Marie Moatti, Electricite de France [EdF]) and the Fuels Task Force will be chaired by a representative from Japan (Masaki Kurata, Japan Atomic Energy Agency [JAEA]). This report provides an overview of the Systems Assessment Task Force charter and status of work accomplishment.« less
NASA Astrophysics Data System (ADS)
Mondal, Subrata; Bandyopadhyay, Asish.; Pal, Pradip Kumar
2010-10-01
This paper presents the prediction and evaluation of laser clad profile formed by means of CO2 laser applying Taguchi method and the artificial neural network (ANN). Laser cladding is one of the surface modifying technologies in which the desired surface characteristics of any component can be achieved such as good corrosion resistance, wear resistance and hardness etc. Laser is used as a heat source to melt the anti-corrosive powder of Inconel-625 (Super Alloy) to give a coating on 20 MnCr5 substrate. The parametric study of this technique is also attempted here. The data obtained from experiments have been used to develop the linear regression equation and then to develop the neural network model. Moreover, the data obtained from regression equations have also been used as supporting data to train the neural network. The artificial neural network (ANN) is used to establish the relationship between the input/output parameters of the process. The established ANN model is then indirectly integrated with the optimization technique. It has been seen that the developed neural network model shows a good degree of approximation with experimental data. In order to obtain the combination of process parameters such as laser power, scan speed and powder feed rate for which the output parameters become optimum, the experimental data have been used to develop the response surfaces.
NASA Astrophysics Data System (ADS)
Isozaki, Masanori; Adachi, Kouichi; Hita, Takanori; Asano, Yuji
Applying anti-corrosion grease and aluminum clad steel (AC) wires to ACSR has adopted as general methods to prevent overhead transmission line conductors and/or wires from corrosion. However, there are some cases that ineffectiveness of those means are reported on some transmission lines passing through acid atmosphere in the vicinity of a factory exhausting acid smoke. The feature of the corrosion caused by acid atmosphere is to show a higher speed in its progressing as well known. As means against such acid corrosion, application of high purity aluminum, selective removal of inter-metallic compound in aluminum and plastic coating wires has been reported before, and each has both of advantage and disadvantage actually. In the former letter, we reported the new type of anti-corrosion grease that shows an excellent property against acid atmosphere as well as in a salty circumstance. Here presents a new type of anti-corrosion technology of applying high corrosion resistance aluminum alloy or zinc coatings on each component wires of a conductor that we succeed in developing through a serial study of anti-corrosion methods on overhead transmission lines.
High bandwidth specialty optical fibers for data communications
NASA Astrophysics Data System (ADS)
Li, Jie; Sun, Xiaoguang
2008-11-01
Perhaps the most common specialty optical fiber is HCS hard polymer clad silica fiber. It was invented almost 30 years ago for transmitting laser light to initiate explosives in mining industry and later adapted to be used in a variety of new applications, such as data communications. The most typical HCS fiber typically consists of a 200 μm pure silica glass core, a thin coating of low refractive index hard polymer as the cladding, and an ETFE buffer. This design enables the "crimp-and-cleave" technique of terminating and connectorizing fibers quickly and reliably. Its greater glass diameter also renders greater robustness allowing the fiber to endure greater forces during installation. Due to its larger core size and high numerical aperture (NA), the fiber can be used with a plastic connector and low cost LED transmitter that can greatly reduce the system cost. It can also be used at higher temperature and humidity conditions than standard optical fibers coated with telecommunications grade acrylate material. As applications evolve and require greater bandwidth and/or performance over a greater distance, the challenge now is to develop specialty optical fibers with significantly greater bandwidth-length product while maintaining all other characteristics critical to their ease of use and performance. As a response to the demand, two new fiber types have been designed and developed as higher bandwidth versions of the original HCS fiber. In this paper, we will discuss some of the main design requirements for the fibers, describe in detail the two designs, and present the results of fiber performance.
Silica aerogel core waveguide.
Grogan, M D W; Leon-Saval, S G; England, R; Birks, T A
2010-10-11
We have selectively filled the core of hollow photonic crystal fibre with silica aerogel. Light is guided in the aerogel core, with a measured attenuation of 0.2 dB/cm at 1540 nm comparable to that of bulk aerogel. The structure guides light by different mechanisms depending on the wavelength. At long wavelengths the effective index of the microstructured cladding is below the aerogel index of 1.045 and guidance is by total internal reflection. At short wavelengths, where the effective cladding index exceeds 1.045, a photonic bandgap can guide the light instead. There is a small region of crossover, where both index- and bandgap-guided modes were simultaneously observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrashekhar, MVS
The objective is to develop and implement a superior low-cost, large area (potentially >32in), easily deployable, close proximity, harsh environment innovative neutron sensor needed for next generation fuel cycle monitoring. We will exploit recent breakthroughs at the PI’s lab on the electrochemistry of epitaxial graphene (EG) formed on commercial SiC wafers, a transformative nanomaterial system with superior radiation detection and durability properties to develop a new paradigm in detection for fast neutrons, a by-product of fission reactors. There are currently few effective detection/monitoring schemes, especially solid-state ones at present. This is essential for monitoring and control of future fuel cyclesmore » to make them more efficient and reliable. By exploiting these novel materials, as well as innovative hybrid SiC/EG/Cladding device architectures conceived by the team, will develop low-cost, high performance solutions to fast-neutron detection. Finally, we will also explore 3-terminal device implementations for neutron detectors with built-in electronic gain to further shrink these devices and improve their sensitivity.« less
NASA Astrophysics Data System (ADS)
Wang, Yin; Al-Zubaidy, Basem; Prangnell, Philip B.
2018-01-01
The dissimilar welding of aluminum to magnesium is challenging because of the rapid formation of brittle intermetallic compounds (IMC) at the weld interface. An Al-Si coating interlayer was selected to address this problem, based on thermodynamic calculations which predicted that silicon would change the reaction path to avoid formation of the normally observed binary Al-Mg IMC phases ( β-Al3Mg2 and γ-Al12Mg17). Long-term static heat treatments confirmed that a Si-rich coating will preferentially produce the Mg2Si phase in competition with the less stable, β-Al3Mg2 and γ-Al12Mg17 binary IMC phases, and this reduced the overall reaction layer thickness. However, when an Al-Si clad sheet was tested in a real welding scenario, using the Refill™ friction stir spot welding (FSSW) technique, Mg2Si was only produced in very small amounts owing to the much shorter reaction time. Surprisingly, the coating still led to a significant reduction in the IMC reaction layer thickness and the welds exhibited enhanced mechanical performance, with improved strength and fracture energy. This beneficial behavior has been attributed to the softer coating material both reducing the welding temperature and giving rise to the incorporation of Si particles into the reaction layer, which toughened the brittle interfacial IMC phases during crack propagation.
Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel G.; Lindgren, Eric Richard
The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and also by increasing themore » internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an aboveground configuration. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. The arrangement of ducting was used to mimic conditions for an aboveground storage configuration in a vertical, dry cask systems with canisters. Transverse and axial temperature profiles were measured for a wide range of decay power and helium cask pressures. Of particular interest was the evaluation of the effect of increased helium pressure on peak cladding temperatures (PCTs) for identical thermal loads. All steady state peak temperatures and induced flow rates increased with increasing assembly power. Peak cladding temperatures decreased with increasing internal helium pressure for a given assembly power, indicating increased internal convection. In addition, the location of the PCT moved from near the top of the assembly to ~1/3 the height of the assembly for the highest (8 bar absolute) to the lowest (0 bar absolute) pressure studied, respectively. This shift in PCT location is consistent with the varying contribution of convective heat transfer proportional with of internal helium pressure.« less
Etched FBG coated with polyimide for simultaneous detection the salinity and temperature
NASA Astrophysics Data System (ADS)
Luo, Dong; Ma, Jianxun; Ibrahim, Zainah; Ismail, Zubaidah
2017-06-01
In marine environment, concrete structures can corrode because of the PH alkalinity of concrete paste; and the salinity PH is heavily related with the concentration of salt in aqueous solutions. In this study, an optical fiber salinity sensor is proposed on the basis of an etched FBG (EFBG) coated with a layer of polyimide. Chemical etching is employed to reduce the diameter of FBG and to excite Cladding Mode Resonance Wavelengths (CMRWs). CMRW and Fundamental Mode Resonance Wavelength (FMRW) can be used to measure the Refractive index (RI) and temperature of salinity. The proposed sensor is then characterized with a matrix equation. Experimental results show that FMRW and 5th CMRW have the detection sensitivities of 15.407 and 125.92 nm/RIU for RI and 0.0312 and 0.0435 nm/°C for temperature, respectively. The proposed sensor can measure salinity and temperature simultaneously.
Del Villar, Ignacio; Partridge, Matthew; Rodriguez, Wenceslao Eduardo; Fuentes, Omar; Socorro, Abian Bentor; Diaz, Silvia; Corres, Jesus Maria; James, Stephen Wayne; Tatam, Ralph Peter
2017-09-13
The diameter of long-period fiber gratings (LPFGs) fabricated in optical fibers with a low cutoff wavelength was be reduced by hydrofluoric acid etching, enhancing the sensitivity to refractive index by more than a factor of 3, to 2611 nm/refractive index unit in the range from 1.333 to 1.4278. The grating period selected for the LPFGs allowed access to the dispersion turning point at wavelengths close to the visible range of the optical spectrum, where optical equipment is less expensive. As an example of an application, a pH sensor based on the deposition of a polymeric coating was analyzed in two situations: with an LPFG without diameter reduction and with an LPFG with diameter reduction. Again, a sensitivity increase of a factor of near 3 was obtained, demonstrating the ability of this method to enhance the sensitivity of thin-film-coated LPFG chemical sensors.
Shape memory polymer (SMP) gripper with a release sensing system
Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Silva, Luiz Da
2000-01-01
A system for releasing a target material, such as an embolic coil from an SMP located at the end of a catheter utilizing an optical arrangement for releasing the material. The system includes a laser, laser driver, display panel, photodetector, fiber optics coupler, fiber optics and connectors, a catheter, and an SMP-based gripper, and includes a release sensing and feedback arrangement. The SMP-based gripper is heated via laser light through an optic fiber causing the gripper to release a target material (e.g., embolic coil for therapeutic treatment of aneurysms). Various embodiments are provided for coupling the laser light into the SMP, which includes specific positioning of the coils, removal of the fiber cladding adjacent the coil, a metal coating on the SMP, doping the SMP with a gradient absorbing dye, tapering the fiber optic end, coating the SMP with low refractive index material, and locating an insert between the fiber optic and the coil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC, builders will be required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood of furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. However, there has been resistancemore » to its widespread implementation due to a lack of research and understanding of the mechanisms involved and potential creep effects of the assembly under the sustained dead load of a cladding. This research conducted by Building Science Corporation evaluated the system mechanics and long-term performance of this technique.« less
FRAPCON analysis of cladding performance during dry storage operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, David J.; Geelhood, Kenneth J.
There is an increasing need in the U.S. and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations (ISFSI) or interim storage sites. The NRC limits cladding temperature to 400°C while maintaining cladding hoop stress below 90 MPa in an effort to avoid radial hydride reorientation. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400 °C. Results were representative of the majority of U.S. LWR fuel. They conservativelymore » showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.« less
NASA Astrophysics Data System (ADS)
Lemoine, F.
1997-09-01
Specific aspects of irradiated fuel result from the increasing retention of gaseous and volatile fission products with burnup, which, under overpower conditions, can lead to solid fuel pressurization and swelling causing severe PCMI (pellet clad mechanical interaction). In order to assess the reliability of high burnup fuel under RIAs, experimental programs have been initiated which have provided important data concerning the transient fission gas behavior and the clad loading mechanisms. The importance of the rim zone is demonstrated based on three experiments resulting in clad failure at low enthalpy, which are explained by energetic considerations. High gas release in non-failure tests with low energy deposition underlines the importance of grain boundary and porosity gas. Measured final releases are strongly correlated to the microstructure evolution, depending on energy deposition, pulse width, initial and refabricated fuel rod design. Observed helium release can also increase internal pressure and gives hints to the gas behavior understanding.
Severe Accident Test Station Activity Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pint, Bruce A.; Terrani, Kurt A.
2015-06-01
Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accidentmore » Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000ºC compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.« less
Adjustable supercontinuum laser source with low coherence length and low timing jitter
NASA Astrophysics Data System (ADS)
Andreana, Marco; Bertrand, Anthony; Hernandez, Yves; Leproux, Philippe; Couderc, Vincent; Hilaire, Stéphane; Huss, Guillaume; Giannone, Domenico; Tonello, Alessandro; Labruyère, Alexis; Rongeat, Nelly; Nérin, Philippe
2010-04-01
This paper introduces a supercontinuum (SC) laser source emitting from 400 nm to beyond 1750 nm, with adjustable pulse repetition rate (from 250 kHz to 1 MHz) and duration (from ~200 ps to ~2 ns). This device makes use of an internally-modulated 1.06 μm semiconductor laser diode as pump source. The output radiation is then amplified through a preamplifier (based on single-mode Yb-doped fibres) followed by a booster (based on a double-clad Yb-doped fibre). The double-clad fibre output is then spliced to an air-silica microstructured optical fibre (MOF). The small core diameter of the double-clad fibre allows reducing the splice loss. The strongly nonlinear propagation regime in the MOF leads to the generation of a SC extending from the violet to the nearinfrared wavelengths. On the Stokes side of the 1.06 μm pump line, i.e., in the anomalous dispersion regime, the spectrum is composed of an incoherent distribution of quasi-solitonic components. Therefore, the SC source is characterised by a low coherence length, which can be tuned by simply modifying pulse duration, that is closely related to the number of quasi-solitonic components brought into play. Finally, the internal modulation of the laser diode permits to achieve excellent temporal stability, both in terms of average power and pulse-to-pulse period.
Microstructure Evolution of TiC Particles In Situ, Synthesized by Laser Cladding
Liu, Yanhui; Ding, Jieqiong; Qu, Weicheng; Su, Yu; Yu, Zhishui
2017-01-01
In this paper, a TiC reinforcement metal matrix composite coating is produced using nickel and graphite mixing powder on the surface ofTi-6Al-4V alloy by laser radiation. The microstructure of the coatings is investigated by XRD, SEM and EDS. Results show that most of the TiC phase is granular, with a size of several micrometers, and a few of the TiC phases are petals or flakes. At the cross-section of the coatings, a few special TiC patterns are found and these TiC patterns do not always occur at the observed cross-section. The even distribution of the TiC phase in the coatings confirms that the convection of the laser-melted pool leads to the homogenization of titanium atoms from the molten substrate, and carbon atoms from the preplace powder layer, by the mass transfer. The characteristics of the TiC pattern confirm that the morphology and distribution of the primary TiC phase could be influenced by convection. Two main reasons for this are that the density of the TiC phase is lower than the liquid melt, and that the primary TiC phase precipitates from the pool with a high convection speed at high temperature. PMID:28772641
Microstructure Evolution of TiC Particles In Situ, Synthesized by Laser Cladding.
Liu, Yanhui; Ding, Jieqiong; Qu, Weicheng; Su, Yu; Yu, Zhishui
2017-03-11
In this paper, a TiC reinforcement metal matrix composite coating is produced using nickel and graphite mixing powder on the surface ofTi-6Al-4V alloy by laser radiation. The microstructure of the coatings is investigated by XRD, SEM and EDS. Results show that most of the TiC phase is granular, with a size of several micrometers, and a few of the TiC phases are petals or flakes. At the cross-section of the coatings, a few special TiC patterns are found and these TiC patterns do not always occur at the observed cross-section. The even distribution of the TiC phase in the coatings confirms that the convection of the laser-melted pool leads to the homogenization of titanium atoms from the molten substrate, and carbon atoms from the preplace powder layer, by the mass transfer. The characteristics of the TiC pattern confirm that the morphology and distribution of the primary TiC phase could be influenced by convection. Two main reasons for this are that the density of the TiC phase is lower than the liquid melt, and that the primary TiC phase precipitates from the pool with a high convection speed at high temperature.
Transmission characteristics of femtosecond optical pulses in hollow-core fibers
NASA Astrophysics Data System (ADS)
Mohebbi, Mohammad
2005-09-01
Hollow-core fibers with fused silica and metal claddings are studied for transmission of femtosecond optical pulses at a wavelength of 800 nm. The measured transmission loss of a silver-coated hollow fiber with a core diameter of 250 μm is 0.44 dB/m. A bending loss of 1.1 dB/m was measured for this waveguide with a radius of curvature of 1 m. It is shown that the fundamental hybrid mode HE 11 has negligible pulse spreading. In the presence of higher order modes modal dispersion becomes dominant and depends strongly on the core diameter.
Serum protein measurement using a tapered fluorescent fibre-optic evanescent wave-based biosensor
NASA Astrophysics Data System (ADS)
Preejith, P. V.; Lim, C. S.; Chia, T. F.
2006-12-01
A novel method to measure the total serum protein concentration is described in this paper. The method is based on the principles of fibre-optic evanescent wave spectroscopy. The biosensor applies a fluorescent dye-immobilized porous glass coating on a multi-mode optical fibre. The evanescent wave's intensity at the fibre-optic core-cladding interface is used to monitor the protein-induced changes in the sensor element. The sensor offers a rapid, single-step method for quantifying protein concentrations without destroying the sample. This unique sensing method presents a sensitive and accurate platform for the quantification of protein.
Summary of LCRE fuel element design including supporting experimental data
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Declassified 18 Sep 1973. The design basis of the LCRE fuel pin is presented. The fuel pin consists of a Cb-1 Zr alloy cladding tube 0.305 inch diameter, 0.015 inch wall thickness and 35.96 inches long. The active fuel section is 13.5 inches long, with top and bottom reflector rods each 6.9 inches long and with a 4 inch gas accumulation space at each end. The cladding is designed as a pressure vessel to contain the gases released from the fuel and end refiector materials, which results in an internal gas pressure buildup in the pins during reactor operation. (23more » referencea) (auth)« less
Tungsten and beryllium armour development for the JET ITER-like wall project
NASA Astrophysics Data System (ADS)
Maier, H.; Hirai, T.; Rubel, M.; Neu, R.; Mertens, Ph.; Greuner, H.; Hopf, Ch.; Matthews, G. F.; Neubauer, O.; Piazza, G.; Gauthier, E.; Likonen, J.; Mitteau, R.; Maddaluno, G.; Riccardi, B.; Philipps, V.; Ruset, C.; Lungu, C. P.; Uytdenhouwen, I.; EFDA contributors, JET
2007-03-01
For the ITER-like wall project at JET the present main chamber CFC tiles will be exchanged with Be tiles and in parallel a fully tungsten-clad divertor will be prepared. Therefore three R&D programmes were initiated: Be coatings on Inconel as well as Be erosion markers were developed for the first wall of the main chamber. High heat flux screening and cyclic loading tests carried out on the Be coatings on Inconel showed excellent performance, above the required power and energy density. For the divertor a conceptual design for a bulk W horizontal target plate was investigated, with the emphasis on minimizing electromagnetic forces. The design consisted of stacks of W lamellae of 6 mm width that were insulated in the toroidal direction. High heat flux tests of a test module were performed with an electron beam at an absorbed power density up to 9 MW m-2 for more than 150 pulses and finally with increasing power loads leading to surface temperatures in excess of 3000 °C. No macroscopic failure occurred during the test while SEM showed the development of micro-cracks on the loaded surface. For all other divertor parts R&D was performed to provide the technology to coat the 2-directional CFC material used at JET with thin tungsten coatings. The W-coated CFC tiles were subjected to heat loads with power densities ranging up to 23.5 MW m-2 and exposed to cyclic heat loading for 200 pulses at 10.5 MW m-2. All coatings developed cracks perpendicular to the CFC fibres due to the stronger contraction of the coating upon cool-down after the heat pulses.
Chien, Chi-Sheng; Ko, Yu-Sheng; Kuo, Tsung-Yuan; Liao, Tze-Yuan; Lee, Tzer-Min; Hong, Ting-Fu
2014-04-01
To study the effect of titania (TiO2) addition on the surface microstructure and bioactivity of fluorapatite coatings, fluorapatite was mixed with TiO2 in 1:0.5 (FA + 0.5TiO2), 1:0.8 (FA + 0.8TiO2), and 1:1 (FA + TiO2) ratios (wt%) and clad on Ti-6Al-4V substrates using an Nd:YAG laser system. The experimental results show that the penetration depth of the weld decreases with increasing TiO2 content. Moreover, the subgrain structure of the coating layer changes from a fine cellular-like structure to a cellular-dendrite-like structure as the amount of TiO2 increases. Consequently, as the proportion of TiO2 decreases (increase in fluorapatite content), the Ca/P ratio of the coating layer also decreases. The immersion of specimens into simulated body fluid resulted in the formation of individual apatite. With a lower Ca/P ratio before immersion, the growth of the apatite was faster and then the coating layer provided a better bioactivity. X-ray diffraction analysis results show that prior to simulated body fluid immersion, the coating layer in all three specimens was composed mainly of fluorapatite, CaTiO3, and Al2O3 phases. Following simulated body fluid immersion, a peak corresponding to hydroxycarbonated apatite appeared after 2 days in the FA + 0.5TiO2 and FA + 0.8TiO2 specimens and after 7 days in the FA + TiO2 specimen. Overall, the results show that although the bioactivity of the coating layer tended to decrease with increasing TiO2 content, in accordance with the above-mentioned ratios, the bioactivity of all three specimens remained generally good.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jijun; Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology; Akimoto, Ryoichi, E-mail: r-akimoto@aist.go.jp
2015-10-19
Low threshold current ridge-waveguide BeZnCdSe quantum-well laser diodes (LDs) have been developed by completely etching away the top p-type BeMgZnSe/ZnSe:N short-period superlattice cladding layer, which can suppress the leakage current that flows laterally outside of the electrode. The waveguide LDs are covered with a thick SiO{sub 2} layer and planarized with chemical-mechanical polishing and a reactive ion etching process. Room-temperature lasing under continuous-wave condition is achieved with the laser cavity formed by the cleaved waveguide facets coated with high-reflectivity dielectric films. For a 4 μm-wide green LD lasing around a wavelength of 535 nm, threshold current and voltage of 7.07 mA and 7.89 Vmore » are achieved for a cavity length of 300 μm, and the internal differential quantum efficiency, internal absorption loss, gain constant, and nominal transparency current density are estimated to be 27%, 4.09 cm{sup −1}, 29.92 (cm × μm)/kA and 6.35 kA/(cm{sup 2 }× μm), respectively. This compact device can realize a significantly improved performance with much lower threshold power consumption, which would benefit the potential application for ZnSe-based green LDs as light sources in full-color display and projector devices installed in consumer products such as pocket projectors.« less
SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
IJ van Rooyen; WR Lloyd; TL Trowbridge
2013-09-01
The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designsmore » being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points and clad configurations. The 2-ply sleeve samples show a higher bend momentum compared to those of the 1-ply sleeve samples. This is applicable to both the hybrid mock-up and bare SiC-CMC sleeve samples. Comparatively both the 1- and 2-ply hybrid mock-up samples showed a higher bend stiffness and strength compared with the standard Zr-4 mock-up sample. The characterization of the hybrid mock-up samples showed signs of distress and preliminary signs of fraying at the protective Zr-4 sleeve areas for the 1-ply SiC-CMC sleeve. In addition, the microstructure of the SiC matrix near the cracks at the region of highest compressive bending strain shows significant cracking and flaking. The 2-ply SiC-CMC sleeve samples showed a more bonded, cohesive SiC matrix structure. This cracking and fraying causes concern for increased fretting during the actual use of the design. Tomography was proven as a successful tool to identify open porosity during pre-test characterization. Although there is currently insufficient data to make conclusive statements regarding the overall merit of the hybrid cladding design, preliminary characterization of this novel design has been demonstrated.« less
NASA Astrophysics Data System (ADS)
Singh, Raghuvir; Tiwari, S. K.; Mishra, Suman K.
2012-07-01
Cavitation erosion is a frequently observed phenomenon in underwater engineering materials and is the primary reason for component failure. The damage due to cavitation erosion is not yet fully understood, as it is influenced by several parameters, such as hydrodynamics, component design, environment, and material chemistry. This article gives an overview of the current state of understanding of cavitation erosion of materials used in hydroturbines, coatings and coating methodologies for combating cavitation erosion, and methods to characterize cavitation erosion. No single material property fully characterizes the resistance to cavitation erosion. The combination of ultimate resilience, hardness, and toughness rather may be useful to estimate the cavitation erosion resistance of material. Improved hydrodynamic design and appropriate surface engineering practices reduce damage due to cavitation erosion. The coatings suggested for combating the cavitation erosion encompasses carbides (WC Cr2C3, Cr3C2, 20CrC-80WC), cermets of different compositions (e.g., 56W2C/Ni/Cr, 41WC/Ni/Cr/Co), intermetallic composites, intermetallic matrix composites with TiC reinforcement, composite nitrides such as TiAlN and elastomers. A few of them have also been used commercially. Thermal spraying, arc plasma spraying, and high velocity oxy-fuel (HVOF) processes have been used commercially to apply the coatings. Boronizing, laser surface hardening and cladding, chemical vapor deposition, physical vapor deposition, and plasma nitriding have been tried for surface treatments at laboratory levels and have shown promise to be used on actual components.
Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, P.
Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders are going to finding themselves required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. However, there has beenmore » a significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved and potential creep effects of the assembly under the sustained dead load of a cladding. This research was an extension on previous research conducted by BSC in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full years worth of cladding movement data from assemblies constructed in an exposed outdoor environment.« less
Conservation of Stone Cladding on the FAÇADE of Royal Palace in Caserta
NASA Astrophysics Data System (ADS)
Titomanlio, I.
2013-07-01
The beauty of cultural heritage and monumental architecture, is often linked to their non-structural elements and decorative stones façades cladding. The collapse of these elements causes significant consequences that interest the social, the economic, the historical and the technical fields. Several regulatory documents and literature studies contain methods to address the question of relief and of the risk analysis and due to the non - structural stones security. Among the references are widespread international regulatory documents prepared by the Federal Emergency Management Agency of the United States by Applied Technology Council and California. In Italy there are some indications contained in the Norme Tecniche per le Costruzioni and the Direttiva del Presidente del Consiglio dei Ministri in 2007, finalize to the reduction of seismic risk assessment of cultural heritage. The paper, using normative references and scientific researches, allows to analyze on Royal Palace of Caserta the safety and the preservation of cultural heritage and the vulnerability of non-structural stones façade cladding. Using sophisticated equipments of Laboratory ARS of the Second University of Naples, it was possible to analyze the collapse of stone elements due to degradation caused by natural phenomena of deterioration (age of the building, type of materials, geometries , mode of fixing of the elements themselves). The paper explains the collapse mechanisms of stones façade cladding of Luigi Vanvitelli Palace.
White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sindelar, R.; Louthan, M.; PNNL, B.
2015-05-29
This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history,more » residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed to identical conditions and the material responses to thermo-mechanical exposures will be different depending on the materials and systems used. The discussions at the workshop showed several gaps in the standardization of processes and techniques necessary to assess the long term performance of irradiated zirconium alloy cladding during dry storage and transport. The development of, and adherence to, standards to help bridge these gaps will strengthen the technical basis for long term storage and post-storage operations, provide consistency across the nuclear industry, maximize the value of most observations, and enhance the understanding of behavioral differences among alloys. The need for, and potential benefits of, developing the recommended standards are illustrated in the various sections of this report.« less
NASA Astrophysics Data System (ADS)
Campanelli, Sabina L.; Angelastro, Andrea; Latte, Marco; Rizzo, Antonella; Palano, Fania
2018-02-01
Direct Laser Metal Deposition (DLMD) has been successfully applied for the coating or the repair of several kind of components, such as molds and dies. Recently, the aeronautical sector is also showing a high interest in this process for the repair of turbines and transmissions. However, technical requirements to be met for the repair of aeronautical components are much more stringent than standards of other industrial fields. Some of the deposited material defects that need to be carefully controlled are cracks and porosity, which largely depend on the temperature peaks and the cooling rates generated during the process. The aim of this work is to monitor the temperature field that was generated during the DLMD process, analyze its variation with some process parameters and study its effects on clad geometry and on dilution with the substrate. In this research, a number of experimental tests were designed for the deposition of single clads of a Nickel superalloy powder on an AISI 304 stainless steel substrate, using an Ytterbium fiber laser source. Temperature fields monitoring was carried out using a thermal camera capable of detecting temperatures up to 2500 °C.
Embedding Carbon Fibre Structures in Metal Matrixes for Additive Manufacturing
NASA Astrophysics Data System (ADS)
Frostevarg, Jan; Robertson, Stephanie; Benavides, Vicente; Soldatov, Alexander
It is possible to reinforce structures and components using carbon fibres for applications in electronics and medicine, but most commonly used in reinforcing resin fibre composites for personal protection equipment and light weight constructions. Carbon fibres act as stress redistributors while having increased electrical and thermal conductivities. These properties could also be utilized in metal matrixes, if the fibres are properly fused to the metal and the structure remains intact. Another recently developed high potential carbon structure, carbon nanotube- (CNT) yarns, has similar but even greater mechanical properties than common carbon fibres. Via laser cladding, these reinforcing materials could be used in a plethora of applications, either locally (or globally) as surface treatments or as structural reinforcements using multi-layer laser cladding (additive manufacturing). The challenges of embedding carbon fibres or CNT-yarns in a CuAl mixture and SnPb solder wire using lasers are here investigated using high speed imaging and SEM. It is revealed that the carbon fibres have very high buoyancy in the molten metal and quickly degrades when irradiated by the laser. Wetting of the fibres is shown to be improved by a Tungsten coating and embedding of the structures after processing are evaluated using SEM and Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Bello, K. A.; Adebisi, A. A.; Akma, N.
2017-03-01
Tungsten inert gas (TIG) torch is one of the most recently used heat source for surface modification of engineering parts, giving similar results to the more expensive high power laser technique. In this study, ceramic-based embedded composite coating has been produced by precoated silicon carbide (SiC) powders on the AISI 4340 low alloy steel substrate using TIG welding torch process. A design of experiment based on Taguchi approach has been adopted to optimize the TIG cladding process parameters. The L9 orthogonal array and the signal-to-noise was used to study the effect of TIG welding parameters such as arc current, travelling speed, welding voltage and argon flow rate on tribological response behaviour (wear rate, surface roughness and wear track width). The objective of the study was to identify optimal design parameter that significantly minimizes each of the surface quality characteristics. The analysis of the experimental results revealed that the argon flow rate was found to be the most influential factor contributing to the minimum wear and surface roughness of the modified coating surface. On the other hand, the key factor in reducing wear scar is the welding voltage. Finally, a convenient and economical Taguchi approach used in this study was efficient to find out optimal factor settings for obtaining minimum wear rate, wear scar and surface roughness responses in TIG-coated surfaces.
Stress strain modelling and analysis of a piezo-coated optical fibre sensor
NASA Astrophysics Data System (ADS)
Al-Raweshidy, H.; Ali, H.; Obayya, S. S. A.; Langley, R.; Batchelor, J.
2005-02-01
A finite element model, using commercially available software, is presented to simulate the piezoelectrically induced stresses and strains in an optical fibre to be used as antenna. These stresses and strains are generated by a layer of piezoelectric polymer deposited on the cladding of a short fibre sample. The theoretical basis for the work is briefly explained and the modelling process is emphasised. Two types of fibre are investigated - circular fibre and D-fibre, and the results compared, analysed and discussed. It is shown that in the D-fibre, the stress and displacement increased by 1.46 and 115 times, respectively, in comparison with the circular fibre.
Effect of laser power on clad metal in laser-TIG combined metal cladding
NASA Astrophysics Data System (ADS)
Utsumi, Akihiro; Hino, Takanori; Matsuda, Jun; Tasoda, Takashi; Yoneda, Masafumi; Katsumura, Munehide; Yano, Tetsuo; Araki, Takao
2003-03-01
TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.
Cascaded-cladding-pumped cascaded Raman fiber amplifier.
Jiang, Huawei; Zhang, Lei; Feng, Yan
2015-06-01
The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser.
Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.
Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.
2005-02-15
An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.
Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.
2005-05-17
An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
Ultrathin optical panel and a method of making an ultrathin optical panel
Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.
2003-02-11
An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
Ultrathin optical panel and a method of making an ultrathin optical panel
Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.
2001-10-09
An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
Ultrathin optical panel and a method of making an ultrathin optical panel
Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.
2002-01-01
An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated With a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
Ultrasensitive plasmonic sensing in air using optical fibre spectral combs
Caucheteur, Christophe; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques
2016-01-01
Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture—a gold-coated highly tilted Bragg grating—that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10−8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas. PMID:27834366
Development of high-power CO2 lasers and laser material processing
NASA Astrophysics Data System (ADS)
Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.
2000-02-01
Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.
Polishing, coating and integration of SiC mirrors for space telescopes
NASA Astrophysics Data System (ADS)
Rodolfo, Jacques
2017-11-01
In the last years, the technology of SiC mirrors took an increasingly significant part in the field of space telescopes. Sagem is involved in the JWST program to manufacture and test the optical components of the NIRSpec instrument. The instrument is made of 3 TMAs and 4 plane mirrors made of SiC. Sagem is in charge of the CVD cladding, the polishing, the coating of the mirrors and the integration and testing of the TMAs. The qualification of the process has been performed through the manufacturing and testing of the qualification model of the FOR TMA. This TMA has shown very good performances both at ambient and during the cryo test. The polishing process has been improved for the manufacturing of the flight model. This improvement has been driven by the BRDF performance of the mirror. This parameter has been deeply analysed and a model has been built to predict the performance of the mirrors. The existing Dittman model have been analysed and found to be optimistic.
Internally coated air-cooled gas turbine blading
NASA Technical Reports Server (NTRS)
Hsu, L.; Stevens, W. G.; Stetson, A. R.
1979-01-01
Ten candidate modified nickel-aluminide coatings were developed using the slip pack process. These coatings contain additives such as silicon, chromium and columbium in a nickel-aluminum coating matrix with directionally solidified MAR-M200 + Hf as the substrate alloy. Following a series of screening tests which included strain tolerance, dynamic oxidation and hot corrosion testing, the Ni-19A1-1Cb (nominal composition) coating was selected for application to the internal passages of four first-stage turbine blades. Process development results indicate that a dry pack process is suitable for internal coating application resulting in 18 percent or less reduction in air flow. Coating uniformity, based on coated air-cooled blades, was within + or - 20 percent. Test results show that the presence of additives (silicon, chromium or columbium) appeared to improve significantly the ductility of the NiA1 matrix. However, the environmental resistance of these modified nickel-aluminides were generally inferior to the simple aluminides.
NASA Technical Reports Server (NTRS)
Calle, Luz M.
1994-01-01
This investigation explored the use of Electrochemical Impedance Spectroscopy (EIS) in combination with atmospheric exposure as a short term method for analyzing the performance of twenty-one commercially available zinc-rich primers. The twenty-one zinc-rich primers were: Carboline CZ-11, Ameron Devoe-Marine Catha-Coat 304, Briner V-65, Ameron D-21-9, Sherwin Williams Zinc Clad II, Carboline CZ-D7, Ameron D-4, Dupont Ganicin 347WB, Porter TQ-4374H, Inorganic Coatings IC-531, Subox Galvanox IV, Southern Coatings Chemtec 600, GLidden Glidzinc 5530, Byco SP-101, Tnemec 90E-75, Devoe Catha-Coat 302H, Glidden Glidzinc 5536, Koppers 701, Ameron D-21-5, Coronado 935-152, and Subox Galvanox V. Data were also collected on galvanized steel for comparison purposes. A library of Bode magnitude plots was generated for each coating including curves for the initial time and after each week of atmospheric exposure at the Beach Corrosion Test site near the Space Shuttle launch pad at the Kennedy Space Center for up to four weeks. Subsequent measurements were collected after 8 weeks and after one year of atmospheric exposure. Analysis of the impedance data was performed with the purpose of identifying parameters that could be used to predict the long-term performance of zinc-rich primers. It has been shown that there is a correlation between the long-term performance of zinc-rich primers and several parameters obtained from EIS measurements in combination with atmospheric exposure. The equivalent circuit R2(R2C(R3W)) provided a satisfactory fit for the EIS data. The corrosion potential and the R2 resistance are parameters indicative of the galvanic mechanism of protection. The capacitance of the coating is related to the barrier mechanism of protection.
Critical cladding radius for hybrid cladding modes
NASA Astrophysics Data System (ADS)
Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann
2018-05-01
In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.
Lung volumes predict survival in patients with chronic lung allograft dysfunction.
Kneidinger, Nikolaus; Milger, Katrin; Janitza, Silke; Ceelen, Felix; Leuschner, Gabriela; Dinkel, Julien; Königshoff, Melanie; Weig, Thomas; Schramm, René; Winter, Hauke; Behr, Jürgen; Neurohr, Claus
2017-04-01
Identification of disease phenotypes might improve the understanding of patients with chronic lung allograft dysfunction (CLAD). The aim of the study was to assess the impact of pulmonary restriction and air trapping by lung volume measurements at the onset of CLAD.A total of 396 bilateral lung transplant recipients were analysed. At onset, CLAD was further categorised based on plethysmography. A restrictive CLAD (R-CLAD) was defined as a loss of total lung capacity from baseline. CLAD with air trapping (AT-CLAD) was defined as an increased ratio of residual volume to total lung capacity. Outcome was survival after CLAD onset. Patients with insufficient clinical information were excluded (n=95).Of 301 lung transplant recipients, 94 (31.2%) developed CLAD. Patients with R-CLAD (n=20) and AT-CLAD (n=21), respectively, had a significantly worse survival (p<0.001) than patients with non-R/AT-CLAD. Both R-CLAD and AT-CLAD were associated with increased mortality when controlling for multiple confounding variables (hazard ratio (HR) 3.57, 95% CI 1.39-9.18; p=0.008; and HR 2.65, 95% CI 1.05-6.68; p=0.039). Furthermore, measurement of lung volumes was useful to identify patients with combined phenotypes.Measurement of lung volumes in the long-term follow-up of lung transplant recipients allows the identification of patients who are at risk for worse outcome and warrant special consideration. Copyright ©ERS 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders are going to finding themselves required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. However, there has beenmore » a significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved and potential creep effects of the assembly under the sustained dead load of a cladding. This research was an extension on previous research conducted by BSC in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full years worth of cladding movement data from assemblies constructed in an exposed outdoor environment.« less
Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing.
Shabahang, Soroush; Tao, Guangming; Kaufman, Joshua J; Qiao, Yangyang; Wei, Lei; Bouchenot, Thomas; Gordon, Ali P; Fink, Yoel; Bai, Yuanli; Hoy, Robert S; Abouraddy, Ayman F
2016-06-23
Polymer cold-drawing is a process in which tensile stress reduces the diameter of a drawn fibre (or thickness of a drawn film) and orients the polymeric chains. Cold-drawing has long been used in industrial applications, including the production of flexible fibres with high tensile strength such as polyester and nylon. However, cold-drawing of a composite structure has been less studied. Here we show that in a multimaterial fibre composed of a brittle core embedded in a ductile polymer cladding, cold-drawing results in a surprising phenomenon: controllable and sequential fragmentation of the core to produce uniformly sized rods along metres of fibre, rather than the expected random or chaotic fragmentation. These embedded structures arise from mechanical-geometric instabilities associated with 'neck' propagation. Embedded, structured multimaterial threads with complex transverse geometry are thus fragmented into a periodic train of rods held stationary in the polymer cladding. These rods can then be easily extracted via selective dissolution of the cladding, or can self-heal by thermal restoration to re-form the brittle thread. Our method is also applicable to composites with flat rather than cylindrical geometries, in which case cold-drawing leads to the break-up of an embedded or coated brittle film into narrow parallel strips that are aligned normally to the drawing axis. A range of materials was explored to establish the universality of this effect, including silicon, germanium, gold, glasses, silk, polystyrene, biodegradable polymers and ice. We observe, and verify through nonlinear finite-element simulations, a linear relationship between the smallest transverse scale and the longitudinal break-up period. These results may lead to the development of dynamical and thermoreversible camouflaging via a nanoscale Venetian-blind effect, and the fabrication of large-area structured surfaces that facilitate high-sensitivity bio-detection.
Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing
NASA Astrophysics Data System (ADS)
Shabahang, Soroush; Tao, Guangming; Kaufman, Joshua J.; Qiao, Yangyang; Wei, Lei; Bouchenot, Thomas; Gordon, Ali P.; Fink, Yoel; Bai, Yuanli; Hoy, Robert S.; Abouraddy, Ayman F.
2016-06-01
Polymer cold-drawing is a process in which tensile stress reduces the diameter of a drawn fibre (or thickness of a drawn film) and orients the polymeric chains. Cold-drawing has long been used in industrial applications, including the production of flexible fibres with high tensile strength such as polyester and nylon. However, cold-drawing of a composite structure has been less studied. Here we show that in a multimaterial fibre composed of a brittle core embedded in a ductile polymer cladding, cold-drawing results in a surprising phenomenon: controllable and sequential fragmentation of the core to produce uniformly sized rods along metres of fibre, rather than the expected random or chaotic fragmentation. These embedded structures arise from mechanical-geometric instabilities associated with ‘neck’ propagation. Embedded, structured multimaterial threads with complex transverse geometry are thus fragmented into a periodic train of rods held stationary in the polymer cladding. These rods can then be easily extracted via selective dissolution of the cladding, or can self-heal by thermal restoration to re-form the brittle thread. Our method is also applicable to composites with flat rather than cylindrical geometries, in which case cold-drawing leads to the break-up of an embedded or coated brittle film into narrow parallel strips that are aligned normally to the drawing axis. A range of materials was explored to establish the universality of this effect, including silicon, germanium, gold, glasses, silk, polystyrene, biodegradable polymers and ice. We observe, and verify through nonlinear finite-element simulations, a linear relationship between the smallest transverse scale and the longitudinal break-up period. These results may lead to the development of dynamical and thermoreversible camouflaging via a nanoscale Venetian-blind effect, and the fabrication of large-area structured surfaces that facilitate high-sensitivity bio-detection.
Stress corrosion cracking of Zircaloys in unirradiated and irradiated CsI
NASA Astrophysics Data System (ADS)
Cox, B.; Surette, B. A.; Wood, J. C.
1986-03-01
Unirradiated split-ring specimens of Zircaloy fuel cladding, coated with CsI, cracked when stressed at elevated temperatures. The specimens have been reexamined fractographically and metallographically in order to confirm that the cause of cracking was stress corrosion (SCC) and not delayed hydride cracking (DHC). Further specimens have been cracked at 350°C by a solution of CsI in a fused mixture of nitrates of rubidium, cesium, strontium and barium, by a similar mechanism. CsI dissolved in a fused molybdate melt was not stable at 400°C, and rapidly evolved iodine, leaving a melt that was incapable of causing SCC. Irradiation of stressed split-ring specimens of Zircaloy fuel cladding in a γ-irradiator of 10 6 R/h and in the U-5 loop in the NRU reactor at an estimated 10 9 R/h caused SCC when the specimens were packed in dry CsI powder. Care had to be taken to dry the CsI, otherwise cracking occurred by a DHC mechanism from hydrogen absorbed from residual moisture in the CsI. Fractography showed that the crack surfaces obtained with dry CsI were typical of iodine-induced SCC rather than cesium-induced metal vapour embrittlement. Thus, if a transport process is provided for the iodide to obtain access to the zirconium surface, CsI is capable of causing SCC of Zircaloy. This transport process might be ionic diffusion in a fission product oxide melt in the fuel-clad gap, however, radiolysis of CsI to form a volatile iodine species in a radiation field is the more probable explanation of PCI failures.
Internal homogenization: effective permittivity of a coated sphere.
Chettiar, Uday K; Engheta, Nader
2012-10-08
The concept of internal homogenization is introduced as a complementary approach to the conventional homogenization schemes, which could be termed as external homogenization. The theory for the internal homogenization of the permittivity of subwavelength coated spheres is presented. The effective permittivity derived from the internal homogenization of coreshells is discussed for plasmonic and dielectric constituent materials. The effective model provided by the homogenization is a useful design tool in constructing coated particles with desired resonant properties.
Influence of thickness of zinc coating on CMT welding-brazing with AlSi5 alloy wire
NASA Astrophysics Data System (ADS)
Jin, Pengli; Wang, Zhiping; Yang, Sinan; Jia, Peng
2018-03-01
Effect of thickness of zinc coating on Cold Mattel Transfer (CMT) brazing of aluminum and galvanized steel is investigated. The thickness of zinc coating is 10 μm, 30 μm, and 60 μm, respectively. A high-speed camera was used to capture images of welding process of different specimens; the microstructure and composition analyses of the welding seam were examined by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS); the mechanical properties were measured in the form of Nano-indentation experiments. The results showed that arc characteristics and metal transfer behavior were unsteady at the beginning of welding process and that became stable after two cycles of CMT. With the thickness of zinc coating thickening, arc characteristics and metal transfer behaviors were more deteriorated. Compared with 10 μm and 30 μm, clad appearance of 60 μm was straight seam edges and a smooth surface which wetting angle was 60°. Zinc-rich zone at the seam edges was formed by zinc dissolution and motel pool oscillating, and zinc content of 10 μm and 30 μm were 5.8% and 7.75%. Zinc content of 60 μm was 14.61%, and it was a belt between galvanized steel and welding seam. The thickness of intermetallic compounds layer was in the range of 1-8 μm, and it changed with the thickness of zinc coating. The average hardness of the reaction layer of 60 μm is 9.197 GPa.
Characterization of a novel ultra low refractive index material for biosensor application
Memisevic, Jasenka; Korampally, Venumadhav; Gangopadhyay, Shubhra; Grant, Sheila A.
2009-01-01
Nanoporous materials can provide significant benefits to the field of biosensors. Their size and porous structure makes them an ideal tool for improving sensor performance. This study characterized a novel ultra low index of refraction nanoporous organosilicate (NPO) material for use as an optical platform for fluorescence-based optical biosensors. While serving as the low index cladding material, the novel coating based on organosilicate nanoparticles also provides an opportunity for a high surface area coating that can be utilized for immobilizing biological probes. Biological molecules were immobilized onto NPO, which was spin-coated on silicon and glass substrates. The biological molecule was composed of Protein A conjugated to AlexaFluor 546 fluorophore and then immobilized onto the NPO substrate via silanization. Sample analysis consisted of spectrofluorometry, FT-IR spectroscopy, scanning electron microscopy, contact angle measurement and ellipsometry. The results showed the presence of emission peaks at 574 nm, indicating that the immobilization of Protein A to the NPO material is possible. When compared to Si and glass substrates not coated with NPO, the results showed a 100X and 10X increase in packing density with the NPO coated films respectively. Ellipsometric analysis, FT-IR, contact angle, and SEM imaging of the surface immobilized NPO films suggested that while the surface modifications did induce some damage, it did not incur significant changes to its unique characteristics, i.e., pore structure, wettability and index of refraction. It was concluded that NPO films would be a viable sensor substrate to enhance sensitivity and improve sensor performance. PMID:20161155
NASA Astrophysics Data System (ADS)
Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil
2015-05-01
This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.
Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating.
Zhou, Wenjun; Mandia, David J; Barry, Seán T; Albert, Jacques
2015-04-15
The absolute refractive indices (RIs) of water and other liquids are determined with an uncertainty of ±0.001 at near-infrared wavelengths by using the tilted fiber Bragg grating (TFBG) cladding mode resonances of a standard single-mode fiber to measure the critical angle for total internal reflection at the interface between the fiber and its surroundings. The necessary condition to obtain absolute RIs (instead of measuring RI changes) is a thorough characterization of the dispersion of the core mode effective index of the TFBG across the full range of its cladding mode resonance spectrum. This technique is shown to be competitive with the best available measurements of the RIs of water and NaCl solutions at wavelengths in the vicinity of 1550 nm.
Research on Microstructure and Property of TiC-Co Composite Material Made by Laser Cladding
NASA Astrophysics Data System (ADS)
Zhang, Wei
The experiment of laser cladding on the surface of 2Cr13 steel was made. Titanium carbide (TiC) powder and Co-base alloy powder were used as cladding material. The microstructure and property of laser cladding layer were tested. The research showed that laser cladding layer had better properties such as minute crystals, deeper layer, higher hardness and good metallurgical bonding with base metal. The structure of cladding was supersaturated solid solution with dispersed titanium carbide. The average hardness of cladding zone was 660HV0.2. 2Cr13 steel was widely used in the field of turbine blades. Using laser cladding, the good wear layer would greatly increase the useful life of turbine blades.
Microstructured optical fibers for gas sensing systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challener, William Albert; Choudhury, Niloy; Palit, Sabarni
2017-10-17
Microstructured optical fiber (MOF) includes a cladding extending a length between first and second ends. The cladding includes an inner porous microstructure that at least partially surrounds a hollow core. A perimeter contour of the hollow core has a non-uniform radial distance from a center axis of the cladding such that first segments of the cladding along the perimeter contour have a shorter radial distance from the center axis relative to second segments of the cladding along the perimeter contour. The cladding receives and propagates light energy through the hollow core, and the inner porous microstructure substantially confines the lightmore » energy within the hollow core. The cladding defines at least one port hole that extends radially from an exterior surface of the cladding to the hollow core. Each port hole penetrates the perimeter contour of the hollow core through one of the second segments of the cladding.« less
Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Peter
Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders will be required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. This research was an extension onmore » previous research conducted by Building Science Corporation in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading, has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full year’s worth of cladding movement data from assemblies constructed in an exposed outdoor environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, Shannon Michelle
The Organization for Economic Cooperation and Development /Nuclear Energy Agency (OECD/NEA) Nuclear Science Committee approved the formation of an Expert Group on Accident Tolerant Fuel (ATF) for LWRs (EGATFL) in 2014. Chaired by Kemal Pasamehmetoglu, INL Associate Laboratory Director for Nuclear Science and Technology, the mandate for the EGATFL defines work under three task forces: (1) Systems Assessment, (2) Cladding and Core Materials, and (3) Fuel Concepts. Scope for the Systems Assessment task force (TF1) includes definition of evaluation metrics for ATF, technology readiness level definition, definition of illustrative scenarios for ATF evaluation, and identification of fuel performance and systemmore » codes applicable to ATF evaluation. The Cladding and Core Materials (TF2) and Fuel Concepts (TF3) task forces will identify gaps and needs for modeling and experimental demonstration; define key properties of interest; identify the data necessary to perform concept evaluation under normal conditions and illustrative scenarios; identify available infrastructure (internationally) to support experimental needs; and make recommendations on priorities. Where possible, considering proprietary and other export restrictions (e.g., International Traffic in Arms Regulations), the Expert Group will facilitate the sharing of data and lessons learned across the international group membership. The Systems Assessment task force is chaired by Shannon Bragg-Sitton (Idaho National Laboratory [INL], U.S.), the Cladding Task Force is chaired by Marie Moatti (Electricite de France [EdF], France), and the Fuels Task Force is chaired by a Masaki Kurata (Japan Atomic Energy Agency [JAEA], Japan). The original Expert Group mandate was established for June 2014 to June 2016. In April 2016 the Expert Group voted to extend the mandate one additional year to June 2017 in order to complete the task force deliverables; this request was subsequently approved by the Nuclear Science Committee. This report provides an update on the status Systems Assessment Task Force activities.« less
Morsy, Mohamed K; Sharoba, Ashraf M; Khalaf, Hassan H; El-Tanahy, Hassan H; Cutter, Catherine N
2015-05-01
There has been a growing interest in the use of natural materials as a delivery mechanism for antimicrobials and coatings in foods. The aim of the present study was to evaluate the effectiveness of pullulan coatings to improve internal quality and shelf-life of fresh eggs during 10 wk of storage at 25 and 4 °C. Three treatments of eggs were evaluated as follows; non-coated (control; C), coated with pullulan (P), and coated with pullulan containing nisin (N). The effects of the pullulan coatings on microbiological qualities, physical properties, and freshness parameters were investigated and compared with non-coated eggs. For non-coated eggs, as storage time increased, yolk index, albumen index, and Haugh unit value decreased and weight loss increased. However, pullulan coatings (P or N) minimized weight loss (<1.5%) and preserved the albumen and yolk quality of eggs (with a final B grade) 3 wk longer than non-coated eggs at 25 °C. At 4 °C, both P- and N-coated eggs went from AA to A grade after 9 wk and maintained the grade for 10 wk (4 wk longer than that of non-coated eggs). This study is the first to demonstrate that pullulan coatings can preserve the internal quality, prolong the shelf-life, and minimize weight loss of fresh eggs. © 2015 Institute of Food Technologists®
Evaluation of Tritium Content and Release from Pressurized Water Reactor Fuel Cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Sharon M.; Chattin, Marc Rhea; Giaquinto, Joseph
2015-09-01
It is expected that tritium pretreatment will be required in future reprocessing plants to prevent the release of tritium to the environment (except for long-cooled fuels). To design and operate future reprocessing plants in a safe and environmentally compliant manner, the amount and form of tritium in the used nuclear fuel (UNF) must be understood and quantified. Tritium in light water reactor (LWR) fuel is dispersed between the fuel matrix and the fuel cladding, and some tritium may be in the plenum, probably as tritium labelled water (THO) or T 2O. In a standard processing flowsheet, tritium management would bemore » accomplished by treatment of liquid streams within the plant. Pretreating the fuel prior to dissolution to release the tritium into a single off-gas stream could simplify tritium management, so the removal of tritium in the liquid streams throughout the plant may not be required. The fraction of tritium remaining in the cladding may be reduced as a result of tritium pretreatment. Since Zircaloy® cladding makes up roughly 25% by mass of UNF in the United States, processes are being considered to reduce the volume of reprocessing waste for Zircaloy® clad fuel by recovering the zirconium from the cladding for reuse. These recycle processes could release the tritium in the cladding. For Zircaloy-clad fuels from light water reactors, the tritium produced from ternary fission and other sources is expected to be divided between the fuel, where it is generated, and the cladding. It has been previously documented that a fraction of the tritium produced in uranium oxide fuel from LWRs can migrate and become trapped in the cladding. Estimates of the percentage of tritium in the cladding typically range from 0–96%. There is relatively limited data on how the tritium content of the cladding varies with burnup and fuel history (temperature, power, etc.) and how pretreatment impacts its release. To gain a better understanding of how tritium in cladding will behave during processing, scoping tests are being performed to determine the tritium content in the cladding pre- and post-tritium pretreatment. Samples of Surry-2 and H.B. Robinson pressurized water reactor cladding were heated to 1100–1200°C to oxidize the zirconium and release all of the tritium in the cladding sample. Cladding samples were also heated within the temperature range of 480–600ºC expected for standard air tritium pretreatment systems, and to a slightly higher temperature (700ºC) to determine the impact of tritium pretreatment on tritium release from the cladding. The tritium content of the Surry-2 and H.B. Robinson cladding was measured to be ~234 and ~500 µCi/g, respectively. Heating the Surry-2 cladding at 500°C for 24 h removed ~0.2% of the tritium from the cladding, and heating at 700°C for 24 h removed ~9%. Heating the H.B. Robinson cladding at 700°C for 24 h removed ~11% of the tritium. When samples of the Surry-2 and H.B. Robinson claddings were heated at 700°C for 96 h, essentially all of the tritium in the cladding was removed. However, only ~3% of the tritium was removed when a sample of Surry-2 cladding was heated at 600°C for 96 h. These data indicate that the amount of tritium released from tritium pretreatment systems will be dependent on both the operating temperature and length of time in the system. Under certain conditions, a significant fraction of the tritium could remain bound in the cladding and would need to be considered in operations involving cladding recycle.« less
Detection specificity studies of bacteriophage adhesin-coated long-period grating-based biosensor
NASA Astrophysics Data System (ADS)
Koba, Marcin; Śmietana, Mateusz; Brzozowska, Ewa; Górska, Sabina; Mikulic, Predrag; Cusano, Andrea; Bock, Wojtek J.
2015-09-01
In this work, we present a label-free detection specificity study of an optical fiber long-period grating (LPG) biosensor working near the dispersion turning point of higher order cladding modes. The LPG sensor functionalized with bacteriophage adhesin is tested with specific and non-specific bacteria dry weight. We show that such biosensor is able to selectively bind, thus recognize different bacteria. We use bacteria dry weights of E. coli B as positive test and E. coli K12 and Salmonella enterica as negative tests. The resonance wavelength shift induced by E. coli B reaches over 90 nm, while for E. coli K12 and Salmonella enterica approximately 40 and 20 nm, respectively.
Dry sliding wear behavior of TIG welding clad WC composite coatings
NASA Astrophysics Data System (ADS)
Buytoz, Soner; Ulutan, Mustafa; Yildirim, M. Mustafa
2005-12-01
In this study, melted tungsten carbide powders on the surface of AISI 4340 steel was applied by using tungsten inert gas (TIG) method. It was observed that it has been solidified in different microstructures depending on the production parameters. As a result of microstructure examinations, in the surface modified layers an eutectic and dendrite solidification was observed together with WC, W 2C phases. In the layer produced, the hardness values varied between 950 and 1200 HV. The minimum mass loss was observed in the sample, which was treated in 1.209 mm/s production rate, 0.5 g/s powder feed rate and 13.9 kJ/cm heat input.
Miniaturized fiber-optic Michelson-type interferometric sensors
NASA Technical Reports Server (NTRS)
Murphy, Kent A.; Miller, William V., III; Tran, Tuan A.; Vengsarkar, Ashish M.; Claus, Richard O.
1991-01-01
A novel, miniaturized Michelson-type fiber-optic interferometric sensor that is relatively insensitive to temperature drifts is presented. A fused-biconical tapered coupler is cleaved immediately after the coupled length and polished down to the region of the fused cladding, but short of the interaction region. The end of one core is selectively coated with a reflective surface and is used as the reference arm; the other core serves as the sensing arm. The detection of surface acoustic waves, microdisplacements, and magnetic fields is reported. The sensor is shown to be highly stable in comparison to a classic homodyne, uncompensated Michelson interferometer, and signal-to-noise ratios of 65 dB have been obtained.
Monitoring of high refractive index edible oils using coated long period fiber grating sensors
NASA Astrophysics Data System (ADS)
Coelho, Luís.; Viegas, Diana; Santos, José Luís.; de Almeida, Jose Manuel M. M.
2015-05-01
Monitoring the quality of high refractive index edible oils is of great importance for the human health. Uncooked edible oils in general are healthy foodstuff, olive oil in particular, however, they are frequently used for baking and cooking. High quality edible oils are made from seeds, nuts or fruits by mechanical processes. Nevertheless, once the mechanical extraction is complete, up to 15% of the oil remains in oil pomace and in the mill wastewater, which can be extracted using organic solvents, often hexane. Optical fiber sensors based on long period fiber gratings (LPFG) have very low wavelength sensitivity when the surround refractive index is higher than the refractive index of the cladding. Titanium dioxide (TiO2) coated LPFG could lead to the realization of high sensitivity chemical sensor for the food industry. In this work LPFG coated with a TiO2 thin film were successfully used for to detect small levels of hexane diluted in edible oils and for real time monitoring the thermal deterioration of edible oils. For a TiO2 coating of 30 nm a wavelength sensitivity of 1361.7 nm/RIU (or 0.97 nm / % V/V) in the 1.4610-1.4670 refractive index range was achieved, corresponding to 0 to 12 % V/V of hexane in olive oil. A sensitivity higher than 638 nm/RIU at 225 ºC was calculated, in the 1.4670-1.4735 refractive index range with a detection limit of thermal deterioration of about 1 minute.
NASA Astrophysics Data System (ADS)
Zhang, Ya-nan; Wu, Qilu; Peng, Huijie; Zhao, Yong
2016-12-01
A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.
Zhang, Ya-Nan; Wu, Qilu; Peng, Huijie; Zhao, Yong
2016-12-01
A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO 3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO 3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO 3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.
Simulation of novel intensity modulated cascaded coated LPFG sensor based on PMTP
NASA Astrophysics Data System (ADS)
Feng, Wenbin; Gu, Zhengtian; Lin, Qiang; Sang, Jiangang
2017-12-01
This paper presents a novel intensity modulated cascaded long-period fiber grating (CLPFG) sensor which is cascaded by two same coated long-period fiber gratings (LPFGs) operating at the phase-matching turning point (PMTP). The sensor combines the high sensitivity of LPFG operating at PMTP and the narrow bandwidth of interference attenuation band of CLPFG, so a higher response to small change of the surrounding refractive index (SRI) can be obtained by intensity modulation. Based on the coupled-mode theory, the grating parameters of the PMTP of a middle odd order cladding mode of a single LPFG are calculated. Then this two same LPFGs are cascaded into a CLPFG, and the optical transmission spectrum of the CLPFG is calculated by transfer matrix method. A resonant wavelength of a special interference attenuation band whose intensity has the highest response to SRI, is selected form CLPFG’s spectrum, and setting the resonant wavelength as the operating wavelength of the sensor. Furthermore, the simulation results show that the resolution of SRI of this CLPFG is available to 1.97 × 10-9 by optimizing the film optical parameters, which is about three orders of magnitude higher than coated dual-peak LPFG and cascaded LPFG sensors. It is noteworthy that the sensor is also sensitive to the refractive index of coat, so that the sensor is expected to be applied to detections of gas, PH value, humidity and so on, in the future.
Reactivity Initiated Accident Simulation to Inform Transient Testing of Candidate Advanced Cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R; Wysocki, Aaron J; Terrani, Kurt A
2016-01-01
Abstract. Advanced cladding materials with potentially enhanced accident tolerance will yield different light water reactor performance and safety characteristics than the present zirconium-based cladding alloys. These differences are due to different cladding material properties and responses to the transient, and to some extent, reactor physics, thermal, and hydraulic characteristics. Some of the differences in reactors physics characteristics will be driven by the fundamental properties (e.g., absorption in iron for an iron-based cladding) and others will be driven by design modifications necessitated by the candidate cladding materials (e.g., a larger fuel pellet to compensate for parasitic absorption). Potential changes in thermalmore » hydraulic limits after transition from the current zirconium-based cladding to the advanced materials will also affect the transient response of the integral fuel. This paper leverages three-dimensional reactor core simulation capabilities to inform on appropriate experimental test conditions for candidate advanced cladding materials in a control rod ejection event. These test conditions are using three-dimensional nodal kinetics simulations of a reactivity initiated accident (RIA) in a representative state-of-the-art pressurized water reactor with both nuclear-grade iron-chromium-aluminum (FeCrAl) and silicon carbide based (SiC-SiC) cladding materials. The effort yields boundary conditions for experimental mechanical tests, specifically peak cladding strain during the power pulse following the rod ejection. The impact of candidate cladding materials on the reactor kinetics behavior of RIA progression versus reference zirconium cladding is predominantly due to differences in: (1) fuel mass/volume/specific power density, (2) spectral effects due to parasitic neutron absorption, (3) control rod worth due to hardened (or softened) spectrum, and (4) initial conditions due to power peaking and neutron transport cross sections in the equilibrium cycle cores due to hardened (or softened) spectrum. This study shows minimal impact of SiC-based cladding configurations on the transient response versus reference zirconium-based cladding. However, the FeCrAl cladding response indicates similar energy deposition, but with significantly shorter pulses of higher magnitude. Therefore the FeCrAl-based cases have a more rapid fuel thermal expansion rate and the resultant pellet-cladding interaction occurs more rapidly.« less
Gallagher, Harry M; Sarwar, Ghulam; Tse, Tracy; Sladden, Timothy M; Hii, Esmond; Yerkovich, Stephanie T; Hopkins, Peter M; Chambers, Daniel C
2015-11-01
Erratic tacrolimus blood levels are associated with liver and kidney graft failure. We hypothesized that erratic tacrolimus exposure would similarly compromise lung transplant outcomes. This study assessed the effect of tacrolimus mean and standard deviation (SD) levels on the risk of chronic lung allograft dysfunction (CLAD) and death after lung transplantation. We retrospectively reviewed 110 lung transplant recipients who received tacrolimus-based immunosuppression. Cox proportional hazard modeling was used to investigate the effect of tacrolimus mean and SD levels on survival and CLAD. At census, 48 patients (44%) had developed CLAD and 37 (34%) had died. Tacrolimus SD was highest for the first 6 post-transplant months (median, 4.01; interquartile range [IQR], 3.04-4.98 months) before stabilizing at 2.84 μg/liter (IQR, 2.16-4.13 μg/liter) between 6 and 12 months. The SD then remained the same (median, 2.85; IQR, 2.00-3.77 μg/liter) between 12 and 24 months. A high mean tacrolimus level 6 to 12 months post-transplant independently reduced the risk of CLAD (hazard ratio [HR], 0.74; 95% confidence interval [CI], 0.63-0.86; p < 0.001) but not death (HR, 0.96; 95% CI, 0.83-1.12; p = 0.65). In contrast, a high tacrolimus SD between 6 and 12 months independently increased the risk of CLAD (HR, 1.46; 95% CI, 1.23-1.73; p < 0.001) and death (HR, 1.27; 95% CI, 1.08-1.51; p = 0.005). Erratic tacrolimus levels are a risk factor for poor lung transplant outcomes. Identifying and modifying factors that contribute to this variability may significantly improve outcomes. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
46 CFR 111.60-23 - Metal-clad (Type MC) cable.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Metal-clad (Type MC) cable. 111.60-23 Section 111.60-23...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-23 Metal-clad (Type MC) cable. (a) Metal-clad (Type MC) cable permitted on board a vessel must be continuous corrugated metal-clad cable. (b) The...
46 CFR 111.60-23 - Metal-clad (Type MC) cable.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Metal-clad (Type MC) cable. 111.60-23 Section 111.60-23...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-23 Metal-clad (Type MC) cable. (a) Metal-clad (Type MC) cable permitted on board a vessel must be continuous corrugated metal-clad cable. (b) The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomar, Vikas; Haque, Aman; Hattar, Khalid
In-core nuclear materials including fuel pins and cladding materials fail due to issues including corrosion, mechanical wear, and pellet cladding interaction. In most such scenario microstructure dependent and corrosioninduced chemistry dependent property changes significantly affect performance of cladding, pellet, and housing. Emphasis of this work was on replace conventional pellet-cladding material models with a new straingradient viscoplasticity model that is informed by transmission electron microscopy (TEM) based measurements and by nanomechanical Raman spectroscopy (NMRS) based measurements. The TEM measurements are quantitative in nature and therefore reveal stress-strain relations with simultaneous insights into mechanisms of deformation at nanoscale. The NMRS measurementsmore » reveal the similar information at mesoscale along with additional information on relating local microstructural stresses with applied stresses. The resulting information is used to fit constants in the strain gradient viscoplasticity model as well as to validate one. During TEM measurements, a micro-electro-mechanical system based setup was developed with mechanical actuation, sensing, heating, and electrical loading. Contrary to post-mortem analysis or qualitative visualization, this setup combines direct visualization of the mechanisms behind deformation with measurement of stress, strain, thermal and electrical properties. The unique research philosophy of visualizing the microstructure at high resolution while measuring the properties led to fundamental understanding in grain size and temperature effects on measured mechanical properties such as fracture toughness. A key contribution is the role of mechanical loading boundary conditions to deconvolute the insitu TEM based nanoscale and NMRS based mesoscale data to bulk behavior. First the literature based pellet cladding mechanical interaction model based on the work of Retel’s and Williamson’s in literature work to predict tempurature and stress distribution in cladding and pellet at normal operating condition was analyzed. Later the data was fitted to find constants for a viscoplastic strain gradient model. The developed model still needs to be refined and calibrated using various experimental results. That remains the focus of future work. Overall, a major thrust of the work was therefore on active control of the microstructure (grain size, defect density and types) exploiting the multi-physics coupling in materials. In particular, using experiments the synergy of current density, mechanical stress and temperature were studied to annihilate defects and recrystallize grains. The developed model is being examined for implementation in BISON. Multiple invited talks, international journal publications, and conference publications were performed by students supported on this work. Another output is support multiple PhD and masters thesis students who will be an important asset for future basic nuclear research. Future Work Recommendations: A nuclear reactor operates under significant variations of thermal loads due to energy cycling and mechanical loads due to constraint effects. Significant thermal and chemical diffusion takes place at the pallet-cladding level. While the proposed work established new experimental approach and new dataset for Zircaloy-4, the irradiation level was in the range of 1-2 dpa. Samples with higher dpa need to be examined. Therefore, a continual of support of the performed work is essential. Currently, these are the only experiments that can measure the produced data. The work also needs to be extended to different fuel types and cladding types such as SiC and FeCrAl based claddings. A combination of datasets for these materials can then be used to analyze accurately predict behavior of critical pellet cladding systems in accident scenario with high heat flux and high thermal loads. This is a BIG unknown as if now.« less
Analysis of unclad and sub-clad semi-elliptical flaws in pressure vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irizarry-Quinones, H.; Macdonald, B.D.; McAfee, W.J.
This study was conducted to support warm prestressing experiments on unclad and sub-clad flawed beams loaded in pure bending. Two cladding yield strengths were investigated: 0.6 Sy and 0.8 Sy, where Sy is the yield strength of the base metal. Cladding and base metal were assumed to be stress free at the stress relief temperature for the 3D elastic-plastic finite element analysis used to model the experiments. The model results indicated that when cooled from the stress relief temperature, the cladding was put in tension due to its greater coefficient of thermal expansion. When cooled, the cladding exhibited various amountsmore » of tensile yielding. The degree of yielding depended on the amount of cooling and the strength of the cladding relative to that of the base metal. When subjected to tensile bending stress, the sub-clad flaw elastic-plastic stress intensity factor, K{sub I}(J), was at first dominated by crack closing force due to tensile yielding in the cladding. Thus, imposed loads initially caused no increase in K{sub I}(J) near the clad-base interface. However, K{sub I}(J) at the flaw depth was little affected. When the cladding residual stress was overcome, K{sub I}(J) gradually increased until the cladding began to flow. Thereafter, the rate at which K{sub I}(J) increased with load was the same as that of an unclad beam. A plastic zone corrected K{sub I} approximation for the unclad flaw was found by the superposition of standard Newman and Raju solutions with those due to a cladding crack closure force approximated by the Kaya and Erdogan solution. These elastic estimates of the effect of cladding in reducing the crack driving force were quite in keeping with the 3D elastic-plastic finite element solution for the sub-clad flaw. The results were also compared with the analysis of clad beam experiments by Keeney and the conclusions by Miyazaki, et al. A number of sub-clad flaw specimens not subjected to warm prestressing were thought to have suffered degraded toughness caused by locally intensified strain aging embrittlement (LISAE) due to welding over the preexisting flaw.« less
An allowable cladding peak temperature for spent nuclear fuels in interim dry storage
NASA Astrophysics Data System (ADS)
Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae
2018-01-01
Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.
An Interagency Study of Depainting Techniques
NASA Technical Reports Server (NTRS)
Cook, B.
1997-01-01
Many popular and widely used paint stripping products now contain methylene chloride as their active ingredient. However, the Environmental Protection Agency (EPA) will critically curb the use of methylene chloride under an aerospace national emission standard for hazardous air pollutants (NESHAP) within the next 2-1/2 years. An effort is underway to identify and evaluate alternative depainting technologies emphasizing those believed to be both effective and environmentally benign. On behalf of the EPA and in cooperation with the U. S. Air Force (USAF), the National Aeronautics and Space Administration (NASA) is conducting a technical assessment of nine alternative technologies (i.e.: chemical stripping, two CO2 blasting processes, FLASHJET(TM) coating removal, laser stripping, plastic media blasting, sodium bicarbonate wet stripping, high-pressure water stripping, and wheat starch blasting). These depainting processes represent five removal method categories, namely abrasive, impact, cryogenic, thermal, and/or molecular bonding dissociation. This paper discusses the test plan and parameters for this interagency study. Several thicknesses of clad and non-clad aluminum substrates were used to prepare test specimens, which have been cut, cleaned, painted, and environmentally aged. Each depainting process has been assigned a specimen lot, which is now undergoing an initial strip cycle. Metallurgical impacts will be determined after these specimens complete five cycles of preparation and stripping.
NASA Astrophysics Data System (ADS)
Rajeev, Ayushi; Sigler, Chris; Earles, Tom; Flores, Yuri V.; Mawst, Luke J.; Botez, Dan
2018-01-01
Quantum cascade lasers (QCLs) that employ metamorphic buffer layers as substrates of variable lattice constant have been designed for emission in the 3.0- to 3.5-μm wavelength range. Theoretical analysis of the active-region (AR) energy band structure, while using an 8-band k•p model, reveals that one can achieve both effective carrier-leakage suppression as well as fast carrier extraction in QCL structures of relatively low strain. Significantly lower indium-content quantum wells (QWs) can be employed for the AR compared to QWs employed for conventional short-wavelength QCL structures grown on InP, which, in turn, is expected to eliminate carrier leakage to indirect-gap valleys (X, L). An analysis of thermo-optical characteristics for the complete device design indicates that high-Al-content AlInAs cladding layers are more effective for both optical confinement and thermal dissipation than InGaP cladding layers. An electroluminescence-spectrum full-width half-maximum linewidth of 54.6 meV is estimated from interface roughness scattering and, by considering both inelastic and elastic scattering, the threshold-current density for 3.39-μm-emitting, 3-mm-long back-facet-coated QCLs is projected to be 1.40 kA/cm2.
Internal coating of air-cooled gas turbine blades
NASA Technical Reports Server (NTRS)
Hsu, L. L.; Stetson, A. R.
1980-01-01
Four modified aluminide coatings were developed for IN-792 + Hf alloy using a powder pack method applicable to internal surfaces of air-cooled blades. The coating compositions are Ni-19Al-1Cb, Ni-19Al-3Cb, Ni-17Al-20Cr, and Ni-12Al-20Cr. Cyclic burner rig hot corrosion (900 C) and oxidation (1050 C) tests indicated that Ni-Al-Cb coatings provided better overall resistance than Ni-Al-Cr coatings. Tensile properties of Ni-19Al-1Cb and Ni-12Al-20Cr coated test bars were fully retained at room temperature and 649 C. Stress rupture results exhibited wide scatter around uncoated IN-792 baseline, especially at high stress levels. High cycle fatigue lives of Ni-19Al-1Cb and Ni-12Al-20Cr coated bars (as well as RT-22B coated IN-792) suffered approximately 30 percent decrease at 649 C. Since all test bars were fully heat treated after coating, the effects of coating/processing on IN-792 alloy were not recoverable. Internally coated Ni-19Al-1Cb, Ni-19Al-3Cb, and Ni-12Al-20Cr blades were included in 500-hour endurance engine test and the results were similar to those obtained in burner rig oxidation testing.
NASA Technical Reports Server (NTRS)
Saltsman, J. F.
1973-01-01
The relations between clad creep strain and fuel volume swelling are shown for cylindrical UO2 fuel pins with a Nb-1Zr clad. These relations were obtained by using the computer code CYGRO-2. These clad-strain - fuel-volume-swelling relations may be used with any fuel-volume-swelling model, provided the fuel volume swelling is isotropic and independent of the clad restraints. The effects of clad temperature (over a range from 118 to 1642 K (2010 to 2960 R)), pin diameter, clad thickness and central hole size in the fuel have been investigated. In all calculations the irradiation time was 500 hours. The burnup rate was varied.
Measurement and removal of cladding light in high power fiber systems
NASA Astrophysics Data System (ADS)
Walbaum, Till; Liem, Andreas; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2018-02-01
The amount of cladding light is important to ensure longevity of high power fiber components. However, it is usually measured either by adding a cladding light stripper (and thus permanently modifying the fiber) or by using a pinhole to only transmit the core light (ignoring that there may be cladding mode content in the core area). We present a novel noninvasive method to measure the cladding light content in double-clad fibers based on extrapolation from a cladding region of constant average intensity. The method can be extended to general multi-layer radially symmetric fibers, e.g. to evaluate light content in refractive index pedestal structures. To effectively remove cladding light in high power systems, cladding light strippers are used. We show that the stripping efficiency can be significantly improved by bending the fiber in such a device and present respective experimental data. Measurements were performed with respect to the numerical aperture as well, showing the dependency of the CLS efficiency on the NA of the cladding light and implying that efficiency data cannot reliably be given for a certain fiber in general without regard to the properties of the guided light.
Electroslag Strip Cladding of Steam Generators With Alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consonni, M.; Maggioni, F.; Brioschi, F.
2006-07-01
The present paper details the results of electroslag cladding and tube-to-tubesheet welding qualification tests conducted by Ansaldo-Camozzi ESC with Alloy 690 (Alloy 52 filler metal) on steel for nuclear power stations' steam generators shell, tubesheet and head; the possibility of submerged arc cladding on first layer was also considered. Test results, in terms of chemical analysis, mechanical properties and microstructure are reproducible and confidently applicable to production cladding and show that electroslag process can be used for Alloy 52 cladding with exceptionally stable and regular operation and high productivity. The application of submerged arc cladding process to the first layermore » leads to a higher base metal dilution, which should be avoided. Moreover, though the heat affected zone is deeper with electroslag cladding, in both cases no coarsened grain zone is found due to recrystallization effect of second cladding layer. Finally, the application of electroslag process to cladding of Alloy 52 with modified chemical composition, was proved to be highly beneficial as it strongly reduces hot cracking sensitivity, which is typical of submerged arc cladded Alloy 52, both during tube-to-tubesheet welding and first re-welding. (authors)« less
Involvement of vesicle coat material in casein secretion and surface regeneration
1976-01-01
The ultrastructure of the apical zone of lactating rat mammary epithelial cells was studied with emphasis on vesicle coat structures. Typical 40-60 nm ID "coated vesicles" were abundant, frequently associated with the internal filamentous plasma membrane coat or in direct continuity with secretory vesicles (SV) or plasma membrane proper. Bristle coats partially or totally covered membranes of secretory vesicles identified by their casein micelle content. This coat survived SV isolation. Exocytotic fusion of SV membranes and release of the casein micelles was observed. Frequently, regularly arranged bristle coat structures were identified in those regions of the plasma membrane that were involved in exocytotic processes. Both coated and uncoated surfaces of the casein-containing vesicles, as well as typical "coated vesicles", were frequently associated with microtubules and/or microfilaments. We suggest that coat materials of vesicles are related or identical to components of the internal coat of the surface membrane and that new plasma membrane and associated internal coat is produced concomitantly by fusion and integration of bristle coat moieties. Postexocytotic association of secreted casein micelles with the cell surface, mediated by finely filamentous extensions, provided a marker for the integrated vesicle membrane. An arrangement of SV with the inner surface of the plasma membrane is described which is characterized by regularly spaced, heabily stained membrane to membrane cross-bridges (pre-exocytotic attachment plaques). Such membrane-interconnecting elements may represent a form of coat structure important to recognition and interaction of membrane surfaces. PMID:1254641
Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating.
Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia
2016-09-11
An orientation-dependent displacement sensor based on grating inscription over a fiber core and inner cladding has been demonstrated. The device comprises a short piece of multi-cladding fiber sandwiched between two standard single-mode fibers (SMFs). The grating structure is fabricated by a femtosecond laser side-illumination technique. Two well-defined resonances are achieved by the downstream both core and cladding fiber Bragg gratings (FBGs). The cladding resonance presents fiber bending dependence, together with a strong orientation dependence because of asymmetrical distribution of the "cladding" FBG along the fiber cross-section.
Testing of uranium nitride fuel in T-111 cladding at 1200 K cladding temperature
NASA Technical Reports Server (NTRS)
Rohal, R. G.; Tambling, T. N.; Smith, R. L.
1973-01-01
Two groups of six fuel pins each were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a tantalum alloy clad. The first group of fuel pins was irradiated for 1500 hours to a maximum burnup of 0.7-atom-percent uranium. The second group of fuel pins was irradiated for about 3000 hours to a maximum burnup of 1.0-atom-percent uranium. The average clad surface temperature during irradiation of both groups of fuel pins was approximately 1200 K. The postirradiation examination revealed the following: no clad failures or fuel swelling occurred; less than 1 percent of the fission gases escaped from the fuel; and the clad of the first group of fuel pins experienced clad embrittlement whereas the second group, which had modified assembly and fabrication procedures to minimize contamination, had a ductile clad after irradiation.
Analysis of WC/Ni-Based Coatings Deposited by Controlled Short-Circuit MIG Welding
NASA Astrophysics Data System (ADS)
Vespa, P.; Pinard, P. T.; Gauvin, R.; Brochu, M.
2012-06-01
This study investigates the recently developed controlled short-circuit metal inert gas (CSC-MIG) welding system for depositing WC/Ni-based claddings on carbon steel substrates. WC/Ni-based coatings deposited by CSC-MIG were analyzed by optical light microscopy and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) capabilities. X-ray diffraction (XRD) and hardness measurements of depositions are also reported. The CSC-MIG welding system provides a significant amount of user control over the current waveform during welding and has lower heat input when compared with traditional MIG welding. Heat input for the analyzed coatings ranged from 10.1 to 108.7 J/mm. Metallurgically bonded coatings free from spatter and with 0.75% average porosity were produced. It was found that the detrimental decarburization of the WC particles seen in thermal spray systems does not occur when welding with the CSC-MIG. Precipitation of a reaction layer around the reinforcing phase was identified as WC; the average thickness of which increases from 3.8 to 7.2 μm for the low and high heat input condition, respectively. Precipitation of newly formed WC particles was observed; their size distribution increased from D 50 of 2.4 μm in the low heat input weldment to 6.75 μm in the high heat input weldment. The level of dilution of the reinforcing phase increases significantly with heat input. The hardness of the deposited coatings decreases from 587 HV10 to 410 HV10 when the energy input was increased from 10.1 to 108.7 J/mm.
Formation of anomalous eutectic in Ni-Sn alloy by laser cladding
NASA Astrophysics Data System (ADS)
Wang, Zhitai; Lin, Xin; Cao, Yongqing; Liu, Fencheng; Huang, Weidong
2018-02-01
Ni-Sn anomalous eutectic is obtained by single track laser cladding with the scanning velocity from 1 mm/s to 10 mm/s using the Ni-32.5 wt.%Sn eutectic powders. The microstructure of the cladding layer and the grain orientations of anomalous eutectic were investigated. It is found that the microstructure is transformed from primary α-Ni dendrites and the interdendritic (α-Ni + Ni3Sn) eutectic at the bottom of the cladding layer to α-Ni and β-Ni3Sn anomalous eutectic at the top of the cladding layer, whether for single layer or multilayer laser cladding. The EBSD maps and pole figures indicate that the spatially structure of α-Ni phase is discontinuous and the Ni3Sn phase is continuous in anomalous eutectic. The transformation from epitaxial growth columnar at bottom of cladding layer to free nucleation equiaxed at the top occurs, i.e., the columnar to equiaxed transition (CET) at the top of cladding layer during laser cladding processing leads to the generation of anomalous eutectic.
Multi-clad black display panel
Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin
2002-01-01
A multi-clad black display panel, and a method of making a multi-clad black display panel, are disclosed, wherein a plurality of waveguides, each of which includes a light-transmissive core placed between an opposing pair of transparent cladding layers and a black layer disposed between transparent cladding layers, are stacked together and sawed at an angle to produce a wedge-shaped optical panel having an inlet face and an outlet face.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoup, R.L.
1976-07-01
The fabrication of fuel capsules with refractory metal and alloy clads used in nuclear-powered cardiac pacemakers precludes the expedient dissolution of the clad in inorganic acid solutions. An experiment to measure penetration rates of acids on commonly used fuel pellet clads indicated that it is not impossible, but that it would be very difficult to dissolve the multiple cladding. This work was performed because of a suggestion that a /sup 238/PuO/sub 2/-powered pacemaker could be transformed into a terrorism weapon.
Immunosensing with Near-Infrared Plasmonic Optical Fiber Gratings.
Caucheteur, Christophe; Ribaut, Clotilde; Malachovska, Viera; Wattiez, Ruddy
2017-01-01
Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. They are usually obtained from a gold-coated fiber segment for which the core-guided light is brought into contact with the surrounding medium, either by etching (or side-polishing) or by using grating coupling. Recently, SPR generation was achieved in gold-coated tilted fiber Bragg gratings (TFBGs). These sensors probe the surrounding medium with near-infrared narrowband resonances, which enhances both the penetration depth of the evanescent field in the external medium and the wavelength resolution of the interrogation. They constitute the unique configuration able to probe all the fiber cladding modes individually, with high Q-factors. We use these unique spectral features in our work to sense proteins and extra-cellular membrane receptors that are both overexpressed in cancerous tissues. Impressive limit of detection (LOD) and sensitivity are reported, which paves the way for the further use of such immunosensors for cancer diagnosis.
NASA Astrophysics Data System (ADS)
Singh, G.; Sweet, R.; Brown, N. R.; Wirth, B. D.; Katoh, Y.; Terrani, K.
2018-02-01
SiC/SiC composites are candidates for accident tolerant fuel cladding in light water reactors. In the extreme nuclear reactor environment, SiC-based fuel cladding will be exposed to neutron damage, significant heat flux, and a corrosive environment. To ensure reliable and safe operation of accident tolerant fuel cladding concepts such as SiC-based materials, it is important to assess thermo-mechanical performance under in-reactor conditions including irradiation and realistic temperature distributions. The effect of non-uniform dimensional changes caused by neutron irradiation with spatially varying temperatures, along with the closing of the fuel-cladding gap, on the stress development in the cladding over the course of irradiation were evaluated. The effect of non-uniform circumferential power profile in the fuel rod on the mechanical performance of the cladding is also evaluated. These analyses have been performed using the BISON fuel performance modeling code and the commercial finite element analysis code Abaqus. A constitutive model is constructed and solved numerically to predict the stress distribution in the cladding under normal operating conditions. The dependence of dimensions and thermophysical properties on irradiation dose and temperature has been incorporated into the models. Initial scoping results from parametric analyses provide time varying stress distributions in the cladding as well as the interaction of fuel rod with the cladding under different conditions of initial fuel rod-cladding gap and linear heat rate. It is found that a non-uniform circumferential power profile in the fuel rod may cause significant lateral bowing in the cladding, and motivates further analysis and evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Ryan M.; Suter, Jonathan D.; Jones, Anthony M.
2014-09-12
This report documents FY14 efforts for two instrumentation subtasks under storage and transportation. These instrumentation tasks relate to developing effective nondestructive evaluation (NDE) methods and techniques to (1) verify the integrity of metal canisters for the storage of used nuclear fuel (UNF) and to (2) verify the integrity of dry storage cask internals.
Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3 kW
NASA Astrophysics Data System (ADS)
Xiao, Qi-Rong; Tian, Jia-Ding; Huang, Yu-Sheng; Wang, Xue-Jiao; Wang, Ze-Hui; Li, Dan; Yan, Ping; Gong, Ma-Li
2018-05-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 61675114 and 11604177, the Key Laboratory of Science and Technology on High Energy Laser and China Academy of Engineering Physics under Grant No 2014HEL02, and the Tsinghua University Initiative Scientific Research Program under Grant No 20151080709.
NASA Astrophysics Data System (ADS)
Li, Bo-Shiuan
Ceramic materials such as silicon carbide (SiC) are promising candidate materials for nuclear fuel cladding and are of interest as part of a potential accident tolerant fuel design due to its high temperature strength, dimensional stability under irradiation, corrosion resistance, and lower neutron absorption cross-section. It also offers drastically lower hydrogen generation in loss of coolant accidents such as that experienced at Fukushima. With the implementation of SiC material properties to the fuel performance code, FRAPCON, performances of the SiC-clad fuel are compared with the conventional Zircaloy-clad fuel. Due to negligible creep and high stiffness, SiC-clad fuel allows gap closure at higher burnup and insignificant cladding dimensional change. However, severe degradation of SiC thermal conductivity with neutron irradiation will lead to higher fuel temperature with larger fission gas release. High stiffness of SiC has a drawback of accumulating large interfacial pressure upon pellet-cladding mechanical interactions (PCMI). This large stress will eventually reach the flexural strength of SiC, causing failure of SiC cladding instantly in a brittle manner instead of the graceful failure of ductile metallic cladding. The large interfacial pressure causes phenomena that were previously of only marginal significance and thus ignored (such as creep of the fuel) to now have an important role in PCMI. Consideration of the fuel pellet creep and elastic deformation in PCMI models in FRAPCON provide for an improved understanding of the magnitude of accumulated interfacial pressure. Outward swelling of the pellet is retarded by the inward irradiation-induced creep, which then reduces the rate of interfacial pressure buildup. Effect of PCMI can also be reduced and by increasing gap width and cladding thickness. However, increasing gap width and cladding thickness also increases the overall thermal resistance which leads to higher fuel temperature and larger fission gas release. An optimum design is sought considering both thermal and mechanical models of this ceramic cladding with UO2 and advanced high density fuels.
Pretest fracture evaluation of the NESC-1 spinning-cylinder experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeney, J.A.; Bass, B.R.; Williams, P.T.
This paper describes a pretest fracture analysis of the cylinder specimen being used in the Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). Organized as an international forum to exchange information on procedures for structural integrity assessment, to collaborate on specific projects, and to promote the harmonization of international standards, the NESC is currently focusing on a research project funded by United Kingdom Health and Safety Executive (HSE) to study the total process of structural integrity assessments of aged reactor pressure vessels (RPVs) containing subclad cracks. The intent is to have the problem studied by a wide rangemore » of organizations involved in RPV safety assessment. In this project, important safety assessment issues are being investigated by inspection and analysis of a spinning cylinder test which was performed at the AEA Technology facility at Risley, UK. Thermoelastic-plastic analyses were carried out for a clad cylinder model with a 74-mm-deep through-clad inner-surface crack. For this loading, the analytical results indicate that cleavage initiation may be achieved. The intervention of warm prestressing and loss of constraint may make cleavage initiation difficult to achieve in the heat-affected zone (HAZ) and near-HAZ regions.« less
NASA Astrophysics Data System (ADS)
Zhao, W.; Zha, G. C.; Kong, F. X.; Wu, M. L.; Feng, X.; Gao, S. Y.
2017-05-01
A Ti-6Al-4V alloy clad plate with a Tribaloy 700 alloy laser-clad layer is subjected to incremental shear deformation, and we evaluate the structural evolution and mechanical properties of the specimens. Results indicate the significance of the incremental shear deformation on the strengthening effect. The wear resistance and Vickers hardness of the laser-clad layer are enhanced due to increased dislocation density. The incremental shear deformation can increase the bonding strength of the laser-clad layer and the corresponding substrate and can break the columnar crystals in the laser-clad layer near the interface. These phenomena suggest that shear deformation eliminates the defects on the interface of the laser-clad layer and the substrate. Substrate hardness is evidently improved, and the strengthening effect is caused by the increased dislocation density and shear deformation. This deformation can then transform the α- and β-phases in the substrate into a high-intensity ω-phase.
Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding.
Rong, Qiangzhou; Qiao, Xueguang; Guo, Tuan; Bao, Weijia; Su, Dan; Yang, Hangzhou
2014-12-01
An orientation-sensitive fiber-optic accelerometer based on grating inscription over fiber cladding has been demonstrated. The sensor probe comprises a compact structure in which a short section of thin-core fiber (TCF) stub containing a "cladding" fiber Bragg grating (FBG) is spliced to another single-mode fiber (SMF) without any lateral offset. A femtosecond laser side-illumination technique was utilized to ensure that the grating inscription remains close to the core-cladding interface of the TCF. The core mode and the cladding mode of the TCF are coupled at the core-mismatch junction, and two well-defined resonances in reflection appear from the downstream FBG, in which the cladding resonance exhibits a strong polarization and bending dependence due to the asymmetrical distribution of the cladding FBG along the fiber cross section. Strong orientation dependence of the vibration (acceleration) measurement has been achieved by power detection of the cladding resonance. Meanwhile, the unwanted power fluctuations and temperature perturbations can be referenced out by monitoring the fundamental core resonance.
Evolution of transmission spectra of double cladding fiber during etching
NASA Astrophysics Data System (ADS)
Ivanov, Oleg V.; Tian, Fei; Du, Henry
2017-11-01
We investigate the evolution of optical transmission through a double cladding fiber-optic structure during etching. The structure is formed by a section of SM630 fiber with inner depressed cladding between standard SMF-28 fibers. Its transmission spectrum exhibits two resonance dips at wavelengths where two cladding modes have almost equal propagation constants. We measure transmission spectra with decreasing thickness of the cladding and show that the resonance dips shift to shorter wavelengths, while new dips of lower order modes appear from long wavelength side. We calculate propagation constants of cladding modes and resonance wavelengths, which we compare with the experiment.
Hydrogen permeation in FeCrAl alloys for LWR cladding application
NASA Astrophysics Data System (ADS)
Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.
2015-06-01
FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.
Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.
In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less
Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.
Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman
2013-03-25
We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.
Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation
Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.; ...
2016-03-16
In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less
Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding
Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; ...
2016-07-15
The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. In the most challenging cases, U–(7–10wt%)Mo monolithic plate fuel are proposed. The chosen design includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction in service. We investigated zircaloy cladding, specifically Zry–4as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo havemore » similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly between roll passes. Our final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction, either from fabrication or in-reactor testing, and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.54E+21« less
Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.
The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. In the most challenging cases, U–(7–10wt%)Mo monolithic plate fuel are proposed. The chosen design includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction in service. We investigated zircaloy cladding, specifically Zry–4as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo havemore » similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly between roll passes. Our final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction, either from fabrication or in-reactor testing, and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.54E+21« less
Yalin, Azer P; Joshi, Sachin
2014-06-03
An apparatus and method for transmission of laser pulses with high output beam quality using large core step-index silica optical fibers having thick cladding, are described. The thick cladding suppresses diffusion of modal power to higher order modes at the core-cladding interface, thereby enabling higher beam quality, M.sup.2, than are observed for large core, thin cladding optical fibers. For a given NA and core size, the thicker the cladding, the better the output beam quality. Mode coupling coefficients, D, has been found to scale approximately as the inverse square of the cladding dimension and the inverse square root of the wavelength. Output from a 2 m long silica optical fiber having a 100 .mu.m core and a 660 .mu.m cladding was found to be close to single mode, with an M.sup.2=1.6. Another thick cladding fiber (400 .mu.m core and 720 .mu.m clad) was used to transmit 1064 nm pulses of nanosecond duration with high beam quality to form gas sparks at the focused output (focused intensity of >100 GW/cm.sup.2), wherein the energy in the core was <6 mJ, and the duration of the laser pulses was about 6 ns. Extending the pulse duration provided the ability to increase the delivered pulse energy (>20 mJ delivered for 50 ns pulses) without damaging the silica fiber.
Robust cladding light stripper for high-power fiber lasers using soft metals.
Babazadeh, Amin; Nasirabad, Reza Rezaei; Norouzey, Ahmad; Hejaz, Kamran; Poozesh, Reza; Heidariazar, Amir; Golshan, Ali Hamedani; Roohforouz, Ali; Jafari, S Naser Tabatabaei; Lafouti, Majid
2014-04-20
In this paper we present a novel method to reliably strip the unwanted cladding light in high-power fiber lasers. Soft metals are utilized to fabricate a high-power cladding light stripper (CLS). The capability of indium (In), aluminum (Al), tin (Sn), and gold (Au) in extracting unwanted cladding light is examined. The experiments show that these metals have the right features for stripping the unwanted light out of the cladding. We also find that the metal-cladding contact area is of great importance because it determines the attenuation and the thermal load on the CLS. These metals are examined in different forms to optimize the contact area to have the highest possible attenuation and avoid localized heating. The results show that sheets of indium are very effective in stripping unwanted cladding light.
Todd, Jamie L; Jain, Rahil; Pavlisko, Elizabeth N; Finlen Copeland, C Ashley; Reynolds, John M; Snyder, Laurie D; Palmer, Scott M
2014-01-15
Emerging evidence suggests a restrictive phenotype of chronic lung allograft dysfunction (CLAD) exists; however, the optimal approach to its diagnosis and clinical significance is uncertain. To evaluate the hypothesis that spirometric indices more suggestive of a restrictive ventilatory defect, such as loss of FVC, identify patients with distinct clinical, radiographic, and pathologic features, including worse survival. Retrospective, single-center analysis of 566 consecutive first bilateral lung recipients transplanted over a 12-year period. A total of 216 patients developed CLAD during follow-up. CLAD was categorized at its onset into discrete physiologic groups based on spirometric criteria. Imaging and histologic studies were reviewed when available. Survival after CLAD diagnosis was assessed using Kaplan-Meier and Cox proportional hazards models. Among patients with CLAD, 30% demonstrated an FVC decrement at its onset. These patients were more likely to be female, have radiographic alveolar or interstitial changes, and histologic findings of interstitial fibrosis. Patients with FVC decline at CLAD onset had significantly worse survival after CLAD when compared with those with preserved FVC (P < 0.0001; 3-yr survival estimates 9% vs. 48%, respectively). The deleterious impact of CLAD accompanied by FVC loss on post-CLAD survival persisted in a multivariable model including baseline demographic and clinical factors (P < 0.0001; adjusted hazard ratio, 2.73; 95% confidence interval, 1.86-4.04). At CLAD onset, a subset of patients demonstrating physiology more suggestive of restriction experience worse clinical outcomes. Further study of the biologic mechanisms underlying CLAD phenotypes is critical to improving long-term survival after lung transplantation.
Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors
NASA Astrophysics Data System (ADS)
Karahan, Aydın; Kazimi, Mujid S.
2013-10-01
The study evaluates the possible use of graphite foam as the bonding material between U-Pu-Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U-15Pu-6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600-660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.
Low Earth Orbit Environmental Durability of Recently Developed Thermal Control Coatings
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
2015-01-01
The Materials International Space Station Experiment provided a means to expose materials and devices to the low Earth orbit environment on the exterior of the International Space Station. By returning the specimens to Earth after flight, the specimens could be evaluated by comparison with pre-flight measurements. One area of continuing interest is thermal control paints and coatings that are applied to exterior surfaces of spacecraft. Though traditional radiator coatings have been available for decades, recent work has focused on new coatings that offer custom deposition or custom optical properties. The custom deposition of interest is plasma spraying and one type of coating recently developed as part of a Small Business Innovative Research effort was designed to be plasma sprayed onto radiator surfaces. The custom optical properties of interest are opposite to those of a typical radiator coating, having a combination of high solar absorptance and low infrared emittance for solar absorber applications, and achieved in practice via a cermet coating. Selected specimens of the plasma sprayed coatings and the solar absorber coating were flown on Materials International Space Station Experiment 7, and were recently returned to Earth for post-flight analyses. For the plasma sprayed coatings in the ram direction, one specimen increased in solar absorptance and one specimen decreased in solar absorptance, while the plasma sprayed coatings in the wake direction changed very little in solar absorptance. For the cermet coating deployed in both the ram and wake directions, the solar absorptance increased. Interestingly, all coatings showed little change in infrared emittance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glazoff, Michael Vasily
2014-10-01
In the post-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry is going to continue using advanced zirconium cladding materials in the foreseeable future, it become critical to gain fundamental understanding of the several interconnected problems. First, what are the thermodynamic and kinetic factors affecting the oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings (if any) could be used in order to gain extremely valuable time at off-normal conditions, e.g., when temperature exceeds the criticalmore » value of 2200°F? Thirdly, the kinetics of oxidation of such protective coating or braiding needs to be quantified. Lastly, even if some degree of success is achieved along this path, it is absolutely critical to have automated inspection algorithms allowing identifying defects of cladding as soon as possible. This work strives to explore these interconnected factors from the most advanced computational perspective, utilizing such modern techniques as first-principles atomistic simulations, computational thermodynamics of materials, diffusion modeling, and the morphological algorithms of image processing for defect identification. Consequently, it consists of the four parts dealing with these four problem areas preceded by the introduction and formulation of the studied problems. In the 1st part an effort was made to employ computational thermodynamics and ab initio calculations to shed light upon the different stages of oxidation of ziraloys (2 and 4), the role of microstructure optimization in increasing their thermal stability, and the process of hydrogen pick-up, both in normal working conditions and in long-term storage. The 2nd part deals with the need to understand the influence and respective roles of the two different plasticity mechanisms in Zr nuclear alloys: twinning (at low T) and crystallographic slip (higher T’s). For that goal, a description of the advanced plasticity model is outlined featuring the non-associated flow rule in hcp materials including Zr. The 3rd part describes the kinetic theory of oxidation of the several materials considered to be perspective coating materials for Zr alloys: SiC and ZrSiO 4. In the 4th part novel and advanced projectional algorithms for defect identification in zircaloy coatings are described. In so doing, the author capitalized on some 12 years of his applied industrial research in this area. Our conclusions and recommendations are presented in the 5th part of this work, along with the list of used literature and the scripts for atomistic, thermodynamic, kinetic, and morphological computations.« less
Low-dose computed tomography volumetry for subtyping chronic lung allograft dysfunction.
Saito, Tomohito; Horie, Miho; Sato, Masaaki; Nakajima, Daisuke; Shoushtarizadeh, Hassan; Binnie, Matthew; Azad, Sassan; Hwang, David M; Machuca, Tiago N; Waddell, Thomas K; Singer, Lianne G; Cypel, Marcelo; Liu, Mingyao; Paul, Narinder S; Keshavjee, Shaf
2016-01-01
The long-term success of lung transplantation is challenged by the development of chronic lung allograft dysfunction (CLAD) and its distinct subtypes of bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). However, the current diagnostic criteria for CLAD subtypes rely on total lung capacity (TLC), which is not always measured during routine post-transplant assessment. Our aim was to investigate the utility of low-dose 3-dimensional computed tomography (CT) lung volumetry for differentiating RAS from BOS. This study was a retrospective evaluation of 63 patients who had developed CLAD after bilateral lung or heart‒lung transplantation between 2006 and 2011, including 44 BOS and 19 RAS cases. Median post-transplant follow-up was 65 months in BOS and 27 months in RAS. The median interval between baseline and the disease-onset time-point for CT volumetry was 11 months in both BOS and RAS. Chronologic changes and diagnostic accuracy of CT lung volume (measured as percent of baseline) were investigated. RAS showed a significant decrease in CT lung volume at disease onset compared with baseline (mean 3,916 ml vs 3,055 ml when excluding opacities, p < 0.0001), whereas BOS showed no significant post-transplant change (mean 4,318 ml vs 4,396 ml, p = 0.214). The area under the receiver operating characteristic curve of CT lung volume for differentiating RAS from BOS was 0.959 (95% confidence interval 0.912 to 1.01, p < 0.0001) and the calculated accuracy was 0.938 at a threshold of 85%. In bilateral lung or heart‒lung transplant patients with CLAD, low-dose CT volumetry is a useful tool to differentiate patients who develop RAS from those who develop BOS. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Siddiqui, Sanna F; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha
2013-08-01
Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.
NASA Astrophysics Data System (ADS)
Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha
2013-08-01
Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.
Veligdan, James Thomas
1997-01-01
An optical display includes a plurality of optical waveguides each including a cladding bound core for guiding internal display light between first and second opposite ends by total internal reflection. The waveguides are stacked together to define a collective display thickness. Each of the cores includes a heterogeneous portion defining a light scattering site disposed longitudinally between the first and second ends. Adjacent ones of the sites are longitudinally offset from each other for forming a longitudinal internal image display over the display thickness upon scattering of internal display light thereagainst for generating a display image. In a preferred embodiment, the waveguides and scattering sites are transparent for transmitting therethrough an external image in superposition with the display image formed by scattering the internal light off the scattering sites for defining a heads up display.
Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels
NASA Astrophysics Data System (ADS)
Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.
2017-12-01
FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.
Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels
NASA Astrophysics Data System (ADS)
Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.
2018-02-01
FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.
Refinement of Promising Coating Compositions for Directionally Cast Eutectics
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Felten, E. J.; Benden, R. S.
1976-01-01
The successful application of high creep strength, directionally solidified gamma/gamma prime-delta (Ni-19.7Cb-6Cr-2.5Al) eutectic superalloy turbine blades requires the development of suitable coatings for airfoil, root and internal blade surfaces. In order to improve coatings for the gamma/gamma prime-delta alloy, the current investigation had the goals of (1) refining promising coating compositions for directionally solidified eutectics, (2) evaluating the effects of coating/ substrate interactions on the mechanical properties of the alloy, and (3) evaluating diffusion aluminide coatings for internal surfaces. Burner rig cyclic oxidation, furnace cyclic hot corrosion, ductility, and thermal fatigue tests indicated that NiCrAlY+Pt(63 to 127 micron Ni-18Cr-12Al-0.3Y + 6 micron Pt) and NiCrAlY(63 to 127 micron Ni-18Cr-12Al-0.3Y) coatings are capable of protecting high temperature gas path surfaces of eutectic alloy airfoils. Burner rig (Mach 0.37) testing indicated that the useful coating life of the 127 micron thick coatings exceeded 1000 hours at 1366 K (2000 deg F). Isothermal fatigue and furnance hot corrosion tests indicated that 63 micron NiCrAlY, NiCrAlY + Pt and platinum modified diffusion aluminide (Pt + Al) coating systems are capable of protecting the relatively cooler surfaces of the blade root. Finally, a gas phase coating process was evaluated for diffusion aluminizing internal surfaces and cooling holes of air-cooled gamma/gamma prime-delta turbine blades.
Development of Advanced Coatings for Laser Modifications Through Process and Materials Simulation
NASA Astrophysics Data System (ADS)
Martukanitz, R. P.; Babu, S. S.
2004-06-01
A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit.
Examination of UC-ZrC after long term irradiation at thermionic temperature
NASA Technical Reports Server (NTRS)
Yang, L.; Johnson, H. O.
1972-01-01
Two fluoride tungsten clad UC-ZrC fueled capsules, designated as V-2C and V-2D, were examined a hot cell after irradiation in NASA Plum Brook Reactor at a maximum cladding temperature of 1930 K for 11,089 and 12,031 hours to burnups of 3.0 x 10 to the 20th power and 2.1 x 10 to the 20th power fission/c.c. respectively. Percentage of fission gas release from the fuel material was measured by radiochemical means. Cladding deformation, fuel-cladding interaction and microstructures of fuel, cladding, and fuel-cladding interface were studied metallographically. Compositions of dispersions in fuel, fuel matrix and fuel-cladding interaction layer were analyzed by electron microprobe techniques. Axial and radial distributions of burnup were determined by gamma-scan, autoradiography and isotopic burnup analysis. The results are presented and discussed in conjunction with the requirements of thermionic fuel elements for space power application.
CXCL4 Contributes to the Pathogenesis of Chronic Liver Allograft Dysfunction
Li, Jing; Shi, Yuan; Xie, Ke-Liang; Yin, Hai-Fang; Yan, Lu-nan; Lau, Wan-yee; Wang, Guo-Lin
2016-01-01
Chronic liver allograft dysfunction (CLAD) remains the most common cause of patient morbidity and allograft loss in liver transplant patients. However, the pathogenesis of CLAD has not been completely elucidated. By establishing rat CLAD models, in this study, we identified the informative CLAD-associated genes using isobaric tags for relative and absolute quantification (iTRAQ) proteomics analysis and validated these results in recipient rat liver allografts. CXCL4, CXCR3, EGFR, JAK2, STAT3, and Collagen IV were associated with CLAD pathogenesis. We validated that CXCL4 is upstream of these informative genes in the isolated hepatic stellate cells (HSC). Blocking CXCL4 protects against CLAD by reducing liver fibrosis. Therefore, our results indicated that therapeutic approaches that neutralize CXCL4, a newly identified target of fibrosis, may represent a novel strategy for preventing and treating CLAD after liver transplantation. PMID:28053995
CXCL4 Contributes to the Pathogenesis of Chronic Liver Allograft Dysfunction.
Li, Jing; Liu, Bin; Shi, Yuan; Xie, Ke-Liang; Yin, Hai-Fang; Yan, Lu-Nan; Lau, Wan-Yee; Wang, Guo-Lin
2016-01-01
Chronic liver allograft dysfunction (CLAD) remains the most common cause of patient morbidity and allograft loss in liver transplant patients. However, the pathogenesis of CLAD has not been completely elucidated. By establishing rat CLAD models, in this study, we identified the informative CLAD-associated genes using isobaric tags for relative and absolute quantification (iTRAQ) proteomics analysis and validated these results in recipient rat liver allografts. CXCL4, CXCR3, EGFR, JAK2, STAT3, and Collagen IV were associated with CLAD pathogenesis. We validated that CXCL4 is upstream of these informative genes in the isolated hepatic stellate cells (HSC). Blocking CXCL4 protects against CLAD by reducing liver fibrosis. Therefore, our results indicated that therapeutic approaches that neutralize CXCL4, a newly identified target of fibrosis, may represent a novel strategy for preventing and treating CLAD after liver transplantation.
Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre
2014-11-04
A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).
Hydrogen permeation in FeCrAl alloys for LWR cladding application
Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; ...
2015-03-19
FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less
Fabrication and testing of U-7Mo monolithic plate fuel with Zircaloy cladding
NASA Astrophysics Data System (ADS)
Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; Wachs, D. M.; Finlay, M. R.
2016-10-01
Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U-(7-10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry-4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry-4 clad U-7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry-4 and U-(7-10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction-either from fabrication or in-reactor testing-and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm3, 3.8E+21 (peak).
NASA Astrophysics Data System (ADS)
Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang
2015-12-01
Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unal, Cetin; Galloway, Jack D.
2014-09-12
In FY2014 our group completed and documented analysis of new Accident Tolerant Fuel (ATF) concepts using BISON. We have modeled the viability of moving from Zircaloy to stainless steel cladding in traditional light water reactors (LWRs). We have explored the reactivity penalty of this change using the MCNP-based burnup code Monteburns, while attempting to minimize this penalty by increasing the fuel pellet radius and decreasing the cladding thickness. Fuel performance simulations using BISON have also been performed to quantify changes to structural integrity resulting from thinner stainless steel claddings. We account for thermal and irradiation creep, fission gas swelling, thermalmore » swelling and fuel relocation in the models for both Zircaloy and stainless steel claddings. Additional models that account for the lower oxidation stainless steel APMT are also invoked where available. Irradiation data for HT9 is used as a fallback in the absence of appropriate models. In this study the isotopic vectors within each natural element are varied to assess potential reactivity gains if advanced enrichment capabilities were levied towards cladding technologies. Recommendations on cladding thicknesses for a robust cladding as well as the constitutive components of a less penalizing composition are provided. In the first section (section 1-3), we present results accepted for publication in the 2014 TOPFUEL conference regarding the APMT/UO₂ ATF concept (J. Galloway & C. Unal, Accident Tolerant and Neutronically Favorable LWR Cladding, Proceedings of WRFPM 2014, Sendai, Japan, Paper No.1000050). Next we discuss our preliminary findings from the thermo-mechanical analysis of UN-U₃Si₅ fuel with APMT clad. In this analysis we used models developed from limited data that need to be updated when the irradiation data from ATF-1 test is available. Initial results indicate a swelling rate less than 1.5% is needed to prevent excessive clad stress.« less
Screening of advanced cladding materials and UN-U3Si5 fuel
NASA Astrophysics Data System (ADS)
Brown, Nicholas R.; Todosow, Michael; Cuadra, Arantxa
2015-07-01
In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2-Zr fuel-cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN-U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN-U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN-U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2-Zr fuel-cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to 14N content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels are not expected to have significantly different relative burn-up distributions at discharge relative to the UO2 reference fuel. However, the overall harder spectrum in the UN ceramic composite fuels increases transuranic build-up, which will increase long-term activity in a once-thru fuel cycle but is expected to be a significant advantage in a fuel cycle with continuous recycling of transuranic material. It is recognized that the fuel and cladding properties assumed in these assessments are preliminary, and that additional data are necessary for these materials, most significantly under irradiation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... Practice and Procedure, part 201, subparts A through E (19 CFR part 201), and part 207, subparts A, D, E... Messer (202-205-3193), Office of Investigations, U.S. International Trade Commission, 500 E Street SW..., 2012. Lisa R. Barton, Acting Secretary to the Commission. [FR Doc. 2012-15284 Filed 6-20-12; 8:45 am...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, K.G.; Steen, W.M.; Manna, I.
New means have been investigated for the production of electrode devices (stimulation electrodes) which could be implanted in the human body in order to control pain, activate paralysed limbs or provide electrode arrays for cochlear implants for the deaf or for the relief of tinitus. To achieve this ion implantation and laser materials processing techniques were employed. Ir was ion implanted in Ti-6Al-4V alloy and the surface subsequently enriched in the noble metal by dissolution in sulphuric acid. For laser materials processing techniques, investigation has been carried out on the laser cladding and laser alloying of Ir in Ti wire.more » A particular aim has been the determination of conditions required for the formation of a two phase Ir, Ir-rich, and Ti-rich microstructure which would enable subsequent removal of the non-noble phase to leave a highly porous noble metal with large real surface area and hence improved charge carrying capacity compared with conventional non porous electrodes. Evaluation of the materials produced has been carried out using repetitive cyclic voltammetry, amongst other techniques. For laser alloyed Ir on Ti wire, it has been found that differences in the melting point and density of the materials makes control of the cladding or alloying process difficult. Investigation of laser process parameters for the control of alloying and cladding in this system was carried out and a set of conditions for the successful production of two phase Ir-rich and Ti-rich components in a coating layer with strong metallurgical bonding to the Ti alloy substrate was derived. The laser processed material displays excellent potential for further development in providing stimulation electrodes with the current carrying capacity of Ir but in a form which is malleable and hence capable of formation into smaller electrodes with improved spatial resolution compared with presently employed electrodes.« less
Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.
Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M
2014-04-07
We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.
NASA Technical Reports Server (NTRS)
Slaby, J. G.; Siegel, B. L.
1973-01-01
The examination of 27 fuel pins irradiated for up to 13,000 hours at 990 C is described. The fuel pin clad was a tantalum alloy with uranium nitride as the nuclear fuel. Two nominal fuel pin diameters were tested with a maximum burnup of 2.34 atom percent. Twenty-two fuel pins were tested for fission gas leaks; thirteen pins leaked. Clad ductility tests indicated clad embrittlement. The embrittlement is attributed to hydrogen from an n,p reaction in the fuel. Fuel swelling was burnup dependent, and the amount of fission gas release was low, generally less than 0.5 percent. No incompatibilities between fuel, liner, and clad were in evidence.
NASA/Air Force/Environmental Protection Agency Interagency Depainting Study
NASA Technical Reports Server (NTRS)
Clark-Ingram, Marceia
1998-01-01
Many popular and widely used paint stripping products have traditionally contained methylene chloride as their main active ingredient. However, the Environmental Protection Agency (EPA) has critically curved the allowable use of methylene chloride under the National Emission Standard for Hazardous Air Pollutants regulating Aerospace Manufacturing and Rework Facilities . Compliance with this rule was mandatory by September 1998 for affected facilities. An effort is underway to identify and evaluate alternative depainting technologies emphasizing those believed both effective and environmentally benign. On behalf of the EPA and in cooperation with the United States Air Force, the National Aeronautics and Space Administration is conducting a technical assessment of several alternative technologies ( i.e. : chemical stripping, two CO2 blasting processes, CO2 xenon lamp coating removal, CO2 Laser stripping, plastic media blasting, sodium bicarbonate wet stripping, high pressure water stripping, and wheat starch blasting). These depainting processes represent five removal method categories, namely abrasive, impact, cryogenic, thermal, and/or molecular bonding dissociation. This paper discusses the test plan and parameters for this interagency study. Several thicknesses of clad and non-clad aluminum substrates were used to prepare test specimens. Each depainting process has been assigned a specimen lot, all of which have completed three to five stripping cycles. Numerous metallurgical evaluations are underway to assess the impact of these alternative depainting processes upon the structural integrity of the substrate.
Lepesqueur, Laura Soares; de Figueiredo, Viviane Maria Gonçalves; Ferreira, Leandro Lameirão; Sobrinho, Argemiro Soares da Silva; Massi, Marcos; Bottino, Marco Antônio; Nogueira Junior, Lafayette
2015-01-01
To determine the effect of maintaining torque after mechanical cycling of abutment screws that are coated with diamondlike carbon and coated with diamondlike carbon doped with diamond nanoparticles, with external and internal hex connections. Sixty implants were divided into six groups according to the type of connection (external or internal hex) and the type of abutment screw (uncoated, coated with diamondlike carbon, and coated with diamondlike carbon doped with diamond nanoparticles). The implants were inserted into polyurethane resin and crowns of nickel chrome were cemented on the implants. The crowns had a hole for access to the screw. The initial torque and the torque after mechanical cycling were measured. The torque values maintained (in percentages) were evaluated. Statistical analysis was performed using one-way analysis of variance and the Tukey test, with a significance level of 5%. The largest torque value was maintained in uncoated screws with external hex connections, a finding that was statistically significant (P = .0001). No statistically significant differences were seen between the groups with and without coating in maintaining torque for screws with internal hex connections (P = .5476). After mechanical cycling, the diamondlike carbon with and without diamond doping on the abutment screws showed no improvement in maintaining torque in external and internal hex connections.
Hot Forging of a Cladded Component by Automated GMAW Process
NASA Astrophysics Data System (ADS)
Rafiq, Muhammad; Langlois, Laurent; Bigot, Régis
2011-01-01
Weld cladding is employed to improve the service life of engineering components by increasing corrosion and wear resistance and reducing the cost. The acceptable multi-bead cladding layer depends on single bead geometry. Hence, in first step, the relationship between input process parameters and the single bead geometry is studied and in second step a comprehensive study on multi bead clad layer deposition is carried out. This paper highlights an experimental study carried out to get single layer cladding deposited by automated Gas Metal Arc Welding (GMAW) process and to find the possibility of hot forming of the cladded work piece to get the final hot formed improved structure. GMAW is an arc welding process that uses an arc between a consumable electrode and the welding pool with an external shielding gas and the cladding is done by alongside deposition of weld beads. The experiments for single bead were conducted by varying the three main process parameters wire feed rate, arc voltage and welding speed while keeping other parameters like nozzle to work distance, shielding gas and its flow rate and torch angle constant. The effect of bead spacing and torch orientation on the cladding quality of single layer from the results of single bead deposition was studied. Effect of the dilution rate and nominal energy on the cladded layer hot bending quality was also performed at different temperatures.
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Perez, Emmanuel; Wiencek, Tom; Leenaers, Ann; Van den Berghe, Sven
2015-03-01
The United States High Performance Research Reactor Fuel Development program is developing low enriched uranium fuels for application in research and test reactors. One concept utilizes U-7 wt.% Mo (U-7Mo) fuel particles dispersed in Al matrix, where the fuel particles are coated with a 1 μm-thick ZrN coating. The ZrN serves as a diffusion barrier to eliminate a deleterious reaction that can occur between U-7Mo and Al when a dispersion fuel is irradiated under aggressive reactor conditions. To investigate the final microstructure of a physically-vapor-deposited ZrN coating in a dispersion fuel plate after it was fabricated using a rolling process, characterization samples were taken from a fuel plate that was fabricated at 500 °C using ZrN-coated U-7Mo particles, Al matrix and AA6061 cladding. Scanning electron and transmission electron microscopy analysis were performed. Data from these analyses will be used to support future microstructural examinations of irradiated fuel plates, in terms of understanding the effects of irradiation on the ZrN microstructure, and to determine the role of diffusion barrier microstructure in eliminating fuel/matrix interactions during irradiation. The as-fabricated coating was determined to be cubic-ZrN (cF8) phase. It exhibited a columnar microstructure comprised of nanometer-sized grains and a region of relatively high porosity, mainly near the Al matrix. Small impurity-containing phases were observed at the U-7Mo/ZrN interface, and no interaction zone was observed at the ZrN/Al interface. The bonding between the U-7Mo and ZrN appeared to be mechanical in nature. A relatively high level of oxygen was observed in the ZrN coating, extending from the Al matrix in the ZrN coating in decreasing concentration. The above microstructural characteristics are discussed in terms of what may be most optimal for a diffusion barrier in a dispersion fuel plate application.
Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation
NASA Astrophysics Data System (ADS)
Degueldre, Claude; Fahy, James; Kolosov, Oleg; Wilbraham, Richard J.; Döbeli, Max; Renevier, Nathalie; Ball, Jonathan; Ritter, Stefan
2018-05-01
The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would occur for in-reactor AGR clad in layers of the order of 10 µm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (< 1 dpa). Nonetheless, such zones undergo only nanoscopic swelling and a small hardness increase ( 10%), with no appreciable decrease in fracture strength. Thus, for this fluence and applied conditions, the integrity of the steel cladding is retained despite He2+ implantation.
Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation
NASA Astrophysics Data System (ADS)
Degueldre, Claude; Fahy, James; Kolosov, Oleg; Wilbraham, Richard J.; Döbeli, Max; Renevier, Nathalie; Ball, Jonathan; Ritter, Stefan
2018-04-01
The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would occur for in-reactor AGR clad in layers of the order of 10 µm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (< 1 dpa). Nonetheless, such zones undergo only nanoscopic swelling and a small hardness increase ( 10%), with no appreciable decrease in fracture strength. Thus, for this fluence and applied conditions, the integrity of the steel cladding is retained despite He2+ implantation.
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Lamb, J. L.; Williams, R. M.; Khanna, S. K.
1985-01-01
Hard protective coatings in the W-Re-B and Mo-Ru-B alloy systems have been deposited by magnetron sputtering onto soda-lime glass and heat-treated AISI 52100 steel substrates. X-ray diffraction has confirmed the amorphous nature of the as-deposited coatings, and their crystallization temperatures were determined by differential thermal analysis to be 1000 and 790 C for W-Re-B and Mo-Ru-B coatings, respectively. Both coatings exhibit high microhardness; Mo-Ru-B, in addition, has excellent corrosion resistance by comparison with pure Mo at high anodic potentials. Attention is given to the influence of internal stresses on the protective properties of the coatings deposited under different conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinbiz, Mahmut N; Brown, Nicholas R; Terrani, Kurt A
2017-01-01
This study investigates the failure mechanisms of advanced nuclear fuel cladding of FeCrAl at high-strain rates, similar to design basis reactivity initiated accidents (RIA). During RIA, the nuclear fuel cladding was subjected to the plane-strain to equibiaxial tension strain states. To achieve those accident conditions, the samples were deformed by the expansion of high strength Inconel alloy tube under pre-specified pressure pulses as occurring RIA. The mechanical response of the advanced claddings was compared to that of hydrided zirconium-based nuclear fuel cladding alloy. The hoop strain evolution during pressure pulses were collected in situ; the permanent diametral strains of bothmore » accident tolerant fuel (ATF) claddings and the current nuclear fuel alloys were determined after rupture.« less