NASA Astrophysics Data System (ADS)
Marinella, M.
In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.
NASA Astrophysics Data System (ADS)
Shirakawa, Hiroki; Araidai, Masaaki; Shiraishi, Kenji
2018-04-01
The interfacial phase change memory (iPCM) based on a GeTe/Sb2Te3 superlattice is one of the candidates for future storage class memories. However, the atomic structures of the high and low resistance states (HRS/LRS) remain unclear and the resistive switching mechanism is still under debate. Clarifying the switching mechanism is essential for developing further high-reliability and low-power-consumption iPCM. We propose, on the basis of the results of first-principles molecular dynamics simulations, a mechanism for resistive switching, and describe the atomic structures of the high and low resistance states of iPCM for unipolar switching. Our simulations indicated that switching from HRS to LRS occurs with Joule heating only, while that from LRS to HRS occurs with both hole injection and Joule heating.
de Jong, Britt G; IJspeert, Hanna; Marques, Lemelinda; van der Burg, Mirjam; van Dongen, Jacques Jm; Loos, Bruno G; van Zelm, Menno C
2017-10-01
The mechanisms involved in sequential immunoglobulin G (IgG) class switching are still largely unknown. Sequential IG class switching is linked to higher levels of somatic hypermutation (SHM) in vivo, but it remains unclear if these are generated temporally during an immune response or upon activation in a secondary response. We here aimed to uncouple these processes and to distinguish memory B cells from primary and secondary immune responses. SHM levels and IgG subclasses were studied with 454 pyrosequencing on blood mononuclear cells from young children and adults as models for primary and secondary immunological memory. Additional sequencing and detailed immunophenotyping with IgG subclass-specific antibodies was performed on purified IgG + memory B-cell subsets. In both children and adults, SHM levels were higher in transcripts involving more downstream-located IGHG genes (esp. IGHG2 and IGHG4). In adults, SHM levels were significantly higher than in children, and downstream IGHG genes were more frequently utilized. This was associated with increased frequencies of CD27 + IgG + memory B cells, which contained higher levels of SHM, more IGHG2 usage, and higher expression levels of activation markers than CD27 - IgG + memory B cells. We conclude that secondary immunological memory accumulates with age and these memory B cells express CD27, high levels of activation markers, and carry high SHM levels and frequent usage of IGHG2. These new insights contribute to our understanding of sequential IgG subclass switching and show a potential relevance of using serum IgG2 levels or numbers of IgG2-expressing B cells as markers for efficient generation of memory responses.
Scarcity of autoreactive human blood IgA+ memory B cells
Prigent, Julie; Lorin, Valérie; Kök, Ayrin; Hieu, Thierry; Bourgeau, Salomé
2016-01-01
Class‐switched memory B cells are key components of the “reactive” humoral immunity, which ensures a fast and massive secretion of high‐affinity antigen‐specific antibodies upon antigenic challenge. In humans, IgA class‐switched (IgA+) memory B cells and IgA antibodies are abundant in the blood. Although circulating IgA+ memory B cells and their corresponding secreted immunoglobulins likely possess major protective and/or regulatory immune roles, little is known about their specificity and function. Here, we show that IgA+ and IgG+ memory B‐cell antibodies cloned from the same healthy humans share common immunoglobulin gene features. IgA and IgG memory antibodies have comparable lack of reactivity to vaccines, common mucosa‐tropic viruses and commensal bacteria. However, the IgA+ memory B‐cell compartment contains fewer polyreactive clones and importantly, only rare self‐reactive clones compared to IgG+ memory B cells. Self‐reactivity of IgAs is acquired following B‐cell affinity maturation but not antibody class switching. Together, our data suggest the existence of different regulatory mechanisms for removing autoreactive clones from the IgG+ and IgA+ memory B‐cell repertoires, and/or different maturation pathways potentially reflecting the distinct nature and localization of the cognate antigens recognized by individual B‐cell populations. PMID:27469325
The Cellular Bases of Antibody Responses during Dengue Virus Infection
Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo
2016-01-01
Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated. PMID:27375618
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng
Due to the favorable operating power, endurance, speed, and density., transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physiocochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resettingmore » the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.« less
Two-magnon bound state causes ultrafast thermally induced magnetisation switching
Barker, J.; Atxitia, U.; Ostler, T. A.; Hovorka, O.; Chubykalo-Fesenko, O.; Chantrell, R. W.
2013-01-01
There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime. PMID:24253110
IgG1 memory B cells keep the memory of IgE responses.
He, Jin-Shu; Subramaniam, Sharrada; Narang, Vipin; Srinivasan, Kandhadayar; Saunders, Sean P; Carbajo, Daniel; Wen-Shan, Tsao; Hidayah Hamadee, Nur; Lum, Josephine; Lee, Andrea; Chen, Jinmiao; Poidinger, Michael; Zolezzi, Francesca; Lafaille, Juan J; Curotto de Lafaille, Maria A
2017-09-21
The unique differentiation of IgE cells suggests unconventional mechanisms of IgE memory. IgE germinal centre cells are transient, most IgE cells are plasma cells, and high affinity IgE is produced by the switching of IgG1 cells to IgE. Here we investigate the function of subsets of IgG1 memory B cells in IgE production and find that two subsets of IgG1 memory B cells, CD80 + CD73 + and CD80 - CD73 - , contribute distinctively to the repertoires of high affinity pathogenic IgE and low affinity non-pathogenic IgE. Furthermore, repertoire analysis indicates that high affinity IgE and IgG1 plasma cells differentiate from rare CD80 + CD73 + high affinity memory clones without undergoing further mutagenesis. By identifying the cellular origin of high affinity IgE and the clonal selection of high affinity memory B cells into the plasma cell fate, our findings provide fundamental insights into the pathogenesis of allergies, and on the mechanisms of antibody production in memory B cell responses.IgE is an important mediator of protective immunity as well as allergic reaction, but how high affinity IgE antibodies are produced in memory responses is not clear. Here the authors show that IgE can be generated via class-switch recombination in IgG1 memory B cells without additional somatic hypermutation.
Electrical Switching of Perovskite Thin-Film Resistors
NASA Technical Reports Server (NTRS)
Liu, Shangqing; Wu, Juan; Ignatiev, Alex
2010-01-01
Electronic devices that exploit electrical switching of physical properties of thin films of perovskite materials (especially colossal magnetoresistive materials) have been invented. Unlike some related prior devices, these devices function at room temperature and do not depend on externally applied magnetic fields. Devices of this type can be designed to function as sensors (exhibiting varying electrical resistance in response to varying temperature, magnetic field, electric field, and/or mechanical pressure) and as elements of electronic memories. The underlying principle is that the application of one or more short electrical pulse(s) can induce a reversible, irreversible, or partly reversible change in the electrical, thermal, mechanical, and magnetic properties of a thin perovskite film. The energy in the pulse must be large enough to induce the desired change but not so large as to destroy the film. Depending on the requirements of a specific application, the pulse(s) can have any of a large variety of waveforms (e.g., square, triangular, or sine) and be of positive, negative, or alternating polarity. In some applications, it could be necessary to use multiple pulses to induce successive incremental physical changes. In one class of applications, electrical pulses of suitable shapes, sizes, and polarities are applied to vary the detection sensitivities of sensors. Another class of applications arises in electronic circuits in which certain resistance values are required to be variable: Incorporating the affected resistors into devices of the present type makes it possible to control their resistances electrically over wide ranges, and the lifetimes of electrically variable resistors exceed those of conventional mechanically variable resistors. Another and potentially the most important class of applications is that of resistance-based nonvolatile-memory devices, such as a resistance random access memory (RRAM) described in the immediately following article, Electrically Variable Resistive Memory Devices (MFS-32511-1).
Working memory costs of task switching.
Liefooghe, Baptist; Barrouillet, Pierre; Vandierendonck, André; Camos, Valérie
2008-05-01
Although many accounts of task switching emphasize the importance of working memory as a substantial source of the switch cost, there is a lack of evidence demonstrating that task switching actually places additional demands on working memory. The present study addressed this issue by implementing task switching in continuous complex span tasks with strictly controlled time parameters. A series of 4 experiments demonstrate that recall performance decreased as a function of the number of task switches and that the concurrent load of item maintenance had no influence on task switching. These results indicate that task switching induces a cost on working memory functioning. Implications for theories of task switching, working memory, and resource sharing are addressed.
High affinity IgM(+) memory B cells are generated through a germinal center-dependent pathway.
Hara, Yasushi; Tashiro, Yasuyuki; Murakami, Akikazu; Nishimura, Miyuki; Shimizu, Takeyuki; Kubo, Masato; Burrows, Peter D; Azuma, Takachika
2015-12-01
During a T cell-dependent immune response, B cells undergo clonal expansion and selection and the induction of isotype switching and somatic hypermutation (SHM). Although somatically mutated IgM(+) memory B cells have been reported, it has not been established whether they are really high affinity B cells. We tracked (4-hydroxy-3-nitrophenyl) acetyl hapten-specific GC B cells from normal immunized mice based on affinity of their B cell receptor (BCR) and performed BCR sequence analysis. SHM was evident by day 7 postimmunization and increased with time, such that high affinity IgM(+) as well as IgG(+) memory B cells continued to be generated up to day 42. In contrast, class-switch recombination (CSR) was almost completed by day 7 and then the ratio of IgG1(+)/IgM(+) GC B cells remained unchanged. Together these findings suggest that IgM(+) B cells undergo SHM in the GC to generate high affinity IgM(+) memory cells and that this process continues even after CSR is accomplished. Copyright © 2015 Elsevier Ltd. All rights reserved.
Charge Carrier Transport Mechanism Based on Stable Low Voltage Organic Bistable Memory Device.
Ramana, V V; Moodley, M K; Kumar, A B V Kiran; Kannan, V
2015-05-01
A solution processed two terminal organic bistable memory device was fabricated utilizing films of polymethyl methacrylate PMMA/ZnO/PMMA on top of ITO coated glass. Electrical characterization of the device structure showed that the two terminal device exhibited favorable switching characteristics with an ON/OFF ratio greater than 1 x 10(4) when the voltage was swept between - 2 V and +3 V. The device maintained its state after removal of the bias voltage. The device did not show degradation after a 1-h retention test at 120 degrees C. The memory functionality was consistent even after fifty cycles of operation. The charge transport switching mechanism is discussed on the basis of carrier transport mechanism and our analysis of the data shows that the charge carrier trans- port mechanism of the device during the writing process can be explained by thermionic emission (TE) and space-charge-limited-current (SCLC) mechanism models while erasing process could be explained by the FN tunneling mechanism. This demonstration provides a class of memory devices with the potential for low-cost, low-power consumption applications, such as a digital memory cell.
Working Memory Costs of Task Switching
ERIC Educational Resources Information Center
Liefooghe, Baptist; Barrouillet, Pierre; Vandierendonck, Andre; Camos, Valerie
2008-01-01
Although many accounts of task switching emphasize the importance of working memory as a substantial source of the switch cost, there is a lack of evidence demonstrating that task switching actually places additional demands on working memory. The present study addressed this issue by implementing task switching in continuous complex span tasks…
Random walkers with extreme value memory: modelling the peak-end rule
NASA Astrophysics Data System (ADS)
Harris, Rosemary J.
2015-05-01
Motivated by the psychological literature on the ‘peak-end rule’ for remembered experience, we perform an analysis within a random walk framework of a discrete choice model where agents’ future choices depend on the peak memory of their past experiences. In particular, we use this approach to investigate whether increased noise/disruption always leads to more switching between decisions. Here extreme value theory illuminates different classes of dynamics indicating that the long-time behaviour is dependent on the scale used for reflection; this could have implications, for example, in questionnaire design.
The quintuple-shape memory effect in electrospun nanofiber membranes
NASA Astrophysics Data System (ADS)
Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong
2013-08-01
Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.
Oxygen migration during resistance switching and failure of hafnium oxide memristors
Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng; ...
2017-03-06
While the recent establishment of the role of thermophoresis/diffusion-driven oxygen migration during resistance switching in metal oxide memristors provided critical insights required for memristor modeling, extended investigations of the role of oxygen migration during ageing and failure remain to be detailed. Such detailing will enable failure-tolerant design, which can lead to enhanced performance of memristor-based next-generation storage-class memory. Furthermore, we directly observed lateral oxygen migration using in-situ synchrotron x-ray absorption spectromicroscopy of HfO x memristors during initial resistance switching, wear over millions of switching cycles, and eventual failure, through which we determined potential physical causes of failure. Using this information,more » we reengineered devices to mitigate three failure mechanisms and demonstrated an improvement in endurance of about three orders of magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng
While the recent establishment of the role of thermophoresis/diffusion-driven oxygen migration during resistance switching in metal oxide memristors provided critical insights required for memristor modeling, extended investigations of the role of oxygen migration during ageing and failure remain to be detailed. Such detailing will enable failure-tolerant design, which can lead to enhanced performance of memristor-based next-generation storage-class memory. Furthermore, we directly observed lateral oxygen migration using in-situ synchrotron x-ray absorption spectromicroscopy of HfO x memristors during initial resistance switching, wear over millions of switching cycles, and eventual failure, through which we determined potential physical causes of failure. Using this information,more » we reengineered devices to mitigate three failure mechanisms and demonstrated an improvement in endurance of about three orders of magnitude.« less
NASA Astrophysics Data System (ADS)
Neklyudov, A. A.; Savenkov, V. N.; Sergeyez, A. G.
1984-06-01
Memories are improved by increasing speed or the memory volume on a single chip. The most effective means for increasing speeds in bipolar memories are current control circuits with the lowest extraction times for a specific power consumption (1/4 pJ/bit). The control current circuitry involves multistage current switches and circuits accelerating transient processes in storage elements and links. Circuit principles for the design of bipolar memories with maximum speeds for an assigned minimum of circuit topology are analyzed. Two main classes of storage with current control are considered: the ECL type and super-integrated injection type storage with data capacities of N = 1/4 and N 4/16, respectively. The circuits reduce logic voltage differentials and the volumes of lexical and discharge buses and control circuit buses. The limiting speed is determined by the antiinterference requirements of the memory in storage and extraction modes.
Status and Prospects of ZnO-Based Resistive Switching Memory Devices
NASA Astrophysics Data System (ADS)
Simanjuntak, Firman Mangasa; Panda, Debashis; Wei, Kung-Hwa; Tseng, Tseung-Yuen
2016-08-01
In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges.
Song, Ji-Min; Lee, Jang-Sik
2016-01-01
Metal-oxide-based resistive switching memory device has been studied intensively due to its potential to satisfy the requirements of next-generation memory devices. Active research has been done on the materials and device structures of resistive switching memory devices that meet the requirements of high density, fast switching speed, and reliable data storage. In this study, resistive switching memory devices were fabricated with nano-template-assisted bottom up growth. The electrochemical deposition was adopted to achieve the bottom-up growth of nickel nanodot electrodes. Nickel oxide layer was formed by oxygen plasma treatment of nickel nanodots at low temperature. The structures of fabricated nanoscale memory devices were analyzed with scanning electron microscope and atomic force microscope (AFM). The electrical characteristics of the devices were directly measured using conductive AFM. This work demonstrates the fabrication of resistive switching memory devices using self-assembled nanoscale masks and nanomateirals growth from bottom-up electrochemical deposition. PMID:26739122
Kray, Jutta
2006-08-11
Adult age differences in task switching and advance preparation were examined by comparing cue-based and memory-based switching conditions. Task switching was assessed by determining two types of costs that occur at the general (mixing costs) and specific (switching costs) level of switching. Advance preparation was investigated by varying the time interval until the next task (short, middle, very long). Results indicated that the implementation of task sets was different for cue-based switching with random task sequences and memory-based switching with predictable task sequences. Switching costs were strongly reduced under cue-based switching conditions, indicating that task-set cues facilitate the retrieval of the next task. Age differences were found for mixing costs and for switching costs only under cue-based conditions in which older adults showed smaller switching costs than younger adults. It is suggested that older adults adopt a less extreme bias between two tasks than younger adults in situations associated with uncertainty. For cue-based switching with random task sequences, older adults are less engaged in a complete reconfiguration of task sets because of the probability of a further task change. Furthermore, the reduction of switching costs was more pronounced for cue- than memory-based switching for short preparation intervals, whereas the reduction of switch costs was more pronounced for memory- than cue-based switching for longer preparation intervals at least for older adults. Together these findings suggest that the implementation of task sets is functionally different for the two types of task-switching conditions.
Hosokawa, T; Tanaka, Y; Aoike, A; Kawai, K; Muramatsu, S
1984-09-01
The time course of B-cell memory development to a dinitrophenyl (DNP) T-independent type-2 (TI-2) antigen was investigated by adoptive cell transfer. Strong IgM and IgG memory developed in BALB/c mice after immunization with DNP-dextran, to be recalled by challenge with either T-dependent (TD) antigen or TI-2 antigen. However, only weak IgM memory and very feeble IgG memory were detected in athymic nude mice receiving the same immunization as euthymic mice. Once memory was established under probable T cell influence, its recall by TI-2 antigen challenge seemed independent of T cell help and did not require sharing of carriers between priming and challenge antigens. The following may be concluded. (i) Long-term IgM and IgG memory is induced by TI-2 antigen priming in the presence of functional T cells. (ii) The class switch from IgM to IgG in the memory B cell pool is driven effectively by TI-2 antigen and is probably T cell-dependent.
Three-terminal resistive switching memory in a transparent vertical-configuration device
NASA Astrophysics Data System (ADS)
Ungureanu, Mariana; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.
2014-01-01
The resistive switching phenomenon has attracted much attention recently for memory applications. It describes the reversible change in the resistance of a dielectric between two non-volatile states by the application of electrical pulses. Typical resistive switching memories are two-terminal devices formed by an oxide layer placed between two metal electrodes. Here, we report on the fabrication and operation of a three-terminal resistive switching memory that works as a reconfigurable logic component and offers an increased logic density on chip. The three-terminal memory device we present is transparent and could be further incorporated in transparent computing electronic technologies.
Titanium oxide nonvolatile memory device and its application
NASA Astrophysics Data System (ADS)
Wang, Wei
In recent years, the semiconductor memory industry has seen an ever-increasing demand for nonvolatile memory (NVM), which is fueled by portable consumer electronic applications like the mobile phone and MP3 player. FLASH memory has been the most widely used nonvolatile memories in these systems, and has successfully kept up with CMOS scaling for many generations. However, as FLASH memory faces major scaling challenges beyond 22nm, non-charge-based nonvolatile memories are widely researched as candidates to replace FLASH. Titanium oxide (TiOx) nonvolatile memory device is considered to be a promising choice due to its controllable nonvolatile memory switching, good scalability, compatibility with CMOS processing and potential for 3D stacking. However, several major issues need to be overcome before TiOx NVM device can be adopted in manufacturing. First, there exists a highly undesirable high-voltage stress initiation process (FORMING) before the device can switch between high and low resistance states repeatedly. By analyzing the conductive behaviors of the memory device before and after FORMING, we propose that FORMING involves breaking down an interfacial layer between its Pt electrode and the TiOx thin film, and that FORMING is not needed if the Pt-TiOx interface can be kept clean during fabrication. An in-situ fabrication process is developed for cross-point TiOx NVM device, which enables in-situ deposition of the critical layers of the memory device and thus achieves clean interfaces between Pt electrodes and TiOx film. Testing results show that FORMING is indeed eliminated for memory devices made with the in-situ fabrication process. It verifies the significance of in-situ deposition without vacuum break in the fabrication of TiOx NVM devices. Switching parameters statistics of TiOx NVM devices are studied and compared for unipolar and bipolar switching modes. RESET mechanisms are found to be different for the two switching modes: unipolar switching can be explained by thermal dissolution model, and bipolar switching by local redox reaction model. Since it is generally agreed that the memory switching of TiOx NVM devices is based on conductive filaments, reusability of these conductive filaments becomes an intriguing issue to determine the memory device's endurance. A 1X3 cross-point test structure is built to investigate whether conductive filaments can be reused after RESET. It is found that the conductive filament is destroyed during unipolar switching, while can be reused during bipolar switching. The result is a good indication that bipolar switching should have better endurance than unipolar switching. Finally a novel application of the two-terminal resistive switching NVM devices is demonstrated. To reduce SRAM leakage power, we propose a nonvolatile SRAM cell with two back-up NVM devices. This novel cell offers nonvolatile storage, thus allowing selected blocks of SRAM to be powered down during operation. There is no area penalty in this approach. Only a slight performance penalty is expected.
Berti, Stefan
2016-01-01
The flexible access to information in working memory is crucial for adaptive behavior. It is assumed that this is realized by switching the focus of attention within working memory. Switching of attention is mirrored in the P3a component of the human event-related brain potential (ERP) and it has been argued that the processes reflected by the P3a are also relevant for selecting information within working memory. The aim of the present study was to further evaluate whether the P3a mirrors genuine switching of attention within working memory by applying an object switching task: Participants updated a memory list of four digits either by replacing one item with another digit or by processing the stored digit. ERPs were computed separately for two types of trials: (1) trials in which an object was repeated and (2) trials in which a switch to a new object was required in order to perform the task. Object-switch trials showed increased response times compared with repetition trials in both task conditions. In addition, switching costs were increased in the processing compared with the replacement condition. Pronounced P3a’s were obtained in switching trials but there were no difference between the two updating tasks (replacement or processing). These results were qualified by the finding that the magnitude of the visual location shift also affects the ERPs in the P3a time window. Taken together, the present pattern of results suggest that the P3a reflects an initial process of selecting information in working memory but not the memory updating itself. PMID:26779009
Influence of affective valence on working memory processes.
Gotoh, Fumiko
2008-02-01
Recent research has revealed widespread effects of emotion on cognitive function and memory. However, the influence of affective valence on working or short-term memory remains largely unexplored. In two experiments, the present study examined the predictions that negative words would capture attention, that attention would be difficult to disengage from such negative words, and that the cost of attention switching would increase the time required to update information in working memory. Participants switched between two concurrent working memory tasks: word recognition and a working memory digit updating task. Experiment 1 showed substantial switching cost for negative words, relative to neutral words. Experiment 2 replicated the first experiment, using a self-report measure of anxiety to examine if switching cost is a function of an anxiety-related attention bias. Results did not support this hypothesis. In addition, Experiment 2 revealed switch costs for positive words without the effect of the attention bias from anxiety. The present study demonstrates the effect of affective valence on a specific component of working memory. Moreover, findings suggest why affective valence effects on working memory have not been found in previous research.
Frenken, Marius; Berti, Stefan
2018-04-01
Working memory enables humans to maintain selected information for cognitive processes and ensures instant access to the memorized contents. Theories suggest that switching the focus of attention between items within working memory realizes the access. This is reflected in object-switching costs in response times when the item for the task processing is to be changed. Another correlate of attentional allocation in working memory is the P3a-component of the human event-related potential. The aim of this study was to demonstrate that switching of attention within working memory is a separable processing step. Participants completed a cued memory-updating task in which they were instructed to update one memory item at a time out of a memory list of four digits by applying a mathematical operation indicated by a target sign. The hypotheses predicted (1) prolonged updating times in switch (different item compared to previous trial) versus repetition trials (same item), (2) an influence of cues (valid/neutral) presented before the mathematical target on switching costs, and (3) that the P3a-component is more pronounced in the cue-target interval in the valid cue condition and more pronounced in the post-target interval in the neutral cue condition. A student's t-test verified the first hypothesis, repeated-measurement analyses of variance demonstrated that hypotheses 2 and 3 should be rejected. Results suggest that switching of attention within working memory could not be separated from further processing steps and retro-cue benefits are not due to a head start of retrieval as well as that switch costs represent internal processes. Copyright © 2018 Elsevier B.V. All rights reserved.
Ames Lab 101: Ultrafast Magnetic Switching
Wang; Jigang
2018-01-01
Ames Laboratory physicists have found a new way to switch magnetism that is at least 1000 times faster than currently used in magnetic memory technologies. Magnetic switching is used to encode information in hard drives, magnetic random access memory and other computing devices. The discovery potentially opens the door to terahertz and faster memory speeds.
Deng, Yuqin; Wang, Yan; Ding, Xiaoqian; Tang, Yi-Yuan
2015-02-11
The aim of the present study was to examine electrophysiological and behavioral changes caused by different memory loads in a task-switching paradigm. A total of 31 healthy individuals were subjected to a task, in which the stimulus-response reversal paradigm was combined with the task-switching paradigm. The event-related potentials were recorded and the N2 component, an index of conflict processing, was measured. In addition, the neural sources of N2 were further analyzed by standardized low-resolution brain electromagnetic tomography. The event-related potential results showed that high memory load triggered a higher N2 mean amplitude. Moreover, the standardized low-resolution brain electromagnetic tomography data showed that high memory load caused an increase in current densities at the anterior cingulate cortex and the prefrontal cortex in the task-switching paradigm. In summary, our findings provide electrophysiological evidence to interpret possible influences of memory loads on conflict monitoring and modulation during the task switching. These results imply that the working memory load overrules the influence of task-switching performance on the intensification of cognitive control.
NASA Astrophysics Data System (ADS)
Song, Zhiwei; Li, Gang; Xiong, Ying; Cheng, Chuanpin; Zhang, Wanli; Tang, Minghua; Li, Zheng; He, Jiangheng
2018-05-01
A memory device with a Pt/SrBi2Ta2O9(SBT)/Pt(111) structure was shown to have excellent combined ferroelectricity and resistive switching properties, leading to higher multistate storage memory capacity in contrast to ferroelectric memory devices. In this device, SBT polycrystalline thin films with significant (115) orientation were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates using CVD (chemical vapor deposition) method. Measurement results of the electric properties exhibit reproducible and reliable ferroelectricity switching behavior and bipolar resistive switching effects (BRS) without an electroforming process. The ON/OFF ratio of the resistive switching was found to be about 103. Switching mechanisms for the low resistance state (LRS) and high resistance state (HRS) currents are likely attributed to the Ohmic and space charge-limited current (SCLC) behavior, respectively. Moreover, the ferroelectricity and resistive switching effects were found to be mutually independent, and the four logic states were obtained by controlling the periodic sweeping voltage. This work holds great promise for nonvolatile multistate memory devices with high capacity and low cost.
Stawski, Robert S; Sliwinski, Martin J; Hofer, Scott M
2013-01-01
BACKGROUND/STUDY CONTEXT: Theories of cognitive aging predict associations among processes that transpire within individuals, but are often tested by examining between-person relationships. The authors provide an empirical demonstration of how associations among measures of processing speed, attention switching, and working memory are different when considered between persons versus within persons over time. A sample of 108 older adults (M (age) = 80.8, range = 66-95) and 68 younger adults (M (age) = 20.2, range = 18-24) completed measures of processing speed, attention switching, and working memory on six occasions over a 14-day period. Multilevel modeling was used to examine processing speed and attention switching performance as predictors of working memory performance simultaneously across days (within-person) and across individuals (between-person). The findings indicates that simple comparison and response speed predicted working memory better than attention switching between persons, whereas attention switching predicted working memory better than simple comparison and response speed within persons over time. Furthermore, the authors did not observe strong evidence of age differences in these associations either within or between persons. The findings of the current study suggest that processing speed is important for understanding between-person and age-related differences in working memory, whereas attention switching is more important for understanding within-person variation in working memory. The authors conclude that theories of cognitive aging should be evaluated by analysis of within-person processes, not exclusively age-related individual differences.
Stawski, Robert S.; Sliwinski, Martin J.; Hofer, Scott M.
2013-01-01
Background/Study Context Theories of cognitive aging predict associations among processes that transpire within individuals, but are often tested by examining between-person relationships. The authors provide an empirical demonstration of how associations among measures of processing speed, attention switching, and working memory are different when considered between persons versus within persons over time. Methods A sample of 108 older adults (Mage: 80.8, range: 66–95) and 68 younger adults (Mage: 20.2, range:18–24) completed measures of processing speed, attention switching, and working memory on six occasions over a 14-day period. Multilevel modeling was used to examine processing speed and attention switching performance as predictors of working memory performance simultaneously across days (within-person) and across individuals (between-person). Results The findings indicates that simple comparison and response speed predicted working memory better than attention switching between persons, whereas attention switching predicted working memory better than simple comparison and response speed within persons over time. Furthermore, the authors did not observe strong evidence of age differences in these associations either within or between persons. Conclusion The findings of the current study suggest that processing speed is important for understanding between-person and age-related differences in working memory, whereas attention switching is more important for understanding within-person variation in working memory. The authors conclude that theories of cognitive aging should be evaluated by analysis of within-person processes, not exclusively age-related individual differences. PMID:23421639
Accelerated Loss of TCR Repertoire Diversity in Common Variable Immunodeficiency
Wong, Gabriel K.; Millar, David; Penny, Sarah; Heather, James M.; Mistry, Punam; Buettner, Nico; Bryon, Jane; Huissoon, Aarnoud P.
2016-01-01
Although common variable immunodeficiency (CVID) has long been considered as a group of primary Ab deficiencies, growing experimental data now suggest a global disruption of the entire adaptive immune response in a segment of patients. Oligoclonality of the TCR repertoire was previously demonstrated; however, the manner in which it relates to other B cell and T cell findings reported in CVID remains unclear. Using a combination approach of high-throughput TCRβ sequencing and multiparametric flow cytometry, we compared the TCR repertoire diversity between various subgroups of CVID patients according to their B cell immunophenotypes. Our data suggest that the reduction in repertoire diversity is predominantly restricted to those patients with severely reduced class-switched memory B cells and an elevated level of CD21lo B cells (Freiburg 1a), and may be driven by a reduced number of naive T cells unmasking underlying memory clonality. Moreover, our data indicate that this loss in repertoire diversity progresses with advancing age far exceeding the expected physiological rate. Radiological evidence supports the loss in thymic volume, correlating with the decrease in repertoire diversity. Evidence now suggests that primary thymic failure along with other well-described B cell abnormalities play an important role in the pathophysiology in Freiburg group 1a patients. Clinically, our findings emphasize the integration of combined B and T cell testing to identify those patients at the greatest risk for infection. Future work should focus on investigating the link between thymic failure and the severe reduction in class-switched memory B cells, while gathering longitudinal laboratory data to examine the progressive nature of the disease. PMID:27481850
Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching
Horns, Felix; Vollmers, Christopher; Croote, Derek; Mackey, Sally F; Swan, Gary E; Dekker, Cornelia L; Davis, Mark M; Quake, Stephen R
2016-01-01
Antibody class switching is a feature of the adaptive immune system which enables diversification of the effector properties of antibodies. Even though class switching is essential for mounting a protective response to pathogens, the in vivo patterns and lineage characteristics of antibody class switching have remained uncharacterized in living humans. Here we comprehensively measured the landscape of antibody class switching in human adult twins using antibody repertoire sequencing. The map identifies how antibodies of every class are created and delineates a two-tiered hierarchy of class switch pathways. Using somatic hypermutations as a molecular clock, we discovered that closely related B cells often switch to the same class, but lose coherence as somatic mutations accumulate. Such correlations between closely related cells exist when purified B cells class switch in vitro, suggesting that class switch recombination is directed toward specific isotypes by a cell-autonomous imprinted state. DOI: http://dx.doi.org/10.7554/eLife.16578.001 PMID:27481325
ERIC Educational Resources Information Center
Unsworth, Nash; Engle, Randall W.
2008-01-01
Three experiments examined the nature of individual differences in switching the focus of attention in working memory. Participants performed 3 versions of a continuous counting task that required successive updating and switching between counts. Across all 3 experiments, individual differences in working memory span and fluid intelligence were…
Boyer, François; Boutouil, Hend; Dalloul, Iman; Dalloul, Zeinab; Cook-Moreau, Jeanne; Aldigier, Jean-Claude; Carrion, Claire; Herve, Bastien; Scaon, Erwan; Cogné, Michel; Péron, Sophie
2017-05-15
B cells ensure humoral immune responses due to the production of Ag-specific memory B cells and Ab-secreting plasma cells. In secondary lymphoid organs, Ag-driven B cell activation induces terminal maturation and Ig isotype class switch (class switch recombination [CSR]). CSR creates a virtually unique IgH locus in every B cell clone by intrachromosomal recombination between two switch (S) regions upstream of each C region gene. Amount and structural features of CSR junctions reveal valuable information about the CSR mechanism, and analysis of CSR junctions is useful in basic and clinical research studies of B cell functions. To provide an automated tool able to analyze large data sets of CSR junction sequences produced by high-throughput sequencing (HTS), we designed CSReport, a software program dedicated to support analysis of CSR recombination junctions sequenced with a HTS-based protocol (Ion Torrent technology). CSReport was assessed using simulated data sets of CSR junctions and then used for analysis of Sμ-Sα and Sμ-Sγ1 junctions from CH12F3 cells and primary murine B cells, respectively. CSReport identifies junction segment breakpoints on reference sequences and junction structure (blunt-ended junctions or junctions with insertions or microhomology). Besides the ability to analyze unprecedentedly large libraries of junction sequences, CSReport will provide a unified framework for CSR junction studies. Our results show that CSReport is an accurate tool for analysis of sequences from our HTS-based protocol for CSR junctions, thereby facilitating and accelerating their study. Copyright © 2017 by The American Association of Immunologists, Inc.
Yong, Pierre L; Orange, Jordan S; Sullivan, Kathleen E
2010-08-01
Recent studies suggest that patients with common variable immunodeficiency (CVID) and low numbers of switched memory B cells have lower IgG levels and higher rates of autoimmune disease, splenomegaly, and granulomatous disease; however, no prior literature has focused exclusively on pediatric cases. We examined the relationship between switched memory B cells and clinical and immunologic manifestations of CVID in a pediatric population. Forty-five patients were evaluated. Patients were categorized as Group I (<5 switched memory B cells/ml, n = 24) or Group II (> or =5 switched memory B cells/mL, n = 21). CD3(+) T-cell counts and CD19(+) B-cell levels were lower among Group I patients. Only those in Group I had meningitis, sepsis, bronchiectasis, granulomatous lung disease, autoimmune cytopenias, or hematologic malignancies. Segregation of pediatric patients into high risk (Group I) and average risk (Group II) may assist in targeting surveillance appropriately.
Qian, Kai; Cai, Guofa; Nguyen, Viet Cuong; Chen, Tupei; Lee, Pooi See
2016-10-05
Transparent nonvolatile memory has great potential in integrated transparent electronics. Here, we present highly transparent resistive switching memory using stoichiometric WO 3 film produced by cathodic electrodeposition with indium tin oxide electrodes. The memory device demonstrates good optical transmittance, excellent operative uniformity, low operating voltages (+0.25 V/-0.42 V), and long retention time (>10 4 s). Conductive atomic force microscopy, ex situ transmission electron microscopy, and X-ray photoelectron spectroscopy experiments directly confirm that the resistive switching effects occur due to the electric field-induced formation and annihilation of the tungsten-rich conductive channel between two electrodes. Information on the physical and chemical nature of conductive filaments offers insightful design strategies for resistive switching memories with excellent performances. Moreover, we demonstrate the promising applicability of the cathodic electrodeposition method for future resistive memory devices.
Kinetic memory based on the enzyme-limited competition.
Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko
2014-08-01
Cellular memory, which allows cells to retain information from their environment, is important for a variety of cellular functions, such as adaptation to external stimuli, cell differentiation, and synaptic plasticity. Although posttranslational modifications have received much attention as a source of cellular memory, the mechanisms directing such alterations have not been fully uncovered. It may be possible to embed memory in multiple stable states in dynamical systems governing modifications. However, several experiments on modifications of proteins suggest long-term relaxation depending on experienced external conditions, without explicit switches over multi-stable states. As an alternative to a multistability memory scheme, we propose "kinetic memory" for epigenetic cellular memory, in which memory is stored as a slow-relaxation process far from a stable fixed state. Information from previous environmental exposure is retained as the long-term maintenance of a cellular state, rather than switches over fixed states. To demonstrate this kinetic memory, we study several models in which multimeric proteins undergo catalytic modifications (e.g., phosphorylation and methylation), and find that a slow relaxation process of the modification state, logarithmic in time, appears when the concentration of a catalyst (enzyme) involved in the modification reactions is lower than that of the substrates. Sharp transitions from a normal fast-relaxation phase into this slow-relaxation phase are revealed, and explained by enzyme-limited competition among modification reactions. The slow-relaxation process is confirmed by simulations of several models of catalytic reactions of protein modifications, and it enables the memorization of external stimuli, as its time course depends crucially on the history of the stimuli. This kinetic memory provides novel insight into a broad class of cellular memory and functions. In particular, applications for long-term potentiation are discussed, including dynamic modifications of calcium-calmodulin kinase II and cAMP-response element-binding protein essential for synaptic plasticity.
Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine
NASA Astrophysics Data System (ADS)
Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.
2013-02-01
Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.
Prakash, Amit; Maikap, Siddheswar; Banerjee, Writam; Jana, Debanjan; Lai, Chao-Sung
2013-09-06
Improved switching characteristics were obtained from high-κ oxides AlOx, GdOx, HfOx, and TaOx in IrOx/high-κx/W structures because of a layer that formed at the IrOx/high-κx interface under external positive bias. The surface roughness and morphology of the bottom electrode in these devices were observed by atomic force microscopy. Device size was investigated using high-resolution transmission electron microscopy. More than 100 repeatable consecutive switching cycles were observed for positive-formatted memory devices compared with that of the negative-formatted devices (only five unstable cycles) because it contained an electrically formed interfacial layer that controlled 'SET/RESET' current overshoot. This phenomenon was independent of the switching material in the device. The electrically formed oxygen-rich interfacial layer at the IrOx/high-κx interface improved switching in both via-hole and cross-point structures. The switching mechanism was attributed to filamentary conduction and oxygen ion migration. Using the positive-formatted design approach, cross-point memory in an IrOx/AlOx/W structure was fabricated. This cross-point memory exhibited forming-free, uniform switching for >1,000 consecutive dc cycles with a small voltage/current operation of ±2 V/200 μA and high yield of >95% switchable with a large resistance ratio of >100. These properties make this cross-point memory particularly promising for high-density applications. Furthermore, this memory device also showed multilevel capability with a switching current as low as 10 μA and a RESET current of 137 μA, good pulse read endurance of each level (>105 cycles), and data retention of >104 s at a low current compliance of 50 μA at 85°C. Our improvement of the switching characteristics of this resistive memory device will aid in the design of memory stacks for practical applications.
Role of nanorods insertion layer in ZnO-based electrochemical metallization memory cell
NASA Astrophysics Data System (ADS)
Mangasa Simanjuntak, Firman; Singh, Pragya; Chandrasekaran, Sridhar; Juanda Lumbantoruan, Franky; Yang, Chih-Chieh; Huang, Chu-Jie; Lin, Chun-Chieh; Tseng, Tseung-Yuen
2017-12-01
An engineering nanorod array in a ZnO-based electrochemical metallization device for nonvolatile memory applications was investigated. A hydrothermally synthesized nanorod layer was inserted into a Cu/ZnO/ITO device structure. Another device was fabricated without nanorods for comparison, and this device demonstrated a diode-like behavior with no switching behavior at a low current compliance (CC). The switching became clear only when the CC was increased to 75 mA. The insertion of a nanorods layer induced switching characteristics at a low operation current and improve the endurance and retention performances. The morphology of the nanorods may control the switching characteristics. A forming-free electrochemical metallization memory device having long switching cycles (>104 cycles) with a sufficient memory window (103 times) for data storage application, good switching stability and sufficient retention was successfully fabricated by adjusting the morphology and defect concentration of the inserted nanorod layer. The nanorod layer not only contributed to inducing resistive switching characteristics but also acted as both a switching layer and a cation diffusion control layer.
Mechanisms of Age-Related Decline in Memory Search Across the Adult Life Span
Hills, Thomas T.; Mata, Rui; Wilke, Andreas; Samanez-Larkin, Gregory R.
2013-01-01
Three alternative mechanisms for age-related decline in memory search have been proposed, which result from either reduced processing speed (global slowing hypothesis), overpersistence on categories (cluster-switching hypothesis), or the inability to maintain focus on local cues related to a decline in working memory (cue-maintenance hypothesis). We investigated these 3 hypotheses by formally modeling the semantic recall patterns of 185 adults between 27 to 99 years of age in the animal fluency task (Thurstone, 1938). The results indicate that people switch between global frequency-based retrieval cues and local item-based retrieval cues to navigate their semantic memory. Contrary to the global slowing hypothesis that predicts no qualitative differences in dynamic search processes and the cluster-switching hypothesis that predicts reduced switching between retrieval cues, the results indicate that as people age, they tend to switch more often between local and global cues per item recalled, supporting the cue-maintenance hypothesis. Additional support for the cue-maintenance hypothesis is provided by a negative correlation between switching and digit span scores and between switching and total items recalled, which suggests that cognitive control may be involved in cue maintenance and the effective search of memory. Overall, the results are consistent with age-related decline in memory search being a consequence of reduced cognitive control, consistent with models suggesting that working memory is related to goal perseveration and the ability to inhibit distracting information. PMID:23586941
NASA Astrophysics Data System (ADS)
Zhu, Lisha; Hu, Wei; Gao, Chao; Guo, Yongcai
2017-12-01
This paper reports the reversible transition processes between the bipolar and complementary resistive switching (CRS) characteristics on the binary metal-oxide resistive memory devices of Pt/HfO x /TiN and Pt/TaO x /TiN by applying the appropriate bias voltages. More interestingly, by controlling the amplitude of the negative bias, the parasitic resistive switching effect exhibiting repeatable switching behavior is uncovered from the CRS behavior. The electrical observation of the parasitic resistive switching effect can be explained by the controlled size of the conductive filament. This work confirms the transformation and interrelationship among the bipolar, parasitic, and CRS effects, and thus provides new insight into the understanding of the physical mechanism of the binary metal-oxide resistive switching memory devices.
Electrical switching in Sb doped Al23Te77 glasses
NASA Astrophysics Data System (ADS)
Pumlianmunga; Ramesh, K.
2017-08-01
Bulk glasses (Al23Te77)Sbx (0≤ x≤10) prepared by melt quenching method show a change in switching type from threshold to memory for x≥5. An increase in threshold current (Ith) and a concomitant decrease in threshold voltage (Vth) and resisitivity(ρ) have been observed with the increase of Sb content. Raman spectra of the switched region in memory switching compositions show a red shift with respect to the as prepared glasses whereas in threshold switching compositions no such shift is observed. The magic angle spinning nuclear magnetic resonance (MAS NMR) of 27Al atom shows three different environments for Al ([4]Al, [5]Al and [6]Al). The samples annealed at their respective crystallization temperatures show rapid increase in [4]Al sites by annihilating [5]Al sites. The melts of threshold switching glasses (x≤2.5) quenched in water at room temperature (27 °C) show amorphous structure whereas, the melt of memory switching glasses (x>2.5) solidify into crystalline structure. The higher coordination of Al increases the cross-linking and rigidity. The addition of Sb increases the glass transition(Tg) and decreases the crystallization temperature(Tc). The decrease in the interval between the Tg and Tc eases the transition between the amorphous and crystalline states and improves the memory properties. The temperature rise at the time of switching can be as high as its melting temperature and the material in between the electrodes may melt to form a filament. The filament may consists of temporary (high resistive amorphous) and permanent (high conducting crystalline) units. The ratio between the temporary and the permanent units may decide the switching type. The filament is dominated by the permanent units in memory switching compositions and by the temporary units in threshold switching compositions. The present study suggests that both the threshold and memory switching can be understood by the thermal model and filament formation.
Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee
2009-01-14
The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.
Impacts of Co doping on ZnO transparent switching memory device characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simanjuntak, Firman Mangasa; Wei, Kung-Hwa; Prasad, Om Kumar
2016-05-02
The resistive switching characteristics of indium tin oxide (ITO)/Zn{sub 1−x}Co{sub x}O/ITO transparent resistive memory devices were investigated. An appropriate amount of cobalt dopant in ZnO resistive layer demonstrated sufficient memory window and switching stability. In contrast, pure ZnO devices demonstrated a poor memory window, and using an excessive dopant concentration led to switching instability. To achieve suitable memory performance, relying only on controlling defect concentrations is insufficient; the grain growth orientation of the resistive layer must also be considered. Stable endurance with an ON/OFF ratio of more than one order of magnitude during 5000 cycles confirmed that the Co-doped ZnOmore » device is a suitable candidate for resistive random access memory application. Additionally, fully transparent devices with a high transmittance of up to 90% at wavelength of 550 nm have been fabricated.« less
ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching
Yeung, Nick
2016-01-01
Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075
Ham, Timothy S; Lee, Sung K; Keasling, Jay D; Arkin, Adam P
2008-07-30
Inversion recombination elements present unique opportunities for computing and information encoding in biological systems. They provide distinct binary states that are encoded into the DNA sequence itself, allowing us to overcome limitations posed by other biological memory or logic gate systems. Further, it is in theory possible to create complex sequential logics by careful positioning of recombinase recognition sites in the sequence. In this work, we describe the design and synthesis of an inversion switch using the fim and hin inversion recombination systems to create a heritable sequential memory switch. We have integrated the two inversion systems in an overlapping manner, creating a switch that can have multiple states. The switch is capable of transitioning from state to state in a manner analogous to a finite state machine, while encoding the state information into DNA. This switch does not require protein expression to maintain its state, and "remembers" its state even upon cell death. We were able to demonstrate transition into three out of the five possible states showing the feasibility of such a switch. We demonstrate that a heritable memory system that encodes its state into DNA is possible, and that inversion recombination system could be a starting point for more complex memory circuits. Although the circuit did not fully behave as expected, we showed that a multi-state, temporal memory is achievable.
Ham, Timothy S.; Lee, Sung K.; Keasling, Jay D.; Arkin, Adam P.
2008-01-01
Background Inversion recombination elements present unique opportunities for computing and information encoding in biological systems. They provide distinct binary states that are encoded into the DNA sequence itself, allowing us to overcome limitations posed by other biological memory or logic gate systems. Further, it is in theory possible to create complex sequential logics by careful positioning of recombinase recognition sites in the sequence. Methodology/Principal Findings In this work, we describe the design and synthesis of an inversion switch using the fim and hin inversion recombination systems to create a heritable sequential memory switch. We have integrated the two inversion systems in an overlapping manner, creating a switch that can have multiple states. The switch is capable of transitioning from state to state in a manner analogous to a finite state machine, while encoding the state information into DNA. This switch does not require protein expression to maintain its state, and “remembers” its state even upon cell death. We were able to demonstrate transition into three out of the five possible states showing the feasibility of such a switch. Conclusions/Significance We demonstrate that a heritable memory system that encodes its state into DNA is possible, and that inversion recombination system could be a starting point for more complex memory circuits. Although the circuit did not fully behave as expected, we showed that a multi-state, temporal memory is achievable. PMID:18665232
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary JO; Quintana, Jorge A.; Soni, Nitin J.
1994-01-01
The NASA Lewis Research Center is developing a multichannel communication signal processing satellite (MCSPS) system which will provide low data rate, direct to user, commercial communications services. The focus of current space segment developments is a flexible, high-throughput, fault tolerant onboard information switching processor. This information switching processor (ISP) is a destination-directed packet switch which performs both space and time switching to route user information among numerous user ground terminals. Through both industry study contracts and in-house investigations, several packet switching architectures were examined. A contention-free approach, the shared memory per beam architecture, was selected for implementation. The shared memory per beam architecture, fault tolerance insertion, implementation, and demonstration plans are described.
Origin and Function of Circulating Plasmablasts during Acute Viral Infections.
Fink, Katja
2012-01-01
Activated B cells proliferate and differentiate into antibody-producing cells, long-lived plasma cells, and memory B cells after immunization or infection. Repeated encounter of the same antigen triggers the rapid re-activation of pre-existing specific memory B cells, which then potentially enter new germinal center reactions and differentiate into short-lived plasmablasts or remain in the system as memory B cells. Short-lived class-switched IgG and IgA plasmablasts appear in the circulation transiently and the frequency of these cells can be remarkably high. The specificities and affinities of single plasmablasts in humans have been reported for several viral infections, so far most extensively for influenza and HIV. In general, the immunoglobulin variable regions of plasmablasts are highly mutated and diverse, suggesting that plasmablasts are derived from memory B cells, yet it is unclear which memory B cell subsets are activated and whether activated memory B cells adapt or mature before differentiation. This review summarizes what is known about the phenotype and the origin of human plasmablasts in the context of viral infections and whether these cells can be predictors of long-lived immunity.
NASA Technical Reports Server (NTRS)
Stehle, Roy H.; Ogier, Richard G.
1993-01-01
Alternatives for realizing a packet-based network switch for use on a frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary communication satellite were investigated. Each of the eight downlink beams supports eight directed dwells. The design needed to accommodate multicast packets with very low probability of loss due to contention. Three switch architectures were designed and analyzed. An output-queued, shared bus system yielded a functionally simple system, utilizing a first-in, first-out (FIFO) memory per downlink dwell, but at the expense of a large total memory requirement. A shared memory architecture offered the most efficiency in memory requirements, requiring about half the memory of the shared bus design. The processing requirement for the shared-memory system adds system complexity that may offset the benefits of the smaller memory. An alternative design using a shared memory buffer per downlink beam decreases circuit complexity through a distributed design, and requires at most 1000 packets of memory more than the completely shared memory design. Modifications to the basic packet switch designs were proposed to accommodate circuit-switched traffic, which must be served on a periodic basis with minimal delay. Methods for dynamically controlling the downlink dwell lengths were developed and analyzed. These methods adapt quickly to changing traffic demands, and do not add significant complexity or cost to the satellite and ground station designs. Methods for reducing the memory requirement by not requiring the satellite to store full packets were also proposed and analyzed. In addition, optimal packet and dwell lengths were computed as functions of memory size for the three switch architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Bahniman, E-mail: bghosh@utexas.edu; Dey, Rik; Register, Leonard F.
2016-07-21
In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated formore » ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.« less
Asymmetric soft-error resistant memory
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Inventor); Perlman, Marvin (Inventor)
1991-01-01
A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code.
Theory of mind and switching predict prospective memory performance in adolescents.
Altgassen, Mareike; Vetter, Nora C; Phillips, Louise H; Akgün, Canan; Kliegel, Matthias
2014-11-01
Research indicates ongoing development of prospective memory as well as theory of mind and executive functions across late childhood and adolescence. However, so far the interplay of these processes has not been investigated. Therefore, the purpose of the current study was to investigate whether theory of mind and executive control processes (specifically updating, switching, and inhibition) predict prospective memory development across adolescence. In total, 42 adolescents and 41 young adults participated in this study. Young adults outperformed adolescents on tasks of prospective memory, theory of mind, and executive functions. Switching and theory of mind predicted prospective memory performance in adolescents. Copyright © 2014 Elsevier Inc. All rights reserved.
Testing system for ferromagnetic shape memory microactuators.
Ganor, Y; Shilo, D; Messier, J; Shield, T W; James, R D
2007-07-01
Ferromagnetic shape memory alloys are a class of smart materials that exhibit a unique combination of large strains and fast response when exposed to magnetic field. Accordingly, these materials have significant potential in motion generation applications such as microactuators and sensors. This article presents a novel experimental system that measures the dynamic magnetomechanical behavior of microscale ferromagnetic shape memory specimens. The system is comprised of an alternating magnetic field generator (AMFG) and a mechanical loading and sensing system. The AMFG generates a dynamic magnetic field that periodically alternates between two orthogonal directions to facilitate martensitic variant switching and to remotely achieve a full magnetic actuation cycle, without the need of mechanical resetting mechanisms. Moreover, the AMFG is designed to produce a magnetic field that inhibits 180 degrees magnetization domain switching, which causes energy loss without strain generation. The mechanical loading and sensing system maintains a constant mechanical load on the measured specimen by means of a cantilever beam, while the displacement is optically monitored with a resolution of approximately 0.1 microm. Preliminary measurements using Ni(2)MnGa single crystal specimens, with a cross section of 100x100 microm(2), verified their large actuation strains and established their potential to become a material of great importance in microactuation technology.
Pendant Allyl Crosslinking as a Tunable Shape Memory Actuator for Vascular Applications
Zachman, Angela L.; Lee, Sue Hyun; Balikov, Daniel A.; Kim, Kwangho; Bellan, Leon M.; Sung, Hak-Joon
2015-01-01
Thermo-responsive shape memory polymers (SMPs) can be fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly( -caprolactone)-co-y%( -allyl carboxylate -caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit high elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. PMID:26072363
Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode
NASA Astrophysics Data System (ADS)
Jang, Byung Chul; Seong, Hyejeong; Kim, Jong Yun; Koo, Beom Jun; Kim, Sung Kyu; Yang, Sang Yoon; Gap Im, Sung; Choi, Sung-Yool
2015-12-01
Filament type resistive random access memory (RRAM) based on polymer thin films is a promising device for next generation, flexible nonvolatile memory. However, the resistive switching nonuniformity and the high power consumption found in the general filament type RRAM devices present critical issues for practical memory applications. Here, we introduce a novel approach not only to reduce the power consumption but also to improve the resistive switching uniformity in RRAM devices based on poly(1,3,5-trimethyl-3,4,5-trivinyl cyclotrisiloxane) by inserting multilayer graphene (MLG) at the electrode/polymer interface. The resistive switching uniformity was thereby significantly improved, and the power consumption was markedly reduced by 250 times. Furthermore, the inserted MLG film enabled a transition of the resistive switching operation from unipolar resistive switching to bipolar resistive switching and induced self-compliance behavior. The findings of this study can pave the way toward a new area of application for graphene in electronic devices.
NASA Astrophysics Data System (ADS)
Huang, Ruomeng; Yan, Xingzhao; Morgan, Katrina A.; Charlton, Martin D. B.; (Kees de Groot, C. H.
2017-05-01
We report here a ZrO2-x /ZrO2-based bilayer resistive switching memory with unique properties that enables the selection of the switching mode by applying different electroforming current compliances. Two opposite polarity modes, positive bipolar and negative bipolar, correspond to the switching in the ZrO2 and ZrO2-x layer, respectively. The ZrO2 layer is proved to be responsible for the negative bipolar mode which is also observed in a ZrO2 single layer device. The oxygen deficient ZrO2-x layer plays the dominant role in the positive bipolar mode, which is exclusive to the bilayer memory. A systematic investigation of the ZrO2-x composition in the bilayer memory suggests that ZrO1.8 layer demonstrates optimum switching performance with low switching voltage, narrow switching voltage distribution and good cycling endurance. An excess of oxygen vacancies, beyond this composition, leads to a deterioration of switching properties. The formation and dissolution of the oxygen vacancy filament model has been proposed to explain both polarity switching behaviours and the improved properties in the bilayer positive bipolar mode are attributed to the confined oxygen vacancy filament size within the ZrO2-x layer.
Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices
NASA Astrophysics Data System (ADS)
Chen, C.; Gao, S.; Zeng, F.; Tang, G. S.; Li, S. Z.; Song, C.; Fu, H. D.; Pan, F.
2013-07-01
Oxides-based resistive switching memory induced by oxygen ions migration is attractive for future nonvolatile memories. Numerous works had focused their attentions on the sandwiched oxide materials for depressing the characteristic variations, but the comprehensive studies of the dependence of electrodes on the migration behavior of oxygen ions are overshadowed. Here, we investigated the interaction of various metals (Ni, Co, Al, Ti, Zr, and Hf) with oxygen atoms at the metal/Ta2O5 interface under electric stress and explored the effect of top electrode on the characteristic variations of Ta2O5-based memory device. It is demonstrated that chemically inert electrodes (Ni and Co) lead to the scattering switching characteristics and destructive gas bubbles, while the highly chemically active metals (Hf and Zr) formed a thick and dense interfacial intermediate oxide layer at the metal/Ta2O5 interface, which also degraded the resistive switching behavior. The relatively chemically active metals (Al and Ti) can absorb oxygen ions from the Ta2O5 film and avoid forming the problematic interfacial layer, which is benefit to the formation of oxygen vacancies composed conduction filaments in Ta2O5 film thus exhibit the minimum variations of switching characteristics. The clarification of oxygen ions migration behavior at the interface can lead further optimization of resistive switching performance in Ta2O5-based memory device and guide the rule of electrode selection for other oxide-based resistive switching memories.
Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory
NASA Astrophysics Data System (ADS)
Sun, Jonathan Z.
2016-10-01
Spin-transfer torque (or spin-torque, or STT) based magnetic tunnel junction (MTJ) is at the heart of a new generation of magnetism-based solid-state memory, the so-called spin-transfer-torque magnetic random access memory, or STT-MRAM. Over the past decades, STT-based switchable magnetic tunnel junction has seen progress on many fronts, including the discovery of (001) MgO as the most favored tunnel barrier, which together with (bcc) Fe or FeCo alloy are yielding best demonstrated tunnel magneto-resistance (TMR); the development of perpendicularly magnetized ultrathin CoFeB-type of thin films sufficient to support high density memories with junction sizes demonstrated down to 11nm in diameter; and record-low spin-torque switching threshold current, giving best reported switching efficiency over 5 kBT/μA. Here we review the basic device properties focusing on the perpendicularly magnetized MTJs, both in terms of switching efficiency as measured by sub-threshold, quasi-static methods, and of switching speed at super-threshold, forced switching. We focus on device behaviors important for memory applications that are rooted in fundamental device physics, which highlights the trade-off of device parameters for best suitable system integration.
Gade, Miriam; Souza, Alessandra S; Druey, Michel D; Oberauer, Klaus
2017-01-01
Working memory (WM) holds and manipulates representations for ongoing cognition. Oberauer (Psychology of Learning and Motivation, 51, 45-100, 2009) distinguishes between two analogous WM sub-systems: a declarative WM which handles the objects of thought, and a procedural WM which handles the representations of (cognitive) actions. Here, we assessed whether analogous effects are observed when participants switch between memory sets (declarative representations) and when they switch between task sets (procedural representations). One mechanism assumed to facilitate switching in procedural WM is the inhibition of previously used, but currently irrelevant task sets, as indexed by n-2 task-repetition costs (Mayr & Keele, Journal of Experimental Psychology: General, 129(1), 4-26, 2000). In this study we tested for an analogous effect in declarative WM. We assessed the evidence for n-2 list-repetition costs across eight experiments in which participants switched between memory lists to perform speeded classifications, mental arithmetic, or a local recognition test. N-2 list-repetition costs were obtained consistently in conditions assumed to increase interference between memory lists, and when lists formed chunks in long-term memory. Further analyses across experiments revealed a substantial contribution of episodic memory to n-2 list-repetition costs, thereby questioning the interpretation of n-2 repetition costs as reflecting inhibition. We reanalyzed the data of eight task-switching experiments, and observed that episodic memory also contributes to n-2 task-repetition costs. Taken together, these results show analogous processing principles in declarative and procedural WM, and question the relevance of inhibitory processes for efficient switching between mental sets.
Spiers Memorial Lecture. Molecular mechanics and molecular electronics.
Beckman, Robert; Beverly, Kris; Boukai, Akram; Bunimovich, Yuri; Choi, Jang Wook; DeIonno, Erica; Green, Johnny; Johnston-Halperin, Ezekiel; Luo, Yi; Sheriff, Bonnie; Stoddart, Fraser; Heath, James R
2006-01-01
We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits.
From dead leaves to sustainable organic resistive switching memory.
Sun, Bai; Zhu, Shouhui; Mao, Shuangsuo; Zheng, Pingping; Xia, Yudong; Yang, Feng; Lei, Ming; Zhao, Yong
2018-03-01
An environmental-friendly, sustainable, pollution-free, biodegradable, flexible and wearable electronic device hold advanced potential applications. Here, an organic resistive switching memory device with Ag/Leaves/Ti/PET structure on a flexible polyethylene terephthalate (PET) substrate was fabricated for the first time. We observed an obvious resistive switching memory characteristic with large switching resistance ratio and stable cycle performance at room temperature. This work demonstrates that leaves, a useless waste, can be properly treated to make useful devices. Furthermore, the as-fabricated devices can be degraded naturally without damage to the environment. Copyright © 2017 Elsevier Inc. All rights reserved.
Further evidence for a deficit in switching attention in schizophrenia.
Smith, G L; Large, M M; Kavanagh, D J; Karayanidis, F; Barrett, N A; Michie, P T; O'Sullivan, B T
1998-08-01
In this study, sustained, selective, divided, and switching attention, and reloading of working memory were investigated in schizophrenia by using a newly developed Visual Attention Battery (VAB). Twenty-four outpatients with schizophrenia and 24 control participants were studied using the VAB. Performance on VAB components was correlated with performance of standard tests. Patients with schizophrenia were significantly impaired on VAB tasks that required switching of attention and reloading of working memory but had normal performance on tasks involving sustained attention or attention to multiple stimulus features. Switching attention and reloading of working memory were highly correlated with Trails (B-A) score for patients. The decline in performance on the switching-attention task in patients with schizophrenia met criteria for a differential deficit in switching attention. Future research should examine the neurophysiological basis of the switching deficit and its sensitivity and specificity to schizophrenia.
Development of Curie point switching for thin film, random access, memory device
NASA Technical Reports Server (NTRS)
Lewicki, G. W.; Tchernev, D. I.
1967-01-01
Managanese bismuthide films are used in the development of a random access memory device of high packing density and nondestructive readout capability. Memory entry is by Curie point switching using a laser beam. Readout is accomplished by microoptical or micromagnetic scanning.
Switching kinetics of SiC resistive memory for harsh environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, K. A., E-mail: kam2g11@soton.ac.uk; Huang, R.; Groot, C. H. de
2015-07-15
Cu/a-SiC/Au resistive memory cells are measured using voltage pulses and exhibit the highest R{sub OFF}/R{sub ON} ratio recorded for any resistive memory. The switching kinetics are investigated and fitted to a numerical model, using thermal conductivity and resistivity properties of the dielectric. The SET mechanism of the Cu/a-SiC/Au memory cells is found to be due to ionic motion without joule heating contributions, whereas the RESET mechanism is found to be due to thermally assisted ionic motion. The conductive filament diameter is extracted to be around 4nm. The high thermal conductivity and resistivity for the Cu/a-SiC/Au memory cells result in slowmore » switching but with high thermal reliability and stability, showing potential for use in harsh environments. Radiation properties of SiC memory cells are investigated. No change was seen in DC sweep or pulsed switching nor in conductive mechanisms, up to 2Mrad(Si) using {sup 60}Co gamma irradiation.« less
Switch Transcripts in Immunoglobulin Class Switching
NASA Astrophysics Data System (ADS)
Lorenz, Matthias; Jung, Steffen; Radbruch, Andreas
1995-03-01
B cells can exchange gene segments for the constant region of the immunoglobulin heavy chain, altering the class and effector function of the antibodies that they produce. Class switching is directed to distinct classes by cytokines, which induce transcription of the targeted DNA sequences. These transcripts are processed, resulting in spliced "switch" transcripts. Switch recombination can be directed to immunoglobulin G1 (IgG1) by the heterologous human metallothionein II_A promoter in mutant mice. Induction of the structurally conserved, spliced switch transcripts is sufficient to target switch recombination to IgG1, whereas transcription alone is not.
Li, Yingtao; Yuan, Peng; Fu, Liping; Li, Rongrong; Gao, Xiaoping; Tao, Chunlan
2015-10-02
Diode-like volatile resistive switching as well as nonvolatile resistive switching behaviors in a Cu/ZrO₂/TiO₂/Ti stack are investigated. Depending on the current compliance during the electroforming process, either volatile resistive switching or nonvolatile resistive switching is observed. With a lower current compliance (<10 μA), the Cu/ZrO₂/TiO₂/Ti device exhibits diode-like volatile resistive switching with a rectifying ratio over 10(6). The permanent transition from volatile to nonvolatile resistive switching can be obtained by applying a higher current compliance of 100 μA. Furthermore, by using different reset voltages, the Cu/ZrO₂/TiO₂/Ti device exhibits multilevel memory characteristics with high uniformity. The coexistence of nonvolatile multilevel memory and diode-like volatile resistive switching behaviors in the same Cu/ZrO₂/TiO₂/Ti device opens areas of applications in high-density storage, logic circuits, neural networks, and passive crossbar memory selectors.
Real-time associative memory with photorefractive crystal KNSBN and liquid-crystal optical switches
NASA Astrophysics Data System (ADS)
Xu, Haiying; Yuan, Yang Y.; Yu, Youlong; Xu, Kebin; Xu, Yuhuan; Zhu, De-Rui
1990-05-01
We present a real-time holographic associative memory implemented with photorefractive KNSBN : Co crystal as memory element and liquid crystal electrooptical switches as reflective thresholding device. The experimental results show that the system has real-time multiple-image storage and recall function.
Time limits during visual foraging reveal flexible working memory templates.
Kristjánsson, Tómas; Thornton, Ian M; Kristjánsson, Árni
2018-06-01
During difficult foraging tasks, humans rarely switch between target categories, but switch frequently during easier foraging. Does this reflect fundamental limits on visual working memory (VWM) capacity or simply strategic choice due to effort? Our participants performed time-limited or unlimited foraging tasks where they tapped stimuli from 2 target categories while avoiding items from 2 distractor categories. These time limits should have no effect if capacity imposes limits on VWM representations but more flexible VWM could allow observers to use VWM according to task demands in each case. We found that with time limits, participants switched more frequently and switch-costs became much smaller than during unlimited foraging. Observers can therefore switch between complex (conjunction) target categories when needed. We propose that while maintaining many complex templates in working memory is effortful and observers avoid this, they can do so if this fits task demands, showing the flexibility of working memory representations used for visual exploration. This is in contrast with recent proposals, and we discuss the implications of these findings for theoretical accounts of working memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Avalanche atomic switching in strain engineered Sb2Te3-GeTe interfacial phase-change memory cells
NASA Astrophysics Data System (ADS)
Zhou, Xilin; Behera, Jitendra K.; Lv, Shilong; Wu, Liangcai; Song, Zhitang; Simpson, Robert E.
2017-09-01
By confining phase transitions to the nanoscale interface between two different crystals, interfacial phase change memory heterostructures represent the state of the art for energy efficient data storage. We present the effect of strain engineering on the electrical switching performance of the {{Sb}}2{{Te}}3-GeTe superlattice van der Waals devices. Multiple Ge atoms switching through a two-dimensional Te layer reduces the activation barrier for further atoms to switch; an effect that can be enhanced by biaxial strain. The out-of-plane phonon mode of the GeTe crystal remains active in the superlattice heterostructures. The large in-plane biaxial strain imposed by the {{Sb}}2{{Te}}3 layers on the GeTe layers substantially improves the switching speed, reset energy, and cyclability of the superlattice memory devices. Moreover, carefully controlling residual stress in the layers of {{Sb}}2{{Te}}3-GeTe interfacial phase change memories provides a new degree of freedom to design the properties of functional superlattice structures for memory and photonics applications.
Non-volatile resistive switching in the Mott insulator (V1-xCrx)2O3
NASA Astrophysics Data System (ADS)
Querré, M.; Tranchant, J.; Corraze, B.; Cordier, S.; Bouquet, V.; Députier, S.; Guilloux-Viry, M.; Besland, M.-P.; Janod, E.; Cario, L.
2018-05-01
The discovery of non-volatile resistive switching in Mott insulators related to an electric-field-induced insulator to metal transition (IMT) has paved the way for their use in a new type of non-volatile memories, the Mott memories. While most of the previous studies were dedicated to uncover the resistive switching mechanism and explore the memory potential of chalcogenide Mott insulators, we present here a comprehensive study of resistive switching in the canonical oxide Mott insulator (V1-xCrx)2O3. Our work demonstrates that this compound undergoes a non-volatile resistive switching under electric field. This resistive switching is induced by a Mott transition at the local scale which creates metallic domains closely related to existing phases of the temperature-pressure phase diagram of (V1-xCrx)2O3. Our work demonstrates also reversible resistive switching in (V1-xCrx)2O3 crystals and thin film devices. Preliminary performances obtained on 880 nm thick layers with 500 nm electrodes show the strong potential of Mott memories based on the Mott insulator (V1-xCrx)2O3.
Low-power embedded read-only memory using atom switch and silicon-on-thin-buried-oxide transistor
NASA Astrophysics Data System (ADS)
Sakamoto, Toshitsugu; Tada, Munehiro; Tsuji, Yukihide; Makiyama, Hideki; Hasegawa, Takumi; Yamamoto, Yoshiki; Okanishi, Shinobu; Banno, Naoki; Miyamura, Makoto; Okamoto, Koichiro; Iguchi, Noriyuki; Ogasahara, Yasuhiro; Oda, Hidekazu; Kamohara, Shiro; Yamagata, Yasushi; Sugii, Nobuyuki; Hada, Hiromitsu
2015-04-01
We developed an atom-switch read-only memory (ROM) fabricated on silicon-on-thin-buried-oxide (SOTB) for use in a low-power microcontroller for the first time. An atom switch with a low programming voltage and large ON/OFF conductance ratio is suitable for low-power nonvolatile memory. The atom-switch ROM using an SOTB transistor uses a 0.34-1.2 V operating voltage and 12 µA/MHz active current (or 4.5 µW/MHz active power). Furthermore, the sleep current is as low as 0.4 µA when a body bias voltage is applied to the SOTB.
Class E/F switching power amplifiers
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Aoki, Ichiro (Inventor); Rutledge, David B. (Inventor); Kee, Scott David (Inventor)
2004-01-01
The present invention discloses a new family of switching amplifier classes called class E/F amplifiers. These amplifiers are generally characterized by their use of the zero-voltage-switching (ZVS) phase correction technique to eliminate of the loss normally associated with the inherent capacitance of the switching device as utilized in class-E amplifiers, together with a load network for improved voltage and current wave-shaping by presenting class-F.sup.-1 impedances at selected overtones and class-E impedances at the remaining overtones. The present invention discloses a several topologies and specific circuit implementations for achieving such performance.
Switching behavior of resistive change memory using oxide nanowires
NASA Astrophysics Data System (ADS)
Aono, Takashige; Sugawa, Kosuke; Shimizu, Tomohiro; Shingubara, Shoso; Takase, Kouichi
2018-06-01
Resistive change random access memory (ReRAM), which is expected to be the next-generation nonvolatile memory, often has wide switching voltage distributions due to many kinds of conductive filaments. In this study, we have tried to suppress the distribution through the structural restriction of the filament-forming area using NiO nanowires. The capacitor with Ni metal nanowires whose surface is oxidized showed good switching behaviors with narrow distributions. The knowledge gained from our study will be very helpful in producing practical ReRAM devices.
Park, Woon Ik; Kim, Jong Min; Jeong, Jae Won; ...
2015-03-17
Phase change memory (PCM) is one of the most promising candidates for next-generation nonvolatile memory devices because of its high speed, excellent reliability, and outstanding scalability. But, the high switching current of PCM devices has been a critical hurdle to realize low-power operation. Although one solution is to reduce the switching volume of the memory, the resolution limit of photolithography hinders further miniaturization of device dimensions. Here, we employed unconventional self-assembly geometries obtained from blends of block copolymers (BCPs) to form ring-shaped hollow PCM nanostructures with an ultrasmall contact area between a phase-change material (Ge 2Sb 2Te 5) and amore » heater (TiN) electrode. The high-density (approximately 0.1 terabits per square inch) PCM nanoring arrays showed extremely small switching current of 2-3 mu A. Furthermore, the relatively small reset current of the ring-shaped PCM compared to the pillar-shaped devices is attributed to smaller switching volume, which is well supported by electro-thermal simulation results. Our approach may also be extended to other nonvolatile memory device applications such as resistive switching memory and magnetic storage devices, where the control of nanoscale geometry can significantly affect device performances.« less
Gao, Shuang; Liu, Gang; Chen, Qilai; Xue, Wuhong; Yang, Huali; Shang, Jie; Chen, Bin; Zeng, Fei; Song, Cheng; Pan, Feng; Li, Run-Wei
2018-02-21
Resistive random access memory (RRAM) with inherent logic-in-memory capability exhibits great potential to construct beyond von-Neumann computers. Particularly, unipolar RRAM is more promising because its single polarity operation enables large-scale crossbar logic-in-memory circuits with the highest integration density and simpler peripheral control circuits. However, unipolar RRAM usually exhibits poor switching uniformity because of random activation of conducting filaments and consequently cannot meet the strict uniformity requirement for logic-in-memory application. In this contribution, a new methodology that constructs cone-shaped conducting filaments by using chemically a active metal cathode is proposed to improve unipolar switching uniformity. Such a peculiar metal cathode will react spontaneously with the oxide switching layer to form an interfacial layer, which together with the metal cathode itself can act as a load resistor to prevent the overgrowth of conducting filaments and thus make them more cone-like. In this way, the rupture of conducting filaments can be strictly limited to the tip region, making their residual parts favorable locations for subsequent filament growth and thus suppressing their random regeneration. As such, a novel "one switch + one unipolar RRAM cell" hybrid structure is capable to realize all 16 Boolean logic functions for large-scale logic-in-memory circuits.
Binary synaptic connections based on memory switching in a-Si:H for artificial neural networks
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Lamb, J. L.; Moopenn, A.; Khanna, S. K.
1987-01-01
A scheme for nonvolatile associative electronic memory storage with high information storage density is proposed which is based on neural network models and which uses a matrix of two-terminal passive interconnections (synapses). It is noted that the massive parallelism in the architecture would require the ON state of a synaptic connection to be unusually weak (highly resistive). Memory switching using a-Si:H along with ballast resistors patterned from amorphous Ge-metal alloys is investigated for a binary programmable read only memory matrix. The fabrication of a 1600 synapse test array of uniform connection strengths and a-Si:H switching elements is discussed.
NASA Astrophysics Data System (ADS)
Choi, Shinhyun; Tan, Scott H.; Li, Zefan; Kim, Yunjo; Choi, Chanyeol; Chen, Pai-Yu; Yeon, Hanwool; Yu, Shimeng; Kim, Jeehwan
2018-01-01
Although several types of architecture combining memory cells and transistors have been used to demonstrate artificial synaptic arrays, they usually present limited scalability and high power consumption. Transistor-free analog switching devices may overcome these limitations, yet the typical switching process they rely on—formation of filaments in an amorphous medium—is not easily controlled and hence hampers the spatial and temporal reproducibility of the performance. Here, we demonstrate analog resistive switching devices that possess desired characteristics for neuromorphic computing networks with minimal performance variations using a single-crystalline SiGe layer epitaxially grown on Si as a switching medium. Such epitaxial random access memories utilize threading dislocations in SiGe to confine metal filaments in a defined, one-dimensional channel. This confinement results in drastically enhanced switching uniformity and long retention/high endurance with a high analog on/off ratio. Simulations using the MNIST handwritten recognition data set prove that epitaxial random access memories can operate with an online learning accuracy of 95.1%.
NASA Astrophysics Data System (ADS)
Banerjee, Bibaswan
In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes in the loads for the example case.
NASA Astrophysics Data System (ADS)
Otsuka, Shintaro; Takeda, Ryouta; Furuya, Saeko; Shimizu, Tomohiro; Shingubara, Shouso; Iwata, Nobuyuki; Watanabe, Tadataka; Takano, Yoshiki; Takase, Kouichi
2012-06-01
We have investigated the current-voltage characteristics of a resistive switching memory (ReRAM), especially the reproducibility of the switching voltage between an insulating state and a metallic state. The poor reproducibility hinders the practical use of this memory. According to a filament model, the variation of the switching voltage may be understood in terms of the random choice of filaments with different conductivities and lengths at each switching. A limitation of the number of conductive paths is expected to lead to the suppression of the variation of switching voltage. In this study, two strategies for the limitation have been proposed using an anodic porous alumina (APA). The first is the reduction of the number of conductive paths by restriction of the contact area between the top electrodes and the insulator. The second is the lowering of the resistivity of the insulator, which makes it possible to grow filaments with the same characteristics by electrochemical treatments using a pulse-electroplating technique.
Inverse Resistance Change Cr2Ge2Te6-Based PCRAM Enabling Ultralow-Energy Amorphization.
Hatayama, Shogo; Sutou, Yuji; Shindo, Satoshi; Saito, Yuta; Song, Yun-Heub; Ando, Daisuke; Koike, Junichi
2018-01-24
Phase-change random access memory (PCRAM) has attracted much attention for next-generation nonvolatile memory that can replace flash memory and can be used for storage-class memory. Generally, PCRAM relies on the change in the electrical resistance of a phase-change material between high-resistance amorphous (reset) and low-resistance crystalline (set) states. Herein, we present an inverse resistance change PCRAM with Cr 2 Ge 2 Te 6 (CrGT) that shows a high-resistance crystalline reset state and a low-resistance amorphous set state. The inverse resistance change was found to be due to a drastic decrease in the carrier density upon crystallization, which causes a large increase in contact resistivity between CrGT and the electrode. The CrGT memory cell was demonstrated to show fast reversible resistance switching with a much lower operating energy for amorphization than a Ge 2 Sb 2 Te 5 memory cell. This low operating energy in CrGT should be due to a small programmed amorphous volume, which can be realized by a high-resistance crystalline matrix and a dominant contact resistance. Simultaneously, CrGT can break the trade-off relationship between the crystallization temperature and operating speed.
Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories
NASA Astrophysics Data System (ADS)
Möller, Sven; Forrest, Stephen R.; Perlov, Craig; Jackson, Warren; Taussig, Carl
2003-12-01
We demonstrate a nonvolatile, write-once-read-many-times (WORM) memory device employing a hybrid organic/inorganic semiconductor architecture consisting of thin film p-i-n silicon diode on a stainless steel substrate integrated in series with a conductive polymer fuse. The nonlinearity of the silicon diodes enables a passive matrix memory architecture, while the conductive polyethylenedioxythiophene:polystyrene sulfonic acid polymer serves as a reliable switch with fuse-like behavior for data storage. The polymer can be switched at ˜2 μs, resulting in a permanent decrease of conductivity of the memory pixel by up to a factor of 103. The switching mechanism is primarily due to a current and thermally dependent redox reaction in the polymer, limited by the double injection of both holes and electrons. The switched device performance does not degrade after many thousand read cycles in ambient at room temperature. Our results suggest that low cost, organic/inorganic WORM memories are feasible for light weight, high density, robust, and fast archival storage applications.
Hwang, Bohee; Lee, Jang-Sik
2017-08-01
The demand for high memory density has increased due to increasing needs of information storage, such as big data processing and the Internet of Things. Organic-inorganic perovskite materials that show nonvolatile resistive switching memory properties have potential applications as the resistive switching layer for next-generation memory devices, but, for practical applications, these materials should be utilized in high-density data-storage devices. Here, nanoscale memory devices are fabricated by sequential vapor deposition of organolead halide perovskite (OHP) CH 3 NH 3 PbI 3 layers on wafers perforated with 250 nm via-holes. These devices have bipolar resistive switching properties, and show low-voltage operation, fast switching speed (200 ns), good endurance, and data-retention time >10 5 s. Moreover, the use of sequential vapor deposition is extended to deposit CH 3 NH 3 PbI 3 as the memory element in a cross-point array structure. This method to fabricate high-density memory devices could be used for memory cells that occupy large areas, and to overcome the scaling limit of existing methods; it also presents a way to use OHPs to increase memory storage capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Active counter electrode in a-SiC electrochemical metallization memory
NASA Astrophysics Data System (ADS)
Morgan, K. A.; Fan, J.; Huang, R.; Zhong, L.; Gowers, R.; Ou, J. Y.; Jiang, L.; De Groot, C. H.
2017-08-01
Cu/amorphous-SiC (a-SiC) electrochemical metallization memory cells have been fabricated with two different counter electrode (CE) materials, W and Au, in order to investigate the role of CEs in a non-oxide semiconductor switching matrix. In a positive bipolar regime with Cu filaments forming and rupturing, the CE influences the OFF state resistance and minimum current compliance. Nevertheless, a similarity in SET kinetics is seen for both CEs, which differs from previously published SiO2 memories, confirming that CE effects are dependent on the switching layer material or type. Both a-SiC memories are able to switch in the negative bipolar regime, indicating Au and W filaments. This confirms that CEs can play an active role in a non-oxide semiconducting switching matrix, such as a-SiC. By comparing both Au and W CEs, this work shows that W is superior in terms of a higher R OFF/R ON ratio, along with the ability to switch at lower current compliances making it a favourable material for future low energy applications. With its CMOS compatibility, a-SiC/W is an excellent choice for future resistive memory applications.
Investigation of resistive switching behaviours in WO3-based RRAM devices
NASA Astrophysics Data System (ADS)
Li, Ying-Tao; Long, Shi-Bing; Lü, Hang-Bing; Liu, Qi; Wang, Qin; Wang, Yan; Zhang, Sen; Lian, Wen-Tai; Liu, Su; Liu, Ming
2011-01-01
In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room temperature. The reproducible resistive switching, low power consumption, multilevel storage possibility, and good data retention characteristics demonstrate that the Cu/WO3/Pt memory device is very promising for future nonvolatile memory applications. The formation and rupture of localised conductive filaments is suggested to be responsible for the observed resistive switching behaviours.
Electrical studies of Ge4Sb1Te5 devices for memory applications
NASA Astrophysics Data System (ADS)
Sangeetha, B. G.; Shylashree, N.
2018-05-01
In this paper, the Ge4Sb1Te5 thin film device preparation and electrical studies for memory devices were carried out. The device was deposited using vapor-evaporation technique. RESET to SET state switching was shown using current-voltage characterization. The current-voltage characterization shows the switching between SET to RESET state and it was found that it requires a low energy for transition. Switching between amorphous to crystalline nature was studied using resistance-voltage characteristics. The endurance showed the effective use of this composition for memory device.
Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.
Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F
2017-03-01
Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP + memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP + memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation. © 2016 John Wiley & Sons Ltd.
Marasco, Emiliano; Aquilani, Angela; Cascioli, Simona; Moneta, Gian Marco; Caiello, Ivan; Farroni, Chiara; Giorda, Ezio; D'Oria, Valentina; Marafon, Denise Pires; Magni-Manzoni, Silvia; Carsetti, Rita; De Benedetti, Fabrizio
2018-04-01
To investigate whether abnormalities in B cell subsets in patients with juvenile idiopathic arthritis (JIA) correlate with clinical features and response to treatment. A total of 109 patients diagnosed as having oligoarticular JIA or polyarticular JIA were enrolled in the study. B cell subsets in peripheral blood and synovial fluid were analyzed by flow cytometry. Switched memory B cells were significantly increased in patients compared to age-matched healthy controls (P < 0.0001). When patients were divided according to age at onset of JIA, in patients with early-onset disease (presenting before age 6 years) the expansion in switched memory B cells was more pronounced than that in patients with late-onset disease and persisted throughout the disease course. In longitudinal studies, during methotrexate (MTX) treatment, regardless of the presence or absence of active disease, the number of switched memory B cells increased significantly (median change from baseline 36% [interquartile range {IQR} 15, 66]). During treatment with MTX plus tumor necrosis factor inhibitors (TNFi), in patients maintaining disease remission, the increase in switched memory B cells was significantly lower than that in patients who experienced active disease (median change from baseline 4% [IQR -6, 32] versus 41% [IQR 11, 73]; P = 0.004). The yearly rate of increases in switched memory B cells was 1.5% in healthy controls, 1.2% in patients who maintained remission during treatment with MTX plus TNFi, 4.7% in patients who experienced active disease during treatment with MTX plus TNFi, and ~4% in patients treated with MTX alone. Switched memory B cells expand during the disease course at a faster rate in JIA patients than in healthy children. This increase is more evident in patients with early-onset JIA. TNFi treatment inhibits this increase in patients who achieve and maintain remission, but not in those with active disease. © 2018, American College of Rheumatology.
Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu
2017-12-01
Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag 5 In 5 Sb 60 Te 30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.
NASA Astrophysics Data System (ADS)
Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu
2017-12-01
Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag5In5Sb60Te30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.
DIODE STEERED MANGETIC-CORE MEMORY
Melmed, A.S.; Shevlin, R.T.; Laupheimer, R.
1962-09-18
A word-arranged magnetic-core memory is designed for use in a digital computer utilizing the reverse or back current property of the semi-conductor diodes to restore the information in the memory after read-out. In order to ob tain a read-out signal from a magnetic core storage unit, it is necessary to change the states of some of the magnetic cores. In order to retain the information in the memory after read-out it is then necessary to provide a means to return the switched cores to their states before read-out. A rewrite driver passes a pulse back through each row of cores in which some switching has taken place. This pulse combines with the reverse current pulses of diodes for each column in which a core is switched during read-out to cause the particular cores to be switched back into their states prior to read-out. (AEC)
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Lee, Chang Bum; Lee, Dongsoo; Lee, Seung Ryul; Chang, Man; Hur, Ji Hyun; Kim, Young-Bae; Kim, Chang-Jung; Seo, David H.; Seo, Sunae; Chung, U.-In; Yoo, In-Kyeong; Kim, Kinam
2011-08-01
Numerous candidates attempting to replace Si-based flash memory have failed for a variety of reasons over the years. Oxide-based resistance memory and the related memristor have succeeded in surpassing the specifications for a number of device requirements. However, a material or device structure that satisfies high-density, switching-speed, endurance, retention and most importantly power-consumption criteria has yet to be announced. In this work we demonstrate a TaOx-based asymmetric passive switching device with which we were able to localize resistance switching and satisfy all aforementioned requirements. In particular, the reduction of switching current drastically reduces power consumption and results in extreme cycling endurances of over 1012. Along with the 10 ns switching times, this allows for possible applications to the working-memory space as well. Furthermore, by combining two such devices each with an intrinsic Schottky barrier we eliminate any need for a discrete transistor or diode in solving issues of stray leakage current paths in high-density crossbar arrays.
Lendínez, Cristina; Pelegrina, Santiago; Lechuga, M Teresa
2015-05-01
Working memory updating (WMU) tasks require different elements in working memory (WM) to be maintained simultaneously, accessing one of these elements, and substituting its content. This study examined possible developmental changes from childhood to adulthood both in focus switching and substituting information in WM. In addition, possible age-related changes in interference due to representational overlap between the different elements simultaneously held in these tasks were examined. Children (8- and 11-year-olds), adolescents (14-year-olds) and younger adults (mean age=22 years) were administered a numerical updating memory task, in which updating and focus switching were manipulated. As expected, response times decreased and recall performance increased with age. More importantly, the time needed for focus switching was longer in children than in adolescents and younger adults. On the other hand, substitution of information and interference due to representational overlap were not affected by age. These results suggest that age-related changes in focus switching might mediate developmental changes in WMU performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Draheim, Christopher; Hicks, Kenny L; Engle, Randall W
2016-01-01
It is generally agreed upon that the mechanisms underlying task switching heavily depend on working memory, yet numerous studies have failed to show a strong relationship between working memory capacity (WMC) and task-switching ability. We argue that this relationship does indeed exist but that the dependent variable used to measure task switching is problematic. To support our claim, we reanalyzed data from two studies with a new scoring procedure that combines reaction time (RT) and accuracy into a single score. The reanalysis revealed a strong relationship between task switching and WMC that was not present when RT-based switch costs were used as the dependent variable. We discuss the theoretical implications of this finding along with the potential uses and limitations of the scoring procedure we used. More broadly, we emphasize the importance of using measures that incorporate speed and accuracy in other areas of research, particularly in comparisons of subjects differing in cognitive and developmental levels. © The Author(s) 2015.
Method of pedestal and common-mode noise correction for switched-capacitor analog memories
Britton, Charles L.
1997-01-01
A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.
Method of pedestal and common-mode noise correction for switched-capacitor analog memories
Britton, Charles L.
1996-01-01
A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.
NASA Astrophysics Data System (ADS)
Xu, Haiying; Yuan, Yang; Yu, Youlong; Xu, Kebin; Xu, Yuhuan
1990-08-01
This paper presents a real time holographic associative memory implemented with photorefractive KNSBN:Co crystal as the memory element and a liquid crystal electrooptic switch array as the reflective thresholding device. The experiment stores and recalls two images and shows that the system has real-time multiple-image storage and recall functions. An associative memory with a dynamic threshold level to decide the closest match of an incomplete input is proposed.
A graphene integrated highly transparent resistive switching memory device
NASA Astrophysics Data System (ADS)
Dugu, Sita; Pavunny, Shojan P.; Limbu, Tej B.; Weiner, Brad R.; Morell, Gerardo; Katiyar, Ram S.
2018-05-01
We demonstrate the hybrid fabrication process of a graphene integrated highly transparent resistive random-access memory (TRRAM) device. The indium tin oxide (ITO)/Al2O3/graphene nonvolatile memory device possesses a high transmittance of >82% in the visible region (370-700 nm) and exhibits stable and non-symmetrical bipolar switching characteristics with considerably low set and reset voltages (<±1 V). The vertical two-terminal device shows an excellent resistive switching behavior with a high on-off ratio of ˜5 × 103. We also fabricated a ITO/Al2O3/Pt device and studied its switching characteristics for comparison and a better understanding of the ITO/Al2O3/graphene device characteristics. The conduction mechanisms in high and low resistance states were analyzed, and the observed polarity dependent resistive switching is explained based on electro-migration of oxygen ions.
CREB and the discovery of cognitive enhancers.
Scott, Roderick; Bourtchuladze, Rusiko; Gossweiler, Scott; Dubnau, Josh; Tully, Tim
2002-01-01
In the past few years, a series of molecular-genetic, biochemical, cellular and behavioral studies in fruit flies, sea slugs and mice have confirmed a long-standing notion that long-term memory formation depends on the synthesis of new proteins. Experiments focused on the cAMP-responsive transcription factor, CREB, have established that neural activity-induced regulation of gene transcription promotes a synaptic growth process that strengthens the connections among active neurons. This process constitutes a physical basis for the engram--and CREB is a "molecular switch" to produce the engram. Helicon Therapeutics has been formed to identify drug compounds that enhance memory formation via augmentation of CREB biochemistry. Candidate compounds have been identified from a high throughput cell-based screen and are being evaluated in animal models of memory formation. A gene discovery program also seeks to identify new genes, which function downstream of CREB during memory formation, as a source for new drug discoveries in the future. Together, these drug and gene discovery efforts promise new class of pharmaceutical therapies for the treatment of various forms of cognitive dysfunction.
NASA Astrophysics Data System (ADS)
Shukla, Krishna Dayal; Saxena, Nishant; Durai, Suresh; Manivannan, Anbarasu
2016-11-01
Although phase-change memory (PCM) offers promising features for a ‘universal memory’ owing to high-speed and non-volatility, achieving fast electrical switching remains a key challenge. In this work, a correlation between the rate of applied voltage and the dynamics of threshold-switching is investigated at picosecond-timescale. A distinct characteristic feature of enabling a rapid threshold-switching at a critical voltage known as the threshold voltage as validated by an instantaneous response of steep current rise from an amorphous off to on state is achieved within 250 picoseconds and this is followed by a slower current rise leading to crystallization. Also, we demonstrate that the extraordinary nature of threshold-switching dynamics in AgInSbTe cells is independent to the rate of applied voltage unlike other chalcogenide-based phase change materials exhibiting the voltage dependent transient switching characteristics. Furthermore, numerical solutions of time-dependent conduction process validate the experimental results, which reveal the electronic nature of threshold-switching. These findings of steep threshold-switching of ‘sub-50 ps delay time’, opens up a new way for achieving high-speed non-volatile memory for mainstream computing.
NASA Astrophysics Data System (ADS)
Smith, Shawn; Forrest, Stephen R.
2004-06-01
We present a simple, nonvolatile, write-once-read-many-times (WORM) memory device utilizing an organic-on-inorganic heterojunction (OI-HJ) diode with a conductive polymer fuse consisting of polyethylene dioxythiophene:polysterene sulfonic acid (PEDOT:PSS) forming one side of the rectifying junction. Current transients are used to change the fuse from a conducting to a nonconducting state to record a logical "1" or "0", while the nonlinearity of the OI-HJ allows for passive matrix memory addressing. The device switches at 2 and 4 V for 50 nm thick PEDOT:PSS films on p-type Si and n-type Si, respectively. This is significantly lower than the switching voltage used in PEDOT:PSS/p-i-n Si memory elements [J. Appl Phys. 94, 7811 (2003)]. The switching results in a permanent reduction of forward-bias current by approximately five orders of magnitude. These results suggest that the OI-HJ structure has potential for use in low-cost passive matrix WORM memories for archival storage applications.
Acharya, Susant Kumar; Jo, Janghyun; Raveendra, Nallagatlla Venkata; Dash, Umasankar; Kim, Miyoung; Baik, Hionsuck; Lee, Sangik; Park, Bae Ho; Lee, Jae Sung; Chae, Seung Chul; Hwang, Cheol Seong; Jung, Chang Uk
2017-07-27
An oxide-based resistance memory is a leading candidate to replace Si-based flash memory as it meets the emerging specifications for future memory devices. The non-uniformity in the key switching parameters and low endurance in conventional resistance memory devices are preventing its practical application. Here, a novel strategy to overcome the aforementioned challenges has been unveiled by tuning the growth direction of epitaxial brownmillerite SrFeO 2.5 thin films along the SrTiO 3 [111] direction so that the oxygen vacancy channels can connect both the top and bottom electrodes rather directly. The controlled oxygen vacancy channels help reduce the randomness of the conducting filament (CF). The resulting device displayed high endurance over 10 6 cycles, and a short switching time of ∼10 ns. In addition, the device showed very high uniformity in the key switching parameters for device-to-device and within a device. This work demonstrates a feasible example for improving the nanoscale device performance by controlling the atomic structure of a functional oxide layer.
Self-assembled phase-change nanowire for nonvolatile electronic memory
NASA Astrophysics Data System (ADS)
Jung, Yeonwoong
One of the most important subjects in nanosciences is to identify and exploit the relationship between size and structural/physical properties of materials and to explore novel material properties at a small-length scale. Scale-down of materials is not only advantageous in realizing miniaturized devices but nanometer-sized materials often exhibit intriguing physical/chemical properties that greatly differ from their bulk counterparts. This dissertation studies self-assembled phase-change nanowires for future nonvolatile electronic memories, mainly focusing on their size-dependent memory switching properties. Owing to the one-dimensional, unique geometry coupled with the small and tunable sizes, bottom-designed nanowires offer great opportunities in terms for both fundamental science and practical engineering perspectives, which would be difficult to realize in conventional top-down based approaches. We synthesized chalcogenide phase-change nanowires of different compositions and sizes, and studied their electronic memory switching owing to the structural change between crystalline and amorphous phases. In particular, we investigated nanowire size-dependent memory switching parameters, including writing current, power consumption, and data retention times, as well as studying composition-dependent electronic properties. The observed size and composition-dependent switching and recrystallization kinetics are explained based on the heat transport model and heterogeneous nucleation theories, which help to design phase-change materials with better properties. Moreover, we configured unconventional heterostructured phase-change nanowire memories and studied their multiple memory states in single nanowire devices. Finally, by combining in-situ/ex-situ electron microscopy techniques and electrical measurements, we characterized the structural states involved in electrically-driven phase-change in order to understand the atomistic mechanism that governs the electronic memory switching through phase-change.
High performance nonvolatile memory devices based on Cu2-xSe nanowires
NASA Astrophysics Data System (ADS)
Wu, Chun-Yan; Wu, Yi-Liang; Wang, Wen-Jian; Mao, Dun; Yu, Yong-Qiang; Wang, Li; Xu, Jun; Hu, Ji-Gang; Luo, Lin-Bao
2013-11-01
We report on the rational synthesis of one-dimensional Cu2-xSe nanowires (NWs) via a solution method. Electrical analysis of Cu2-xSe NWs based memory device exhibits a stable and reproducible bipolar resistive switching behavior with a low set voltage (0.3-0.6 V), which can enable the device to write and erase data efficiently. Remarkably, the memory device has a record conductance switching ratio of 108, much higher than other devices ever reported. At last, a conducting filaments model is introduced to account for the resistive switching behavior. The totality of this study suggests that the Cu2-xSe NWs are promising building blocks for fabricating high-performance and low-consumption nonvolatile memory devices.
Pone, Egest J; Lou, Zheng; Lam, Tonika; Greenberg, Milton L; Wang, Rui; Xu, Zhenming; Casali, Paolo
2015-02-01
Ig class switch DNA recombination (CSR) in B cells is crucial to the maturation of antibody responses. It requires IgH germline IH-CH transcription and expression of AID, both of which are induced by engagement of CD40 or dual engagement of a Toll-like receptor (TLR) and B cell receptor (BCR). Here, we have addressed cross-regulation between two different TLRs or between a TLR and CD40 in CSR induction by using a B cell stimulation system involving lipopolysaccharides (LPS). LPS-mediated long-term primary class-switched antibody responses and memory-like antibody responses in vivo and induced generation of class-switched B cells and plasma cells in vitro. Consistent with the requirement for dual TLR and BCR engagement in CSR induction, LPS, which engages TLR4 through its lipid A moiety, triggered cytosolic Ca2+ flux in B cells through its BCR-engaging polysaccharidic moiety. In the presence of BCR crosslinking, LPS synergized with a TLR1/2 ligand (Pam3CSK4) in CSR induction, but much less efficiently with a TLR7 (R-848) or TLR9 (CpG) ligand. In the absence of BCR crosslinking, R-848 and CpG, which per se induced marginal CSR, virtually abrogated CSR to IgG1, IgG2a, IgG2b, IgG3 and/or IgA, as induced by LPS or CD154 (CD40 ligand) plus IL-4, IFN-γ or TGF-β, and reduced secretion of class-switched Igs, without affecting B cell proliferation or IgM expression. The CSR inhibition by TLR9 was associated with the reduction in AID expression and/or IgH germline IH-S-CH transcription, and required co-stimulation of B cells by CpG with LPS or CD154. Unexpectedly, B cells also failed to undergo CSR or plasma cell differentiation when co-stimulated by LPS and CD154. Overall, by addressing the interaction of TLR1/2, TLR4, TLR7 and TLR9 in the induction of CSR and modulation of TLR-dependent CSR by BCR and CD40, our study suggests the complexity of how different stimuli cross-regulate an important B cell differentiation process and an important role of TLRs in inducing effective T-independent antibody responses to microbial pathogens, allergens and vaccines.
Pone, Egest J.; Lou, Zheng; Lam, Tonika; Greenberg, Milton L.; Wang, Rui; Xu, Zhenming; Casali, Paolo
2015-01-01
Ig class switch DNA recombination (CSR) in B cells is crucial to the maturation of antibody responses. It requires IgH germline IH-CH transcription and expression of AID, both of which are induced by engagement of CD40 or dual engagement of a Toll-like receptor (TLR) and B cell receptor (BCR). Here, we have addressed cross-regulation between two different TLRs or between a TLR and CD40 in CSR induction by using a B cell stimulation system involving lipopolysaccharides (LPS). LPS mediated long-term primary class-switched antibody responses and memory-like antibody responses in vivo and induced generation of class-switched B cells and plasma cells in vitro. Consistent with the requirement for dual TLR and BCR engagement in CSR induction, LPS, which engages TLR4 through its lipid A moiety, triggered cytosolic Ca2+ flux in B cells through its BCR-engaging polysaccharidic moiety. In the presence of BCR crosslinking, LPS synergized with a TLR1/2 ligand (Pam3CSK4) in CSR induction, but much less efficiently with a TLR7 (R-848) or TLR9 (CpG) ligand. In the absence of BCR crosslinking, R-848 and CpG, which per se induced marginal CSR, virtually abrogated CSR to IgG1, IgG2a, IgG2b, IgG3 and/or IgA, as induced by LPS or CD154 (CD40 ligand) plus IL-4, IFN-γ or TGF-β, and reduced secretion of class-switched Igs, without affecting B cell proliferation or IgM expression. The CSR inhibition by TLR9 was associated with the reduction in AID expression and/or IgH germline IH-S-CH transcription, and required co-stimulation of B cells by CpG with LPS or CD154. Unexpectedly, B cells also failed to undergo CSR or plasma cell differentiation when co-stimulated by LPS and CD154. Overall, by addressing the interaction of TLR1/2, TLR4, TLR7 and TLR9 in the induction of CSR and modulation of TLR-dependent CSR by BCR and CD40, our study suggests the complexity of how different stimuli cross-regulate an important B cell differentiation process and an important role of TLRs in inducing effective T-independent antibody responses to microbial pathogens, allergens and vaccines. PMID:25536171
Kwon, Soonbang; Jang, Seonghoon; Choi, Jae-Wan; Choi, Sanghyeon; Jang, Sukjae; Kim, Tae-Wook; Wang, Gunuk
2017-12-13
The controllability of switching conductive filaments is one of the central issues in the development of reliable metal-oxide resistive memory because the random dynamic nature and formation of the filaments pose an obstacle to desirable switching performance. Here, we introduce a simple and novel approach to control and form a single silicon nanocrystal (Si-NC) filament for use in SiO x memory devices. The filament is formed with a confined vertical nanoscale gap by using a well-defined single vertical truncated conical nanopore (StcNP) structure. The physical dimensions of the Si-NC filaments such as number, size, and length, which have a significant influence on the switching properties, can be simply engineered by the breakdown of an Au wire through different StcNP structures. In particular, we demonstrate that the designed SiO x memory junction with a StcNP of pore depth of ∼75 nm and a bottom diameter of ∼10 nm exhibited a switching speed of up to 6 ns for both set and reset process, significantly faster than reported SiO x memory devices. The device also exhibited a high ON-OFF ratio, multistate storage ability, acceptable endurance, and retention stability. The influence of the physical dimensions of the StcNP on the switching features is discussed based on the simulated temperature profiles of the Au wire and the nanogap size generated inside the StcNP structure during electromigration.
Structure and properties of a model conductive filament/host oxide interface in HfO2-based ReRAM
NASA Astrophysics Data System (ADS)
Padilha, A. C. M.; McKenna, K. P.
2018-04-01
Resistive random-access memory (ReRAM) is a promising class of nonvolatile memory capable of storing information via its resistance state. In the case of hafnium oxide-based devices, experimental evidence shows that a conductive oxygen-deficient filament is formed and broken inside of the device by oxygen migration, leading to switching of its resistance state. However, little is known about the nature of this conductive phase, its interface with the host oxide, or the associated interdiffusion of oxygen, presenting a challenge to understanding the switching mechanism and device properties. To address these problems, we present atomic-scale first-principles simulations of a prototypical conductive phase (HfO), the electronic properties of its interface with HfO2, as well as stability with respect to oxygen diffusion across the interface. We show that the conduction-band offset between HfO and HfO2 is 1.3 eV, smaller than typical electrode-HfO2 band offsets, suggesting that positive charging and band bending should occur at the conductive filament-HfO2 interface. We also show that transfer of oxygen across the interface, from HfO2 into HfO, costs around 1.2 eV per atom and leads to a gradual opening of the HfO band gap, and hence disruption of the electrical conductivity. These results provide invaluable insights into understanding the switching mechanism for HfO2-based ReRAM.
Nonvolatile Ionic Two-Terminal Memory Device
NASA Technical Reports Server (NTRS)
Williams, Roger M.
1990-01-01
Conceptual solid-state memory device nonvolatile and erasable and has only two terminals. Proposed device based on two effects: thermal phase transition and reversible intercalation of ions. Transfer of sodium ions between source of ions and electrical switching element increases or decreases electrical conductance of element, turning switch "on" or "off". Used in digital computers and neural-network computers. In neural networks, many small, densely packed switches function as erasable, nonvolatile synaptic elements.
Anatomy of filamentary threshold switching in amorphous niobium oxide.
Li, Shuai; Liu, Xinjun; Nandi, Sanjoy Kumar; Elliman, Robert Glen
2018-06-25
The threshold switching behaviour of Pt/NbOx/TiN devices is investigated as a function device area and NbOx film thickness and shown to reveal important insight into the structure of the self-assembled switching region. The devices exhibit combined selector-memory (1S1R) behavior after an initial voltage-controlled forming process, but exhibit symmetric threshold switching when the RESET and SET currents are kept below a critical value. In this mode, the threshold and hold voltages are independent of the device area and film thickness but the threshold current (power), while independent of device area, decreases with increasing film thickness. These results are shown to be consistent with a structure in which the threshold switching volume is confined, both laterally and vertically, to the region between the residual memory filament and the TiN electrode, and where the memory filament has a core-shell structure comprising a metallic core and a semiconducting shell. The veracity of this structure is demonstrated by comparing experimental results with the predictions of a simple circuit model, and more detailed finite element simulations. These results provide further insight into the structure and operation of NbOx threshold switching devices that have application in emerging memory and neuromorphic computing fields. © 2018 IOP Publishing Ltd.
Low power consumption resistance random access memory with Pt/InOx/TiN structure
NASA Astrophysics Data System (ADS)
Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.; Tsai, Ming-Jinn
2013-09-01
In this study, the resistance switching characteristics of a resistive random access memory device with Pt/InOx/TiN structure is investigated. Unstable bipolar switching behavior is observed during the initial switching cycle, which then stabilizes after several switching cycles. Analyses indicate that the current conduction mechanism in the resistance state is dominated by Ohmic conduction. The decrease in electrical conductance can be attributed to the reduction of the cross-sectional area of the conduction path. Furthermore, the device exhibits low operation voltage and power consumption.
Highly uniform and reliable resistive switching characteristics of a Ni/WOx/p+-Si memory device
NASA Astrophysics Data System (ADS)
Kim, Tae-Hyeon; Kim, Sungjun; Kim, Hyungjin; Kim, Min-Hwi; Bang, Suhyun; Cho, Seongjae; Park, Byung-Gook
2018-02-01
In this paper, we investigate the resistive switching behavior of a bipolar resistive random-access memory (RRAM) in a Ni/WOx/p+-Si RRAM with CMOS compatibility. Highly unifrom and reliable bipolar resistive switching characteristics are observed by a DC voltage sweeping and its switching mechanism can be explained by SCLC model. As a result, the possibility of metal-insulator-silicon (MIS) structural WOx-based RRAM's application to Si-based 1D (diode)-1R (RRAM) or 1T (transistor)-1R (RRAM) structure is demonstrated.
Neural network based feed-forward high density associative memory
NASA Technical Reports Server (NTRS)
Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.
1987-01-01
A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.
NASA Astrophysics Data System (ADS)
Ran, Ke; Rösner, Benedikt; Butz, Benjamin; Fink, Rainer H.; Spiecker, Erdmann
2016-10-01
The organic semiconductor silver-tetracyanoquinodimethane (Ag-TCNQ) exhibits electrical switching and memory characteristics. Employing a scanning tunnelling microscopy setup inside a transmission electron microscope, the switching behaviour of individual Ag-TCNQ nanowires (NWs) is investigated in detail. For a large number of NWs, the switching between a high (OFF) and a low (ON) resistance state was successfully stimulated by negative bias sweeps. Fitting the experimental I-V curves with a Schottky emission function makes the switching features prominent and thus enables a direct evaluation of the switching process. A memory cycle including writing, reading and erasing features is demonstrated at an individual NW. Moreover, electronic failure mechanisms due to Joule heating are discussed. These findings have a significant impact on our understanding of the switching behaviour of Ag-TCNQ.
Stability of discrete memory states to stochastic fluctuations in neuronal systems
Miller, Paul; Wang, Xiao-Jing
2014-01-01
Noise can degrade memories by causing transitions from one memory state to another. For any biological memory system to be useful, the time scale of such noise-induced transitions must be much longer than the required duration for memory retention. Using biophysically-realistic modeling, we consider two types of memory in the brain: short-term memories maintained by reverberating neuronal activity for a few seconds, and long-term memories maintained by a molecular switch for years. Both systems require persistence of (neuronal or molecular) activity self-sustained by an autocatalytic process and, we argue, that both have limited memory lifetimes because of significant fluctuations. We will first discuss a strongly recurrent cortical network model endowed with feedback loops, for short-term memory. Fluctuations are due to highly irregular spike firing, a salient characteristic of cortical neurons. Then, we will analyze a model for long-term memory, based on an autophosphorylation mechanism of calcium/calmodulin-dependent protein kinase II (CaMKII) molecules. There, fluctuations arise from the fact that there are only a small number of CaMKII molecules at each postsynaptic density (putative synaptic memory unit). Our results are twofold. First, we demonstrate analytically and computationally the exponential dependence of stability on the number of neurons in a self-excitatory network, and on the number of CaMKII proteins in a molecular switch. Second, for each of the two systems, we implement graded memory consisting of a group of bistable switches. For the neuronal network we report interesting ramping temporal dynamics as a result of sequentially switching an increasing number of discrete, bistable, units. The general observation of an exponential increase in memory stability with the system size leads to a trade-off between the robustness of memories (which increases with the size of each bistable unit) and the total amount of information storage (which decreases with increasing unit size), which may be optimized in the brain through biological evolution. PMID:16822041
NASA Astrophysics Data System (ADS)
Duan, W. J.; Wang, J. B.; Zhong, X. L.
2018-05-01
Resistive switching random access memory (RRAM) is considered as a promising candidate for the next generation memory due to its scalability, high integration density and non-volatile storage characteristics. Here, the multiple electrical characteristics in Pt/WOx/Pt cells are investigated. Both of the nonlinear switching and multi-level storage can be achieved by setting different compliance current in the same cell. The correlations among the current, time and temperature are analyzed by using contours and 3D surfaces. The switching mechanism is explained in terms of the formation and rupture of conductive filament which is related to oxygen vacancies. The experimental results show that the non-stoichiometric WOx film-based device offers a feasible way for the applications of oxide-based RRAMs.
Logic computation in phase change materials by threshold and memory switching.
Cassinerio, M; Ciocchini, N; Ielmini, D
2013-11-06
Memristors, namely hysteretic devices capable of changing their resistance in response to applied electrical stimuli, may provide new opportunities for future memory and computation, thanks to their scalable size, low switching energy and nonvolatile nature. We have developed a functionally complete set of logic functions including NOR, NAND and NOT gates, each utilizing a single phase-change memristor (PCM) where resistance switching is due to the phase transformation of an active chalcogenide material. The logic operations are enabled by the high functionality of nanoscale phase change, featuring voltage comparison, additive crystallization and pulse-induced amorphization. The nonvolatile nature of memristive states provides the basis for developing reconfigurable hybrid logic/memory circuits featuring low-power and high-speed switching. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bousoulas, P.; Giannopoulos, I.; Asenov, P.; Karageorgiou, I.; Tsoukalas, D.
2017-03-01
Although multilevel capability is probably the most important property of resistive random access memory (RRAM) technology, it is vulnerable to reliability issues due to the stochastic nature of conducting filament (CF) creation. As a result, the various resistance states cannot be clearly distinguished, which leads to memory capacity failure. In this work, due to the gradual resistance switching pattern of TiO2-x-based RRAM devices, we demonstrate at least six resistance states with distinct memory margin and promising temporal variability. It is shown that the formation of small CFs with high density of oxygen vacancies enhances the uniformity of the switching characteristics in spite of the random nature of the switching effect. Insight into the origin of the gradual resistance modulation mechanisms is gained by the application of a trap-assisted-tunneling model together with numerical simulations of the filament formation physical processes.
Signal and noise extraction from analog memory elements for neuromorphic computing.
Gong, N; Idé, T; Kim, S; Boybat, I; Sebastian, A; Narayanan, V; Ando, T
2018-05-29
Dense crossbar arrays of non-volatile memory (NVM) can potentially enable massively parallel and highly energy-efficient neuromorphic computing systems. The key requirements for the NVM elements are continuous (analog-like) conductance tuning capability and switching symmetry with acceptable noise levels. However, most NVM devices show non-linear and asymmetric switching behaviors. Such non-linear behaviors render separation of signal and noise extremely difficult with conventional characterization techniques. In this study, we establish a practical methodology based on Gaussian process regression to address this issue. The methodology is agnostic to switching mechanisms and applicable to various NVM devices. We show tradeoff between switching symmetry and signal-to-noise ratio for HfO 2 -based resistive random access memory. Then, we characterize 1000 phase-change memory devices based on Ge 2 Sb 2 Te 5 and separate total variability into device-to-device variability and inherent randomness from individual devices. These results highlight the usefulness of our methodology to realize ideal NVM devices for neuromorphic computing.
Method of pedestal and common-mode noise correction for switched-capacitor analog memories
Britton, C.L.
1997-09-23
A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.
Method of pedestal and common-mode noise correction for switched-capacitor analog memories
Britton, C.L.
1996-12-31
A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.
Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells.
Ceronie, Bryan; Jacobs, Benjamin M; Baker, David; Dubuisson, Nicolas; Mao, Zhifeng; Ammoscato, Francesca; Lock, Helen; Longhurst, Hilary J; Giovannoni, Gavin; Schmierer, Klaus
2018-05-01
The mechanism of action of oral cladribine, recently licensed for relapsing multiple sclerosis, is unknown. To determine whether cladribine depletes memory B cells consistent with our recent hypothesis that effective, disease-modifying treatments act by physical/functional depletion of memory B cells. A cross-sectional study examined 40 people with multiple sclerosis at the end of the first cycle of alemtuzumab or injectable cladribine. The relative proportions and absolute numbers of peripheral blood B lymphocyte subsets were measured using flow cytometry. Cell-subtype expression of genes involved in cladribine metabolism was examined from data in public repositories. Cladribine markedly depleted class-switched and unswitched memory B cells to levels comparable with alemtuzumab, but without the associated initial lymphopenia. CD3 + T cell depletion was modest. The mRNA expression of metabolism genes varied between lymphocyte subsets. A high ratio of deoxycytidine kinase to group I cytosolic 5' nucleotidase expression was present in B cells and was particularly high in mature, memory and notably germinal centre B cells, but not plasma cells. Selective B cell cytotoxicity coupled with slow repopulation kinetics results in long-term, memory B cell depletion by cladribine. These may offer a new target, possibly with potential biomarker activity, for future drug development.
Resistive switching effect of N-doped MoS2-PVP nanocomposites films for nonvolatile memory devices
NASA Astrophysics Data System (ADS)
Wu, Zijin; Wang, Tongtong; Sun, Changqi; Liu, Peitao; Xia, Baorui; Zhang, Jingyan; Liu, Yonggang; Gao, Daqiang
2017-12-01
Resistive memory technology is very promising in the field of semiconductor memory devices. According to Liu et al, MoS2-PVP nanocomposite can be used as an active layer material for resistive memory devices due to its bipolar resistive switching behavior. Recent studies have also indicated that the doping of N element can reduce the band gap of MoS2 nanosheets, which is conducive to improving the conductivity of the material. Therefore, in this paper, we prepared N-doped MoS2 nanosheets and then fabricated N-doped MoS2-PVP nanocomposite films by spin coating. Finally, the resistive memory [C. Tan et al., Chem. Soc. Rev. 44, 2615 (2015)], device with ITO/N-doped MoS2-PVP/Pt structure was fabricated. Study on the I-V characteristics shows that the device has excellent resistance switching effect. It is worth mentioning that our device possesses a threshold voltage of 0.75 V, which is much better than 3.5 V reported previously for the undoped counterparts. The above research shows that N-doped MoS2-PVP nanocomposite films can be used as the active layer of resistive switching memory devices, and will make the devices have better performance.
NASA Astrophysics Data System (ADS)
Ko, Yongmin; Ryu, Sook Won; Cho, Jinhan
2016-04-01
Resistive switching behavior-based memory devices are considered promising candidates for next-generation data storage because of their simple structure configuration, low power consumption, and rapid operating speed. Here, the resistive switching nonvolatile memory properties of Fe2O3 nanocomposite (NC) films prepared from the thermal calcination of layer-by-layer (LbL) assembled ferritin multilayers were successfully investigated. For this study, negatively charged ferritin nanoparticles were alternately deposited onto the Pt-coated Si substrate with positively charged poly(allylamine hydrochloride) (PAH) by solution-based electrostatic LbL assembly, and the formed multilayers were thermally calcinated to obtain a homogeneous transition metal oxide NC film through the elimination of organic components, including the protein shell of ferritin. The formed memory device exhibits a stable ON/OFF current ratio of approximately 103, with nanosecond switching times under an applied external bias. In addition, these reversible switching properties were kept stable during the repeated cycling tests of above 200 cycles and a test period of approximately 105 s under atmosphere. These solution-based approaches can provide a basis for large-area inorganic nanoparticle-based electric devices through the design of bio-nanomaterials at the molecular level.
Ultralow Power Consumption Flexible Biomemristors.
Kim, Min-Kyu; Lee, Jang-Sik
2018-03-28
Low power consumption is the important requirement in memory devices for saving energy. In particular, improved energy efficiency is essential in implantable electronic devices for operation under a limited power supply. Here, we demonstrate the use of κ-carrageenan (κ-car) as the resistive switching layer to achieve memory that has low power consumption. A carboxymethyl (CM) group is introduced to the κ-car to increase its ionic conductivity. Ag was doped in CM:κ-car to improve the resistive switching properties of the devices. Memory devices based on Ag-doped CM:κ-car showed electroforming-free resistive switching. This device exhibited low reset voltage (∼0.05 V), fast switching speed (50 ns), and high on/off ratio (>10 3 ) under low compliance current (10 -5 A). Its power consumption (∼0.35 μW) is much lower than those of the previously reported biomemristors. The resistive switching may be a result of an electrochemical redox process and Ag filament formation in the CM:κ-car under an electric field. This biopolymer memory can also be fabricated on flexible substrate. This study verifies the feasibility of using biopolymers for applications to future implantable and biocompatible nanoelectronics.
The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM
NASA Astrophysics Data System (ADS)
Sedghi, N.; Li, H.; Brunell, I. F.; Dawson, K.; Potter, R. J.; Guo, Y.; Gibbon, J. T.; Dhanak, V. R.; Zhang, W. D.; Zhang, J. F.; Robertson, J.; Hall, S.; Chalker, P. R.
2017-03-01
The role of nitrogen doping on the stability and memory window of resistive state switching in N-doped Ta2O5 deposited by atomic layer deposition is elucidated. Nitrogen incorporation increases the stability of resistive memory states which is attributed to neutralization of electronic defect levels associated with oxygen vacancies. The density functional simulations with the screened exchange hybrid functional approximation show that the incorporation of nitrogen dopant atoms in the oxide network removes the O vacancy midgap defect states, thus nullifying excess defects and eliminating alternative conductive paths. By effectively reducing the density of vacancy-induced defect states through N doping, 3-bit multilevel cell switching is demonstrated, consisting of eight distinctive resistive memory states achieved by either controlling the set current compliance or the maximum voltage during reset. Nitrogen doping has a threefold effect: widening the switching memory window to accommodate the more intermediate states, improving the stability of states, and providing a gradual reset for multi-level cell switching during reset. The N-doped Ta2O5 devices have relatively small set and reset voltages (< 1 V) with reduced variability due to doping.
Temperature induced complementary switching in titanium oxide resistive random access memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, D., E-mail: dpanda@nist.edu; Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan; Simanjuntak, F. M.
2016-07-15
On the way towards high memory density and computer performance, a considerable development in energy efficiency represents the foremost aspiration in future information technology. Complementary resistive switch consists of two antiserial resistive switching memory (RRAM) elements and allows for the construction of large passive crossbar arrays by solving the sneak path problem in combination with a drastic reduction of the power consumption. Here we present a titanium oxide based complementary RRAM (CRRAM) device with Pt top and TiN bottom electrode. A subsequent post metal annealing at 400°C induces CRRAM. Forming voltage of 4.3 V is required for this device tomore » initiate switching process. The same device also exhibiting bipolar switching at lower compliance current, Ic <50 μA. The CRRAM device have high reliabilities. Formation of intermediate titanium oxi-nitride layer is confirmed from the cross-sectional HRTEM analysis. The origin of complementary switching mechanism have been discussed with AES, HRTEM analysis and schematic diagram. This paper provides valuable data along with analysis on the origin of CRRAM for the application in nanoscale devices.« less
Lee, Chanwoo; Kim, Inpyo; Choi, Wonsup; Shin, Hyunjung; Cho, Jinhan
2009-04-21
We describe a novel and versatile approach for preparing resistive switching memory devices based on binary transition metal oxides (TMOs). Titanium isopropoxide (TIPP) was spin-coated onto platinum (Pt)-coated silicon substrates using a sol-gel process. The sol-gel-derived layer was converted into a TiO2 film by thermal annealing. A top electrode (Ag electrode) was then coated onto the TiO2 films to complete device fabrication. When an external bias was applied to the devices, a switching phenomenon independent of the voltage polarity (i.e., unipolar switching) was observed at low operating voltages (about 0.6 VRESET and 1.4 VSET). In addition, it was confirmed that the electrical properties (i.e., retention time, cycling test and switching speed) of the sol-gel-derived devices were comparable to those of vacuum deposited devices. This approach can be extended to a variety of binary TMOs such as niobium oxides. The reported approach offers new opportunities for preparing the binary TMO-based resistive switching memory devices allowing a facile solution processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Yogesh; Pavunny, Shojan P.; Katiyar, Ram S., E-mail: rkatiyar@hpcf.upr.edu
2015-09-07
We studied the resistive memory switching in pulsed laser deposited amorphous LaHoO{sub 3} (a-LHO) thin films for non-volatile resistive random access memory applications. Nonpolar resistive switching (RS) was achieved in Pt/a-LHO/Pt memory cells with all four possible RS modes (i.e., positive unipolar, positive bipolar, negative unipolar, and negative bipolar) having high R{sub ON}/R{sub OFF} ratios (in the range of ∼10{sup 4}–10{sup 5}) and non-overlapping switching voltages (set voltage, V{sub ON} ∼ ±3.6–4.2 V and reset voltage, V{sub OFF} ∼ ±1.3–1.6 V) with a small variation of about ±5–8%. Temperature dependent current-voltage (I–V) characteristics indicated the metallic conduction in low resistance states (LRS). We believe that themore » formation (set) and rupture (reset) of mixed conducting filaments formed out of oxygen vacancies and metallic Ho atoms could be responsible for the change in the resistance states of the memory cell. Detailed analysis of I–V characteristics further corroborated the formation of conductive nanofilaments based on metal-like (Ohmic) conduction in LRS. Simmons-Schottky emission was found to be the dominant charge transport mechanism in the high resistance state.« less
Functional nanometer-scale structures
NASA Astrophysics Data System (ADS)
Chan, Tsz On Mario
Nanometer-scale structures have properties that are fundamentally different from their bulk counterparts. Much research effort has been devoted in the past decades to explore new fabrication techniques, model the physical properties of these structures, and construct functional devices. The ability to manipulate and control the structure of matter at the nanoscale has made many new classes of materials available for the study of fundamental physical processes and potential applications. The interplay between fabrication techniques and physical understanding of the nanostructures and processes has revolutionized the physical and material sciences, providing far superior properties in materials for novel applications that benefit society. This thesis consists of two major aspects of my graduate research in nano-scale materials. In the first part (Chapters 3--6), a comprehensive study on the nanostructures based on electrospinning and thermal treatment is presented. Electrospinning is a well-established method for producing high-aspect-ratio fibrous structures, with fiber diameter ranging from 1 nm--1 microm. A polymeric solution is typically used as a precursor in electrospinning. In our study, the functionality of the nanostructure relies on both the nanostructure and material constituents. Metallic ions containing precursors were added to the polymeric precursor following a sol-gel process to prepare the solution suitable for electrospinning. A typical electrospinning process produces as-spun fibers containing both polymer and metallic salt precursors. Subsequent thermal treatments of the as-spun fibers were carried out in various conditions to produce desired structures. In most cases, polymer in the solution and the as-spun fibers acted as a backbone for the structure formation during the subsequent heat treatment, and were thermally removed in the final stage. Polymers were also designed to react with the metallic ion precursors during heat treatment in some cases, which led to desired chemical phase formation. The residue of polymer thermal decomposition was also controlled and utilized for certain functionality in some nanostructures. Throughout this study, we successfully fabricated several novel functional structures and revealed a new formation mechanism of metal/metal oxide nanotubes. The magnetic and electrical properties of these nanostructures were studied and optimized for applications in soft magnetic materials and spintronics devices. In the second part, (Chapter 7) a study on memristive switching devices with magnetron-sputtered metal-semiconductor-metal thin film structures based on ZnO is presented. Resistive random access memory (RRAM) is a new, non-volatile memory based on the memristor effect theoretically predicted by Leon Chua in 1971 and first experimentally demonstrated by Hewlett Packard in 2008. The unit cell of a RRAM (a memristor) is a two-terminal device in which the switching medium is sandwiched between the top and bottom electrodes and the resistance of the switching medium can be modulated by applying an electrical signal (current or voltage) to the electrodes. On the other hand, the significance of a memristor, as the fourth element of circuit elements besides resistor, capacitor and inductor, is not limited to just being a candidate for next-generation memory. Owing to the unique i-v characteristics of non-linear memristors that cannot be duplicated with any combinations of the other three basic elements in a passive circuitry, many new electrical functions are being developed based on the memristors. In our study, various contact electrode combinations and semiconductor doping profiles were utilized to achieve different functional resistive switching behaviors and to help fundamentally understand the underlying switching mechanisms in ZnO-based thin film structures. Two distinctive switching mechanisms (ferroelectric charge-induced resistive switching and dopant-induced filament-type resistive switching) have been identified in specified structures. Among them, the ferroelectric charge induced resistive switching is new to the existing mechanisms; and the crucial role of the electrode oxide layer in the filament type resistive switching was reported for the first time. Based on these studies, a unique structure that is believed to combine the two competing switching mechanisms was demonstrated. The new memory structure acts like a complimentary resistive switching memory (CRS) that is designed to eliminate the cross-talk issue in RRAM.
Nguyen, Viet Cuong; Lee, Pooi See
2016-01-01
We study resistive switching memory phenomena in conducting polymer PEDOT PSS. In the same film, there are two types of memory behavior coexisting; namely, the switchable diode effect and write once read many memory. This is the first report on switchable diode phenomenon based on conducting organic materials. The effect was explained as charge trapping of PEDOT PSS film and movement of proton. The same PEDOT PSS device also exhibits write once read many memory (WORM) phenomenon which arises due to redox reaction that reduces PEDOT PSS and renders it non-conducting. The revelation of these two types of memory phenomena in PEDOT PSS highlights the remarkable versatility of this conducting conjugated polymer. PMID:26806868
Low-power resistive random access memory by confining the formation of conducting filaments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yi-Jen; Lee, Si-Chen, E-mail: sclee@ntu.edu.tw; Shen, Tzu-Hsien
2016-06-15
Owing to their small physical size and low power consumption, resistive random access memory (RRAM) devices are potential for future memory and logic applications in microelectronics. In this study, a new resistive switching material structure, TiO{sub x}/silver nanoparticles/TiO{sub x}/AlTiO{sub x}, fabricated between the fluorine-doped tin oxide bottom electrode and the indium tin oxide top electrode is demonstrated. The device exhibits excellent memory performances, such as low operation voltage (<±1 V), low operation power, small variation in resistance, reliable data retention, and a large memory window. The current-voltage measurement shows that the conducting mechanism in the device at the high resistancemore » state is via electron hopping between oxygen vacancies in the resistive switching material. When the device is switched to the low resistance state, conducting filaments are formed in the resistive switching material as a result of accumulation of oxygen vacancies. The bottom AlTiO{sub x} layer in the device structure limits the formation of conducting filaments; therefore, the current and power consumption of device operation are significantly reduced.« less
TiO2-based memristors and ReRAM: materials, mechanisms and models (a review)
NASA Astrophysics Data System (ADS)
Gale, Ella
2014-10-01
The memristor is the fundamental nonlinear circuit element, with uses in computing and computer memory. Resistive Random Access Memory (ReRAM) is a resistive switching memory proposed as a non-volatile memory. In this review we shall summarize the state of the art for these closely-related fields, concentrating on titanium dioxide, the well-utilized and archetypal material for both. We shall cover material properties, switching mechanisms and models to demonstrate what ReRAM and memristor scientists can learn from each other and examine the outlook for these technologies.
Optical backplane interconnect switch for data processors and computers
NASA Technical Reports Server (NTRS)
Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.
1989-01-01
An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.
Self-Compliant Bipolar Resistive Switching in SiN-Based Resistive Switching Memory
Kim, Sungjun; Chang, Yao-Feng; Kim, Min-Hwi; Kim, Tae-Hyeon; Kim, Yoon; Park, Byung-Gook
2017-01-01
Here, we present evidence of self-compliant and self-rectifying bipolar resistive switching behavior in Ni/SiNx/n+ Si and Ni/SiNx/n++ Si resistive-switching random access memory devices. The Ni/SiNx/n++ Si device’s Si bottom electrode had a higher dopant concentration (As ion > 1019 cm−3) than the Ni/SiNx/n+ Si device; both unipolar and bipolar resistive switching behaviors were observed for the higher dopant concentration device owing to a large current overshoot. Conversely, for the device with the lower dopant concentration (As ion < 1018 cm−3), self-rectification and self-compliance were achieved owing to the series resistance of the Si bottom electrode. PMID:28772819
NASA Astrophysics Data System (ADS)
Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen
2018-04-01
Ta5Si3-based conductive bridge random access memory (CBRAM) devices have been investigated to improve their resistive switching characteristics for their application in future nonvolatile memory technology. Changes in the switching characteristics by the addition of a thin Al2O3 layer of different thicknesses at the bottom electrode interface of a Ta5Si3-based CBRAM devices have been studied. The double-layer device with a 1 nm Al2O3 layer has shown improved resistive switching characteristics over the single layer one with a high on/off resistance ratio of 102, high endurance of more than 104 cycles, and good retention for more than 105 s at the temperature of 130 °C. The higher thermal conductivity of Al2O3 over Ta5Si3 has been attributed to the enhanced switching properties of the double-layer devices.
Shape-Memory Wires Switch Rotary Actuator
NASA Technical Reports Server (NTRS)
Brudnicki, Myron J.
1992-01-01
Thermomechanical rotary actuator based on shape-memory property of alloy composed of equal parts of titanium and nickel. If alloy stretched while below transition temperature, it reverts to original length when heated above transition temperature. Two capstans on same shaft wrapped with shape-memory wires. As one wire heated, it contracts and stretches opposite wire. Wires heated in alternation so they switch shaft between two extreme angular positions; "on" and "off" positions of rotary valve.
Chattopadhyay, Tanay
2010-10-01
A flip-flop (FF) is a kind of latch and the simplest form of memory device, which stores various values either temporarily or permanently. Optical FF memories form a fundamental building block for all-optical packet switches in next-generation communication networks. An all-optical clocked delay FF using a single terahertz optical asymmetric demultiplexer-based interferometric switch is proposed and described. Numerical simulation results are also reported.
NASA Astrophysics Data System (ADS)
Tsao, Hou-Yen; Lin, Yow-Jon
2014-02-01
The fabrication of memory devices based on the Au/pentacene/heavily doped n-type Si (n+-Si), Au/pentacene/Si nanowires (SiNWs)/n+-Si, and Au/pentacene/H2O2-treated SiNWs/n+-Si structures and their resistive switching characteristics were reported. A pentacene memory structure using SiNW arrays as charge storage nodes was demonstrated. The Au/pentacene/SiNWs/n+-Si devices show hysteresis behavior. H2O2 treatment may lead to the hysteresis degradation. However, no hysteresis-type current-voltage characteristics were observed for Au/pentacene/n+-Si devices, indicating that the resistive switching characteristic is sensitive to SiNWs and the charge trapping effect originates from SiNWs. The concept of nanowires within the organic layer opens a promising direction for organic memory devices.
Abdel-Azim, Hisham; Elshoury, Amro; Mahadeo, Kris M; Parkman, Robertson; Kapoor, Neena
2017-09-01
Although T cell immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been well studied, long-term B cell immune reconstitution remains less characterized. We evaluated humoral immune reconstitution among 71 pediatric allo-HSCT recipients. Although tetanus toxoid antibody levels were normal at 1 year after allo-HSCT, antipolysaccharide carbohydrate antibodies remained persistently low for up to 5 years. While naive B cell counts normalized by 6 months, IgM memory B cell deficiency persisted for up to 2 years (P = .01); switched memory B cell deficiency normalized by 1 year after allo-HSCT. CD4 + T cell immune reconstitution correlated with that of switched memory B cells as early as 6 months after allo-HSCT (r = .55, P = .002) but did not correlate with IgM memory B cells at any time point after allo-HSCT. Taken together, this suggests that allo-HSCT recipients have impaired antibody immune reconstitution, mainly due to IgM memory B cell maturation block, compared with more prompt T cell-dependent switched memory cell immune reconstitution. We further explored other factors that might affect humoral immune reconstitution. The use of total body irradiation was associated with lower naive B cells counts at 6 months after HSCT (P = .04) and lower IgM (P = .008) and switched (P = .003) memory B cells up to 2 years. Allo-HSCT recipients with extensive chronic graft-versus-host disease had lower IgM memory B cell counts (P = .03) up to 2 years after allo-HSCT. The use of cord blood was associated with better naive (P = .01), IgM (P = .0005), and switched memory (P = .006) B cells immune reconstitution. These findings may inform future prophylaxis and treatment strategies regarding risk of overwhelming infection, graft-versus-host disease, and post-allogeneic HSCT revaccination. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Stochastic switching of TiO2-based memristive devices with identical initial memory states
2014-01-01
In this work, we show that identical TiO2-based memristive devices that possess the same initial resistive states are only phenomenologically similar as their internal structures may vary significantly, which could render quite dissimilar switching dynamics. We experimentally demonstrated that the resistive switching of practical devices with similar initial states could occur at different programming stimuli cycles. We argue that similar memory states can be transcribed via numerous distinct active core states through the dissimilar reduced TiO2-x filamentary distributions. Our hypothesis was finally verified via simulated results of the memory state evolution, by taking into account dissimilar initial filamentary distribution. PMID:24994953
NASA Astrophysics Data System (ADS)
Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.
2014-04-01
In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.
Long-Term Memory and the Control of Attentional Control
Mayr, Ulrich; Kuhns, David; Hubbard, Jason
2014-01-01
Task-switch costs and in particular the switch-cost asymmetry (i.e., the larger costs of switching to a dominant than a non-dominant task) are usually explained in terms of trial-to-trial carry-over of task-specific control settings. Here we argue that task switches are just one example of situations that trigger a transition from working-memory maintenance to updating, thereby opening working memory to interference from long-term memory. We used a new paradigm that requires selecting a spatial location either on the basis of a central cue (i.e., endogenous control of attention) or a peripheral, sudden onset (i.e., exogenous control of attention). We found a strong cost asymmetry that occurred even after short interruptions of otherwise single-task blocks (Exp. 1-3), but that was much stronger when participants had experienced the competing task under conditions of conflict (Exp. 1-2). Experiment 3 showed that the asymmetric costs were due to interruptions per se, rather than to associative interference tied to specific interruption activities. Experiment 4 generalized the basic pattern across interruptions varying in length or control demands and Experiment 5 across primary tasks with response-selection conflict rather than attentional conflict. Combined, the results support a model in which costs of selecting control settings arise when (a) potentially interfering memory traces have been encoded in long-term memory and (b) working-memory is forced from a maintenance mode into an updating mode (e.g., through task interruptions), thereby allowing unwanted retrieval of the encoded memory traces. PMID:24650696
NASA Astrophysics Data System (ADS)
Chien, W. C.; Chen, Y. C.; Lai, E. K.; Lee, F. M.; Lin, Y. Y.; Chuang, Alfred T. H.; Chang, K. P.; Yao, Y. D.; Chou, T. H.; Lin, H. M.; Lee, M. H.; Shih, Y. H.; Hsieh, K. Y.; Lu, Chih-Yuan
2011-03-01
Tungsten oxide (WO X ) resistive memory (ReRAM), a two-terminal CMOS compatible nonvolatile memory, has shown promise to surpass the existing flash memory in terms of scalability, switching speed, and potential for 3D stacking. The memory layer, WO X , can be easily fabricated by down-stream plasma oxidation (DSPO) or rapid thermal oxidation (RTO) of W plugs universally used in CMOS circuits. Results of conductive AFM (C-AFM) experiment suggest the switching mechanism is dominated by the REDOX (Reduction-oxidation) reaction—the creation of conducting filaments leads to a low resistance state and the rupturing of the filaments results in a high resistance state. Our experimental results show that the reactions happen at the TE/WO X interface. With this understanding in mind, we proposed two approaches to boost the memory performance: (i) using DSPO to treat the RTO WO X surface and (ii) using Pt TE, which forms a Schottky barrier with WO X . Both approaches, especially the latter, significantly reduce the forming current and enlarge the memory window.
Forced Ion Migration for Chalcogenide Phase Change Memory Device
NASA Technical Reports Server (NTRS)
Campbell, Kristy A (Inventor)
2013-01-01
Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.
Forced ion migration for chalcogenide phase change memory device
NASA Technical Reports Server (NTRS)
Campbell, Kristy A. (Inventor)
2011-01-01
Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more that two data states.
Forced ion migration for chalcogenide phase change memory device
NASA Technical Reports Server (NTRS)
Campbell, Kristy A. (Inventor)
2012-01-01
Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.
Memory Transformation Enhances Reinforcement Learning in Dynamic Environments.
Santoro, Adam; Frankland, Paul W; Richards, Blake A
2016-11-30
Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic memories. This switch is sometimes referred to as "memory transformation." Here we demonstrate a previously unappreciated benefit of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural network that is trained to find rewards in a foraging task where reward locations are continuously changing. The network can use memories for specific locations (episodic memories) and statistical patterns of locations (schematic memories) to guide its search. We find that switching from an episodic to a schematic strategy over time leads to enhanced performance due to the tendency for the reward location to be highly correlated with itself in the short-term, but regress to a stable distribution in the long-term. We also show that the statistics of the environment determine the optimal utilization of both types of memory. Our work recasts the theoretical question of why memory transformation occurs, shifting the focus from the avoidance of memory interference toward the enhancement of reinforcement learning across multiple timescales. As time passes, memories transform from a highly detailed state to a more gist-like state, in a process called "memory transformation." Theories of memory transformation speak to its advantages in terms of reducing memory interference, increasing memory robustness, and building models of the environment. However, the role of memory transformation from the perspective of an agent that continuously acts and receives reward in its environment is not well explored. In this work, we demonstrate a view of memory transformation that defines it as a way of optimizing behavior across multiple timescales. Copyright © 2016 the authors 0270-6474/16/3612228-15$15.00/0.
Head west or left, east or right: interactions between memory systems in neurocognitive aging
Pereira, Inês Tomás; Gallagher, Michela; Rapp, Peter R.
2018-01-01
Cognitive aging is accompanied by decline in multiple domains of memory. Here, we developed a T-maze task that required rats to learn competing hippocampal, and striatal navigation strategies in succession, across days. A final session increased demands on cognitive flexibility and required within-day switching between strategies, emphasizing capacities that engage the prefrontal cortex. Background characterization in young and aged rats used a water maze protocol optimized for individual differences in hippocampal integrity. Consistent with earlier work, young adults acquired place strategies in the T-maze faster than response, whereas the opposite was observed in aged rats with impaired spatial memory. The novel result was that aged animals with preserved spatial memory displayed a qualitatively distinct pattern, acquiring place and response strategies equally rapidly, without disruption when switching between them. Subsequent in situ hybridization for the plasticity-related immediate-early gene Arc revealed that while increasing demands on cognitive flexibility and within-day strategy switching potently engaged the prefrontal cortex in young adult and aged-impaired rats, Arc expression was insensitive in aged rats with normal spatial memory and superior switching abilities. Together, the results indicate that cognitive aging is an emergent property of the interactions between memory systems, and that successful cognitive outcomes reflect a distinct neuroadaptive process rather than a slower rate of aging. PMID:26281759
NASA Astrophysics Data System (ADS)
Shi, K. X.; Xu, H. Y.; Wang, Z. Q.; Zhao, X. N.; Liu, W. Z.; Ma, J. G.; Liu, Y. C.
2017-11-01
Resistive-switching memory with ultralow-power consumption is very promising technology for next-generation data storage and high-energy-efficiency neurosynaptic chips. Herein, Ta2O5-x-based multilevel memories with ultralow-power consumption and good data retention were achieved by simple Gd-doping. The introduction of a Gd ion, as an oxygen trapper, not only suppresses the generation of oxygen vacancy defects and greatly increases the Ta2O5-x resistance but also increases the oxygen-ion migration barrier. As a result, the memory cells can operate at an ultralow current of 1 μA with the extrapolated retention time of >10 years at 85 °C and the high switching speeds of 10 ns/40 ns for SET/RESET processes. The energy consumption of the device is as low as 60 fJ/bit, which is comparable to emerging ultralow-energy consumption (<100 fJ/bit) memory devices.
Cheng, Xue-Feng; Hou, Xiang; Qian, Wen-Hu; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei
2017-08-23
Herein, for the first time, quaternary resistive memory based on an organic molecule is achieved via surface engineering. A layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was inserted between the indium tin oxide (ITO) electrode and the organic layer (squaraine, SA-Bu) to form an ITO/PEDOT-PSS/SA-Bu/Al architecture. The modified resistive random-access memory (RRAM) devices achieve quaternary memory switching with the highest yield (∼41%) to date. Surface morphology, crystallinity, and mosaicity of the deposited organic grains are greatly improved after insertion of a PEDOT-PSS interlayer, which provides better contacts at the grain boundaries as well as the electrode/active layer interface. The PEDOT-PSS interlayer also reduces the hole injection barrier from the electrode to the active layer. Thus, the threshold voltage of each switching is greatly reduced, allowing for more quaternary switching in a certain voltage window. Our results provide a simple yet powerful strategy as an alternative to molecular design to achieve organic quaternary resistive memory.
NASA Astrophysics Data System (ADS)
Kavehei, Omid; Linn, Eike; Nielen, Lutz; Tappertzhofen, Stefan; Skafidas, Efstratios; Valov, Ilia; Waser, Rainer
2013-05-01
We report on the implementation of an Associative Capacitive Network (ACN) based on the nondestructive capacitive readout of two Complementary Resistive Switches (2-CRSs). ACNs are capable of performing a fully parallel search for Hamming distances (i.e. similarity) between input and stored templates. Unlike conventional associative memories where charge retention is a key function and hence, they require frequent refresh cycles, in ACNs, information is retained in a nonvolatile resistive state and normal tasks are carried out through capacitive coupling between input and output nodes. Each device consists of two CRS cells and no selective element is needed, therefore, CMOS circuitry is only required in the periphery, for addressing and read-out. Highly parallel processing, nonvolatility, wide interconnectivity and low-energy consumption are significant advantages of ACNs over conventional and emerging associative memories. These characteristics make ACNs one of the promising candidates for applications in memory-intensive and cognitive computing, switches and routers as binary and ternary Content Addressable Memories (CAMs) and intelligent data processing.
Ig heavy chain class switch recombination: mechanism and regulation
Stavnezer, Janet; Schrader, Carol E.
2014-01-01
Ig heavy chain class switching occurs rapidly after activation of mature naïve B cells, resulting in a switch from expressing IgM and IgD to expression of IgG, IgE, or IgA; this switch improves the ability of antibodies to remove the pathogen that induces the humoral immune response. Class switching occurs by a deletional recombination between two different switch (S) regions, each of which is associated with a heavy chain constant (CH) region gene. Class switch recombination (CSR) is instigated by activation-induced cytidine deaminase (AID), which converts cytosines in S regions to uracils. The uracils are subsequently removed by two DNA repair pathways, resulting in mutations, single-strand DNA breaks, and the double-strand breaks required for CSR. We discuss several aspects of CSR, including how CSR is induced, CSR in B-cell progenitors, the roles for transcription and chromosomal looping in CSR, and the roles of certain DNA repair enzymes in CSR. PMID:25411432
Application of nanomaterials in two-terminal resistive-switching memory devices
Ouyang, Jianyong
2010-01-01
Nanometer materials have been attracting strong attention due to their interesting structure and properties. Many important practical applications have been demonstrated for nanometer materials based on their unique properties. This article provides a review on the fabrication, electrical characterization, and memory application of two-terminal resistive-switching devices using nanomaterials as the active components, including metal and semiconductor nanoparticles (NPs), nanotubes, nanowires, and graphenes. There are mainly two types of device architectures for the two-terminal devices with NPs. One has a triple-layer structure with a metal film sandwiched between two organic semiconductor layers, and the other has a single polymer film blended with NPs. These devices can be electrically switched between two states with significant different resistances, i.e. the ‘ON’ and ‘OFF’ states. These render the devices important application as two-terminal non-volatile memory devices. The electrical behavior of these devices can be affected by the materials in the active layer and the electrodes. Though the mechanism for the electrical switches has been in argument, it is generally believed that the resistive switches are related to charge storage on the NPs. Resistive switches were also observed on crossbars formed by nanotubes, nanowires, and graphene ribbons. The resistive switches are due to nanoelectromechanical behavior of the materials. The Coulombic interaction of transient charges on the nanomaterials affects the configurable gap of the crossbars, which results into significant change in current through the crossbars. These nanoelectromechanical devices can be used as fast-response and high-density memory devices as well. PMID:22110862
Memory Influences on Hippocampal and Striatal Neural Codes: Effects of a Shift Between Task Rules
Yeshenko, Oxana; Mizumori, Sheri J.Y.
2007-01-01
Interactions with neocortical memory systems may facilitate flexible information processing by hippocampus. We sought direct evidence for such memory influences by recording hippocampal neural responses to a change in cognitive strategy. Well trained rats switched (within a single recording session) between the use of place and response strategies to solve a plus maze task. Maze and extramaze environments were constant throughout testing. Place fields demonstrated (in-field) firing rate and location based reorganization (Leutgeb, Leutgeb, Barnes, Moser, McNaughton, & Moser, 2005) after a task switch, suggesting that hippocampus encoded each phase of testing as a different context, or episode. The task switch also resulted in qualitative and quantitative changes to discharge that were correlated with an animal's velocity or acceleration of movement. Thus, the effects of a strategy switch extended beyond the spatial domain, and the movement correlates were not passive reflections of the current behavioral state. To determine whether hippocampal neural responses were unique, striatal place and movement-correlated neurons were simultaneously recorded with hippocampal neurons. Striatal place and movement cells exhibited a response profile that was similar, but not identical, to that observed for hippocampus after a strategy switch. Thus, retrieval of a different memory led both neural systems to represent a different context. However, hippocampus may play a special (though not exclusive) role in flexible spatial processing since correlated firing amongst cell pairs was highest when rats successfully switched between two spatial tasks. Correlated firing by striatal cell pairs increased following any strategy switch, supporting the view that striatum codes changes in reinforcement contingencies. PMID:17240173
Martina, M N; Ramirez Bajo, M J; Bañon-Maneus, E; Moya Rull, D; Hierro-Garcia, N; Revuelta, I; Campistol, J M; Rovira, J; Diekmann, F
2016-11-01
Antibody-mediated response in solid organ transplantation is critical for graft dysfunction and loss. The use of immunosuppressive agents partially inhibits the B-lymphocyte response leading to a risk of acute and chronic antibody-mediated rejection. This study evaluated the impact of JAK3 and PKC inhibitors tofacitinib (Tofa) and sotrastaurin (STN), respectively, on B-cell proliferation, apoptosis, and activation in vitro. Human B cells isolated from peripheral blood of healthy volunteers were cocultured with CD40 ligand-transfected fibroblasts as feeder cells in the presence of interleukin (IL) 2, IL-10, and IL-21. The cocultures were treated with immunosuppressants Tofa, STN, and rapamycin (as a control), to analyze the proliferation and apoptosis of B cells by means of Cyquant and flow cytometry, respectively. CD27 and IgG staining were applied to evaluate whether treatments modified the activation of B cells. Tofa and STN were able to inhibit B-cell proliferation to the same extent as rapamycin, without inducing cell apoptosis. After 6 days in coculture with feeder cells, all B cells showed CD27 memory B-cell phenotype. None of the immunosuppressive treatments modified the proportion between class-switched and non-class-switched memory B cells observed in nontreated cultures. The high predominance of CD27 + CD24 + phenotype was not modified by any immunosuppressive treatment. Our results show that Tofa and STN can suppress B-cell antibody responses to an extent similar to rapamycin, in vitro; therefore these compounds may be a useful therapy against antibody-mediated rejection in transplantation. Copyright © 2016. Published by Elsevier Inc.
Resistive switching and memory effects of AgI thin film
NASA Astrophysics Data System (ADS)
Liang, X. F.; Chen, Y.; Shi, L.; Lin, J.; Yin, J.; Liu, Z. G.
2007-08-01
A memory device has been fabricated using an AgI film sandwiched between a Pt film and an Ag film with the lateral size of the device scaled down to 300 nm. The AgI film was made by the iodination of the Ag film at room temperature and under ambient pressure. The switching between high- and low-resistance states can be realized by applying voltages of different polarities. The switching can be performed under the application of voltage pulses with a 100 Hz frequency for ~103 times. The switching times are in the order of microseconds and the retention time is about a week. The switching effects are explained as the electrochemical growth and dissolution of Ag in AgI.
NASA Astrophysics Data System (ADS)
Olga Gneri, Paula; Jardim, Marcos
Resistive switching memory has been of interest lately not only for its simple metal-insulator-metal (MIM) structure but also for its promising ease of scalability an integration into current CMOS technologies like the Field Programmable Gate Arrays and other non-volatile memory applications. There are several resistive switching MIM combinations but under this scope of research, attention will be paid to the bipolar resistive switching characteristics and fabrication of Tantalum Pentaoxide sandwiched between platinum and copper. By changing the polarity of the voltage bias, this metal-insulator-metal (MIM) device can be switched between a high resistive state (OFF) and low resistive state (ON). The change in states is induced by an electrochemical metallization process, which causes a formation or dissolution of Cu metal filamentary paths in the Tantalum Pentaoxide insulator. There is very little thorough experimental information about the Cu-Ta 2O5-Pt switching characteristics when scaled to nanometer dimensions. In this light, the MIM structure was fabricated in a two-dimensional crossbar format. Also, with the limited available resources, a multi-spacer technique was formulated to localize the active device area in this MIM configuration to less than 20nm. This step is important in understanding the switching characteristics and reliability of this structure when scaled to nanometer dimensions.
Sun, Bai; Zhang, Xuejiao; Zhou, Guangdong; Yu, Tian; Mao, Shuangsuo; Zhu, Shouhui; Zhao, Yong; Xia, Yudong
2018-06-15
In this work, a flexible resistive switching memory device based on ZnO film was fabricated using a foldable Polyethylene terephthalate (PET) film as substrate while Ag and Ti acts top and bottom electrode. Our as-prepared device represents an outstanding nonvolatile memory behavior with good "write-read-erase-read" stability at room temperature. Finally, a physical model of Ag conductive filament is constructed to understanding the observed memory characteristics. The work provides a new way for the preparation of flexible memory devices based on ZnO films, and especially provides an experimental basis for the exploration of high-performance and portable nonvolatile resistance random memory (RRAM). Copyright © 2018 Elsevier Inc. All rights reserved.
More memory under evolutionary learning may lead to chaos
NASA Astrophysics Data System (ADS)
Diks, Cees; Hommes, Cars; Zeppini, Paolo
2013-02-01
We show that an increase of memory of past strategy performance in a simple agent-based innovation model, with agents switching between costly innovation and cheap imitation, can be quantitatively stabilising while at the same time qualitatively destabilising. As memory in the fitness measure increases, the amplitude of price fluctuations decreases, but at the same time a bifurcation route to chaos may arise. The core mechanism leading to the chaotic behaviour in this model with strategy switching is that the map obtained for the system with memory is a convex combination of an increasing linear function and a decreasing non-linear function.
Davidson, Matthew C.; Amso, Dima; Anderson, Loren Cruess; Diamond, Adele
2006-01-01
Predictions concerning development, interrelations, and possible independence of working memory, inhibition, and cognitive flexibility were tested in 325 participants (roughly 30 per age from 4 to 13 years and young adults; 50% female). All were tested on the same computerized battery, designed to manipulate memory and inhibition independently and together, in steady state (single-task blocks) and during task-switching, and to be appropriate over the lifespan and for neuroimaging (fMRI). This is one of the first studies, in children or adults, to explore: (a) how memory requirements interact with spatial compatibility and (b) spatial incompatibility effects both with stimulus-specific rules (Simon task) and with higher-level, conceptual rules. Even the youngest children could hold information in mind, inhibit a dominant response, and combine those as long as the inhibition required was steady-state and the rules remained constant. Cognitive flexibility (switching between rules), even with memory demands minimized, showed a longer developmental progression, with 13-year-olds still not at adult levels. Effects elicited only in Mixed blocks with adults were found in young children even in single-task blocks; while young children could exercise inhibition in steady state it exacted a cost not seen in adults, who (unlike young children) seemed to re-set their default response when inhibition of the same tendency was required throughout a block. The costs associated with manipulations of inhibition were greater in young children while the costs associated with increasing memory demands were greater in adults. Effects seen only in RT in adults were seen primarily in accuracy in young children. Adults slowed down on difficult trials to preserve accuracy; but the youngest children were impulsive; their RT remained more constant but at an accuracy cost on difficult trials. Contrary to our predictions of independence between memory and inhibition, when matched for difficulty RT correlations between these were as high as 0.8, although accuracy correlations were less than half that. Spatial incompatibility effects and global and local switch costs were evident in children and adults, differing only in size. Other effects (e.g., asymmetric switch costs and the interaction of switching rules and switching response-sites) differed fundamentally over age. PMID:16580701
A fast low-power optical memory based on coupled micro-ring lasers
NASA Astrophysics Data System (ADS)
Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.
2004-11-01
The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.
2013-01-01
Comparison of resistive switching memory characteristics using copper (Cu) and aluminum (Al) electrodes on GeOx/W cross-points has been reported under low current compliances (CCs) of 1 nA to 50 μA. The cross-point memory devices are observed by high-resolution transmission electron microscopy (HRTEM). Improved memory characteristics are observed for the Cu/GeOx/W structures as compared to the Al/GeOx/W cross-points owing to AlOx formation at the Al/GeOx interface. The RESET current increases with the increase of the CCs varying from 1 nA to 50 μA for the Cu electrode devices, while the RESET current is high (>1 mA) and independent of CCs varying from 1 nA to 500 μA for the Al electrode devices. An extra formation voltage is needed for the Al/GeOx/W devices, while a low operation voltage of ±2 V is needed for the Cu/GeOx/W cross-point devices. Repeatable bipolar resistive switching characteristics of the Cu/GeOx/W cross-point memory devices are observed with CC varying from 1 nA to 50 μA, and unipolar resistive switching is observed with CC >100 μA. High resistance ratios of 102 to 104 for the bipolar mode (CCs of 1 nA to 50 μA) and approximately 108 for the unipolar mode are obtained for the Cu/GeOx/W cross-points. In addition, repeatable switching cycles and data retention of 103 s are observed under a low current of 1 nA for future low-power, high-density, nonvolatile, nanoscale memory applications. PMID:24305116
Ultra-Lightweight Resistive Switching Memory Devices Based on Silk Fibroin.
Wang, Hong; Zhu, Bowen; Wang, Hua; Ma, Xiaohua; Hao, Yue; Chen, Xiaodong
2016-07-01
Ultra-lightweight resistive switching memory based on protein has been demonstrated. The memory foil is 0.4 mg cm(-2) , which is 320-fold lighter than silicon substrate, 20-fold lighter than office paper and can be sustained by a human hair. Additionally, high resistance OFF/ON ratio of 10(5) , retention time of 10(4) s, and excellent flexibility (bending radius of 800 μm) have been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hardware enabled performance counters with support for operating system context switching
Salapura, Valentina; Wisniewski, Robert W.
2015-06-30
A device for supporting hardware enabled performance counters with support for context switching include a plurality of performance counters operable to collect information associated with one or more computer system related activities, a first register operable to store a memory address, a second register operable to store a mode indication, and a state machine operable to read the second register and cause the plurality of performance counters to copy the information to memory area indicated by the memory address based on the mode indication.
A class Hierarchical, object-oriented approach to virtual memory management
NASA Technical Reports Server (NTRS)
Russo, Vincent F.; Campbell, Roy H.; Johnston, Gary M.
1989-01-01
The Choices family of operating systems exploits class hierarchies and object-oriented programming to facilitate the construction of customized operating systems for shared memory and networked multiprocessors. The software is being used in the Tapestry laboratory to study the performance of algorithms, mechanisms, and policies for parallel systems. Described here are the architectural design and class hierarchy of the Choices virtual memory management system. The software and hardware mechanisms and policies of a virtual memory system implement a memory hierarchy that exploits the trade-off between response times and storage capacities. In Choices, the notion of a memory hierarchy is captured by abstract classes. Concrete subclasses of those abstractions implement a virtual address space, segmentation, paging, physical memory management, secondary storage, and remote (that is, networked) storage. Captured in the notion of a memory hierarchy are classes that represent memory objects. These classes provide a storage mechanism that contains encapsulated data and have methods to read or write the memory object. Each of these classes provides specializations to represent the memory hierarchy.
Bilingual Control: Sequential Memory in Language Switching
ERIC Educational Resources Information Center
Declerck, Mathieu; Philipp, Andrea M.; Koch, Iring
2013-01-01
To investigate bilingual language control, prior language switching studies presented visual objects, which had to be named in different languages, typically indicated by a visual cue. The present study examined language switching of predictable responses by introducing a novel sequence-based language switching paradigm. In 4 experiments,…
NASA Astrophysics Data System (ADS)
Mangasa Simanjuntak, Firman; Chandrasekaran, Sridhar; Pattanayak, Bhaskar; Lin, Chun-Chieh; Tseng, Tseung-Yuen
2017-09-01
We explore the use of cubic-zinc peroxide (ZnO2) as a switching material for electrochemical metallization memory (ECM) cell. The ZnO2 was synthesized with a simple peroxide surface treatment. Devices made without surface treatment exhibits a high leakage current due to the self-doped nature of the hexagonal-ZnO material. Thus, its switching behavior can only be observed when a very high current compliance is employed. The synthetic ZnO2 layer provides a sufficient resistivity to the Cu/ZnO2/ZnO/ITO devices. The high resistivity of ZnO2 encourages the formation of a conducting bridge to activate the switching behavior at a lower operation current. Volatile and non-volatile switching behaviors with sufficient endurance and an adequate memory window are observed in the surface-treated devices. The room temperature retention of more than 104 s confirms the non-volatility behavior of the devices. In addition, our proposed device structure is able to work at a lower operation current among other reported ZnO-based ECM cells.
Phase-Change Thermoplastic Elastomer Blends for Tunable Shape Memory by Physical Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineart, Kenneth P.; Tallury, Syamal S.; Li, Tao
Shape-memory polymers (SMPs) change shape upon exposure to an environmental stimulus.1-3 They are of considerable importance in the ongoing development of stimuli-responsive biomedical4,5 and deployable6 devices, and their function depends on the presence of two components.7 The first provides mechanical rigidity to ensure retention of one or more temporary strain states and also serves as a switch capable of releasing a temporary strain state. The second, a network-forming component, is required to restore the polymer to a prior strain state upon stimulation. In thermally-activated SMPs, the switching element typically relies on a melting or glass transition temperature,1-3,7 and broad ormore » multiple switches permit several temporary strain states.8-10 Chemical integration of network-forming and switching species endows SMPs with specific properties.8,10,11 Here, we demonstrate that phase-change materials incorporated into network-forming macromolecules yield shape-memory polymer blends (SMPBs) with physically tunable switching temperatures and recovery kinetics for use in multi-responsive laminates and shape-change electronics.« less
Resistive switching characteristics of HfO2-based memory devices on flexible plastics.
Han, Yong; Cho, Kyoungah; Park, Sukhyung; Kim, Sangsig
2014-11-01
In this study, we examine the characteristics of HfO2-based resistive switching random access memory (ReRAM) devices on flexible plastics. The Pt/HfO2/Au ReRAM devices exhibit the unipolar resistive switching behaviors caused by the conducting filaments. From the Auger depth profiles of the HfO2 thin film, it is confirmed that the relatively lower oxygen content in the interface of the bottom electrode is responsible for the resistive switching by oxygen vacancies. And the unipolar resistive switching behaviors are analyzed from the C-V characteristics in which negative and positive capacitances are measured in the low-resistance state and the high-resistance state, respectively. The devices have a high on/off ratio of 10(4) and the excellent retention properties even after a continuous bending test of two thousand cycles. The correlation between the device size and the memory characteristics is investigated as well. A relatively smaller-sized device having a higher on/off ratio operates at a higher voltage than a relatively larger-sized device.
Resistive Switching of Ta2O5-Based Self-Rectifying Vertical-Type Resistive Switching Memory
NASA Astrophysics Data System (ADS)
Ryu, Sungyeon; Kim, Seong Keun; Choi, Byung Joon
2018-01-01
To efficiently increase the capacity of resistive switching random-access memory (RRAM) while maintaining the same area, a vertical structure similar to a vertical NAND flash structure is needed. In addition, the sneak-path current through the half-selected neighboring memory cell should be mitigated by integrating a selector device with each RRAM cell. In this study, an integrated vertical-type RRAM cell and selector device was fabricated and characterized. Ta2O5 as the switching layer and TaOxNy as the selector layer were used to preliminarily study the feasibility of such an integrated device. To make the side contact of the bottom electrode with active layers, a thick Al2O3 insulating layer was placed between the Pt bottom electrode and the Ta2O5/TaOxNy stacks. Resistive switching phenomena were observed under relatively low currents (below 10 μA) in this vertical-type RRAM device. The TaOxNy layer acted as a nonlinear resistor with moderate nonlinearity. Its low-resistance-state and high-resistance-state were well retained up to 1000 s.
Shifting Attention within Memory Representations Involves Early Visual Areas
Munneke, Jaap; Belopolsky, Artem V.; Theeuwes, Jan
2012-01-01
Prior studies have shown that spatial attention modulates early visual cortex retinotopically, resulting in enhanced processing of external perceptual representations. However, it is not clear whether the same visual areas are modulated when attention is focused on, and shifted within a working memory representation. In the current fMRI study participants were asked to memorize an array containing four stimuli. After a delay, participants were presented with a verbal cue instructing them to actively maintain the location of one of the stimuli in working memory. Additionally, on a number of trials a second verbal cue instructed participants to switch attention to the location of another stimulus within the memorized representation. Results of the study showed that changes in the BOLD pattern closely followed the locus of attention within the working memory representation. A decrease in BOLD-activity (V1–V3) was observed at ROIs coding a memory location when participants switched away from this location, whereas an increase was observed when participants switched towards this location. Continuous increased activity was obtained at the memorized location when participants did not switch. This study shows that shifting attention within memory representations activates the earliest parts of visual cortex (including V1) in a retinotopic fashion. We conclude that even in the absence of visual stimulation, early visual areas support shifting of attention within memorized representations, similar to when attention is shifted in the outside world. The relationship between visual working memory and visual mental imagery is discussed in light of the current findings. PMID:22558165
Bidirectional switch of the valence associated with a hippocampal contextual memory engram.
Redondo, Roger L; Kim, Joshua; Arons, Autumn L; Ramirez, Steve; Liu, Xu; Tonegawa, Susumu
2014-09-18
The valence of memories is malleable because of their intrinsic reconstructive property. This property of memory has been used clinically to treat maladaptive behaviours. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here we investigated these mechanisms by applying the recently developed memory engram cell- manipulation technique. We labelled with channelrhodopsin-2 (ChR2) a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that although the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new unconditioned stimulus of an opposite valence. Our present work provides new insight into the functional neural circuits underlying the malleability of emotional memory.
Bidirectional switch of the valence associated with a hippocampal contextual memory engram
Redondo, Roger L; Kim, Joshua; Arons, Autumn L; Ramirez, Steve; Liu, Xu; Tonegawa, Susumu
2014-01-01
The valence of memories is malleable because of their intrinsic reconstructive property1. This property of memory has been used clinically to treat maladaptive behaviours2. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here, we investigated these mechanisms by applying the recently developed memory engram cell-labelling and -manipulation technique 3,4. We labelled, with Channelrhodopsin-2 (ChR2), a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that while the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new US of an opposite valence. Our present work provides new insight into the functional neural circuit underlying the malleability of emotional memory. PMID:25162525
Nozaki, Kengo; Lacraz, Amedee; Shinya, Akihiko; Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Kuramochi, Eiichi; Notomi, Masaya
2015-11-16
An all-optical packet switching using bistable photonic crystal nanocavity memories was demonstrated for the first time. Nanocavity-waveguide coupling systems were configured for 1 × 1, 1 × 2, and 1 × 3 switches for 10-Gb/s optical packet, and they were all operated with an optical bias power of only a few μW. The power is several magnitudes lower than that of previously reported all-optical packet switches incorporating all-optical memories. A theoretical investigation indicated the optimum design for reducing the power consumption even further, and for realizing a higher data-rate capability and higher extinction. A small footprint and integrability are also features of our switches, which make them attractive for constructing an all-optical packet switching subsystem with a view to realizing optical routing on a chip.
Analytical design equations for self-tuned Class-E power amplifier.
Hu, Zhe; Troyk, Philip
2011-01-01
For many emerging neural prosthesis designs that are powered by inductive coupling, their small physical size requires large current in the extracorporeal transmitter coil, and the Class-E power amplifier topology is often used for the transmitter design. Tuning of Class-E circuits for efficient operation is difficult and a self-tuned circuit can facilitate the tuning. The coil current is sensed and used to tune the switching of the transistor switch in the Class-E circuit in order to maintain its high-efficiency operation. Although mathematically complex, the analysis and design procedure for the self-tuned Class-E circuit can be simplified due to the current feedback control, which makes the phase angle between the switching pulse and the coil current predetermined. In this paper explicit analytical design equations are derived and a detailed design procedure is presented and compared with the conventional Class-E design approaches.
Spatial nonuniformity in resistive-switching memory effects of NiO.
Oka, Keisuke; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Kawai, Tomoji; Kim, Jin-Soo; Park, Bae Ho
2011-08-17
Electrically driven resistance change phenomenon in metal/NiO/metal junctions, so-called resistive switching (RS), is a candidate for next-generation universal nonvolatile memories. However, the knowledge as to RS mechanisms is unfortunately far from comprehensive, especially the spatial switching location, which is crucial information to design reliable devices. In this communication, we demonstrate the identification of the spatial switching location of bipolar RS by introducing asymmetrically passivated planar NiO nanowire junctions. We have successfully identified that the bipolar RS in NiO occurs near the cathode rather than the anode. This trend can be interpreted in terms of an electrochemical redox model based on ion migration and p-type conduction.
Gubicza, Agnes; Csontos, Miklós; Halbritter, András; Mihály, György
2015-03-14
The dynamics of resistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Our thorough experimental analysis and numerical simulations revealed that the resistance change upon a switching bias voltage pulse exhibits a strongly non-exponential behaviour yielding markedly different response times at different bias levels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale non-volatile memory cells with stable switching ratios, high endurance as well as fast response to write/erase, and an outstanding stability against read operations at technologically optimal bias and current levels.
Copper atomic-scale transistors.
Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas
2017-01-01
We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.
Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device
NASA Astrophysics Data System (ADS)
Chen, C.; Yang, Y. C.; Zeng, F.; Pan, F.
2010-08-01
Highly stable and reproducible bipolar resistive switching effects are reported on Cu/AlN/Pt devices. Memory characteristics including large memory window of 103, long retention time of >106 s and good endurance of >103 were demonstrated. It is concluded that the reset current decreases as compliance current decreases, which provides an approach to suppress power consumption. The dominant conduction mechanisms of low resistance state and high resistance state were verified by Ohmic behavior and trap-controlled space charge limited current, respectively. The memory effect is explained by the model concerning redox reaction mediated formation and rupture of the conducting filament in AlN films.
MOSFET Switching Circuit Protects Shape Memory Alloy Actuators
NASA Technical Reports Server (NTRS)
Gummin, Mark A.
2011-01-01
A small-footprint, full surface-mount-component printed circuit board employs MOSFET (metal-oxide-semiconductor field-effect transistor) power switches to switch high currents from any input power supply from 3 to 30 V. High-force shape memory alloy (SMA) actuators generally require high current (up to 9 A at 28 V) to actuate. SMA wires (the driving element of the actuators) can be quickly overheated if power is not removed at the end of stroke, which can damage the wires. The new analog driver prevents overheating of the SMA wires in an actuator by momentarily removing power when the end limit switch is closed, thereby allowing complex control schemes to be adopted without concern for overheating. Either an integral pushbutton or microprocessor-controlled gate or control line inputs switch current to the actuator until the end switch line goes from logic high to logic low state. Power is then momentarily removed (switched off by the MOSFET). The analog driver is suited to use with nearly any SMA actuator.
Organic Bistable Memory Switching Phenomena in Squarylium-Dye Langmuir-Blodgett Films
NASA Astrophysics Data System (ADS)
Kushida, Masahito; Inomata, Hisao; Miyata, Hiroshi; Harada, Kieko; Saito, Kyoichi; Sugita, Kazuyuki
2003-06-01
We have investigated the relationship between the switching phenomena and H-like aggregates in squarylium-dye Langmuir-Blodgett (SQ LB) films. The current-voltage characteristics of SQ LB films sandwiched between the top gold electrode and the bottom aluminum electrode indicated conductance switching phenomena below the temperature of 100°C but not at 140°C. Current densities suddenly increased at switching voltages between 2 and 4 V. The switching voltage increased as the temperature increased between room temperature and 100°C. Current densities were 50-100 μA/cm2 in a low-impedance state (ON state). A high-impedance state (OFF state) can be recovered by applying a reverse bias, and therefore, these bistable devices are ideal for memory applications. The dependence of conductance switching phenomena and ultraviolet-visible absorption spectra on annealing temperatures was studied. The results revealed that conductance switching phenomena were caused by the presence of H-like aggregates in the SQ LB films.
Semiconductor diode with external field modulation
Nasby, Robert D.
2000-01-01
A non-destructive-readout nonvolatile semiconductor diode switching device that may be used as a memory element is disclosed. The diode switching device is formed with a ferroelectric material disposed above a rectifying junction to control the conduction characteristics therein by means of a remanent polarization. The invention may be used for the formation of integrated circuit memories for the storage of information.
NASA Astrophysics Data System (ADS)
Younis, Adnan; Chu, Dewei; Li, Sean
2015-09-01
Further progress in high-performance microelectronic devices relies on the development of novel materials and device architectures. However, the components and designs that are currently in use have reached their physical limits. Intensive research efforts, ranging from device fabrication to performance evaluation, are required to surmount these limitations. In this paper, we demonstrate that the superior bipolar resistive switching characteristics of a CeO2:Gd-based memory device can be manipulated by means of UV radiation, serving as a new degree of freedom. Furthermore, the metal oxide-based (CeO2:Gd) memory device was found to possess electrical and neuromorphic multifunctionalities. To investigate the underlying switching mechanism of the device, its plasticity behaviour was studied by imposing weak programming conditions. In addition, a short-term to long-term memory transition analogous to the forgetting process in the human brain, which is regarded as a key biological synaptic function for information processing and data storage, was realized. Based on a careful examination of the device’s retention behaviour at elevated temperatures, the filamentary nature of switching in such devices can be understood from a new perspective.
Younis, Adnan; Chu, Dewei; Li, Sean
2015-01-01
Further progress in high-performance microelectronic devices relies on the development of novel materials and device architectures. However, the components and designs that are currently in use have reached their physical limits. Intensive research efforts, ranging from device fabrication to performance evaluation, are required to surmount these limitations. In this paper, we demonstrate that the superior bipolar resistive switching characteristics of a CeO2:Gd-based memory device can be manipulated by means of UV radiation, serving as a new degree of freedom. Furthermore, the metal oxide-based (CeO2:Gd) memory device was found to possess electrical and neuromorphic multifunctionalities. To investigate the underlying switching mechanism of the device, its plasticity behaviour was studied by imposing weak programming conditions. In addition, a short-term to long-term memory transition analogous to the forgetting process in the human brain, which is regarded as a key biological synaptic function for information processing and data storage, was realized. Based on a careful examination of the device’s retention behaviour at elevated temperatures, the filamentary nature of switching in such devices can be understood from a new perspective. PMID:26324073
High density submicron magnetoresistive random access memory (invited)
NASA Astrophysics Data System (ADS)
Tehrani, S.; Chen, E.; Durlam, M.; DeHerrera, M.; Slaughter, J. M.; Shi, J.; Kerszykowski, G.
1999-04-01
Various giant magnetoresistance material structures were patterned and studied for their potential as memory elements. The preferred memory element, based on pseudo-spin valve structures, was designed with two magnetic stacks (NiFeCo/CoFe) of different thickness with Cu as an interlayer. The difference in thickness results in dissimilar switching fields due to the shape anisotropy at deep submicron dimensions. It was found that a lower switching current can be achieved when the bits have a word line that wraps around the bit 1.5 times. Submicron memory elements integrated with complementary metal-oxide-semiconductor (CMOS) transistors maintained their characteristics and no degradation to the CMOS devices was observed. Selectivity between memory elements in high-density arrays was demonstrated.
NASA Astrophysics Data System (ADS)
Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Kim, Sowon; Choi, Kyung Hyun
2017-08-01
Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al2O3) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications.
Diagnosable structured logic array
NASA Technical Reports Server (NTRS)
Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)
2009-01-01
A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.
Set statistics in conductive bridge random access memory device with Cu/HfO{sub 2}/Pt structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Meiyun; Long, Shibing, E-mail: longshibing@ime.ac.cn; Wang, Guoming
2014-11-10
The switching parameter variation of resistive switching memory is one of the most important challenges in its application. In this letter, we have studied the set statistics of conductive bridge random access memory with a Cu/HfO{sub 2}/Pt structure. The experimental distributions of the set parameters in several off resistance ranges are shown to nicely fit a Weibull model. The Weibull slopes of the set voltage and current increase and decrease logarithmically with off resistance, respectively. This experimental behavior is perfectly captured by a Monte Carlo simulator based on the cell-based set voltage statistics model and the Quantum Point Contact electronmore » transport model. Our work provides indications for the improvement of the switching uniformity.« less
Transparent resistive switching memory using aluminum oxide on a flexible substrate
NASA Astrophysics Data System (ADS)
Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon
2016-02-01
Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.
A long-term epigenetic memory switch controls bacterial virulence bimodality
Ronin, Irine; Katsowich, Naama; Rosenshine, Ilan; Balaban, Nathalie Q
2017-01-01
When pathogens enter the host, sensing of environmental cues activates the expression of virulence genes. Opposite transition of pathogens from activating to non-activating conditions is poorly understood. Interestingly, variability in the expression of virulence genes upon infection enhances colonization. In order to systematically detect the role of phenotypic variability in enteropathogenic E. coli (EPEC), an important human pathogen, both in virulence activating and non-activating conditions, we employed the ScanLag methodology. The analysis revealed a bimodal growth rate. Mathematical modeling combined with experimental analysis showed that this bimodality is mediated by a hysteretic memory-switch that results in the stable co-existence of non-virulent and hyper-virulent subpopulations, even after many generations of growth in non-activating conditions. We identified the per operon as the key component of the hysteretic switch. This unique hysteretic memory switch may result in persistent infection and enhanced host-to-host spreading. DOI: http://dx.doi.org/10.7554/eLife.19599.001 PMID:28178445
Unipolar resistive switching behaviors and mechanisms in an annealed Ni/ZrO2/TaN memory device
NASA Astrophysics Data System (ADS)
Tsai, Tsung-Ling; Ho, Tsung-Han; Tseng, Tseung-Yuen
2015-01-01
The effects of Ni/ZrO2/TaN resistive switching memory devices without and with a 400 °C annealing process on switching properties are investigated. The devices exhibit unipolar resistive switching behaviors with low set and reset voltages because of a large amount of Ni diffusion with no reaction with ZrO2 after the annealing process, which is confirmed by ToF-SIMS and XPS analyses. A physical model based on a Ni filament is constructed to explain such phenomena. The device that undergoes the 400 °C annealing process exhibits an excellent endurance of more than 1.5 × 104 cycles. The improvement can be attributed to the enhancement of oxygen ion migration along grain boundaries, which result in less oxygen ion consumption during the reset process. The device also performs good retention up to 105 s at 150 °C. Therefore, it has great potential for high-density nonvolatile memory applications.
Forming free and ultralow-power erase operation in atomically crystal TiO2 resistive switching
NASA Astrophysics Data System (ADS)
Dai, Yawei; Bao, Wenzhong; Hu, Linfeng; Liu, Chunsen; Yan, Xiao; Chen, Lin; Sun, Qingqing; Ding, Shijin; Zhou, Peng; Zhang, David Wei
2017-06-01
Two-dimensional layered materials (2DLMs) have attracted broad interest from fundamental sciences to industrial applications. Their applications in memory devices have been demonstrated, yet much still remains to explore optimal materials and device structure for practical application. In this work, a forming-free, bipolar resistive switching behavior are demonstrated in 2D TiO2-based resistive random access memory (RRAM). Physical adsorption method is adopted to achieve high quality, continuous 2D TiO2 network efficiently. The 2D TiO2 RRAM devices exhibit superior properties such as fast switching capability (20 ns of erase operation) and extremely low erase energy consumption (0.16 fJ). Furthermore, the resistive switching mechanism is attributed to the formation and rupture of oxygen vacancies-based percolation path in 2D TiO2 crystals. Our results pave the way for the implementation of high performance 2DLMs-based RRAM in the next generation non-volatile memory (NVM) application.
Direct real-time neural evidence for task-set inertia.
Evans, Lisa H; Herron, Jane E; Wilding, Edward L
2015-03-01
One influential explanation for the costs incurred when switching between tasks is that they reflect interference arising from completing the previous task-known as task-set inertia. We report a novel approach for assessing task-set inertia in a memory experiment using event-related potentials (ERPs). After a study phase, participants completed a test block in which they switched between a memory task (retrieving information from the study phase) and a perceptual task. These tasks alternated every two trials. An ERP index of the retrieval of study information was evident in the memory task. It was also present on the first trial of the perceptual task but was markedly attenuated on the second. Moreover, this task-irrelevant ERP activity was positively correlated with a behavioral cost associated with switching between tasks. This real-time measure of neural activity thus provides direct evidence of task-set inertia, its duration, and the functional role it plays in switch costs. © The Author(s) 2015.
Resistive switching characteristics of interfacial phase-change memory at elevated temperature
NASA Astrophysics Data System (ADS)
Mitrofanov, Kirill V.; Saito, Yuta; Miyata, Noriyuki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji
2018-04-01
Interfacial phase-change memory (iPCM) devices were fabricated using W and TiN for the bottom and top contacts, respectively, and the effect of operation temperature on the resistive switching was examined over the range between room temperature and 200 °C. It was found that the high-resistance (RESET) state in an iPCM device drops sharply at around 150 °C to a low-resistance (SET) state, which differs by ˜400 Ω from the SET state obtained by electric-field-induced switching. The iPCM device SET state resistance recovered during the cooling process and remained at nearly the same value for the RESET state. These resistance characteristics greatly differ from those of the conventional Ge-Sb-Te (GST) alloy phase-change memory device, underscoring the fundamentally different switching nature of iPCM devices. From the thermal stability measurements of iPCM devices, their optimal temperature operation was concluded to be less than 100 °C.
TBK1 controls IgA class switching by negatively regulating noncanonical NF-κB signaling
Jin, Jin; Xiao, Yichuan; Chang, Jae-Hoon; Yu, Jiayi; Hu, Hongbo; Starr, Robyn; Brittain, George C.; Chang, Mikyoung; Cheng, Xuhong; Sun, Shao-Cong
2012-01-01
Immunoglobulin (Ig) class switching is crucial for generating antibody diversity in humoral immunity and, if deregulated, also has severe pathological consequences. How the magnitude of Ig isotype switching is controlled is still poorly understood. Here we identify TANK-binding kinase 1 (TBK1) as a pivotal negative regulator of IgA class switching. B cell-specific TBK1 ablation in mice resulted in uncontrolled production of IgA and development of nephropathy-like disease symptoms. TBK1 negatively regulated IgA class switching by attenuating noncanonical NF-κB signaling, an action that involved TBK1-mediated phosphorylation and subsequent degradation of the NF-κB-inducing kinase. These findings establish TBK1 as a pivotal negative regulator of the noncanonical NF-κB pathway and highlight a unique mechanism that controls IgA production. PMID:23023393
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, ChangLi; Complex and Intelligent System Research Center, East China University of Science and Technology, Shanghai 200237; Wang, XueJun
2016-05-15
The switching characteristic of the poly(vinylidene fluoride-trifluoroethlene) (P(VDF-TrFE)) films have been studied at different ranges of applied electric field. It is suggest that the increase of the switching speed upon nucleation protocol and the deceleration of switching could be related to the presence of a non-ferroelectric layer. Remarkably, a capacitor and resistor (RC) links model plays significant roles in the polarization switching dynamics of the thin films. For P(VDF-TrFE) ultrathin films with electroactive interlayer, it is found that the switching dynamic characteristics are strongly affected by the contributions of resistor and non-ferroelectric (non-FE) interface factors. A corresponding experiment is designedmore » using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic) (PEDOT-PSSH) as interlayer with different proton concentrations, and the testing results show that the robust switching is determined by the proton concentration in interlayer and lower leakage current in circuit to reliable applications of such polymer films. These findings provide a new feasible method to enhance the polarization switching for the ferroelectric random access memory.« less
Electroformed silicon nitride based light emitting memory device
NASA Astrophysics Data System (ADS)
Anutgan, Tamila; Anutgan, Mustafa; Atilgan, Ismail; Katircioglu, Bayram
2017-07-01
The resistive memory switching effect of an electroformed nanocrystal silicon nitride thin film light emitting diode (LED) is demonstrated. For this purpose, current-voltage (I-V) characteristics of the diode were systematically scanned, paying particular attention to the sequence of the measurements. It was found that when the voltage polarity was changed from reverse to forward, the previously measured reverse I-V behavior was remembered until some critical forward bias voltage. Beyond this critical voltage, the I-V curve returns to its original state instantaneously, and light emission switches from the OFF state to the ON state. The kinetics of this switching mechanism was studied for different forward bias stresses by measuring the corresponding time at which the switching occurs. Finally, the switching of resistance and light emission states was discussed via energy band structure of the electroformed LED.
47 CFR 32.2210 - Central office-switching.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2210 Central office—switching. This account shall be used by Class B companies to record the original cost of switching assets of the type and character required of Class A companies in Accounts 2211 through 2212. [67...
de la Fuente, Verónica; Freudenthal, Ramiro; Romano, Arturo
2011-04-13
In fear conditioning, aversive stimuli are readily associated with contextual features. A brief reexposure to the training context causes fear memory reconsolidation, whereas a prolonged reexposure induces memory extinction. The regulation of hippocampal gene expression plays a key role in contextual memory consolidation and reconsolidation. However, the mechanisms that determine whether memory will reconsolidate or extinguish are not known. Here, we demonstrate opposing roles for two evolutionarily related transcription factors in the mouse hippocampus. We found that nuclear factor-κB (NF-κB) is required for fear memory reconsolidation. Conversely, calcineurin phosphatase inhibited NF-κB and induced nuclear factor of activated T-cells (NFAT) nuclear translocation in the transition between reconsolidation and extinction. Accordingly, the hippocampal inhibition of both calcineurin and NFAT independently impaired memory extinction, whereas inhibition of NF-κB enhanced memory extinction. These findings represent the first insight into the molecular mechanisms that determine memory reprocessing after retrieval, supporting a transcriptional switch that directs memory toward reconsolidation or extinction. The precise molecular characterization of postretrieval processes has potential importance to the development of therapeutic strategies for fear memory disorders.
NASA Astrophysics Data System (ADS)
Aneesh, J.; Predeep, P.
2011-10-01
Consequent to the fast increase in data storage requirements new materials and device structures are explored in a war footing. Organic memory devices are attracting lot of interest among the researchers and are becoming a hot topic of investigations. This study is an attempt to develop a tri-layer organic memory device using indium tin oxide (ITO) nanoparticles as charge trapping middle layer between tris-8(-hydroxyquinoline)aluminum (Alq3) layers employing spin coating technique. Device switching is studied by applying a current-voltage (I-V) sweep. On increasing the applied bias the device switched from the initial high resistance (OFF) state to a low resistance (ON) state at a switch on voltage of around 4 V. ON/OFF ratio is of the order of 100 at a read voltage of 2 V. The device is found to remain in the low resistance state on further scans, showing the applicability of this device as a write once read many times (WORM) memory.
Ga-doped indium oxide nanowire phase change random access memory cells
NASA Astrophysics Data System (ADS)
Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo
2014-02-01
Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.
2012-01-01
Excellent resistive switching memory characteristics were demonstrated for an Al/Cu/Ti/TaOx/W structure with a Ti nanolayer at the Cu/TaOx interface under low voltage operation of ± 1.5 V and a range of current compliances (CCs) from 0.1 to 500 μA. Oxygen accumulation at the Ti nanolayer and formation of a defective high-κ TaOx film were confirmed by high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photo-electron spectroscopy. The resistive switching memory characteristics of the Al/Cu/Ti/TaOx/W structure, such as HRS/LRS (approximately 104), stable switching cycle stability (>106) and multi-level operation, were improved compared with those of Al/Cu/TaOx/W devices. These results were attributed to the control of Cu migration/dissolution by the insertion of a Ti nanolayer at the Cu/TaOx interface. In contrast, CuOx formation at the Cu/TaOx interface was observed in an Al/Cu/TaOx/W structure, which hindered dissolution of the Cu filament and resulted in a small resistance ratio of approximately 10 at a CC of 500 μA. A high charge-trapping density of 6.9 × 1016 /cm2 was observed in the Al/Cu/Ti/TaOx/W structure from capacitance-voltage hysteresis characteristics, indicating the migration of Cu ions through defect sites. The switching mechanism was successfully explained for structures with and without the Ti nanolayer. By using a new approach, the nanoscale diameter of Cu filament decreased from 10.4 to 0.17 nm as the CC decreased from 500 to 0.1 μA, resulting in a large memory size of 7.6 T to 28 Pbit/sq in. Extrapolated 10-year data retention of the Ti nanolayer device was also obtained. The findings of this study will not only improve resistive switching memory performance but also aid future design of nanoscale nonvolatile memory. PMID:22734564
NASA Astrophysics Data System (ADS)
Abbas, Haider; Park, Mi Ra; Abbas, Yawar; Hu, Quanli; Kang, Tae Su; Yoon, Tae-Sik; Kang, Chi Jung
2018-06-01
Improved resistive switching characteristics are demonstrated in a hybrid device with Pt/Ti/MnO (thin film)/MnO (nanoparticle)/Pt structure. The hybrid devices of MnO thin film and nanoparticle assembly were fabricated. MnO nanoparticles with an average diameter of ∼30 nm were chemically synthesized and assembled as a monolayer on a Pt bottom electrode. A MnO thin film of ∼40 nm thickness was deposited on the nanoparticle assembly to form the hybrid structure. Resistive switching could be induced by the formation and rupture of conducting filaments in the hybrid oxide layers. The hybrid device exhibited very stable unipolar switching with good endurance and retention characteristics. It showed a larger and stable memory window with a uniform distribution of SET and RESET voltages. Moreover, the conduction mechanisms of ohmic conduction, space-charge-limited conduction, Schottky emission, and Poole–Frenkel emission have been investigated as possible conduction mechanisms for the switching of the devices. Using MnO nanoparticles in the thin film and nanoparticle heterostructures enabled the appropriate control of resistive random access memory (RRAM) devices and markedly improved their memory characteristics.
Multiple switching modes and multiple level states in memristive devices
NASA Astrophysics Data System (ADS)
Miao, Feng; Yang, J. Joshua; Borghetti, Julien; Strachan, John Paul; Zhang, M.-X.; Goldfarb, Ilan; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley
2011-03-01
As one of the most promising technologies for next generation non-volatile memory, metal oxide based memristive devices have demonstrated great advantages on scalability, operating speed and power consumption. Here we report the observation of multiple switching modes and multiple level states in different memristive systems. The multiple switching modes can be obtained by limiting the current during electroforming, and related transport behaviors, including ionic and electronic motions, are characterized. Such observation can be rationalized by a model of two effective switching layers adjacent to the bottom and top electrodes. Multiple level states, corresponding to different composition of the conducting channel, will also be discussed in the context of multiple-level storage for high density, non-volatile memory applications.
A graphene-based non-volatile memory
NASA Astrophysics Data System (ADS)
Loisel, Loïc.; Maurice, Ange; Lebental, Bérengère; Vezzoli, Stefano; Cojocaru, Costel-Sorin; Tay, Beng Kang
2015-09-01
We report on the development and characterization of a simple two-terminal non-volatile graphene switch. After an initial electroforming step during which Joule heating leads to the formation of a nano-gap impeding the current flow, the devices can be switched reversibly between two well-separated resistance states. To do so, either voltage sweeps or pulses can be used, with the condition that VSET < VRESET , where SET is the process decreasing the resistance and RESET the process increasing the resistance. We achieve reversible switching on more than 100 cycles with resistance ratio values of 104. This approach of graphene memory is competitive as compared to other graphene approaches such as redox of graphene oxide, or electro-mechanical switches with suspended graphene. We suggest a switching model based on a planar electro-mechanical switch, whereby electrostatic, elastic and friction forces are competing to switch devices ON and OFF, and the stability in the ON state is achieved by the formation of covalent bonds between the two stretched sides of the graphene, hence bridging the nano-gap. Developing a planar electro-mechanical switch enables to obtain the advantages of electro-mechanical switches while avoiding most of their drawbacks.
Sex-related differences in attention and memory.
Solianik, Rima; Brazaitis, Marius; Skurvydas, Albertas
2016-01-01
The sex differences and similarities in cognitive abilities is a continuing topic of major interest. Besides, the influences of trends over time and possible effects of sex steroid and assessment time on cognition have expanded the necessity to re-evaluate differences between men and women. Therefore, the aim of this study was to compare cognitive performance between men and women in a strongly controlled experiment. In total, 28 men and 25 women were investigated. Variables of body temperature and heart rate were assessed. A cognitive test battery was used to assess attention (visual search, unpredictable task switching as well as complex visual search and predictable task switching tests) and memory (forced visual memory, forward digit span and free recall test). The differences in heart rate and body temperatures between men and women were not significant. There were no differences in the mean values of attention and memory abilities between men and women. Coefficients of variation of unpredictable task switching response and forward digit span were lower (P<0.05) in men. Coefficients of variation positively correlated (P<0.05) with attention task incorrect response and negatively correlated (P<0.05) with correct answers in the memory task. Current study showed no sex differences in the mean values of cognition, whereas higher intra-individual variability of short-term memory and attention switching was identified in women, indicating that their performance was lower on these cognitive abilities. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Dual redundant core memory systems
NASA Technical Reports Server (NTRS)
Hull, F. E.
1972-01-01
Electronic memory system consisting of series redundant drive switch circuits, triple redundant majority voted memory timing functions, and two data registers to provide functional dual redundancy is described. Signal flow through the circuits is illustrated and equence of events which occur within the memory system is explained.
Copper atomic-scale transistors
Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen
2017-01-01
We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO4 + H2SO4) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (U bias) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1G 0 (G 0 = 2e2/h; with e being the electron charge, and h being Planck’s constant) or 2G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors. PMID:28382242
Pedraza, Lizeth K; Sierra, Rodrigo O; Boos, Flávia Z; Haubrich, Josué; Quillfeldt, Jorge A; Alvares, Lucas de Oliveira
2016-03-01
Memory fades over time, becoming more schematic or abstract. The loss of contextual detail in memory may reflect a time-dependent change in the brain structures supporting memory. It has been well established that contextual fear memory relies on the hippocampus for expression shortly after learning, but it becomes hippocampus-independent at a later time point, a process called systems consolidation. This time-dependent process correlates with the loss of memory precision. Here, we investigated whether training intensity predicts the gradual decay of hippocampal dependency to retrieve memory, and the quality of the contextual memory representation over time. We have found that training intensity modulates the progressive decay of hippocampal dependency and memory precision. Strong training intensity accelerates systems consolidation and memory generalization in a remarkable timeframe match. The mechanisms underpinning such process are triggered by glucocorticoid and noradrenaline released during training. These results suggest that the stress levels during emotional learning act as a switch, determining the fate of memory quality. Moderate stress will create a detailed memory, whereas a highly stressful training will develop a generic gist-like memory. © 2015 Wiley Periodicals, Inc.
Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications.
Linn, E; Menzel, S; Ferch, S; Waser, R
2013-09-27
Dynamic physics-based models of resistive switching devices are of great interest for the realization of complex circuits required for memory, logic and neuromorphic applications. Here, we apply such a model of an electrochemical metallization (ECM) cell to complementary resistive switches (CRSs), which are favorable devices to realize ultra-dense passive crossbar arrays. Since a CRS consists of two resistive switching devices, it is straightforward to apply the dynamic ECM model for CRS simulation with MATLAB and SPICE, enabling study of the device behavior in terms of sweep rate and series resistance variations. Furthermore, typical memory access operations as well as basic implication logic operations can be analyzed, revealing requirements for proper spike and level read operations. This basic understanding facilitates applications of massively parallel computing paradigms required for neuromorphic applications.
High-performance flexible resistive memory devices based on Al2O3:GeOx composite
NASA Astrophysics Data System (ADS)
Behera, Bhagaban; Maity, Sarmistha; Katiyar, Ajit K.; Das, Samaresh
2018-05-01
In this study a resistive switching random access memory device using Al2O3:GeOx composite thin films on flexible substrate is presented. A bipolar switching characteristic was observed for the co-sputter deposited Al2O3:GeOx composite thin films. Al/Al2O3:GeOx/ITO/PET memory device shows excellent ON/OFF ratio (∼104) and endurance (>500 cycles). GeOx nanocrystals embedded in the Al2O3 matrix have been found to play a significant role in enhancing the switching characteristics by facilitating oxygen vacancy formation. Mechanical endurance was retained even after several bending. The conduction mechanism of the device was qualitatively discussed by considering Ohmic and SCLC conduction. This flexible device is a potential candidate for next-generation electronics device.
NASA Astrophysics Data System (ADS)
Chen, Ying-Chen; Lin, Chih-Yang; Huang, Hui-Chun; Kim, Sungjun; Fowler, Burt; Chang, Yao-Feng; Wu, Xiaohan; Xu, Gaobo; Chang, Ting-Chang; Lee, Jack C.
2018-02-01
Sneak path current is a severe hindrance for the application of high-density resistive random-access memory (RRAM) array designs. In this work, we demonstrate nonlinear (NL) resistive switching characteristics of a HfO x /SiO x -based stacking structure as a realization for selector-less RRAM devices. The NL characteristic was obtained and designed by optimizing the internal filament location with a low effective dielectric constant in the HfO x /SiO x structure. The stacking HfO x /SiO x -based RRAM device as the one-resistor-only memory cell is applicable without needing an additional selector device to solve the sneak path issue with a switching voltage of ~1 V, which is desirable for low-power operating in built-in nonlinearity crossbar array configurations.
NASA Astrophysics Data System (ADS)
Jiang, Hao; Stewart, Derek A.
2016-04-01
Metal oxide resistive memory devices based on Ta2O5 have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta2O5 is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta2O5. Identified diffusion paths are associated with collective motion of neighboring atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta2O5 is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta2O5 based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.
Fast packet switch architectures for broadband integrated services digital networks
NASA Technical Reports Server (NTRS)
Tobagi, Fouad A.
1990-01-01
Background information on networking and switching is provided, and the various architectures that have been considered for fast packet switches are described. The focus is solely on switches designed to be implemented electronically. A set of definitions and a brief description of the functionality required of fast packet switches are given. Three basic types of packet switches are identified: the shared-memory, shared-medium, and space-division types. Each of these is described, and examples are given.
Competition between items in working memory leads to forgetting.
Lewis-Peacock, Jarrod A; Norman, Kenneth A
2014-12-18
Switching attention from one thought to the next propels our mental lives forward. However, it is unclear how this thought-juggling affects our ability to remember these thoughts. Here we show that competition between the neural representations of pictures in working memory can impair subsequent recognition of those pictures. We use pattern classifiers to decode functional magnetic resonance imaging (fMRI) data from a retro-cueing task where participants juggle two pictures in working memory. Trial-by-trial fluctuations in neural dynamics are predictive of performance on a surprise recognition memory test: trials that elicit similar levels of classifier evidence for both pictures (indicating close competition) are associated with worse memory performance than trials where participants switch decisively from thinking about one picture to the other. This result is consistent with the non-monotonic plasticity hypothesis, which predicts that close competition can trigger weakening of memories that lose the competition, leading to subsequent forgetting.
Competition between items in working memory leads to forgetting
Lewis-Peacock, Jarrod A.; Norman, Kenneth A.
2014-01-01
Switching attention from one thought to the next propels our mental lives forward. However, it is unclear how this thought-juggling affects our ability to remember these thoughts. Here we show that competition between the neural representations of pictures in working memory can impair subsequent recognition of those pictures. We use pattern classifiers to decode functional magnetic resonance imaging (fMRI) data from a retro-cueing task where participants juggle two pictures in working memory. Trial-by-trial fluctuations in neural dynamics are predictive of performance on a surprise recognition memory test: trials that elicit similar levels of classifier evidence for both pictures (indicating close competition) are associated with worse memory performance than trials where participants switch decisively from thinking about one picture to the other. This result is consistent with the non-monotonic plasticity hypothesis, which predicts that close competition can trigger weakening of memories that lose the competition, leading to subsequent forgetting. PMID:25519874
NASA Technical Reports Server (NTRS)
Kaul, Anupama B. (Inventor); Wong, Eric W. (Inventor); Baron, Richard L. (Inventor); Epp, Larry (Inventor)
2008-01-01
Switches having an in situ grown carbon nanotube as an element thereof, and methods of fabricating such switches. A carbon nanotube is grown in situ in mechanical connection with a conductive substrate, such as a heavily doped silicon wafer or an SOI wafer. The carbon nanotube is electrically connected at one location to a terminal. At another location of the carbon nanotube there is situated a pull electrode that can be used to elecrostatically displace the carbon nanotube so that it selectively makes contact with either the pull electrode or with a contact electrode. Connection to the pull electrode is sufficient to operate the device as a simple switch, while connection to a contact electrode is useful to operate the device in a manner analogous to a relay. In various embodiments, the devices disclosed are useful as at least switches for various signals, multi-state memory, computational devices, and multiplexers.
Gervais-St-Amour, Catherine
2016-01-01
The differentiation of human B lymphocytes into plasma cells is one of the most stirring questions with regard to adaptive immunity. However, the terminal differentiation and survival of plasma cells are still topics with much to be discovered, especially when targeting switched memory B lymphocytes. Plasma cells can migrate to the bone marrow in response to a CXCL12 gradient and survive for several years while secreting antibodies. In this study, we aimed to get closer to niches favoring plasma cell survival. We tested low oxygen concentrations and coculture with mesenchymal stem cells (MSC) from human bone marrow. Besides, all cultures were performed using an animal protein-free medium. Overall, our model enables the generation of high proportions of CD38+CD138+CD31+ plasma cells (≥50%) when CD40-activated switched memory B lymphocytes were cultured in direct contact with mesenchymal stem cells. In these cultures, the secretion of CXCL12 and TGF-β, usually found in the bone marrow, was linked to the presence of MSC. The level of oxygen appeared less impactful than the contact with MSC. This study shows for the first time that expanded switched memory B lymphocytes can be differentiated into plasma cells using exclusively a serum-free medium. PMID:27872867
Hydrogen-peroxide-modified egg albumen for transparent and flexible resistive switching memory
NASA Astrophysics Data System (ADS)
Zhou, Guangdong; Yao, Yanqing; Lu, Zhisong; Yang, Xiude; Han, Juanjuan; Wang, Gang; Rao, Xi; Li, Ping; Liu, Qian; Song, Qunliang
2017-10-01
Egg albumen is modified by hydrogen peroxide with concentrations of 5%, 10%, 15% and 30% at room temperature. Compared with devices without modification, a memory cell of Ag/10% H2O2-egg albumen/indium tin oxide exhibits obviously enhanced resistive switching memory behavior with a resistance ratio of 104, self-healing switching endurance for 900 cycles and a prolonged retention time for a 104 s @ 200 mV reading voltage after being bent 103 times. The breakage of massive protein chains occurs followed by the recombination of new protein chain networks due to the oxidation of amidogen and the synthesis of disulfide during the hydrogen peroxide modifying egg albumen. Ions such as Fe3+, Na+, K+, which are surrounded by protein chains, are exposed to the outside of protein chains to generate a series of traps during the egg albumen degeneration process. According to the fitting results of the double logarithm I-V curves and the current-sensing atomic force microscopy (CS-AFM) images of the ON and OFF states, the charge transfer from one trap center to its neighboring trap center is responsible for the resistive switching memory phenomena. The results of our work indicate that hydrogen- peroxide-modified egg albumen could open up a new avenue of biomaterial application in nanoelectronic systems.
NASA Astrophysics Data System (ADS)
Shen, Shida; Williamson, Morgan; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim
2017-12-01
A non-destructive reversible resistive switching is demonstrated in single crystals of Cr-doped Mott insulator Ca2RuO4. An applied electrical bias was shown to reduce the DC resistance of the crystal by as much as 75%. The original resistance of the sample could be restored by applying an electrical bias of opposite polarity. We have studied this resistive switching as a function of the bias strength, applied magnetic field, and temperature. A combination of 2-, 3-, and 4-probe measurements provide a means to distinguish between bulk and interfacial contributions to the switching and suggests that the switching is mostly an interfacial effect. The switching was tentatively attributed to electric-field driven lattice distortions which accompany the impurity-induced Mott transition. This field effect was confirmed by temperature-dependent resistivity measurements which show that the activation energy of this material can be tuned by an applied DC electrical bias. The observed resistance switching can potentially be used for building non-volatile memory devices like resistive random access memory.
Multiprocessor switch with selective pairing
Gara, Alan; Gschwind, Michael K; Salapura, Valentina
2014-03-11
System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus
Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy
NASA Astrophysics Data System (ADS)
Gajek, M.; Nowak, J. J.; Sun, J. Z.; Trouilloud, P. L.; O'Sullivan, E. J.; Abraham, D. W.; Gaidis, M. C.; Hu, G.; Brown, S.; Zhu, Y.; Robertazzi, R. P.; Gallagher, W. J.; Worledge, D. C.
2012-03-01
Spin-transfer torque magnetic random access memory (STT-MRAM) is one of the most promising emerging non-volatile memory technologies. MRAM has so far been demonstrated with a unique combination of density, speed, and non-volatility in a single chip, however, without the capability to replace any single mainstream memory. In this paper, we demonstrate the basic physics of spin torque switching in 20 nm diameter magnetic tunnel junctions with perpendicular magnetic anisotropy materials. This deep scaling capability clearly indicates the STT MRAM device itself may be suitable for integration at much higher densities than previously proven.
NASA Astrophysics Data System (ADS)
Xia, Peng; Li, Luman; Wang, Pengfei; Gan, Ying; Xu, Wei
2017-11-01
A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM) Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF) state to low resistance (ON) state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.
Yoshida, Motoharu; Knauer, Beate; Jochems, Arthur
2012-01-01
Suppression of cholinergic receptors and inactivation of the septum impair short-term memory, and disrupt place cell and grid cell activity in the medial temporal lobe (MTL). Location-dependent hippocampal place cell firing during active waking, when the acetylcholine level is high, switches to time-compressed replay activity during quiet waking and slow-wave-sleep (SWS), when the acetylcholine level is low. However, it remains largely unknown how acetylcholine supports short-term memory, spatial navigation, and the functional switch to replay mode in the MTL. In this paper, we focus on the role of the calcium-activated non-specific cationic (CAN) current which is activated by acetylcholine. The CAN current is known to underlie persistent firing, which could serve as a memory trace in many neurons in the MTL. Here, we review the CAN current and discuss possible roles of the CAN current in short-term memory and spatial navigation. We further propose a novel theoretical model where the CAN current switches the hippocampal place cell activity between real-time and time-compressed sequential activity during encoding and consolidation, respectively. PMID:22435051
Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory
NASA Astrophysics Data System (ADS)
Kim, Sang-Koog
2011-03-01
An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.
English-Thai Code-Switching of Teachers in ESP Classes
ERIC Educational Resources Information Center
Promnath, Korawan; Tayjasanant, Chamaipak
2016-01-01
The term code-switching (CS) that occurs in everyday situations, or naturalistic code-switching, has been a controversial strategy regarding whether it benefits or impedes language learning. The aim of this study was to investigate CS in conversations between teachers and students of ESP classes in order to explore the types and functions of CS…
Austrup, F; Kucharzik, T; Kölsch, E
1991-01-01
The humoral immune response to the so-called thymus independent antigen dextran B 1355 S in conventionally raised BALB/c mice consists solely of IgM antibodies. Expression of IgG anti-Dex antibodies in these mice is prevented by pre- or perinatally activated idiotype-specific T-suppressor lymphocytes. IgG B-memory cells nevertheless develop during the course of immunization, but are arrested in an anergic state. In the presence of Cremophor EL the induction of this anergic state is inhibited and the immune response shifts fully to an IgG anti-Dex response. Images Figure 1 PMID:1717371
Time Constraints and Resource Sharing in Adults' Working Memory Spans
ERIC Educational Resources Information Center
Barrouillet, Pierre; Bernardin, Sophie; Camos, Valerie
2004-01-01
This article presents a new model that accounts for working memory spans in adults, the time-based resource-sharing model. The model assumes that both components (i.e., processing and maintenance) of the main working memory tasks require attention and that memory traces decay as soon as attention is switched away. Because memory retrievals are…
Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells
NASA Astrophysics Data System (ADS)
Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu
2016-01-01
In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.
Emerging memories: resistive switching mechanisms and current status
NASA Astrophysics Data System (ADS)
Jeong, Doo Seok; Thomas, Reji; Katiyar, R. S.; Scott, J. F.; Kohlstedt, H.; Petraru, A.; Hwang, Cheol Seong
2012-07-01
The resistance switching behaviour of several materials has recently attracted considerable attention for its application in non-volatile memory (NVM) devices, popularly described as resistive random access memories (RRAMs). RRAM is a type of NVM that uses a material(s) that changes the resistance when a voltage is applied. Resistive switching phenomena have been observed in many oxides: (i) binary transition metal oxides (TMOs), e.g. TiO2, Cr2O3, FeOx and NiO; (ii) perovskite-type complex TMOs that are variously functional, paraelectric, ferroelectric, multiferroic and magnetic, e.g. (Ba,Sr)TiO3, Pb(Zrx Ti1-x)O3, BiFeO3 and PrxCa1-xMnO3 (iii) large band gap high-k dielectrics, e.g. Al2O3 and Gd2O3; (iv) graphene oxides. In the non-oxide category, higher chalcogenides are front runners, e.g. In2Se3 and In2Te3. Hence, the number of materials showing this technologically interesting behaviour for information storage is enormous. Resistive switching in these materials can form the basis for the next generation of NVM, i.e. RRAM, when current semiconductor memory technology reaches its limit in terms of density. RRAMs may be the high-density and low-cost NVMs of the future. A review on this topic is of importance to focus concentration on the most promising materials to accelerate application into the semiconductor industry. This review is a small effort to realize the ambitious goal of RRAMs. Its basic focus is on resistive switching in various materials with particular emphasis on binary TMOs. It also addresses the current understanding of resistive switching behaviour. Moreover, a brief comparison between RRAMs and memristors is included. The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.
Study of electrical conductivity and memory switching in the zinc-vanadium-phosphate glasses
NASA Astrophysics Data System (ADS)
Mirzayi, M.; Hekmatshoar, M. H.
2013-07-01
Vanadium zinc phosphate glasses were prepared by the conventional melt quenching technique and effect of V2O5 concentration on d.c. conductivity of prepared samples were investigated. X-ray diffraction patterns confirmed the glassy character of the samples. The d.c. conductivity increased with increase in V2O5 content. Results showed that activation energy has a single value in the investigated range of temperature, which can be explained in accordance with Mott small pollaron hopping model. I-V characteristics at high electric field showed that switching in these glasses was memory type. The threshold field of switching was found to decrease with increase in V2O5 content. Non-linear behavior and switching phenomenon was explained by Pool-Frenkel effect and thermal model.
NASA Astrophysics Data System (ADS)
Wu, Xinghui; Zhang, Qiuhui; Cui, Nana; Xu, Weiwei; Wang, Kefu; Jiang, Wei; Xu, Qixing
2018-06-01
In this paper, we report our investigation of room-temperature-fabricated tungsten/indium tin oxide/gold (W/ITO/Au) resistive random access memory (RRAM), which exhibits asymmetric bipolar resistive switching (BRS) behavior. The device displays good write/erase endurance and data retention properties. The device shows complementary resistive switching (CRS) characteristics after controlling the compliance current. A WO x layer electrically formed at the W/ITO in the forming process. Mobile oxygen ions within ITO migrate toward the electrode/ITO interface and produce a semiconductor-like layer that acts as a free-carrier barrier. The CRS characteristic here can be elucidated in light of the evolution of an asymmetric free-carrier blocking layer at the electrode/ITO interface.
A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch
NASA Technical Reports Server (NTRS)
Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.
2005-01-01
Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.
NASA Astrophysics Data System (ADS)
Chen, Zibin; Hong, Liang; Wang, Feifei; An, Xianghai; Wang, Xiaolin; Ringer, Simon; Chen, Long-Qing; Luo, Haosu; Liao, Xiaozhou
2017-12-01
Ferroelectric materials have been extensively explored for applications in high-density nonvolatile memory devices because of their ferroelectric-ferroelastic domain-switching behavior under electric loading or mechanical stress. However, the existence of ferroelectric and ferroelastic backswitching would cause significant data loss, which affects the reliability of data storage. Here, we apply in situ transmission electron microscopy and phase-field modeling to explore the unique ferroelastic domain-switching kinetics and the origin of this in relaxor-based Pb (Mg1 /3Nb2 /3)O3-33 % PbTiO3 single-crystal pillars under electrical and mechanical stimulations. Results showed that the electric-mechanical hysteresis loop shifted for relaxor-based single-crystal pillars because of the low energy levels of domains in the material and the constraint on the pillars, resulting in various mechanically reversible and irreversible domain-switching states. The phenomenon can potentially be used for advanced bit writing and reading in nonvolatile memories, which effectively overcomes the backswitching problem and broadens the types of ferroelectric materials for nonvolatile memory applications.
Robust resistive memory devices using solution-processable metal-coordinated azo aromatics
NASA Astrophysics Data System (ADS)
Goswami, Sreetosh; Matula, Adam J.; Rath, Santi P.; Hedström, Svante; Saha, Surajit; Annamalai, Meenakshi; Sengupta, Debabrata; Patra, Abhijeet; Ghosh, Siddhartha; Jani, Hariom; Sarkar, Soumya; Motapothula, Mallikarjuna Rao; Nijhuis, Christian A.; Martin, Jens; Goswami, Sreebrata; Batista, Victor S.; Venkatesan, T.
2017-12-01
Non-volatile memories will play a decisive role in the next generation of digital technology. Flash memories are currently the key player in the field, yet they fail to meet the commercial demands of scalability and endurance. Resistive memory devices, and in particular memories based on low-cost, solution-processable and chemically tunable organic materials, are promising alternatives explored by the industry. However, to date, they have been lacking the performance and mechanistic understanding required for commercial translation. Here we report a resistive memory device based on a spin-coated active layer of a transition-metal complex, which shows high reproducibility (~350 devices), fast switching (<=30 ns), excellent endurance (~1012 cycles), stability (>106 s) and scalability (down to ~60 nm2). In situ Raman and ultraviolet-visible spectroscopy alongside spectroelectrochemistry and quantum chemical calculations demonstrate that the redox state of the ligands determines the switching states of the device whereas the counterions control the hysteresis. This insight may accelerate the technological deployment of organic resistive memories.
Competitive advantage for multiple-memory strategies in an artificial market
NASA Astrophysics Data System (ADS)
Mitman, Kurt E.; Choe, Sehyo C.; Johnson, Neil F.
2005-05-01
We consider a simple binary market model containing N competitive agents. The novel feature of our model is that it incorporates the tendency shown by traders to look for patterns in past price movements over multiple time scales, i.e. multiple memory-lengths. In the regime where these memory-lengths are all small, the average winnings per agent exceed those obtained for either (1) a pure population where all agents have equal memory-length, or (2) a mixed population comprising sub-populations of equal-memory agents with each sub-population having a different memory-length. Agents who consistently play strategies of a given memory-length, are found to win more on average -- switching between strategies with different memory lengths incurs an effective penalty, while switching between strategies of equal memory does not. Agents employing short-memory strategies can outperform agents using long-memory strategies, even in the regime where an equal-memory system would have favored the use of long-memory strategies. Using the many-body 'Crowd-Anticrowd' theory, we obtain analytic expressions which are in good agreement with the observed numerical results. In the context of financial markets, our results suggest that multiple-memory agents have a better chance of identifying price patterns of unknown length and hence will typically have higher winnings.
Piezotronic nanowire-based resistive switches as programmable electromechanical memories.
Wu, Wenzhuo; Wang, Zhong Lin
2011-07-13
We present the first piezoelectrically modulated resistive switching device based on piezotronic ZnO nanowire (NW), through which the write/read access of the memory cell is programmed via electromechanical modulation. Adjusted by the strain-induced polarization charges created at the semiconductor/metal interface under externally applied deformation by the piezoelectric effect, the resistive switching characteristics of the cell can be modulated in a controlled manner, and the logic levels of the strain stored in the cell can be recorded and read out, which has the potential for integrating with NEMS technology to achieve micro/nanosystems capable for intelligent and self-sufficient multidimensional operations.
Information Switching Processor (ISP) contention analysis and control
NASA Technical Reports Server (NTRS)
Inukai, Thomas
1995-01-01
In designing a satellite system with on-board processing, the selection of a switching architecture is often critical. The on-board switching function can be implemented by circuit switching or packet switching. Destination-directed packet switching has several attractive features, such as self-routing without on-board switch reconfiguration, no switch control memory requirement, efficient bandwidth utilization for packet switched traffic, and accommodation of circuit switched traffic. Destination-directed packet switching, however, has two potential concerns: (1) contention and (2) congestion. And this report specifically deals with the first problem. It includes a description and analysis of various self-routing switch structures, the nature of contention problems, and contention and resolution techniques.
Hierarchical control of procedural and declarative category-learning systems
Turner, Benjamin O.; Crossley, Matthew J.; Ashby, F. Gregory
2017-01-01
Substantial evidence suggests that human category learning is governed by the interaction of multiple qualitatively distinct neural systems. In this view, procedural memory is used to learn stimulus-response associations, and declarative memory is used to apply explicit rules and test hypotheses about category membership. However, much less is known about the interaction between these systems: how is control passed between systems as they interact to influence motor resources? Here, we used fMRI to elucidate the neural correlates of switching between procedural and declarative categorization systems. We identified a key region of the cerebellum (left Crus I) whose activity was bidirectionally modulated depending on switch direction. We also identified regions of the default mode network (DMN) that were selectively connected to left Crus I during switching. We propose that the cerebellum—in coordination with the DMN—serves a critical role in passing control between procedural and declarative memory systems. PMID:28213114
Filamentary model in resistive switching materials
NASA Astrophysics Data System (ADS)
Jasmin, Alladin C.
2017-12-01
The need for next generation computer devices is increasing as the demand for efficient data processing increases. The amount of data generated every second also increases which requires large data storage devices. Oxide-based memory devices are being studied to explore new research frontiers thanks to modern advances in nanofabrication. Various oxide materials are studied as active layers for non-volatile memory. This technology has potential application in resistive random-access-memory (ReRAM) and can be easily integrated in CMOS technologies. The long term perspective of this research field is to develop devices which mimic how the brain processes information. To realize such application, a thorough understanding of the charge transport and switching mechanism is important. A new perspective in the multistate resistive switching based on current-induced filament dynamics will be discussed. A simple equivalent circuit of the device gives quantitative information about the nature of the conducting filament at different resistance states.
Forming-free resistive switching characteristics of Ag/CeO2/Pt devices with a large memory window
NASA Astrophysics Data System (ADS)
Zheng, Hong; Kim, Hyung Jun; Yang, Paul; Park, Jong-Sung; Kim, Dong Wook; Lee, Hyun Ho; Kang, Chi Jung; Yoon, Tae-Sik
2017-05-01
Ag/CeO2(∼45 nm)/Pt devices exhibited forming-free bipolar resistive switching with a large memory window (low-resistance-state (LRS)/high-resistance-state (HRS) ratio >106) at a low switching voltage (<±1 ∼ 2 V) in voltage sweep condition. Also, they retained a large memory window (>104) at a pulse operation (±5 V, 50 μs). The high oxygen ionic conductivity of the CeO2 layer as well as the migration of silver facilitated the formation of filament for the transition to LRS at a low voltage without a high voltage forming operation. Also, a certain amount of defects in the CeO2 layer was required for stable HRS with space-charge-limited-conduction, which was confirmed comparing the devices with non-annealed and annealed CeO2 layers.
Analysis and design of continuous class-E power amplifier at sub-nominal condition
NASA Astrophysics Data System (ADS)
Chen, Peng; Yang, Kai; Zhang, Tianliang
2017-12-01
The continuous class-E power amplifier at sub-nominal condition is proposed in this paper. The class-E power amplifier at continuous mode means it can be high efficient on a series matching networks while at sub-nominal condition means it only requires the zero-voltage-switching condition. Comparing with the classical class-E power amplifier, the proposed design method releases two additional design freedoms, which increase the class-E power amplifier's design flexibility. Also, the proposed continuous class-E power amplifier at sub-nominal condition can perform high efficiency over a broad bandwidth. The performance study of the continuous class-E power amplifier at sub-nominal condition is derived and the design procedure is summarised. The normalised switch voltage and current waveforms are investigated. Furthermore, the influences of different sub-nominal conditions on the power losses of the switch-on resistor and the output power capability are also discussed. A broadband continuous class-E power amplifier based on a Gallium Nitride (GaN) transistor is designed and testified to verify the proposed design methodology. The measurement results show, it can deliver 10-15 W output power with 64-73% power-added efficiency over 1.4-2.8 GHz.
Episodic, generalized, and semantic memory tests: switching and strength effects.
Humphreys, Michael S; Murray, Krista L
2011-09-01
We continue the process of investigating the probabilistic paired associate paradigm in an effort to understand the memory access control processes involved and to determine whether the memory structure produced is in transition between episodic and semantic memory. In this paradigm two targets are probabilistically paired with a cue across a large number of short lists. Participants can recall the target paired with the cue in the most recent list (list specific test), produce the first of the two targets that have been paired with that cue to come to mind (generalised test), and produce a free association response (semantic test). Switching between a generalised test and a list specific test did not produce a switching cost indicating a general similarity in the control processes involved. In addition, there was evidence for a dissociation between two different strength manipulations (amount of study time and number of cue-target pairings) such that number of pairings influenced the list specific, generalised and the semantic test but amount of study time only influenced the list specific and generalised test. © 2011 Canadian Psychological Association
White-light-controlled resistive switching in ZnO/BaTiO3/C multilayer layer at room temperature
NASA Astrophysics Data System (ADS)
Wang, Junshuai; Liang, Dandan; Wu, Liangchen; Li, Xiaoping; Chen, Peng
2018-07-01
The bipolar resistance switching effect is observed in ZnO/BaTiO3/C structure. The resistance switching behavior can be modulated by white light. The resistance switch states and threshold voltage can be changed when subjected to white light. This research can help explore multi-functional materials and applications in nonvolatile memory device.
Organic non-volatile resistive photo-switches for flexible image detector arrays.
Nau, Sebastian; Wolf, Christoph; Sax, Stefan; List-Kratochvil, Emil J W
2015-02-01
A unique implementation of an organic image detector using resistive photo-switchable pixels is presented. This resistive photo-switch comprises the vertical integration of an organic photodiode and an organic resistive switching memory element. The photodiodes act as a photosensitive element while the resistive switching elements simultaneously store the detected light information. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yang, Y. C.; Pan, F.; Zeng, F.; Liu, M.
2009-12-01
ZnO/Cu/ZnO trilayer films sandwiched between Cu and Pt electrodes were prepared for nonvolatile resistive memory applications. These structures show resistance switching under electrical bias both before and after a rapid thermal annealing (RTA) treatment, while it is found that the resistive switching effects in the two cases exhibit distinct characteristics. Compared with the as-fabricated device, the memory cell after RTA demonstrates remarkable device parameter improvements including lower threshold voltages, lower write current, and higher Roff/Ron ratio. A high-voltage forming process is avoided in the annealed device as well. Furthermore, the RTA treatment has triggered a switching mechanism transition from a carrier trapping/detrapping type to an electrochemical-redox-reaction-controlled conductive filament formation/rupture process, as indicated by different features in current-voltage characteristics. Both scanning electron microscopy observations and Auger electron spectroscopy depth profiles reveal that the Cu charge trapping layer in ZnO/Cu/ZnO disperses uniformly into the storage medium after RTA, while x-ray diffraction and x-ray photoelectron spectroscopy analyses demonstrate that the Cu atoms have lost electrons to become Cu2+ ions after dispersion. The above experimental facts indicate that the altered status of Cu in the ZnO/Cu/ZnO trilayer films during RTA treatment should be responsible for the switching mechanism transition. This study is envisioned to open the door for understanding the interrelation between different mechanisms that currently exist in the field of resistive memories.
NASA Astrophysics Data System (ADS)
Yamaguchi, Yuichiro; Shouji, Masatsugu; Suda, Yoshiyuki
2012-11-01
We have investigated the dependence of the oxide layer structure of our previously proposed metal/SiO2/SiOx/3C-SiC/n-Si/metal metal-insulator-semiconductor (MIS) resistive memory device on the memory operation characteristics. The current-voltage (I-V) measurement and X-ray photoemission spectroscopy results suggest that SiOx defect states mainly caused by the oxidation of 3C-SiC at temperatures below 1000 °C are related to the hysteresis memory behavior in the I-V curve. By restricting the SiOx interface region, the number of switching cycles and the on/off current ratio are more enhanced. Compared with a memory device formed by one-step or two-step oxidation of 3C-SiC, a memory device formed by one-step oxidation of Si/3C-SiC exhibits a more restrictive SiOx interface with a more definitive SiO2 layer and higher memory performances for both the endurance switching cycle and on/off current ratio.
Advanced development of double-injection, deep-impurity semiconductor switches
NASA Technical Reports Server (NTRS)
Hanes, M. H.
1987-01-01
Deep-impurity, double-injection devices, commonly refered to as (DI) squared devices, represent a class of semiconductor switches possessing a very high degree of tolerance to electron and neutron irradiation and to elevated temperature operation. These properties have caused them to be considered as attractive candidates for space power applications. The design, fabrication, and testing of several varieties of (DI) squared devices intended for power switching are described. All of these designs were based upon gold-doped silicon material. Test results, along with results of computer simulations of device operation, other calculations based upon the assumed mode of operation of (DI) squared devices, and empirical information regarding power semiconductor device operation and limitations, have led to the conculsion that these devices are not well suited to high-power applications. When operated in power circuitry configurations, they exhibit high-power losses in both the off-state and on-state modes. These losses are caused by phenomena inherent to the physics and material of the devices and cannot be much reduced by device design optimizations. The (DI) squared technology may, however, find application in low-power functions such as sensing, logic, and memory, when tolerance to radiation and temperature are desirable (especially is device performance is improved by incorporation of deep-level impurities other than gold.
NASA Astrophysics Data System (ADS)
Kim, Sungjun; Park, Byung-Gook
2017-01-01
In this letter, we compare three different types of reset switching behavior in a bipolar resistive random-access memory (RRAM) system that is housed in a Ni/Si3N4/Si structure. The abrupt, step-like gradual and continuous gradual reset transitions are largely determined by the low-resistance state (LRS). For abrupt reset switching, the large conducting path shows ohmic behavior or has a weak nonlinear current-voltage (I-V) characteristics in the LRS. For gradual switching, including both the step-like and continuous reset types, trap-assisted direct tunneling is dominant in the low-voltage regime, while trap-assisted Fowler-Nordheim tunneling is dominant in the high-voltage regime, thus causing nonlinear I-V characteristics. More importantly, we evaluate the multi-level capabilities of the two different gradual switching types, including both step-like and continuous reset behavior, using identical and incremental voltage conditions. Finer control of the conductance level with good uniformity is achieved in continuous gradual reset switching when compared to that in step-like gradual reset switching. For continuous reset switching, a single conducting path, which initially has a tunneling gap, gradually responds to pulses with even and identical amplitudes, while for step-like reset switching, the multiple conducting paths only respond to incremental pulses to obtain effective multi-level states.
Memristive effects in oxygenated amorphous carbon nanodevices
NASA Astrophysics Data System (ADS)
Bachmann, T. A.; Koelmans, W. W.; Jonnalagadda, V. P.; Le Gallo, M.; Santini, C. A.; Sebastian, A.; Eleftheriou, E.; Craciun, M. F.; Wright, C. D.
2018-01-01
Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or ta-C, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-CO x . Here, we examine the memristive capabilities of nanoscale a-CO x devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-CO x memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-CO x cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.
NASA Astrophysics Data System (ADS)
Xu, Cheng; Liu, Bo; Chen, Yi-Feng; Liang, Shuang; Song, Zhi-Tang; Feng, Song-Lin; Wan, Xu-Dong; Yang, Zuo-Ya; Xie, Joseph; Chen, Bomy
2008-05-01
A Ge2Sb2Te5 based phase change memory device cell integrated with metal-oxide semiconductor field effect transistor (MOSFET) is fabricated using standard 0. 18 μm complementary metal-oxide semiconductor process technology. It shows steady switching characteristics in the dc current-voltage measurement. The phase changing phenomenon from crystalline state to amorphous state with a voltage pulse altitude of 2.0 V and pulse width of 50 ns is also obtained. These results show the feasibility of integrating phase change memory cell with MOSFET.
Ehrenstein, Michael R.; Rada, Cristina; Jones, Anne-Marie; Milstein, César; Neuberger, Michael S.
2001-01-01
Isotype switching involves a region-specific, nonhomologous recombinational deletion that has been suggested to occur by nonhomologous joining of broken DNA ends. Here, we find increased donor/acceptor homology at switch junctions from PMS2-deficient mice and propose that class switching can occur by microhomology-mediated end-joining. Interestingly, although isotype switching and somatic hypermutation show many parallels, we confirm that PMS2 deficiency has no major effect on the pattern of nucleotide substitutions generated during somatic hypermutation. This finding is in contrast to MSH2 deficiency. With MSH2, the altered pattern of switch recombination and hypermutation suggests parallels in the mechanics of the two processes, whereas the fact that PMS2 deficiency affects only switch recombination may reflect differences in the pathways of break resolution. PMID:11717399
Chen, Kai-Huang; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Liang, Shu-Ping; Young, Tai-Fa; Syu, Yong-En; Sze, Simon M
2016-12-01
Bipolar switching resistance behaviors of the Gd:SiO2 resistive random access memory (RRAM) devices on indium tin oxide electrode by the low-temperature supercritical CO2-treated technology were investigated. For physical and electrical measurement results obtained, the improvement on oxygen qualities, properties of indium tin oxide electrode, and operation current of the Gd:SiO2 RRAM devices were also observed. In addition, the initial metallic filament-forming model analyses and conduction transferred mechanism in switching resistance properties of the RRAM devices were verified and explained. Finally, the electrical reliability and retention properties of the Gd:SiO2 RRAM devices for low-resistance state (LRS)/high-resistance state (HRS) in different switching cycles were also measured for applications in nonvolatile random memory devices.
NASA Astrophysics Data System (ADS)
Hao, Aize; Ismail, Muhammad; He, Shuai; Huang, Wenhua; Qin, Ni; Bao, Dinghua
2018-02-01
The coexistence of unipolar and bipolar resistive switching (RS) behaviors of Ag-nanoparticles (Ag-NPs) doped NiFe2O4 (NFO) based memory devices was investigated. The switching voltages of required operations in the unipolar mode were smaller than those in the bipolar mode, while ON/OFF resistance levels of both modes were identical. Ag-NPs doped NFO based devices could switch between the unipolar and bipolar modes just by preferring the polarity of RESET voltage. Besides, the necessity of identical compliance current during the SET process of unipolar and bipolar modes provided an additional advantage of simplicity in device operation. Performance characteristics and cycle-to-cycle uniformity (>103 cycles) in unipolar operation were considerably better than those in bipolar mode (>102 cycles) at 25 °C. Moreover, good endurance (>600 cycles) at 200 °C was observed in unipolar mode and excellent nondestructive retention characteristics were obtained on memory cells at 125 °C and 200 °C. On the basis of temperature dependence of resistance at low resistance state, it was believed that physical origin of the RS mechanism involved the formation/rupture of the conducting paths consisting of oxygen vacancies and Ag atoms, considering Joule heating and electrochemical redox reaction effects for the unipolar and bipolar resistive switching behaviors. Our results demonstrate that 0.5% Ag-NPs doped nickel ferrites are promising resistive switching materials for resistive access memory applications.
Mustaqima, Millaty; Yoo, Pilsun; Huang, Wei; Lee, Bo Wha; Liu, Chunli
2015-01-01
We report the preparation of (111) preferentially oriented CoFe2O4 thin films on Pt(111)/TiO2/SiO2/Si substrates using a spin-coating process. The post-annealing conditions and film thickness were varied for cobalt ferrite (CFO) thin films, and Pt/CFO/Pt structures were prepared to investigate the resistance switching behaviors. Our results showed that resistance switching without a forming process is preferred to obtain less fluctuation in the set voltage, which can be regulated directly from the preparation conditions of the CFO thin films. Therefore, instead of thicker film, CFO thin films deposited by two times spin-coating with a thickness about 100 nm gave stable resistance switching with the most stable set voltage. Since the forming process and the large variation in set voltage have been considered as serious obstacles for the practical application of resistance switching for non-volatile memory devices, our results could provide meaningful insights in improving the performance of ferrite material-based resistance switching memory devices.
Reynaud, Stéphane; Delpy, Laurent; Fleury, Laurence; Dougier, Hei-Lanne; Sirac, Christophe; Cogné, Michel
2005-05-15
Except for the expression of IgM and IgD, DNA recombination is constantly needed for the expression of other Ig classes and subclasses. The predominant path of class switch recombination (CSR) is intrachromosomal, and the looping-out and deletion model has been abundantly documented. However, switch regions also occasionally constitute convenient substrates for interchromosomal recombination, since it is noticeably the case in a number of chromosomal translocations causing oncogene deregulation in the course of lymphoma and myeloma. Although asymmetric accessibility of Ig alleles should theoretically limit its occurrence, interallelic CSR was shown to occur at low levels during IgA switching in rabbit, where the definition of allotypes within both V and C regions helped identify interchromosomally derived Ig. Thus, we wished to evaluate precisely interallelic CSR frequency in mouse B cells, by using a system in which only one allele (of b allotype) could express a functional VDJ region, whereas only interallelic CSR could restore expression of an excluded (a allotype) allele. In our study, we show that interchromosomal recombination of V(H) and Cgamma or Calpha occurs in vivo in B cells at a frequency that makes a significant contribution to physiological class switching: trans-association of V(H) and C(H) genes accounted for 7% of all alpha mRNA, and this frequency was about twice higher for the gamma3 transcripts, despite the much shorter distance between the J(H) region and the Cgamma3 gene, thus confirming that this phenomenon corresponded to site-specific switching and not to random recombination between long homologous loci.
The Role of Working Memory Capacity and Interference Resolution Mechanisms in Task Switching
Pettigrew, Corinne; Martin, Randi C.
2015-01-01
Theories of task switching have emphasized a number of control mechanisms that may support the ability to flexibly switch between tasks. The present study examined the extent to which individual differences in working memory (WM) capacity and two measures of interference resolution, response-distractor inhibition and resistance to proactive interference (PI), account for variability in task switching, including global costs, local costs, and N-2 repetition costs. 102 young and 60 older adults were tested on a battery of tasks. Composite scores were created for WM capacity, response-distractor inhibition, and resistance to PI; shifting was indexed by rate residual scores which combine response time and accuracy and account for individual differences in processing speed. Composite scores served as predictors of task switching. WM was significantly related to global switch costs. While resistance to PI and WM explained some variance in local costs, these effects did not reach significance. In contrast, none of the control measures explained variance in N-2 repetition costs. Furthermore, age effects were only evident for N-2 repetition costs, with older adults demonstrating larger costs than young adults. Results are discussed within the context of theoretical models of task switching. PMID:26594895
The role of working memory capacity and interference resolution mechanisms in task switching.
Pettigrew, Corinne; Martin, Randi C
2016-12-01
Theories of task switching have emphasized a number of control mechanisms that may support the ability to flexibly switch between tasks. The present study examined the extent to which individual differences in working memory (WM) capacity and two measures of interference resolution, response-distractor inhibition and resistance to proactive interference (PI), account for variability in task switching, including global costs, local costs, and N-2 repetition costs. A total of 102 young and 60 older adults were tested on a battery of tasks. Composite scores were created for WM capacity, response-distractor inhibition, and resistance to PI; shifting was indexed by rate residual scores, which combine response time and accuracy and account for individual differences in processing speed. Composite scores served as predictors of task switching. WM was significantly related to global switch costs. While resistance to PI and WM explained some variance in local costs, these effects did not reach significance. In contrast, none of the control measures explained variance in N-2 repetition costs. Furthermore, age effects were only evident for N-2 repetition costs, with older adults demonstrating larger costs than young adults. Results are discussed within the context of theoretical models of task switching.
Regulating infidelity: RNA-mediated recruitment of AID to DNA during class switch recombination.
DiMenna, Lauren J; Chaudhuri, Jayanta
2016-03-01
The mechanism by which the DNA deaminase activation-induced cytidine deaminase (AID) is specifically recruited to repetitive switch region DNA during class switch recombination is still poorly understood. Work over the past decade has revealed a strong link between transcription and RNA polymerase-associated factors in AID recruitment, yet none of these processes satisfactorily explain how AID specificity is affected. Here, we review a recent finding wherein AID is guided to switch regions not by a protein factor but by an RNA moiety, and especially one associated with a noncoding RNA that has been long thought of as being inert. This work explains the long-standing requirement of splicing of noncoding transcripts during class switching, and has implications in both B cell-mediated immunity as well as the underlying pathological syndromes associated with the recombination reaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suga, Hiroshi; Suzuki, Hiroya; Shinomura, Yuma; Kashiwabara, Shota; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa
2016-01-01
Highly stable, nonvolatile, high-temperature memory based on resistance switching was realized using a polycrystalline platinum (Pt) nanogap. The operating temperature of the memory can be drastically increased by the presence of a sharp-edged Pt crystal facet in the nanogap. A short distance between the facet edges maintains the nanogap shape at high temperature, and the sharp shape of the nanogap densifies the electric field to maintain a stable current flow due to field migration. Even at 873 K, which is a significantly higher temperature than feasible for conventional semiconductor memory, the nonvolatility of the proposed memory allows stable ON and OFF currents, with fluctuations of less than or equal to 10%, to be maintained for longer than eight hours. An advantage of this nanogap scheme for high-temperature memory is its secure operation achieved through the assembly and disassembly of a Pt needle in a high electric field. PMID:27725705
NASA Astrophysics Data System (ADS)
Parkin, Stuart
2012-02-01
Racetrack Memory is a novel high-performance, non-volatile storage-class memory in which magnetic domains are used to store information in a ``magnetic racetrack'' [1]. The magnetic racetrack promises a solid state memory with storage capacities and cost rivaling that of magnetic disk drives but with much improved performance and reliability: a ``hard disk on a chip''. The magnetic racetrack is comprised of a magnetic nanowire in which a series of magnetic domain walls are shifted to and fro along the wire using nanosecond-long pulses of spin polarized current [2]. We have demonstrated the underlying physics that makes Racetrack Memory possible [3,4] and all the basic functions - creation, and manipulation of a train of domain walls and their detection. The physics underlying the current induced dynamics of domain walls will also be discussed. In particular, we show that the domain walls respond as if they have mass, leading to significant inertial driven motion of the domain walls over long times after the current pulses are switched off [3]. We also demonstrate that in perpendicularly magnetized nanowires there are two independent current driving mechanisms: one derived from bulk spin-dependent scattering that drives the domain walls in the direction of electron flow, and a second interfacial mechanism that can drive the domain walls either along or against the electron flow, depending on subtle changes in the nanowire structure. Finally, we demonstrate thermally induced spin currents are large enough that they can be used to manipulate domain walls. [4pt] [1] S.S.P. Parkin, US Patent 6,834,005 (2004); S.S.P. Parkin et al., Science 320, 190 (2008); S.S.P. Parkin, Scientific American (June 2009). [0pt] [2] M. Hayashi, L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 320, 209 (2008). [0pt] [3] L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 330, 1810 (2010). [0pt] [4] X. Jiang et al. Nat. Comm. 1:25 (2010) and Nano Lett. 11, 96 (2011).
NASA Astrophysics Data System (ADS)
Jiang, Xiaofan; Ma, Zhongyuan; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan
2014-09-01
Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiNx/SiNy multilayers with high on/off ratio of 109. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.
(Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, X.; Mamaluy, D.; Cyr, E. C.
As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less
(Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices
Gao, X.; Mamaluy, D.; Cyr, E. C.; ...
2016-05-10
As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less
Dynamic-load-enabled ultra-low power multiple-state RRAM devices.
Yang, Xiang; Chen, I-Wei
2012-01-01
Bipolar resistance-switching materials allowing intermediate states of wide-varying resistance values hold the potential of drastically reduced power for non-volatile memory. To exploit this potential, we have introduced into a nanometallic resistance-random-access-memory (RRAM) device an asymmetric dynamic load, which can reliably lower switching power by orders of magnitude. The dynamic load is highly resistive during on-switching allowing access to the highly resistive intermediate states; during off-switching the load vanishes to enable switching at low voltage. This approach is entirely scalable and applicable to other bipolar RRAM with intermediate states. The projected power is 12 nW for a 100 × 100 nm(2) device and 500 pW for a 10 × 10 nm(2) device. The dynamic range of the load can be increased to allow power to be further decreased by taking advantage of the exponential decay of wave-function in a newly discovered nanometallic random material, reaching possibly 1 pW for a 10×10 nm(2) nanometallic RRAM device.
Stress-induced reversible and irreversible ferroelectric domain switching
NASA Astrophysics Data System (ADS)
Chen, Zibin; Huang, Qianwei; Wang, Feifei; Ringer, Simon P.; Luo, Haosu; Liao, Xiaozhou
2018-04-01
Ferroelectric materials have been extensively explored for applications in electronic devices because of their ferroelectric/ferroelastic domain switching behaviour under electric bias or mechanical stress. Recent findings on applying mechanical loading to manipulate reversible logical signals in non-volatile ferroelectric memory devices make ferroelectric materials more attractive to scientists and engineers. However, the dynamical microscopic structural behaviour of ferroelectric domains under stress is not well understood, which limits the applications of ferroelectric/ferroelastic switching in memory devices. Here, the kinetics of reversible and irreversible ferroelectric domain switching induced by mechanical stress in relaxor-based ferroelectrics was explored. In-situ transmission electron microscopy investigation revealed that 90° ferroelastic and 180° ferroelectric domain switching can be induced by low and high mechanical stresses. The nucleation and growth of nanoscale domains overwhelm the defect-induced pinning effect on the stable micro-domain walls. This study provides deep insights for exploring the mechanical kinetics for ferroelectric/ferroelastic domains and a clear pathway to overcome the domain pinning effect of defects in ferroelectrics.
Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel
2016-01-14
In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current inmore » doped Ge{sub 2}Sb{sub 2}Te{sub 5} nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.« less
Effect of sputtering atmosphere on the characteristics of ZrOx resistive switching memory
NASA Astrophysics Data System (ADS)
He, Pin; Ye, Cong; Wu, Jiaji; Wei, Wei; Wei, Xiaodi; Wang, Hao; Zhang, Rulin; Zhang, Li; Xia, Qing; Wang, Hanbin
2017-05-01
A ZrOx switching layer with different oxygen content for TiN/ZrOx/Pt resistive switching (RS) memory was prepared by magnetron sputtering in different atmospheres such as N2/Ar mixture, O2/Ar mixture as well as pure Ar. The morphology, structure and RS characteristics were systemically investigated and it was found that the RS performance is highly dependent on the sputtering atmosphere. For the memory device sputtered in N2/Ar mixture, with 8.06% nitrogen content in the ZrOx switching layer, the highest uniformity with smallest distribution of V set and high resistance states (HRS)/low resistance states (LRS) values were achieved. By analyzing the current conduction mechanisms combined with possible RS mechanisms for three devices, we deduce that for the device with a ZrOx layer sputtered in N2/Ar mixture, oxygen ions (O2-), which are decisive to the disruption/formation of the conductive filament, will gather around the tip of the filament due to the existence of doping nitrogen, and lead to the reduction of O2- migration randomness in the operation process, so that the uniformity of the N-doped ZrOx device can be improved.
NASA Astrophysics Data System (ADS)
Arun, N.; Kumar, K. Vinod; Pathak, A. P.; Avasthi, D. K.; Nageswara Rao, S. V. S.
2018-04-01
Non-volatile memory (NVM) devices were fabricated as a Metal- Insulator-Metal (MIM) structures by sandwiching Hafnium dioxide (HfO2) thin film in between two metal electrodes. The top and bottom metal electrodes were deposited by using the thermal evaporation, and the oxide layer was deposited by using the RF magnetron sputtering technique. The Resistive Random Access Memory (RRAM) device structures such as Ag/HfO2/Au/Si were fabricated and I-V characteristics for the pristine and gamma-irradiated devices with a dose 24 kGy were measured. Further we have studied the thermal annealing effects, in the range of 100°-400°C in a tubular furnace for the HfO2/Au/Si samples. The X-ray diffraction (XRD), Rutherford Backscattering Spectrometry (RBS), field emission-scanning electron microscopy (FESEM) analysis measurements were performed to determine the thickness, crystallinity and stoichiometry of these films. The electrical characteristics such as resistive switching, endurance, retention time and switching speed were measured by a semiconductor device analyser. The effects of gamma irradiation on the switching properties of these RRAM devices have been studied.
NASA Astrophysics Data System (ADS)
Guo, Tao; Sun, Bai; Mao, Shuangsuo; Zhu, Shouhui; Xia, Yudong; Wang, Hongyan; Zhao, Yong; Yu, Zhou
2018-03-01
In this work, the Cu(In1-xGax)Se2 (CIGS), Al doped ZnO (AZO) and Mo has been used for constructing a resistive switching device with AZO/CIGS/Mo sandwich structure grown on a transparent glass substrate. The device represents a high-performance memory characteristics under ambient temperature. In particularly, a resistance ratio change phenomenon have been observed in our device for the first time.
Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2
NASA Astrophysics Data System (ADS)
Sangwan, Vinod K.; Jariwala, Deep; Kim, In Soo; Chen, Kan-Sheng; Marks, Tobin J.; Lauhon, Lincoln J.; Hersam, Mark C.
2015-05-01
Continued progress in high-speed computing depends on breakthroughs in both materials synthesis and device architectures. The performance of logic and memory can be enhanced significantly by introducing a memristor, a two-terminal device with internal resistance that depends on the history of the external bias voltage. State-of-the-art memristors, based on metal-insulator-metal (MIM) structures with insulating oxides, such as TiO2, are limited by a lack of control over the filament formation and external control of the switching voltage. Here, we report a class of memristors based on grain boundaries (GBs) in single-layer MoS2 devices. Specifically, the resistance of GBs emerging from contacts can be easily and repeatedly modulated, with switching ratios up to ˜103 and a dynamic negative differential resistance (NDR). Furthermore, the atomically thin nature of MoS2 enables tuning of the set voltage by a third gate terminal in a field-effect geometry, which provides new functionality that is not observed in other known memristive devices.
Magyari-Köpe, Blanka; Tendulkar, Mihir; Park, Seong-Geon; Lee, Hyung Dong; Nishi, Yoshio
2011-06-24
Resistance change random access memory (RRAM) cells, typically built as MIM capacitor structures, consist of insulating layers I sandwiched between metal layers M, where the insulator performs the resistance switching operation. These devices can be electrically switched between two or more stable resistance states at a speed of nanoseconds, with long retention times, high switching endurance, low read voltage, and large switching windows. They are attractive candidates for next-generation non-volatile memory, particularly as a flash successor, as the material properties can be scaled to the nanometer regime. Several resistance switching models have been suggested so far for transition metal oxide based devices, such as charge trapping, conductive filament formation, Schottky barrier modulation, and electrochemical migration of point defects. The underlying fundamental principles of the switching mechanism still lack a detailed understanding, i.e. how to control and modulate the electrical characteristics of devices incorporating defects and impurities, such as oxygen vacancies, metal interstitials, hydrogen, and other metallic atoms acting as dopants. In this paper, state of the art ab initio theoretical methods are employed to understand the effects that filamentary types of stable oxygen vacancy configurations in TiO(2) and NiO have on the electronic conduction. It is shown that strong electronic interactions between metal ions adjacent to oxygen vacancy sites results in the formation of a conductive path and thus can explain the 'ON' site conduction in these materials. Implication of hydrogen doping on electroforming is discussed for Pr(0.7)Ca(0.3)MnO(3) devices based on electrical characterization and FTIR measurements.
Rana, Anwar Manzoor; Akbar, Tahira; Ismail, Muhammad; Ahmad, Ejaz; Hussain, Fayyaz; Talib, Ijaz; Imran, Muhammad; Mehmood, Khalid; Iqbal, Khalid; Nadeem, M. Younus
2017-01-01
Resistance switching characteristics of CeO2/Ti/CeO2 tri-layered films sandwiched between Pt bottom electrode and two different top electrodes (Ti and TaN) with different work functions have been investigated. RRAM memory cells composed of TaN/CeO2/Ti/CeO2/Pt reveal better resistive switching performance instead of Ti/CeO2/Ti/CeO2/Pt memory stacks. As compared to the Ti/CeO2 interface, much better ability of TaN/CeO2 interface to store and exchange plays a key role in the RS performance improvement, including lower forming/SET voltages, large memory window (~102) and no significant data degradation during endurance test of >104 switching cycles. The formation of TaON thinner interfacial layer between TaN TE and CeO2 film is found to be accountable for improved resistance switching behavior. Partial charge density of states is analyzed using density functional theory. It is found that the conductive filaments formed in CeO2 based devices is assisted by interstitial Ti dopant. Better stability and reproducibility in cycle-to-cycle (C2C) resistance distribution and Vset/Vreset uniformity were achieved due to the modulation of current conduction mechanism from Ohmic in low field region to Schottky emission in high field region. PMID:28079056
TaOx-based resistive switching memories: prospective and challenges
2013-01-01
Resistive switching memories (RRAMs) are attractive for replacement of conventional flash in the future. Although different switching materials have been reported; however, low-current operated devices (<100 μA) are necessary for productive RRAM applications. Therefore, TaOx is one of the prospective switching materials because of two stable phases of TaO2 and Ta2O5, which can also control the stable low- and high-resistance states. Long program/erase endurance and data retention at high temperature under low-current operation are also reported in published literature. So far, bilayered TaOx with inert electrodes (Pt and/or Ir) or single layer TaOx with semi-reactive electrodes (W and Ti/W or Ta/Pt) is proposed for real RRAM applications. It is found that the memory characteristics at current compliance (CC) of 80 μA is acceptable for real application; however, data are becoming worst at CC of 10 μA. Therefore, it is very challenging to reduce the operation current (few microampere) of the RRAM devices. This study investigates the switching mode, mechanism, and performance of low-current operated TaOx-based devices as compared to other RRAM devices. This topical review will not only help for application of TaOx-based nanoscale RRAM devices but also encourage researcher to overcome the challenges in the future production. PMID:24107610
Padovani, Tullia; Koenig, Thomas; Eckstein, Doris; Perrig, Walter J
2013-01-01
Memory formation is commonly thought to rely on brain activity following an event. Yet, recent research has shown that even brain activity previous to an event can predict later recollection (subsequent memory effect, SME). In order to investigate the attentional sources of the SME, event-related potentials (ERPs) elicited by task cues preceding target words were recorded in a switched task paradigm that was followed by a surprise recognition test. Stay trials, that is, those with the same task as the previous trial, were contrasted with switch trials, which included a task switch compared to the previous trial. The underlying assumption was that sustained attention would be dominant in stay trials and that transient attentional reconfiguration processes would be dominant in switch trials. To determine the SME, local and global statistics of scalp electric fields were used to identify differences between subsequently remembered and forgotten items. Results showed that the SME in stay trials occurred in a time window from 2 to 1 sec before target onset, whereas the SME in switch trials occurred subsequently, in a time window from 1 to 0 sec before target onset. Both SMEs showed a frontal negativity resembling the topography of previously reported effects, which suggests that sustained and transient attentional processes contribute to the prestimulus SME in consecutive time periods. PMID:24381815
Padovani, Tullia; Koenig, Thomas; Eckstein, Doris; Perrig, Walter J
2013-07-01
Memory formation is commonly thought to rely on brain activity following an event. Yet, recent research has shown that even brain activity previous to an event can predict later recollection (subsequent memory effect, SME). In order to investigate the attentional sources of the SME, event-related potentials (ERPs) elicited by task cues preceding target words were recorded in a switched task paradigm that was followed by a surprise recognition test. Stay trials, that is, those with the same task as the previous trial, were contrasted with switch trials, which included a task switch compared to the previous trial. The underlying assumption was that sustained attention would be dominant in stay trials and that transient attentional reconfiguration processes would be dominant in switch trials. To determine the SME, local and global statistics of scalp electric fields were used to identify differences between subsequently remembered and forgotten items. Results showed that the SME in stay trials occurred in a time window from 2 to 1 sec before target onset, whereas the SME in switch trials occurred subsequently, in a time window from 1 to 0 sec before target onset. Both SMEs showed a frontal negativity resembling the topography of previously reported effects, which suggests that sustained and transient attentional processes contribute to the prestimulus SME in consecutive time periods.
Yoon, Jung Ho; Yoo, Sijung; Song, Seul Ji; Yoon, Kyung Jean; Kwon, Dae Eun; Kwon, Young Jae; Park, Tae Hyung; Kim, Hye Jin; Shao, Xing Long; Kim, Yumin; Hwang, Cheol Seong
2016-07-20
To replace or succeed the present NAND flash memory, resistive switching random access memory (ReRAM) should be implemented in the vertical-type crossbar array configuration. The ReRAM cell must have a highly reproducible resistive switching (RS) performance and an electroforming-free, self-rectifying, low-power-consumption, multilevel-switching, and easy fabrication process with a deep sub-μm(2) cell area. In this work, a Pt/Ta2O5/HfO2-x/TiN RS memory cell fabricated in the form of a vertical-type structure was presented as a feasible contender to meet the above requirements. While the fundamental RS characteristics of this material based on the electron trapping/detrapping mechanisms have been reported elsewhere, the influence of the cell scaling size to 0.34 μm(2) on the RS performance by adopting the vertical integration scheme was carefully examined in this work. The smaller cell area provided much better switching uniformity while all the other benefits of this specific material system were preserved. Using the overstressing technique, the nature of RS through the localized conducting path was further examined, which elucidated the fundamental difference between the present material system and the general ionic-motion-related bipolar RS mechanism.
NASA Astrophysics Data System (ADS)
Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen
2018-02-01
We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.
NASA Astrophysics Data System (ADS)
Devulder, Wouter; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Belmonte, Attilio; Muller, Robert; De Schutter, Bob; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Detavernier, Christophe
2014-02-01
In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu0.6Te0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu0.6Te0.4-C/Al2O3/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al2O3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al2O3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.
Beausang, John F; Fan, H Christina; Sit, Rene; Hutchins, Maria U; Jirage, Kshama; Curtis, Rachael; Hutchins, Edward; Quake, Stephen R; Yabu, Julie M
2017-01-13
Kidney transplantation is the most effective treatment for end-stage renal disease. Sensitization refers to pre-existing antibodies against human leukocyte antigen (HLA) protein and remains a major barrier to successful transplantation. Despite implementation of desensitization strategies, many candidates fail to respond. Our objective was to determine whether measuring B cell repertoires could differentiate candidates that respond to desensitization therapy. We developed an assay based on high-throughput DNA sequencing of the variable domain of the heavy chain of immunoglobulin genes to measure changes in B cell repertoires in 19 highly HLA-sensitized kidney transplant candidates undergoing desensitization and 7 controls with low to moderate HLA sensitization levels. Responders to desensitization had a decrease of 5% points or greater in cumulated calculated panel reactive antibody (cPRA) levels, and non-responders had no decrease in cPRA. Dominant B cell clones were not observed in highly sensitized candidates, suggesting that the B cells responsible for sensitization are either not present in peripheral blood or present at comparable levels to other circulating B cells. Candidates that responded to desensitization therapy had pre-treatment repertoires composed of a larger fraction of class-switched (IgG and IgA) isotypes compared to non-responding candidates. After B cell depleting therapy, the proportion of switched isotypes increased and the mutation frequencies of the remaining non-switched isotypes (IgM and IgD) increased in both responders and non-responders, perhaps representing a shift in the repertoire towards memory B cells or plasmablasts. Conversely, after transplantation, non-switched isotypes with fewer mutations increased, suggesting a shift in the repertoire towards naïve B cells. Relative abundance of different B cell isotypes is strongly perturbed by desensitization therapy and transplantation, potentially reflecting changes in the relative abundance of memory and naïve B cell compartments. Candidates that responded to therapy experienced similar changes to those that did not respond. Further studies are required to understand differences between these two groups of highly sensitized kidney transplant candidates.
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Kasai, Hideaki; Kishi, Hirofumi; Awaya, Nobuyoshi; Ohnishi, Shigeo; Tamai, Yukio
2013-01-01
The resistance random access memory (RRAM™) device, with its electrically induced nanoscale resistive switching capacity, has attracted considerable attention as a future nonvolatile memory device. Here, we propose a mechanism of switching based on an oxygen vacancy migration-driven change in the electronic properties of the transition-metal oxide film stimulated by set pulse voltages. We used density functional theory-based calculations to account for the effect of oxygen vacancies and their migration on the electronic properties of HfO2 and Ta/HfO2 systems, thereby providing a complete explanation of the RRAM™ switching mechanism. Furthermore, computational results on the activation energy barrier for oxygen vacancy migration were found to be consistent with the set and reset pulse voltage obtained from experiments. Understanding this mechanism will be beneficial to effectively realizing the materials design in these devices.
NASA Astrophysics Data System (ADS)
Wei, Maocai; Liu, Meifeng; Wang, Xiuzhang; Li, Meiya; Zhu, Yongdan; Zhao, Meng; Zhang, Feng; Xie, Shuai; Hu, Zhongqiang; Liu, Jun-Ming
2017-03-01
Epitaxial Bi0.9Eu0.1FeO3 (BEFO) thin films are deposited on Nb-doped SrTiO3 (NSTO) substrates by pulsed laser deposition to fabricate the Pt/BEFO/NSTO (001) heterostructures. These heterostructures possess bipolar resistive switching, where the resistances versus writing voltage exhibits a distinct hysteresis loop and a memristive behavior with good retention and anti-fatigue characteristics. The local resistive switching is confirmed by the conductive atomic force microscopy (C-AFM), suggesting the possibility to scale down the memory cell size. The observed memristive behavior could be attributed to the ferroelectric polarization effect, which modulates the height of potential barrier and width of depletion region at the BEFO/NSTO interface. The continuously tunable resistive switching behavior could be useful to achieve non-volatile, high-density, multilevel random access memory with low energy consumption.
Resistive switching characteristics and mechanisms in silicon oxide memory devices
NASA Astrophysics Data System (ADS)
Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Wu, Xiaohan; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Lee, Jack C.
2016-05-01
Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)-compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.
Resistive switching properties and physical mechanism of cobalt ferrite thin films
NASA Astrophysics Data System (ADS)
Hu, Wei; Zou, Lilan; Chen, Ruqi; Xie, Wei; Chen, Xinman; Qin, Ni; Li, Shuwei; Yang, Guowei; Bao, Dinghua
2014-04-01
We report reproducible resistive switching performance and relevant physical mechanism of sandwiched Pt/CoFe2O4/Pt structures in which the CoFe2O4 thin films were fabricated by a chemical solution deposition method. Uniform switching voltages, good endurance, and long retention have been demonstrated in the Pt/CoFe2O4/Pt memory cells. On the basis of the analysis of current-voltage characteristic and its temperature dependence, we suggest that the carriers transport through the conducting filaments in low resistance state with Ohmic conduction behavior, and the Schottky emission and Poole-Frenkel emission dominate the conduction mechanism in high resistance state. From resistance-temperature dependence of resistance states, we believe that the physical origin of the resistive switching refers to the formation and rupture of the oxygen vacancies related filaments. The nanostructured CoFe2O4 thin films can find applications in resistive random access memory.
NASA Astrophysics Data System (ADS)
Singh, Rakesh; Kumar, Ravi; Kumar, Anil; Kashyap, Rajesh; Kumar, Mukesh; Kumar, Dinesh
2018-05-01
Graphene oxide based devices have attracted much attention recently because of their possible application in next generation electronic devices. In this study, bipolar resistive switching characteristics of graphene oxide based metal insulator metal structure were investigated for nonvolatile memories. The graphene oxide was prepared by the conventional Hummer's method and deposited on ITO coated glass by spin-coating technique. The dominant mechanism of resistive switching is the formation and rupture of the conductive filament inside the graphene oxide. The conduction mechanism for low and high resistance states are dominated by two mechanism the ohmic conduction and space charge limited current (SCLC) mechanism, respectively. Atomic Force Microscopy, X-ray diffraction, Cyclic-Voltammetry were conducted to observe the morphology, structure and behavior of the material. The fabricated device with Al/GO/ITO structure exhibited reliable bipolar resistive switching with set & reset voltage of -2.3 V and 3V respectively.
Investigation of Hafnium oxide/Copper resistive memory for advanced encryption applications
NASA Astrophysics Data System (ADS)
Briggs, Benjamin D.
The Advanced Encryption Standard (AES) is a widely used encryption algorithm to protect data and communications in today's digital age. Modern AES CMOS implementations require large amounts of dedicated logic and must be tuned for either performance or power consumption. A high throughput, low power, and low die area AES implementation is required in the growing mobile sector. An emerging non-volatile memory device known as resistive memory (ReRAM) is a simple metal-insulator-metal capacitor device structure with the ability to switch between two stable resistance states. Currently, ReRAM is targeted as a non-volatile memory replacement technology to eventually replace flash. Its advantages over flash include ease of fabrication, speed, and lower power consumption. In addition to memory, ReRAM can also be used in advanced logic implementations given its purely resistive behavior. The combination of a new non-volatile memory element ReRAM along with high performance, low power CMOS opens new avenues for logic implementations. This dissertation will cover the design and process implementation of a ReRAM-CMOS hybrid circuit, built using IBM's 10LPe process, for the improvement of hardware AES implementations. Further the device characteristics of ReRAM, specifically the HfO2/Cu memory system, and mechanisms for operation are not fully correlated. Of particular interest to this work is the role of material properties such as the stoichiometry, crystallinity, and doping of the HfO2 layer and their effect on the switching characteristics of resistive memory. Material properties were varied by a combination of atomic layer deposition and reactive sputtering of the HfO2 layer. Several studies will be discussed on how the above mentioned material properties influence switching parameters, and change the underlying physics of device operation.
NASA Astrophysics Data System (ADS)
Gandhi, Sahil Sandesh; Kim, Min Su; Hwang, Jeoung-Yeon; Chien, Liang-Chy
2017-02-01
We demonstrate the application of the nanostructured scaffold of BPIII as a resuable EO device that retains the BPIII ordering and sub-millisecond EO switching characteristics, that is, "EO-memory" of the original BPIII even after removal of the cholesteric blue phase liquid crystal (LC) and subsequent refilling with different nematic LCs. We also fabricate scaffolds mimicking the isotropic phase and cubic blue phase I (BPI) to demonstrate the versatility of our material system to nano-engineer EO-memory scaffolds of various structures. We envisage that this work will promote new experimental investigations of the mysterious BPIII and the development of novel device architectures and optically functional nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Peong-Hwa; Lee, Seo-Won, E-mail: swlee-sci@korea.ac.kr, E-mail: kj-lee@korea.ac.kr; Song, Kyungmi
2015-11-16
Interfacial Dzyaloshinskii-Moriya interaction in ferromagnet/heavy metal bilayers is recently of considerable interest as it offers an efficient control of domain walls and the stabilization of magnetic skyrmions. However, its effect on the performance of perpendicular spin transfer torque memory has not been explored yet. We show based on numerical studies that the interfacial Dzyaloshinskii-Moriya interaction decreases the thermal energy barrier while increases the switching current. As high thermal energy barrier as well as low switching current is required for the commercialization of spin torque memory, our results suggest that the interfacial Dzyaloshinskii-Moriya interaction should be minimized for spin torque memorymore » applications.« less
Nano-cone resistive memory for ultralow power operation.
Kim, Sungjun; Jung, Sunghun; Kim, Min-Hwi; Kim, Tae-Hyeon; Bang, Suhyun; Cho, Seongjae; Park, Byung-Gook
2017-03-24
SiN x -based nano-structure resistive memory is fabricated by fully silicon CMOS compatible process integration including particularly designed anisotropic etching for the construction of a nano-cone silicon bottom electrode (BE). Bipolar resistive switching characteristics have significantly reduced switching current and voltage and are demonstrated in a nano-cone BE structure, as compared with those in a flat BE one. We have verified by systematic device simulations that the main cause of reduction in the performance parameters is the high electric field being more effectively concentrated at the tip of the cone-shaped BE. The greatly improved nonlinearity of the nano-cone resistive memory cell will be beneficial in the ultra-high-density crossbar array.
Electrically and Optically Readable Light Emitting Memories
Chang, Che-Wei; Tan, Wei-Chun; Lu, Meng-Lin; Pan, Tai-Chun; Yang, Ying-Jay; Chen, Yang-Fang
2014-01-01
Electrochemical metallization memories based on redox-induced resistance switching have been considered as the next-generation electronic storage devices. However, the electronic signals suffer from the interconnect delay and the limited reading speed, which are the major obstacles for memory performance. To solve this problem, here we demonstrate the first attempt of light-emitting memory (LEM) that uses SiO2 as the resistive switching material in tandem with graphene-insulator-semiconductor (GIS) light-emitting diode (LED). By utilizing the excellent properties of graphene, such as high conductivity, high robustness and high transparency, our proposed LEM enables data communication via electronic and optical signals simultaneously. Both the bistable light-emission state and the resistance switching properties can be attributed to the conducting filament mechanism. Moreover, on the analysis of current-voltage characteristics, we further confirm that the electroluminescence signal originates from the carrier tunneling, which is quite different from the standard p-n junction model. We stress here that the newly developed LEM device possesses a simple structure with mature fabrication processes, which integrates advantages of all composed materials and can be extended to many other material systems. It should be able to attract academic interest as well as stimulate industrial application. PMID:24894723
Light-Gated Memristor with Integrated Logic and Memory Functions.
Tan, Hongwei; Liu, Gang; Yang, Huali; Yi, Xiaohui; Pan, Liang; Shang, Jie; Long, Shibing; Liu, Ming; Wu, Yihong; Li, Run-Wei
2017-11-28
Memristive devices are able to store and process information, which offers several key advantages over the transistor-based architectures. However, most of the two-terminal memristive devices have fixed functions once made and cannot be reconfigured for other situations. Here, we propose and demonstrate a memristive device "memlogic" (memory logic) as a nonvolatile switch of logic operations integrated with memory function in a single light-gated memristor. Based on nonvolatile light-modulated memristive switching behavior, a single memlogic cell is able to achieve optical and electrical mixed basic Boolean logic of reconfigurable "AND", "OR", and "NOT" operations. Furthermore, the single memlogic cell is also capable of functioning as an optical adder and digital-to-analog converter. All the memlogic outputs are memristive for in situ data storage due to the nonvolatile resistive switching and persistent photoconductivity effects. Thus, as a memdevice, the memlogic has potential for not only simplifying the programmable logic circuits but also building memristive multifunctional optoelectronics.
Recent advances in degradable lactide-based shape-memory polymers.
Balk, Maria; Behl, Marc; Wischke, Christian; Zotzmann, Jörg; Lendlein, Andreas
2016-12-15
Biodegradable polymers are versatile polymeric materials that have a high potential in biomedical applications avoiding subsequent surgeries to remove, for example, an implanted device. In the past decade, significant advances have been achieved with poly(lactide acid) (PLA)-based materials, as they can be equipped with an additional functionality, that is, a shape-memory effect (SME). Shape-memory polymers (SMPs) can switch their shape in a predefined manner upon application of a specific external stimulus. Accordingly, SMPs have a high potential for applications ranging from electronic engineering, textiles, aerospace, and energy to biomedical and drug delivery fields based on the perspectives of new capabilities arising with such materials in biomedicine. This study summarizes the progress in SMPs with a particular focus on PLA, illustrates the design of suitable homo- and copolymer structures as well as the link between the (co)polymer structure and switching functionality, and describes recent advantages in the implementation of novel switching phenomena into SMP technology. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi
2017-04-01
The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.
Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices.
Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh
2016-01-25
Crystal-amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier-lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13-0.6 MA cm(-2)) compared with the melt-quench strategy (∼50 MA cm(-2)). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation.
Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices
Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh
2016-01-01
Crystal–amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier–lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13–0.6 MA cm−2) compared with the melt-quench strategy (∼50 MA cm−2). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation. PMID:26805748
To Switch or Not to Switch: Role of Cognitive Control in Working Memory Training in Older Adults.
Basak, Chandramallika; O'Connell, Margaret A
2016-01-01
It is currently not known what are the best working memory training strategies to offset the age-related declines in fluid cognitive abilities. In this randomized clinical double-blind trial, older adults were randomly assigned to one of two types of working memory training - one group was trained on a predictable memory updating task (PT) and another group was trained on a novel, unpredictable memory updating task (UT). Unpredictable memory updating, compared to predictable, requires greater demands on cognitive control (Basak and Verhaeghen, 2011a). Therefore, the current study allowed us to evaluate the role of cognitive control in working memory training. All participants were assessed on a set of near and far transfer tasks at three different testing sessions - before training, immediately after the training, and 1.5 months after completing the training. Additionally, individual learning rates for a comparison working memory task (performed by both groups) and the trained task were computed. Training on unpredictable memory updating, compared to predictable, significantly enhanced performance on a measure of episodic memory, immediately after the training. Moreover, individuals with faster learning rates showed greater gains in this episodic memory task and another new working memory task; this effect was specific to UT. We propose that the unpredictable memory updating training, compared to predictable memory updating training, may a better strategy to improve selective cognitive abilities in older adults, and future studies could further investigate the role of cognitive control in working memory training.
Valentini, Diletta; Marcellini, Valentina; Bianchi, Simona; Villani, Alberto; Facchini, Marzia; Donatelli, Isabella; Castrucci, Maria Rita; Marasco, Emiliano; Farroni, Chiara; Carsetti, Rita
2015-11-27
Immunodeficiency is an integral aspect of Down syndrome, as demonstrated by the increased susceptibility to infection of affected. Mortality is still higher than in general population, with respiratory infections among the major causes of death. As more people with Down syndrome are living today than ever before, it is indispensable to develop strategies to prevent and cure the associated disorders. Vaccination is the most successful instrument of preventive medicine. Special seasonal influenza and pneumococcal vaccination strategies have been designed for individuals with risk conditions of all ages. Down syndrome individuals are not included in the high-risk categories. We enrolled in our study 15 children with Down syndrome and their siblings, vaccinated for the first time with seasonal influenza vaccine and receiving a booster dose of a glyco-conjugated pneumococcal vaccine. We compared the immunological features and response to vaccination measuring serum antibody titers and frequency of specific memory B cells. We confirm that a severe reduction of switched memory B cells is always associated to Down syndrome. After primary vaccination Down syndrome children generate significantly less specific switched memory B cells than their siblings. The response to a booster dose of vaccine is instead comparable in both groups. The production of specific antibodies was equally effective in Down syndrome and controls both after primary and secondary immunization. Down syndrome individuals should be considered a high risk group, because of their increased susceptibility to infection and reduced number of switched memory B cells. Tailored vaccination protocols are needed in order to reduce their burden of infections throughout life. Copyright © 2015. Published by Elsevier Ltd.
Ovonic switching in tin selenide thin films. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Baxter, C. R.
1974-01-01
Amorphous tin selenide thin films which possess Ovonic switching properties were fabricated using vacuum deposition techniques. Results obtained indicate that memory type Ovonic switching does occur in these films the energy density required for switching from a high impedance to a low impedance state is dependent on the spacing between the electrodes of the device. The switching is also function of the magnitude of the applied voltage pulse. A completely automated computer controlled testing procedure was developed which allows precise control over the shape of the applied voltage switching pulse. A survey of previous experimental and theoretical work in the area of Ovonic switching is also presented.
NASA Astrophysics Data System (ADS)
Das, Nilanjan
Among the various candidates for non-volatile random access memory (RAM), interfacial resistive switch in Ag/Pr0.7Ca0.3 MnO3 (PCMO) configuration has drawn major attention in recent years due to its potential as a high storage density (˜ terabyte) device. However, the diverse nature of the resistive switch in different systems makes the development of a unifying model for its underlying physics very difficult. This dissertation will address both issues, namely, characterization of switches for device applications and development of a system-independent generic model, in detail. In our work, we have studied the properties electric pulse induced interfacial switch in electrode/PCMO system. A very fast speed ("write speed") of 100 ns, threshold ("programming voltage") as low as 2 V (for micro electrodes), and non-volatility ("data retention") of switched states have been achieved. A clear distinction between fast switch and sub-threshold slow quasistatic-dc switch has been made. Results obtained from time-dependence studies and impedance spectroscopy suggest that defect creation/annihilation, such as broken bonds (under very high field at interface, 107V/cm), is likely the mechanism for the sub-micros fast switching. On the other hand, slow accumulative process, such as electromigration of point defects, are responsible for the subthreshold quasi-dc switch. Scanning probe imaging has revealed the nanoscale inhomogeneity of the switched surfaces, essential for observing a resistive switch. Evolution of such structures has been observed under surface pre-training. Device scalability has been tested by creating reversible modification of surface conductivities with atomic force microscopy, thus creating the "nano-switch" (limited to a region of 10--100 nm).
Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory
NASA Astrophysics Data System (ADS)
Hwang, Bohee; Gu, Chungwan; Lee, Donghwa; Lee, Jang-Sik
2017-03-01
Mixed halide perovskite materials are actively researched for solar cells with high efficiency. Their hysteresis which originates from the movement of defects make perovskite a candidate for resistive switching memory devices. We demonstrate the resistive switching device based on mixed-halide organic-inorganic hybrid perovskite CH3NH3PbI3-xBrx (x = 0, 1, 2, 3). Solvent engineering is used to deposit the homogeneous CH3NH3PbI3-xBrx layer on the indium-tin oxide-coated glass substrates. The memory device based on CH3NH3PbI3-xBrx exhibits write endurance and long retention, which indicate reproducible and reliable memory properties. According to the increase in Br contents in CH3NH3PbI3-xBrx the set electric field required to make the device from low resistance state to high resistance state decreases. This result is in accord with the theoretical calculation of migration barriers, that is the barrier to ionic migration in perovskites is found to be lower for Br- (0.23 eV) than for I- (0.29-0.30 eV). The resistive switching may be the result of halide vacancy defects and formation of conductive filaments under electric field in the mixed perovskite layer. It is observed that enhancement in operating voltage can be achieved by controlling the halide contents in the film.
NASA Astrophysics Data System (ADS)
Vyas, Giriraj; Dagar, Parveen; Sahu, Satyajit
2016-06-01
We have fabricated an organic non-volatile memory device wherein the ON/OFF current ratio has been controlled by varying the concentration of a small organic molecule, 2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ), in an insulating matrix of a polymer Poly(4-vinylphenol) (PVP). A maximum ON-OFF ratio of 106 is obtained when the concentration of DDQ is half or 10 wt. % of PVP. In this process, the switching direction for the devices has also been altered, indicating the disparity in conduction mechanism. Conduction due to metal filament formation through the active material and the voltage dependent conformational change of the organic molecule seem to be the motivation behind the gradual change in the switching direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Kyungmi; Lee, Kyung-Jin, E-mail: kj-lee@korea.ac.kr; Department of Materials Science and Engineering, Korea University, Seoul 136-713
2015-08-07
We numerically investigate the effect of magnetic and electrical damages at the edge of a perpendicular magnetic random access memory (MRAM) cell on the spin-transfer-torque (STT) efficiency that is defined by the ratio of thermal stability factor to switching current. We find that the switching mode of an edge-damaged cell is different from that of an undamaged cell, which results in a sizable reduction in the switching current. Together with a marginal reduction of the thermal stability factor of an edge-damaged cell, this feature makes the STT efficiency large. Our results suggest that a precise edge control is viable formore » the optimization of STT-MRAM.« less
NASA Astrophysics Data System (ADS)
Liu, Y.; Chen, T. P.; Liu, Z.; Yu, Y. F.; Yu, Q.; Li, P.; Fung, S.
2011-12-01
The resistive switching device based on a Ni-rich nickel oxide thin film exhibits an inherent learning ability of a neural network. The device has the short-term-memory and long-term-memory functions analogous to those of the human brain, depending on the history of its experience of voltage pulsing or sweeping. Neuroplasticity could be realized with the device, as the device can be switched from a high-resistance state to a low-resistance state due to the formation of stable filaments by a series of electrical pulses, resembling the changes such as the growth of new connections and the creation of new neurons in the brain in response to experience.
A 1-1/2-level on-chip-decoding bubble memory chip design
NASA Technical Reports Server (NTRS)
Chen, T. T.
1975-01-01
Design includes multi-channel replicator which can reduce chip-writing requirement, selective annihilating switch which can effectively annihilate bubbles with minimum delay, and modified transfer switch which can be used as selective steering-type decoder.
Immunological memory is associative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.J.; Forrest, S.; Perelson, A.S.
1996-12-31
The purpose of this paper is to show that immunological memory is an associative and robust memory that belongs to the class of sparse distributed memories. This class of memories derives its associative and robust nature by sparsely sampling the input space and distributing the data among many independent agents. Other members of this class include a model of the cerebellar cortex and Sparse Distributed Memory (SDM). First we present a simplified account of the immune response and immunological memory. Next we present SDM, and then we show the correlations between immunological memory and SDM. Finally, we show how associativemore » recall in the immune response can be both beneficial and detrimental to the fitness of an individual.« less
Alnajjar, Fady; Yamashita, Yuichi; Tani, Jun
2013-01-01
Higher-order cognitive mechanisms (HOCM), such as planning, cognitive branching, switching, etc., are known to be the outcomes of a unique neural organizations and dynamics between various regions of the frontal lobe. Although some recent anatomical and neuroimaging studies have shed light on the architecture underlying the formation of such mechanisms, the neural dynamics and the pathways in and between the frontal lobe to form and/or to tune the stability level of its working memory remain controversial. A model to clarify this aspect is therefore required. In this study, we propose a simple neurocomputational model that suggests the basic concept of how HOCM, including the cognitive branching and switching in particular, may mechanistically emerge from time-based neural interactions. The proposed model is constructed such that its functional and structural hierarchy mimics, to a certain degree, the biological hierarchy that is believed to exist between local regions in the frontal lobe. Thus, the hierarchy is attained not only by the force of the layout architecture of the neural connections but also through distinct types of neurons, each with different time properties. To validate the model, cognitive branching and switching tasks were simulated in a physical humanoid robot driven by the model. Results reveal that separation between the lower and the higher-level neurons in such a model is an essential factor to form an appropriate working memory to handle cognitive branching and switching. The analyses of the obtained result also illustrates that the breadth of this separation is important to determine the characteristics of the resulting memory, either static memory or dynamic memory. This work can be considered as a joint research between synthetic and empirical studies, which can open an alternative research area for better understanding of brain mechanisms. PMID:23423881
Alnajjar, Fady; Yamashita, Yuichi; Tani, Jun
2013-01-01
Higher-order cognitive mechanisms (HOCM), such as planning, cognitive branching, switching, etc., are known to be the outcomes of a unique neural organizations and dynamics between various regions of the frontal lobe. Although some recent anatomical and neuroimaging studies have shed light on the architecture underlying the formation of such mechanisms, the neural dynamics and the pathways in and between the frontal lobe to form and/or to tune the stability level of its working memory remain controversial. A model to clarify this aspect is therefore required. In this study, we propose a simple neurocomputational model that suggests the basic concept of how HOCM, including the cognitive branching and switching in particular, may mechanistically emerge from time-based neural interactions. The proposed model is constructed such that its functional and structural hierarchy mimics, to a certain degree, the biological hierarchy that is believed to exist between local regions in the frontal lobe. Thus, the hierarchy is attained not only by the force of the layout architecture of the neural connections but also through distinct types of neurons, each with different time properties. To validate the model, cognitive branching and switching tasks were simulated in a physical humanoid robot driven by the model. Results reveal that separation between the lower and the higher-level neurons in such a model is an essential factor to form an appropriate working memory to handle cognitive branching and switching. The analyses of the obtained result also illustrates that the breadth of this separation is important to determine the characteristics of the resulting memory, either static memory or dynamic memory. This work can be considered as a joint research between synthetic and empirical studies, which can open an alternative research area for better understanding of brain mechanisms.
NASA Astrophysics Data System (ADS)
Lee, J. W.; Subramaniam, N. G.; Kang, T. W.; Shon, Yoon; Kim, E. K.
2015-05-01
Potassium-doped ZnO thin films electrodeposited on indium tin oxide (ITO) coated glass substrates exhibited ferroelectric behavior with a remnant polarization of 0.2 μC/cm2. Especially, wave forms showing the applied input voltage Vi and output voltage Vo were obtained for Al/ZnO:K/ITO structure. It exhibits a superposition of Vi (input) and Vo (output) signal from Al/ZnO:K/ITO structure with a clear phase shift between the two wave forms which again confirms that the observed ferroelectric hysteresis curve is not related to leaky dielectric materials. The current-voltage characteristics of Al/ZnO:K/ITO structures measured for several cycles revealed bi-stable switching characteristics. The reproducible bi-stable switching characteristics for the mentioned structures had good retention in one particular resistance state. Around one order of switching was realized between low and high resistance states. The switching property thought to be polarization induced originating out from the ferroelectric properties of the potassium doped ZnO thin film. The switching between ZnO:K/ITO interface is assumed to be critical for stability in switching for several cycles. Possible application of this structure in non-volatile memories is explored.
NASA Astrophysics Data System (ADS)
Pandey, Shivendra Kumar; Manivannan, Anbarasu
2017-07-01
Prefixing a weak electric field (incubation) might enhance the crystallization speed via pre-structural ordering and thereby achieving faster programming of phase change memory (PCM) devices. We employed a weak electric field, equivalent to a constant small voltage (that is incubation voltage, Vi of 0.3 V) to the applied voltage pulse, VA (main pulse) for a systematic understanding of voltage-dependent rapid threshold switching characteristics and crystallization (set) process of In3SbTe2 (IST) PCM devices. Our experimental results on incubation-assisted switching elucidate strikingly one order faster threshold switching, with an extremely small delay time, td of 300 ps, as compared with no incubation voltage (Vi = 0 V) for the same VA. Also, the voltage dependent characteristics of incubation-assisted switching dynamics confirm that the initiation of threshold switching occurs at a lower voltage of 0.82 times of VA. Furthermore, we demonstrate an incubation assisted ultrafast set process of IST device for a low VA of 1.7 V (˜18 % lesser compared to without incubation) within a short pulse-width of 1.5 ns (full width half maximum, FWHM). These findings of ultrafast switching, yet low power set process would immensely be helpful towards designing high speed PCM devices with low power operation.
AdOn HDP-HMM: An Adaptive Online Model for Segmentation and Classification of Sequential Data.
Bargi, Ava; Xu, Richard Yi Da; Piccardi, Massimo
2017-09-21
Recent years have witnessed an increasing need for the automated classification of sequential data, such as activities of daily living, social media interactions, financial series, and others. With the continuous flow of new data, it is critical to classify the observations on-the-fly and without being limited by a predetermined number of classes. In addition, a model should be able to update its parameters in response to a possible evolution in the distributions of the classes. This compelling problem, however, does not seem to have been adequately addressed in the literature, since most studies focus on offline classification over predefined class sets. In this paper, we present a principled solution for this problem based on an adaptive online system leveraging Markov switching models and hierarchical Dirichlet process priors. This adaptive online approach is capable of classifying the sequential data over an unlimited number of classes while meeting the memory and delay constraints typical of streaming contexts. In this paper, we introduce an adaptive ''learning rate'' that is responsible for balancing the extent to which the model retains its previous parameters or adapts to new observations. Experimental results on stationary and evolving synthetic data and two video data sets, TUM Assistive Kitchen and collated Weizmann, show a remarkable performance in terms of segmentation and classification, particularly for sequences from evolutionary distributions and/or those containing previously unseen classes.
Ovonic type switching in tin selenide thin films
NASA Technical Reports Server (NTRS)
Baxter, C. R.; Mclennan, W. D.
1975-01-01
Amorphous tin selenide thin films which possess Ovonic type switching properties are fabricated using vacuum deposition techniques. The devices are fabricated in a planar configuration and consist of amorphous tin selenide deposited over silver contacts. Results obtained indicate that Ovonic type memory switching does occur in these films with the energy density required for switching from a high impedance to a low impedance state being dependent on the spacing between the electrodes of the device. There is also a strong implication that the switching is a function of the magnitude of the applied voltage pulse.
Adaptive packet switch with an optical core (demonstrator)
NASA Astrophysics Data System (ADS)
Abdo, Ahmad; Bishtein, Vadim; Clark, Stewart A.; Dicorato, Pino; Lu, David T.; Paredes, Sofia A.; Taebi, Sareh; Hall, Trevor J.
2004-11-01
A three-stage opto-electronic packet switch architecture is described consisting of a reconfigurable optical centre stage surrounded by two electronic buffering stages partitioned into sectors to ease memory contention. A Flexible Bandwidth Provision (FBP) algorithm, implemented on a soft-core processor, is used to change the configuration of the input sectors and optical centre stage to set up internal paths that will provide variable bandwidth to serve the traffic. The switch is modeled by a bipartite graph built from a service matrix, which is a function of the arriving traffic. The bipartite graph is decomposed by solving an edge-colouring problem and the resulting permutations are used to configure the switch. Simulation results show that this architecture exhibits a dramatic reduction of complexity and increased potential for scalability, at the price of only a modest spatial speed-up k, 1
A vacancy-modulated self-selective resistive switching memory with pronounced nonlinear behavior
NASA Astrophysics Data System (ADS)
Ma, Haili; Feng, Jie; Gao, Tian; Zhu, Xi
2017-12-01
In this study, we report a self-selective (nonlinear) resistive switching memory cell, with high on-state half-bias nonlinearity of 650, sub-μA operating current, and high On/Off ratios above 100×. Regarding the cell structure, a thermal oxidized HfO x layer in combination with a sputtered Ta2O5 layer was configured as an active stack, with Pt and Hf as top and bottom electrodes, respectively. The Ta2O5 acts as a selective layer as well as a series resistor, which could make the resistive switching happened in HfO x layer. Through the analysis of the physicochemical properties and electrical conduction mechanisms at each state, a vacancy-modulated resistance switching model was proposed to explain the switching behavior. The conductivity of HfO x layer was changed by polarity-dependent drift of the oxygen vacancy ( V o), resulting in an electron hopping distance change during switching. With the help of Ta2O5 selective layer, high nonlinearity observed in low resistance state. The proposed material stack shows a promising prospect to act as a self-selective cell for 3D vertical RRAM application.
Woo, Hyunsuk; Vishwanath, Sujaya Kumar; Jeon, Sanghun
2018-03-07
The next-generation electronic society is dependent on the performance of nonvolatile memory devices, which has been continuously improving. In the last few years, many memory devices have been introduced. However, atomic switches are considered to be a simple and reliable basis for next-generation nonvolatile devices. In general, atomic switch-based resistive switching is controlled by electrochemical metallization. However, excess ion injection from the entire area of the active electrode into the switching layer causes device nonuniformity and degradation of reliability. Here, we propose the fabrication of a high-performance atomic switch based on Cu x -Se 1- x by inserting lanthanide (Ln) metal buffer layers such as neodymium (Nd), samarium (Sm), dysprosium (Dy), or lutetium (Lu) between the active metal layer and the electrolyte. Current-atomic force microscopy results confirm that Cu ions penetrate through the Ln-buffer layer and form thin conductive filaments inside the switching layer. Compared with the Pt/Cu x -Se 1- x /Al 2 O 3 /Pt device, the optimized Pt/Cu x -Se 1- x /Ln/Al 2 O 3 /Pt devices show improvement in the on/off resistance ratio (10 2 -10 7 ), retention (10 years/85 °C), endurance (∼10 000 cycles), and uniform resistance state distribution.
Roesler, Rafael; Reolon, Gustavo K.; Maurmann, Natasha; Schwartsmann, Gilberto; Schröder, Nadja; Amaral, Olavo B.; Valvassori, Samira; Quevedo, João
2014-01-01
Established fear-related memories can undergo phenomena such as extinction or reconsolidation when recalled. Extinction probably involves the creation of a new, competing memory trace that decreases fear expression, whereas reconsolidation can mediate memory maintenance, updating, or strengthening. The factors determining whether retrieval will initiate extinction, reconsolidation, or neither of these two processes include training intensity, duration of the retrieval session, and age of the memory. However, previous studies have not shown that the same behavioral protocol can be used to induce either extinction or reconsolidation and strengthening, depending on the pharmacological intervention used. Here we show that, within an experiment that leads to extinction in control rats, memory can be strengthened if rolipram, a selective inhibitor of phosphodiesterase type 4 (PDE4), is administered into the dorsal hippocampus immediately after retrieval. The memory-enhancing effect of rolipram lasted for at least 1 week, was blocked by the protein synthesis inhibitor anisomycin, and did not occur when drug administration was not paired with retrieval. These findings indicate that the behavioral outcome of memory retrieval can be pharmacologically switched from extinction to strengthening. The cAMP/protein kinase A (PKA) signaling pathway might be a crucial mechanism determining the fate of memories after recall. PMID:24672454
Spin transport and spin torque in antiferromagnetic devices
Zelezny, J.; Wadley, P.; Olejnik, K.; ...
2018-03-02
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less
Spin transport and spin torque in antiferromagnetic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelezny, J.; Wadley, P.; Olejnik, K.
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less
NASA Astrophysics Data System (ADS)
Ghoneim, M. T.; Hussain, M. M.
2015-08-01
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ˜260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.
Spin transport and spin torque in antiferromagnetic devices
NASA Astrophysics Data System (ADS)
Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.
2018-03-01
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.
CLOCS (Computer with Low Context-Switching Time) Architecture Reference Documents
1988-05-06
Peculiarities The only state inside the central processing unit(CPU) is a program status word. All data operations are memory to memory. One result of this... to the challenge "if I whore to design RISC, this is how I would do it." The architecture was designed by Mark Davis and Bill Gallmeister. 1.2...are memory to memory. Any special devices added should be memory mapped. The program counter is even memory mapped. 1.3.1 Working storage There is no
Micro-Ball-Lens Optical Switch Driven by SMA Actuator
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok
2003-01-01
The figure is a simplified cross section of a microscopic optical switch that was partially developed at the time of reporting the information for this article. In a fully developed version, light would be coupled from an input optical fiber to one of two side-by-side output optical fibers. The optical connection between the input and the selected output fiber would be made via a microscopic ball lens. Switching of the optical connection from one output fiber to another would be effected by using a pair of thin-film shape-memory-alloy (SMA) actuators to toggle the lens between two resting switch positions. There are many optical switches some made of macroscopic parts by conventional fabrication techniques and some that are microfabricated and, hence, belong to the class of microelectromechanical systems (MEMS). Conventionally fabricated optical switches tend to be expensive. MEMS switches can be mass-produced at relatively low cost, but their attractiveness has been diminished by the fact that, heretofore, MEMS switches have usually been found to exhibit high insertion losses. The present switch is intended to serve as a prototype of low-loss MEMS switches. In addition, this is the first reported SMA-based optical switch. The optical fibers would be held in V grooves in a silicon frame. The lens would have a diameter of 1 m; it would be held by, and positioned between, the SMA actuators, which would be made of thin films of TiNi alloy. Although the SMA actuators are depicted here as having simple shapes for the sake of clarity of illustration, the real actuators would have complex, partly net-like shapes. With the exception of the lens and the optical fibers, the SMA actuators and other components of the switch would be made by microfabrication techniques. The components would be assembled into a sandwich structure to complete the fabrication of the switch. To effect switching, an electric current would be passed through one of the SMA actuators to heat it above its transition temperature, thereby causing it to deform to a different "remembered" shape. The two SMA actuators would be stiff enough that once switching had taken place and the electrical current was turned off, the lens would remain latched in the most recently selected position. In a test, the partially developed switch exhibited an insertion loss of only -1.9 dB and a switching contrast of 70 dB. One the basis of prior research on SMA actuators and assuming a lens displacement of 125 m between extreme positions, it has been estimated that the fully developed switch would be capable of operating at a frequency as high as 10 Hz.
Mechanisms of Age-Related Decline in Memory Search across the Adult Life Span
ERIC Educational Resources Information Center
Hills, Thomas T.; Mata, Rui; Wilke, Andreas; Samanez-Larkin, Gregory R.
2013-01-01
Three alternative mechanisms for age-related decline in memory search have been proposed, which result from either reduced processing speed (global slowing hypothesis), overpersistence on categories (cluster-switching hypothesis), or the inability to maintain focus on local cues related to a decline in working memory (cue-maintenance hypothesis).…
Working Memory Span Development: A Time-Based Resource-Sharing Model Account
ERIC Educational Resources Information Center
Barrouillet, Pierre; Gavens, Nathalie; Vergauwe, Evie; Gaillard, Vinciane; Camos, Valerie
2009-01-01
The time-based resource-sharing model (P. Barrouillet, S. Bernardin, & V. Camos, 2004) assumes that during complex working memory span tasks, attention is frequently and surreptitiously switched from processing to reactivate decaying memory traces before their complete loss. Three experiments involving children from 5 to 14 years of age…
Binding Facilitates Attention Switching within Working Memory
ERIC Educational Resources Information Center
Bao, Min; Li, Zhi-Hao; Zhang, Da-Ren
2007-01-01
The authors investigated the units of selective attention within working memory. In Experiment 1, a group of participants kept 1 count and 1 location in working memory and updated them repeatedly in random order. Another group of participants were instructed to achieve the same goal by memorizing the verbal and spatial information in an…
Direct Observation of a Carbon Filament in Water-Resistant Organic Memory.
Lee, Byung-Hyun; Bae, Hagyoul; Seong, Hyejeong; Lee, Dong-Il; Park, Hongkeun; Choi, Young Joo; Im, Sung-Gap; Kim, Sang Ouk; Choi, Yang-Kyu
2015-07-28
The memory for the Internet of Things (IoT) requires versatile characteristics such as flexibility, wearability, and stability in outdoor environments. Resistive random access memory (RRAM) to harness a simple structure and organic material with good flexibility can be an attractive candidate for IoT memory. However, its solution-oriented process and unclear switching mechanism are critical problems. Here we demonstrate iCVD polymer-intercalated RRAM (i-RRAM). i-RRAM exhibits robust flexibility and versatile wearability on any substrate. Stable operation of i-RRAM, even in water, is demonstrated, which is the first experimental presentation of water-resistant organic memory without any waterproof protection package. Moreover, the direct observation of a carbon filament is also reported for the first time using transmission electron microscopy, which puts an end to the controversy surrounding the switching mechanism. Therefore, reproducibility is feasible through comprehensive modeling. Furthermore, a carbon filament is superior to a metal filament in terms of the design window and selection of the electrode material. These results suggest an alternative to solve the critical issues of organic RRAM and an optimized memory type suitable for the IoT era.
Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas
2017-04-18
The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.
Resistive switching phenomena of tungsten nitride thin films with excellent CMOS compatibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seok Man; Kim, Hee-Dong; An, Ho-Myoung
2013-12-15
Graphical abstract: - Highlights: • The resistive switching characteristics of WN{sub x} thin films. • Excellent CMOS compatibility WN{sub x} films as a resistive switching material. • Resistive switching mechanism revealed trap-controlled space charge limited conduction. • Good endurance and retention properties over 10{sup 5} cycles, and 10{sup 5} s, respectively - Abstract: We report the resistive switching (RS) characteristics of tungsten nitride (WN{sub x}) thin films with excellent complementary metal-oxide-semiconductor (CMOS) compatibility. A Ti/WN{sub x}/Pt memory cell clearly shows bipolar RS behaviors at a low voltage of approximately ±2.2 V. The dominant conduction mechanisms at low and high resistancemore » states were verified by Ohmic behavior and trap-controlled space-charge-limited conduction, respectively. A conducting filament model by a redox reaction explains the RS behavior in WN{sub x} films. We also demonstrate the memory characteristics during pulse operation, including a high endurance over >10{sup 5} cycles and a long retention time of >10{sup 5} s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xiaofan; Ma, Zhongyuan, E-mail: zyma@nju.edu.cn; Yang, Huafeng
2014-09-28
Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiN{sub x}/SiN{sub y} multilayers with high on/off ratio of 10{sup 9}. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos,more » we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.« less
NASA Astrophysics Data System (ADS)
Liu, Guangyu; Wu, Liangcai; Song, Zhitang; Liu, Yan; Li, Tao; Zhang, Sifan; Song, Sannian; Feng, Songlin
2017-12-01
A memory cell composed of a selector device and a storage device is the basic unit of phase change memory. The threshold switching effect, main principle of selectors, is a universal phenomenon in chalcogenide glasses. In this work, we put forward a safe and controllable method to prepare a SiGeAsTeN chalcogenide film by implanting As ions into sputtered SiGeTeN films. For the SiGeAsTeN material, the phase structure maintains the amorphous state, even at high temperature, indicating that no phase transition occurs for this chalcogenide-based material. The electrical test results show that the SiGeAsTeN-based devices exhibit good threshold switching characteristics and the switching voltage decreases with the increasing As content. The decrease in valence alternation pairs, reducing trap state density, may be the physical mechanism for lower switch-on voltage, which makes the SiGeAsTeN material more applicable in selector devices through component optimization.
Tunable Noncollinear Antiferromagnetic Resistive Memory through Oxide Superlattice Design
NASA Astrophysics Data System (ADS)
Hoffman, Jason D.; Wu, Stephen M.; Kirby, Brian J.; Bhattacharya, Anand
2018-04-01
Antiferromagnets (AFMs) have recently gathered a large amount of attention as a potential replacement for ferromagnets (FMs) in spintronic devices due to their lack of stray magnetic fields, invisibility to external magnetic probes, and faster magnetization dynamics. Their development into a practical technology, however, has been hampered by the small number of materials where the antiferromagnetic state can be both controlled and read out. We show that by relaxing the strict criterion on pure antiferromagnetism, we can engineer an alternative class of magnetic materials that overcome these limitations. This is accomplished by stabilizing a noncollinear magnetic phase in LaNiO3 /La2 /3Sr1 /3MnO3 superlattices. This state can be continuously tuned between AFM and FM coupling through varying the superlattice spacing, strain, applied magnetic field, or temperature. By using this alternative "knob" to tune magnetic ordering, we take a nanoscale materials-by-design approach to engineering ferromagneticlike controllability into antiferromagnetic synthetic magnetic structures. This approach can be used to trade-off between the favorable and unfavorable properties of FMs and AFMs when designing realistic resistive antiferromagnetic memories. We demonstrate a memory device in one such superlattice, where the magnetic state of the noncollinear antiferromagnet is reversibly switched between different orientations using a small magnetic field and read out in real time with anisotropic magnetoresistance measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706; Stewart, Derek A., E-mail: derek.stewart@hgst.com
Metal oxide resistive memory devices based on Ta{sub 2}O{sub 5} have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta{sub 2}O{sub 5} is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta{sub 2}O{sub 5}. Identified diffusion paths are associated with collective motion of neighboringmore » atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta{sub 2}O{sub 5} is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta{sub 2}O{sub 5} based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.« less
Yang, Fangxu; Zhao, Qiang; Xu, Chunhui; Zou, Ye; Dong, Huanli; Zheng, Yonggang; Hu, Wenping
2016-09-01
The switching riddle of AgTCNQ is shown to be caused by the solid electrolyte mechanism. Both factors of bulk phase change and contact issue play key roles in the efficient work of the devices. An effective strategy is developed to locate the formation/disruption of Ag conductive filaments using the planar asymmetric configuration of Au/AgTCNQ/AlOx /Al. These novel electrochemical metallization memories demonstrate many promising properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
47 CFR 32.6210 - Central office switching expenses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6210 Central office switching expenses. Class B telephone companies shall use this account for expenses of the type and character required of Class A companies in Accounts 6211 through 6212. [67 FR 5695, Feb. 6...
Phase-change memory function of correlated electrons in organic conductors
NASA Astrophysics Data System (ADS)
Oike, H.; Kagawa, F.; Ogawa, N.; Ueda, A.; Mori, H.; Kawasaki, M.; Tokura, Y.
2015-01-01
Phase-change memory (PCM), a promising candidate for next-generation nonvolatile memories, exploits quenched glassy and thermodynamically stable crystalline states as reversibly switchable state variables. We demonstrate PCM functions emerging from a charge-configuration degree of freedom in strongly correlated electron systems. Nonvolatile reversible switching between a high-resistivity charge-crystalline (or charge-ordered) state and a low-resistivity quenched state, charge glass, is achieved experimentally via heat pulses supplied by optical or electrical means in organic conductors θ -(BEDT-TTF)2X . Switching that is one order of magnitude faster is observed in another isostructural material that requires faster cooling to kinetically avoid charge crystallization, indicating that the material's critical cooling rate can be useful guidelines for pursuing a faster correlated-electron PCM function.
Sensory and short-term memory formations observed in a Ag2S gap-type atomic switch
NASA Astrophysics Data System (ADS)
Ohno, Takeo; Hasegawa, Tsuyoshi; Nayak, Alpana; Tsuruoka, Tohru; Gimzewski, James K.; Aono, Masakazu
2011-11-01
Memorization caused by the change in conductance in a Ag2S gap-type atomic switch was investigated as a function of the amplitude and width of input voltage pulses (Vin). The conductance changed little for the first few Vin, but the information of the input was stored as a redistribution of Ag-ions in the Ag2S, indicating the formation of sensory memory. After a certain number of Vin, the conductance increased abruptly followed by a gradual decrease, indicating the formation of short-term memory (STM). We found that the probability of STM formation depends strongly on the amplitude and width of Vin, which resembles the learning behavior of the human brain.
Properties of the internal clock.
Church, R M
1984-01-01
Evidence has been cited for the following properties of the parts of the psychological process used for timing intervals: The pacemaker has a mean rate that can be varied by drugs, diet, and stress. The switch has a latency to operate and it can be operated in various modes, such as run, stop, and reset. The accumulator times up, in absolute, arithmetic units. Working memory can be reset on command or, after lesions have been created in the fimbria fornix, when there is a gap in a signal. The transformation from the accumulator to reference memory is done with a multiplicative constant that is affected by drugs, lesions, and individual differences. The comparator uses a ratio between the value in the accumulator (or working memory) and reference memory. Finally, there must be multiple switch-accumulator modules to handle simultaneous temporal processing; and the psychological timing process may be used on some occasions and not on others.
CMOS imager for pointing and tracking applications
NASA Technical Reports Server (NTRS)
Sun, Chao (Inventor); Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)
2006-01-01
Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.
High speed magneto-resistive random access memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor)
1992-01-01
A high speed read MRAM memory element is configured from a sandwich of magnetizable, ferromagnetic film surrounding a magneto-resistive film which may be ferromagnetic or not. One outer ferromagnetic film has a higher coercive force than the other and therefore remains magnetized in one sense while the other may be switched in sense by a switching magnetic field. The magneto-resistive film is therefore sensitive to the amplitude of the resultant field between the outer ferromagnetic films and may be constructed of a high resistivity, high magneto-resistive material capable of higher sensing currents. This permits higher read voltages and therefore faster read operations. Alternate embodiments with perpendicular anisotropy, and in-plane anisotropy are shown, including an embodiment which uses high permeability guides to direct the closing flux path through the magneto-resistive material. High density, high speed, radiation hard, memory matrices may be constructed from these memory elements.
Realization of transient memory-loss with NiO-based resistive switching device
NASA Astrophysics Data System (ADS)
Hu, S. G.; Liu, Y.; Chen, T. P.; Liu, Z.; Yu, Q.; Deng, L. J.; Yin, Y.; Hosaka, Sumio
2012-11-01
A resistive switching device based on a nickel-rich nickel oxide thin film, which exhibits inherent learning and memory-loss abilities, is reported in this work. The conductance of the device gradually increases and finally saturates with the number of voltage pulses (or voltage sweepings), which is analogous to the behavior of the short-term and long-term memory in the human brain. Furthermore, the number of the voltage pulses (or sweeping cycles) required to achieve a given conductance state increases with the interval between two consecutive voltage pulses (or sweeping cycles), which is attributed to the heat diffusion in the material of the conductive filaments formed in the nickel oxide thin film. The phenomenon resembles the behavior of the human brain, i.e., forgetting starts immediately after an impression, a larger interval of the impressions leads to more memory loss, thus the memorization needs more impressions to enhance.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Snigdha; Sarkar, Pranab Kumar; Prajapat, Manoj; Roy, Asim
2017-07-01
Molybdenum disulfide (MoS2) is of great interest for its applicability in various optoelectronic devices. Here we report the resistive switching properties of polymethylmethacrylate embedding MoS2 nano-crystals. The devices are developed on an ITO-coated PET substrate with copper as the top electrode. Systematic evaluation of resistive switching parameters, on the basis of MoS2 content, suggests non-volatile memory characteristics. A decent ON/OFF ratio, high retention time and long endurance of 3 × 103, 105 s and 105 cycles are respectively recorded in a device with 1 weight percent (wt%) of MoS2. The bending cyclic measurements confirm the flexibility of the memory devices with good electrical reliability as well as mechanical stability. In addition, multilevel storage has been demonstrated by controlling the current compliance and span of voltage sweeping in the memory device.
Overlapping activation-induced cytidine deaminase hotspot motifs in Ig class-switch recombination
Han, Li; Masani, Shahnaz; Yu, Kefei
2011-01-01
Ig class-switch recombination (CSR) is directed by the long and repetitive switch regions and requires activation-induced cytidine deaminase (AID). One of the conserved switch-region sequence motifs (AGCT) is a preferred site for AID-mediated DNA-cytosine deamination. By using somatic gene targeting and recombinase-mediated cassette exchange, we established a cell line-based CSR assay that allows manipulation of switch sequences at the endogenous locus. We show that AGCT is only one of a family of four WGCW motifs in the switch region that can facilitate CSR. We go on to show that it is the overlap of AID hotspots at WGCW sites on the top and bottom strands that is critical. This finding leads to a much clearer model for the difference between CSR and somatic hypermutation. PMID:21709240
NASA Astrophysics Data System (ADS)
Kim, Seung-Tae; Cho, Won-Ju
2018-01-01
We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.
NASA Astrophysics Data System (ADS)
Bonafos, C.; Benassayag, G.; Cours, R.; Pécassou, B.; Guenery, P. V.; Baboux, N.; Militaru, L.; Souifi, A.; Cossec, E.; Hamga, K.; Ecoffey, S.; Drouin, D.
2018-01-01
We report on the direct ion beam synthesis of a delta-layer of indium oxide nanocrystals (In2O3-NCs) in silica matrices by using ultra-low energy ion implantation. The formation of the indium oxide phase can be explained by (i) the affinity of indium with oxygen, (ii) the generation of a high excess of oxygen recoils generated by the implantation process in the region where the nanocrystals are formed and (iii) the proximity of the indium-based nanoparticles with the free surface and oxidation from the air. Taking advantage of the selective diffusivity of implanted indium in SiO2 with respect to Si3N4, In2O3-NCs have been inserted in the SiO2 switching oxide of micrometric planar oxide-based resistive random access memory (OxRAM) devices fabricated using the nanodamascene process. Preliminary electrical measurements show switch voltage from high to low resistance state. The devices with In2O3-NCs have been cycled 5 times with identical operating voltages and RESET current meanwhile no switch has been observed for non implanted devices. This first measurement of switching is very promising for the concept of In2O3-NCs based OxRAM memories.
Evaluation of switchable organic devices for nonvolatile memory applications
NASA Astrophysics Data System (ADS)
Campbell Scott, J.
2007-03-01
Many organic electronic devices exhibit switching behavior and have therefore been proposed as the basis for a nonvolatile memory technology. In particular, bistable resistive elements, in which a high or low current state is selected by application of a specific voltage, may be used as the elements of a crosspoint memory array. This architecture places very stringent requirements on the electrical response of the individual devices, in terms of on-state current density, switching and retention times, cycling endurance, rectification and size-scaling. In this talk, I will describe the progress that we and others have made towards satisfying these requirements. In many cases, the mechanisms responsible for conduction and switching are not fully understood. In some devices, it has been shown that current flows in a few highly localized regions. These so-called ``filaments'' are not necessarily metallic bridges between the electrodes, but may be associated with chains of nanoparticles introduced into the organic matrix either deliberately or accidentally. Coulomb blockade effects can then explain the switching behavior observed in some devices. This work was done in collaboration with L. D. Bozano, M. Beinhoff, K. R. Carter, V. R. Deline, B. W. Kean, G. M. McClelland, D. C. Miller, P. M. Rice, J. R. Salem, and S. A. Swanson.
CaMKII knockdown affects both early and late phases of olfactory long-term memory in the honeybee.
Scholl, Christina; Kübert, Natalie; Muenz, Thomas S; Rössler, Wolfgang
2015-12-01
Honeybees are able to solve complex learning tasks and memorize learned information for long time periods. The molecular mechanisms mediating long-term memory (LTM) in the honeybee Apis mellifera are, to a large part, still unknown. We approached this question by investigating the potential function of the calcium/calmodulin-dependent protein kinase II (CaMKII), an enzyme known as a 'molecular memory switch' in vertebrates. CaMKII is able to switch to a calcium-independent constitutively active state, providing a mechanism for a molecular memory and has further been shown to play an essential role in structural synaptic plasticity. Using a combination of knockdown by RNA interference and pharmacological manipulation, we disrupted the function of CaMKII during olfactory learning and memory formation. We found that learning, memory acquisition and mid-term memory were not affected, but all manipulations consistently resulted in an impaired LTM. Both early LTM (24 h after learning) and late LTM (72 h after learning) were significantly disrupted, indicating the necessity of CaMKII in two successive stages of LTM formation in the honeybee. © 2015. Published by The Company of Biologists Ltd.
Array processor architecture connection network
NASA Technical Reports Server (NTRS)
Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)
1982-01-01
A connection network is disclosed for use between a parallel array of processors and a parallel array of memory modules for establishing non-conflicting data communications paths between requested memory modules and requesting processors. The connection network includes a plurality of switching elements interposed between the processor array and the memory modules array in an Omega networking architecture. Each switching element includes a first and a second processor side port, a first and a second memory module side port, and control logic circuitry for providing data connections between the first and second processor ports and the first and second memory module ports. The control logic circuitry includes strobe logic for examining data arriving at the first and the second processor ports to indicate when the data arriving is requesting data from a requesting processor to a requested memory module. Further, connection circuitry is associated with the strobe logic for examining requesting data arriving at the first and the second processor ports for providing a data connection therefrom to the first and the second memory module ports in response thereto when the data connection so provided does not conflict with a pre-established data connection currently in use.
Characterizing filamentary switching in resistive memories (Presentation Recording)
NASA Astrophysics Data System (ADS)
Busby, Yan; Pireaux, Jean-Jacques
2015-09-01
Characterizing filamentary switching in resistive memories For many organic, inorganic and hybrid memory devices the resistive switching mechanism is well known to rely on filament formation [1]. This implies that localized conductive paths are established between the two terminal electrodes during the forming step. This filaments sustain the current flow when the memory is in the low conductive state and they can be ruptured and possibly re-formed for more than hundreds of I-V cycles. The nature and morphology of filaments has been long time debated especially for organic memories. The filament size, density and formation mechanism have been very challenging to be characterized, and need appropriate experimental techniques. However, filaments in organic memories have been recently identified and characterized by cross-section transmission electron microscopy (TEM), conductive-AFM, AFM-tomography and through depth profile analysis combining Time-of-flight secondary ions mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). In particular, 3D spectroscopic images obtained with ToF-SIMS give access for the first time to filament formation process and rupture mechanism. From these results, a clear picture of the filament(s) dynamics during memory operation can be drawn. In this contribution, recent results showing filaments in memories based on different structures and architectures will be discussed. The memories are based on insulating polymers (polystyrene [2] and poly methyl methacrylate [3]), conductive polymers/nanocomposites (polyera N1400 with metal NPs [4]), and small semiconducting molecules (Tris(8-hydroxyquinolinato)aluminium - Alq3 [5]). The results show that resistive switching clearly involves the inhomogeneous metal diffusion in the organic layer taking place during the top electrode deposition and during memory operation. This may be of great relevance in many other organic electronics applications. REFERENCES [1] S. Nau, S. Sax, E.J.W. List-Kratochvil, Adv. Mater. 2014, 26, 2508-2513. [2] Y. Busby, N. Crespo-Monteiro, M. Girleanu, M. Brinkmann, O. Ersen, J.-J. Pireaux, Organic Electronics 2015, 16, 40-45. [3] C. Wolf, S. Nau, S. Sax, Y. Busby, J.-J. Pireaux, E.J.W. List-Kratochvil (under submission). [4] G. Casula, P. Cosseddu, Y. Busby, J.-J. Pireaux, M. Rosowski, B. Tkacz Szczesna, K. Soliwoda, G. Celichowski, J. Grobelny, J. Novák, R. Banerjee, F. Schreiber, A. Bonfiglio, Organic Electronics, 2015, 18, 17-23. [5] Y. Busby, S. Nau, S. Sax, E.J.W. List- Kratochvil, J. Novak, R. Banerjee, F. Schreiber, J.-J. Pireaux, (under submission)
Single bus star connected reluctance drive and method
Fahimi, Babak; Shamsi, Pourya
2016-05-10
A system and methods for operating a switched reluctance machine includes a controller, an inverter connected to the controller and to the switched reluctance machine, a hysteresis control connected to the controller and to the inverter, a set of sensors connected to the switched reluctance machine and to the controller, the switched reluctance machine further including a set of phases the controller further comprising a processor and a memory connected to the processor, wherein the processor programmed to execute a control process and a generation process.
MOBS - A modular on-board switching system
NASA Astrophysics Data System (ADS)
Berner, W.; Grassmann, W.; Piontek, M.
The authors describe a multibeam satellite system that is designed for business services and for communications at a high bit rate. The repeater is regenerative with a modular onboard switching system. It acts not only as baseband switch but also as the central node of the network, performing network control and protocol evaluation. The hardware is based on a modular bus/memory architecture with associated processors.
2010-07-22
dependent , providing a natural bandwidth match between compute cores and the memory subsystem. • High Bandwidth Dcnsity. Waveguides crossing the chip...simulate this memory access architecture on a 2S6-core chip with a concentrated 64-node network lIsing detailed traces of high-performance embedded...memory modulcs, wc placc memory access poi nts (MAPs) around the pcriphery of the chip connected to thc nctwork. These MAPs, shown in Figure 4, contain
A class of generalized Ginzburg-Landau equations with random switching
NASA Astrophysics Data System (ADS)
Wu, Zheng; Yin, George; Lei, Dongxia
2018-09-01
This paper focuses on a class of generalized Ginzburg-Landau equations with random switching. In our formulation, the nonlinear term is allowed to have higher polynomial growth rate than the usual cubic polynomials. The random switching is modeled by a continuous-time Markov chain with a finite state space. First, an explicit solution is obtained. Then properties such as stochastic-ultimate boundedness and permanence of the solution processes are investigated. Finally, two-time-scale models are examined leading to a reduction of complexity.
Switching synchronization in one-dimensional memristive networks
NASA Astrophysics Data System (ADS)
Slipko, Valeriy A.; Shumovskyi, Mykola; Pershin, Yuriy V.
2015-11-01
We report on a switching synchronization phenomenon in one-dimensional memristive networks, which occurs when several memristive systems with different switching constants are switched from the high- to low-resistance state. Our numerical simulations show that such a collective behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold voltage of memristive systems. Moreover, a finite increase in the network switching time is found compared to the average switching time of individual systems. An analytical model is presented to explain our observations. Using this model, we have derived asymptotic expressions for memory resistances at short and long times, which are in excellent agreement with results of our numerical simulations.
Kim, Jongmin; Inamdar, Akbar I; Jo, Yongcheol; Woo, Hyeonseok; Cho, Sangeun; Pawar, Sambhaji M; Kim, Hyungsang; Im, Hyunsik
2016-04-13
This study investigates the transport and switching time of nonvolatile tungsten oxide based resistive-switching (RS) memory devices. These devices consist of a highly resistive tungsten oxide film sandwiched between metal electrodes, and their RS characteristics are bipolar in the counterclockwise direction. The switching voltage, retention, endurance, and switching time are strongly dependent on the type of electrodes used, and we also find quantitative and qualitative evidence that the electronegativity (χ) of the electrodes plays a key role in determining the RS properties and switching time. We also propose an RS model based on the role of the electronegativity at the interface.
Voltage switching of a VO{sub 2} memory metasurface using ionic gel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldflam, M. D.; Liu, M. K.; Chapler, B. C.
2014-07-28
We demonstrate an electrolyte-based voltage tunable vanadium dioxide (VO{sub 2}) memory metasurface. Large spatial scale, low voltage, non-volatile switching of terahertz (THz) metasurface resonances is achieved through voltage application using an ionic gel to drive the insulator-to-metal transition in an underlying VO{sub 2} layer. Positive and negative voltage application can selectively tune the metasurface resonance into the “off” or “on” state by pushing the VO{sub 2} into a more conductive or insulating regime respectively. Compared to graphene based control devices, the relatively long saturation time of resonance modification in VO{sub 2} based devices suggests that this voltage-induced switching originates primarilymore » from electrochemical effects related to oxygen migration across the electrolyte–VO{sub 2} interface.« less
Intrinsic transcriptional heterogeneity in B cells controls early class switching to IgE
Wu, Yee Ling; Teichmann, Sarah A.
2017-01-01
Noncoding transcripts originating upstream of the immunoglobulin constant region (I transcripts) are required to direct activation-induced deaminase to initiate class switching in B cells. Differential regulation of Iε and Iγ1 transcription in response to interleukin 4 (IL-4), hence class switching to IgE and IgG1, is not fully understood. In this study, we combine novel mouse reporters and single-cell RNA sequencing to reveal the heterogeneity in IL-4–induced I transcription. We identify an early population of cells expressing Iε but not Iγ1 and demonstrate that early Iε transcription leads to switching to IgE and occurs at lower activation levels than Iγ1. Our results reveal how probabilistic transcription with a lower activation threshold for Iε directs the early choice of IgE versus IgG1, a key physiological response against parasitic infestations and a mediator of allergy and asthma. PMID:27994069
Optically Addressable, Ferroelectric Memory With NDRO
NASA Technical Reports Server (NTRS)
Thakoor, Sarita
1994-01-01
For readout, memory cells addressed via on-chip semiconductor lasers. Proposed thin-film ferroelectric memory device features nonvolatile storage, optically addressable, nondestructive readout (NDRO) with fast access, and low vulnerability to damage by ionizing radiation. Polarization switched during recording and erasure, but not during readout. As result, readout would not destroy contents of memory, and operating life in specific "read-intensive" applications increased up to estimated 10 to the 16th power cycles.
Li, Wen; Guo, Fengning; Ling, Haifeng; Liu, Hui; Yi, Mingdong; Zhang, Peng; Wang, Wenjun; Xie, Linghai; Huang, Wei
2018-01-01
In this paper, the development of organic field-effect transistor (OFET) memory device based on isolated and ordered nanostructures (NSs) arrays of wide-bandgap (WBG) small-molecule organic semiconductor material [2-(9-(4-(octyloxy)phenyl)-9H-fluoren-2-yl)thiophene]3 (WG 3 ) is reported. The WG 3 NSs are prepared from phase separation by spin-coating blend solutions of WG 3 /trimethylolpropane (TMP), and then introduced as charge storage elements for nonvolatile OFET memory devices. Compared to the OFET memory device with smooth WG 3 film, the device based on WG 3 NSs arrays exhibits significant improvements in memory performance including larger memory window (≈45 V), faster switching speed (≈1 s), stable retention capability (>10 4 s), and reliable switching properties. A quantitative study of the WG 3 NSs morphology reveals that enhanced memory performance is attributed to the improved charge trapping/charge-exciton annihilation efficiency induced by increased contact area between the WG 3 NSs and pentacene layer. This versatile solution-processing approach to preparing WG 3 NSs arrays as charge trapping sites allows for fabrication of high-performance nonvolatile OFET memory devices, which could be applicable to a wide range of WBG organic semiconductor materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yao-Feng, E-mail: yfchang@utexas.edu; Zhou, Fei; Chen, Ying-Chen
2016-01-18
Self-compliance characteristics and reliability optimization are investigated in intrinsic unipolar silicon oxide (SiO{sub x})-based resistive switching (RS) memory using TiW/SiO{sub x}/TiW device structures. The program window (difference between SET voltage and RESET voltage) is dependent on external series resistance, demonstrating that the SET process is due to a voltage-triggered mechanism. The program window has been optimized for program/erase disturbance immunity and reliability for circuit-level applications. The SET and RESET transitions have also been characterized using a dynamic conductivity method, which distinguishes the self-compliance behavior due to an internal series resistance effect (filament) in SiO{sub x}-based RS memory. By using amore » conceptual “filament/resistive gap (GAP)” model of the conductive filament and a proton exchange model with appropriate assumptions, the internal filament resistance and GAP resistance can be estimated for high- and low-resistance states (HRS and LRS), and are found to be independent of external series resistance. Our experimental results not only provide insights into potential reliability issues but also help to clarify the switching mechanisms and device operating characteristics of SiO{sub x}-based RS memory.« less
On the origin of resistive switching volatility in Ni/TiO{sub 2}/Ni stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortese, Simone, E-mail: simone.cortese@soton.ac.uk; Trapatseli, Maria; Khiat, Ali
2016-08-14
Resistive switching and resistive random access memories have attracted huge interest for next generation nonvolatile memory applications, also thought to be able to overcome flash memories limitations when arranged in crossbar arrays. A cornerstone of their potential success is that the toggling between two distinct resistance states, usually a High Resistive State (HRS) and a Low Resistive State (LRS), is an intrinsic non-volatile phenomenon with the two states being thermodynamically stable. TiO{sub 2} is one of the most common materials known to support non-volatile RS. In this paper, we report a volatile resistive switching in a titanium dioxide thin filmmore » sandwiched by two nickel electrodes. The aim of this work is to understand the underlying physical mechanism that triggers the volatile effect, which is ascribed to the presence of a NiO layer at the bottom interface. The NiO layer alters the equilibrium between electric field driven filament formation and thermal enhanced ion diffusion, resulting in the volatile behaviour. Although the volatility is not ideal for non-volatile memory applications, it shows merit for access devices in crossbar arrays due to its high LRS/HRS ratio, which are also briefly discussed.« less
NASA Astrophysics Data System (ADS)
O'Brien, Benjamin M.; McKay, Thomas G.; Xie, Sheng Q.; Calius, Emilio P.; Anderson, Iain A.
2011-04-01
Life shows us that the distribution of intelligence throughout flexible muscular networks is a highly successful solution to a wide range of challenges, for example: human hearts, octopi, or even starfish. Recreating this success in engineered systems requires soft actuator technologies with embedded sensing and intelligence. Dielectric Elastomer Actuator(s) (DEA) are promising due to their large stresses and strains, as well as quiet flexible multimodal operation. Recently dielectric elastomer devices were presented with built in sensor, driver, and logic capability enabled by a new concept called the Dielectric Elastomer Switch(es) (DES). DES use electrode piezoresistivity to control the charge on DEA and enable the distribution of intelligence throughout a DEA device. In this paper we advance the capabilities of DES further to form volatile memory elements. A set reset flip-flop with inverted reset line was developed based on DES and DEA. With a 3200V supply the flip-flop behaved appropriately and demonstrated the creation of dielectric elastomer memory capable of changing state in response to 1 second long set and reset pulses. This memory opens up applications such as oscillator, de-bounce, timing, and sequential logic circuits; all of which could be distributed throughout biomimetic actuator arrays. Future work will include miniaturisation to improve response speed, implementation into more complex circuits, and investigation of longer lasting and more sensitive switching materials.
Contexts and Control Operations Used in Accessing List-Specific, Generalized, and Semantic Memories
ERIC Educational Resources Information Center
Humphreys, Michael S.; Murray, Krista L.; Maguire, Angela M.
2009-01-01
The human ability to focus memory retrieval operations on a particular list, episode or memory structure has not been fully appreciated or documented. In Experiment 1-3, we make it increasingly difficult for participants to switch between a less recent list (multiple study opportunities), and a more recent list (single study opportunity). Task…
Carbon Nanotube Switches for Communication and Memory Applications
NASA Technical Reports Server (NTRS)
Kaul, Anupama B.; Epp, Larry; Wong, Eric W.; Kowalczyk, Robert
2008-01-01
Lateral CNT Switches: a) dc CNT switches were demonstrated to operate at low voltages, low powers and high speeds. b) RF simulations of switch in series configuration with metallized tube yielded good RF performance 1) Isolation simulated to be approx. 20 dB at 100 GHz. 2) Insertion loss simulated to be < 0.5 dB at 100 GHz. Vertical CNT Switches: a) Thermal CVD was used to mechanically constrain tubes in nanopockets; tubes not self-supporting. b) Demonstrated growth of vertically aligned arrays and single-few MWNTs using dc PECVD with Ni catalyst using optical lithography.
NASA Astrophysics Data System (ADS)
Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chang, Ting-Chang; Sze, Simon M.; Lee, Jack C.
2016-04-01
We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes to further minimize total synaptic power consumption due to sneak-path currents and demonstrate the capability for spike-induced synaptic behaviors, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation, long-term depression, and spike-timing dependent plasticity are demonstrated systemically with comprehensive investigation of spike waveform analyses and represent a potential application for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from the (SiH)2 defect to generate the hydrogenbridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with largescale complementary metal-oxide semiconductor manufacturing technology.
Nelson, P. Austin; Sage, Jennifer R.; Wood, Suzanne C.; Davenport, Christopher M.; Anagnostaras, Stephan G.; Boulanger, Lisa M.
2013-01-01
Memory impairment is a common feature of conditions that involve changes in inflammatory signaling in the brain, including traumatic brain injury, infection, neurodegenerative disorders, and normal aging. However, the causal importance of inflammatory mediators in cognitive impairments in these conditions remains unclear. Here we show that specific immune proteins, members of the major histocompatibility complex class I (MHC class I), are essential for normal hippocampus-dependent memory, and are specifically required for NMDAR-dependent forms of long-term depression (LTD) in the healthy adult hippocampus. In β2m−/−TAP−/−mice, which lack stable cell-surface expression of most MHC class I proteins, NMDAR-dependent LTD in area CA1 of adult hippocampus is abolished, while NMDAR-independent forms of potentiation, facilitation, and depression are unaffected. Altered NMDAR-dependent synaptic plasticity in the hippocampus of β2m−/−TAP−/−mice is accompanied by pervasive deficits in hippocampus-dependent memory, including contextual fear memory, object recognition memory, and social recognition memory. Thus normal MHC class I expression is essential for NMDAR-dependent hippocampal synaptic depression and hippocampus-dependent memory. These results suggest that changes in MHC class I expression could be an unexpected cause of disrupted synaptic plasticity and cognitive deficits in the aging, damaged, and diseased brain. PMID:23959708
Lanza, Mario
2014-01-01
Metal-Insulator-Metal (MIM) structures have raised as the most promising configuration for next generation information storage, leading to great performance and fabrication-friendly Resistive Random Access Memories (RRAM). In these cells, the memory concept is no more based on the charge storage, but on tuning the electrical resistance of the insulating layer by applying electrical stresses to reach a high resistive state (HRS or “0”) and a low resistive state (LRS or “1”), which makes the memory point. Some high-k dielectrics show this unusual property and in the last years high-k based RRAM have been extensively analyzed, especially at the device level. However, as resistance switching (in the most promising cells) is a local phenomenon that takes place in areas of ~100 nm2, the use of characterization tools with high lateral spatial resolution is necessary. In this paper the status of resistive switching in high-k materials is reviewed from a nanoscale point of view by means of conductive atomic force microscope analyses. PMID:28788561
NASA Astrophysics Data System (ADS)
Kim, Sungjun; Park, Byung-Gook
2016-08-01
A study on the bipolar-resistive switching of an Ni/SiN/Si-based resistive random-access memory (RRAM) device shows that the influences of the reset power and the resistance value of the low-resistance state (LRS) on the reset-switching transitions are strong. For a low LRS with a large conducting path, the sharp reset switching, which requires a high reset power (>7 mW), was observed, whereas for a high LRS with small multiple-conducting paths, the step-by-step reset switching with a low reset power (<7 mW) was observed. The attainment of higher nonlinear current-voltage ( I-V) characteristics in terms of the step-by-step reset switching is due to the steep current-increased region of the trap-controlled space charge-limited current (SCLC) model. A multilevel cell (MLC) operation, for which the reset stop voltage ( V STOP) is used in the DC sweep mode and an incremental amplitude is used in the pulse mode for the step-by-step reset switching, is demonstrated here. The results of the present study suggest that well-controlled conducting paths in a SiN-based RRAM device, which are not too strong and not too weak, offer considerable potential for the realization of low-power and high-density crossbar-array applications.
Resistive switching characteristics of thermally oxidized TiN thin films
NASA Astrophysics Data System (ADS)
Biju, K. P.
2018-04-01
Resistive switching characteristics of thermally oxidized TiN thin films and mechanisms were investigated.XPS results indicates Ti-O content decreases with sputter etching and Ti 2p peak shift towards lower binding energy due to formation of Ti-O-N and Ti-N. Pt/TiO2/TiON/TiN stack exhibits both clockwise switching (CWS) and counter clockwise switching(CCWS) characteristic depending on polarity of the applied voltage. However the transition from CCWS to CWS is irreversible. Two stable switching modes with opposite switching polarity and different electrical characteristics are found to coexist in the same memory cell. Clockwise switching shows filamentary characteristics that lead to faster switching with excellent retention at high temperature. Counter-clockwise switching exhibits homogeneous conduction with slower switching and moderate retention. The field-induced switching in both CCWS and CWS might be due to inhomogeneous defect distribution due to thermal oxidation.
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Ashok Venketaraman
This thesis covers the design, analysis, optimization, and implementation of optoelectronic (N,M,F) networks. (N,M,F) networks are generic space-division networks that are well suited to implementation using optoelectronic integrated circuits and free-space optical interconnects. An (N,M,F) networks consists of N input channels each having a fanout F_{rm o}, M output channels each having a fanin F_{rm i}, and Log_{rm K}(N/F) stages of K x K switches. The functionality of the fanout, switching, and fanin stages depends on the specific application. Three applications of optoelectronic (N,M,F) networks are considered. The first is an optoelectronic (N,1,1) content -addressable memory system that achieves associative recall on two-dimensional images retrieved from a parallel-access optical memory. The design and simulation of the associative memory are discussed, and an experimental emulation of a prototype system using images from a parallel-readout optical disk is presented. The system design provides superior performance to existing electronic content-addressable memory chips in terms of capacity and search rate, and uses readily available optical disk and VLSI technologies. Next, a scalable optoelectronic (N,M,F) neural network that uses free-space holographic optical interconnects is presented. The neural architecture minimizes the number of optical transmitters needed, and provides accurate electronic fanin with low signal skew, and dendritic-type fan-in processing capability in a compact layout. Optimal data-encoding methods and circuit techniques are discussed. The implementation of an prototype optoelectronic neural system, and its application to a simple recognition task is demonstrated. Finally, the design, analysis, and optimization of a (N,N,F) self-routing, packet-switched multistage interconnection network is described. The network is suitable for parallel computing and broadband switching applications. The tradeoff between optical and electronic interconnects is examined quantitatively by varying the electronic switch size K. The performance of the (N,N,F) network versus the fanning parameter F, is also analyzed. It is shown that the optoelectronic (N,N,F) networks provide a range of performance-cost alternatives, and offer superior performance-per-cost to fully electronic switching networks and to previous networks designs.
Seifert, Marc; Przekopowitz, Martina; Taudien, Sarah; Lollies, Anna; Ronge, Viola; Drees, Britta; Lindemann, Monika; Hillen, Uwe; Engler, Harald; Singer, Bernhard B; Küppers, Ralf
2015-02-10
The generation and functions of human peripheral blood (PB) IgM(+)IgD(+)CD27(+) B lymphocytes with somatically mutated IgV genes are controversially discussed. We determined their differential gene expression to naive B cells and to IgM-only and IgG(+) memory B cells. This analysis revealed a high similarity of IgM(+)(IgD(+))CD27(+) and IgG(+) memory B cells but also pointed at distinct functional capacities of both subsets. In vitro analyses revealed a tendency of activated IgM(+)IgD(+)CD27(+) B cells to migrate to B-cell follicles and undergo germinal center (GC) B-cell differentiation, whereas activated IgG(+) memory B cells preferentially showed a plasma cell (PC) fate. This observation was supported by reverse regulation of B-cell lymphoma 6 and PR domain containing 1 and differential BTB and CNC homology 1, basic leucine zipper transcription factor 2 expression. Moreover, IgM(+)IgD(+)CD27(+) B lymphocytes preferentially responded to neutrophil-derived cytokines. Costimulation with catecholamines, carcinoembryonic antigen cell adhesion molecule 8 (CEACAM8), and IFN-γ caused differentiation of IgM(+)IgD(+)CD27(+) B cells into PCs, induced class switching to IgG2, and was reproducible in cocultures with neutrophils. In conclusion, this study substantiates memory B-cell characteristics of human IgM(+)IgD(+)CD27(+) B cells in that they share typical memory B-cell transcription patterns with IgG(+) post-GC B cells and show a faster and more vigorous restimulation potential, a hallmark of immune memory. Moreover, this work reveals a functional plasticity of human IgM memory B cells by showing their propensity to undergo secondary GC reactions upon reactivation, but also by their special role in early inflammation via interaction with immunomodulatory neutrophils.
Ways to suppress click and pop for class D amplifiers
NASA Astrophysics Data System (ADS)
Haishi, Wang; Bo, Zhang; Jiang, Sun
2012-08-01
Undesirable audio click and pop may be generated in a speaker or headphone. Compared to linear (class A/B/AB) amplifiers, class D amplifiers that comprise of an input stage and a modulation stage are more prone to producing click and pop. This article analyzes sources that generate click and pop in class D amplifiers, and corresponding ways to suppress them. For a class D amplifier with a single-ended input, click and pop is likely to be due to two factors. One is from a voltage difference (VDIF) between the voltage of an input capacitance (VCIN) and a reference voltage (VREF) of the input stage, and the other one is from the non-linear switching during the setting up of the bias and feedback voltages/currents (BFVC) of the modulation stage. In this article, a fast charging loop is introduced into the input stage to charge VCIN to roughly near VREF. Then a correction loop further charges or discharges VCIN, substantially equalizing it with VREF. Dummy switches are introduced into the modulation stage to provide switching signals for setting up BFVC, and the power switches are disabled until the BFVC are set up successfully. A two channel single-ended class D amplifier with the above features is fabricated with 0.5 μm Bi-CMOS process. Road test and fast Fourier transform analysis indicate that there is no noticeable click and pop.
Electrostatic Switching in Vertically Oriented Nanotubes for Nonvolatile Memory Applications
NASA Technical Reports Server (NTRS)
Kaul, Anupama B.; Khan, Paul; Jennings, Andrew T.; Greer, Julia R.; Megerian, Krikor G.; Allmen, Paul von
2009-01-01
We have demonstrated electrostatic switching in vertically oriented nanotubes or nanofibers, where a nanoprobe was used as the actuating electrode inside an SEM. When the nanoprobe was manipulated to be in close proximity to a single tube, switching voltages between 10 V - 40 V were observed, depending on the geometrical parameters. The turn-on transitions appeared to be much sharper than the turn-off transitions which were limited by the tube-to-probe contact resistances. In many cases, stiction forces at these dimensions were dominant, since the tube appeared stuck to the probe even after the voltage returned to 0 V, suggesting that such structures are promising for nonvolatile memory applications. The stiction effects, to some extent, can be adjusted by engineering the switch geometry appropriately. Nanoscale mechanical measurements were also conducted on the tubes using a custom-built anoindentor inside an SEM, from which preliminary material parameters, such as the elastic modulus, were extracted. The mechanical measurements also revealed that the tubes appear to be well adhered to the substrate. The material parameters gathered from the mechanical measurements were then used in developing an electrostatic model of the switch using a commercially available finite-element simulator. The calculated pull-in voltages appeared to be in agreement to the experimentally obtained switching voltages to first order.
Super Nonlinear Electrodeposition-Diffusion-Controlled Thin-Film Selector.
Ji, Xinglong; Song, Li; He, Wei; Huang, Kejie; Yan, Zhiyuan; Zhong, Shuai; Zhang, Yishu; Zhao, Rong
2018-03-28
Selector elements with high nonlinearity are an indispensable part in constructing high density, large-scale, 3D stackable emerging nonvolatile memory and neuromorphic network. Although significant efforts have been devoted to developing novel thin-film selectors, it remains a great challenge in achieving good switching performance in the selectors to satisfy the stringent electrical criteria of diverse memory elements. In this work, we utilized high-defect-density chalcogenide glass (Ge 2 Sb 2 Te 5 ) in conjunction with high mobility Ag element (Ag-GST) to achieve a super nonlinear selective switching. A novel electrodeposition-diffusion dynamic selector based on Ag-GST exhibits superior selecting performance including excellent nonlinearity (<5 mV/dev), ultra-low leakage (<10 fA), and bidirectional operation. With the solid microstructure evidence and dynamic analyses, we attributed the selective switching to the competition between the electrodeposition and diffusion of Ag atoms in the glassy GST matrix under electric field. A switching model is proposed, and the in-depth understanding of the selective switching mechanism offers an insight of switching dynamics for the electrodeposition-diffusion-controlled thin-film selector. This work opens a new direction of selector designs by combining high mobility elements and high-defect-density chalcogenide glasses, which can be extended to other materials with similar properties.
Basori, Rabaya; Kumar, Manoranjan; Raychaudhuri, Arup K.
2016-01-01
We report a new type of sustained and reversible unipolar resistive switching in a nanowire device made from a single strand of Cu:7,7,8,8-tetracyanoquinodimethane (Cu:TCNQ) nanowire (diameter <100 nm) that shows high ON/OFF ratio (~103), low threshold voltage of switching (~3.5 V) and large cycling endurance (>103). This indicates a promising material for high density resistive random access memory (ReRAM) device integration. Switching is observed in Cu:TCNQ single nanowire devices with two different electrode configuration: symmetric (C-Pt/Cu:TCNQ/C-Pt) and asymmetric (Cu/Cu:TCNQ/C-Pt), where contacts connecting the nanowire play an important role. This report also developed a method of separating out the electrode and material contributions in switching using metal-semiconductor-metal (MSM) device model along with a direct 4-probe resistivity measurement of the nanowire in the OFF as well as ON state. The device model was followed by a phenomenological model of current transport through the nanowire device which shows that lowering of potential barrier at the contacts likely occur due to formation of Cu filaments in the interface between nanowire and contact electrodes. We obtain quantitative agreement of numerically analyzed results with the experimental switching data. PMID:27245099
RF assisted switching in magnetic Josephson junctions
NASA Astrophysics Data System (ADS)
Caruso, R.; Massarotti, D.; Bolginov, V. V.; Ben Hamida, A.; Karelina, L. N.; Miano, A.; Vernik, I. V.; Tafuri, F.; Ryazanov, V. V.; Mukhanov, O. A.; Pepe, G. P.
2018-04-01
We test the effect of an external RF field on the switching processes of magnetic Josephson junctions (MJJs) suitable for the realization of fast, scalable cryogenic memories compatible with Single Flux Quantum logic. We show that the combined application of microwaves and magnetic field pulses can improve the performances of the device, increasing the separation between the critical current levels corresponding to logical "0" and "1." The enhancement of the current level separation can be as high as 80% using an optimal set of parameters. We demonstrate that external RF fields can be used as an additional tool to manipulate the memory states, and we expect that this approach may lead to the development of new methods of selecting MJJs and manipulating their states in memory arrays for various applications.
Distributed parallel messaging for multiprocessor systems
Chen, Dong; Heidelberger, Philip; Salapura, Valentina; Senger, Robert M; Steinmacher-Burrow, Burhard; Sugawara, Yutaka
2013-06-04
A method and apparatus for distributed parallel messaging in a parallel computing system. The apparatus includes, at each node of a multiprocessor network, multiple injection messaging engine units and reception messaging engine units, each implementing a DMA engine and each supporting both multiple packet injection into and multiple reception from a network, in parallel. The reception side of the messaging unit (MU) includes a switch interface enabling writing of data of a packet received from the network to the memory system. The transmission side of the messaging unit, includes switch interface for reading from the memory system when injecting packets into the network.
Optimal wavelength-space crossbar switches for supercomputer optical interconnects.
Roudas, Ioannis; Hemenway, B Roe; Grzybowski, Richard R; Karinou, Fotini
2012-08-27
We propose a most economical design of the Optical Shared MemOry Supercomputer Interconnect System (OSMOSIS) all-optical, wavelength-space crossbar switch fabric. It is shown, by analysis and simulation, that the total number of on-off gates required for the proposed N × N switch fabric can scale asymptotically as N ln N if the number of input/output ports N can be factored into a product of small primes. This is of the same order of magnitude as Shannon's lower bound for switch complexity, according to which the minimum number of two-state switches required for the construction of a N × N permutation switch is log2 (N!).
NASA Technical Reports Server (NTRS)
Thakoor, Sarita (Inventor)
1994-01-01
Thin film ferroelectric capacitors (10) comprising a ferroelectric film (18) sandwiched between electrodes (16 and 20) for nonvolatile memory operations are rendered more stable by subjecting the capacitors to an anneal following deposition of the top electrode (20). The anneal is done so as to form the interface (22) between the ferroelectric film and the top electrode. Heating in an air oven, laser annealing, or electron bombardment may be used to form the interface. Heating in an air oven is done at a temperature at least equal to the crystallization temperature of the ferroelectric film. Where the ferroelectric film comprises lead zirconate titanate, annealing is done at about 550.degree. to 600.degree. C. for about 10 to 15 minutes. The formation treatment reduces the magnitude of charge associated with the non-switching pulse in the thin film ferroelectric capacitors. Reduction of this charge leads to significantly more stable nonvolatile memory operations in both digital and analog memory devices. The formation treatment also reduces the ratio of change of the charge associated with the non-switching pulse as a function of retention time. These improved memory devices exhibit greater performance in retention and reduced fatigue in memory arrays.
NASA Astrophysics Data System (ADS)
Berestennikov, A. S.; Aleshin, A. N.
2017-11-01
We have investigated the effect of the resistive switching in the composite films based on polyfunctional polymers - PVK, PFD and PVC mixed with particles of Gr and GO with the concentration of ˜ 1 - 3 wt.%. We have developed the solution processed hybrid memory structures based on PVK and GO particles composite films. The effect of the resistive switching in Al/PVK(PFD; PVC):Gr(GO)/ITO/PET structures manifests itself as a sharp change of the electrical resistance from a low-conducting state to a relatively high-conducting state when applying a bias to Al-ITO electrodes of ˜ 0.2-0.4 V. It has been established that a sharp conductivity jump characterized by S-shaped current-voltage curves and the presence of their hysteresis occurs upon applying a voltage pulse to the Au/PVK(PFD; PVC):Gr(GO)/ITO/PET structures, with the switching time in the range from 1 to 30 μs. The mechanism of resistive switching associated with the processes of capture and accumulation of charge carriers by Gr(GO) particles introduced into the matrixes of the PVK polymer due to the reduction/oxidation processes. The possible mechanisms of energy transfer between organic and inorganic components in PVK(PFD; PVC):GO(Gr) films causes increase mobility are discussed. Incorporating of Gr (GO) particles into the polymer matrix is a promising route to enhance the performance of hybrid memory structures, as well as it is an effective medium for memory cells.
NASA Astrophysics Data System (ADS)
Wen, Jiahong; Zhao, Xiaoyu; Li, Qian; Zhang, Sheng; Wang, Dunhui; Du, Youwei
2018-04-01
Multilevel resistance switching (RS) effect has attracted more and more attention due to its promising potential for the increase of storage density in memory devices. In this work, the transport properties are investigated in an Au/La2/3Ba1/3MnO3 (LBMO)/Pt heterostructure. Taking advantage of the strong interplay among the spin, charge, orbital and lattice of LBMO, the Au/LBMO/Pt device can exhibit bipolar RS effect and magnetoresistance effect simultaneously. Under the coaction of electric field and magnetic field, four different resistance states are achieved in this device. These resistance states show excellent repeatability and retentivity and can be switched between any two states, which suggest the potential applications in the multilevel RS memory devices with enhanced storage density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Jaewon, E-mail: j1jang@knu.ac.kr
2016-07-15
In this study, Ag{sub 2}S nanoparticles are synthesized and used as the active material for two-terminal resistance switching memory devices. Sintered Ag{sub 2}S films are successfully crystallized on plastic substrates with synthesized Ag{sub 2}S nanoparticles, after a relatively low-temperature sintering process (200 °C). After the sintering process, the crystallite size is increased from 6.8 nm to 80.3 nm. The high ratio of surface atoms to inner atoms of nanoparticles reduces the melting point temperature, deciding the sintering process temperature. In order to investigate the resistance switching characteristics, metal/Ag{sub 2}S/metal structures are fabricated and tested. The effect of the electrode materialmore » on the non-volatile resistive memory characteristics is studied. The bottom electrochemically inert materials, such as Au and Pt, were critical for maintaining stable memory characteristics. By using Au and Pt inert bottom electrodes, we are able to significantly improve the memory endurance and retention to more than 10{sup 3} cycles and 10{sup 4} sec, respectively.« less
Guirola, María; Urquiza, Dioslaida; Alvarez, Anabel; Cannan-Haden, Leonardo; Caballero, Evelin; Guillén, Gerardo
2006-03-01
In this study, we used an adoptive lymphocyte transfer experiment to evaluate the ability of the P64k recombinant protein to recruit T-helper activity and induce immunologic memory response to the polysaccharide moiety in a meningococcal serogroup C conjugate vaccine. Adoptive transfer of splenocytes from mice immunized with the glycoconjugate conferred antipolysaccharide immunologic memory to naive recipient mice. The observed anamnestic immune response was characterized by more rapid kinetics, isotype switching from IgM to IgG and higher antipolysaccharide antibody titers compared with those reached in groups transferred with splenocytes from plain polysaccharide or phosphate-immunized mice. The memory response generated was also long lasting. Sera from mice transferred with cells from conjugate-immunized mice were the only protective in the infant rat passive protection assay, and also showed higher bactericidal titers. We demonstrated that priming the mice immune system with the glycoconjugate using the P64k protein as carrier induced a memory response to the polysaccharide, promoting a switch of the T-cell-independent response to a T-cell dependent one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoneim, M. T.; Hussain, M. M., E-mail: muhammadmustafa.hussain@kaust.edu.sa
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ∼260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygenmore » and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.« less
Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo
2015-01-01
Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes. PMID:26289565
Maiti, Dilip K; Debnath, Sudipto; Nawaz, Sk Masum; Dey, Bapi; Dinda, Enakhi; Roy, Dipanwita; Ray, Sudipta; Mallik, Abhijit; Hussain, Syed A
2017-10-17
A metal-free three component cyclization reaction with amidation is devised for direct synthesis of DFT-designed amido-phenazine derivative bearing noncovalent gluing interactions to fabricate organic nanomaterials. Composition-dependent organic nanoelectronics for nonvolatile memory devices are discovered using mixed phenazine-stearic acid (SA) nanomaterials. We discovered simultaneous two different types of nonmagnetic and non-moisture sensitive switching resistance properties of fabricated devices utilizing mixed organic nanomaterials: (a) sample-1(8:SA = 1:3) is initially off, turning on at a threshold, but it does not turn off again with the application of any voltage, and (b) sample-2 (8:SA = 3:1) is initially off, turning on at a sharp threshold and off again by reversing the polarity. No negative differential resistance is observed in either type. These samples have different device implementations: sample-1 is attractive for write-once-read-many-times memory devices, such as novel non-editable database, archival memory, electronic voting, radio frequency identification, sample-2 is useful for resistive-switching random access memory application.
Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films.
Hu, Weijin; Wang, Zhihong; Du, Yuanmin; Zhang, Xi-Xiang; Wu, Tom
2014-11-12
We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current is revealed to be the dominant leakage mechanism in such organic ferroelectric devices, and electrostatic interactions due to space charges lead to the emergence of anomalous ferroelectric loops. The reliable control of ferroelectric switching in P(VDF-TrEE) copolymers opens doors toward engineering advanced organic memories with tailored switching characteristics.
Park, Sung Pyo; Tak, Young Jun; Kim, Hee Jun; Lee, Jin Hyeok; Yoo, Hyukjoon; Kim, Hyun Jae
2018-06-01
Resistive random access memory (RRAM) devices are fabricated through a simple solution process using glucose, which is a natural biomaterial for the switching layer of RRAM. The fabricated glucose-based RRAM device shows nonvolatile bipolar resistive switching behavior, with a switching window of 10 3 . In addition, the endurance and data retention capability of glucose-based RRAM exhibit stable characteristics up to 100 consecutive cycles and 10 4 s under constant voltage stress at 0.3 V. The interface between the top electrode and the glucose film is carefully investigated to demonstrate the bipolar switching mechanism of the glucose-based RRAM device. The glucose based-RRAM is also evaluated on a polyimide film to verify the possibility of a flexible platform. Additionally, a cross-bar array structure with a magnesium electrode is prepared on various substrates to assess the degradability and biocompatibility for the implantable bioelectronic devices, which are harmless and nontoxic to the human body. It is expected that this research can provide meaningful insights for developing the future bioelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Uniting Gradual and Abrupt set Processes in Resistive Switching Oxides
NASA Astrophysics Data System (ADS)
Fleck, Karsten; La Torre, Camilla; Aslam, Nabeel; Hoffmann-Eifert, Susanne; Böttger, Ulrich; Menzel, Stephan
2016-12-01
Identifying limiting factors is crucial for a better understanding of the dynamics of the resistive switching phenomenon in transition-metal oxides. This improved understanding is important for the design of fast-switching, energy-efficient, and long-term stable redox-based resistive random-access memory devices. Therefore, this work presents a detailed study of the set kinetics of valence change resistive switches on a time scale from 10 ns to 104 s , taking Pt /SrTiO3/TiN nanocrossbars as a model material. The analysis of the transient currents reveals that the switching process can be subdivided into a linear-degradation process that is followed by a thermal runaway. The comparison with a dynamical electrothermal model of the memory cell allows the deduction of the physical origin of the degradation. The origin is an electric-field-induced increase of the oxygen-vacancy concentration near the Schottky barrier of the Pt /SrTiO3 interface that is accompanied by a steadily rising local temperature due to Joule heating. The positive feedback of the temperature increase on the oxygen-vacancy mobility, and thereby on the conductivity of the filament, leads to a self-acceleration of the set process.
NASA Astrophysics Data System (ADS)
Chin, Fun-Tat; Lin, Yu-Hsien; Yang, Wen-Luh; Liao, Chin-Hsuan; Lin, Li-Min; Hsiao, Yu-Ping; Chao, Tien-Sheng
2015-01-01
A limited copper (Cu)-source Cu:SiO2 switching layer composed of various Cu concentrations was fabricated using a chemical soaking (CS) technique. The switching layer was then studied for developing applications in resistive random access memory (ReRAM) devices. Observing the resistive switching mechanism exhibited by all the samples suggested that Cu conductive filaments formed and ruptured during the set/reset process. The experimental results indicated that the endurance property failure that occurred was related to the joule heating effect. Moreover, the endurance switching cycle increased as the Cu concentration decreased. In high-temperature tests, the samples demonstrated that the operating (set/reset) voltages decreased as the temperature increased, and an Arrhenius plot was used to calculate the activation energy of the set/reset process. In addition, the samples demonstrated stable data retention properties when baked at 85 °C, but the samples with low Cu concentrations exhibited short retention times in the low-resistance state (LRS) during 125 °C tests. Therefore, Cu concentration is a crucial factor in the trade-off between the endurance and retention properties; furthermore, the Cu concentration can be easily modulated using this CS technique.
OS friendly microprocessor architecture: Hardware level computer security
NASA Astrophysics Data System (ADS)
Jungwirth, Patrick; La Fratta, Patrick
2016-05-01
We present an introduction to the patented OS Friendly Microprocessor Architecture (OSFA) and hardware level computer security. Conventional microprocessors have not tried to balance hardware performance and OS performance at the same time. Conventional microprocessors have depended on the Operating System for computer security and information assurance. The goal of the OS Friendly Architecture is to provide a high performance and secure microprocessor and OS system. We are interested in cyber security, information technology (IT), and SCADA control professionals reviewing the hardware level security features. The OS Friendly Architecture is a switched set of cache memory banks in a pipeline configuration. For light-weight threads, the memory pipeline configuration provides near instantaneous context switching times. The pipelining and parallelism provided by the cache memory pipeline provides for background cache read and write operations while the microprocessor's execution pipeline is running instructions. The cache bank selection controllers provide arbitration to prevent the memory pipeline and microprocessor's execution pipeline from accessing the same cache bank at the same time. This separation allows the cache memory pages to transfer to and from level 1 (L1) caching while the microprocessor pipeline is executing instructions. Computer security operations are implemented in hardware. By extending Unix file permissions bits to each cache memory bank and memory address, the OSFA provides hardware level computer security.
Memory and Spatial Cognition in Breast Cancer Patients Undergoing Adjuvant Endocrine Therapy
Berndt, Ute; Leplow, Bernd; Schoenfeld, Robby; Lantzsch, Tilmann; Grosse, Regina; Thomssen, Christoph
2016-01-01
Introduction It is generally accepted that estrogens play a protective role in cognitive function. Therefore, it can be expected that subtotal estrogen deprivation following aromatase inhibition will alter cognitive performance. Methods In a cross-sectional study we investigated 80 postmenopausal women with breast cancer. Memory and spatial cognition were compared across 4 treatment groups: tamoxifen only (TAM, n = 22), aromatase inhibitor only (AI, n = 22), TAM followed by AI (‘SWITCH group’, n = 15), and patients with local therapy (LT) only (surgery and radiation, n = 21). Duration of the 2 endocrine monotherapy arms prior to the assessment ranged from 1 to 3 years. The ‘SWITCH group’ received 2-3 years TAM followed by at least 1 year and at most 3 years of AI. Memory and spatial cognition were investigated as planned comparisons. Investigations of processing speed, attention, executive function, visuoconstruction and self-perception of memory were exploratory. Results With regard to general memory, AI patients performed significantly worse than the LT group (p = 0.013). Significant differences in verbal memory did not remain significant after p-value correction for multiple testing. We found no significant differences concerning spatial cognition between the groups. Conclusion AI treatment alone significantly impairs general memory compared to the LT group. PMID:27721710
Effects of high-dose ethanol intoxication and hangover on cognitive flexibility.
Wolff, Nicole; Gussek, Philipp; Stock, Ann-Kathrin; Beste, Christian
2018-01-01
The effects of high-dose ethanol intoxication on cognitive flexibility processes are not well understood, and processes related to hangover after intoxication have remained even more elusive. Similarly, it is unknown in how far the complexity of cognitive flexibility processes is affected by intoxication and hangover effects. We performed a neurophysiological study applying high density electroencephalography (EEG) recording to analyze event-related potentials (ERPs) and perform source localization in a task switching paradigm which varied the complexity of task switching by means of memory demands. The results show that high-dose ethanol intoxication only affects task switching (i.e. cognitive flexibility processes) when memory processes are required to control task switching mechanisms, suggesting that even high doses of ethanol compromise cognitive processes when they are highly demanding. The EEG and source localization data show that these effects unfold by modulating response selection processes in the anterior cingulate cortex. Perceptual and attentional selection processes as well as working memory processes were only unspecifically modulated. In all subprocesses examined, there were no differences between the sober and hangover states, thus suggesting a fast recovery of cognitive flexibility after high-dose ethanol intoxication. We assume that the gamma-aminobutyric acid (GABAergic) system accounts for the observed effects, while they can hardly be explained by the dopaminergic system. © 2016 Society for the Study of Addiction.
Küper, Kristina
2018-01-01
Episodic memory retrieval is assumed to be associated with the tonic cognitive state of retrieval mode. Despite extensive research into the neurophysiological correlates of retrieval mode, as of yet, relatively little is known about its functional significance. The present event-related potential (ERP) study was aimed at examining the impact of retrieval mode on the specificity of memory content retrieved in the course of familiarity and recollection processes. In two experiments, participants performed a recognition memory inclusion task in which they had to distinguish identically repeated and re-colored versions of study items from new items. In Experiment 1, participants had to alternate between the episodic memory task and a semantic task requiring a natural/artificial decision. In Experiment 2, the two tasks were instead performed in separate blocks. ERPs locked to the preparatory cues in the test phases indicated that participants did not establish retrieval mode on switch trials in Experiment 1. In the absence of retrieval mode, neither type of studied item elicited ERP correlates of familiarity-based retrieval (FN400). Recollection-related late positive complex (LPC) old/new effects emerged only for identically repeated but not for conceptually identical but perceptually changed versions of study items. With blocked retrieval in Experiment 2, both types of old items instead elicited equivalent FN400 and LPC old/new effects. The LPC data indicate that retrieval mode may play an important role in the successful recollection of conceptual stimulus information. The FN400 results additionally suggest that task switching may have a detrimental effect on familiarity-based memory retrieval. Copyright © 2017 Elsevier B.V. All rights reserved.
Memory Benchmarks for SMP-Based High Performance Parallel Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, A B; de Supinski, B; Mueller, F
2001-11-20
As the speed gap between CPU and main memory continues to grow, memory accesses increasingly dominates the performance of many applications. The problem is particularly acute for symmetric multiprocessor (SMP) systems, where the shared memory may be accessed concurrently by a group of threads running on separate CPUs. Unfortunately, several key issues governing memory system performance in current systems are not well understood. Complex interactions between the levels of the memory hierarchy, buses or switches, DRAM back-ends, system software, and application access patterns can make it difficult to pinpoint bottlenecks and determine appropriate optimizations, and the situation is even moremore » complex for SMP systems. To partially address this problem, we formulated a set of multi-threaded microbenchmarks for characterizing and measuring the performance of the underlying memory system in SMP-based high-performance computers. We report our use of these microbenchmarks on two important SMP-based machines. This paper has four primary contributions. First, we introduce a microbenchmark suite to systematically assess and compare the performance of different levels in SMP memory hierarchies. Second, we present a new tool based on hardware performance monitors to determine a wide array of memory system characteristics, such as cache sizes, quickly and easily; by using this tool, memory performance studies can be targeted to the full spectrum of performance regimes with many fewer data points than is otherwise required. Third, we present experimental results indicating that the performance of applications with large memory footprints remains largely constrained by memory. Fourth, we demonstrate that thread-level parallelism further degrades memory performance, even for the latest SMPs with hardware prefetching and switch-based memory interconnects.« less
Heat switch technology for cryogenic thermal management
NASA Astrophysics Data System (ADS)
Shu, Q. S.; Demko, J. A.; E Fesmire, J.
2017-12-01
Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.
NASA Astrophysics Data System (ADS)
Hwang, Ihn; Wang, Wei; Hwang, Sun Kak; Cho, Sung Hwan; Kim, Kang Lib; Jeong, Beomjin; Huh, June; Park, Cheolmin
2016-05-01
The characteristic source-drain current hysteresis frequently observed in field-effect transistors with networked single walled carbon-nanotube (NSWNT) channels is problematic for the reliable switching and sensing performance of devices. But the two distinct current states of the hysteresis curve at a zero gate voltage can be useful for memory applications. In this work, we demonstrate a novel non-volatile transistor memory with solution-processed NSWNTs which are suitable for multilevel data programming and reading. A polymer passivation layer with a small amount of water employed on the top of the NSWNT channel serves as an efficient gate voltage dependent charge trapping and de-trapping site. A systematic investigation evidences that the water mixed in a polymer passivation solution is critical for reliable non-volatile memory operation. The optimized device is air-stable and temperature-resistive up to 80 °C and exhibits excellent non-volatile memory performance with an on/off current ratio greater than 104, a switching time less than 100 ms, data retention longer than 4000 s, and write/read endurance over 100 cycles. Furthermore, the gate voltage dependent charge injection mediated by water in the passivation layer allowed for multilevel operation of our memory in which 4 distinct current states were programmed repetitively and preserved over a long time period.The characteristic source-drain current hysteresis frequently observed in field-effect transistors with networked single walled carbon-nanotube (NSWNT) channels is problematic for the reliable switching and sensing performance of devices. But the two distinct current states of the hysteresis curve at a zero gate voltage can be useful for memory applications. In this work, we demonstrate a novel non-volatile transistor memory with solution-processed NSWNTs which are suitable for multilevel data programming and reading. A polymer passivation layer with a small amount of water employed on the top of the NSWNT channel serves as an efficient gate voltage dependent charge trapping and de-trapping site. A systematic investigation evidences that the water mixed in a polymer passivation solution is critical for reliable non-volatile memory operation. The optimized device is air-stable and temperature-resistive up to 80 °C and exhibits excellent non-volatile memory performance with an on/off current ratio greater than 104, a switching time less than 100 ms, data retention longer than 4000 s, and write/read endurance over 100 cycles. Furthermore, the gate voltage dependent charge injection mediated by water in the passivation layer allowed for multilevel operation of our memory in which 4 distinct current states were programmed repetitively and preserved over a long time period. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00505e
NASA Astrophysics Data System (ADS)
Singh, Kirandeep; Kaur, Davinder
2017-02-01
The manipulation of magnetic states and materials' spin degree-of-freedom via a control of an electric (E-) field has been recently pursued to develop magnetoelectric (ME) coupling-driven electronic data storage devices with high read/write endurance, fast dynamic response, and low energy dissipation. One major hurdle for this approach is to develop reliable materials which should be compatible with prevailing silicon (Si)-based complementary metal-oxide-semiconductor (CMOS) technology, simultaneously allowing small voltage for the tuning of magnetization switching. In this regard, multiferroic heterostructures where ferromagnetic (FM) and ferroelectric (FE) layers are alternatively grown on conventional Si substrates are promising as the piezoelectric control of magnetization switching is anticipated to be possible by an E-field. In this work, we study the ferromagnetic shape memory alloys based PbZr0.52Ti0.48O3/Ni50Mn35In15 (PZT/Ni-Mn-In) multiferroic heterostructures, and investigate their potential for CMOS compatible non-volatile magnetic data storage applications. We demonstrate the voltage-impulse controlled nonvolatile, reversible, and bistable magnetization switching at room temperature in Si-integrated PZT/Ni-Mn-In thin film multiferroic heterostructures. We also thoroughly unveil the various intriguing features in these materials, such as E-field tuned ME coupling and magnetocaloric effect, shape memory induced ferroelectric modulation, improved fatigue endurance as well as Refrigeration Capacity (RC). This comprehensive study suggests that these novel materials have a great potential for the development of unconventional nanoscale memory and refrigeration devices with self-cooling effect and enhanced refrigeration efficiency, thus providing a new venue for their applications.
NASA Astrophysics Data System (ADS)
Pitris, St.; Vagionas, Ch.; Kanellos, G. T.; Kisacik, R.; Tekin, T.; Broeke, R.; Pleros, N.
2016-03-01
At the dawning of the exaflop era, High Performance Computers are foreseen to exploit integrated all-optical elements, to overcome the speed limitations imposed by electronic counterparts. Drawing from the well-known Memory Wall limitation, imposing a performance gap between processor and memory speeds, research has focused on developing ultra-fast latching devices and all-optical memory elements capable of delivering buffering and switching functionalities at unprecedented bit-rates. Following the master-slave configuration of electronic Flip-Flops, coupled SOA-MZI based switches have been theoretically investigated to exceed 40 Gb/s operation, provided a short coupling waveguide. However, this flip-flop architecture has been only hybridly integrated with silica-on-silicon integration technology exhibiting a total footprint of 45x12 mm2 and intra-Flip-Flop coupling waveguide of 2.5cm, limited at 5 Gb/s operation. Monolithic integration offers the possibility to fabricate multiple active and passive photonic components on a single chip at a close proximity towards, bearing promises for fast all-optical memories. Here, we present for the first time a monolithically integrated all-optical SR Flip-Flop with coupled master-slave SOA-MZI switches. The photonic chip is integrated on a 6x2 mm2 die as a part of a multi-project wafer run using library based components of a generic InP platform, fiber-pigtailed and fully packaged on a temperature controlled ceramic submount module with electrical contacts. The intra Flip-Flop coupling waveguide is 5 mm long, reducing the total footprint by two orders of magnitude. Successful flip flop functionality is evaluated at 10 Gb/s with clear open eye diagram, achieving error free operation with a power penalty of 4dB.
MOSFET analog memory circuit achieves long duration signal storage
NASA Technical Reports Server (NTRS)
1966-01-01
Memory circuit maintains the signal voltage at the output of an analog signal amplifier when the input signal is interrupted or removed. The circuit uses MOSFET /Metal Oxide Semiconductor Field Effect Transistor/ devices as voltage-controlled switches, triggered by an external voltage-sensing device.
Direct observation of conductive filament formation in Alq3 based organic resistive memories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busby, Y., E-mail: yan.busby@unamur.be; Pireaux, J.-J.; Nau, S.
2015-08-21
This work explores resistive switching mechanisms in non-volatile organic memory devices based on tris(8-hydroxyquinolie)aluminum (Alq{sub 3}). Advanced characterization tools are applied to investigate metal diffusion in ITO/Alq{sub 3}/Ag memory device stacks leading to conductive filament formation. The morphology of Alq{sub 3}/Ag layers as a function of the metal evaporation conditions is studied by X-ray reflectivity, while depth profile analysis with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry is applied to characterize operational memory elements displaying reliable bistable current-voltage characteristics. 3D images of the distribution of silver inside the organic layer clearly point towards the existence of conductive filamentsmore » and allow for the identification of the initial filament formation and inactivation mechanisms during switching of the device. Initial filament formation is suggested to be driven by field assisted diffusion of silver from abundant structures formed during the top electrode evaporation, whereas thermochemical effects lead to local filament inactivation.« less
Saiki, Jun
2002-01-01
Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.
Iwajomo, Oluwadamilola H; Finn, Adam; Ogunniyi, Abiodun D; Williams, Neil A; Heyderman, Robert S
2013-01-01
Pneumococcal disease is associated with a particularly high morbidity and mortality amongst adults in HIV endemic countries. Our previous findings implicating a B-cell defect in HIV-infected children from the same population led us to comprehensively characterize B-cell subsets in minimally symptomatic HIV-infected Malawian adults and investigate the isotype-switched IgG memory B-cell immune response to the pneumococcus. We show that similar to vertically acquired HIV-infected Malawian children, horizontally acquired HIV infection in these adults is associated with IgM memory B-cell (CD19(+) CD27(+) IgM(+) IgD(+)) depletion, B-cell activation and impairment of specific IgG B-cell memory to a range of pneumococcal proteins. Our data suggest that HIV infection affects both T-cell independent and T-cell dependent B-cell maturation, potentially leading to impairment of humoral responses to extracellular pathogens such as the pneumococcus, and thus leaving this population susceptible to invasive disease.
Immunoglobulin class-switch recombination deficiencies.
Durandy, Anne; Kracker, Sven
2012-07-30
Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches.
Immunoglobulin class-switch recombination deficiencies
2012-01-01
Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches. PMID:22894609
Electrochemical metallization memories--fundamentals, applications, prospects.
Valov, Ilia; Waser, Rainer; Jameson, John R; Kozicki, Michael N
2011-06-24
This review focuses on electrochemical metallization memory cells (ECM), highlighting their advantages as the next generation memories. In a brief introduction, the basic switching mechanism of ECM cells is described and the historical development is sketched. In a second part, the full spectra of materials and material combinations used for memory device prototypes and for dedicated studies are presented. In a third part, the specific thermodynamics and kinetics of nanosized electrochemical cells are described. The overlapping of the space charge layers is found to be most relevant for the cell properties at rest. The major factors determining the functionality of the ECM cells are the electrode reaction and the transport kinetics. Depending on electrode and/or electrolyte material electron transfer, electro-crystallization or slow diffusion under strong electric fields can be rate determining. In the fourth part, the major device characteristics of ECM cells are explained. Emphasis is placed on switching speed, forming and SET/RESET voltage, R(ON) to R(OFF) ratio, endurance and retention, and scaling potentials. In the last part, circuit design aspects of ECM arrays are discussed, including the pros and cons of active and passive arrays. In the case of passive arrays, the fundamental sneak path problem is described and as well as a possible solution by two anti-serial (complementary) interconnected resistive switches per cell. Furthermore, the prospects of ECM with regard to further scalability and the ability for multi-bit data storage are addressed.
Can Training in a Real-Time Strategy Videogame Attenuate Cognitive Decline in Older Adults?
Basak, Chandramallika; Boot, Walter R.; Voss, Michelle W.; Kramer, Arthur F.
2014-01-01
Declines in various cognitive abilities, particularly executive control functions, are observed in older adults. An important goal of cognitive training is to slow or reverse these age-related declines. However, opinion is divided in the literature regarding whether cognitive training can engender transfer to a variety of cognitive skills in older adults. Yet, recent research indicates that videogame training of young adults may engender broad transfer to skills of visual attention. In the current study, we used a real-time strategy videogame to attempt to train executive functions in older adults, such as working memory, task switching, short-term memory, inhibition, and reasoning. Older adults were either trained in a real-time strategy videogame for 23.5 hours (RON, n=20) or not (CONTROLS, n=20). A battery of cognitive tasks, including tasks of executive control and visuo-spatial skills, were assessed before, during, and after video game training. The trainees improved significantly in the measures of game performance. They also improved significantly more than the controls in a subset of the cognitive tasks, such as task switching, working memory, visual short term memory, and mental rotation. Trends in improvement were also observed, for the video game trainees, in inhibition and reasoning. Individual differences in changes in game performance were correlated with improvements in task-switching. The study has implications for the enhancement of executive control processes of older adults. PMID:19140648
NASA Astrophysics Data System (ADS)
Gao, Shuang; Zeng, Fei; Li, Fan; Wang, Minjuan; Mao, Haijun; Wang, Guangyue; Song, Cheng; Pan, Feng
2015-03-01
The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications.The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06406b
Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo
2008-04-25
A random access memory (RAM) uses n bits to randomly address N=2(n) distinct memory cells. A quantum random access memory (QRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(logN) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust QRAM algorithm, as it in general requires entanglement among exponentially less gates, and leads to an exponential decrease in the power needed for addressing. A quantum optical implementation is presented.
NASA Astrophysics Data System (ADS)
Gogurla, Narendar; Mondal, Suvra P.; Sinha, Arun K.; Katiyar, Ajit K.; Banerjee, Writam; Kundu, Subhas C.; Ray, Samit K.
2013-08-01
The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems.
Kray, Jutta; Fehér, Balázs
2017-01-01
Recent aging studies on training in task switching found that older adults showed larger improvements to an untrained switching task as younger adults do. However, less clear is what type of cognitive control processes can explain these training gains as participants were trained with a particular type of switching task including bivalent stimuli, requiring high inhibition demands, and no task cues helping them keeping track of the task sequence, and by this, requiring high working-memory (WM) demands. The aims of this study were first to specify whether inhibition, WM, or switching demands are critical for the occurrence of transfer and whether this transfer depends on the degree of overlap between training and transfer situation; and second to assess whether practiced-induced gains in task switching can be maintained over a longer period of time. To this end, we created five training conditions that varied in switching (switching vs. single task training), inhibition (switching training with bivalent or univalent stimuli), and WM demands (switching training with or without task cues). We investigated 81 younger adults and 82 older adults with a pretest-training-posttest design and a follow-up measurement after 6 months. Results indicated that all training and age groups showed improvements in task switching and a differential effect of training condition on improvements to an untrained switching task in younger and older adults. For younger adults, we found larger improvements in task switching for the switching groups than the single-task training group independently of inhibition and WM demands, suggesting that practice in switching is most critical. However, these benefits disappeared after 6 months. In contrast, for older adults training groups practicing task switching under high inhibition demands showed larger improvements to untrained switching tasks than the other groups. Moreover, these benefits were maintained over time. We also found that the transfer of benefits in task switching was larger with greater overlap between training and transfer situation. However, results revealed no evidence for transfer to other untrained cognitive task. Overall, the findings suggest that training in resolving interference while switching between two tasks is most critical for the occurrence of transfer in the elderly. PMID:28367135
Li, Xiang Yuan; Shao, Xing Long; Wang, Yi Chuan; Jiang, Hao; Hwang, Cheol Seong; Zhao, Jin Shi
2017-02-09
Ta 2 O 5 has been an appealing contender for the resistance switching random access memory (ReRAM). The resistance switching (RS) in this material is induced by the repeated formation and rupture of the conducting filaments (CFs) in the oxide layer, which are accompanied by the almost inevitable randomness of the switching parameters. In this work, a 1 to 2 nm-thick Ti layer was deposited on the 10 nm-thick Ta 2 O 5 RS layer, which greatly improved the RS performances, including the much-improved switching uniformity. The Ti metal layer was naturally oxidized to TiO x (x < 2) and played the role of a series resistor, whose resistance value was comparable to the on-state resistance of the Ta 2 O 5 RS layer. The series resistor TiO x efficiently suppressed the adverse effects of the voltage (or current) overshooting at the moment of switching by the appropriate voltage partake effect, which increased the controllability of the CF formation and rupture. The switching cycle endurance was increased by two orders of magnitude even during the severe current-voltage sweep tests compared with the samples without the thin TiO x layer. The Ti deposition did not induce any significant overhead to the fabrication process, making the process highly promising for the mass production of a reliable ReRAM.
Loomis, Jack M; Klatzky, Roberta L; McHugh, Brendan; Giudice, Nicholas A
2012-08-01
Spatial working memory can maintain representations from vision, hearing, and touch, representations referred to here as spatial images. The present experiment addressed whether spatial images from vision and hearing that are simultaneously present within working memory retain modality-specific tags or are amodal. Observers were presented with short sequences of targets varying in angular direction, with the targets in a given sequence being all auditory, all visual, or a sequential mixture of the two. On two thirds of the trials, one of the locations was repeated, and observers had to respond as quickly as possible when detecting this repetition. Ancillary detection and localization tasks confirmed that the visual and auditory targets were perceptually comparable. Response latencies in the working memory task showed small but reliable costs in performance on trials involving a sequential mixture of auditory and visual targets, as compared with trials of pure vision or pure audition. These deficits were statistically reliable only for trials on which the modalities of the matching location switched from the penultimate to the final target in the sequence, indicating a switching cost. The switching cost for the pair in immediate succession means that the spatial images representing the target locations retain features of the visual or auditory representations from which they were derived. However, there was no reliable evidence of a performance cost for mixed modalities in the matching pair when the second of the two did not immediately follow the first, suggesting that more enduring spatial images in working memory may be amodal.
Bilingualism and Working Memory Capacity: A Comprehensive Meta-Analysis
ERIC Educational Resources Information Center
Grundy, John G.; Timmer, Kalinka
2017-01-01
Bilinguals often outperform monolinguals on executive function tasks, including tasks that tap cognitive flexibility, conflict monitoring, and task-switching abilities. Some have suggested that bilinguals also have greater working memory capacity than comparable monolinguals, but evidence for this suggestion is mixed. We therefore conducted a…
Development and characterization of a ferroelectric non-volatile memory for flexible electronics
NASA Astrophysics Data System (ADS)
Mao, Duo
Flexible electronics have received significant attention recently because of the potential applications in displays, sensors, radio frequency identification (RFID) tags and other integrated circuits. Electrically addressable non-volatile memory is a key component for these applications. The major challenges are to fabricate the memory at a low temperature compatible with plastic substrates while maintaining good device reliability, by being compatible with process as needed to integrate with other electronic components for system-on-chip applications. In this work, ferroelectric capacitors fabricated at low temperature were developed. Based on that, a ferroelectric random access memory (FRAM) for flexible electronics was developed and characterized. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer was used as a ferroelectric material and a photolithographic process was developed to fabricate ferroelectric capacitors. Different characterization methods including atomic force microscopy, x-ray diffraction and Fourier-transform infrared reflection-absorption spectroscopy were used to study the material properties of the P(VDF-TrFE) film. The material properties were correlated with the electrical characteristics of the ferroelectric capacitors. To understand the polarization switching behavior of the P(VDF-TrFE) ferroelectric capacitors, a Nucleation-Limited-Switching (NLS) model was used to study the switching kinetics. The switching kinetics were characterized over the temperature range from -60 °C to 100 °C. Fatigue characteristics were studied at different electrical stress voltages and frequencies to evaluate the reliability of the ferroelectric capacitor. The degradation mechanism is attributed to the increase of the activation field and the suppression of the switchable polarization. To develop a FRAM circuit for flexible electronics, an n-channel thin film transistor (TFT) based on CdS as the semiconductor was integrated with a P(VDF-TrFE) ferroelectric capacitor for a one-transistor-one-capacitor (1T1C) memory cell. The 1T1C devices were fabricated at low temperature and demonstrated a memory window (DeltaVBL) of 2.3 V and 3.5 V, depending on the device dimensions. Next, FRAM arrays (4-bit, 16-bit and 64-bit) based on the two-transistor-two-capacitor (2T2C) memory cell architecture were designed and fabricated using a photolithographic process with 9 masks. The fabricated FRAM arrays were packaged in 28-pin ceramic packages. The read/write schemes were developed and the FRAM arrays show successful program and erase with a memory window of approximately 1 V at the output of the sense amplifier.
Das, Sudeshna; Mishra, K P; Ganju, Lilly; Singh, S B
2018-05-05
Brain, being the highest consumer of oxygen, is prone to increased risk of hypoxia-induced neurological insults. In response to hypoxia, microglia, the major resident immune cells of brain switches to an activated phenotype and promote inflammatory responses leading to tissue damage and loss of cognitive functions including working memory impairment. Till date, no proven clinical therapeutics is available to retard the progression of neurodegenerative memory impairment. In the present study, we investigated the therapeutic potential of intranasal small interfering RNA (siRNA) delivery in a mouse model of hypoxia-induced working memory impairment using microglial receptor, Mac-1 as a target gene. Here, we implicate Mac-1 scavenger receptor in microglial phenotype switching, neurodegeneration in prefrontal cortex, hippocampus and working memory impairment. RNA mediated silencing of Mac-1 in both in vitro and in vivo model showed significant impact of it on hypoxia induced altered expression of Mac-1 endogenous ligand, signaling cascade proteins, transcription factors and NADPH oxidase pathway. Efficient degradation of Mac-1 mRNA suppressed expression of M1 phenotypic markers, inflammatory chemokines, and cytokines, but on the other hand, it upregulated M2 phenotypic markers and anti-inflammatory cytokines. Neuronal viability and synaptic plasticity markers were also modulated significantly by this strategy. Behavioral study revealed significant downregulation in the number of working memory errors at a time-dependent manner after silencing the Mac-1 gene during continuous hypoxic exposure. The novel findings of this study for the very first time, unmasked the role of Mac-1 receptor in neurodegenerative disease progression under hypoxic condition and at the same time indicated the potential therapeutic value of this non-invasive siRNA delivery approach for treating working memory loss. Copyright © 2018 Elsevier Ltd. All rights reserved.
Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx
NASA Astrophysics Data System (ADS)
Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak
2018-01-01
Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.
Hot-carrier trap-limited transport in switching chalcogenides
NASA Astrophysics Data System (ADS)
Piccinini, Enrico; Cappelli, Andrea; Buscemi, Fabrizio; Brunetti, Rossella; Ielmini, Daniele; Rudan, Massimo; Jacoboni, Carlo
2012-10-01
Chalcogenide materials have received great attention in the last decade owing to their application in new memory systems. Recently, phase-change memories have, in fact, reached the early stages of production. In spite of the industrial exploitation of such materials, the physical processes governing the switching mechanism are still debated. In this paper, we work out a complete and consistent model for transport in amorphous chalcogenide materials based on trap-limited conduction accompanied by carrier heating. A previous model is here extended to include position-dependent carrier concentration and field, consistently linked by the Poisson equation. The results of the new model reproduce the experimental electrical characteristics and their dependences on the device length and temperature. Furthermore, the model provides a sound physical interpretation of the switching phenomenon and is able to give an estimate of the threshold condition in terms of the material parameters, a piece of information of great technological interest.
Shape memory thermal conduction switch
NASA Technical Reports Server (NTRS)
Krishnan, Vinu (Inventor); Vaidyanathan, Rajan (Inventor); Notardonato, William U. (Inventor)
2010-01-01
A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.
Interfacial Metal-Oxide Interactions in Resistive Switching Memories.
Cho, Deok-Yong; Luebben, Michael; Wiefels, Stefan; Lee, Kug-Seung; Valov, Ilia
2017-06-07
Metal oxides are commonly used as electrolytes for redox-based resistive switching memories. In most cases, non-noble metals are directly deposited as ohmic electrodes. We demonstrate that irrespective of bulk thermodynamics predictions an intermediate oxide film a few nanometers in thickness is always formed at the metal/insulator interface, and this layer significantly contributes to the development of reliable switching characteristics. We have tested metal electrodes and metal oxides mostly used for memristive devices, that is, Ta, Hf, and Ti and Ta 2 O 5 , HfO 2 , and SiO 2 . Intermediate oxide layers are always formed at the interfaces, whereas only the rate of the electrode oxidation depends on the oxygen affinity of the metal and the chemical stability of the oxide matrix. Device failure is associated with complete transition of short-range order to a more disordered main matrix structure.
Meiran, Nachshon; Diamond, Gary M; Toder, Doron; Nemets, Boris
2011-01-30
Obsessive compulsive disorder (OCD) and depressive rumination are both characterized by cognitive rigidity. We examined the performance of 17 patients (9 suffering from unipolar depression [UD] without OCD, and 8 suffering from OCD without UD), and 17 control participants matched on age, gender, language and education, on a battery covering the four main executive functions. Results indicated that, across both disorders, patients required more trials to adjust to single-task conditions after experiencing task switching, reflecting slow disengagement from switching mode, and showed abnormal post-conflict adaptation of processing mode following high conflict Stroop trials in comparison to controls. Rumination, which was elevated in UD and not in OCD, was associated with poor working memory updating and less task preparation. The results show that OCD and UD are associated with similar cognitive rigidity in the presently tested paradigms. Copyright © 2010 Elsevier Ltd. All rights reserved.
A Chain-Retrieval Model for Voluntary Task Switching
ERIC Educational Resources Information Center
Vandierendonck, Andre; Demanet, Jelle; Liefooghe, Baptist; Verbruggen, Frederick
2012-01-01
To account for the findings obtained in voluntary task switching, this article describes and tests the chain-retrieval model. This model postulates that voluntary task selection involves retrieval of task information from long-term memory, which is then used to guide task selection and task execution. The model assumes that the retrieved…
Kessler, Yoav
2017-01-01
Models of working memory (WM) suggest that the contents of WM are separated from perceptual input by a gate, that enables shielding information against interference when closed, and allows for rapid updating when open. Recent work in the declarative WM domain provided evidence for this notion, demonstrating the behavioral cost of opening and closing the gate. The goal of the present work was to examine gating in procedural WM, namely in a task-switching experiment. In each trial, participants were presented with a digit and a task cue, indicating whether the required task was a parity or a magnitude decision. Critically, a colored frame around the stimulus indicated whether the task cue was relevant (attend trials), or whether it had to be ignored, and the previous task set should be applied regardless of the present cue (ignore trials). Switching between tasks, and between ignore and attend trials, was manipulated. The results of two experiments demonstrated that the cost of gate opening was eliminated in task switching trials, implying that both processes operate in parallel. PMID:29312095
Liu, Gang; Ling, Qi-Dan; Teo, Eric Yeow Hwee; Zhu, Chun-Xiang; Chan, D Siu-Hung; Neoh, Koon-Gee; Kang, En-Tang
2009-07-28
By varying the carbon nanotube (CNT) content in poly(N-vinylcarbazole) (PVK) composite thin films, the electrical conductance behavior of an indium-tin oxide/PVK-CNT/aluminum (ITO/PVK-CNT/Al) sandwich structure can be tuned in a controlled manner. Distinctly different electrical conductance behaviors, such as (i) insulator behavior, (ii) bistable electrical conductance switching effects (write-once read-many-times (WORM) memory effect and rewritable memory effect), and (iii) conductor behavior, are discernible from the current density-voltage characteristics of the composite films. The turn-on voltage of the two bistable conductance switching devices decreases and the ON/OFF state current ratio of the WORM device increases with the increase in CNT content of the composite film. Both the WORM and rewritable devices are stable under a constant voltage stress or a continuous pulse voltage stress, with an ON/OFF state current ratio in excess of 10(3). The conductance switching effects of the composite films have been attributed to electron trapping in the CNTs of the electron-donating/hole-transporting PVK matrix.
Language balance and switching ability in children acquiring English as a second language.
Goriot, Claire; Broersma, Mirjam; McQueen, James M; Unsworth, Sharon; van Hout, Roeland
2018-09-01
This study investigated whether relative lexical proficiency in Dutch and English in child second language (L2) learners is related to executive functioning. Participants were Dutch primary school pupils of three different age groups (4-5, 8-9, and 11-12 years) who either were enrolled in an early-English schooling program or were age-matched controls not on that early-English program. Participants performed tasks that measured switching, inhibition, and working memory. Early-English program pupils had greater knowledge of English vocabulary and more balanced Dutch-English lexicons. In both groups, lexical balance, a ratio measure obtained by dividing vocabulary scores in English by those in Dutch, was related to switching but not to inhibition or working memory performance. These results show that for children who are learning an L2 in an instructional setting, and for whom managing two languages is not yet an automatized process, language balance may be more important than L2 proficiency in influencing the relation between childhood bilingualism and switching abilities. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Haiyu; Yu, Li; Zhang, Dan; Zhang, Wen-An
2012-12-01
This paper is concerned with the finite-time quantized H∞ control problem for a class of discrete-time switched time-delay systems with time-varying exogenous disturbances. By using the sector bound approach and the average dwell time method, sufficient conditions are derived for the switched system to be finite-time bounded and ensure a prescribed H∞ disturbance attenuation level, and a mode-dependent quantized state feedback controller is designed by solving an optimization problem. Two illustrative examples are provided to demonstrate the effectiveness of the proposed theoretical results.
Disturbance characteristics of half-selected cells in a cross-point resistive switching memory array
NASA Astrophysics Data System (ADS)
Chen, Zhe; Li, Haitong; Chen, Hong-Yu; Chen, Bing; Liu, Rui; Huang, Peng; Zhang, Feifei; Jiang, Zizhen; Ye, Hongfei; Gao, Bin; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng; Wong, H.-S. Philip; Yu, Shimeng
2016-05-01
Disturbance characteristics of cross-point resistive random access memory (RRAM) arrays are comprehensively studied in this paper. An analytical model is developed to quantify the number of pulses (#Pulse) the cell can bear before disturbance occurs under various sub-switching voltage stresses based on physical understanding. An evaluation methodology is proposed to assess the disturb behavior of half-selected (HS) cells in cross-point RRAM arrays by combining the analytical model and SPICE simulation. The characteristics of cross-point RRAM arrays such as energy consumption, reliable operating cycles and total error bits are evaluated by the methodology. A possible solution to mitigate disturbance is proposed.
Enhanced switching stability in Ta2O5 resistive RAM by fluorine doping
NASA Astrophysics Data System (ADS)
Sedghi, N.; Li, H.; Brunell, I. F.; Dawson, K.; Guo, Y.; Potter, R. J.; Gibbon, J. T.; Dhanak, V. R.; Zhang, W. D.; Zhang, J. F.; Hall, S.; Robertson, J.; Chalker, P. R.
2017-08-01
The effect of fluorine doping on the switching stability of Ta2O5 resistive random access memory devices is investigated. It shows that the dopant serves to increase the memory window and improve the stability of the resistive states due to the neutralization of oxygen vacancies. The ability to alter the current in the low resistance state with set current compliance coupled with large memory window makes multilevel cell switching more favorable. The devices have set and reset voltages of <1 V with improved stability due to the fluorine doping. Density functional modeling shows that the incorporation of fluorine dopant atoms at the two-fold O vacancy site in the oxide network removes the defect state in the mid bandgap, lowering the overall density of defects capable of forming conductive filaments. This reduces the probability of forming alternative conducting paths and hence improves the current stability in the low resistance states. The doped devices exhibit more stable resistive states in both dc and pulsed set and reset cycles. The retention failure time is estimated to be a minimum of 2 years for F-doped devices measured by temperature accelerated and stress voltage accelerated retention failure methods.
Lin, Chia-Chun; Wu, Yung-Hsien; Chang, You-Tai; Sun, Cherng-En
2014-01-01
A simplified one-diode one-resistor (1D1R) resistive switching memory cell that uses only four layers of TaN/ZrTiO x /Ni/n(+)-Si was proposed to suppress sneak current where TaN/ZrTiO x /Ni can be regarded as a resistive-switching random access memory (RRAM) device while Ni/n(+)-Si acts as an Schottky diode. This is the first RRAM cell structure that employs metal/semiconductor Schottky diode for current rectifying. The 1D1R cell exhibits bipolar switching behavior with SET/RESET voltage close to 1 V without requiring a forming process. More importantly, the cell shows tight resistance distribution for different states, significantly rectifying characteristics with forward/reverse current ratio higher than 10(3) and a resistance ratio larger than 10(3) between two states. Furthermore, the cell also displays desirable reliability performance in terms of long data retention time of up to 10(4) s and robust endurance of 10(5) cycles. Based on the promising characteristics, the four-layer 1D1R structure holds the great potential for next-generation nonvolatile memory technology.
NASA Astrophysics Data System (ADS)
Nair, Manjula G.; Malakar, Meenakshi; Mohapatra, Saumya R.; Chowdhury, Avijit
2018-05-01
This research reports the observation of bipolar resistive switching memory in ZnO nanorod based polymer nanocomposites. We synthesized ZnO nanorods by wet-chemical method and characterized them using XRD, UV-VIS spectroscopy and SEM. The synthesized materials have hexagonal ZnO phase with grain size of 24 nm and having strong orientation along (101) direction as observed from XRD. The SEM micrograph confirms the formation of ZnO nanorods with diameter in the range of 10 to 20 nm and length of the order of 1 µm. From optical absorption spectra the band gap is estimated to be 2.42 eV. ZnO nanorods were dispersed in PVDF-HFP polymer matrix to prepare the nanocomposite. This nanocomposite was used as active layer in the devices having sandwich structure of ITO/PVDF-HFP+ZnO nanorods/Al. Bipolar non-volatile memory was observed with ON-OFF resistance ratio of the order of 103 and with a wide voltage window of 2.3V. The switching mechanism could be due to the trapping and de-trapping of electrons by the ZnO nanorods in the nanocomposite during ON and OFF states respectively.
Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO 2 Memristor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Han, Lili; Lin, Peng
Memristive devices are promising candidates for the next generation non-volatile memory and neuromorphic computing. It has been widely accepted that the motion of oxygen anions leads to the resistance changes for valence-change-memory (VCM) type of materials. Only very recently it was speculated that metal cations could also play an important role, but no direct physical characterizations have been reported yet. We report a Ta/HfO 2/Pt memristor with fast switching speed, record high endurance (120 billion cycles) and reliable retention. We also programmed the device to 24 discrete resistance levels, and also demonstrated over a million (220) epochs of potentiation andmore » depression, suggesting that our devices can be used for both multi-level non-volatile memory and neuromorphic computing applications. More importantly, we directly observed a sub-10 nm Ta-rich and O-deficient conduction channel within the HfO 2 layer that is responsible for the switching. Our work deepens our understanding of the resistance switching mechanism behind oxide-based memristive devices and paves the way for further device performance optimization for a broad spectrum of applications.« less
Response-cue interval effects in extended-runs task switching: memory, or monitoring?
Altmann, Erik M
2017-09-26
This study investigated effects of manipulating the response-cue interval (RCI) in the extended-runs task-switching procedure. In this procedure, a task cue is presented at the start of a run of trials and then withdrawn, such that the task has to be stored in memory to guide performance until the next task cue is presented. The effects of the RCI manipulation were not as predicted by an existing model of memory processes in task switching (Altmann and Gray, Psychol Rev 115:602-639, 2008), suggesting that either the model is incorrect or the RCI manipulation did not have the intended effect. The manipulation did produce a theoretically meaningful pattern, in the form of a main effect on response time that was not accompanied by a similar effect on the error rate. This pattern, which replicated across two experiments, is interpreted here in terms of a process that monitors for the next task cue, with a longer RCI acting as a stronger signal that a cue is about to appear. The results have implications for the human factors of dynamic task environments in which critical events occur unpredictably.
Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO 2 Memristor
Jiang, Hao; Han, Lili; Lin, Peng; ...
2016-06-23
Memristive devices are promising candidates for the next generation non-volatile memory and neuromorphic computing. It has been widely accepted that the motion of oxygen anions leads to the resistance changes for valence-change-memory (VCM) type of materials. Only very recently it was speculated that metal cations could also play an important role, but no direct physical characterizations have been reported yet. We report a Ta/HfO 2/Pt memristor with fast switching speed, record high endurance (120 billion cycles) and reliable retention. We also programmed the device to 24 discrete resistance levels, and also demonstrated over a million (220) epochs of potentiation andmore » depression, suggesting that our devices can be used for both multi-level non-volatile memory and neuromorphic computing applications. More importantly, we directly observed a sub-10 nm Ta-rich and O-deficient conduction channel within the HfO 2 layer that is responsible for the switching. Our work deepens our understanding of the resistance switching mechanism behind oxide-based memristive devices and paves the way for further device performance optimization for a broad spectrum of applications.« less
Epigenetics of the antibody response
Li, Guideng; Zan, Hong; Xu, Zhenming; Casali, Paolo
2013-01-01
Epigenetic marks, such as DNA methylation, histone posttranslational modifications and microRNAs, are induced in B cells by the same stimuli that drive the antibody response. They play major roles in regulating somatic hypermutation (SHM), class switch DNA recombination (CSR) and differentiation to plasma cells or long-lived memory B cells. Histone modifications target the CSR and, possibly, SHM machinery to the immunoglobulin locus; they together with DNA methylation and microRNAs modulate the expression of critical elements of that machinery, such as AID, as well as factors central to plasma cell differentiation, such as Blimp-1. These inducible B cell-intrinsic epigenetic marks instruct the maturation of antibody responses. Their dysregulation plays an important role in aberrant antibody responses to foreign antigens, such as those of microbial pathogens, and self-antigens, such those targeted in autoimmunity, and B cell neoplasias. PMID:23643790
Observer-based H∞ resilient control for a class of switched LPV systems and its application
NASA Astrophysics Data System (ADS)
Yang, Dong; Zhao, Jun
2016-11-01
This paper deals with the issue of observer-based H∞ resilient control for a class of switched linear parameter-varying (LPV) systems by utilising a multiple parameter-dependent Lyapunov functions method. First, attention is focused upon the design of a resilient observer, an observer-based resilient controller and a parameter and estimate state-dependent switching signal, which can stabilise and achieve the disturbance attenuation for the given systems. Then, a solvability condition of the H∞ resilient control problem is given in terms of matrix inequality for the switched LPV systems. This condition allows the H∞ resilient control problem for each individual subsystem to be unsolvable. The observer, controller, and switching signal are explicitly computed by solving linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed control scheme is illustrated by its application to a turbofan engine, which can hardly be handled by the existing approaches.
Observed-Based Adaptive Fuzzy Tracking Control for Switched Nonlinear Systems With Dead-Zone.
Tong, Shaocheng; Sui, Shuai; Li, Yongming
2015-12-01
In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach.
Low Temperature Resistive Switching Behavior in a Manganite
NASA Astrophysics Data System (ADS)
Salvo, Christopher; Lopez, Melinda; Tsui, Stephen
2012-02-01
The development of new nonvolatile memory devices remains an important field of consumer electronics. A possible candidate is bipolar resistive switching, a method by which the resistance of a material changes when a voltage is applied. Although there is a great deal of research on this topic, not much has been done at low temperatures. In this work, we compare the room temperature and low temperature behaviors of switching in a manganite thin film. The data indicates that the switching is suppressed upon cooling to cryogenic temperatures, and the presence of crystalline charge traps is tied to the physical mechanism.
Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.
Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M
2016-08-05
Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.
NASA Astrophysics Data System (ADS)
Wang, Ziwen; Kumar, Suhas; Nishi, Yoshio; Wong, H.-S. Philip
2018-05-01
Niobium oxide (NbOx) two-terminal threshold switches are potential candidates as selector devices in crossbar memory arrays and as building blocks for neuromorphic systems. However, the physical mechanism of NbOx threshold switches is still under debate. In this paper, we show that a thermal feedback mechanism based on Poole-Frenkel conduction can explain both the quasi-static and the transient electrical characteristics that are experimentally observed for NbOx threshold switches, providing strong support for the validity of this mechanism. Furthermore, a clear picture of the transient dynamics during the thermal-feedback-induced threshold switching is presented, providing useful insights required to model nonlinear devices where thermal feedback is important.
Novel nano materials for high performance logic and memory devices
NASA Astrophysics Data System (ADS)
Das, Saptarshi
After decades of relentless progress, the silicon CMOS industry is approaching a stall in device performance for both logic and memory devices due to fundamental scaling limitations. In order to reinforce the accelerating pace, novel materials with unique properties are being proposed on an urgent basis. This list includes one dimensional nanotubes, quasi one dimensional nanowires, two dimensional atomistically thin layered materials like graphene, hexagonal boron nitride and the more recently the rich family of transition metal di-chalcogenides comprising of MoS2, WSe2, WS2 and many more for logic applications and organic and inorganic ferroelectrics, phase change materials and magnetic materials for memory applications. Only time will tell who will win, but exploring these novel materials allow us to revisit the fundamentals and strengthen our understanding which will ultimately be beneficial for high performance device design. While there has been growing interest in two-dimensional (2D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancies due to the lack of a complete picture of their performance potential. The fact that the 2-D layered semiconducting di-chalcogenides need to be connected to the "outside" world in order to capitalize on their ultimate potential immediately emphasizes the importance of a thorough understanding of the contacts. This thesis demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS2 layers the excellent intrinsic properties of this 2D material can be harvested. A comprehensive experimental study on the dependence of carrier mobility on the layer thickness of back gated multilayer MoS 2 field effect transistors is also provided. A resistor network model that comprises of Thomas-Fermi charge screening and interlayer coupling is used to explain the non-monotonic trend in the extracted field effect mobility with the layer thickness. The non-monotonic trend suggests that in order to harvest the maximum potential of MoS2 for high performance device applications, a layer thickness in the range of 6-12 nm would be ideal. Finally using scandium contacts on 10nm thick exfoliated MoS2 flakes that are covered by a 15nm ALD grown Al2O3 film, record high mobility of 700cm2/Vs is achieved at room-temperature which is extremely encouraging for the design of high performance logic devices. The destructive nature of the readout process in Ferroelectric Random Access Memories (FeRAMs) is one of the major limiting factors for their wide scale commercialization. Utilizing Ferroelectric Field-Effect Transistor RAM (FeTRAM) instead solves the destructive read out problem, but at the expense of introducing crystalline ferroelectrics that are hard to integrate into CMOS. In order to address these challenges a novel, fully functional, CMOS compatible, One-Transistor-One-Transistor (1T1T) memory cell architecture using an organic ferroelectric -- PVDF-TrFE -- as the memory storage unit (gate oxide) and a silicon nanowire as the memory read out unit (channel material) is proposed and experimentally demonstrated. While evaluating the scaling potential of the above mentioned organic FeTRAM, it is found that the switching time and switching voltage of this organic copolymer PVDF-TrFE exhibits an unexpected scaling behavior as a function of the lateral device dimensions. The phenomenological theory, that explains this abnormal scaling trend, involves in-plane interchain and intrachain interaction of the copolymer - resulting in a power-law dependence of the switching field on the device area (ESW alpha ACH0.1) that is ultimately responsible for the decrease in the switching time and switching voltage. These findings are encouraging since they indicate that scaling the switching voltage and switching time without aggressively scaling the copolymer thickness occurs naturally while scaling the device area -- in this way ultimately improving the packing density and leading towards high performance memory devices.
Wolff, Nicole; Chmielewski, Witold X; Beste, Christian; Roessner, Veit
2017-03-16
Autism spectrum disorder (ASD) is associated with repetitive and stereotyped behaviour, suggesting that cognitive flexibility may be deficient in ASD. A central, yet not examined aspect to understand possible deficits in flexible behaviour in ASD relates (i) to the role of working memory and (ii) to neurophysiological mechanisms underlying behavioural modulations. We analysed behavioural and neurophysiological (EEG) correlates of cognitive flexibility using a task-switching paradigm with and without working memory load in adolescents with ASD and typically developing controls (TD). Adolescents with ASD versus TD show similar performance in task switching with no memory load, indicating that 'pure' cognitive flexibility is not in deficit in adolescent ASD. However performance during task repetition decreases with increasing memory load. Neurophysiological data reflect the pattern of behavioural effects, showing modulations in P2 and P3 event-related potentials. Working memory demands affect repetitive behaviour while processes of cognitive flexibility are unaffected. Effects emerge due to deficits in preparatory attentional processes and deficits in task rule activation, organisation and implementation of task sets when repetitive behaviour is concerned. It may be speculated that the habitual response mode in ASD (i.e. repetitive behaviour) is particularly vulnerable to additional demands on executive control processes.
Purtha, Whitney E.; Tedder, Thomas F.; Johnson, Syd
2011-01-01
Memory B cells (MBCs) and long-lived plasma cells (LLPCs) persist after clearance of infection, yet the specific and nonredundant role MBCs play in subsequent protection is unclear. After resolution of West Nile virus infection in mice, we demonstrate that LLPCs were specific for a single dominant neutralizing epitope, such that immune serum poorly inhibited a variant virus that encoded a mutation at this critical epitope. In contrast, a large fraction of MBC produced antibody that recognized both wild-type (WT) and mutant viral epitopes. Accordingly, antibody produced by the polyclonal pool of MBC neutralized WT and variant viruses equivalently. Remarkably, we also identified MBC clones that recognized the mutant epitope better than the WT protein, despite never having been exposed to the variant virus. The ability of MBCs to respond to variant viruses in vivo was confirmed by experiments in which MBCs were adoptively transferred or depleted before secondary challenge. Our data demonstrate that class-switched MBC can respond to variants of the original pathogen that escape neutralization of antibody produced by LLPC without a requirement for accumulating additional somatic mutations. PMID:22162833
CMPF: class-switching minimized pathfinding in metabolic networks.
Lim, Kevin; Wong, Limsoon
2012-01-01
The metabolic network is an aggregation of enzyme catalyzed reactions that converts one compound to another. Paths in a metabolic network are a sequence of enzymes that describe how a chemical compound of interest can be produced in a biological system. As the number of such paths is quite large, many methods have been developed to score paths so that the k-shortest paths represent the set of paths that are biologically meaningful or efficient. However, these approaches do not consider whether the sequence of enzymes can be manufactured in the same pathway/species/localization. As a result, a predicted sequence might consist of groups of enzymes that operate in distinct pathway/species/localization and may not truly reflect the events occurring within cell. We propose a path weighting method CMPF (Class-switching Minimized Pathfinder) to search for routes in a metabolic network which minimizes pathway switching. In biological terms, a pathway is a series of chemical reactions which define a specific function (e.g. glycolysis). We conjecture that routes that cross many pathways are inefficient since different pathways define different metabolic functions. In addition, native routes are also well characterized within pathways, suggesting that reasonable paths should not involve too many pathway switches. Our method can be generalized when reactions participate in a class set (e.g., pathways, species or cellular localization) so that the paths predicted have minimal class crossings. We show that our method generates k-paths that involve the least number of class switching. In addition, we also show that native paths are recoverable and alternative paths deviates less from native paths compared to other methods. This suggests that paths ranked by our method could be a way to predict paths that are likely to occur in biological systems.
Effects of aging and job demands on cognitive flexibility assessed by task switching.
Gajewski, Patrick D; Wild-Wall, Nele; Schapkin, Sergei A; Erdmann, Udo; Freude, Gabriele; Falkenstein, Michael
2010-10-01
In a cross-sectional, electrophysiological study 91 workers of a big car factory performed a series of switch tasks to assess their cognitive control functions. Four groups of workers participated in the study: 23 young and 23 middle aged assembly line employees and 22 young and 23 middle aged employees with flexible job demands like service and maintenance. Participants performed three digit categorisation tasks. In addition to single task blocks, a cue-based (externally guided) and a memory-based (internally guided) task switch block was administered. Compared to young participants, older ones showed the typical RT-decline. No differences between younger and older participants regarding the local switch costs could be detected despite the source of the current task information. In contrast, whereas the groups did not differ in mixing costs in the cued condition, clear performance decrements in the memory-based mixing block were observed in the group of older employees with repetitive work demands. These findings were corroborated by a number of electrophysiological results showing a reduced CNV suggesting an impairment of task specific preparation, an attenuated P3b suggesting reduced working memory capacity and a decreased Ne suggesting deficits in error monitoring in older participants with repetitive job demands. The results are compatible with the assumption that long lasting, unchallenging job demands may induce several neurocognitive impairments which are already evident in the early fifties. Longitudinal studies are needed to confirm this assumption. Copyright © 2010 Elsevier B.V. All rights reserved.
2018-02-01
Data on durability of first-line antiretroviral therapy (ART) in children with human immunodeficiency virus (HIV) are limited. We assessed time to switch to second-line therapy in 16 European countries and Thailand. Children aged <18 years initiating combination ART (≥2 nucleoside reverse transcriptase inhibitors [NRTIs] plus nonnucleoside reverse transcriptase inhibitor [NNRTI] or boosted protease inhibitor [PI]) were included. Switch to second-line was defined as (i) change across drug class (PI to NNRTI or vice versa) or within PI class plus change of ≥1 NRTI; (ii) change from single to dual PI; or (iii) addition of a new drug class. Cumulative incidence of switch was calculated with death and loss to follow-up as competing risks. Of 3668 children included, median age at ART initiation was 6.1 (interquartile range (IQR), 1.7-10.5) years. Initial regimens were 32% PI based, 34% nevirapine (NVP) based, and 33% efavirenz based. Median duration of follow-up was 5.4 (IQR, 2.9-8.3) years. Cumulative incidence of switch at 5 years was 21% (95% confidence interval, 20%-23%), with significant regional variations. Median time to switch was 30 (IQR, 16-58) months; two-thirds of switches were related to treatment failure. In multivariable analysis, older age, severe immunosuppression and higher viral load (VL) at ART start, and NVP-based initial regimens were associated with increased risk of switch. One in 5 children switched to a second-line regimen by 5 years of ART, with two-thirds failure related. Advanced HIV, older age, and NVP-based regimens were associated with increased risk of switch. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Hwang, Yeong-Hyeon; Hwang, Inchan; Cho, Won-Ju
2014-11-01
The influence of composition ratio on the bipolar resistive switching behavior of resistive switching memory devices based on amorphous indium-gallium-zinc-oxide (a-IGZO) using the spin-coating process was investigated. To study the stoichiometric effects of the a-IGZO films on device characteristics, four devices with In/Ga/Zn stoichiometries of 1:1:1, 3:1:1, 1:3:1, and 1:1:3 were fabricated and characterized. The 3:1:1 film showed an ohmic behavior and the 1:1:3 film showed a rectifying switching behavior. The current-voltage characteristics of the a-IGZO films with stoichiometries of 1:1:1 and 1:3:1, however, showed a bipolar resistive memory switching behavior. We found that the three-fold increase in the gallium content ratio reduces the reset voltage from -0.9 to - 0.4 V and enhances the current ratio of high to low resistive states from 0.7 x 10(1) to 3 x 10(1). Our results show that the increase in the Ga composition ratio in the a-IGZO-based ReRAM cells effectively improves the device performance and reliability by increasing the initial defect density in the a-IGZO films.
NASA Astrophysics Data System (ADS)
Vartak, Rajdeep; Rag, Adarsh; De, Shounak; Bhat, Somashekhara
2018-05-01
We report here the use of facile and environmentally benign way synthesized reduced graphene oxide (RGO) for low-voltage non-volatile memory device as charge storing element. The RGO solutions have been synthesized using electrochemical exfoliation of battery electrode. The solution processed based RGO solution is suitable for large area and low-cost processing on plastic substrate. Room-temperature current-voltage characterisation has been carried out in Ag/RGO/ITO PET sandwich configuration to study the type of trap distribution. It is observed that in the low-voltage sweep, ohmic current is the main mechanism of current flow and trap filled/assisted conduction is observed at high-sweep voltage region. The Ag/RGO/ITO PET sandwich structure showed bipolar resistive switching behavior. These mechanisms can be analyzed based on oxygen availability and vacancies in the RGO giving rise to continuous least resistive path (conductive) and high resistance path along the structure. An Ag/RGO/ITO arrangement demonstrates long retention time with low operating voltage, low set/reset voltage, good ON/OFF ratio of 103 (switching transition between lower resistance state and higher resistance state and decent switching performance. The RGO memory showed decent results with an almost negligible degradation in switching properties which can be used for low-voltage and low-cost advanced flexible electronics.
Cerutti, Andrea; Zan, Hong; Kim, Edmund C.; Shah, Shefali; Schattner, Elaine J.; Schaffer, András; Casali, Paolo
2015-01-01
Chronic lymphocytic leukemia (CLL) results from the expansion of malignant CD5+ B cells that usually express IgD and IgM. These leukemic cells can give rise in vivo to clonally related IgG+ or IgA+ elements. The requirements and modalities of this process remain elusive. Here we show that leukemic B cells from 14 of 20 CLLs contain the hallmarks of ongoing Ig class switch DNA recombination (CSR), including extrachromosomal switch circular DNAs and circle transcripts generated by direct Sμ→Sγ, Sμ→Sα, and Sμ→Sε as well as sequential Sγ→Sα and Sγ→Sε CSR. Similar CLL B cells express transcripts for activation-induced cytidine deaminase, a critical component of the CSR machinery, and contain germline IH-CH and mature VHDJH-CH transcripts encoded by multiple Cγ, Cα, and Cε genes. Ongoing CSR occurs in only a fraction of the CLL clone, as only small proportions of CD5+CD19+ cells express surface IgG or IgA and lack IgM and IgD. In vivo class-switching CLL B cells down-regulate switch circles and circle transcripts in vitro unless exposed to exogenous CD40 ligand and IL-4. In addition, CLL B cells that do not class switch in vivo activate the CSR machinery and secrete IgG, IgA, or IgE upon in vitro exposure to CD40 ligand and IL-4. These findings indicate that in CLL at least some members of the malignant clone actively differentiate in vivo along a pathway that induces CSR. They also suggest that this process is elicited by external stimuli, including CD40 ligand and IL-4, provided by bystander immune cells. PMID:12444172
Evaluation of the attentional capacities and working memory of early and late blind persons.
Pigeon, Caroline; Marin-Lamellet, Claude
2015-02-01
Although attentional processes and working memory seem to be significantly involved in the daily activities (particularly during navigating) of persons who are blind and who use these abilities to compensate for their lack of vision, few studies have investigated these mechanisms in this population. The aim of this study is to evaluate the selective, sustained and divided attention, attentional inhibition and switching and working memory of blind persons. Early blind, late blind and sighted participants completed neuropsychological tests that were designed or adapted to be achievable in the absence of vision. The results revealed that the early blind participants outperformed the sighted ones in selective, sustained and divided attention and working memory tests, and the late blind participants outperformed the sighted participants in selective, sustained and divided attention. However, no differences were found between the blind groups and the sighted group in the attentional inhibition and switching tests. Furthermore, no differences were found between the early and late blind participants in this set of tests. These results suggest that early and late blind persons can compensate for the lack of vision by an enhancement of the attentional and working memory capacities. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Min Ju; Kim, Hee-Dong; Man Hong, Seok
2014-03-07
The metal nanocrystals (NCs) embedded-NiN-based resistive random access memory cells are demonstrated using several metal NCs (i.e., Pt, Ni, and Ti) with different physical parameters in order to investigate the metal NC's dependence on resistive switching (RS) characteristics. First, depending on the electronegativity of metal, the size of metal NCs is determined and this affects the operating current of memory cells. If metal NCs with high electronegativity are incorporated, the size of the NCs is reduced; hence, the operating current is reduced owing to the reduced density of the electric field around the metal NCs. Second, the potential wells aremore » formed by the difference of work function between the metal NCs and active layer, and the barrier height of the potential wells affects the level of operating voltage as well as the conduction mechanism of metal NCs embedded memory cells. Therefore, by understanding these correlations between the active layer and embedded metal NCs, we can optimize the RS properties of metal NCs embedded memory cells as well as predict their conduction mechanisms.« less
Fully transparent, non-volatile bipolar resistive memory based on flexible copolyimide films
NASA Astrophysics Data System (ADS)
Yu, Hwan-Chul; Kim, Moon Young; Hong, Minki; Nam, Kiyong; Choi, Ju-Young; Lee, Kwang-Hun; Baeck, Kyoung Koo; Kim, Kyoung-Kook; Cho, Soohaeng; Chung, Chan-Moon
2017-01-01
Partially aliphatic homopolyimides and copolyimides were prepared from rel-(1'R,3S,5'S)-spiro[furan-3(2H),6'-[3]oxabicyclo[3.2.1]octane]-2,2',4',5(4H)-tetrone (DAn), 2,6-diaminoanthracene (AnDA), and 4,4'-oxydianiline (ODA) by varying the molar ratio of AnDA and ODA. We utilized these polyimide films as the resistive switching layer in transparent memory devices. While WORM memory behavior was obtained with the PI-A100-O0-based device (molar feed ratio of DAn : AnDA : ODA = 1 : 1 : 0), the PI-A70-O30-based device (molar feed ratio of DAn : AnDA : ODA = 1 : 0.7 : 0.3) exhibited bipolar resistive switching behavior with stable retention for 104 s. This result implies that the memory properties can be controlled by changing the polyimide composition. The two devices prepared from PI-A100-O0 and PI-A70-O30 showed over 90% transmittance in the visible wavelength range from 400 to 800 nm. The behavior of the memory devices is considered to be governed by trap-controlled, space-charge limited conduction (SCLC) and local filament formation. [Figure not available: see fulltext.
Charged Defects-Induced Resistive Switching in Sb2Te3 Memristor
NASA Astrophysics Data System (ADS)
Zhang, J. J.; Liu, N.; Sun, H. J.; Yan, P.; Li, Y.; Zhong, S. J.; Xie, S.; Li, R. J.; Miao, X. S.
2016-02-01
Resistive switching (RS) characteristics of Ta/Sb2Te3/Ta and Ag/Sb2Te3/Ta memory devices have been investigated. The I- V curves show the bipolar RS at room temperature. We have demonstrated that the redistribution and migration of charged defects are responsible for the memristive switching. By using Ag electrode instead of Ta, more defects can be created near the Ag/Sb2Te3 interface, which is a feasible method to eliminate the electroforming process.
Thin film memory matrix using amorphous and high resistive layers
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P. (Inventor); Lambe, John (Inventor); Moopen, Alexander (Inventor)
1989-01-01
Memory cells in a matrix are provided by a thin film of amorphous semiconductor material overlayed by a thin film of resistive material. An array of parallel conductors on one side perpendicular to an array of parallel conductors on the other side enable the amorphous semiconductor material to be switched in addressed areas to be switched from a high resistance state to a low resistance state with a predetermined level of electrical energy applied through selected conductors, and thereafter to be read out with a lower level of electrical energy. Each cell may be fabricated in the channel of an MIS field-effect transistor with a separate common gate over each section to enable the memory matrix to be selectively blanked in sections during storing or reading out of data. This allows for time sharing of addressing circuitry for storing and reading out data in a synaptic network, which may be under control of a microprocessor.
Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures.
Abhijith, T; Kumar, T V Arun; Reddy, V S
2017-03-03
Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO 3 ) between two tris-(8-hydroxyquinoline)aluminum (Alq 3 ) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 10 3 at a read voltage of 1 V. The device showed repeatable write-erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO 3 layer thickness and its location in the Alq 3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO 3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.
Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures
NASA Astrophysics Data System (ADS)
Abhijith, T.; Kumar, T. V. Arun; Reddy, V. S.
2017-03-01
Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO3) between two tris-(8-hydroxyquinoline)aluminum (Alq3) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 103 at a read voltage of 1 V. The device showed repeatable write-erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO3 layer thickness and its location in the Alq3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.
Yan, Z. B.; Liu, J. -M.
2013-01-01
The Au/DyMnO3/Nb:SrTiO3/Au stack was demonstrated to be not only a high performance memristor but also a good memcapacitor. The switching time is below 10 ns, the retention is longer than 105 s, and the change ratio of resistance (or capacitance) is larger than 100 over the 108 switching cycles. Moreover, this stack has a broad range of intermediate states that are tunable by the operating voltages. It is indicated that the memory effects originate from the Nb:SrTiO3/Au junction where the barrier profile is electrically modulated. The serial connected Au/DyMnO3/Nb:SrTiO3 stack behaves as a high nonlinear resistor paralleling with a capacitor, which raises the capacitance change ratio and enhances the memory stability of the device. PMID:23963467
Zalden, Peter; Shu, Michael J.; Chen, Frank; ...
2016-08-05
Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag 4In 3Sb 67Te 26. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. As a result, this supports purely electronic models of thresholdmore » switching and reveals potential applications as an ultrafast electronic switch.« less
An Integrated Model of Cognitive Control in Task Switching
ERIC Educational Resources Information Center
Altmann, Erik M.; Gray, Wayne D.
2008-01-01
A model of cognitive control in task switching is developed in which controlled performance depends on the system maintaining access to a code in episodic memory representing the most recently cued task. The main constraint on access to the current task code is proactive interference from old task codes. This interference and the mechanisms that…
Similarity as an organising principle in short-term memory.
LeCompte, D C; Watkins, M J
1993-03-01
The role of stimulus similarity as an organising principle in short-term memory was explored in a series of seven experiments. Each experiment involved the presentation of a short sequence of items that were drawn from two distinct physical classes and arranged such that item class changed after every second item. Following presentation, one item was re-presented as a probe for the 'target' item that had directly followed it in the sequence. Memory for the sequence was considered organised by class if probability of recall was higher when the probe and target were from the same class than when they were from different classes. Such organisation was found when one class was auditory and the other was visual (spoken vs. written words, and sounds vs. pictures). It was also found when both classes were auditory (words spoken in a male voice vs. words spoken in a female voice) and when both classes were visual (digits shown in one location vs. digits shown in another). It is concluded that short-term memory can be organised on the basis of sensory modality and on the basis of certain features within both the auditory and visual modalities.
Variable-Resistivity Material For Memory Circuits
NASA Technical Reports Server (NTRS)
Nagasubramanian, Ganesan; Distefano, Salvador; Moacanin, Jovan
1989-01-01
Nonvolatile memory elements packed densely. Electrically-erasable, programmable, read-only memory matrices made with newly-synthesized organic material of variable electrical resistivity. Material, polypyrrole doped with tetracyanoquinhydrone (TCNQ), changes reversibly between insulating or higher-resistivity state and conducting or low-resistivity state. Thin film of conductive polymer separates layer of row conductors from layer of column conductors. Resistivity of film at each intersection and, therefore, resistance of memory element defined by row and column, increased or decreased by application of suitable switching voltage. Matrix circuits made with this material useful for experiments in associative electronic memories based on models of neural networks.
A review of the Z2-FET 1T-DRAM memory: Operation mechanisms and key parameters
NASA Astrophysics Data System (ADS)
Cristoloveanu, S.; Lee, K. H.; Parihar, M. S.; El Dirani, H.; Lacord, J.; Martinie, S.; Le Royer, C.; Barbe, J.-Ch.; Mescot, X.; Fonteneau, P.; Galy, Ph.; Gamiz, F.; Navarro, C.; Cheng, B.; Duan, M.; Adamu-Lema, F.; Asenov, A.; Taur, Y.; Xu, Y.; Kim, Y.-T.; Wan, J.; Bawedin, M.
2018-05-01
The band-modulation and sharp-switching mechanisms in Z2-FET device operated as a capacitorless 1T-DRAM memory are reviewed. The main parameters that govern the memory performance are discussed based on detailed experiments and simulations. This 1T-DRAM memory does not suffer from super-coupling effect and can be integrated in sub-10 nm thick SOI films. It offers low leakage current, high current margin, long retention, low operating voltage especially for programming, and high speed. The Z2-FET is suitable for embedded memory applications.
Wu, Yuanyuan; Cao, Jinde; Li, Qingbo; Alsaedi, Ahmed; Alsaadi, Fuad E
2017-01-01
This paper deals with the finite-time synchronization problem for a class of uncertain coupled switched neural networks under asynchronous switching. By constructing appropriate Lyapunov-like functionals and using the average dwell time technique, some sufficient criteria are derived to guarantee the finite-time synchronization of considered uncertain coupled switched neural networks. Meanwhile, the asynchronous switching feedback controller is designed to finite-time synchronize the concerned networks. Finally, two numerical examples are introduced to show the validity of the main results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aging and Executive Functioning: A Training Study on Focus-Switching
Dorbath, Lara; Hasselhorn, Marcus; Titz, Cora
2011-01-01
Many studies suggest that age differences in a variety of cognitive tasks are due to age-related changes in executive control processes. However, not all executive control processes seem to be age-sensitive. Recently, Verhaeghen et al. (2005) described dissociable age effects in an executive control process responsible for the switching of representations between different functional units of working memory. This so called focus-switching process has two components: (1) the switching of representations from an activated part of long-term memory into a region of immediate access (focus of attention) and (2) the maintenance of representations outside the focus of attention. Age-related deficits occurred in maintaining representations outside the focus of attention, but were absent in switching representations into and out of the focus of attention (e.g., Dorbath and Titz, 2011). In the present study we applied a training approach to examine age-related differences in the trainability of maintenance and switching. We investigated 85 younger (age 19–35, M = 24.07, SD = 3.79) and 91 older (age 59–80, M = 66.27, SD = 4.75) adults using a continuous counting task in a pretest–training–posttest design. The participants were assigned to one of four training conditions differing in the demand to switch or to maintain. The results suggest the influence of training in both components of focus-switching for both, younger and older adults. However, age differences in the amount of training gains were observed. With respect to maintenance the results indicate a compensatory effect of training for older adults who improved their performance to the level of younger adults. With respect to switching, younger adults benefited more from training than older adults. Trainability is thus reduced in older adults with respect to switching, but not for maintenance. PMID:22016742
Huang, Tian; Wang, Xifeng; Si, Run; Chi, Hao; Han, Binyue; Han, Haitang; Cao, Gengsheng; Zhao, Yaofeng
2018-06-01
Compared with mammals, the bird Ig genetic system relies on gene conversion to create an Ab repertoire, with inversion of the IgA-encoding gene and very few cases of Ig subclass diversification. Although gene conversion has been studied intensively, class-switch recombination, a mechanism by which the IgH C region is exchanged, has rarely been investigated in birds. In this study, based on the published genome of pigeon ( Columba livia ) and high-throughput transcriptome sequencing of immune-related tissues, we identified a transcriptionally forward α gene and found that the pigeon IgH gene locus is arranged as μ-α-υ1-υ2. In this article, we show that both DNA deletion and inversion may result from IgA and IgY class switching, and similar junction patterns were observed for both types of class-switch recombination. We also identified two subclasses of υ genes in pigeon, which share low sequence identity. Phylogenetic analysis suggests that divergence of the two pigeon υ genes occurred during the early stage of bird evolution. The data obtained in this study provide new insight into class-switch recombination and Ig gene evolution in birds. Copyright © 2018 by The American Association of Immunologists, Inc.
Origin of the OFF state variability in ReRAM cells
NASA Astrophysics Data System (ADS)
Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Berdan, Radu; Papavassiliou, Christos; Prodromakis, Themistoklis
2014-04-01
This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO2 and In2O3 : SnO2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO2 or ITO active cores over 5 × 5 µm2 and 100 × 100 µm2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO2-based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states.
Karahan, G E; de Vaal, Y J H; Krop, J; Wehmeier, C; Roelen, D L; Claas, F H J; Heidt, S
2017-10-01
Humoral responses against mismatched donor HLA are routinely measured as serum HLA antibodies, which are mainly produced by bone marrow-residing plasma cells. Individuals with a history of alloimmunization but lacking serum antibodies may harbor circulating dormant memory B cells, which may rapidly become plasma cells on antigen reencounter. Currently available methods to detect HLA-specific memory B cells are scarce and insufficient in quantifying the complete donor-specific memory B cell response due to their dependence on synthetic HLA molecules. We present a highly sensitive and specific tool for quantifying donor-specific memory B cells in peripheral blood of individuals using cell lysates covering the complete HLA class I and class II repertoire of an individual. Using this enzyme-linked immunospot (ELISpot) assay, we found a median frequency of 31 HLA class I and 89 HLA class II-specific memory B cells per million IgG-producing cells directed at paternal HLA in peripheral blood samples from women (n = 22) with a history of pregnancy, using cell lysates from spouses. The donor-specific memory B cell ELISpot can be used in HLA diagnostic laboratories as a cross-match assay to quantify donor-specific memory B cells in patients with a history of sensitizing events. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Printing an ITO-free flexible poly (4-vinylphenol) resistive switching device
NASA Astrophysics Data System (ADS)
Ali, Junaid; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Aziz, Shahid; Choi, Kyung Hyun
2018-02-01
Resistive switching in a sandwich structure of silver (Ag)/Polyvinyl phenol (PVP)/carbon nanotube (CNTs)-silver nanowires (AgNWs) coated on a flexible PET substrate is reported in this work. Densely populated networks of one dimensional nano materials (1DNM), CNTs-AgNWs have been used as the conductive bottom electrode with the prominent features of high flexibility and low sheet resistance of 90 Ω/sq. Thin, yet uniform active layer of PVP was deposited on top of the spin coated 1DNM thin film through state of the art printing technique of electrohydrodynamic atomization (EHDA) with an average thickness of 170 ± 28 nm. Ag dots with an active area of ∼0.1 mm2 were deposited through roll to plate printing system as the top electrodes to complete the device fabrication of flexible memory device. Our memory device exhibited suitable electrical characteristics with OFF/ON ratio of 100:1, retention time of 60 min and electrical endurance for 100 voltage sweeps without any noticeable decay in performance. The resistive switching characteristics at a low current compliance of 3 nA were also evaluated for the application of low power consumption. This memory device is flexible and can sustain more than 100 bending cycles at a bending diameter of 2 cm with stable HRS and LRS values. Our proposed device shows promise to be used as a future potential nonvolatile memory device in flexible electronics.
Finite-time stabilisation of a class of switched nonlinear systems with state constraints
NASA Astrophysics Data System (ADS)
Huang, Shipei; Xiang, Zhengrong
2018-06-01
This paper investigates the finite-time stabilisation for a class of switched nonlinear systems with state constraints. Some power orders of the system are allowed to be ratios of positive even integers over odd integers. A Barrier Lyapunov function is introduced to guarantee that the state constraint is not violated at any time. Using the convex combination method and a recursive design approach, a state-dependent switching law and state feedback controllers of individual subsystems are constructed such that the closed-loop system is finite-time stable without violation of the state constraint. Two examples are provided to show the effectiveness of the proposed method.
Remembering to learn: independent place and journey coding mechanisms contribute to memory transfer.
Bahar, Amir S; Shapiro, Matthew L
2012-02-08
The neural mechanisms that integrate new episodes with established memories are unknown. When rats explore an environment, CA1 cells fire in place fields that indicate locations. In goal-directed spatial memory tasks, some place fields differentiate behavioral histories ("journey-dependent" place fields) while others do not ("journey-independent" place fields). To investigate how these signals inform learning and memory for new and familiar episodes, we recorded CA1 and CA3 activity in rats trained to perform a "standard" spatial memory task in a plus maze and in two new task variants. A "switch" task exchanged the start and goal locations in the same environment; an "altered environment" task contained unfamiliar local and distal cues. In the switch task, performance was mildly impaired, new firing maps were stable, but the proportion and stability of journey-dependent place fields declined. In the altered environment, overall performance was strongly impaired, new firing maps were unstable, and stable proportions of journey-dependent place fields were maintained. In both tasks, memory errors were accompanied by a decline in journey codes. The different dynamics of place and journey coding suggest that they reflect separate mechanisms and contribute to distinct memory computations. Stable place fields may represent familiar relationships among environmental features that are required for consistent memory performance. Journey-dependent activity may correspond with goal-directed behavioral sequences that reflect expectancies that generalize across environments. The complementary signals could help link current events with established memories, so that familiarity with either a behavioral strategy or an environment can inform goal-directed learning.
REMEMBERING TO LEARN: INDEPENDENT PLACE AND JOURNEY CODING MECHANISMS CONTRIBUTE TO MEMORY TRANSFER
Bahar, Amir S.; Shapiro, Matthew L.
2012-01-01
The neural mechanisms that integrate new episodes with established memories are unknown. When rats explore an environment, CA1 cells fire in place fields that indicate locations. In goal-directed spatial memory tasks, some place fields differentiate behavioral histories (journey-dependent place fields) while others do not (journey-independent place fields). To investigate how these signals inform learning and memory for new and familiar episodes, we recorded CA1 and CA3 activity in rats trained to perform a standard spatial memory task in a plus maze and in two new task variants. A switch task exchanged the start and goal locations in the same environment; an altered environment task contained unfamiliar local and distal cues. In the switch task, performance was mildly impaired, new firing maps were stable, but the proportion and stability of journey-dependent place fields declined. In the altered environment, overall performance was strongly impaired, new firing maps were unstable, and stable proportions of journey-dependent place fields were maintained. In both tasks, memory errors were accompanied by a decline in journey codes. The different dynamics of place and journey coding suggest that they reflect separate mechanisms and contribute to distinct memory computations. Stable place fields may represent familiar relationships among environmental features that are required for consistent memory performance. Journey-dependent activity may correspond with goal directed behavioral sequences that reflect expectancies that generalize across environments. The complementary signals could help link current events with established memories, so that familiarity with either a behavioral strategy or an environment can inform goal-directed learning. PMID:22323731
Ikaros controls isotype selection during immunoglobulin class switch recombination.
Sellars, MacLean; Reina-San-Martin, Bernardo; Kastner, Philippe; Chan, Susan
2009-05-11
Class switch recombination (CSR) allows the humoral immune response to exploit different effector pathways through specific secondary antibody isotypes. However, the molecular mechanisms and factors that control immunoglobulin (Ig) isotype choice for CSR are unclear. We report that deficiency for the Ikaros transcription factor results in increased and ectopic CSR to IgG(2b) and IgG(2a), and reduced CSR to all other isotypes, regardless of stimulation. Ikaros suppresses active chromatin marks, transcription, and activation-induced cytidine deaminase (AID) accessibility at the gamma2b and gamma2a genes to inhibit class switching to these isotypes. Further, Ikaros directly regulates isotype gene transcription as it directly binds the Igh 3' enhancer and interacts with isotype gene promoters. Finally, Ikaros-mediated repression of gamma2b and gamma2a transcription promotes switching to other isotype genes by allowing them to compete for AID-mediated recombination at the single-cell level. Thus, our results reveal transcriptional competition between constant region genes in individual cells to be a critical and general mechanism for isotype specification during CSR. We show that Ikaros is a master regulator of this competition.
NASA Astrophysics Data System (ADS)
Lapshev, Stepan; Hasan, S. M. Rezaul
2017-04-01
This paper presents the approach of using complex multiplier-accumulators (CMACs) with multiple accumulators to reduce the total number of memory operations in an input-buffered architecture for the X part of an FX correlator. A processing unit of this architecture uses an array of CMACs that are reused for different groups of baselines. The disadvantage of processing correlations in this way is that each input data sample has to be read multiple times from the memory because each input signal is used in many of these baseline groups. While a one-accumulator CMAC cannot switch to a different baseline until it is finished integrating the current one, a multiple-accumulator CMAC can. Thus, the array of multiple-accumulator CMACs can switch between processing different baselines that share some input signals at any moment to reuse the current data in the processing buffers. In this way significant reductions in the number of memory read operations are achieved with only a few accumulators per CMAC. For example, for a large number of input signals three-accumulator CMACs reduce the total number of memory operations by more than a third. Simulated energy measurements of four VLSI designs in a high-performance 28 nm CMOS technology are presented in this paper to demonstrate that using multiple accumulators can also lead to reduced power dissipation of the processing array. Using three accumulators as opposed to one has been found to reduce the overall energy of 8-bit CMACs by 1.4% through the reduction of the switching activity within their circuits, which is in addition to a more than 30% reduction in the memory.
Decentralized Adaptive Neural Output-Feedback DSC for Switched Large-Scale Nonlinear Systems.
Lijun Long; Jun Zhao
2017-04-01
In this paper, for a class of switched large-scale uncertain nonlinear systems with unknown control coefficients and unmeasurable states, a switched-dynamic-surface-based decentralized adaptive neural output-feedback control approach is developed. The approach proposed extends the classical dynamic surface control (DSC) technique for nonswitched version to switched version by designing switched first-order filters, which overcomes the problem of multiple "explosion of complexity." Also, a dual common coordinates transformation of all subsystems is exploited to avoid individual coordinate transformations for subsystems that are required when applying the backstepping recursive design scheme. Nussbaum-type functions are utilized to handle the unknown control coefficients, and a switched neural network observer is constructed to estimate the unmeasurable states. Combining with the average dwell time method and backstepping and the DSC technique, decentralized adaptive neural controllers of subsystems are explicitly designed. It is proved that the approach provided can guarantee the semiglobal uniformly ultimately boundedness for all the signals in the closed-loop system under a class of switching signals with average dwell time, and the tracking errors to a small neighborhood of the origin. A two inverted pendulums system is provided to demonstrate the effectiveness of the method proposed.
NASA Astrophysics Data System (ADS)
Jiang, Jun; Bai, Zi Long; Chen, Zhi Hui; He, Long; Zhang, David Wei; Zhang, Qing Hua; Shi, Jin An; Park, Min Hyuk; Scott, James F.; Hwang, Cheol Seong; Jiang, An Quan
2018-01-01
Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO3 thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.
A Shape-Memory Alloy Thermal Conduction Switch for Use at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Vaidyanathan, Raj
2004-01-01
The following summarizes the activities performed under NASA grant NAG10-323 from September 1, 2002 through September 30, 2004 at the. Univ ersity of Central Florida. A version of this has already been submitt ed for publication in the international journal Swart Materials and S tructures in December 2004. Additionally, a version of this has alrea dy appeared in print in Advances in Cryogenic Engineering, American Institute of Physics, (2004) 50A 26-3; in an article entitled "A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch" by V.B. Krish nan. J.D. Singh. T.R. Woodruff. W.U. Notardonato and R. Vaidyanathan (article is attached at the end of this report).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Ayan K.; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha
We show that the energy dissipated to write bits in spin-transfer-torque random access memory can be reduced by an order of magnitude if a surface acoustic wave (SAW) is launched underneath the magneto-tunneling junctions (MTJs) storing the bits. The SAW-generated strain rotates the magnetization of every MTJs' soft magnet from the easy towards the hard axis, whereupon passage of a small spin-polarized current through a target MTJ selectively switches it to the desired state with > 99.99% probability at room temperature, thereby writing the bit. The other MTJs return to their original states at the completion of the SAW cycle.
Combined deficiency of MSH2 and Sμ region abolishes class switch recombination.
Leduc, Claire; Haddad, Dania; Laviolette-Malirat, Nathalie; Nguyen Huu, Ngoc-Sa; Khamlichi, Ahmed Amine
2010-10-01
Class switch recombination (CSR) is mediated by G-rich tandem repeated sequences termed switch regions. Transcription of switch regions generates single-stranded R loops that provide substrates for activation-induced cytidine deaminase. Mice deficient in MSH2 have a mild defect in CSR and analysis of their switch junctions has led to a model in which MSH2 is more critical for switch recombination events outside than within the tandem repeats. It is also known that deletion of the whole Sμ region severely impairs but does not abrogate CSR despite the lack of detectable R loops. Here, we demonstrate that deficiency of both MSH2 and the Sμ region completely abolishes CSR and that the abrogation occurs at the genomic level. This finding further supports the crucial role of MSH2 outside the tandem repeats. It also indicates that during CSR, MSH2 has access to activation-induced cytidine deaminase targets in R-loop-deficient Iμ-Cμ sequences rarely used in CSR, suggesting an MSH2-dependent DNA processing activity at the Iμ exon that may decrease with transcription elongation across the Sμ region.
Kawanishi, H; Ozato, K; Strober, W
1985-06-01
We previously defined a concanavalin A (Con A)-induced cloned T cell population in Peyer's patches (PP) that causes sIgM-bearing B cells to switch to sIgA-bearing B cells. In the present study we show that such IgA-specific switch T cells proliferate when exposed to syngeneic stimulator cells, i.e., the switch T cells are autoreactive. Detailed study of this phenomenon disclosed that both B cells and macrophages were capable of causing switch T cell proliferation, and in both cases, stimulation was enhanced by preactivation of the stimulator cells with lipopolysaccharide (LPS). In addition, fresh T cells can act as stimulators, but only if preactivated with Con A. Finally, it was clearly shown in blocking studies with the use of various antibodies directed at class II MHC specificities that class II MHC antigens were the stimulatory determinants. These studies suggest that IgA-specific switch T cells arise in PP as a result of autologous cell-cell interactions with activated (antigen-stimulated) B cells, macrophages, or T cells.
Nanoscale content-addressable memory
NASA Technical Reports Server (NTRS)
Davis, Bryan (Inventor); Principe, Jose C. (Inventor); Fortes, Jose (Inventor)
2009-01-01
A combined content addressable memory device and memory interface is provided. The combined device and interface includes one or more one molecular wire crossbar memories having spaced-apart key nanowires, spaced-apart value nanowires adjacent to the key nanowires, and configurable switches between the key nanowires and the value nanowires. The combination further includes a key microwire-nanowire grid (key MNG) electrically connected to the spaced-apart key nanowires, and a value microwire-nanowire grid (value MNG) electrically connected to the spaced-apart value nanowires. A key or value MNGs selects multiple nanowires for a given key or value.
2015-08-01
metal structures, memristors, resistive random access memory, RRAM, titanium dioxide, Zr40Cu35Al15Ni10, ZCAN, resistive memory, tunnel junction 16...TiO2 thickness ........................6 1 1. Introduction Resistive-switching memory elements based on metal-insulator-metal (MIM) diodes ...have attracted great interest due to their potential as components for simple, inexpensive, and high-density non-volatile storage devices. MIM diodes
Fast and efficient STT switching in MTJ using additional transient pulse current
NASA Astrophysics Data System (ADS)
Pathak, Sachin; Cha, Jongin; Jo, Kangwook; Yoon, Hongil; Hong, Jongill
2017-06-01
We propose a profile of write pulse current-density to switch magnetization in a perpendicular magnetic tunnel junction to reduce switching time and write energy as well. Our simulated results show that an overshoot transient pulse current-density (current spike) imposed to conventional rectangular-shaped pulse current-density (main pulse) significantly improves switching speed that yields the reduction in write energy accordingly. For example, we could dramatically reduce the switching time by 80% and thereby reduce the write energy over 9% in comparison to the switching without current spike. The current spike affects the spin dynamics of the free layer and reduces the switching time mainly due to spin torque induced. On the other hand, the large Oersted field induced causes changes in spin texture. We believe our proposed write scheme can make a breakthrough in magnetic random access memory technology seeking both high speed operation and low energy consumption.
Adult age differences in task switching.
Kray, J; Lindenberger, U
2000-03-01
Age differences in 2 components of task-set switching speed were investigated in 118 adults aged 20 to 80 years using task-set homogeneous (e.g., AAAA ...) and task-set heterogeneous (e.g., AABBAABB ... ) blocks. General switch costs were defined as latency differences between heterogeneous and homogeneous blocks. whereas specific switch costs were defined as differences between switch and nonswitch trials within heterogeneous blocks. Both types of costs generalized over verbal, figural, and numeric stimulus materials; were more highly correlated to fluid than to crystallized abilities; and were not eliminated after 6 sessions of practice, indicating that they reflect basic and domain-general aspects of cognitive control. Most important, age-associated increments in costs were significantly greater for general than for specific switch costs, suggesting that the ability to efficiently maintain and coordinate 2 alternating task sets in working memory instead of 1 is more negatively affected by advancing age than the ability to execute the task switch itself.
Xu, Ren; Jiang, Ning; Dosen, Strahinja; Lin, Chuang; Mrachacz-Kersting, Natalie; Dremstrup, Kim; Farina, Dario
2016-08-01
In this study, we present a novel multi-class brain-computer interface (BCI) for communication and control. In this system, the information processing is shared by the algorithm (computer) and the user (human). Specifically, an electro-tactile cycle was presented to the user, providing the choice (class) by delivering timely sensory input. The user discriminated these choices by his/her endogenous sensory ability and selected the desired choice with an intuitive motor task. This selection was detected by a fast brain switch based on real-time detection of movement-related cortical potentials from scalp EEG. We demonstrated the feasibility of such a system with a four-class BCI, yielding a true positive rate of ∼ 80% and ∼ 70%, and an information transfer rate of ∼ 7 bits/min and ∼ 5 bits/min, for the movement and imagination selection command, respectively. Furthermore, when the system was extended to eight classes, the throughput of the system was improved, demonstrating the capability of accommodating a large number of classes. Combining the endogenous sensory discrimination with the fast brain switch, the proposed system could be an effective, multi-class, gaze-independent BCI system for communication and control applications.
Treating verbal working memory in a boy with intellectual disability
Orsolini, Margherita; Melogno, Sergio; Latini, Nausica; Penge, Roberta; Conforti, Sara
2015-01-01
The present case study investigates the effects of a cognitive training of verbal working memory that was proposed for Davide, a 14-year-old boy diagnosed with mild intellectual disability. The program stimulated attention, inhibition, switching, and the ability to engage either in verbal dual tasks or in producing inferences after the content of a short passage had been encoded in episodic memory. Key elements in our program included (1) core training of target cognitive mechanisms; (2) guided practice emphasizing concrete strategies to engage in exercises; and (3) a variable amount of adult support. The study explored whether such a complex program produced “near transfer” effects on an untrained dual task assessing verbal working memory and whether effects on this and other target cognitive mechanisms (i.e., attention, inhibition, and switching) were long-lasting and produced “far transfer” effects on cognitive flexibility. The effects of the intervention program were investigated with a research design consisting of four subsequent phases lasting 8 or 10 weeks, each preceded and followed by testing. There was a control condition (phase 1) in which the boy received, at home, a stimulation focused on the visuospatial domain. Subsequently, there were three experimental training phases, in which stimulation in the verbal domain was first focused on attention and inhibition (phase 2a), then on switching and simple working memory tasks (phase 2b), then on complex working memory tasks (phase 3). A battery of neuropsychological tests was administered before and after each training phase and 7 months after the conclusion of the intervention. The main finding was that Davide changed from being incapable of addressing the dual task request of the listening span test in the initial assessment to performing close to the normal limits of a 13-year-old boy in the follow-up assessment with this test, when he was 15 years old. PMID:26284014
Bauer, Jessie-Raye; Martinez, Joel E.; Roe, Mary Abbe; Church, Jessica A.
2017-01-01
Two behavioral experiments assessed the plasticity and short-term improvement of task switching in 215 children and adults. Specifically, we studied manipulations of cued attention to different features of a target stimulus as a way to assess the development of cognitive flexibility. Each experiment had multiple levels of difficulty via manipulation of number of cued features (2–4) and number of response options (2 or 4). Working memory demand was manipulated across the two experiments. Impact of memory demand and task level manipulations on task accuracy and response times were measured. There were three overall goals: First, these task manipulations (number of cued features, response choices, and working memory load) were tested to assess the stability of group differences in performance between children ages 6–16 years and adults 18–27 years, with the goal of reducing age group differences. Second, age-related transitions to adult-level performance were examined within subgroups of the child sample. Third, short-term improvement from the beginning to the end of the study session was measured to probe whether children can improve with task experience. Attempts to use task manipulations to reduce age differences in cued task switching performance were unsuccessful: children performed consistently worse and were more susceptible to task manipulations than adults. However, across both studies, adult-like performance was observed around mid-adolescence, by ages 13-16 years. Certain task manipulations, especially increasing number of response options when working memory demand was low, produced differences from adults even in the oldest children. Interestingly, there was similar performance improvement with practice for both child and adult groups. The higher memory demand version of the task (Experiment 2) prompted greater short-term improvement in accuracy and response times than the lower memory demand version (Experiment 1). These results reveal stable differences in cued switching performance over development, but also relative flexibility within a given individual over time. PMID:28824489
Comparative study of SiC- and Si-based photovoltaic inverters
NASA Astrophysics Data System (ADS)
Ando, Yuji; Oku, Takeo; Yasuda, Masashi; Shirahata, Yasuhiro; Ushijima, Kazufumi; Murozono, Mikio
2017-01-01
This article reports comparative study of 150-300 W class photovoltaic inverters (Si inverter, SiC inverter 1, and SiC inverter 2). In these sub-kW class inverters, the ON-resistance was considered to have little influence on the efficiency. The developed SiC inverters, however, have exhibited an approximately 3% higher direct current (DC)-alternating current (AC) conversion efficiency as compared to the Si inverter. Power loss analysis indicated a reduction in the switching and reverse recovery losses of SiC metal-oxide-semiconductor field-effect transistors used for the DC-AC converter is responsible for this improvement. In the SiC inverter 2, an increase of the switching frequency up to 100 kHz achieved a state-of-the-art combination of the weight (1.25 kg) and the volume (1260 cm3) as a 150-250 W class inverter. Even though the increased switching frequency should cause the increase of the switching losses, the SiC inverter 2 exhibited an efficiency comparable to the SiC inverter 1 with a switching frequency of 20 kHz. The power loss analysis also indicated a decreased loss of the DC-DC converter built with SiC Schottky barrier diodes led to the high efficiency for its increased switching frequency. These results clearly indicated feasibility of SiC devices even for sub-kW photovoltaic inverters, which will be available for the applications where compactness and efficiency are of tremendous importance.
Simplified Design Equations for Class-E Neural Prosthesis Transmitters
Troyk, Philip; Hu, Zhe
2013-01-01
Extreme miniaturization of implantable electronic devices is recognized as essential for the next generation of neural prostheses, owing to the need for minimizing the damage and disruption of the surrounding neural tissue. Transcutaneous power and data transmission via a magnetic link remains the most effective means of powering and controlling implanted neural prostheses. Reduction in the size of the coil, within the neural prosthesis, demands the generation of a high-intensity radio frequency magnetic field from the extracoporeal transmitter. The Class-E power amplifier circuit topology has been recognized as a highly effective means of producing large radio frequency currents within the transmitter coil. Unfortunately, design of a Class-E circuit is most often fraught by the need to solve a complex set of equations so as to implement both the zero-voltage-switching and zero-voltage-derivative-switching conditions that are required for efficient operation. This paper presents simple explicit design equations for designing the Class-E circuit topology. Numerical design examples are presented to illustrate the design procedure. PMID:23292784
ERIC Educational Resources Information Center
Blakey, Emma; Visser, Ingmar; Carroll, Daniel J.
2016-01-01
Improvements in cognitive flexibility during the preschool years have been linked to developments in both working memory and inhibitory control, though the precise contribution of each remains unclear. In the current study, one hundred and twenty 2-, 3-, and 4-year-olds completed two rule-switching tasks. In one version, children switched rules in…
Deng, Zexing; Guo, Yi; Ma, Peter X; Guo, Baolin
2018-09-15
Stimuli responsive cryogels with multi-functionality have potential application for electrical devices, actuators, sensors and biomedical devices. However, conventional thermal sensitive poly(N-isopropylacrylamide) cryogels show slow temperature response speed and lack of multi-functionality, which greatly limit their practical application. Herein we present conductive fast (2 min for both deswelling and reswelling behavior) thermally responsive poly(N-isopropylacrylamide) cryogels with rapid shape memory properties (3 s for shape recovery), near-infrared (NIR) light sensitivity and pressure dependent conductivity, and further demonstrated their applications as temperature sensitive on-off switch, NIR light sensitive on-off switch, water triggered shape memory on-off switch and pressure dependent device. These cryogels were first prepared in dimethyl sulfoxide below its melting temperature in ice bath and subsequently put into aniline or pyrrole solution to in situ deposition of conducting polyaniline or polypyrrole nanoparticles. The continuous macroporous sponge-like structure provides cryogels with rapid responsivity both in deswelling, reswelling kinetics and good elasticity. After incorporating electrically conductive polyaniline or polypyrrole nanoaggregates, the hybrid cryogels exhibit desirable conductivity, photothermal property, pressure dependent conductivity and good cytocompatibility. These multifunctional hybrid cryogels make them great potential as stimuli responsive electrical device, tissue engineering scaffolds, drug delivery vehicle and electronic skin. Copyright © 2018 Elsevier Inc. All rights reserved.
Resistive switching near electrode interfaces: Estimations by a current model
NASA Astrophysics Data System (ADS)
Schroeder, Herbert; Zurhelle, Alexander; Stemmer, Stefanie; Marchewka, Astrid; Waser, Rainer
2013-02-01
The growing resistive switching database is accompanied by many detailed mechanisms which often are pure hypotheses. Some of these suggested models can be verified by checking their predictions with the benchmarks of future memory cells. The valence change memory model assumes that the different resistances in ON and OFF states are made by changing the defect density profiles in a sheet near one working electrode during switching. The resulting different READ current densities in ON and OFF states were calculated by using an appropriate simulation model with variation of several important defect and material parameters of the metal/insulator (oxide)/metal thin film stack such as defect density and its profile change in density and thickness, height of the interface barrier, dielectric permittivity, applied voltage. The results were compared to the benchmarks and some memory windows of the varied parameters can be defined: The required ON state READ current density of 105 A/cm2 can only be achieved for barriers smaller than 0.7 eV and defect densities larger than 3 × 1020 cm-3. The required current ratio between ON and OFF states of at least 10 requests defect density reduction of approximately an order of magnitude in a sheet of several nanometers near the working electrode.
Are stimulus-response rules represented phonologically for task-set preparation and maintenance?
van 't Wout, Félice; Lavric, Aureliu; Monsell, Stephen
2013-09-01
Accounts of task-set control generally assume that the current task's stimulus-response (S-R) rules must be elevated to a privileged state of activation. How are they represented in this state? In 3 task-cuing experiments, we tested the hypothesis that phonological working memory is used to represent S-R rules for task-set control by getting participants to switch between 2 sets of arbitrary S-R rules and manipulating the articulatory duration (Experiment 1) or phonological similarity (Experiments 2 and 3) of the names of the stimulus terms. The task cue specified which of 2 objects (Experiment 1) or consonants (Experiment 2) in a display to identify with a key press. In Experiment 3, participants switched between identifying an object/consonant and its color/visual texture. After practice, neither the duration nor the similarity of the stimulus terms had detectable effects on overall performance, task-switch cost, or its reduction with preparation. Only in the initial single-task training blocks was phonological similarity a significant handicap. Hence, beyond a very transient role, there is no evidence that (declarative) phonological working memory makes a functional contribution to representing S-R rules for task-set control, arguably because once learned, they are represented in nonlinguistic procedural working memory. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Carlos, Emanuel; Kiazadeh, Asal; Deuermeier, Jonas; Branquinho, Rita; Martins, Rodrigo; Fortunato, Elvira
2018-08-24
Lately, resistive switching memories (ReRAM) have been attracting a lot of attention due to their possibilities of fast operation, lower power consumption and simple fabrication process and they can also be scaled to very small dimensions. However, most of these ReRAM are produced by physical methods and nowadays the industry demands more simplicity, typically associated with low cost manufacturing. As such, ReRAMs in this work are developed from a solution-based aluminum oxide (Al 2 O 3 ) using a simple combustion synthesis process. The device performance is optimized by two-stage deposition of the Al 2 O 3 film. The resistive switching properties of the bilayer devices are reproducible with a yield of 100%. The ReRAM devices show unipolar resistive switching behavior with good endurance and retention time up to 10 5 s at 85 °C. The devices can be programmed in a multi-level cell operation mode by application of different reset voltages. Temperature analysis of various resistance states reveals a filamentary nature based on the oxygen vacancies. The optimized film was stacked between ITO and indium zinc oxide, targeting a fully transparent device for applications on transparent system-on-panel technology.
Heat-Assisted Multiferroic Solid-State Memory
2017-01-01
A heat-assisted multiferroic solid-state memory design is proposed and analysed, based on a PbNbZrSnTiO3 antiferroelectric layer and Ni81Fe19 magnetic free layer. Information is stored as magnetisation direction in the free layer of a magnetic tunnel junction element. The bit writing process is contactless and relies on triggering thermally activated magnetisation switching of the free layer towards a strain-induced anisotropy easy axis. A stress is generated using the antiferroelectric layer by voltage-induced antiferroelectric to ferroelectric phase change, and this is transmitted to the magnetic free layer by strain-mediated coupling. The thermally activated strain-induced magnetisation switching is analysed here using a three-dimensional, temperature-dependent magnetisation dynamics model, based on simultaneous evaluation of the stochastic Landau-Lifshitz-Bloch equation and heat flow equation, together with stochastic thermal fields and magnetoelastic contributions. The magnetisation switching probability is calculated as a function of stress magnitude and maximum heat pulse temperature. An operating region is identified, where magnetisation switching always occurs, with stress values ranging from 80 to 180 MPa, and maximum temperatures normalised to the Curie temperature ranging from 0.65 to 0.99. PMID:28841185
Resistive switching mechanism of Ag/ZrO2:Cu/Pt memory cell
NASA Astrophysics Data System (ADS)
Long, Shibing; Liu, Qi; Lv, Hangbing; Li, Yingtao; Wang, Yan; Zhang, Sen; Lian, Wentai; Zhang, Kangwei; Wang, Ming; Xie, Hongwei; Liu, Ming
2011-03-01
Resistive switching mechanism of zirconium oxide-based resistive random access memory (RRAM) devices composed of Cu-doped ZrO2 film sandwiched between an oxidizable electrode and an inert electrode was investigated. The Ag/ZrO2:Cu/Pt RRAM devices with crosspoint structure fabricated by e-beam evaporation and e-beam lithography show reproducible bipolar resistive switching. The linear I- V relationship of low resistance state (LRS) and the dependence of LRS resistance ( R ON) and reset current ( I reset) on the set current compliance ( I comp) indicate that the observed resistive switching characteristics of the Ag/ZrO2:Cu/Pt device should be ascribed to the formation and annihilation of localized conductive filaments (CFs). The physical origin of CF was further analyzed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). CFs were directly observed by cross-sectional TEM. According to EDS and elemental mapping analysis, the main chemical composition of CF is determined by Ag atoms, coming from the Ag top electrode. On the basis of these experiments, we propose that the set and reset process of the device stem from the electrochemical reactions in the zirconium oxide under different external electrical stimuli.
NASA Astrophysics Data System (ADS)
Nakajima, Ryo; Azuma, Atsushi; Yoshida, Hayato; Shimizu, Tomohiro; Ito, Takeshi; Shingubara, Shoso
2018-06-01
Resistive random access memory (ReRAM) devices with a HfO2 dielectric layer have been studied extensively owing to the good reproducibility of their SET/RESET switching properties. Furthermore, it was reported that a thin Hf layer next to a HfO2 layer stabilized switching properties because of the oxygen scavenging effect. In this work, we studied the Hf thickness dependence of the resistance switching characteristics of a Ti/Hf/HfO2/Au ReRAM device. It is found that the optimum Hf thickness is approximately 10 nm to obtain good reproducibility of SET/RESET voltages with a small RESET current. However, when the Hf thickness was very small (∼2 nm), the device failed after the first RESET process owing to the very large RESET current. In the case of a very thick Hf layer (∼20 nm), RESET did not occur owing to the formation of a leaky dielectric layer. We observed the occurrence of multiple resistance states in the RESET process of the device with a Hf thickness of 10 nm by increasing the RESET voltage stepwise.
Executive Functions Contribute Uniquely to Reading Competence in Minority Youth.
Jacobson, Lisa A; Koriakin, Taylor; Lipkin, Paul; Boada, Richard; Frijters, Jan C; Lovett, Maureen W; Hill, Dina; Willcutt, Erik; Gottwald, Stephanie; Wolf, Maryanne; Bosson-Heenan, Joan; Gruen, Jeffrey R; Mahone, E Mark
Competent reading requires various skills beyond those for basic word reading (i.e., core language skills, rapid naming, phonological processing). Contributing "higher-level" or domain-general processes include information processing speed and executive functions (working memory, strategic problem solving, attentional switching). Research in this area has relied on largely Caucasian samples, with limited representation of children from racial or ethnic minority groups. This study examined contributions of executive skills to reading competence in 761 children of minority backgrounds. Hierarchical linear regressions examined unique contributions of executive functions (EF) to word reading, fluency, and comprehension. EF contributed uniquely to reading performance, over and above reading-related language skills; working memory contributed uniquely to all components of reading; while attentional switching, but not problem solving, contributed to isolated and contextual word reading and reading fluency. Problem solving uniquely predicted comprehension, suggesting that this skill may be especially important for reading comprehension in minority youth. Attentional switching may play a unique role in development of reading fluency in minority youth, perhaps as a result of the increased demand for switching between spoken versus written dialects. Findings have implications for educational and clinical practice with regard to reading instruction, remedial reading intervention, and assessment of individuals with reading difficulty.
Heat-Assisted Multiferroic Solid-State Memory.
Lepadatu, Serban; Vopson, Melvin M
2017-08-25
A heat-assisted multiferroic solid-state memory design is proposed and analysed, based on a PbNbZrSnTiO₃ antiferroelectric layer and Ni 81 Fe 19 magnetic free layer. Information is stored as magnetisation direction in the free layer of a magnetic tunnel junction element. The bit writing process is contactless and relies on triggering thermally activated magnetisation switching of the free layer towards a strain-induced anisotropy easy axis. A stress is generated using the antiferroelectric layer by voltage-induced antiferroelectric to ferroelectric phase change, and this is transmitted to the magnetic free layer by strain-mediated coupling. The thermally activated strain-induced magnetisation switching is analysed here using a three-dimensional, temperature-dependent magnetisation dynamics model, based on simultaneous evaluation of the stochastic Landau-Lifshitz-Bloch equation and heat flow equation, together with stochastic thermal fields and magnetoelastic contributions. The magnetisation switching probability is calculated as a function of stress magnitude and maximum heat pulse temperature. An operating region is identified, where magnetisation switching always occurs, with stress values ranging from 80 to 180 MPa, and maximum temperatures normalised to the Curie temperature ranging from 0.65 to 0.99.
NASA Astrophysics Data System (ADS)
Feng, M.; Holonyak, N.; Wang, C. Y.
2017-09-01
Optical bistable devices are fundamental to digital photonics as building blocks of switches, logic gates, and memories in future computer systems. Here, we demonstrate both optical and electrical bistability and capability for switching in a single transistor operated at room temperature. The electro-optical hysteresis is explained by the interaction of electron-hole (e-h) generation and recombination dynamics with the cavity photon modulation in different switching paths. The switch-UP and switch-DOWN threshold voltages are determined by the rate difference of photon generation at the base quantum-well and the photon absorption via intra-cavity photon-assisted tunneling controlled by the collector voltage. Thus, the transistor laser electro-optical bistable switching is programmable with base current and collector voltage, and the basis for high speed optical logic processors.