Rubus Iconography: Antiquity to the Renaissance
Technology Transfer Automated Retrieval System (TEKTRAN)
Rubus images from late Antiquity to the Renaissance are described and assessed for botanical and horticultural information. The earliest surviving European blackberry (R. fruticosus L. sp. agg.) image is found on folio 83 in the Juliana Anicia Codex (Codex Vindobonensis) of 512 CE which contains cop...
Studying the Leaders of Classical Antiquity.
ERIC Educational Resources Information Center
Moritz, Helen E.
This paper describes a graduate seminar for educational administrators, using works of ancient Greek and Roman literature as bases for the consideration of organization and leadership problems identified in theoretical literature. The seminar was team taught by professors from the Departments of Educational Administration and Classics at the…
Classical Antiquity and One Mixed-Ability, Team-Taught, Interrelated Humanities Course
ERIC Educational Resources Information Center
Smith, John Sharwood
1977-01-01
A humanities program is described in which the students learn geography, history, English, religious education, classical studies, social anthropology, and art history as a single subject. All classes have students of mixed abilities. Intellectual and social skills required for mixed-ability teaching are outlined. (SW)
Cerebral localization in antiquity.
Rose, F Clifford
2009-07-01
Fragments of neurology can be found in the oldest medical writings in antiquity. Recognizable cerebral localization is seen in Egyptian medical papyri. Most notably, the Edwin Smith papyrus describes hemiplegia after a head injury. Similar echoes can be seen in Homer, the Bible, and the pre-Hippocratic writer Alcmaeon of Croton. While Biblical writers thought that the heart was the seat of the soul, Hippocratic writers located it in the head. Alexandrian anatomists described the nerves, and Galen developed the ventricular theory of cognition whereby mental functions are classified and localized in one of the cerebral ventricles. Medieval scholars, including the early Church Fathers, modified Galenic ventricular theory so as to make it a dynamic model of cognition. Physicians in antiquity subdivided the brain into separate areas and attributed to them different functions, a phenomenon that connects them with modern neurologists. PMID:20183203
Orthodontics in antiquity: myth or reality.
Forshaw, R J
2016-08-12
Malocclusion, although a common finding in today's world, appears to have been less frequent in antiquity. There are references to overcrowding, delayed exfoliation of deciduous teeth and basic orthodontic treatment in the writings of classical authors such as Hippocrates, Celsus and Galen. However, early authentic archaeological finds of dental appliances are extremely rare. Considerable attention has focussed on gold banded devices excavated from ancient Etruscan sites in central Italy which have been dated to around the seventh to the fourth centuries BC, with a number of authors suggesting an orthodontic function for these appliances. This paper reviews the evidence for the possible treatment of malocclusions in antiquity and concludes that the use of orthodontic appliances to facilitate tooth movement is not supported by the available evidence. PMID:27514349
Illustrating cerebral function: the iconography of arrows.
Schott, G D
2000-01-01
For over a century the arrow has appeared in illustrations of cerebral function, yet the implications of using such symbols have not been previously considered. This review seeks to outline the nature, evolution, applications and limitations of this deceptively simple graphic device when it is used to picture functions of the brain. The arrow is found to have been used in several different ways: as a means of endowing anatomical structures with functional properties; as a method of displaying neural function either in free-standing form or in a structural or spatial framework; as a device for correlating functional data with underlying brain topography; and as a technique for linking functions of the brain with the world outside and with various philosophical concepts. For many of these uses the essential feature of the arrow is its directional characteristic. In contrast to the line, it is direction that enables the arrow to display information about time, which in turn can be exploited to depict functional rather than structural data. However, the use of the arrow is fraught with difficulties. It is often unclear whether an arrow has been used to illustrate fact, hypothesis, impression or possibility, or merely to provide a decorative flourish. Furthermore, the powerful symbolic nature of the arrow can so easily confer a spurious validity on the conjectural. Increasingly now there are insuperable difficulties when attempting to illustrate complex mechanisms of brain function. In the iconography of cerebral function, therefore, arrows with all their ambiguities may in certain circumstances become superseded by more non-representational symbols such as the abstract devices of the computational neuroscientist. PMID:11205341
Medieval iconography of watermelons in Mediterranean Europe
Paris, Harry S.; Daunay, Marie-Christine; Janick, Jules
2013-01-01
Background and Aims The watermelon, Citrullus lanatus (Cucurbitaceae), is an important fruit vegetable in the warmer regions of the world. Watermelons were illustrated in Mediterranean Antiquity, but not as frequently as some other cucurbits. Little is known concerning the watermelons of Mediterranean Europe during medieval times. With the objective of obtaining an improved understanding of watermelon history and diversity in this region, medieval drawings purportedly of watermelons were collected, examined and compared for originality, detail and accuracy. Findings The oldest manuscript found that contains an accurate, informative image of watermelon is the Tractatus de herbis, British Library ms. Egerton 747, which was produced in southern Italy, around the year 1300. A dozen more original illustrations were found, most of them from Italy, produced during the ensuing two centuries that can be positively identified as watermelon. In most herbal-type manuscripts, the foliage is depicted realistically, the plants shown as having long internodes, alternate leaves with pinnatifid leaf laminae, and the fruits are small, round and striped. The manuscript that contains the most detailed and accurate image of watermelon is the Carrara Herbal, British Library ms. Egerton 2020. In the agriculture-based manuscripts, the foliage, if depicted, is not accurate, but variation in the size, shape and coloration of the fruits is evident. Both red-flesh and white-flesh watermelons are illustrated, corresponding to the typical sweet dessert watermelons so common today and the insipid citron watermelons, respectively. The variation in watermelon fruit size, shape and coloration depicted in the illustrations indicates that at least six cultivars of watermelon are represented, three of which probably had red, sweet flesh and three of which appear to have been citrons. Evidently, citron watermelons were more common in Mediterranean Europe in the past than they are today. PMID:23904443
The Alexandrian Library of Antiquity.
ERIC Educational Resources Information Center
Miner, Afton M.; Cranney, A. Garr
This paper celebrates UNESCO's announcement of the re-establishment of the Alexandrian Library, citing the incentive the project provides to review the history of the famed library of antiquity, of the librarians who served it, and of the scholars who used it. After a brief history of the city of Alexandria, including its founding by Alexander,…
History of allergy in antiquity.
Ring, Johannes
2014-01-01
Allergic diseases are not new. They have been described in the early medical literature in various cultures like Egypt, China, indigenous America and in the Greco-Roman tradition. The terms 'idiosyncrasy', 'asthma' and 'eczema' are still in use today. The most famous allergic individual of antiquity with the whole triad of atopic diseases and a positive family history of atopy probably was Emperor Octavianus Augustus.
History of allergy in antiquity.
Ring, Johannes
2014-01-01
Allergic diseases are not new. They have been described in the early medical literature in various cultures like Egypt, China, indigenous America and in the Greco-Roman tradition. The terms 'idiosyncrasy', 'asthma' and 'eczema' are still in use today. The most famous allergic individual of antiquity with the whole triad of atopic diseases and a positive family history of atopy probably was Emperor Octavianus Augustus. PMID:24925379
Bubble signatures revealed in antique artefacts
NASA Astrophysics Data System (ADS)
Wallace, Stephen C.; Kenney-Wallace, Geraldine
2016-01-01
Antique Chinese porcelain can fetch thousands of dollars on the art market. Stephen C Wallace and Geraldine Kenney-Wallace explain how their physics-based technique could help collectors and connoisseurs to tell a real antique object from a fake.
Code of Federal Regulations, 2010 CFR
2010-04-01
... feature which changes it substantially from the article originally produced, or if the antique portion has otherwise been so changed as to lose its identity as the article which was in existence prior to the time... antique has been repaired with a substantial amount of additional material, without changing the...
[Chemistry of cosmetics in antiquity].
Tsoucaris, G; Martinetto, P; Walter, P; Lévêque, J L
2001-11-01
Several texts, statues and paintings denote the importance of make up and eye medicines since the earliest periods of Egyptian history. We have investigated cosmetic powders that were preserved in original alabaster and reed containers. Quantitative crystallographic and chemical analysis of the mineral and organic components revealed surprising facts. In addition to the well known galena PbS and cerussite PbCO3, two unexpected constituents have been identified: laurionite PbOHCl and phosgenite Pb2 (CO3) Cl2, which are rare halide minerals found in lead slag only in certain places where the sea water has weathered lead debris left over from silver mining operations in Antiquity. Alteration of natural lead minerals is also unlikely, given the excellent state of conservation of the reed vessels. This evidence indicates that laurionite and phosgenite were synthesised artificially. Support for this statement comes from recipes of medicinal products to be "used in ophthalmology" reported by Greco-Roman authors such as Dioscorides and Pline (1st Century B.C.): silver foam PbO is crushed and mixed with rock salt and sometimes with natron (Na2CO3). The reaction seems to be straightforward. However, our experiments in the laboratory have shown a major difficulty, arising from the concomitant production of alkali, which raises the pH and leads to different products. It follows that the Egyptians very early mastered this kind of chemical synthesis and technology, a fact of great importance in the History of Sciences. Fire-based technology had been mastered to manufacture Egyptian Blue pigments since the third millennium B.C. The present results now suggest that wet chemistry was already known 4000 years ago. This key finding provides a new insight into the chemical technology of far greater antiquity than has previously been believed. Yet, an important question remains relative to the ultimate motivation for these technological developments. If the Egyptians initially only
Optimum Onager: The Classical Mechanics of a Classical Siege Engine
ERIC Educational Resources Information Center
Denny, Mark
2009-01-01
The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this…
Beating the forger: authenticating ceramic antiquities
NASA Astrophysics Data System (ADS)
Stoneham, Doreen; Stoneham, Marshall
2010-09-01
Today's forger may have skills to match the artists and craftsmen of the past. But can they be exposed by scientific methods? Ceramic antiquities - including pottery, porcelains, and bronzes with a casting core - have long been valued, and demonstrable antiquity is crucial. Thermoluminescence provides key evidence as to when the object was fired. We describe the basic ideas, the methods themselves, and some of the potential limitations. Examples illustrate the remarkable ingenuity of forgers, who are making determined efforts to beat the physics-based tests of authenticity.
Where the Wild Things Are: The Evolving Iconography of Rural Fauna
ERIC Educational Resources Information Center
Buller, Henry
2004-01-01
This paper explores the changing relationship between "nature" and rurality through an examination of the shifting iconography of animals, and particularly "wild" animals, in a rural setting. Drawing upon a set of examples, the paper argues that the faunistic icons of rural areas are evolving as alternative conceptions of the countryside, of…
"Our Bruised Arms Hung Up as Monuments": Nuclear Iconography in Post-Cold War Culture.
ERIC Educational Resources Information Center
Taylor, Bryan C.
2003-01-01
Notes that communication scholars have traditionally examined nuclear discourse at the expense of nuclear images. Develops a nuclear-critical iconology, one sensitive to the role of images in creating and disrupting popular consent to the production of nuclear weapons. Examines three aesthetics in post-Cold War iconography for their significance…
Code of Federal Regulations, 2011 CFR
2011-04-01
.... CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Works of Art § 10.53 Antiques. (a) Articles accompanying a passenger and entitled to entry under the passenger's declaration and entry,...
50 CFR 14.22 - Certain antique articles.
Code of Federal Regulations, 2012 CFR
2012-10-01
....22 Certain antique articles. Any person may import at any Customs Service port designated for such purpose, any article (other than scrimshaw, defined in 16 U.S.C 1539(f)(1)(B) and 50 CFR 217.12 as any art... 50 Wildlife and Fisheries 1 2012-10-01 2012-10-01 false Certain antique articles. 14.22 Section...
50 CFR 14.22 - Certain antique articles.
Code of Federal Regulations, 2011 CFR
2011-10-01
....22 Certain antique articles. Any person may import at any Customs Service port designated for such purpose, any article (other than scrimshaw, defined in 16 U.S.C 1539(f)(1)(B) and 50 CFR 217.12 as any art... 50 Wildlife and Fisheries 1 2011-10-01 2011-10-01 false Certain antique articles. 14.22 Section...
50 CFR 14.22 - Certain antique articles.
Code of Federal Regulations, 2013 CFR
2013-10-01
....22 Certain antique articles. Any person may import at any Customs Service port designated for such purpose, any article (other than scrimshaw, defined in 16 U.S.C 1539(f)(1)(B) and 50 CFR 217.12 as any art... 50 Wildlife and Fisheries 1 2013-10-01 2013-10-01 false Certain antique articles. 14.22 Section...
50 CFR 14.22 - Certain antique articles.
Code of Federal Regulations, 2014 CFR
2014-10-01
....22 Certain antique articles. Any person may import at any Customs Service port designated for such purpose, any article (other than scrimshaw, defined in 16 U.S.C 1539(f)(1)(B) and 50 CFR 217.12 as any art... 50 Wildlife and Fisheries 1 2014-10-01 2014-10-01 false Certain antique articles. 14.22 Section...
Reconstructing Virgil in the Classroom in Late Antiquity
ERIC Educational Resources Information Center
Foster, Frances
2014-01-01
This essay considers how teaching and learning may have functioned in late antique Roman classrooms by examining two texts: one is from the teacher's perspective, the other--which, until recently, was unedited--provides some access to the student's perspective. Despite much recent scholarly work on education in antiquity, there has been…
39. BUILTIN WALNUT DESK AND ANTIQUE TUSCAN CHAIR IN NORTHWEST ...
39. BUILT-IN WALNUT DESK AND ANTIQUE TUSCAN CHAIR IN NORTHWEST CORNER OF ENTRANCE FOYER WITH SUPPLEMENTAL FLASH ILLUMINATION. - Fallingwater, State Route 381 (Stewart Township), Ohiopyle, Fayette County, PA
Free Online Resources on Rare and Antique Books in Astronomy
NASA Astrophysics Data System (ADS)
Randazzo, Donatella
A web site, on rare and antique books, has been constructed. General resources of interest to historical librarians, such as acquisitions, cataloguing, preservation, conservation and digitalization projects are offered, as well as specific resources in the field of astronomy.
ERIC Educational Resources Information Center
Provenzo, Eugene F., Jr.
1984-01-01
Educational materials such as textbooks often reflect and define a culture through the use of symbols and metaphors. The use of visual metaphors in frontispieces of reading and spelling texts during the eighteenth and nineteenth centuries show the emergence of a patriotic iconography. (DF)
[History of pneumology in antiquity (part 2)].
Demaeyer, Ph
2016-01-01
Nowadays, Hippocrate, "The Father of Medicine", still influences our medicine. He was famous because of the great medical corpus texts preserved in his name. Only recently, our universities have updated the famous Hippocratic Oath to avoid contradictions with our modern ethics. Hippocrate was a great clinician but a poor anatomist. Hippocratical humourism remained accurate until the age of the enlightenment (18th century). Furthermore, it is difficult to distinguish medicine from philosophy in Greek antiquity. So we have to contextualize Greek ancient medicine in this philosophical field. In the 3rd century before Christus (BC), the centre of gravity in medicine shifted to Alexandria. Indeed, a famous academic library was created in 288 BC. At the same time, dissection of human cadavers was authorized until the first century BC. This enabled the evolution of the knowledge in anatomy and physiology. Rome was still polytheistic population until the end of ancient times. Rome integrated Greek gods in his pantheon. Asclepios became Aesculapius. Rome despises physicians in the first ancient age of Rome. The family's father provided medical cares. A lot of Greek physicians settled then in Rome. Again, roman medicine grew in parallel with philosophical trends. These trends were called "sects" but in fact, they were rather medical schools. In this review, we will especially talk about three physicians of this period: Aurelius Cornelius Celsus, Arétée of Cappadocia and Galenus of Pergamon. Thereafter, medical knowledge did not really change significantly until Renaissance period. PMID:27487699
[History of pneumology in antiquity (part 2)].
Demaeyer, Ph
2016-01-01
Nowadays, Hippocrate, "The Father of Medicine", still influences our medicine. He was famous because of the great medical corpus texts preserved in his name. Only recently, our universities have updated the famous Hippocratic Oath to avoid contradictions with our modern ethics. Hippocrate was a great clinician but a poor anatomist. Hippocratical humourism remained accurate until the age of the enlightenment (18th century). Furthermore, it is difficult to distinguish medicine from philosophy in Greek antiquity. So we have to contextualize Greek ancient medicine in this philosophical field. In the 3rd century before Christus (BC), the centre of gravity in medicine shifted to Alexandria. Indeed, a famous academic library was created in 288 BC. At the same time, dissection of human cadavers was authorized until the first century BC. This enabled the evolution of the knowledge in anatomy and physiology. Rome was still polytheistic population until the end of ancient times. Rome integrated Greek gods in his pantheon. Asclepios became Aesculapius. Rome despises physicians in the first ancient age of Rome. The family's father provided medical cares. A lot of Greek physicians settled then in Rome. Again, roman medicine grew in parallel with philosophical trends. These trends were called "sects" but in fact, they were rather medical schools. In this review, we will especially talk about three physicians of this period: Aurelius Cornelius Celsus, Arétée of Cappadocia and Galenus of Pergamon. Thereafter, medical knowledge did not really change significantly until Renaissance period.
Hollow needle cataract aspiration in antiquity.
Pérez-Cambrodí, Rafael J; Ascaso, Francisco J; Diab, Fathi; Alzamora-Rodríguez, Antonio; Grzybowski, Andrzej
2015-12-01
The dislocation of the crystalline lens or couching technique was the predominant procedure to surgically remove cataracts until the 18th century A.D. However, in the Middle Ages, some Arab physicians tried to aspirate the opaque lens by means of a glass tube following a paracentesis. Some literary sources attributed the origins of this technique to Antyllus of Alexandria, a Greek surgeon who lived in the 2nd century A.D. in the Roman Empire. Nevertheless, this statement remains unclear and is probably the consequence of posterior interpretations or incorrect translations of the manuscripts. In recent years, the discovery of the hollow needles from Montbellet (France) and Viladamat (Spain), in archaeological settlements dated between the 1st century and 3rd century A.D., has reopened the possibility of cataract extraction as an option in the surgical management of soft cataracts in the antiquity. In any case, these findings are exceptional, and thus, probably this technique was not widely practised and very likely disparaged by the medical community. PMID:26385516
Medical practice in Graeco-roman antiquity.
Cilliers, L; Retief, F P
2006-05-01
The roots of modern medicine can be traced back to the 5th century BC when Hippocratic rational medicine originated on the Greek islands of Cos and Cnidos. In this study we examine the way in which practitioners conducted their profession in Graeco-Roman times, as well as their training. Medical training was by way of apprenticeship with recognized doctors, but no qualifying examinations existed and the standard of practice thus varied enormously. Even in the Roman era the vast majority of medical doctors were Greek and in private practice as itinerant physicians. Civic doctors in the paid service of local communities appeared in Greek society from the 5th century BC onwards, but much later in Rome - probably as late as the 4th century AD. Rome's unique contributions to medicine lay in public health measures (e.g. their aqueducts, public baths and sewages systems) and an excellent medical service for their armies and navy. Hospitals (valetudinaria) were established for military purposes and for slaves on large Roman estates from the 1st century BC, but civic hospitals for the general public originated as late as the 4th century AD. The Greek medical schools of Cos and Cnidos were eventually superseded by the school of Alexandria in Egypt and towards the end of the Roman Empire by that of Carthage in northern Africa. Its gradual demise in the Christian era lowered the curtain on original medical endeavours during antiquity.
Hollow needle cataract aspiration in antiquity.
Pérez-Cambrodí, Rafael J; Ascaso, Francisco J; Diab, Fathi; Alzamora-Rodríguez, Antonio; Grzybowski, Andrzej
2015-12-01
The dislocation of the crystalline lens or couching technique was the predominant procedure to surgically remove cataracts until the 18th century A.D. However, in the Middle Ages, some Arab physicians tried to aspirate the opaque lens by means of a glass tube following a paracentesis. Some literary sources attributed the origins of this technique to Antyllus of Alexandria, a Greek surgeon who lived in the 2nd century A.D. in the Roman Empire. Nevertheless, this statement remains unclear and is probably the consequence of posterior interpretations or incorrect translations of the manuscripts. In recent years, the discovery of the hollow needles from Montbellet (France) and Viladamat (Spain), in archaeological settlements dated between the 1st century and 3rd century A.D., has reopened the possibility of cataract extraction as an option in the surgical management of soft cataracts in the antiquity. In any case, these findings are exceptional, and thus, probably this technique was not widely practised and very likely disparaged by the medical community.
"Perhaps Irrelevant". The Iconography of Tycho Brahe's Small Gilt Brass Quadrant.
Perkins, Emma L; Taub, Liba
2015-01-01
When Tycho Brahe published a description of his astronomical instruments in 1598 as part of a strategy to procure royal patronage, it was not with one of his grander, precision measurement tools that he opened his account, but rather a small brass quadrant with limited observational utility. The defining feature of this instrument was seemingly a small emblematic image inscribed within the arc of the quadrant. Through this symbolic motif Tycho conveyed a moralising message about the relative worth of astronomy. Considering a range of visual productions that may have influenced his iconography, the present paper situates the quadrant within the broader context of Renaissance visual culture and examines the significance of the quadrant in Tycho's wider instrument collection.
"Perhaps Irrelevant". The Iconography of Tycho Brahe's Small Gilt Brass Quadrant.
Perkins, Emma L; Taub, Liba
2015-01-01
When Tycho Brahe published a description of his astronomical instruments in 1598 as part of a strategy to procure royal patronage, it was not with one of his grander, precision measurement tools that he opened his account, but rather a small brass quadrant with limited observational utility. The defining feature of this instrument was seemingly a small emblematic image inscribed within the arc of the quadrant. Through this symbolic motif Tycho conveyed a moralising message about the relative worth of astronomy. Considering a range of visual productions that may have influenced his iconography, the present paper situates the quadrant within the broader context of Renaissance visual culture and examines the significance of the quadrant in Tycho's wider instrument collection. PMID:26495583
A proposal to modernize the american antiquities act.
Collins, R B; Green, D F
1978-12-01
The Antiquities Act of 1906, which has provided the legal basis for protecting the U.S.'s prehistoric and historic heritage, is no longer adequate. Artifact hunters and collectors have descended on national forests and U.S. parks in ever-increasing numbers. The drafters of the 1906 act could not have anticipated the lucrative market in prehistoric artifacts in the 1970's. The act has come under attack in the courts as being unconstitutionally vague. In light of the recent criminal prosecutions under the Antiquities Act and the constitutional challenges, reviewed in this article, the authors propose a new Antiquities Act which expands the scope of the act to include those who would deal in artifacts taken unlawfully from federal lands and increases the criminal penalties for a violation of the act.
Exploring Classical Art at the Museum of Fine Arts, Boston.
ERIC Educational Resources Information Center
Burchenal, Margaret; Foote, Allison
This resource packet is designed to help teachers incorporate the study of ancient Greek and Roman art into junior and senior high school classrooms. The packet consists of four curriculum units based upon aspects of classical life or culture. These units are: "Daily Life; Mythology"; "Images of Power"; and "Echoes of Antiquity." The units were…
25 CFR 140.25 - Trade in antiquities prohibited.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Trade in antiquities prohibited. 140.25 Section 140.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES LICENSED INDIAN TRADERS... any historic or prehistoric ruin or monument on land owned or controlled by the United States....
25 CFR 141.26 - Trade in antiquities prohibited.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Trade in antiquities prohibited. 141.26 Section 141.26 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES BUSINESS PRACTICES ON... removed from an historic ruin or monument....
25 CFR 140.25 - Trade in antiquities prohibited.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Trade in antiquities prohibited. 140.25 Section 140.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES LICENSED INDIAN TRADERS... any historic or prehistoric ruin or monument on land owned or controlled by the United States....
25 CFR 141.26 - Trade in antiquities prohibited.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Trade in antiquities prohibited. 141.26 Section 141.26 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES BUSINESS PRACTICES ON... removed from an historic ruin or monument....
25 CFR 141.26 - Trade in antiquities prohibited.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Trade in antiquities prohibited. 141.26 Section 141.26 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES BUSINESS PRACTICES ON THE NAVAJO, HOPI AND ZUNI RESERVATIONS General Business Practices § 141.26 Trade in...
25 CFR 141.26 - Trade in antiquities prohibited.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Trade in antiquities prohibited. 141.26 Section 141.26 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES BUSINESS PRACTICES ON THE NAVAJO, HOPI AND ZUNI RESERVATIONS General Business Practices § 141.26 Trade in...
25 CFR 141.26 - Trade in antiquities prohibited.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Trade in antiquities prohibited. 141.26 Section 141.26 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES BUSINESS PRACTICES ON THE NAVAJO, HOPI AND ZUNI RESERVATIONS General Business Practices § 141.26 Trade in...
Benzotriazole a Corrosion Inhibitor for Antiques: Some Practical Surface Chemistry.
ERIC Educational Resources Information Center
Walker, Robert
1980-01-01
Describes the structure and inhibitive properties of Benzotriazole. The chemical may be employed as an inhibitor to reduce corrosion of articles during storage or display. It may be applied to copper and copper-based antiques as well as to silver and other metals. (Author/JN)
Out of Weakness: The "Educational Good" in Late Antiquity
ERIC Educational Resources Information Center
Allen, Ansgar
2016-01-01
This paper explores the nature of the educational good as it appears in late antiquity, arguing that the "good" variously promised by education is in a state of perpetual deferral. This extends the tradition of ancient Greek philosophy where wisdom is to be forever approached but never realised. Three exemplary cases are considered: the…
Ratcliff, M J
1999-01-01
The paper analyses the impact of the discovery of the division of infusoria on eighteenth century microscopical iconography. In Autumn 1765, when reproducing the antispontaneist experiments of Lazzaro Spallanzani, Horace-Bénédict de Saussure (1740-1799) discovered a new method of generation of the animalcules of the infusions, namely their division. Drawing a dividing animalcule raised particular problems, notably the question of how to depict the time sequence of a microscopical creature. Although Saussure's journal of microscopical experiments remained unpublished, the discovery was soon diffused and acknowledged by the European naturalists who began to repeat the observations and quickly faced iconographic problems similar to those experienced by Saussure. Indeed, linearity, used to picture time, is a construction, and, notably for public images, scholars had to contend with the conventions of drawers and engravers. The analysis of microscopical iconographic material of the period 1740-1786 shows that during this period, certain naturalists invented new solutions for depicting time, but diffusion of their innovations was not immediate. Nevertheless, in regards to the illustration of microscopical creatures, it is between 1765 and 1776 that the use of linearity was established as a solution enabling an audience to read an iconographic time process as a text.
How did Leonardo perceive himself? Metric iconography of da Vinci's self-portraits
NASA Astrophysics Data System (ADS)
Tyler, Christopher W.
2010-02-01
Some eighteen portraits are now recognized of Leonardo in old age, consolidating the impression from his bestestablished self-portrait of an old man with long white hair and beard. However, his appearance when younger is generally regarded as unknown, although he was described as very beautiful as a youth. Application of the principles of metric iconography, the study of the quantitative analysis of the painted images, provides an avenue for the identification of other portraits that may be proposed as valid portraits of Leonardo during various stages of his life, by himself and by his contemporaries. Overall, this approach identifies portraits of Leonardo by Verrocchio, Raphael, Botticelli, and others. Beyond this physiognomic analysis, Leonardo's first known drawing provides further insight into his core motivations. Topographic considerations make clear that the drawing is of the hills behind Vinci with a view overlooking the rocky promontory of the town and the plain stretching out before it. The outcroppings in the foreground bear a striking resemblance to those of his unique composition, 'The Virgin of the Rocks', suggesting a deep childhood appreciation of this wild terrain. and an identification with that religious man of the mountains, John the Baptist, who was also the topic of Leonardo's last known painting. Following this trail leads to a line of possible selfportraits continuing the age-regression concept back to a self view at about two years of age.
Paris, Harry S.; Janick, Jules; Daunay, Marie-Christine
2011-01-01
Background The genus Cucumis contains two species of important vegetable crops, C. sativus, cucumber, and C. melo, melon. Melon has iconographical and textual records from lands of the Mediterranean Basin dating back to antiquity, but cucumber does not. The goal of this study was to obtain an improved understanding of the history of these crops in the Occident. Medieval images purportedly of Cucumis were examined, their specific identity was determined and they were compared for originality, accuracy and the lexicography of their captions. Findings The manuscripts having accurate, informative images are derived from Italy and France and were produced between 1300 and 1458. All have an illustration of cucumber but not all contain an image of melon. The cucumber fruits are green, unevenly cylindrical with an approx. 2:1 length-to-width ratio. Most of the images show the cucumbers marked by sparsely distributed, large dark dots, but images from northern France show them as having densely distributed, small black dots. The different size, colour and distribution reflect the different surface wartiness and spininess of modern American and French pickling cucumbers. The melon fruits are green, oval to serpentine, closely resembling the chate and snake vegetable melons, but not sweet melons. In nearly all manuscripts of Italian provenance, the cucumber image is labelled with the Latin caption citruli, or similar, plural diminuitive of citrus (citron, Citrus medica). However, in manuscripts of French provenance, the cucumber image is labelled cucumeres, which is derived from the classical Latin epithet cucumis for snake melon. The absence of melon in some manuscripts and the expropriation of the Latin cucumis/cucumer indicate replacement of vegetable melons by cucumbers during the medieval period in Europe. One image, from British Library ms. Sloane 4016, has a caption that allows tracing of the word ‘gherkin’ back to languages of the geographical nativity of C
Investigation of the colourants used in icons of the Cretan School of iconography.
Karapanagiotis, Ioannis; Minopoulou, Elpida; Valianou, Lemonia; Daniilia, Sister; Chryssoulakis, Yannis
2009-08-11
The red shades of 13 icons (15th-17th century) of the Cretan School of iconography are investigated in detail to identify the inorganic and organic colouring materials comprising the paint layers. Examination of sample cross-sections is performed with optical microscopy. Micro-Raman spectroscopy and high performance liquid chromatography (HPLC) coupled to a photodiode array detector are employed for the identification of the inorganic and organic colouring materials, respectively. The results reveal the extensive use of coccid dyes by the Cretan painters: kermes (Kermes vermilio Planchon) is found in icons dated before the middle 16th century and cochineal in icons created several decades after the discovery of the New World. Other dyestuffs detected in the historical samples are madder (possibly Rubia tinctorum L., according to HPLC profiles), soluble redwood and indigoid dyes. Organic dyes were used by the painters as exclusive colouring matters (or glazes) or in mixtures with inorganic pigments, such as red ochre, cinnabar, minium, azurite lead white and carbon black. Liquid chromatography with mass spectrometry (LC-MS) coupled to a negative electrospray ionization mode is employed to provide information on the identity of some unknown colouring components, of the aforementioned dyes, detected in the historical samples. The results suggest that (i) the type B compound (also known as Bra') is a dehydro-brazilein product and (ii) the deprotonated molecular ion of the type C compound corresponds to m/z - 243. Both compounds are commonly used as markers for the identification of soluble redwood in historical samples. LC-MS analysis of cochineal shows that the dcIV and dcVII components are isomeric with carminic acid, as it has been recently suggested. Finally, LC-MS is employed to identify and record kermesic and flavokermesic acid in kermes and rubiadin in wild madder. PMID:19591711
[ETHICS IN PSYCHIATRY: FROM ANTIQUITY TO THE RENAISSANCE].
Martini, Mariano; De Stefano, Francesco; Schia-Vonea, Michele; Ciliberti, Rosagemma
2015-01-01
Ethical issues always played an important role in the historical development in psychiatry. As wll known, many ancient cultures associated mental illness with gods and divine punishments. In the first centuries of the Christian Era, mental illness is often interpreted according to demonological views and in connection with theological conceptions of sin. The article briefly examines the history of mental illness medical and cultural interpretations, focusing on medieval medicine and the treatment of psychiatric patients from Antiquity to the Early modern Period.
Paleobiologic Studies of the Antiquity and Precambrian Evolution of Life
NASA Technical Reports Server (NTRS)
Schopf, J. William
1998-01-01
This paper presents a final technical report on Paleobiologic Studies of the Antiquity and Precambrian Evolution of Life from 1 January 1990 - 30 September 1997. The topics include: 1) Major Research Accomplishments Supported By NAGW-2147 (Research Results Communicated in Edited Books, Research Results Communicated in Journal Articles and Book Chapters, and References Cited); and 2) Published Contributions Supported by NAGW-2147 (Edited Books, Journal Articles and Book Chapters, Book-Related Items, Miscellaneous Publications, Abstracts, and In Press).
650 nm Laser stimulated dating from Side Antique Theatre, Turkey
NASA Astrophysics Data System (ADS)
Doğan, M.; Meriç, N.
2014-03-01
Samples were taken from the archeological excavation site, which was at the backs of the Side Antique Theatre. Samples were taken from under the base rock in this area. Polymineral fine grains were examined to determine the ages of the sediments. Samples gathered from the Side Antique Theatre were investigated through using the SAR method. Firstly, one part of the samples were evaluated by using conventional IRSL reading head model of (ELSEC-9010) which is infrared (880±80 nm) stimulation source with Schott BG39 filter. The IRSL age dating with feldspar minerals, gives a number of overestimated or underestimated age values as a result. A new reading head was proposed with the following configuration attachments for overestimation of equivalent dose rates. Measurements were done with this newly designed red laser stimulating reading head which works with Elsec 9010 OSL age dating system. SAR measurements were performed by (650±10 nm) red laser light source with two Schott BG3 filters. With usage of the new designed reading head; closer results were obtained in comparision with the Antique Theatre's expected age range. Fading rates were taken into consideration and these corrections were also handled for true age results.
[Between symbol and symptom: pain and its meanings in classical antiquity].
Bauer, A W
1996-08-26
According to semiotics, which may be defined as the doctrine of the essential nature and fundamental varieties of signs, objects, and interpretants, pain is considered to be a sign (significant) with very different meanings (significance) either as a naturalistic symptom (of disease) or as a symbol used in a metaphorical context. When following this methodological perspective it is possible to interpret medical as well as poetic writings on equal terms. In Graeco-Roman medical texts pain was mostly understood as a result and an indicator of disease, but nonetheless as a symptom which seemed to be actively produced by the affected body. Especially in the Corpus Hippocraticum dating from the 5th and 4th century B. C. this materialistic and at the same time psychosomatic attitude can be noticed. Aristotle (4th century B. C.), Celsus (1st century A. D.), and the famous experimental physiologist Galen (2nd century A. D.) agreed that pain was a sign of evil which should be fought without exception. It was Galen who added the disturbance of function (functio laesa) as the fifth cardinal sign of inflammation to the four well-known cardinal signs of Celsus (rubor, calor, tumor, dolor). He also coined the term [see text] to characterize an attack of migraine. In algotherapy, Galen used a complex pharmacological system which was based upon the four cardinal qualities of humoral pathology. On the other hand, pain was designed as a multi-dimensional symbol by the famous Graeco-Roman epic poets. In Homer's Odyssey (8th century B. C.), pain appears transformed into the shape of a scar which is visible and palpable on the hero's leg like an identification tag, whereas in Virgil's Aeneids (1st century B. C.) pain symbolizes weakness and defencelessness which can only be alleviated by the goddess Venus.
[Contribution to the history of pharmacology (the late antique period)].
Tesařová, Drahomíra
2015-01-01
Pharmacological literature in the Late Antique period followed the Roman tradition and widely used Scribonius Largus and excerpts from the writings of Pliny the Elder. Literature was created both in the western part of the Roman Empire and in North Africa in Carthage. Manuals have been written about medicinal plants (Herbarius of Pseudo-Apuleius, De herba vettonica of Pseudo-Musa), for drugs obtained from the animal kingdom (Liber medicinae of Sextus Placitus) or documents containing both (De medicina of Cassius Felix, De medicamentis of Marcellus Empiricus). The contribution of this literature is the mediation of ancient knowledge into the Middle Ages.
[Contribution to the history of pharmacology (the late antique period)].
Tesařová, Drahomíra
2015-01-01
Pharmacological literature in the Late Antique period followed the Roman tradition and widely used Scribonius Largus and excerpts from the writings of Pliny the Elder. Literature was created both in the western part of the Roman Empire and in North Africa in Carthage. Manuals have been written about medicinal plants (Herbarius of Pseudo-Apuleius, De herba vettonica of Pseudo-Musa), for drugs obtained from the animal kingdom (Liber medicinae of Sextus Placitus) or documents containing both (De medicina of Cassius Felix, De medicamentis of Marcellus Empiricus). The contribution of this literature is the mediation of ancient knowledge into the Middle Ages. PMID:25994825
Neurology and War: From Antiquity to Modern Times.
Paciaroni, Maurizio; Arnao, Valentina
2016-01-01
Here, we chronicle the evolution of warfare from antiquity to modern times (18th century) and its impact on the later-to-be-defined field of neurology, especially with regard to brain, spinal cord and peripheral nerve injuries and neurological disorders caused by biological weapons and psychological trauma. We describe how individuals courageously and intelligently dealt with the horrors of war, from the Egyptians to the Greeks and onward to the Romans, up until the physicians of modern times. In doing so, they responded to the call of duty by inventing solutions that benefitted not only soldiers but also civilian medicine. PMID:27035675
Investigations of Tides from the Antiquity to Laplace
NASA Astrophysics Data System (ADS)
Deparis, Vincent; Legros, Hilaire; Souchay, Jean
Tidal phenomena along the coasts were known since the prehistoric era, but a long journey of investigations through the centuries was necessary from the Greco-Roman Antiquity to the modern era to unravel in a quasi-definitive way many secrets of the ebb and flow. These investigations occupied the great scholars from Aristotle to Galileo, Newton, Euler, d'Alembert, Laplace, and the list could go on. We will review the historical steps which contributed to an increasing understanding of the tides.
Sappho's shifting fortunes from antiquity to the early Renaissance.
Penrose, Walter
2014-01-01
Although Sappho was revered as the greatest woman poet of all time by the Greeks, in later antiquity and the Middle Ages, her love of women was considered shameful and overshadowed her excellent reputation. She was also called a prostitute, and fictional accounts of her affairs with men further "tarnished" her reputation. Dual representations of Sappho existed within two centuries of her death. On the one hand, she was a role model for other poets to follow in their quest for fame, on the other she was the quintessential representation of female vice, which, at least by the Roman period, brought her infamy. Late antique and medieval Christian authors inherited this latter view, and vilified Sappho's sexuality, while church authorities, at least according to legend, had her works publicly burned. In the initial stages of the Renaissance, then, the humanist desire to reconnect with the pagan past had to proceed in the context of late medieval Christianity. Sappho's homoeroticism was erased, ultimately, in order that her skill could be lauded to fight misogyny. Hence, the humanists "rehabilitated" Sappho's virtue in a Christian context where same-sex love was considered an "unmentionable" vice. In order to argue that women were smart and capable, the humanists needed Sappho. She was perhaps the most famous, and most skilled, woman who had ever lived, and her example was used in an attempt to improve the lot of women in the early Renaissance.
Sappho's shifting fortunes from antiquity to the early Renaissance.
Penrose, Walter
2014-01-01
Although Sappho was revered as the greatest woman poet of all time by the Greeks, in later antiquity and the Middle Ages, her love of women was considered shameful and overshadowed her excellent reputation. She was also called a prostitute, and fictional accounts of her affairs with men further "tarnished" her reputation. Dual representations of Sappho existed within two centuries of her death. On the one hand, she was a role model for other poets to follow in their quest for fame, on the other she was the quintessential representation of female vice, which, at least by the Roman period, brought her infamy. Late antique and medieval Christian authors inherited this latter view, and vilified Sappho's sexuality, while church authorities, at least according to legend, had her works publicly burned. In the initial stages of the Renaissance, then, the humanist desire to reconnect with the pagan past had to proceed in the context of late medieval Christianity. Sappho's homoeroticism was erased, ultimately, in order that her skill could be lauded to fight misogyny. Hence, the humanists "rehabilitated" Sappho's virtue in a Christian context where same-sex love was considered an "unmentionable" vice. In order to argue that women were smart and capable, the humanists needed Sappho. She was perhaps the most famous, and most skilled, woman who had ever lived, and her example was used in an attempt to improve the lot of women in the early Renaissance. PMID:25298101
ERIC Educational Resources Information Center
Clayman, Dee L.
1995-01-01
Appraises several databases devoted to classical literature. Thesaurus Linguae Graecae (TLG) contains the entire extant corpus of ancient Greek literature, including works on lexicography and historiography, extending into the 15th century. Other works awaiting completion are the Database of Classical Bibliography and a CD-ROM pictorial dictionary…
NASA Astrophysics Data System (ADS)
Torrielli, Alessandro
2016-08-01
We review some essential aspects of classically integrable systems. The detailed outline of the sections consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schrödinger model, principal chiral field); 4. Features of classical r-matrices: Belavin–Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel’fand–Levitan–Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.
NASA Astrophysics Data System (ADS)
Torrielli, Alessandro
2016-08-01
We review some essential aspects of classically integrable systems. The detailed outline of the sections consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schrödinger model, principal chiral field); 4. Features of classical r-matrices: Belavin-Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel’fand-Levitan-Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.
Ophthalmic malignancies in antiquity as depicted in two terracotta figurines.
Laios, K; Karamanou, M; Tsoucalas, G; Sgantzos, M; Androutsos, G
2015-01-01
Ocular and orbital wall cancers were recognized by the physicians of the antiquity as incurable, lethal, and non-operable malignant entities. Paul of Aegina (7(th)c AD) was the first to refer to this type of cancer and proposed only some palliative measures, while the same approach was also preserved by Theophanes Nonnus (10(th)c AD). However, two terracotta figurines of the Hellenistic period (323-30 BC) which depicted tumorous malformations in the eye area, raise a scientific debate on the matter. Hellenic art, once more contributed in a didactic way to preserve medical knowledge of the past, and served as an auxiliary tool in order to facilitate medical study.
Iatromathematica (medical astrology) in late antiquity and the Byzantine period.
Papathanassiou, M
1999-01-01
Byzantium inherited the rich astrological tradition of Late Antiquity, especially that of Alexandria, where even in the 6th century A.D., astrology was taught in philosophical schools. The great number of Byzantine astrological MSS, which preserve works of famous authors and many anonymous treatises, shows the survival and continuity of astrology in Byzantium. Through medical astrology physicians can better understand the temperament of an individual man and find out about his bodily constitution and psychic faculties, his inclination to chronic and acute diseases, the possibilities of curable or incurable cases, and finally the periods of major danger for his health. They can conjecture about the evolution of a disease, choose a favorable time for an operation, or initiate a cure.
Oxygen isotopes and emerald trade routes since antiquity
Giuliani; Chaussidon; Schubnel; Piat; Rollion-Bard; France-Lanord; Giard; de Narvaez D; Rondeau
2000-01-28
Oxygen isotopic compositions of historical emerald artifacts from the Gallo-Roman period to the 18th century indicate that during historical times, artisans worked emeralds originating from deposits supposedly discovered in the 20th century. In antiquity, Pakistani and Egyptian emeralds were traded by way of the Silk Route. Together with Austrian stones, they were the only source of gem-quality emeralds. Immediately after the discovery of the Colombian mines by Spaniards in the 16th century, a new trade route was established, first via Spain to Europe and India and then directly via the Philippines to India. Since then, Colombian emeralds have dominated the emerald trade, and most of the high-quality emeralds cut in the 18th century in India originated from Colombia. PMID:10649992
Oxygen isotopes and emerald trade routes since antiquity
Giuliani; Chaussidon; Schubnel; Piat; Rollion-Bard; France-Lanord; Giard; de Narvaez D; Rondeau
2000-01-28
Oxygen isotopic compositions of historical emerald artifacts from the Gallo-Roman period to the 18th century indicate that during historical times, artisans worked emeralds originating from deposits supposedly discovered in the 20th century. In antiquity, Pakistani and Egyptian emeralds were traded by way of the Silk Route. Together with Austrian stones, they were the only source of gem-quality emeralds. Immediately after the discovery of the Colombian mines by Spaniards in the 16th century, a new trade route was established, first via Spain to Europe and India and then directly via the Philippines to India. Since then, Colombian emeralds have dominated the emerald trade, and most of the high-quality emeralds cut in the 18th century in India originated from Colombia.
Oxygen Isotopes and Emerald Trade Routes Since Antiquity
NASA Astrophysics Data System (ADS)
Giuliani, Gaston; Chaussidon, Marc; Schubnel, Henri-Jean; Piat, Daniel H.; Rollion-Bard, Claire; France-Lanord, Christian; Giard, Didier; de Narvaez, Daniel; Rondeau, Benjamin
2000-01-01
Oxygen isotopic compositions of historical emerald artifacts from the Gallo-Roman period to the 18th century indicate that during historical times, artisans worked emeralds originating from deposits supposedly discovered in the 20th century. In antiquity, Pakistani and Egyptian emeralds were traded by way of the Silk Route. Together with Austrian stones, they were the only source of gem-quality emeralds. Immediately after the discovery of the Colombian mines by Spaniards in the 16th century, a new trade route was established, first via Spain to Europe and India and then directly via the Philippines to India. Since then, Colombian emeralds have dominated the emerald trade, and most of the high-quality emeralds cut in the 18th century in India originated from Colombia.
Headaches in antiquity and during the early scientific era.
Magiorkinis, Emmanouil; Diamantis, Aristidis; Mitsikostas, Dimos-Dimitrios; Androutsos, George
2009-08-01
This paper presents the evolution of ideas on headache symptoms from antiquity through the 19th century. A thorough study of texts, medical books and reports along with a review of the available literature in PubMed was undertaken: observations on headaches date back nearly 4,000 years to the ritual texts of Mesopotamia. Nicolaes Tulp, Thomas Willis and Gerhard van Swieten also made important contributions on various forms of headaches in the 17th and 18th centuries. Edward Liveing and William Gowers made the major contributions to the field in the late 19th century. Overall, observations on headaches span a timeline of nearly 9,000 years. The work of the physicians during the 18th and 19th century, however, set the basis for scientific research. PMID:19288044
Bone traumas in late antique populations from Croatia.
Novak, Mario; Slaus, Mario
2010-12-01
We present the results of the analyses of traumatic bone injuries in two Late Antique (3r to 5th century AD) skeletal samples from Croatia: Zadar--located on the eastern Adriatic coast, and a composite skeletal series from continental Croatia consisting of skeletons from Osijek, Vinkovci, Strbinci, and Zmajevac. The osteological series from continental Croatia are related to settlements located on, or near the Danubian military border, while Zadar--350 km to the west, is located deep in the territory of the Roman Empire. Numerous historical sources describe barbaric incursions, as well as large battles related to civil wars during the Late Antique period in continental Croatia. Conversely, there is no mention of similar events in the Zadar region. In accordance with these data our analysis tests the hypothesis that the inhabitants of continental Croatia were exposed to greater levels of violence than those living in Zadar. Analysis of bone traumas in the two series shows a similar, relatively high prevalence of long bone fractures in both samples, with a slightly higher frequency recorded in Zadar. Both series exhibit a high frequency of cranial injuries with, once again, higher frequencies recorded in the Zadar series. Additionally, two perimortem cranial fractures (one caused by a sword, the other by a blunt object) were observed in Zadar. Some of the recorded traumas in both samples resulted from accidents, but a number of injuries clearly resulted from intentional violence of lesser intensity. Further multidisciplinary research incorporating osteological, archaeological, and historical analyses is necessary to confirm the results obtained from these samples.
NASA Astrophysics Data System (ADS)
Chow, Tai L.
1995-05-01
Bring Classical Mechanics To Life With a Realistic Software Simulation! You can enhance the thorough coverage of Chow's Classical Mechanics with a hands-on, real-world experience! John Wiley & Sons, Inc. is proud to announce a new computer simulation for classical mechanics. Developed by the Consortium for Upper-Level Physics Software (CUPS), this simulation offers complex, often realistic calculations of models of various physical systems. Classical Mechanics Simulations (54881-2) is the perfect complement to Chow's text. Like all of the CUPS simulations, it is remarkably easy to use, yet sophisticated enough for explorations of new ideas. Other Important Features Include: * Six powerful simulations include: The Motion Generator, Rotation of Three-Dimensional Objects, Coupled Oscillators, Anharmonic Oscillators, Gravitational Orbits, and Collisions * Pascal source code for all programs is supplied and a number of exercises suggest specific ways the programs can be modified. * Simulations usually include graphical (often animated) displays. The entire CUPS simulation series consists of nine book/software simulations which comprise most of the undergraduate physics major's curriculum.
77 FR 49730 - Safety Zone; Antique Boat Show, Niagara River, Grand Island, NY
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
... Safety Zone; Antique Boat Show, Niagara River, Grand Island, NY in the Federal Register (77 FR 13516). We... Mercurio, Chief of Waterway Management, U.S. Coast Guard Sector Buffalo; telephone 716-843-9343,...
Antiquity versus modern times in hydraulics - a case study
NASA Astrophysics Data System (ADS)
Stroia, L.; Georgescu, S. C.; Georgescu, A. M.
2010-08-01
Water supply and water management in Antiquity represent more than Modern World can imagine about how people in that period used to think about, and exploit the resources they had, aiming at developing and improving their society and own lives. This paper points out examples of how they handled different situations, and how they managed to cope with the growing number of population in the urban areas, by adapting or by improving their water supply systems. The paper tries to emphasize the engineering contribution of Rome and the Roman Empire, mainly in the capital but also in the provinces, as for instance the today territory of France, by analysing some aqueducts from the point of view of modern Hydraulic Engineering. A third order polynomial regression is proposed to compute the water flow rate, based on the flow cross-sectional area measured in quinaria. This paper also emphasizes on contradictory things between what we thought we knew about Ancient Roman civilization, and what could really be proven, either by a modern engineering approach, a documentary approach, or by commonsense, where none of the above could be used. It is certain that the world we live in is the heritage of the Greco-Roman culture and therefore, we are due to acknowledge their contribution, especially taking into account the lack of knowledge of that time, and the poor resources they had.
The Extraterrestrial Life Debate from Antiquity to 1900
NASA Astrophysics Data System (ADS)
Crowe, Michael J.; Dowd, Matthew F.
This chapter provides an overview of the Western historical debate regarding extraterrestrial life from antiquity to the beginning of the twentieth century. Though schools of thought in antiquity differed on whether extraterrestrial life existed, by the Middle Ages, the Aristotelian worldview of a unified, finite cosmos without extraterrestrials was most influential, though there were such dissenters as Nicholas of Cusa. That would change as the Copernican revolution progressed. Scholars such as Bruno, Kepler, Galileo, and Descartes would argue for a Copernican system of a moving Earth. Cartesian and Newtonian physics would eventually lead to a view of the universe in which the Earth was one of many planets in one of many solar systems extended in space. As this cosmological model was developing, so too were notions of extraterrestrial life. Popular and scientific writings, such as those by Fontenelle and Huygens, led to a reversal of fortunes for extraterrestrials, who by the end of the century were gaining recognition. From 1700 to 1800, many leading thinkers discussed extraterrestrial intelligent beings. In doing so, they relied heavily on arguments from analogy and such broad principles and ideas as the Copernican Principle, the Principle of Plenitude, and the Great Chain of Being. Physical evidence for the existence of extraterrestrials was minimal, and was always indirect, such as the sighting of polar caps on Mars, suggesting similarities between Earth and other places in the universe. Nonetheless, the eighteenth century saw writers from a wide variety of genres—science, philosophy, theology, literature—speculate widely on extraterrestrials. In the latter half of the century, increasing research in stellar astronomy would be carried out, heavily overlapping with an interest in extraterrestrial life. By the end of the eighteenth century, belief in intelligent beings on solar system planets was nearly universal and certainly more common than it would be by
History of venereal diseases from antiquity to the renaissance.
Gruber, Franjo; Lipozenčić, Jasna; Kehler, Tatjana
2015-01-01
Sexually transmitted diseases (STDs), previously known as venereal diseases (VD), were present among the populations of antiquity as well as during the Middle Ages. Clay tablets from Mesopotamia, Egyptian papyri, along with mythology, paintings of erotic scenes, and presence of prostitutes give sufficient information to assume that some form of urethral and vaginal discharge, and also herpes genitalis were present among people at that time, and that these diseases were considered a divine punishment. Some passages of the Bible say much about the sexual behavior of the ancient Hebrews. The writings of the Greek and Roman physicians and of their satiric poets (Martial, Juvenal, Ovid) described diverse genital diseases. Celsus described various diseases of the genitals, that he called the "obscene parts". Galen made a strange description of the female genitals and coined the term gonorrhea - flow of semen. The ancient Chinese and Indian physicians also gave some account on the presence of venereal diseases in their books, and the temple sculptures depict their sexual life. During the Middle Ages, numerous physicians and surgeons from Europe as well as from Arabic countries wrote on local diseases of the genitals, describing chancres, condylomata, erosions, pustules, urethral and vaginal discharge, and their treatment. Some were aware that the alterations were connected with sexual activity. In spite the fact the Christian church propagated abstinence, the spread of venereal diseases was possible because the diffusion of prostitution, communal baths, and wars. During the 19th century, some of the physicians and historians, especially J. Rosenbaum, F. Buret, and E. Lancereaux believed syphilis was as old as mankind, whereas later authors had the opinion the disease appeared at the end of the 15th century. PMID:25969906
History of venereal diseases from antiquity to the renaissance.
Gruber, Franjo; Lipozenčić, Jasna; Kehler, Tatjana
2015-01-01
Sexually transmitted diseases (STDs), previously known as venereal diseases (VD), were present among the populations of antiquity as well as during the Middle Ages. Clay tablets from Mesopotamia, Egyptian papyri, along with mythology, paintings of erotic scenes, and presence of prostitutes give sufficient information to assume that some form of urethral and vaginal discharge, and also herpes genitalis were present among people at that time, and that these diseases were considered a divine punishment. Some passages of the Bible say much about the sexual behavior of the ancient Hebrews. The writings of the Greek and Roman physicians and of their satiric poets (Martial, Juvenal, Ovid) described diverse genital diseases. Celsus described various diseases of the genitals, that he called the "obscene parts". Galen made a strange description of the female genitals and coined the term gonorrhea - flow of semen. The ancient Chinese and Indian physicians also gave some account on the presence of venereal diseases in their books, and the temple sculptures depict their sexual life. During the Middle Ages, numerous physicians and surgeons from Europe as well as from Arabic countries wrote on local diseases of the genitals, describing chancres, condylomata, erosions, pustules, urethral and vaginal discharge, and their treatment. Some were aware that the alterations were connected with sexual activity. In spite the fact the Christian church propagated abstinence, the spread of venereal diseases was possible because the diffusion of prostitution, communal baths, and wars. During the 19th century, some of the physicians and historians, especially J. Rosenbaum, F. Buret, and E. Lancereaux believed syphilis was as old as mankind, whereas later authors had the opinion the disease appeared at the end of the 15th century.
Dental health in antique population of Vinkovci - Cibalae in Croatia (3rd-5th century).
Peko, Dunja; Vodanović, Marin
2016-08-01
Roman city Cibalae (Vinkovci) - the birthplace of Roman emperors Valentinian I and Valens was a very well developed urban ares in the late antique what was evidenced by numerous archaeological findings. The aim of this paper is to get insight in dental health of antique population of Cibalae. One hundred individuals with 2041 teeth dated to 3rd - 5th century AD have been analyzed for caries, antemortem tooth loss, periapical diseases and tooth wear. Prevalence of antemortem tooth loss was 4.3% in males, 5.2% in females. Prevalence of caries per tooth was 8.4% in males, 7.0% in females. Compared to other Croatian antique sites, ancient inhabitants of Roman Cibalae had rather good dental health with low caries prevalence and no gender differences. Statistically significant difference was found between males in females in the prevalence of periapical lesions and degree of tooth wear. Periapical lesions were found only in males. PMID:27598951
Are sulfur isotope ratios sufficient to determine the antiquity of sulfate reduction?
Ashendorf, D
1980-12-01
Sulfur isotope fractionation values have been measured in sedimentary sulfides of varying ages, The 'Antiquity and evolutionary status of bacterial sulfate reduction...' has been inferred from these measurements by Schidlowski (1979). However, under experimental conditions, the isotope values vary widely due to inadequately controlled variables. Thus the direct extrapolation of sulfur isotope fractionation values measured in the laboratory to those measured in sedimentary rocks is unwarranted. New sulfur transforming microbes have been described and recent measurements indicate that inorganic processes affect sulfur isotope fractionation values. This information is summarized here; at present sulfur isotope fractionation values are insufficient to determine the antiquity of sulfate reduction.
NASA Astrophysics Data System (ADS)
Jewett, John W.
2016-01-01
This is the second in a series of two articles on using antique devices to teach introductory physics. As mentioned in the first article, students can more clearly see the physics required for the operation of antique devices than for modern-day technological devices. This article will discuss antiques used to teach vibrations and waves, electricity and magnetism, and optics. In addition, a description of possible sources for obtaining antiques will help those interested in pursuing these ideas.
ERIC Educational Resources Information Center
Jewett, John W., Jr.
2016-01-01
This is the second in a series of two articles on using antique devices to teach introductory physics. As mentioned in the first article, students can more clearly see the physics required for the operation of antique devices than for modern-day technological devices. This article further discusses antiques used to teach vibrations and waves,…
What classicality? Decoherence and Bohr's classical concepts
NASA Astrophysics Data System (ADS)
Schlosshauer, Maximilian; Camilleri, Kristian
2011-03-01
Niels Bohr famously insisted on the indispensability of what he termed "classical concepts." In the context of the decoherence program, on the other hand, it has become fashionable to talk about the "dynamical emergence of classicality" from the quantum formalism alone. Does this mean that decoherence challenges Bohr's dictum—for example, that classical concepts do not need to be assumed but can be derived? In this paper we'll try to shed some light down the murky waters where formalism and philosophy cohabitate. To begin, we'll clarify the notion of classicality in the decoherence description. We'll then discuss Bohr's and Heisenberg's take on the quantum—classical problem and reflect on different meanings of the terms "classicality" and "classical concepts" in the writings of Bohr and his followers. This analysis will allow us to put forward some tentative suggestions for how we may better understand the relation between decoherence-induced classicality and Bohr's classical concepts.
An Antique Microscope Slide Brings the Thrill of Discovery into a Contemporary Biology Classroom
ERIC Educational Resources Information Center
Reiser, Frank
2012-01-01
The discovery of a Victorian-era microscope slide titled "Grouped Flower Seeds" began an investigation into the scientific and historical background of the antique slide to develop its usefulness as a multidisciplinary tool for PowerPoint presentations usable in contemporary biology classrooms, particularly large-enrollment sections. The resultant…
14 CFR 45.22 - Exhibition, antique, and other aircraft: Special rules.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Exhibition, antique, and other aircraft: Special rules. 45.22 Section 45.22 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... aircraft (“C”, standard; “R”, restricted; “L”, limited; or “X”, experimental) followed by the...
14 CFR 45.22 - Exhibition, antique, and other aircraft: Special rules.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Exhibition, antique, and other aircraft: Special rules. 45.22 Section 45.22 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... aircraft (“C”, standard; “R”, restricted; “L”, limited; or “X”, experimental) followed by the...
50 CFR 27.62 - Search for and removal of objects of antiquity.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 CFR part 3. ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Search for and removal of objects of...: Against Nonwildlife Property § 27.62 Search for and removal of objects of antiquity. No person...
50 CFR 27.62 - Search for and removal of objects of antiquity.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 43 CFR part 3. ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Search for and removal of objects of...: Against Nonwildlife Property § 27.62 Search for and removal of objects of antiquity. No person...
50 CFR 27.62 - Search for and removal of objects of antiquity.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 CFR part 3. ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Search for and removal of objects of...: Against Nonwildlife Property § 27.62 Search for and removal of objects of antiquity. No person...
50 CFR 27.62 - Search for and removal of objects of antiquity.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 CFR part 3. ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Search for and removal of objects of...: Against Nonwildlife Property § 27.62 Search for and removal of objects of antiquity. No person...
50 CFR 27.62 - Search for and removal of objects of antiquity.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 CFR part 3. ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Search for and removal of objects of...: Against Nonwildlife Property § 27.62 Search for and removal of objects of antiquity. No person...
14 CFR 45.22 - Exhibition, antique, and other aircraft: Special rules.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhibition, antique, and other aircraft: Special rules. 45.22 Section 45.22 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... aircraft (“C”, standard; “R”, restricted; “L”, limited; or “X”, experimental) followed by the...
14 CFR 45.22 - Exhibition, antique, and other aircraft: Special rules.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Exhibition, antique, and other aircraft: Special rules. 45.22 Section 45.22 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... aircraft (“C”, standard; “R”, restricted; “L”, limited; or “X”, experimental) followed by the...
19 CFR 12.104j - Emergency protection for Iraqi cultural antiquities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... material of Iraq is restricted pursuant to the Emergency Protection for Iraqi Cultural Antiquities Act of... ethnological material of Iraq” means cultural property of Iraq and other items of archaeological, historical, cultural, rare scientific, or religious importance illegally removed from the Iraq National Museum,...
19 CFR 12.104j - Emergency protection for Iraqi cultural antiquities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... material of Iraq is restricted pursuant to the Emergency Protection for Iraqi Cultural Antiquities Act of... ethnological material of Iraq” means cultural property of Iraq and other items of archaeological, historical, cultural, rare scientific, or religious importance illegally removed from the Iraq National Museum,...
Joseph Ames's "Typographical Antiquities" and the Antiquarian Tradition
ERIC Educational Resources Information Center
Shiner, Elaine
2013-01-01
One of the most famous historical documents of English printing is Joseph Ames's "Typographical Antiquities," published in London in 1749. Although Ames referred to his work as a history of printing, the bulk of it is a list of the first printers in England and their works through 1600, with very full bibliographical descriptions…
ERIC Educational Resources Information Center
Masciantonio, Rudolph
This publication is designed to help teachers introduce pupils to the role of music, dance, and poetry in the civilization and culture of the Ancient Greeks and Romans. It may be used as an interdisciplinary course for secondary school pupils or to expand curricular offerings in Latin and Greek. Focusing on the pervasive influence of music within…
Elemental mercury releases attributed to antiques--New York, 2000-2006.
2007-06-15
Metallic (i.e., elemental) mercury, a heavy, silvery odorless liquid, is in common household products such as thermostats and thermometers. Lesser-known household sources of elemental mercury include certain antique or vintage items such as clocks, barometers, mirrors, and lamps. Over time, the mercury in these items can leak, particularly as seals age or when the items are damaged, dropped, or moved improperly. Vacuuming a mercury spill or vaporization from spill-contaminated surfaces such as carpets, floors, furniture, mops, or brooms can increase levels of mercury in the air, especially in enclosed spaces. Environmental sampling conducted after releases of elemental mercury have indicated substantial air concentrations that were associated with increases in blood and urine mercury levels among exposed persons. In 1990, the Agency for Toxic Substances and Disease Registry (ATSDR) created the Hazardous Substances Emergency Events Surveillance (HSEES) system, a multistate health department surveillance system designed to help reduce morbidity and mortality associated with hazardous substance events. This report describes antique-related mercury releases reported to HSEES, all of which occurred in New York state during 2000-2006. Although none of these spills resulted in symptoms or acute health effects, they required remediation to prevent future mercury exposure. The findings underscore the need for caution when handling antiques containing elemental mercury and the need for proper remediation of spills.
Elemental mercury releases attributed to antiques--New York, 2000-2006.
2007-06-15
Metallic (i.e., elemental) mercury, a heavy, silvery odorless liquid, is in common household products such as thermostats and thermometers. Lesser-known household sources of elemental mercury include certain antique or vintage items such as clocks, barometers, mirrors, and lamps. Over time, the mercury in these items can leak, particularly as seals age or when the items are damaged, dropped, or moved improperly. Vacuuming a mercury spill or vaporization from spill-contaminated surfaces such as carpets, floors, furniture, mops, or brooms can increase levels of mercury in the air, especially in enclosed spaces. Environmental sampling conducted after releases of elemental mercury have indicated substantial air concentrations that were associated with increases in blood and urine mercury levels among exposed persons. In 1990, the Agency for Toxic Substances and Disease Registry (ATSDR) created the Hazardous Substances Emergency Events Surveillance (HSEES) system, a multistate health department surveillance system designed to help reduce morbidity and mortality associated with hazardous substance events. This report describes antique-related mercury releases reported to HSEES, all of which occurred in New York state during 2000-2006. Although none of these spills resulted in symptoms or acute health effects, they required remediation to prevent future mercury exposure. The findings underscore the need for caution when handling antiques containing elemental mercury and the need for proper remediation of spills. PMID:17568369
[A journey to the foundations of classical medicine].
Cruz-Coke M, Ricardo
2007-08-01
The author narrates his trips, between 1951 and 2006, to the main historical sites of antique medicine, where physicians of pre-Columbian cultures of Mexico and Peru, Egypt, Greco Latin culture and Islamic civilizations, lived. The trip ends with a visit to medieval European medicine before Renaissance. A description of the main historical sites and the features of these medical and sanitary cultures is made. In antique civilizations, diseases were considered a punishment of pagan deities. Supernatural and magical influences were decisive in medical practice. The Greco Latin culture of Galen and Hippocrates freed manhood from these causes of diseases and gave a rational basis to the practice of medicine. The Islamic civilization allowed the transmission of Greco Latin culture to medieval Europe. This permitted the renaissance of European creativity and the foundation of modern scientific medicine in the sixteenth century. The author highlights the main virtues of classical Greco Latin medicine, that are the foundations of humanistic thoughts that will restrin the technological revolution of modern medicine.
[A journey to the foundations of classical medicine].
Cruz-Coke M, Ricardo
2007-08-01
The author narrates his trips, between 1951 and 2006, to the main historical sites of antique medicine, where physicians of pre-Columbian cultures of Mexico and Peru, Egypt, Greco Latin culture and Islamic civilizations, lived. The trip ends with a visit to medieval European medicine before Renaissance. A description of the main historical sites and the features of these medical and sanitary cultures is made. In antique civilizations, diseases were considered a punishment of pagan deities. Supernatural and magical influences were decisive in medical practice. The Greco Latin culture of Galen and Hippocrates freed manhood from these causes of diseases and gave a rational basis to the practice of medicine. The Islamic civilization allowed the transmission of Greco Latin culture to medieval Europe. This permitted the renaissance of European creativity and the foundation of modern scientific medicine in the sixteenth century. The author highlights the main virtues of classical Greco Latin medicine, that are the foundations of humanistic thoughts that will restrin the technological revolution of modern medicine. PMID:17989868
Quantum computing classical physics.
Meyer, David A
2002-03-15
In the past decade, quantum algorithms have been found which outperform the best classical solutions known for certain classical problems as well as the best classical methods known for simulation of certain quantum systems. This suggests that they may also speed up the simulation of some classical systems. I describe one class of discrete quantum algorithms which do so--quantum lattice-gas automata--and show how to implement them efficiently on standard quantum computers.
ERIC Educational Resources Information Center
Boyer, Timothy H.
1985-01-01
The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…
ERIC Educational Resources Information Center
Matthews, Dorothy, Ed.
1979-01-01
The eight articles in this bulletin suggest methods of introducing classical literature into the English curriculum. Article titles are: "Ideas for Teaching Classical Mythology"; "What Novels Should High School Students Read?"; "Enlivening the Classics for Live Students"; "Poetry in Performance: The Value of Song and Oral Interpretation in…
Paraskevas, George K; Koutsouflianiotis, Konstantinos N; Nitsa, Zoi; Demesticha, Theano; Skandalakis, Panagiotis
2016-01-01
The evolution of knowledge regarding the anatomy and physiology of the spleen throughout Antiquity and the Early Middle Ages is described, and general perceptions about this organ during different eras along this time line are presented. The original words of great physicians from the period of time stretching from Ancient Egypt to the Avicennan era are quoted and discussed to demonstrate how knowledge of the spleen has evolved and to present the theories that dominated each era. Furthermore, theories about illnesses relating to the spleen are reported, which show how this organ was perceived-in terms of its function and anatomy-during each era.
Paraskevas, George K; Koutsouflianiotis, Konstantinos N; Nitsa, Zoi; Demesticha, Theano; Skandalakis, Panagiotis
2016-01-01
The evolution of knowledge regarding the anatomy and physiology of the spleen throughout Antiquity and the Early Middle Ages is described, and general perceptions about this organ during different eras along this time line are presented. The original words of great physicians from the period of time stretching from Ancient Egypt to the Avicennan era are quoted and discussed to demonstrate how knowledge of the spleen has evolved and to present the theories that dominated each era. Furthermore, theories about illnesses relating to the spleen are reported, which show how this organ was perceived-in terms of its function and anatomy-during each era. PMID:26507317
A Novel White LED Lighting System for Appreciation of Japanese Antique Ink Painting
NASA Astrophysics Data System (ADS)
Taguchi, Tsunemasa; Kono, Michitaka
We have demonstrated a special plan exhibition for appreciation of Japanese antique ink painting of “The trip to Sesshu”, which used the novel warm white light-emitting diode (LED) lighting system having the average color rendering index (Ra) = 96 and special color rendering indices R9 (95) and R15 (98). A viewer is seen with an original hue and can feel a delicate three-dimensional impression. Comparing with a conventional triple A fluorescent lamp system, the developed white LED system can provide the superior illuminance properties and extremely low electric power consumption.
[The admirable effects of panaceas: ideas between antiquity and early modern times].
Papadopoulos, Georgios
2011-01-01
Panaceas, i. e. medicines that can cure many or almost all diseases, were used throughout the history from antiquity until modern times. The paper focuses on ideas developed to explain the admirable actions of these medicines. In antiquity such actions seem to be related to the large number of ingredients as well as to the presence of materials connected to potent poisons (e. g. viper flesh). Later, with the advent of alchemy, the alchemical preparation is regarded to produce medicines with such properties, the most pregnant example being lapis philosophorum. Such explanations are underpinned by the correspondences with higher astral influences as espoused by Paracelsus, as well as by van Helmont's idea that both disease and cure depend exclusively on the state of the 'spirit of life'. At the same time Galenic-like ideas survive, in the sense that panaceas are something like universal purifiers. Besides curing diseases panaceas were used to ensure long living, permanent health as well as for achieving rejuvenation. In this respect, they show an affinity to the so-called 'healing power of nature'. PMID:22400194
Code of Federal Regulations, 2010 CFR
2010-07-01
... Commission on Art and Antiquities does not dispose of a gift or decoration? 102-42.65 Section 102-42.65... AND DECORATIONS General Provisions Special Disposals § 102-42.65 What happens if the Commission on Art and Antiquities does not dispose of a gift or decoration? If the Commission on Art and...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Commission on Art and Antiquities does not dispose of a gift or decoration? 102-42.65 Section 102-42.65... AND DECORATIONS General Provisions Special Disposals § 102-42.65 What happens if the Commission on Art and Antiquities does not dispose of a gift or decoration? If the Commission on Art and...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Commission on Art and Antiquities does not dispose of a gift or decoration? 102-42.65 Section 102-42.65... AND DECORATIONS General Provisions Special Disposals § 102-42.65 What happens if the Commission on Art and Antiquities does not dispose of a gift or decoration? If the Commission on Art and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Commission on Art and Antiquities does not dispose of a gift or decoration? 102-42.65 Section 102-42.65... AND DECORATIONS General Provisions Special Disposals § 102-42.65 What happens if the Commission on Art and Antiquities does not dispose of a gift or decoration? If the Commission on Art and...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Commission on Art and Antiquities does not dispose of a gift or decoration? 102-42.65 Section 102-42.65... AND DECORATIONS General Provisions Special Disposals § 102-42.65 What happens if the Commission on Art and Antiquities does not dispose of a gift or decoration? If the Commission on Art and...
NASA Technical Reports Server (NTRS)
Valley, Lois
1989-01-01
The SPS product, Classic-Ada, is a software tool that supports object-oriented Ada programming with powerful inheritance and dynamic binding. Object Oriented Design (OOD) is an easy, natural development paradigm, but it is not supported by Ada. Following the DOD Ada mandate, SPS developed Classic-Ada to provide a tool which supports OOD and implements code in Ada. It consists of a design language, a code generator and a toolset. As a design language, Classic-Ada supports the object-oriented principles of information hiding, data abstraction, dynamic binding, and inheritance. It also supports natural reuse and incremental development through inheritance, code factoring, and Ada, Classic-Ada, dynamic binding and static binding in the same program. Only nine new constructs were added to Ada to provide object-oriented design capabilities. The Classic-Ada code generator translates user application code into fully compliant, ready-to-run, standard Ada. The Classic-Ada toolset is fully supported by SPS and consists of an object generator, a builder, a dictionary manager, and a reporter. Demonstrations of Classic-Ada and the Classic-Ada Browser were given at the workshop.
ERIC Educational Resources Information Center
Kilburn, K.
1975-01-01
Criticizes traditional reasons for Classics study and states that education is the initiation of a new generation into the skills and knowledge structures of an existing tradition. Aesthetics and philosophy, religion and morals, knowledge of self and others, and mathematics and science may be understood through Classics.
ERIC Educational Resources Information Center
Preston, Marilyn J.
2016-01-01
Sexuality education teachers in the USA are often the only officially sanctioned voice in schools charged with teaching students about sexuality and gender. This paper considers the ways in which sexuality education teachers conceptualise gender and anti-queer bullying in order to explore the ways in which teachers understand their own role in the…
[From asklepieia to monasteries: the places of medical art in Antiquity].
Marinozzi, Silvia
2002-01-01
The article deals with the places of medical art in the antiquity. Author's intention is to give a description of the places where developed the assistance and welfare activity to sick people from the Asklepieia to Monastic Hospitals. In Theurgical Medicine the cure for sickness was peculiar to gods, at first to all gods, mostly to Apollo and Artemide; later healing art had an own god: Asclepius. In the temples of Asclepius, the Asklepieia, prayers, sacrifices, offerings and magical rituals began to be associated with medical practical exercise and rational therapeutic systems. Rational Hippocratic Medicine found own places in the cities: the iatreia in Greece and the tabernae medicae in Rome. The article tries to describe the evolution of social welfare assistance from the Roman Valitudinaria to the monastic xenodochia and the first forms of Religious Hospitals.
Koulouri, Christina
2010-01-01
This study investigates the evolution of the historiography of Greek sport from the foundation of the Greek state (1830) until 1982 and its links with Greek national history, which also took shape primarily during the nineteenth century. The gradual 'nationalisation' of sport as an element of Greek national character since antiquity corresponded to changes in perceptions of the national past reflected in historiography. The ancient Olympic Games, Byzantine contests and exercises, the competitions of the klephts and armatoloi (militia soldiers) during the Ottoman rule and the modern revival of the Olympic Games were all successively integrated in a national history of sport confirming national continuity and unity. However this particular genre of national historiography did not gain academic recognition until recently. The authors of histories of physical exercise and sport were amateurs or physical education instructors and could not ensure to their work the authority of a separate discipline.
Blumenfeld, S
1994-01-01
Vitamin A deficiency remains an important problem in some parts of the Philippines. The Department of Health, with assistance from the Helen Keller Institute (HKI), established a vitamin A supplementation program in Antique Province providing for the administration of vitamin A capsules to malnourished children. Although the HKI cut off its assistance in 1992, continuation of the capsule supplementation program was an element of the National Nutrition Plan for 1992-96, and remains an element of the Antique Provincial health services program under the Philippines' devolved health services scheme. The Quality Assurance Program (QAP) in May 1993 began helping the Provincial Health Office improve the quality of the vitamin A program. A systems analysis was first undertaken to identify significant deviations from provider performance standards which had been adapted by the province from Nutrition Service guidelines. Many problems were observed, including lack of knowledge of the high-priority categories of children, incomplete counseling, and frequent mistakes in determining children's nutritional status. The provincial health office staff recommended that six of the province's seventeen municipalities participate in the quality improvement effort. The intent of the QAP staff was not only to help the provincial staff improve the quality of its vitamin A program by resolving some immediate operational problems, but to provide the health care workers with a quality improvement experience that they would intuitively transfer to other programs for which they were responsible. The coaching/facilitating approach of modern quality management allowed health workers to explore their own approaches to solving the problems chosen.
A Classical Science Transformed.
ERIC Educational Resources Information Center
Kovalevsky, Jean
1979-01-01
Describes how satellites and other tools of space technology have transformed classical geodesy into the science of space geodynamics. The establishment and the activities of the French Center for Geodynamic and Astronomical Research Studies (CERGA) are also included. (HM)
NASA Technical Reports Server (NTRS)
Horzela, Andrzej; Kapuscik, Edward
1993-01-01
An alternative picture of classical many body mechanics is proposed. In this picture particles possess individual kinematics but are deprived from individual dynamics. Dynamics exists only for the many particle system as a whole. The theory is complete and allows to determine the trajectories of each particle. It is proposed to use our picture as a classical prototype for a realistic theory of confined particles.
Randomness: Quantum versus classical
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2016-05-01
Recent tremendous development of quantum information theory has led to a number of quantum technological projects, e.g. quantum random generators. This development had stimulated a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is the elaboration of a consistent and commonly accepted interpretation of a quantum state. Closely related problem is the clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review, we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. We also discuss briefly “digital philosophy”, its role in physics (classical and quantum) and its coupling to the information interpretation of quantum mechanics (QM).
Drampalos, Efstathios; Stogiannos, Vasileios; Psyllakis, Panagiotis; Sadiq, Mohammad; Michos, Ioannis
2014-01-01
The modern infirmary is the evolutional product of the dialectic interface between medical theories at each time and the outcome of their application in clinical practice. The infirmary as we know it today did not exist during antiquity, but the different precursors of the modern hospital emerged as a result of the interaction between medical theory and practice. During antiquity the Hippocratic work decisively contributed to the creation of the Asklipieion, an institution with predetermined structure created to heal diseases. Later in antiquity new types of infirmaries appeared along with the evolution of private practice for physicians. Establishment of the first modern hospitals was an outstanding contribution of Islamic medicine during reign of the Islamic Empire. Although there was little progress in the development of medical theory in medieval West, evolution of the infirmary continued and was mostly influenced by Christian religion and charity. In Constantinople large medieval infirmaries were built, but patient care was frequently offered in monasteries by clergymen. Later on medicine and treatment of diseases were taken over by physicians and taught in universities, and medical theory continued on its course of evolution. It is obvious that the modern infirmary is not only a place for treating diseases, but rather the upshot of a series of advancements in science, the relations between people or even countries, and the way humanity perceives its nature and the future. Our research is focused on the interactive relationship between the evolution of medical theory and the infirmary as an institution during antiquity and the Middle Ages with particular emphasis on the Western World. PMID:26587201
Drampalos, Efstathios; Stogiannos, Vasileios; Psyllakis, Panagiotis; Sadiq, Mohammad; Michos, Ioannis
2014-01-01
The modern infirmary is the evolutional product of the dialectic interface between medical theories at each time and the outcome of their application in clinical practice. The infirmary as we know it today did not exist during antiquity, but the different precursors of the modern hospital emerged as a result of the interaction between medical theory and practice. During antiquity the Hippocratic work decisively contributed to the creation of the Asklipieion, an institution with predetermined structure created to heal diseases. Later in antiquity new types of infirmaries appeared along with the evolution of private practice for physicians. Establishment of the first modern hospitals was an outstanding contribution of Islamic medicine during reign of the Islamic Empire. Although there was little progress in the development of medical theory in medieval West, evolution of the infirmary continued and was mostly influenced by Christian religion and charity. In Constantinople large medieval infirmaries were built, but patient care was frequently offered in monasteries by clergymen. Later on medicine and treatment of diseases were taken over by physicians and taught in universities, and medical theory continued on its course of evolution. It is obvious that the modern infirmary is not only a place for treating diseases, but rather the upshot of a series of advancements in science, the relations between people or even countries, and the way humanity perceives its nature and the future. Our research is focused on the interactive relationship between the evolution of medical theory and the infirmary as an institution during antiquity and the Middle Ages with particular emphasis on the Western World.
Drampalos, Efstathios; Stogiannos, Vasileios; Psyllakis, Panagiotis; Sadiq, Mohammad; Michos, Ioannis
2014-01-01
The modern infirmary is the evolutional product of the dialectic interface between medical theories at each time and the outcome of their application in clinical practice. The infirmary as we know it today did not exist during antiquity, but the different precursors of the modern hospital emerged as a result of the interaction between medical theory and practice. During antiquity the Hippocratic work decisively contributed to the creation of the Asklipieion, an institution with predetermined structure created to heal diseases. Later in antiquity new types of infirmaries appeared along with the evolution of private practice for physicians. Establishment of the first modern hospitals was an outstanding contribution of Islamic medicine during reign of the Islamic Empire. Although there was little progress in the development of medical theory in medieval West, evolution of the infirmary continued and was mostly influenced by Christian religion and charity. In Constantinople large medieval infirmaries were built, but patient care was frequently offered in monasteries by clergymen. Later on medicine and treatment of diseases were taken over by physicians and taught in universities, and medical theory continued on its course of evolution. It is obvious that the modern infirmary is not only a place for treating diseases, but rather the upshot of a series of advancements in science, the relations between people or even countries, and the way humanity perceives its nature and the future. Our research is focused on the interactive relationship between the evolution of medical theory and the infirmary as an institution during antiquity and the Middle Ages with particular emphasis on the Western World. PMID:26587201
Children's Classics. Fifth Edition.
ERIC Educational Resources Information Center
Jordan, Alice M.
"Children's Classics," a 1947 article by Alice M. Jordan reprinted from "The Horn Book Magazine," examines the dynamics and appeal of some of the most famous books for young readers, including "Alice in Wonderland,""The Wind in the Willows,""Robinson Crusoe," and "Andersen's Fairy Tales." Paul Hein's annotated bibliography, a revision of Jordan's…
Diagnosis of classical galactosaemia.
Monk, A M; Mitchell, A J; Milligan, D W; Holton, J B
1977-01-01
We report a child with classical galactosaemia whose diagnosis was missed until 12 weeks of age. The limitations of urine screening tests are discussed and the wider use of a qualitative enzyme assay for screening is recommended. Reference ranges for a quantitative enzyme assay using 14galacoste-1-phosphate as substrate are presented. PMID:606167
Classical Mechanics Laboratory
NASA Astrophysics Data System (ADS)
Brosing, Juliet W.
2006-12-01
At Pacific University we have included a lab with our upper division Classical Mechanics class. We do a combination of physical labs (air resistance, harmonic motion, amusement park physics), Maple labs (software), and projects. Presentation of some of the labs, results and challenges with this course will be included.
ERIC Educational Resources Information Center
Camic, Charles
2008-01-01
They seem the perfect bookends for the social psychologist's collection of "classics" of the field. Two volumes, nearly identical in shape and weight and exactly a century old in 2008--each professing to usher "social psychology" into the world as they both place the hybrid expression square in their titles but then proceed to stake out the field…
ERIC Educational Resources Information Center
Tighe, Mary Ann; Avinger, Charles
1994-01-01
Describes young adult novels that may prove to be classics of the genre. Discusses "The "Chocolate War" by Robert Cormier, "The Outsiders" by S. E. Hinton, "The Witch of Blackbird Pond" by Elizabeth George Speare, and "On Fortune's Wheel" by Cynthia Voight. (HB)
ERIC Educational Resources Information Center
Lum, Lydia
2005-01-01
America's few Black classics professors have overcome contempt and criticism to contribute a unique perspective to the study of the ancient world. Dr. Patrice Rankine, an associate professor from Purdue University, has grown used to the irony. As one of the few Black classicists teaching at an American university, he has drawn plenty of skepticism…
Classical Mythology. Fourth Edition.
ERIC Educational Resources Information Center
Morford, Mark P. O.; Lenardon, Robert J.
Designed for students with little or no background in classical literature, this book introduces the Greek and Roman myths of creation, myths of the gods, Greek sagas and local legends, and presents contemporary theories about the myths. Drawing on Homer, Hesiod, Pindar, Vergil, and others, the book provides many translations and paraphrases of…
ERIC Educational Resources Information Center
Nelson, Norman N.; Fisch, Forest N.
1973-01-01
Discussed are techniques of presentation and solution of the Classical Cake Problem. A frosted cake with a square base is to be cut into n pieces with the volume of cake and frosting the same for each piece. Needed are minimal geometric concepts and the formula for the volume of a prism. (JP)
ERIC Educational Resources Information Center
Huddleston, Gregory H.
1993-01-01
Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)
ERIC Educational Resources Information Center
Karolides, Nicholas J., Ed.
1983-01-01
The articles in this journal issue suggest techniques for classroom use of literature that has "withstood the test of time." The titles of the articles and their authors are as follows: (1) "The Storytelling Connection for the Classics" (Mary Ellen Martin); (2) "Elizabeth Bennet: A Liberated Woman" (Geneva Marking); (3) "Hawthorne: A Study in…
NASA Astrophysics Data System (ADS)
Matrotheodoros, G.; Beltsios, K. G.; Zacharias., N.
In this work we explore the effects of various grinding and thermal-oxidative treatments applied to natural and artificial iron-based materials available (or related to those available) during GraecoRoman antiquity. The raw materials examined are: (a) commercial natural iron pigments (ochres, natrojarosite, caput mortum), (b) artificial melanterite (FeSO4.7H2O), (c) mineral pyrite (FeS2) and mineral metallic hematite. Additionally explored are: (a) the non-attested in surviving sources, yet highly probable during antiquity, route of pigment preparation from iron (or steel) plates exposed to vinegar vapors, (b) a Vitruvius recipe for purplish pigment via vinegar quenching of hot ochre. We obtain oxide pigments with colors ranging from yellowish and red to brownish and purplish. The puzzling variation of colors obtained by subjecting iron-oxide containing materials to identical oxidative heat treatments is found to be explainable on the basis of starting grain size and possible size modifications. We also show, by using highly purity starting materials, that purplish colors obtainable in certain cases by heat treatment do not necessitate, as often claimed, the presence of impurities such as manganese etc. A framework of antiquity color possibilities for iron-oxide based pigments obtainable under the conditions explored is included. All samples prepared are examined via scanning electron microscopy for micromorphology coupled with EDAX for composition, and X-Rays Diffraction for mineralogy.
Analysis of antique bronze coins by Laser Induced Breakdown Spectroscopy and multivariate analysis
NASA Astrophysics Data System (ADS)
Bachler, M. Orlić; Bišćan, M.; Kregar, Z.; Jelovica Badovinac, I.; Dobrinić, J.; Milošević, S.
2016-09-01
This work presents a feasibility study of applying the Principal Component Analysis (PCA) to data obtained by Laser-Induced Breakdown Spectroscopy (LIBS) with the aim of determining correlation between different samples. The samples were antique bronze coins coated in silver (follis) dated in the Roman Empire period and were made during different rulers in different mints. While raw LIBS data revealed that in the period from the year 286 to 383 CE content of silver was constantly decreasing, the PCA showed that the samples can be somewhat grouped together based on their place of origin, which could be a useful hint when analysing unknown samples. It was also found that PCA can help in discriminating spectra corresponding to ablation from the surface and from the bulk. Furthermore, Partial Least Squares method (PLS) was used to obtain, based on a set of samples with known composition, an estimation of relative copper concentration in studied ancient coins. This analysis showed that copper concentration in surface layers ranged from 83% to 90%.
Early Miocene amber inclusions from Mexico reveal antiquity of mangrove-associated copepods
Huys, Rony; Suárez-Morales, Eduardo; Serrano-Sánchez, María de Lourdes; Centeno-García, Elena; Vega, Francisco J.
2016-01-01
Copepods are aquatic microcrustaceans and represent the most abundant metazoans on Earth, outnumbering insects and nematode worms. Their position of numerical world predominance can be attributed to three principal radiation events, i.e. their major habitat shift into the marine plankton, the colonization of freshwater and semiterrestrial environments, and the evolution of parasitism. Their variety of life strategies has generated an incredible morphological plasticity and disparity in body form and shape that are arguably unrivalled among the Crustacea. Although their chitinous exoskeleton is largely resistant to chemical degradation copepods are exceedingly scarce in the geological record with limited body fossil evidence being available for only three of the eight currently recognized orders. The preservation of aquatic arthropods in amber is unusual but offers a unique insight into ancient subtropical and tropical ecosystems. Here we report the first discovery of amber-preserved harpacticoid copepods, represented by ten putative species belonging to five families, based on Early Miocene (22.8 million years ago) samples from Chiapas, southeast Mexico. Their close resemblance to Recent mangrove-associated copepods highlights the antiquity of the specialized harpacticoid fauna living in this habitat. With the taxa reported herein, the Mexican amber holds the greatest diversity of fossil copepods worldwide. PMID:27731321
Dediu, Dan; Levinson, Stephen C.
2013-01-01
It is usually assumed that modern language is a recent phenomenon, coinciding with the emergence of modern humans themselves. Many assume as well that this is the result of a single, sudden mutation giving rise to the full “modern package.” However, we argue here that recognizably modern language is likely an ancient feature of our genus pre-dating at least the common ancestor of modern humans and Neandertals about half a million years ago. To this end, we adduce a broad range of evidence from linguistics, genetics, paleontology, and archaeology clearly suggesting that Neandertals shared with us something like modern speech and language. This reassessment of the antiquity of modern language, from the usually quoted 50,000–100,000 years to half a million years, has profound consequences for our understanding of our own evolution in general and especially for the sciences of speech and language. As such, it argues against a saltationist scenario for the evolution of language, and toward a gradual process of culture-gene co-evolution extending to the present day. Another consequence is that the present-day linguistic diversity might better reflect the properties of the design space for language and not just the vagaries of history, and could also contain traces of the languages spoken by other human forms such as the Neandertals. PMID:23847571
Janick, Jules; Paris, Harry S.; Parrish, David C.
2007-01-01
Background A critical analysis was made of cucurbit descriptions in Dioscorides' De Materia Medica, Columella's De Re Rustica and Pliny's Historia Naturalis, works on medicine, agriculture and natural science of the 1st century ce, as well as the Mishna and Tosefta, compilations of rabbinic law derived from the same time period together with cucurbit images dating from antiquity including paintings, mosaics and sculpture. The goal was to identify taxonomically the Mediterranean cucurbits at the time of the Roman Empire. Findings By ancient times, long-fruited forms of Cucumis melo (melon) and Lagenaria siceraria (bottle gourd) were selected, cultivated and used as vegetables around the Mediterranean and, in addition, bottle-shaped fruits of L. siceraria were employed as vessels. Citrullus lanatus (watermelons) and round-fruited forms of Cucumis melo (melons) were also consumed, but less commonly. A number of cucurbit species, including Bryonia alba, B. dioica, Citrullus colocynthis and Ecballium elaterium, were employed for medicinal purposes. No unequivocal evidence was found to suggest the presence of Cucumis sativus (cucumber) in the Mediterranean area during this era. The cucumis of Columella and Pliny was not cucumber, as commonly translated, but Cucumis melo subsp. melo Flexuosus Group (snake melon or vegetable melon). PMID:17932073
The history of time and frequency from antiquity to the present day
NASA Astrophysics Data System (ADS)
Levine, Judah
2016-04-01
I will discuss the evolution of the definitions of time, time interval, and frequency from antiquity to the present day. The earliest definitions of these parameters were based on a time interval defined by widely observed apparent astronomical phenomena, so that techniques of time distribution were not necessary. With this definition, both time, as measured by clocks, and frequency, as realized by some device, were derived quantities. On the other hand, the fundamental parameter today is a frequency based on the properties of atoms, so that the situation is reversed and time and time interval are now derived quantities. I will discuss the evolution of this transition and its consequences. In addition, the international standards of both time and frequency are currently realized by combining the data from a large number of devices located at many different laboratories, and this combination depends on (and is often limited by) measurements of the times of clocks located at widely-separated laboratories. I will discuss how these measurements are performed and how the techniques have evolved over time.
NASA Astrophysics Data System (ADS)
Aydan, Ömer; Ulusay, Reşat
2013-07-01
Derinkuyu Underground City, located in the Cappadocia Region of Turkey, is an important structure not only for its antique and archaeological characteristics, but also as a structure in terms of the long-term stability of underground rock structures excavated by mankind. The authors carried out some observational, experimental and theoretical rock mechanics studies in the region from 1996 in the context of a research project supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan for the assessment of the long-term behaviour of Derinkuyu Underground City, and these studies are still continuing. In addition to the monitoring of the environmental conditions such as temperature, moisture and air pressure, they also installed acoustic emission (AE) and electrical potential (EP) measurement systems to monitor the behaviour and response of the surrounding rock at the fifth and seventh floors of the underground city. In this article, the geology, seismicity and state of stress of the Cappadocia Region, climatic conditions in the underground city and its vicinity, short- and long-term behaviours of the surrounding rock, its index and mechanical properties, and effects of water content and freezing-thawing processes were investigated. The stability of Derinkuyu Underground City was also evaluated using theoretical and numerical methods, and the results were presented. Furthermore, its implications in modern geoengineering are also discussed.
Contrasting selected reproductive challenges of today with those of antiquity--the past is prologue.
Jones, Christopher A; Sills, Eric Scott
2013-09-01
Viewing human history through a medical lens provides a renewed appreciation for today's vexing reproductive challenges, as some modern dilemmas are actually continuations of similar challenges experienced long ago. Certainly there are many examples of assisted fertility therapy that were entirely theoretical only a generation ago, but have become commonplace in modern practice and society. In particular posthumous birth and infertility have, over time, been the focus of compelling social interest, occasionally even impacting national security and dynastic succession. While the concepts have remained static, the tools available to extend and improve reproductive success have changed radically. Appropriately regarded as confidential and private, an individual's reproductive details are typically impervious to formal study. Yet, archival sources including ancient literature and formal court records can occasionally provide evidence of otherwise deeply personal concerns of a different era. Our assessment finds the issues, worries, and desires of patients of antiquity to align closely with contemporary reproductive challenges. Because children and family have always been central to the human experience, the consequences of reproduction (or the lack thereof) can make substantial imprints upon the cultural, economic, and political landscape-irrespective of civilization or century. In this article, selected motifs are described in a broad historical context to illustrate how challenges of human reproduction have remained essentially unchanged, despite a vast accumulation of knowledge made possible by gains in reproductive science and technology. Plus ça change, plus c'est la même chose. -Jean-Baptiste Alphonse Karr (1808-1890).
Photogrammetric Techniques for 3 - D Underwater Record of the Antique Time Ship from Phanagoria
NASA Astrophysics Data System (ADS)
Zhukovsky, M. O.; Kuznetsov, V. D.; Olkhovsky, S. V.
2013-07-01
Phanagoria - the largest known ancient Greek settlement on the territory of Russia is situated on the Taman peninsula on the southern side of the Taman bay. The unique feature of the site is that about 1/3 of the settlement of Phanagoria is currently flooded by waters of the Taman bay due to the transgression of the Black sea level since antiquity. In 2012 in the course of underwater prospection of the Taman bay a wooden ship buried under the 1.5 m thick bottom sediments was discovered in situ. The unique feature of the ship is excellent preservation of its wooden parts, which makes it one of the few finds of this kind ever made on the territory of Russia. This paper presents a case-study of application of photogrammetry technique for archaeological field documentation record in course of underwater excavations of the Phanagorian shipwreck. The advantages and possible underwaterspecific constraints of automated point cloud extraction algorithm which was used in the research are discussed. The paper gives an overview of the practical aspects of the workflow of photgrammetry technique application at the excavation ground: photo capture procedure and measurement of control points. Finally a resulting 3-D model of the shipwreck is presented and high potential of automated point cloud extraction algorithms for archaeological documentation record is concluded.
Contrasting selected reproductive challenges of today with those of antiquity--the past is prologue.
Jones, Christopher A; Sills, Eric Scott
2013-09-01
Viewing human history through a medical lens provides a renewed appreciation for today's vexing reproductive challenges, as some modern dilemmas are actually continuations of similar challenges experienced long ago. Certainly there are many examples of assisted fertility therapy that were entirely theoretical only a generation ago, but have become commonplace in modern practice and society. In particular posthumous birth and infertility have, over time, been the focus of compelling social interest, occasionally even impacting national security and dynastic succession. While the concepts have remained static, the tools available to extend and improve reproductive success have changed radically. Appropriately regarded as confidential and private, an individual's reproductive details are typically impervious to formal study. Yet, archival sources including ancient literature and formal court records can occasionally provide evidence of otherwise deeply personal concerns of a different era. Our assessment finds the issues, worries, and desires of patients of antiquity to align closely with contemporary reproductive challenges. Because children and family have always been central to the human experience, the consequences of reproduction (or the lack thereof) can make substantial imprints upon the cultural, economic, and political landscape-irrespective of civilization or century. In this article, selected motifs are described in a broad historical context to illustrate how challenges of human reproduction have remained essentially unchanged, despite a vast accumulation of knowledge made possible by gains in reproductive science and technology. Plus ça change, plus c'est la même chose. -Jean-Baptiste Alphonse Karr (1808-1890). PMID:24505149
NASA Astrophysics Data System (ADS)
Sardanashvily, G. A.
2014-12-01
We consider a classical gauge theory on a principal fiber bundle P → X in the case where its structure group G is reduced to a subgroup H in the presence of classical Higgs fields described by global sections of the quotient fiber bundle P/H → X. We show that matter fields with the exact symmetry group H in such a theory are described by sections of the composition fiber bundle Y → P/H → X, where Y → P/H is the fiber bundle with the structure group H, and the Lagrangian of these sections is factored by virtue of the vertical covariant differential determined by a connection on the fiber bundle Y → P/H.
ERIC Educational Resources Information Center
Rogers, Ibram
2008-01-01
As a 26-year-old English teacher in 1958, Chinua Achebe had no idea that the book he was writing would become a literary classic, not only in Africa but also throughout the world. He could only try to articulate the feelings he had for his countrymen and women. Achebe had a burning desire to tell the true story of Africa and African humanity. The…
Entanglement with classical fields
Lee, K.F.; Thomas, J.E.
2004-05-01
We experimentally demonstrate a simple classical-field optical heterodyne method which employs postselection to reproduce the polarization correlations of a four-particle entangled state. We give a heuristic argument relating this method to the measurement of multiple quantum fields by correlated homodyne detection. We suggest that using multiple classical fields and postselection, one can reproduce the polarization correlations obtained in quantum experiments which employ multiple single-photon sources and linear optics to prepare multiparticle entangled states. Our experimental scheme produces four spatially separated beams which are separately detected by mixing with four independent optical local oscillators (LO) of variable polarization. Analog multiplication of the four beat signals enables projection onto a four-particle polarization-state basis. Appropriate band pass filtering is used to produce a signal proportional to the projections of the maximally entangled four-field polarization state, H{sub 1})H{sub 2})H{sub 3})H{sub 4})+V{sub 1})V{sub 2})V{sub 3})V{sub 4}), onto the product of the four LO polarizations. Since the data from multiple observers is combined prior to postselection, this method does not constitute a test of nonlocality. However, we reproduce the polarization correlations of the 32 elements in the truth table from the quantum mechanical Greenberger-Horne-Zeilinger experiments on the violation of local realism. We also demonstrate a form of classical entanglement swapping in a four-particle basis.
Integrated Geophysycal Prospecting in Late Antiquity and Early Medieval Sites in Italy
NASA Astrophysics Data System (ADS)
Giannotta, Maria Teresa; Leucci, Giovanni; De Giorgi, Lara; Matera, Loredana; Persico, Raffaele; Muci, Giuseppe
2016-04-01
In this contribution, the results of some integrated geophysical prospecting (magnetometric and GPR) are exposed. This work has been performed in collaboration between archaeologists and geophysicists within the research project "History and Global Archaeology of the Rural Landascapes in Italy, between Late Antiquity and Medieval period. Integrated systems of sources, methodologies, and technologies for a sustainable development", financed by the Italian Ministry for Instruction, University and Research MIUR. In particular, the archaeological sites of Badia and San Giovanni in Malcantone, both in the Apulia Region (eastern-southern Italy) have been prospect. The sites have been identified on the basis of available documents, archaeological surveys and testimonies. In particular, we know that in Badia [1] it was probable the presence of an ancient roman villa of the late ancient period (strongly damaged by the subsequent ploughing activities). Whereas in San Giovanni there is still, today, a small chapel (deconsecrated) that was likely to be part of a previous larger church (probably a basilica of the early Christian period) restricted in the subsequent centuries (probably in more phases). The Saracen raids of the XVI centuries made the site ruined and abandoned. In both sites integrated prospecting have been performed [2-6] with a the integration of archaeological, magnetometer and a GPR data have provided some interesting results, allowing to overcome the difficulties relative to an extensive GPR prospecting, that could not be performed because of the intrinsic superficial roughness and/or the intensive ploughing activities. The prospecting activities, in particular, have added elements that seem to confirm the main archaeological hypothesis that motivate their performing, as it will be show at the conference. References [1] M. T, Giannotta, G. Leucci, R. Persico, M. Leo Imperiale, The archaeological site of Badia in terra d'Otranto: contribution of the
[Criminal responsibility and confinement of the insane from antiquity to early modern Japan].
Hiruta, Genshiro
2003-01-01
ANTIQUITY: The third Japanese legal code, Youro Ritsuryo, was compiled in 718. The code classified the insane people as severely handicapped, exempted them from taxes and reduced their punishments when they committed a crime. MEDIEVAL: We cannot find any description on criminal responsibility of the insane in the legal documents of this age. EARLY MODERN: In 1742, the Tokugawa government enacted a criminal code named Osadamegaki-hyakkajyo, which contained a clause on the criminal responsibility of the people suffering from insanity or alcoholism. In principle, even if the criminal who committed homicide had been insane, he or she was sentenced to death. However, when the criminal had been obviously insane and the master or relatives of the victim appealed for mercy the judge could spare his/her life. The case of killing under the influence of simple alcohol intoxication was considered to be fully responsible. However, the case of pathological intoxication was treated in the same way as the case of insanity. There was a strict rule for confinement of the insane. When people thought that confinement was inevitable, a petition for confinement was submitted to the court under the joint signature of the family, the members of goningumi (a mutual responsibility unit), and the head of the town or village. In big cities like Edo (now Tokyo), a medical certificate of a doctor was attached to the petition. After receiving the petition, the court dispatched officials to inspect the case. When the court could confirm the necessity of confinement, they gave the permission and sealed the lock of a private cell where the insane was confined. People had to appeal to the court again when they wanted to free the insane from the cell.
Color Space and Its Divisions: Color Order from Antiquity to the Present
NASA Astrophysics Data System (ADS)
Kuehni, Rolf G.
2003-03-01
It has been postulated that humans can differentiate between millions of gradations in color. Not surprisingly, no completely adequate, detailed catalog of colors has yet been devised, however the quest to understand, record, and depict color is as old as the quest to understand the fundamentals of the physical world and the nature of human consciousness. Rolf Kuehni's Color Space and Its Divisions: Color Order from Antiquity to the Present represents an ambitious and unprecedented history of man's inquiry into color order, focusing on the practical applications of the most contemporary developments in the field. Kuehni devotes much of his study to geometric, three-dimensional arrangements of color experiences, a type of system developed only in the mid-nineteenth century. Color spaces are of particular interest for color quality-control purposes in the manufacturing and graphics industries. The author analyzes three major color order systems in detail: Munsell, OSA-UCS, and NCS. He presents historical and current information on color space developments in color vision, psychology, psychophysics, and color technology. Chapter topics include: A historical account of color order systems Fundamentals of psychophysics and the relationship between stimuli and experience Results of perceptual scaling of colors according to attributes History of the development of mathematical color space and difference formulas Analysis of the agreements and discrepancies in psychophysical data describing color differences An experimental plan for the reliable, replicated perceptual data necessary to make progress in the field Experts in academia and industry, neuroscientists, designers, art historians, and anyone interested in the nature of color will find Color Space and Its Divisions to be the authoritative reference in its field.
A Carboniferous Mite on an Insect Reveals the Antiquity of an Inconspicuous Interaction.
Robin, Ninon; Béthoux, Olivier; Sidorchuk, Ekaterina; Cui, Yingying; Li, Yingnan; Germain, Damien; King, Andrew; Berenguer, Felisa; Ren, Dong
2016-05-23
Symbiosis [1], understood as prolonged interspecific association, is as ancient as the eukaryotic cell [2, 3]. A variety of such associations have been reported in the continental fossil record, albeit sporadically. As for mites, which as a group have been present since the Devonian (ca. 390 mya) [4, 5] and are involved in a tremendous variety of modern-day symbioses, reported associations are limited to a few amber-preserved cases [6-11], with the earliest instance in the Cretaceous (ca. 85 mya) [11]. As a consequence, the antiquity and origin of associations involving small-sized mites and larger animals are poorly understood. Here we report, recovered from the Carboniferous Xiaheyan locality (ca. 320 mya), an oribatid mite located on the thorax of an extinct relative of grasshoppers, crickets, and katydids [12]. The mite was investigated using several methods, including phase-contrast tomography. The detailed morphological data allowed the placement of the mite in a new family within Mixonomata, whose fossil record is thus extended by ca. 250 Ma. Specimen and abundance distribution data derived from the fossil insect sample indicate that specimens from the corresponding excavation site were buried rapidly and were sub-autochthonous, indicating a syn vivo association. Moreover, the mite is located in a sequestered position on the insect. The observed interaction best fits the definition for phoresy, in which the benefit is transport and protection for the mite. This discovery demonstrates that this association, a trait shared by representatives of the most speciose mite taxa, arose very early during mite evolution. PMID:27161503
Stark, Julian; Brandner, Kay; Saito, Keiji; Seifert, Udo
2014-04-11
We introduce a simple model for an engine based on the Nernst effect. In the presence of a magnetic field, a vertical heat current can drive a horizontal particle current against a chemical potential. For a microscopic model invoking classical particle trajectories subject to the Lorentz force, we prove a universal bound 3-2√2≃0.172 for the ratio between the maximum efficiency and the Carnot efficiency. This bound, as the slightly lower one 1/6 for efficiency at maximum power, can indeed be saturated for a large magnetic field and small fugacity.
Semi-classical Electrodynamics
NASA Astrophysics Data System (ADS)
Lestone, John
2016-03-01
Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. We describe semi-classical approaches that can be used to obtain a more intuitive physical feel for several QED processes including electro-statics, Compton scattering, pair annihilation, the anomalous magnetic moment, and the Lamb shift, that could be taught easily to undergraduate students. Any physicist who brings their laptop to the talk will be able to build spread sheets in less than 10 minutes to calculate g/2 =1.001160 and a Lamb shift of 1057 MHz.
Fano Interference in Classical Oscillators
ERIC Educational Resources Information Center
Satpathy, S.; Roy, A.; Mohapatra, A.
2012-01-01
We seek to illustrate Fano interference in a classical coupled oscillator by using classical analogues of the atom-laser interaction. We present an analogy between the dressed state picture of coherent atom-laser interaction and a classical coupled oscillator. The Autler-Townes splitting due to the atom-laser interaction is analogous to the…
Classical Trajectories and Quantum Spectra
NASA Technical Reports Server (NTRS)
Mielnik, Bogdan; Reyes, Marco A.
1996-01-01
A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.
NASA Astrophysics Data System (ADS)
Czaja, K.
2012-04-01
The article presents the results of Ground Penetrating Radar (GPR) measurements carried out in a historic tenement in Krakow. The aim of this study was to check if there is an empty space under the apartment's floor. Ground Penetrating Radar is a noninvasive geophysical method which is particularly important during the test of antique tenement. In the case of historic buildings it happens that architectural documentation is not sufficiently accurate or has been destroyed or lost. Moreover the GPR provides adequate accuracy and resolution of received data. Because of required resolution and depth range antennas with frequencies 500 MHz and 800 MHz were used for measurements. Six measuring profiles were determined from P1 to P6. In this presentation profiles P3 and P4 are the most important. Due to the ambiguity of the surveying results modeling attempt of electromagnetic field distribution in the medium was undertaken. Programme GPRMax2D v. 2.0 (author - Antonis Giannopoulos) was applied to create models. In this programme the GPR numerical analysis uses the finite - difference - time - domain method (FDTD). The FDTD approach to the numerical solution of Maxwell's equations consist of discretization both the space and the time continua. Under certain assumptions the solution is accurate. Increase the complexity of the shapes modeled objects does not increase the computation time. At the basis of echograms from profiles P3 and P4 geometry of the models was constructed. Few types of models for profiles P3 and P4 was prepared. The first of theme assumed a signal with 500 MHz frequency, second - 800 MHz frequency, third - 200 MHz frequency. Next models included partial buried the basement with moist sand. In order to obtain the best adjustment for measuring echograms parameters such as the size of objects, the dielectric constant and wave velocity was changed. Radargrams obtained as a result of the modeling were compared with processed measurements radargrams. Very
Nucleosynthesis in classical novae
NASA Astrophysics Data System (ADS)
José, Jordi; Hernanz, Margarita; Iliadis, Christian
2006-10-01
Classical novae are dramatic stellar explosions with an energy release that is only overcome by supernovae and gamma-ray bursts. These unique cataclysmic events constitute a crucible where different scientific disciplines merge, including astrophysics, nuclear and atomic physics, cosmochemistry, high-energy physics or computer science. In this review, we focus on the nucleosynthesis accompanying nova outbursts. Theoretical predictions are compared with the elemental abundances inferred from observations of the nova ejecta as well as with the isotopic abundance ratios measured in meteorites. Special emphasis is given to the interplay between nova outbursts and the Galactic abundance pattern and on the synthesis of radioactive nuclei for which γ-ray signals are expected. Finally, we analyze the key role played by nuclear physics in our understanding of the nova phenomenon by means of recent experiments and a thorough account of the impact of nuclear uncertainties.
Quantum Computing's Classical Problem, Classical Computing's Quantum Problem
NASA Astrophysics Data System (ADS)
Van Meter, Rodney
2014-08-01
Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classical computers can already do. At the same time, those classical computers continue to advance, but those advances are now constrained by thermodynamics, and will soon be limited by the discrete nature of atomic matter and ultimately quantum effects. Technological advances benefit both quantum and classical machinery, altering the competitive landscape. Can we build quantum computing systems that out-compute classical systems capable of some logic gates per month? This article will discuss the interplay in these competing and cooperating technological trends.
Extended symmetrical classical electrodynamics.
Fedorov, A V; Kalashnikov, E G
2008-03-01
In this paper, we discuss a modification of classical electrodynamics in which "ordinary" point charges are absent. The modified equations contain additional terms describing the induced charges and currents. The densities of the induced charges and currents depend on the vector k and the vectors of the electromagnetic field, E and B . It is shown that the vectors E and B can be defined in terms of two four-potentials and the components of k are the components of a four-tensor of the third rank. The Lagrangian of the modified electrodynamics is defined. The conditions are derived at which only one four-potential determines the behavior of the electromagnetic field. It is also shown that static modified electrodynamics can describe the electromagnetic field in the inner region of an electric monopole. In the outer region of the electric monopole the electric field is governed by the Maxwell equations. It follows from boundary conditions at the interface between the inner and outer regions of the monopole that the vector k has a discrete spectrum. The electric and magnetic fields, energy, and angular momentum of the monopole are found for different eigenvalues of k .
NASA Astrophysics Data System (ADS)
Aniello, P.; Ciaglia, F. M.; Di Cosmo, F.; Marmo, G.; Pérez-Pardo, J. M.
2016-10-01
We propose a new point of view regarding the problem of time in quantum mechanics, based on the idea of replacing the usual time operator T with a suitable real-valued function T on the space of physical states. The proper characterization of the function T relies on a particular relation with the dynamical evolution of the system rather than with the infinitesimal generator of the dynamics (Hamiltonian). We first consider the case of classical hamiltonian mechanics, where observables are functions on phase space and the tools of differential geometry can be applied. The idea is then extended to the case of the unitary evolution of pure states of finite-level quantum systems by means of the geometric formulation of quantum mechanics. It is found that T is a function on the space of pure states which is not associated with any self-adjoint operator. The link between T and the dynamical evolution is interpreted as defining a simultaneity relation for the states of the system with respect to the dynamical evolution itself. It turns out that different dynamical evolutions lead to different notions of simultaneity, i.e., the notion of simultaneity is a dynamical notion.
The classic: Bone morphogenetic protein.
Urist, Marshall R; Strates, Basil S
2009-12-01
This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406.
The classic: Bone morphogenetic protein.
Urist, Marshall R; Strates, Basil S
2009-12-01
This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406. PMID:19727989
NASA Technical Reports Server (NTRS)
2007-01-01
M51, whose name comes from being the 51st entry in Charles Messier's catalog, is considered to be one of the classic examples of a spiral galaxy. At a distance of about 30 million light-years from Earth, it is also one of the brightest spirals in the night sky. A composite image of M51, also known as the Whirlpool Galaxy, shows the majesty of its structure in a dramatic new way through several of NASA's orbiting observatories. X-ray data from NASA's Chandra X-ray Observatory reveals point-like sources (purple) that are black holes and neutron stars in binary star systems. Chandra also detects a diffuse glow of hot gas that permeates the space between the stars. Optical data from the Hubble Space Telescope (green) and infrared emission from the Spitzer Space Telescope (red) both highlight long lanes in the spiral arms that consist of stars and gas laced with dust. A view of M51 with the Galaxy Evolution Explorer telescope shows hot, young stars that produce lots of ultraviolet energy (blue).
The textbook spiral structure is thought be the result of an interaction M51 is experiencing with its close galactic neighbor, NGC 5195, which is seen just above. Some simulations suggest M51's sharp spiral shape was partially caused when NGC 5195 passed through its main disk about 500 million years ago. This gravitational tug of war may also have triggered an increased level of star formation in M51. The companion galaxy's pull would be inducing extra starbirth by compressing gas, jump-starting the process by which stars form.
Innovation: the classic traps.
Kanter, Rosabeth Moss
2006-11-01
Never a fad, but always in or out of fashion, innovation gets rediscovered as a growth enabler every half dozen years. Too often, though, grand declarations about innovation are followed by mediocre execution that produces anemic results, and innovation groups are quietly disbanded in cost-cutting drives. Each managerial generation embarks on the same enthusiastic quest for the next new thing. And each generation faces the same vexing challenges- most of which stem from the tensions between protecting existing revenue streams critical to current success and supporting new concepts that may be crucial to future success. In this article, Harvard Business School professor Rosabeth Moss Kanter reflects on the four major waves of innovation enthusiasm she's observed over the past 25 years. She describes the classic mistakes companies make in innovation strategy, process, structure, and skills assessment, illustrating her points with a plethora of real-world examples--including AT&T Worldnet, Timberland, and Ocean Spray. A typical strategic blunder is when managers set their hurdles too high or limit the scope of their innovation efforts. Quaker Oats, for instance, was so busy in the 1990s making minor tweaks to its product formulas that it missed larger opportunities in distribution. A common process mistake is when managers strangle innovation efforts with the same rigid planning, budgeting, and reviewing approaches they use in their existing businesses--thereby discouraging people from adapting as circumstances warrant. Companies must be careful how they structure fledgling entities alongside existing ones, Kanter says, to avoid a clash of cultures and agendas--which Arrow Electronics experienced in its attempts to create an online venture. Finally, companies commonly undervalue and underinvest in the human side of innovation--for instance, promoting individuals out of innovation teams long before their efforts can pay off. Kanter offers practical advice for avoiding
Classical electrodynamic systems interacting with classical electromagnetic random radiation
NASA Astrophysics Data System (ADS)
Cole, Daniel C.
1990-02-01
In the past, a few researchers have presented arguments indicating that a statistical equilibrium state of classical charged particles necessarily demands the existence of a temperature-independent, incident classical electromagnetic random radiation. Indeed, when classical electromagnetic zero-point radiation is included in the analysis of problems with macroscopic boundaries, or in the analysis of charged particles in linear force fields, then good agreement with nature is obtained. In general, however, this agreement has not been found to hold for charged particles bound in nonlinear force fields. The point is raised here that this disagreement arising for nonlinear force fields may be a premature conclusion on this classical theory for describing atomic systems, because past calculations have not directed strict attention to electromagnetic interactions between charges. This point is illustrated here by examining the classical hydrogen atom and showing that this problem has still not been adequately solved.
A Comparison of Wood Density between Classical Cremonese and Modern Violins
Stoel, Berend C.; Borman, Terry M.
2008-01-01
Classical violins created by Cremonese masters, such as Antonio Stradivari and Giuseppe Guarneri Del Gesu, have become the benchmark to which the sound of all violins are compared in terms of their abilities of expressiveness and projection. By general consensus, no luthier since that time has been able to replicate the sound quality of these classical instruments. The vibration and sound radiation characteristics of a violin are determined by an instrument's geometry and the material properties of the wood. New test methods allow the non-destructive examination of one of the key material properties, the wood density, at the growth ring level of detail. The densities of five classical and eight modern violins were compared, using computed tomography and specially developed image-processing software. No significant differences were found between the median densities of the modern and the antique violins, however the density difference between wood grains of early and late growth was significantly smaller in the classical Cremonese violins compared with modern violins, in both the top (Spruce) and back (Maple) plates (p = 0.028 and 0.008, respectively). The mean density differential (SE) of the top plates of the modern and classical violins was 274 (26.6) and 183 (11.7) gram/liter. For the back plates, the values were 128 (2.6) and 115 (2.0) gram/liter. These differences in density differentials may reflect similar changes in stiffness distributions, which could directly impact vibrational efficacy or indirectly modify sound radiation via altered damping characteristics. Either of these mechanisms may help explain the acoustical differences between the classical and modern violins. PMID:18596937
Classic African American Children's Literature
ERIC Educational Resources Information Center
McNair, Jonda C.
2010-01-01
The purpose of this article is to assert that there are classic African American children's books and to identify a sampling of them. The author presents multiple definitions of the term classic based on the responses of children's literature experts and relevant scholarship. Next, the manner in which data were collected and analyzed in regard to…
Dynamical Symmetries in Classical Mechanics
ERIC Educational Resources Information Center
Boozer, A. D.
2012-01-01
We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…
Operator Formulation of Classical Mechanics.
ERIC Educational Resources Information Center
Cohn, Jack
1980-01-01
Discusses the construction of an operator formulation of classical mechanics which is directly concerned with wave packets in configuration space and is more similar to that of convential quantum theory than other extant operator formulations of classical mechanics. (Author/HM)
Teaching and Demonstrating Classical Conditioning.
ERIC Educational Resources Information Center
Sparrow, John; Fernald, Peter
1989-01-01
Discusses classroom demonstrations of classical conditioning and notes tendencies to misrepresent Pavlov's procedures. Describes the design and construction of the conditioner that is used for demonstrating classical conditioning. Relates how students experience conditioning, generalization, extinction, discrimination, and spontaneous recovery.…
Connan, J.
1999-01-01
Natural asphalt (or bitumen) deposits, oil seepage and liquid oil shows are widespread in the Middle East, especially in the Zagros mountains of Iran. Ancient people from northern Iraq, south-west Iran and the Dead Sea area extensively used this ubiquitous natural resource until the Neolithic period (7000 to 6000 BC). Evidence of earlier use has been recently documented in the Syrian desert near El Kown, where bitumen-coated flint implements, dated to 40,000 BC (Mousterian period), have been unearthed. This discovery at least proves that bitumen was used by Neanderthal populations as hafting material to fix handles to their flint tools. Numerous testimonies, proving the importance of this petroleum-based material in Ancient civilizations, were brought to light by the excavations conducted in the Near East as of the beginning of the century. Bitumen remains show a wide range of uses that can be classified under several headings. First of all, bitumen was largely used in Mesopotamia and Elam as mortar in the construction of palaces (e.g. the Darius Palace in Susa), temples, ziggurats (e.g. the so-called 'Tower of Babel' in Babylon), terraces (e.g. the famous 'Hanging Gardens of Babylon') and exceptionally for roadway coating (e.g. the processional way of Babylon). Since the Neolithic, bitumen served to waterproof containers (baskets, earthenware jars, storage pits), wooden posts, palace grounds (e.g. in Mari and Haradum), reserves of lustral waters, bathrooms, palm roofs, etc. Mats, sarcophagi, coffins and jars, used for funeral practices, were often covered and sealed with bitumen. Reed and wood boats were also caulked with bitumen. Abundant lumps of bituminous mixtures used for that particular purpose have been found in storage rooms of houses at Ra's al-Junayz in Oman. Bitumen was also a widespread adhesive in antiquity and served to repair broken ceramics, fix eyes and horns on statues (e.g. at Tell al-Ubaid around 2500 BC). Beautiful decorations with stones
Connan, J.
1999-01-01
Natural asphalt (or bitumen) deposits, oil seepage and liquid oil shows are widespread in the Middle East, especially in the Zagros mountains of Iran. Ancient people from northern Iraq, south-west Iran and the Dead Sea area extensively used this ubiquitous natural resource until the Neolithic period (7000 to 6000 BC). Evidence of earlier use has been recently documented in the Syrian desert near El Kown, where bitumen-coated flint implements, dated to 40,000 BC (Mousterian period), have been unearthed. This discovery at least proves that bitumen was used by Neanderthal populations as hafting material to fix handles to their flint tools. Numerous testimonies, proving the importance of this petroleum-based material in Ancient civilizations, were brought to light by the excavations conducted in the Near East as of the beginning of the century. Bitumen remains show a wide range of uses that can be classified under several headings. First of all, bitumen was largely used in Mesopotamia and Elam as mortar in the construction of palaces (e.g. the Darius Palace in Susa), temples, ziggurats (e.g. the so-called 'Tower of Babel' in Babylon), terraces (e.g. the famous 'Hanging Gardens of Babylon') and exceptionally for roadway coating (e.g. the processional way of Babylon). Since the Neolithic, bitumen served to waterproof containers (baskets, earthenware jars, storage pits), wooden posts, palace grounds (e.g. in Mari and Haradum), reserves of lustral waters, bathrooms, palm roofs, etc. Mats, sarcophagi, coffins and jars, used for funeral practices, were often covered and sealed with bitumen. Reed and wood boats were also caulked with bitumen. Abundant lumps of bituminous mixtures used for that particular purpose have been found in storage rooms of houses at Ra's al-Junayz in Oman. Bitumen was also a widespread adhesive in antiquity and served to repair broken ceramics, fix eyes and horns on statues (e.g. at Tell al-Ubaid around 2500 BC). Beautiful decorations with stones
Quantum localization of classical mechanics
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Topological spectrum of classical configurations
Nettel, Francisco; Quevedo, Hernando
2007-11-14
For any classical field configuration or mechanical system with a finite number of degrees of freedom we introduce the concept of topological spectrum. It is based upon the assumption that for any classical configuration there exists a principle fiber bundle that contains all the physical and geometric information of the configuration. The topological spectrum follows from the investigation of the corresponding topological invariants. Examples are given which illustrate the procedure and the significance of the topological spectrum as a discretization relationship among the parameters that determine the physical meaning of classical configurations.
Archana, I; Bhat, Jeddu Ganapathi
2011-10-01
Ayurvedic science of life is one of the great contributions of India to the systems of health science. Apart from classical medical works, much information related to this Indian system is found elsewhere in other branches of science, such as Philosophy, Joutishya, Natya, Kavya, etc. Still much Ayurvedic information is clubbed in other compilations meant for general purpose. However, it is unfortunate that not all such works came into lime light; and still remain in the dark for many reasons. Haramekhala written by Mahuka is one such work, which contains Ayurvedic information along with various other themes, such as cosmetics. The author Mahuka lived in Dharanivaraha rajya of central India during Chapa Dynasty in 9(th)-10(th) century A.D. Haramekhala also known as Prayogamala comprises of five Paricchedas written in Prakrita language, later added by translations in Sanskrit called Chaya and foot notes in Sanskrit called Tika. The detail about this book is described in this article. PMID:22661837
Classical Foundations: Leah Rochel Johnson
ERIC Educational Resources Information Center
Lum, Lydia
2005-01-01
This article discusses the accomplishments of Leah Rochel Johnson, Assistant Professor of Classics and Ancient Mediterranean Studies and History, Pennsylvania State University. It provides insight into her values and beliefs and testimony from those who work most closely with her.
Classical theory of radiating strings
NASA Technical Reports Server (NTRS)
Copeland, Edmund J.; Haws, D.; Hindmarsh, M.
1990-01-01
The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.
The classical microwave frequency standards
NASA Technical Reports Server (NTRS)
Busca, Giovanni; Thomann, Pierre; Laurent-Guy, Bernier; Willemin, Philippe; Schweda, Hartmut S.
1990-01-01
Some key problems are presented encountered in the classical microwave frequency standards which are still not solved today. The point of view expressed benefits from the experience gained both in the industry and in the research lab, on the following classical microwave frequency standards: active and passive H, conventional and laser pumped Cs beam tube, small conventional and laser pumped Rubidium. The accent is put on the Rubidium standard.
Quantum money with classical verification
Gavinsky, Dmitry
2014-12-04
We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.
Quantum remnants in the classical limit
NASA Astrophysics Data System (ADS)
Kowalski, A. M.; Plastino, A.
2016-09-01
We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt-Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit.
Classical anomalies for spinning particles
NASA Astrophysics Data System (ADS)
Gamboa, Jorge; Plyushchay, Mikhail
1998-02-01
We discuss the phenomenon of classical anomaly. It is observed for 3D Berezin-Marinov (BM), Barducci-Casalbuoni-Lusanna (BCL) and Cortés-Plyushchay-Velázquez (CPV) pseudoclassical spin particle models. We show that quantum mechanically these different models correspond to the same P, T-invariant system of planar fermions, but the quantum system has global symmetries being not reproducible classically in full in any of the models. We demonstrate that the specific U(1) gauge symmetry characterized by the opposite coupling constants of spin s = + {1}/{2} and s = - {1}/{2} states has a natural classical analog in the CPV model but can be reproduced in the BM and BCL models in an obscure and rather artificial form. We also show that the BM and BCL models quantum mechanically are equivalent in any odd-dimensional space-time, but describe different quantum systems in even space-time dimensions.
Overview of Classical Swine Fever (Hog Cholera, Classical Swine fever)
Technology Transfer Automated Retrieval System (TEKTRAN)
Classical swine fever is a contagious often fatal disease of pigs clinically characterized by high body temperature, lethargy, yellowish diarrhea, vomits and purple skin discoloration of ears, lower abdomen and legs. It was first described in the early 19th century in the USA. Later, a condition i...
Feruidus Ille Canis: the Lore and Poetry of the Dog Star in Antiquity
NASA Astrophysics Data System (ADS)
Ceragioli, Roger Charles
1992-01-01
The Dog Star, Sirius, appears in many important works of classical poetry. It also appears in numerous myths and several religious rituals. A complex body of folklore surrounds it and it had a paramount importance in agriculture. Yet no one has attempted a systematic analysis of Sirius' place in Greco-Roman art and thought. This thesis begins that analysis. The introductory chapter discusses the methodology and approach that the thesis takes to the evidence, and supplies essential background information on Sirius' place among the constellations and its relation to the physical environment of the Mediterranean. Chapter one explores Sirius' role in ancient warrior traditions. Sirius embodied the principle of cosmic heat, and through heat it was thought to cause rabies in dogs. The Greek word for rabies is lussa. But lussa also named the madness of warriors such as Achilles in the Iliad. Etymologically, lussa meant "wolfishness." Rabid dogs, wolves, and raging warriors all exhibit fiery heat as an integral part of their natures. It is argued that raging warriors, wolves, and rabid dogs were largely interchangeable entities for the Greeks. Thus when Hector and Achilles in their raging are compared to Sirius, the comparison reflects more than the likeness of their surface brilliance. Chapter two explores Sirius' connection to erotic themes in ancient poetry. Because erotic experience could be represented as a conflagration that might burn the lover into a frenzy, the fiery raging Dog Star was an appropriate symbolic accompaniment. Sirius itself experienced erotic frenzy when it became passionate for Opora (the ripe fruits of summer). Chapter three turns to Sirius' involvement in viticulture. Sirius was said to ripen the grapes, but was also conceived to have once been the faithful dog of Icarius, who first introduced wine-drinking among humans. The chapter explores Sirius' role in the myth of Icarius, and the relation of that myth to the erotic and martial sides of
Classical picture of postexponential decay
Torrontegui, E.; Muga, J. G.; Martorell, J.; Sprung, D. W. L.
2010-04-15
Postexponential decay of the probability density of a quantum particle leaving a trap can be reproduced accurately, except for interference oscillations at the transition to the postexponential regime, by means of an ensemble of classical particles emitted with constant probability per unit time and the same half-life as the quantum system. The energy distribution of the ensemble is chosen to be identical to the quantum distribution, and the classical point source is located at the scattering length of the corresponding quantum system. A one-dimensional example is provided to illustrate the general argument.
Shen-Miller, J; Lindner, Petra; Xie, Yongming; Villa, Sarah; Wooding, Kerry; Clarke, Steven G; Loo, Rachel R O; Loo, Joseph A
2013-09-01
Single-seeded fruit of the sacred lotus Nelumbo nucifera Gaertn var. China Antique from NE China have viability as long as ~1300 years determined by direct radiocarbon-dating, having a germination rate of 84%. The pericarp, a fruit tissue that encloses the single seeds of Nelumbo, is considered one of the major factors that contribute to fruit longevity. Proteins that are heat stable and have protective function may be equally important to seed viability. We show proteins of Nelumbo fruit that are able to withstand heating, 31% of which remained soluble in the 110°C-treated embryo-axis of a 549-yr-old fruit and 76% retained fluidity in its cotyledons. Genome of Nelumbo is published. The amino-acid sequences of 11 "thermal proteins" (soluble at 100°C) of modern Nelumbo embryo-axes and cotyledons, identified by mass spectrometry, Western blot and bioassay, are assembled and aligned with those of an archaeal-hyperthermophile Methancaldococcus jannaschii (Mj; an anaerobic methanogen having a growth optimum of 85°C) and with five mesophile angiosperms. These thermal proteins have roles in protection and repair under stress. More than half of the Nelumbo thermal proteins (55%) are present in the archaean Mj, indicating their long-term durability and history. One Nelumbo protein-repair enzyme exhibits activity at 100°C, having a higher heat-tolerance than that of Arabidopsis. A list of 30 sequenced but unassembled thermal proteins of Nelumbo is supplemented.
Binder, Michaela; Roberts, Charlotte; Spencer, Neal; Antoine, Daniel; Cartwright, Caroline
2014-01-01
Cancer, one of the world’s leading causes of death today, remains almost absent relative to other pathological conditions, in the archaeological record, giving rise to the conclusion that the disease is mainly a product of modern living and increased longevity. This paper presents a male, young-adult individual from the archaeological site of Amara West in northern Sudan (c. 1200BC) displaying multiple, mainly osteolytic, lesions on the vertebrae, ribs, sternum, clavicles, scapulae, pelvis, and humeral and femoral heads. Following radiographic, microscopic and scanning electron microscopic (SEM) imaging of the lesions, and a consideration of differential diagnoses, a diagnosis of metastatic carcinoma secondary to an unknown soft tissue cancer is suggested. This represents the earliest complete example in the world of a human who suffered metastatic cancer to date. The study further draws its strength from modern analytical techniques applied to differential diagnoses and the fact that it is firmly rooted within a well-documented archaeological and historical context, thus providing new insights into the history and antiquity of the disease as well as its underlying causes and progression. PMID:24637948
Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD
NASA Astrophysics Data System (ADS)
Büntgen, Ulf; Myglan, Vladimir S.; Ljungqvist, Fredrik Charpentier; McCormick, Michael; di Cosmo, Nicola; Sigl, Michael; Jungclaus, Johann; Wagner, Sebastian; Krusic, Paul J.; Esper, Jan; Kaplan, Jed O.; de Vaan, Michiel A. C.; Luterbacher, Jürg; Wacker, Lukas; Tegel, Willy; Kirdyanov, Alexander V.
2016-03-01
Climatic changes during the first half of the Common Era have been suggested to play a role in societal reorganizations in Europe and Asia. In particular, the sixth century coincides with rising and falling civilizations, pandemics, human migration and political turmoil. Our understanding of the magnitude and spatial extent as well as the possible causes and concurrences of climate change during this period is, however, still limited. Here we use tree-ring chronologies from the Russian Altai and European Alps to reconstruct summer temperatures over the past two millennia. We find an unprecedented, long-lasting and spatially synchronized cooling following a cluster of large volcanic eruptions in 536, 540 and 547 AD (ref. ), which was probably sustained by ocean and sea-ice feedbacks, as well as a solar minimum. We thus identify the interval from 536 to about 660 AD as the Late Antique Little Ice Age. Spanning most of the Northern Hemisphere, we suggest that this cold phase be considered as an additional environmental factor contributing to the establishment of the Justinian plague, transformation of the eastern Roman Empire and collapse of the Sasanian Empire, movements out of the Asian steppe and Arabian Peninsula, spread of Slavic-speaking peoples and political upheavals in China.
Dias, L A S; Missio, R F; Dias, D C F S
2012-08-16
Jatropha curcas is a multi-purpose plant species, with many advantages for biodiesel production. Its potential oil productivity is 1.9 t/ha, beginning the fourth year after planting. Nevertheless, limitations such as high harvest cost, lack of scientific konowledge and low profitability have prevented it from being utilized commercially. In order to provide information that could be useful to improve the status of this species as a bioenergy plant, we elucidated the center of origin and the center of domestication of J. curcas (Mexico). Evidence of the antiquity of knowledge of J. curcas by Olmeca people, who lived 3500-5000 years ago, reinforces its Mexican origin. The existence of non-toxic types, which only exist in that country, along with DNA studies, also strongly suggest that Mexico is the domestication center of this species. In Brazil, the Northern region of Minas Gerais State presents types with the highest oil content. Here we propose this region as a secondary center of diversity of J. curcas.
Harper, Kristin N; Zuckerman, Molly K; Harper, Megan L; Kingston, John D; Armelagos, George J
2011-01-01
For nearly 500 years, scholars have argued about the origin and antiquity of syphilis. Did Columbus bring the disease from the New World to the Old World? Or did syphilis exist in the Old World before 1493? Here, we evaluate all 54 published reports of pre-Columbian, Old World treponemal disease using a standardized, systematic approach. The certainty of diagnosis and dating of each case is considered, and novel information pertinent to the dating of these cases, including radiocarbon dates, is presented. Among the reports, we did not find a single case of Old World treponemal disease that has both a certain diagnosis and a secure pre-Columbian date. We also demonstrate that many of the reports use nonspecific indicators to diagnose treponemal disease, do not provide adequate information about the methods used to date specimens, and do not include high-quality photographs of the lesions of interest. Thus, despite an increasing number of published reports of pre-Columbian treponemal infection, it appears that solid evidence supporting an Old World origin for the disease remains absent.
Relative Clauses in Classical Nahuatl
ERIC Educational Resources Information Center
Langacker, Ronald W.
1975-01-01
Jane Rosenthal's paper on relative clauses in Classical Nahuatl is discussed, and it is argued that she misses an important generalization. An alternative analysis to a class of relative pronouns and new rules for the distribution of relative pronouns are proposed. (SC)
Quantization of Inequivalent Classical Hamiltonians.
ERIC Educational Resources Information Center
Edwards, Ian K.
1979-01-01
Shows how the quantization of a Hamiltonian which is not canonically related to the energy is ambiguous and thereby results in conflicting physical interpretations. Concludes that only the Hamiltonian corresponding to the total energy of a classical system or one canonically related to it is suitable for consistent quantization. (GA)
Classical and molecular genetic mapping
Technology Transfer Automated Retrieval System (TEKTRAN)
A brief history of classical genetic mapping in soybean [Glycine max (L.) Merr.] is described. Detailed descriptions are given of the development of molecular genetic linkage maps based upon various types of DNA markers Like many plant and animal species, the first molecular map of soybean was bas...
Teaching Classical Mechanics Using Smartphones
ERIC Educational Resources Information Center
Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad
2013-01-01
A number of articles published in this column have dealt with topics in classical mechanics. This note describes some additional examples employing a smartphone and the new software iMecaProf. Steve Jobs presented the iPhone as "perfect for gaming." Thanks to its microsensors connected in real time to the numerical world, physics…
Classical Music as Enforced Utopia
ERIC Educational Resources Information Center
Leech-Wilkinson, Daniel
2016-01-01
In classical music composition, whatever thematic or harmonic conflicts may be engineered along the way, everything always turns out for the best. Similar utopian thinking underlies performance: performers see their job as faithfully carrying out their master's (the composer's) wishes. The more perfectly they represent them, the happier the…
Identity from classical invariant theory
Stein, P.R.
1982-01-01
A simple derivation is given of a well-known relation involving the so-called Cayley Operator of classical invariant theory. The proof is induction-free and independent of Capelli's identity; it makes use only of a known-theorem in the theory of determinants and some elementary combinatorics.
No return to classical reality
NASA Astrophysics Data System (ADS)
Jennings, David; Leifer, Matthew
2016-01-01
At a fundamental level, the classical picture of the world is dead, and has been dead now for almost a century. Pinning down exactly which quantum phenomena are responsible for this has proved to be a tricky and controversial question, but a lot of progress has been made in the past few decades. We now have a range of precise statements showing that whatever the ultimate laws of nature are, they cannot be classical. In this article, we review results on the fundamental phenomena of quantum theory that cannot be understood in classical terms. We proceed by first granting quite a broad notion of classicality, describe a range of quantum phenomena (such as randomness, discreteness, the indistinguishability of states, measurement-uncertainty, measurement-disturbance, complementarity, non-commutativity, interference, the no-cloning theorem and the collapse of the wave-packet) that do fall under its liberal scope, and then finally describe some aspects of quantum physics that can never admit a classical understanding - the intrinsically quantum mechanical aspects of nature. The most famous of these is Bell's theorem, but we also review two more recent results in this area. Firstly, Hardy's theorem shows that even a finite-dimensional quantum system must contain an infinite amount of information, and secondly, the Pusey-Barrett-Rudolph theorem shows that the wave function must be an objective property of an individual quantum system. Besides being of foundational interest, results of this sort now find surprising practical applications in areas such as quantum information science and the simulation of quantum systems.
Methods for tracing the origin of white marbles used in antiquity
NASA Astrophysics Data System (ADS)
Prochaska, Walter; Grillo, Silvana Maria
2013-04-01
The topic of this paper is to given an overview of the methods to pinpoint the origin of white marbles and to discuss the progress made in this field during the last years. To pinpoint the place of origin of the marble to an area or even to a special quarry may be of appreciable importance in investigating ancient trading routes and trade relations. A material-specific classification can be conducive to understand if the workshops of an area used marbles of acceptable quality from a local quarry or quarrying areas or if they used imported marbles in or without combination with local ones. Furthermore during restoration activities the knowledge of the origin of the marbles used in architecture may be of importance for supplying more or less original types of marbles. It may also be of interest for evaluating the authenticity of artifact information on the provenance of the used material. The first attempt to discriminate between different marbles used petrographic methods followed by instrumental chemical analyses, especially the analysis of trace elements. In the last decades multi-element neutron activation analysis (NAA) of various trace elements was attempted to pinpoint the origins of marbles. A few decades ago stable isotope analysis seemed to be the solution of this problem and became the standard methods for investigation the origin of white marbles. However, with the rapidly increasing number of historical marble quarrying sites and with the increasing number of analyzed samples in general, the compositional fields in the isotope diagram became larger and many classical marbles show large ranges of overlap. Therefore special attention is drawn to a new method to characterize the chemical properties of microinclusiones of the marbles additional to the conventionally used methods to ascribe their origin to a special quarry or at least to a defined geological formation of a given area. Several case studies will be presented: Different types of marbles were
Classical Analog to Entanglement Reversibility
NASA Astrophysics Data System (ADS)
Chitambar, Eric; Fortescue, Ben; Hsieh, Min-Hsiu
2015-08-01
In this Letter we study the problem of secrecy reversibility. This asks when two honest parties can distill secret bits from some tripartite distribution pX Y Z and transform secret bits back into pX Y Z at equal rates using local operation and public communication. This is the classical analog to the well-studied problem of reversibly concentrating and diluting entanglement in a quantum state. We identify the structure of distributions possessing reversible secrecy when one of the honest parties holds a binary distribution, and it is possible that all reversible distributions have this form. These distributions are more general than what is obtained by simply constructing a classical analog to the family of quantum states known to have reversible entanglement. An indispensable tool used in our analysis is a conditional form of the Gács-Körner common information.
Psoriasis: classical and emerging comorbidities.
Oliveira, Maria de Fátima Santos Paim de; Rocha, Bruno de Oliveira; Duarte, Gleison Vieira
2015-01-01
Psoriasis is a chronic inflammatory systemic disease. Evidence shows an association of psoriasis with arthritis, depression, inflammatory bowel disease and cardiovascular diseases. Recently, several other comorbid conditions have been proposed as related to the chronic inflammatory status of psoriasis. The understanding of these conditions and their treatments will certainly lead to better management of the disease. The present article aims to synthesize the knowledge in the literature about the classical and emerging comorbidities related to psoriasis.
Invariants from classical field theory
Diaz, Rafael; Leal, Lorenzo
2008-06-15
We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian BF, Chern-Simons, and two-dimensional Yang-Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss' and the second Milnor's invariant for links in S{sup 3}, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.
Classical music and the teeth.
Eramo, Stefano; Di Biase, Mary Jo; De Carolis, Carlo
2013-01-01
Teeth and their pathologies are frequent themes in classical music. The teeth have inspired popular songwriters such as Thomas Crecquillon, Carl Loewe, Amilcare Ponchielli & Christian Sinding; as well as composers whose works are still played all over the world, such as Robert Schumann and Jacques Offenbach. This paper examines several selections in which the inspiring theme is the teeth and the pain they can cause, from the suffering of toothache, to the happier occasion of a baby's first tooth. PMID:23691776
Psoriasis: classical and emerging comorbidities*
de Oliveira, Maria de Fátima Santos Paim; Rocha, Bruno de Oliveira; Duarte, Gleison Vieira
2015-01-01
Psoriasis is a chronic inflammatory systemic disease. Evidence shows an association of psoriasis with arthritis, depression, inflammatory bowel disease and cardiovascular diseases. Recently, several other comorbid conditions have been proposed as related to the chronic inflammatory status of psoriasis. The understanding of these conditions and their treatments will certainly lead to better management of the disease. The present article aims to synthesize the knowledge in the literature about the classical and emerging comorbidities related to psoriasis. PMID:25672294
Quantum fields with classical perturbations
Dereziński, Jan
2014-07-15
The main purpose of these notes is a review of various models of Quantum Field Theory (QFT) involving quadratic Lagrangians. We discuss scalar and vector bosons, spin 1/2 fermions, both neutral and charged. Beside free theories, we study their interactions with classical perturbations, called, depending on the context, an external linear source, mass-like term, current or electromagnetic potential. The notes may serve as a first introduction to QFT.
The origins of classical homoeopathy?
Campbell, A
1999-06-01
Writers on homoeopathy frequently refer to classical homoeopathy, usually with the implication that this is the most complete and authoritative version of Hahnemann's views. However, such claims do not correspond with the historical facts. Homoeopathy arrived in the USA early in the 19th century and there underwent considerable modifications at the hands of its most influential adherents, who were deeply influenced by the ideas of Emanuel Swedenborg. J.T. Kent is particularly important in this respect and he also introduced ideas from other sources. The 'extremist' character of Kentian homoeopathy goes far to explain the gulf that has separated homoeopathy from orthodox medicine until comparatively recently. Kentian views were brought to Britain by Margaret Tyler early in the 20th century and became dominant after the First World War, to give rise to what is called classical homoeopathy today. This is not only a considerable modification of Hahnemann's teaching, but it fails to take account of Hahnemann's late ideas which he developed in his Paris years and incorporated in the sixth edition of 'The Organon', published posthumously in 1920. Whatever one's opinion of the value of classical homoeopathy, it cannot be legitimately represented as a purely Hahnemannian teaching.
Lindner, Petra; Xie, Yongming; Villa, Sarah; Wooding, Kerry; Clarke, Steven G.; Loo, Rachel R. O.; Loo, Joseph A.
2013-01-01
Single-seeded fruit of the sacred lotus Nelumbo nucifera Gaertn var. China Antique from NE China have viability as long as ~1300 years determined by direct radiocarbon-dating, having a germination rate of 84%. The pericarp, a fruit tissue that encloses the single seeds of Nelumbo, is considered one of the major factors that contribute to fruit longevity. Proteins that are heat stable and have protective function may be equally important to seed viability. We show proteins of Nelumbo fruit that are able to withstand heating, 31% of which remained soluble in the 110°C-treated embryo-axis of a 549-yr-old fruit and 76% retained fluidity in its cotyledons. Genome of Nelumbo is published. The amino-acid sequences of 11 “thermal proteins” (soluble at 100°C) of modern Nelumbo embryo-axes and cotyledons, identified by mass spectrometry, Western blot and bioassay, are assembled and aligned with those of an archaeal-hyperthermophile Methancaldococcus jannaschii (Mj; an anaerobic methanogen having a growth optimum of 85°C) and with five mesophile angiosperms. These thermal proteins have roles in protection and repair under stress. More than half of the Nelumbo thermal proteins (55%) are present in the archaean Mj, indicating their long-term durability and history. One Nelumbo protein-repair enzyme exhibits activity at 100°C, having a higher heat-tolerance than that of Arabidopsis. A list of 30 sequenced but unassembled thermal proteins of Nelumbo is supplemented. PMID:24363819
Entanglement in the classical limit: Quantum correlations from classical probabilities
Matzkin, A.
2011-08-15
We investigate entanglement for a composite closed system endowed with a scaling property which allows the dynamics to be kept invariant while the effective Planck constant ({Dirac_h}/2{pi}){sub eff} of the system is varied. Entanglement increases as ({Dirac_h}/2{pi}){sub eff}{yields}0. Moreover, for sufficiently low ({Dirac_h}/2{pi}){sub eff} the evolution of the quantum correlations, encapsulated, for example, in the quantum discord, can be obtained from the mutual information of the corresponding classical system. We show this behavior is due to the local suppression of path interferences in the interaction that generates the entanglement.
Three approaches to classical thermal field theory
Gozzi, E.; Penco, R.
2011-04-15
Research Highlights: > Classical thermal field theory admits three equivalent path integral formulations. > Classical Feynman rules can be derived for all three formulations. > Quantum Feynman rules reduce to classical ones at high temperatures. > Classical Feynman rules become much simpler when superfields are introduced. - Abstract: In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the closed-time path (CTP) formalism, the thermofield dynamics (TFD) and the Matsubara approach.
Classical dynamics on Snyder spacetime
NASA Astrophysics Data System (ADS)
Mignemi, S.
2015-04-01
We study the classical dynamics of a particle in Snyder spacetime, adopting the formalism of constrained Hamiltonian systems introduced by Dirac. We show that the motion of a particle in a scalar potential is deformed with respect to special relativity by terms of order βE2. A remarkable result is that in the relativistic Snyder model a consistent choice of the time variable must necessarily depend on the dynamics. This is a consequence of the nontrivial mixing between position and momentum coordinates intrinsic to the Snyder model.
Classical analog of quantum phase
Ord, G.N.
1992-07-01
A modified version of the Feynman relativistic chessboard model (FCM) is investigated in which the paths involved are spirals in the space-time. Portions of the paths in which the particle`s proper time is reversed are interpreted in terms of antiparticles. With this intepretation the particle-antiparticle field produced by such trajectories provides a classical analog of the phase associated with particle paths in the unmodified FCM. It is shwon that in the nonrelativistic limit the resulting kernel is the correct Dirac propagator and that particle-antiparticle symmetry is in this case responsible for quantum interference. 7 refs., 3 figs.
Teaching classical mechanics using smartphones
NASA Astrophysics Data System (ADS)
Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad
2013-09-01
A number of articles published in this column have dealt with topics in classical mechanics. This note describes some additional examples employing a smartphone and the new software iMecaProf.4 Steve Jobs presented the iPhone as "perfect for gaming."5 Thanks to its microsensors connected in real time to the numerical world, physics teachers could add that smartphones are "perfect for teaching science." The software iMecaProf displays in real time the measured data on a screen. The visual representation is built upon the formalism of classical mechanics. iMecaProf receives data 100 times a second from iPhone sensors through a Wi-Fi connection using the application Sensor Data.6 Data are the three components of the acceleration vector in the smartphone frame and smartphone's orientation through three angles (yaw, pitch, and roll). For circular motion (uniform or not), iMecaProf uses independent measurements of the rotation angle θ, the angular speed dθ/dt, and the angular acceleration d2θ/dt2.
Classical command of quantum systems.
Reichardt, Ben W; Unger, Falk; Vazirani, Umesh
2013-04-25
Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectly modelled or 'untrusted' system. It is therefore of fundamental and practical interest to devise tests that reveal whether the system is behaving as instructed. In 1969, Clauser, Horne, Shimony and Holt proposed an experimental test that can be passed by a quantum-mechanical system but not by a system restricted to classical physics. Here we extend this test to enable the characterization of a large quantum system. We describe a scheme that can be used to determine the initial state and to classically command the system to evolve according to desired dynamics. The bipartite system is treated as two black boxes, with no assumptions about their inner workings except that they obey quantum physics. The scheme works even if the system is explicitly designed to undermine it; any misbehaviour is detected. Among its applications, our scheme makes it possible to test whether a claimed quantum computer is truly quantum. It also advances towards a goal of quantum cryptography: namely, the use of 'untrusted' devices to establish a shared random key, with security based on the validity of quantum physics.
Classical command of quantum systems.
Reichardt, Ben W; Unger, Falk; Vazirani, Umesh
2013-04-25
Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectly modelled or 'untrusted' system. It is therefore of fundamental and practical interest to devise tests that reveal whether the system is behaving as instructed. In 1969, Clauser, Horne, Shimony and Holt proposed an experimental test that can be passed by a quantum-mechanical system but not by a system restricted to classical physics. Here we extend this test to enable the characterization of a large quantum system. We describe a scheme that can be used to determine the initial state and to classically command the system to evolve according to desired dynamics. The bipartite system is treated as two black boxes, with no assumptions about their inner workings except that they obey quantum physics. The scheme works even if the system is explicitly designed to undermine it; any misbehaviour is detected. Among its applications, our scheme makes it possible to test whether a claimed quantum computer is truly quantum. It also advances towards a goal of quantum cryptography: namely, the use of 'untrusted' devices to establish a shared random key, with security based on the validity of quantum physics. PMID:23619692
Fluctuations in classical sum rules.
Elton, John R; Lakshminarayan, Arul; Tomsovic, Steven
2010-10-01
Classical sum rules arise in a wide variety of physical contexts. Asymptotic expressions have been derived for many of these sum rules in the limit of long orbital period (or large action). Although sum-rule convergence may well be exponentially rapid for chaotic systems in a global phase-space sense with time, individual contributions to the sums may fluctuate with a width which diverges in time. Our interest is in the global convergence of sum rules as well as their local fluctuations. It turns out that a simple version of a lazy baker map gives an ideal system in which classical sum rules, their corrections, and their fluctuations can be worked out analytically. This is worked out in detail for the Hannay-Ozorio sum rule. In this particular case the rate of convergence of the sum rule is found to be governed by the Pollicott-Ruelle resonances, and both local and global boundaries for which the sum rule may converge are given. In addition, the width of the fluctuations is considered and worked out analytically, and it is shown to have an interesting dependence on the location of the region over which the sum rule is applied. It is also found that as the region of application is decreased in size the fluctuations grow. This suggests a way of controlling the length scale of the fluctuations by considering a time dependent phase-space volume, which for the lazy baker map decreases exponentially rapidly with time.
Classical Mechanics: A Modern Introduction
NASA Astrophysics Data System (ADS)
McCall, Martin W.
2000-12-01
Classical Mechanics is a clear introduction to the subject, combining a user-friendly style with an authoritative approach, whilst requiring minimal prerequisite mathematics - only elementary calculus and simple vectors are presumed. The text starts with a careful look at Newton's Laws, before applying them in one dimension to oscillations and collisions. More advanced applications - including gravitational orbits, rigid body dynamics and mechanics in rotating frames - are deferred until after the limitations of Newton's inertial frames have been highlighted through an exposition of Einstein's Special Relativity. The examples given throughout are often unusual for an elementary text, although they are made accessible through discussion and diagrams. Complete revision summaries are given at the end of each chapter, together with problems designed to be both illustrative and challenging. Features: * Comprehensive introduction to classical mechanics and relativity * Many novel examples, e.g. stability of the universe, falling cats, crickets bats and snooker * Includes many problems with numerical answers * Revision notes at the end of each chapter
Noise and the classical musician.
McBride, D.; Gill, F.; Proops, D.; Harrington, M.; Gardiner, K.; Attwell, C.
1992-01-01
OBJECTIVES--To test the hypothesis that noise exposure may cause hearing loss in classical musicians. DESIGN--Comparison of hearing levels between two risk groups identified during the study by measuring sound levels. SETTING--Symphony orchestra and occupational health department in the west Midlands. MAIN OUTCOME MEASURES--Hearing level as measured by clinical pure tone audiometry. RESULTS--Trumpet and piccolo players received a noise dose of 160% and 124%, respectively, over mean levels during part of the study. Comparison of the hearing levels of 18 woodwind and brass musicians with 18 string musicians matched for age and sex did not show a significant difference in hearing, the mean difference in the hearing levels at the high (2, 4, and 8 KHz) audiometric frequencies being 1.02 dB (95% confidence interval -2.39 to 4.43). CONCLUSIONS--This study showed that there is a potential for occupational hearing loss in classical orchestral musicians. Images p1561-a p1562-a PMID:1286387
The Iconography of Universities as Institutional Narratives
ERIC Educational Resources Information Center
Drori, Gili S.; Delmestri, Giuseppe; Oberg, Achim
2016-01-01
The coming of "brand society" and the onset of mediatization spur universities to strategize their visual identity and pay particular attention to their icon. Resulting from branding initiatives, university icons are visual self-representations and material-cum-symbolic forms of organizational identity. In this work we ask: What identity…
Introducing the Classics to Reluctant Readers.
ERIC Educational Resources Information Center
Lazarus, Lissa J.
Using the pocket classics can be a painless way to introduce the classics to eighth-grade students. Condensed versions of the classics can take the sting out of the reading, stimulate students' interest, and help prepare them for high school. To offer students in one eighth-grade class some control over their own learning, a contract system was…
Diminuendo: Classical Music and the Academy
ERIC Educational Resources Information Center
Asia, Daniel
2010-01-01
How is the tradition of Western classical music faring on university campuses? Before answering this question, it is necessary to understand what has transpired with classical music in the wider culture, as the relationship between the two is so strong. In this article, the author discusses how classical music has taken a big cultural hit in…
NASA Astrophysics Data System (ADS)
Bustamante, Andres; Juliani, Caetano
2011-10-01
varies between 400 and 555 °C at pressures of 5-6 kbar in the retrograde metamorphic path. The El Retiro rocks evidence strong decompression with narrow variation in temperature, showing pressure values between 8.7 and 2.7 kbar at temperatures of 740-633 °C. These metamorphic fragments of the basement in the Central Cordillera of the Colombian Andes could represent a close relationship with an antique subduction zone.
Suggestions for the Classical Shelves of a School Library.
ERIC Educational Resources Information Center
Colebourn, R., Comp.; Cleeve, Marigold, Comp.
This bibliography is suggested for use by students and teachers of Latin, Greek and ancient civilizations. Entries are compiled under the headings of: (1) bibliographies and journals including booklists, periodicals, and books for teachers; (2) reference works in literature, mythology, history and antiquities, and language; (3) texts and…
Kazanjian, Powel
2015-09-15
This article addresses whether Ebola may have been present in an urban setting in Athens in 430 bce and explores the historical importance of the ancient outbreak. New knowledge from today's West African epidemic allows a more accurate assessment of whether Ebola may have caused the Athenian outbreak than was once possible. The Athenian disease, whose etiology remains unknown, developed abruptly with fevers, abdominal pain, vomiting, diarrhea, dehydration, and hemorrhage. It originated in sub-Saharan Africa and was especially contagious to doctors and caregivers. No remedies were effective. But the few survivors who were reexposed to diseased patients were not attacked a second time, suggesting protective immunity. What lessons can we learn from the ancient outbreak that bears a clinical and epidemiologic resemblance to Ebola? The historian Thucydides, an eyewitness and disease sufferer, described how the unsuspecting city panicked as it struggled to handle the rapidly spreading, devastating disease. Moreover, he stressed a theme that has relevance today-namely, that fear and panic intensified the disruption of society and damage to the individual that was directly caused by the disease. Moreover, fear amplified the spread of disease. The destructive nature of fear has remained a signature feature of pestilences that have subsequently caught ill-prepared societies off-guard-Bubonic plague in medieval times, AIDS in the 1980s, and Ebola today. The ancient Athenian epidemic is relevant for today's West African Ebola outbreak because it shows how fear and panic can endanger the individual, our society, and our efforts to handle the disease. PMID:26033924
Classical mechanics of nonconservative systems.
Galley, Chad R
2013-04-26
Hamilton's principle of stationary action lies at the foundation of theoretical physics and is applied in many other disciplines from pure mathematics to economics. Despite its utility, Hamilton's principle has a subtle pitfall that often goes unnoticed in physics: it is formulated as a boundary value problem in time but is used to derive equations of motion that are solved with initial data. This subtlety can have undesirable effects. I present a formulation of Hamilton's principle that is compatible with initial value problems. Remarkably, this leads to a natural formulation for the Lagrangian and Hamiltonian dynamics of generic nonconservative systems, thereby filling a long-standing gap in classical mechanics. Thus, dissipative effects, for example, can be studied with new tools that may have applications in a variety of disciplines. The new formalism is demonstrated by two examples of nonconservative systems: an object moving in a fluid with viscous drag forces and a harmonic oscillator coupled to a dissipative environment. PMID:23679733
Classical Concepts in Quantum Programming
NASA Astrophysics Data System (ADS)
Ömer, Bernhard
2005-07-01
The rapid progress of computer technology has been accompanied by a corresponding evolution of software development, from hardwired components and binary machine code to high level programming languages, which allowed to master the increasing hardware complexity and fully exploit its potential. This paper investigates, how classical concepts like hardware abstraction, hierarchical programs, data types, memory management, flow of control, and structured programming can be used in quantum computing. The experimental language QCL will be introduced as an example, how elements like irreversible functions, local variables, and conditional branching, which have no direct quantum counterparts, can be implemented, and how nonclassical features like the reversibility of unitary transformation or the nonobservability of quantum states can be accounted for within the framework of a procedural programming language.
Classical Liquids in Fractal Dimension.
Heinen, Marco; Schnyder, Simon K; Brady, John F; Löwen, Hartmut
2015-08-28
We introduce fractal liquids by generalizing classical liquids of integer dimensions d=1,2,3 to a noninteger dimension dl. The particles composing the liquid are fractal objects and their configuration space is also fractal, with the same dimension. Realizations of our generic model system include microphase separated binary liquids in porous media, and highly branched liquid droplets confined to a fractal polymer backbone in a gel. Here, we study the thermodynamics and pair correlations of fractal liquids by computer simulation and semianalytical statistical mechanics. Our results are based on a model where fractal hard spheres move on a near-critical percolating lattice cluster. The predictions of the fractal Percus-Yevick liquid integral equation compare well with our simulation results.
Un-renormalized classical electromagnetism
Ibison, Michael . E-mail: ibison@earthtech.org
2006-02-15
This paper follows in the tradition of direct-action versions of electromagnetism having the aim of avoiding a balance of infinities wherein a mechanical mass offsets an infinite electromagnetic mass so as to arrive at a finite observed value. However, the direct-action approach ultimately failed in that respect because its initial exclusion of self-action was later found to be untenable in the relativistic domain. Pursing the same end, this paper examines instead a version of electromagnetism wherein mechanical action is excluded and self-action is retained. It is shown that the resulting theory is effectively interacting due to the presence of infinite forces. A vehicle for the investigation is a pair of classical point charges in a positronium-like arrangement for which the orbits are found to be self-sustaining and naturally quantized.
Classical Cosmology Through Animation Stories
NASA Astrophysics Data System (ADS)
Mijic, Milan; Kang, E. Y. E.; Longson, T.; State LA SciVi Project, Cal
2010-05-01
Computer animations are a powerful tool for explanation and communication of ideas, especially to a younger generation. Our team completed a three part sequence of short, computer animated stories about the insight and discoveries that lead to the understanding of the overall structure of the universe. Our principal characters are Immanuel Kant, Henrietta Leavitt, and Edwin Hubble. We utilized animations to model and visualize the physical concepts behind each discovery and to recreate the characters, locations, and flavor of the time. The animations vary in length from 6 to 11 minutes. The instructors or presenters may wish to utilize them separately or together. The animations may be used for learning classical cosmology in a visual way in GE astronomy courses, in pre-college science classes, or in public science education setting.
DOE Fundamentals Handbook: Classical Physics
Not Available
1992-06-01
The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment.
Aregheore, E M
1998-02-01
There are a number of unconventional feed resources in Nigeria. Most are rich sources of plant protein. Since protein is the most expensive and limiting nutrient in tropical livestock nutrition, these unconventional feed resources may fill a gap in protein deficiency. However, most contain antiquality and toxic components which make them unsafe as protein and carbohydrate sources in livestock nutrition. The presence of saponins, lectins, tannins, trypsin inhibitors, cyanogenic glucoside and others in African locust bean meal (Parkia filicoidea Welw), avocado seed meal (Persea americana), bambara groundnut meal (Voandzeia subterranea), cocoa by-product meal (Theobroma coca), coffee pulp meal (Coffee arabica), mango seed kernel meal (Mangifera indica), rubber seed meal (Hevea brasiliensis), sesame seed (Sesamum indicum L) and shear-butter cake (Vitellaria paradoxa, G) are not uncommon and make rations prepared with them unpalatable and unacceptable to animals. They also interfere with nutrient bioavailability and utilization. Drying, soaking, leaching and fermentation are simple means of detoxifying these feed sources to reduce the presence of antiquality and toxic components. PMID:9467208
Aregheore, E M
1998-02-01
There are a number of unconventional feed resources in Nigeria. Most are rich sources of plant protein. Since protein is the most expensive and limiting nutrient in tropical livestock nutrition, these unconventional feed resources may fill a gap in protein deficiency. However, most contain antiquality and toxic components which make them unsafe as protein and carbohydrate sources in livestock nutrition. The presence of saponins, lectins, tannins, trypsin inhibitors, cyanogenic glucoside and others in African locust bean meal (Parkia filicoidea Welw), avocado seed meal (Persea americana), bambara groundnut meal (Voandzeia subterranea), cocoa by-product meal (Theobroma coca), coffee pulp meal (Coffee arabica), mango seed kernel meal (Mangifera indica), rubber seed meal (Hevea brasiliensis), sesame seed (Sesamum indicum L) and shear-butter cake (Vitellaria paradoxa, G) are not uncommon and make rations prepared with them unpalatable and unacceptable to animals. They also interfere with nutrient bioavailability and utilization. Drying, soaking, leaching and fermentation are simple means of detoxifying these feed sources to reduce the presence of antiquality and toxic components.
Schroeder, Caroline T
2009-01-01
A famous instruction about children in monasteries reads: "Do not bring young boys here. Four churches in Scetis are deserted because of boys." Taken from the Sayings of the Desert Fathers, this apophthegm exposes the presence of homoeroticism and anxieties about the homoerotic, especially erotic encounters with children, in early Christian ascetic communities. This essay examines the construction of male sexuality in early Egyptian monasticism, focusing on the Sayings and the rules of the monastic leader Shenoute of Atripe It argues that the masculine ascetic ideal builds upon certain classical ideals of masculinity, especially the control of the passions, but purports to eschew classical models of eroticism in which the adolescent male represents the ideal sexual partner. However, these sources are designed to be recited or retold as edifying texts; despite their overt disavowal of sexual contact between men and boys, their retelling and rereading keeps homoeroticism and the representation of boys as sexually desirable objects alive in the ascetic imagination. PMID:20681088
Schroeder, Caroline T
2009-01-01
A famous instruction about children in monasteries reads: "Do not bring young boys here. Four churches in Scetis are deserted because of boys." Taken from the Sayings of the Desert Fathers, this apophthegm exposes the presence of homoeroticism and anxieties about the homoerotic, especially erotic encounters with children, in early Christian ascetic communities. This essay examines the construction of male sexuality in early Egyptian monasticism, focusing on the Sayings and the rules of the monastic leader Shenoute of Atripe It argues that the masculine ascetic ideal builds upon certain classical ideals of masculinity, especially the control of the passions, but purports to eschew classical models of eroticism in which the adolescent male represents the ideal sexual partner. However, these sources are designed to be recited or retold as edifying texts; despite their overt disavowal of sexual contact between men and boys, their retelling and rereading keeps homoeroticism and the representation of boys as sexually desirable objects alive in the ascetic imagination.
Classical vs. non-classical pathways of mineral formation (Invited)
NASA Astrophysics Data System (ADS)
De Yoreo, J. J.
2013-12-01
Recent chemical analyses, microscopy studies and computer simulations suggest many minerals nucleate through aggregation of pre-nucleation clusters and grow by particle-mediated processes that involve amorphous or disordered precursors. Still other analyses, both experimental and computational, conclude that even simple mineral systems like calcium carbonate form via a barrier-free process of liquid-liquid separation, which is followed by dehydration of the ion-rich phase to form the solid products. However, careful measurements of calcite nucleation rates on a variety of ionized surfaces give results that are in complete agreement with the expectations of classical nucleation theory, in which clusters growing through ion-by-ion addition overcome a free energy barrier through the natural microscopic density fluctuations of the system. Here the challenge of integrating these seemingly disparate observations and analyses into a coherent picture of mineral formation is addressed by considering the energy barriers to calcite formation predicted by the classical theory and the changes in those barriers brought about by the introduction of interfaces and clusters, both stable and metastable. Results from a suite of in situ TEM, AFM, and optical experiments combined with simulations are used to illustrate the conclusions. The analyses show that the expected barrier to homogeneous calcite nucleation is prohibitive even at concentrations exceeding the solubility limit of amorphous calcium carbonate. However, as demonstrated by experiments on self-assembled monolayers, the introduction of surfaces that moderately decrease the interfacial energy associated with the forming nucleus can reduce the magnitude of the barrier to a level that is easily surmounted under typical laboratory conditions. In the absence of such surfaces, experiments that proceed by continually increasing supersaturation with time can easily by-pass direct nucleation of calcite and open up pathways through
2014-01-01
Background To control the presence of Legionella in an old hospital water system, an integrated strategy of water disinfection-filtration was implemented in the university hospital Umberto I in Rome. Methods Due to antiquated buildings, hospital water system design and hospital extension (38 buildings), shock hyperchlorination (sodium hypochlorite, 20–50 ppm of free chlorine at distal points for 1–2 h) followed by continuous hyperchlorination (0.5-1.0 mg/L at distal points) were adopted, and microbiological and chemical monitoring of the water supply was carried out in the university hospital (December 2006-December 2011). Results Overall, 1308 samples of cold <20°C (44.5%), mixed ≥20°C ≤ 45°C (37.7%) and hot >45°C (17.8%) water were collected, determining residual free chlorine (0.43 ± 0.44 mg/L), pH (7.43 ± 0.29) and trihalomethanes (8.97 ± 18.56 μg/L). Legionella was isolated in 102 (9.8%) out of 1.041 water samples without filters (L. pneumophila sg 1 17.6%, L. pneumophila sg 2–14 28.4%, L. non pneumophila 53.9%), and in none of the 267 samples with filters. Legionella was recovered in 23 buildings out of 38 and 29 samples (28.4%) exceeded 103 cfu/L. When considering the disinfection treatment Legionella was isolated: before shock hyperchlorination (21.1%), 15 days after shock hyperchlorination (7.8%), 30 days after shock hyperchlorination (3.5%), during continuous hyperchlorination (5.5%) and without continuous hyperchlorination (27.3%). Continuous hyperchlorination following the shock treatment achieved >70% reduction of positive samples, whereas no continuous hyperchlorination after shock treatment was more frequently associated to Legionella isolation (OR 6.41; 95% CI 3.10–13.26; p <0.001). Independent risk factors for Legionella isolation were: residual free chlorine <0.5 mg/L (OR 13.0; 95% CI 1.37 – 123.2; p <0.03), water T° ≥20°C ≤ 45°C (OR 12.0; 95% CI 1.28 – 111.48; p <0.03) and no continuous hyperchlorination after shock
NASA Astrophysics Data System (ADS)
Serra, M.; Borghi, A.; Vaggelli, G.; D'Amicone, E.; Vigna, L.
2009-04-01
The University of Turin, in cooperation with the Egyptian Antiquity Museum, has recently undertaken several projects aimed at developing a scientific approach to the analysis of ancient Egyptian finds. In particular, a straightforward project to investigate the stony handcrafts preserved in the statuary rooms started in 2006 to obtain their systematic petrographic classification and their possible geological sources. The main intent of the project was to understand the provenance of the materials used in Pharaonic period, setting the base for the identification of the ancient quarry sites and for a correct interpretation of the extraction and working techniques, in order to provide fundamental information about economical and social development of Egyptian civilization through historical times. The choice to focus attention on black and red granites came from the statement of the percentage relevance (40 of the 54 sculptures actually exposed) of these materials in the statuary rooms. Moreover, especially for black granites, the need of detailed minero-petrographic analysis arose from the difficulty in making a macroscopic classification of the fine-grained dark-coloured rock varieties. Therefore, five black granite statues, belonging to the Drovetti collection were sampled in a micro-invasive way: three sculptures of goddess Sekhmet (cat. 260, 251, 247), the statue of Ramses II (cat. 1380) and the statue of goddess Hathor (cat. 694). The choice to analyse even three of the twenty-one statues of goddess Sekhmet (cat. 247, cat. 251, cat. 260), originally located in the same Egyptian temple but ichnographically different, derived from the need of answering the archaeological questions about their provenance. On the other hand, the opportunity of studying the fine-grained black rocks used for the sculptures of goddess Hathor (cat. 694) and of Ramses II in Majesty (cat. 1380), symbol of the Egyptian museum of Turin, provided the opportunity to analyse and classify the
Classical randomness in quantum measurements
NASA Astrophysics Data System (ADS)
Mauro D'Ariano, Giacomo; Lo Presti, Paoloplacido; Perinotti, Paolo
2005-07-01
Similarly to quantum states, also quantum measurements can be 'mixed', corresponding to a random choice within an ensemble of measuring apparatuses. Such mixing is equivalent to a sort of hidden variable, which produces a noise of purely classical nature. It is then natural to ask which apparatuses are indecomposable, i.e. do not correspond to any random choice of apparatuses. This problem is interesting not only for foundations, but also for applications, since most optimization strategies give optimal apparatuses that are indecomposable. Mathematically the problem is posed describing each measuring apparatus by a positive operator-valued measure (POVM), which gives the statistics of the outcomes for any input state. The POVMs form a convex set, and in this language the indecomposable apparatuses are represented by extremal points—the analogous of 'pure states' in the convex set of states. Differently from the case of states, however, indecomposable POVMs are not necessarily rank-one, e.g. von Neumann measurements. In this paper we give a complete classification of indecomposable apparatuses (for discrete spectrum), by providing different necessary and sufficient conditions for extremality of POVMs, along with a simple general algorithm for the decomposition of a POVM into extremals. As an interesting application, 'informationally complete' measurements are analysed in this respect. The convex set of POVMs is fully characterized by determining its border in terms of simple algebraic properties of the corresponding POVMs.
Crystallization of classical multicomponent plasmas
Medin, Zach; Cumming, Andrew
2010-03-15
We develop a method for calculating the equilibrium properties of the liquid-solid phase transition in a classical, ideal, multicomponent plasma. Our method is a semianalytic calculation that relies on extending the accurate fitting formulas available for the one-, two-, and three-component plasmas to the case of a plasma with an arbitrary number of components. We compare our results to those of C. J. Horowitz et al. [Phys. Rev. E 75, 066101 (2007)], who used a molecular-dynamics simulation to study the chemical properties of a 17-species mixture relevant to the ocean-crust boundary of an accreting neutron star at the point where half the mixture has solidified. Given the same initial composition as Horowitz et al., we are able to reproduce to good accuracy both the liquid and solid compositions at the half-freezing point; we find abundances for most species within 10% of the simulation values. Our method allows the phase diagram of complex mixtures to be explored more thoroughly than possible with numerical simulations. We briefly discuss the implications for the nature of the liquid-solid boundary in accreting neutron stars.
Relaxation properties in classical diamagnetism.
Carati, A; Benfenati, F; Galgani, L
2011-06-01
It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.
Relaxation properties in classical diamagnetism
NASA Astrophysics Data System (ADS)
Carati, A.; Benfenati, F.; Galgani, L.
2011-06-01
It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.
Pembrolizumab in classical Hodgkin's lymphoma.
Maly, Joseph; Alinari, Lapo
2016-09-01
Pembrolizumab is a humanized monoclonal antibody directed against programmed cell death protein 1 (PD-1), a key immune-inhibitory molecule expressed on T cells and implicated in CD4+ T-cell exhaustion and tumor immune-escape mechanisms. Classical Hodgkin's lymphoma (cHL) is a unique B-cell malignancy in the sense that malignant Reed-Sternberg (RS) cells represent a small percentage of cells within an extensive immune cell infiltrate. PD-1 ligands are upregulated on RS cells as a consequence of both chromosome 9p24.1 amplification and Epstein-Barr virus infection and by interacting with PD-1 promote an immune-suppressive effect. By augmenting antitumor immune response, pembrolizumab and nivolumab, another monoclonal antibody against PD-1, have shown significant activity in patients with relapsed/refractory cHL as well as an acceptable toxicity profile with immune-related adverse events that are generally manageable. In this review, we explore the rationale for targeting PD-1 in cHL, review the clinical trial results supporting the use of checkpoint inhibitors in this disease, and present future directions for investigation in which this approach may be used.
Classical universes are perfectly predictable!
NASA Astrophysics Data System (ADS)
Schmidt, Jan Hendrik
I argue that in a classical universe, all the events that ever happen are encoded in each of the universe's parts. This conflicts with a statement which is widely believed to lie at the basis of relativity theory: that the events in a space-time region R determine only the events in R's domain of dependence but not those in other space-time regions. I show how, from this understanding, a new prediction method (which I call the 'Smoothness Method') can be obtained which allows us to predict future events on the basis of local observational data. Like traditional prediction methods, this method makes use of so-called ' ceteris paribus clauses', i.e. assumptions about the unobserved parts of the universe. However, these assumptions are used in a way which enables us to predict the behaviour of open systems with arbitrary accuracy, regardless of the influence of their environment-which has not been achieved by traditional methods. In a sequel to this paper (Schmidt, 1998), I will prove the Uniqueness and Predictability Theorems on which the Smoothness Method is based, and comment in more detail on its mathematical properties.
Open questions in classical gravity
Mannheim, P.D. )
1994-04-01
In this work, the authors discuss some outstanding open questions regarding the validity and uniqueness of the standard second-order Newton-Einstein classical gravitational theory. On the observational side the authors discuss the degree to which the realm of validity of Newton's law of gravity can actually be extended to distances much larger than the solar system distance scales on which the law was originally established. On the theoretical side the authors identify some commonly accepted (but actually still open to question) assumptions which go into the formulation of the standard second-order Einstein theory in the first place. In particular, it is shown that while the familiar second-order Poisson gravitational equation (and accordingly its second-order covariant Einstein generalization) may be sufficient to yield Newton's law of gravity they are not in fact necessary. The standard theory thus still awaits the identification of some principle which would then make it necessary too. It is shown that current observational information does not exclusively mandate the standard theory, and that the conformal invariant fourth-order theory of gravity considered recently by Mannheim and Kazanas is also able to meet the constraints of data, and in fact to do so without the need for any so far unobserved nonluminous or dark matter. 37 refs., 7 figs.
Structure of classical affine and classical affine fractional W-algebras
Suh, Uhi Rinn
2015-01-15
We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.
Classical Mechanics as Nonlinear Quantum Mechanics
Nikolic, Hrvoje
2007-12-03
All measurable predictions of classical mechanics can be reproduced from a quantum-like interpretation of a nonlinear Schroedinger equation. The key observation leading to classical physics is the fact that a wave function that satisfies a linear equation is real and positive, rather than complex. This has profound implications on the role of the Bohmian classical-like interpretation of linear quantum mechanics, as well as on the possibilities to find a consistent interpretation of arbitrary nonlinear generalizations of quantum mechanics.
Classical Solution Thermodynamics: A Retrospective View.
ERIC Educational Resources Information Center
Van Ness, H. C.; Abbott, M. M.
1985-01-01
Examines topics related to classical solution thermodynamics, considering energy, enthalpy, and the Gibbs function. Applicable mathematical equations are introduced and discussed when appropriate. (JN)
Classical teleportation of a quantum Bit
Cerf; Gisin; Massar
2000-03-13
Classical teleportation is defined as a scenario where the sender is given the classical description of an arbitrary quantum state while the receiver simulates any measurement on it. This scenario is shown to be achievable by transmitting only a few classical bits if the sender and receiver initially share local hidden variables. Specifically, a communication of 2.19 bits is sufficient on average for the classical teleportation of a qubit, when restricted to von Neumann measurements. The generalization to positive-operator-valued measurements is also discussed.
Primary Mediastinal Classical Hodgkin Lymphoma.
Piña-Oviedo, Sergio; Moran, Cesar A
2016-09-01
Primary mediastinal Classical Hodgkin lymphoma (CHL) is rare. Nodular sclerosis CHL (NS-CHL) is the most common subtype involving the anterior mediastinum and/or mediastinal lymph nodes. Primary thymic CHL is exceedingly rare. The disease typically affects young women and is asymptomatic in 30% to 50% of patients. Common symptoms include fatigue, chest pain, dyspnea and cough, but vary depending on the location and size of the tumor. B-symptoms develop in 30% of cases. By imaging, primary mediastinal CHL presents as mediastinal widening/mediastinal mass that does not invade adjacent organs but may compress vital structures as bulky disease. Histopathology is the gold standard for diagnosis. Primary mediastinal NS-CHL consists of nodules of polymorphous inflammatory cells surrounded by broad fibrous bands extending from a thickened lymph node capsule. The cellular nodules contain variable numbers of large Hodgkin/Reed-Sternberg cells, required for diagnosis. Primary thymic CHL may exhibit prominent cystic changes. The histopathologic recognition of NS-CHL can be challenging in cases with prominent fibrosis, scant cellularity, artifactual cell distortion, or an exuberant granulomatous reaction. The differential diagnosis includes primary mediastinal non-HLs, mediastinal germ cell tumors, thymoma, and metastatic carcinoma or melanoma to the mediastinum. Distinction from primary mediastinal non-HLs is crucial for adequate therapeutic decisions. Approximately 95% of patients with primary mediastinal CHL will be alive and free of disease at 10 years after treatment with short courses of combined chemoradiotherapy. In this review, we discuss the history, classification, epidemiology, clinicoradiologic features, histopathology, immunohistochemistry, differential diagnosis, and treatment of primary mediastinal CHL. PMID:27441757
Classical and semiclassical aspects of chemical dynamics
Gray, S.K.
1982-08-01
Tunneling in the unimolecular reactions H/sub 2/C/sub 2/ ..-->.. HC/sub 2/H, HNC ..-->.. HCN, and H/sub 2/CO ..-->.. H/sub 2/ + CO is studied with a classical Hamiltonian that allows the reaction coordinate and transverse vibrational modes to be considered directly. A combination of classical perturbation theory and the semiclassical WKB method allows tunneling probabilities to be obtained, and a statistical theory (RRKM) is used to construct rate constants for these reactions in the tunneling regime. In this fashion, it is found that tunneling may be important, particularly for low excitation energies. Nonadiabatic charge transfer in the reaction Na + I ..-->.. Na /sup +/ + I/sup -/ is treated with classical trajectories based on a classical Hamiltonian that is the analogue of a quantum matrix representation. The charge transfer cross section obtained is found to agree reasonably well with the exact quantum results. An approximate semiclassical formula, valid at high energies, is also obtained. The interaction of radiation and matter is treated from a classical viewpoint. The excitation of an HF molecule in a strong laser is described with classical trajectories. Quantum mechanical results are also obtained and compared to the classical results. Although the detailed structure of the pulse time averaged energy absorption cannot be reproduced classically, classical mechanics does predict the correct magnitude of energy absorption, as well as certain other qualitative features. The classical behavior of a nonrotating diatomic molecule in a strong laser field is considered further, by generating a period advance map that allows the solution over many periods of oscillation of the laser to be obtained with relative ease. Classical states are found to form beautiful spirals in phase space as time progresses. A simple pendulum model is found to describe the major qualitative features. (WHM)
From quantum ladder climbing to classical autoresonance
Marcus, G.; Friedland, L.; Zigler, A.
2004-01-01
The autoresonance phenomenon allows excitation of a classical, oscillatory nonlinear system to high energies by using a weak, chirped frequency forcing. Ladder climbing is its counterpart in quantum mechanics. Here, for the first time to our knowledge, conditions for the transition from the quantum to the classical regimes are outlined. The similarities and differences between the two approaches are presented.
Factors Influencing the Learning of Classical Mechanics.
ERIC Educational Resources Information Center
Champagne, Audrey B.; And Others
1980-01-01
Describes a study investigating the combined effect of certain variables on student achievement in classical mechanics. The purpose was to (1) describe preinstructional knowledge and skills; (2) correlate these variables with the student's success in learning classical mechanics; and (3) develop hypothesis about relationships between these…
ERIC Educational Resources Information Center
Cartledge, Paul
2005-01-01
Classics is in the news--or on the screen: "Gladiator" a few years ago, "Troy" very recently, "Alexander" as I write. How significant is this current Hollywood fascination with the ancient Greeks and Romans? Or should we take far more seriously the decline of the teaching of the Classical languages in schools, a decline so grave as to prompt a…
Teaching the Classics in High School.
ERIC Educational Resources Information Center
Shelley, Anne Crout
1998-01-01
Discusses why the classics can be difficult to teach in high schools. Offers suggestions for making difficult literature more approachable for high school students by scaffolding students' engagement with classic texts; building background knowledge; developing vocabulary; facilitating the reading of the text; and through enrichment an extension.…
The Classical Performing Arts of India.
ERIC Educational Resources Information Center
Curtiss, Marie Joy
A monograph of the numerous activities that have contributed to the current renaissance of India's classical performing arts covers the theoretical aspects, musical instruments, the main schools of classical dance, and drama. Besides the basic research described, the total project produced a set of 300 slides with annotated listing, picturing the…
Unification of quantum theory and classical physics
Stapp, H.P.
1985-07-01
A program is described for unifying quantum theory and classical physics on the basis of the Copenhagen-interpretation idea of external reality and a recently discovered classical part of the electromagnetic field. The program effects an integration of the intuitions of Heisenberg, Bohr, and Einstein.
On entanglement-assisted classical capacity
NASA Astrophysics Data System (ADS)
Holevo, A. S.
2002-09-01
We give a modified proof of the recent result of C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal concerning entanglement-assisted classical capacity of a quantum channel and discuss the relation between entanglement-assisted and unassisted classical capacities.
Tarnished Gold: Classical Music in America
ERIC Educational Resources Information Center
Asia, Daniel
2010-01-01
A few articles have appeared recently regarding the subject of the health of classical music (or more broadly, the fine arts) in America. These include "Classical Music's New Golden Age," by Heather Mac Donald, in the "City Journal" and "The Decline of the Audience," by Terry Teachout, in "Commentary." These articles appeared around the time of…
Classical decoherence in a nanomechanical resonator
NASA Astrophysics Data System (ADS)
Maillet, O.; Vavrek, F.; Fefferman, A. D.; Bourgeois, O.; Collin, E.
2016-07-01
Decoherence is an essential mechanism that defines the boundary between classical and quantum behaviours, while imposing technological bounds for quantum devices. Little is known about quantum coherence of mechanical systems, as opposed to electromagnetic degrees of freedom. But decoherence can also be thought of in a purely classical context, as the loss of phase coherence in the classical phase space. Indeed the bridge between quantum and classical physics is under intense investigation, using, in particular, classical nanomechanical analogues of quantum phenomena. In the present work, by separating pure dephasing from dissipation, we quantitatively model the classical decoherence of a mechanical resonator: through the experimental control of frequency fluctuations, we engineer artificial dephasing. Building on the fruitful analogy introduced between spins/quantum bits and nanomechanical modes, we report on the methods available to define pure dephasing in these systems, while demonstrating the intrinsic almost-ideal properties of silicon nitride beams. These experimental and theoretical results, at the boundary between classical nanomechanics and quantum information fields, are prerequisite in the understanding of decoherence processes in mechanical devices, both classical and quantum.
New Classical and New Keynesian Macroeconomics.
ERIC Educational Resources Information Center
Vane, Howard; Snowdon, Brian
1992-01-01
Summarizes underlying tenets and policy implications of new classical and new Keynesian macroeconomics. Compares new approaches with orthodox Keynesian and monetarist schools of thought. Identifies the fundamental difference between new classical and new Keynesian models as the assumption regarding the speed of wage and price adjustment following…
The Classics Major and Liberal Education
ERIC Educational Resources Information Center
Liberal Education, 2009
2009-01-01
Over the course of eighteen months, a project based at the Center for Hellenic Studies in Washington, DC, studied undergraduate programs in classics with the goal of developing a better sense of how a major in classics fit within the broader agenda of liberal education. The study adopted a student-centered approach, employing a team of six…
Classic and Hard-Boiled Detective Fiction.
ERIC Educational Resources Information Center
Reilly, John M.
Through an analysis of several stories, this paper defines the similarities and differences between classic and hard-boiled detective fiction. The characters and plots of three stories are discussed: "The Red House" by A. A. Milne; "I, The Jury" by Mickey Spillane; and "League of Frightened Men" by Rex Stout. The classic detective story is defined…
Rediscovering the Classics: The Project Approach.
ERIC Educational Resources Information Center
Townsend, Ruth; Lubell, Marcia
Focusing on seven classics of literature that are most challenging for teachers and students, but which are also a part of the high school literary canon, this book shares ways to create a learner-centered classroom for the study of literature. For each of the seven classics, the book "walks teachers through" the teaching-learning process,…
Modal analysis of a classical guitar
NASA Astrophysics Data System (ADS)
Cohen, David; Rossing, Thomas D.
2002-11-01
Using holographic interferometry, we have determined the modes of vibration of a classical guitar (by the first author) having an asymmetrically-braced top plate and a crossed braced back of unique design. The vibrational modes and acoustical properties are compared with other classical guitars.
The Dance of Spain: Classical Folkloric Flamenco.
ERIC Educational Resources Information Center
Gallant, Clifford J.
A text on the classical and folk dance of Spain includes a pretest, provided in both English and Spanish; text about the dance in general and the dance of Spain, both classical and folkloric; tests on the text, in both English and Spanish; more specific readings about the traditions of flamenco, castanets, and "el jaleo"; a glossary of flamenco…
Classical and Quantum-Mechanical State Reconstruction
ERIC Educational Resources Information Center
Khanna, F. C.; Mello, P. A.; Revzen, M.
2012-01-01
The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…
Classical Conditioning: Eliciting the Right Response.
ERIC Educational Resources Information Center
Tauber, Robert T.
1990-01-01
Classical conditioning is responsible for students' positive and negative feelings, whether directed toward subject matter, peers, teachers, or education in general. This article explains how educators can use classical conditioning principles (such as reinforcement, extinction, and paired stimuli) to create an anxiety-free learning environment.…
Classical transport in disordered systems
NASA Astrophysics Data System (ADS)
Papaioannou, Antonios
This thesis reports on the manifestation of structural disorder on molecular transport and it consists of two parts. Part I discusses the relations between classical transport and the underlying structural complexity of the system. Both types of molecular diffusion, namely Gaussian and non- Gaussian are presented and the relevant time regimes are discussed. In addition the concept of structural universality is introduced and connected with the diffusion metrics. One of the most robust techniques for measuring molecular mean square displacements is magnetic resonance. This method requires encoding and subsequently reading out after an experimentally controlled time, a phase φ to the spins using magnetic field gradients. The main limitation for probing short diffusion lengths L(t) ˜ 1micro m with magnetic resonance is the requirement to encode and decode the phase φ in very short time intervals. Therefore, to probe such displacements a special probe was developed equipped with a gradient coil capable of delivering magnetic field gradients of approximately 90 G/cmA . The design of the probe is reported. Part I also includes a discussion of experiments of transport in two qualitatively different disordered phantoms and reports on a direct observation of universality in one-dimension. The results reveal the universal power law scaling of the diffusion coefficient at the long-time regime and illustrate the essence of structural universality by experimentally determining the structure correlation function of the phantoms. In addition, the scaling of the diffusive permeability of the phantoms with respect to the pore size is investigated. Additional work presented includes a detailed study of adsorption of methane gas in Vycor disordered glass. The techniques described in Part I of this thesis are widely used for measuring structural parameters of porous media, such as the surface-to-volume ratio or diffusive permeability. Part II of this thesis discusses the
NUCLEAR THERMOMETERS FOR CLASSICAL NOVAE
Downen, Lori N.; Iliadis, Christian; Jose, Jordi; Starrfield, Sumner
2013-01-10
Classical novae are stellar explosions occurring in binary systems, consisting of a white dwarf and a main-sequence companion. Thermonuclear runaways on the surface of massive white dwarfs, consisting of oxygen and neon, are believed to reach peak temperatures of several hundred million kelvin. These temperatures are strongly correlated with the underlying white dwarf mass. The observational counterparts of such models are likely associated with outbursts that show strong spectral lines of neon in their shells (neon novae). The goals of this work are to investigate how useful elemental abundances are for constraining the peak temperatures achieved during these outbursts and determine how robust 'nova thermometers' are with respect to uncertain nuclear physics input. We present updated observed abundances in neon novae and perform a series of hydrodynamic simulations for several white dwarf masses. We find that the most useful thermometers, N/O, N/Al, O/S, S/Al, O/Na, Na/Al, O/P, and P/Al, are those with the steepest monotonic dependence on peak temperature. The sensitivity of these thermometers to thermonuclear reaction rate variations is explored using post-processing nucleosynthesis simulations. The ratios N/O, N/Al, O/Na, and Na/Al are robust, meaning they are minimally affected by uncertain rates. However, their dependence on peak temperature is relatively weak. The ratios O/S, S/Al, O/P, and P/Al reveal strong dependences on temperature and the poorly known {sup 30}P(p, {gamma}){sup 31}S rate. We compare our model predictions to neon nova observations and obtain the following estimates for the underlying white dwarf masses: 1.34-1.35 M {sub Sun} (V838 Her), 1.18-1.21 M {sub Sun} (V382 Vel), {<=}1.3 M {sub Sun} (V693 CrA), {<=}1.2 M {sub Sun} (LMC 1990 no. 1), and {<=}1.2 M {sub Sun} (QU Vul).
Pettitt, Paul
2008-11-01
The spectacular art of the Grotte Chauvet stands out among all other examples of Aurignacian art, which are restricted to a handful of sites in other regions of western and Central Europe, which take the form of sophisticated carvings on organic materials and of simple engravings on rockshelter walls. Given its sophistication, Chauvet has understandably come to feature prominently in debates as to the nature of human symbolic origins, the behavioral capacities of Homo sapiens, the nature of the dispersal of modern humans across Europe, and the possibly contemporary extinction of Homo neanderthalensis. Significant objections to such an antiquity have, however, been made in recent years on the grounds of the style, themes, and technical practice of the art itself, and on the grounds of the AMS radiocarbon dating program that was first seen to suggest an early Upper Paleolithic age. To date, no attention has been paid to claims for an Aurignacian age on specifically archaeological grounds. Here, I undertake a critical examination of the archaeology of the cave and its wider region, as well as attempts to verify the antiquity of the art on the basis of comparison with well-dated Aurignacian art elsewhere. I conclude that none of the archaeological arguments withstand scrutiny and that many can be rejected as they are either incorrect or tautologous. By contrast, hypotheses that the art is of Gravettian-Magdalenian age have not been successfully eliminated. The age of the art of the Grotte Chauvet should be seen as a scientific problem, not an established fact. While it may prove impossible to prove an Aurignacian age for some of the Chauvet art I suggest a set of expectations that would, in combination, strengthen the robusticity of the 'long chronology' argument. The onus is upon Chauvet long chronologists to do this, and until they do, we must conclude that the art of the Grotte Chauvet is not dated, and very possibly much younger than claimed.
On classical cloning and no-cloning
NASA Astrophysics Data System (ADS)
Teh, Nicholas J.
2012-02-01
It is part of information theory folklore that, while quantum theory prohibits the generic (or universal) cloning of states, such cloning is allowed by classical information theory. Indeed, many take the phenomenon of no-cloning to be one of the features that distinguishes quantum mechanics from classical mechanics. In this paper, we argue that pace conventional wisdom, in the case where one does not include a machine system, there is an analog of the no-cloning theorem for classical systems. However, upon adjoining a non-trivial machine system (or ancilla) one finds that, pace the quantum case, the obstruction to cloning disappears for pure states. We begin by discussing some conceptual points and category-theoretic generalities having to do with cloning, and proceed to discuss no-cloning in both the case of (non-statistical) classical mechanics and classical statistical mechanics.
Detecting multipartite classical states and their resemblances
Chen Lin; Modi, Kavan; Vacanti, Giovanni; Chitambar, Eric
2011-02-15
We study various types of multipartite states lying near the quantum-classical boundary. The so-called classical states are precisely those in which each party can perfectly identify a locally held state without disturbing the global state, a task known as nondisruptive local state identification (NDLID). We show NDLID to be closely related local broadcasting, and we introduce a class of states called generalized classical states which allow for both NDLID and multipartite broadcasting when the most general quantum measurements are permitted. Simple analytical methods and a physical criterion are given for detecting whether a multipartite state is classical or generalized classical. For deciding the latter, a semidefinite programming algorithm is presented which may find use in other fields such as signal processing.
NASA Astrophysics Data System (ADS)
Serra, M.; Borghi, A.; Vaggelli, G.; D'Amicone, E.; Vigna, L.
2009-04-01
The University of Turin, in cooperation with the Egyptian Antiquity Museum, has recently undertaken several projects aimed at developing a scientific approach to the analysis of ancient Egyptian finds. In particular, a straightforward project to investigate the stony handcrafts preserved in the statuary rooms started in 2006 to obtain their systematic petrographic classification and their possible geological sources. The main intent of the project was to understand the provenance of the materials used in Pharaonic period, setting the base for the identification of the ancient quarry sites and for a correct interpretation of the extraction and working techniques, in order to provide fundamental information about economical and social development of Egyptian civilization through historical times. The choice to focus attention on black and red granites came from the statement of the percentage relevance (40 of the 54 sculptures actually exposed) of these materials in the statuary rooms. Moreover, especially for black granites, the need of detailed minero-petrographic analysis arose from the difficulty in making a macroscopic classification of the fine-grained dark-coloured rock varieties. Therefore, five black granite statues, belonging to the Drovetti collection were sampled in a micro-invasive way: three sculptures of goddess Sekhmet (cat. 260, 251, 247), the statue of Ramses II (cat. 1380) and the statue of goddess Hathor (cat. 694). The choice to analyse even three of the twenty-one statues of goddess Sekhmet (cat. 247, cat. 251, cat. 260), originally located in the same Egyptian temple but ichnographically different, derived from the need of answering the archaeological questions about their provenance. On the other hand, the opportunity of studying the fine-grained black rocks used for the sculptures of goddess Hathor (cat. 694) and of Ramses II in Majesty (cat. 1380), symbol of the Egyptian museum of Turin, provided the opportunity to analyse and classify the
Applying classical geometry intuition to quantum spin
NASA Astrophysics Data System (ADS)
Durfee, Dallin S.; Archibald, James L.
2016-09-01
Using concepts of geometric orthogonality and linear independence, we logically deduce the form of the Pauli spin matrices and the relationships between the three spatially orthogonal basis sets of the spin-1/2 system. Rather than a mathematically rigorous derivation, the relationships are found by forcing expectation values of the different basis states to have the properties we expect of a classical, geometric coordinate system. The process highlights the correspondence of quantum angular momentum with classical notions of geometric orthogonality, even for the inherently non-classical spin-1/2 system. In the process, differences in and connections between geometrical space and Hilbert space are illustrated.
Fluctuations of wavefunctions about their classical average
NASA Astrophysics Data System (ADS)
Benet, L.; Flores, J.; Hernández-Saldaña, H.; Izrailev, F. M.; Leyvraz, F.; Seligman, T. H.
2003-02-01
Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics.
Classical decoherence in a nanomechanical resonator
NASA Astrophysics Data System (ADS)
Maillet, Olivier; Fefferman, Andrew; Gazizulin, Rasul; Godfrin, Henri; Bourgeois, Olivier; Collin, Eddy; ULT Grenoble Team
Decoherence can be viewed either in its quantum picture, where it stands for the loss of phase coherence of a superposition state, or as its classical equivalent, where the phase of an oscillating signal is smeared due to frequency fluctuations. Little is known about quantum coherence of mechanical systems, as opposed to electromagnetic degrees of freedom. Indeed the bridge between quantum and classical physics is under intense investigation, using in particular classical nanomechanical analogues of quantum phenomena. Here we report on a model experiment in which the coherence of a high quality silicon-nitride mechanical resonator is defined in the classical picture. Its intrinsic properties are characterized over an unprecedentedly large dynamic range. By engineering frequency fluctuations, we can create artificial pure dephasing and study its effects on the dynamics of the system. Finally, we develop the methods to characterize pure dephasing that can be applied to a wide range of mechanical devices.
Artist at Work: Illustrating the Classics.
ERIC Educational Resources Information Center
Moser, Barry
1987-01-01
An illustrator who specializes in children's classics, such as "Alice in Wonderland" and the "Wonderful Wizard of Oz" describes his work process, reveals his ideas about art, and considers some of the projects he has worked on. (NKA)
Classical and Quantum Spreading of Position Probability
ERIC Educational Resources Information Center
Farina, J. E. G.
1977-01-01
Demonstrates that the standard deviation of the position probability of a particle moving freely in one dimension is a function of the standard deviation of its velocity distribution and time in classical or quantum mechanics. (SL)
Classic Phenylketonuria: Diagnosis Through Heterozygote Detection
ERIC Educational Resources Information Center
Griffin, Robert F.; Elsas, Louis J.
1975-01-01
In an attempt to improve the identification of the asymptomatic carrier of classic phenylketonuria (PKU) 59 male and female normal control Ss were differentiated from 18 males and females heterozgous for PKU. (DB)
Classical dynamics of the relativistic oscillator
NASA Astrophysics Data System (ADS)
Petrov, S. V.
2016-11-01
This paper aims at a comprehensive analysis of the dynamics of the classical relativistic oscillator. Numerical integration of its dynamical equations permits a thorough treatment of its motion. Both the one-dimensional and two-dimensional cases are considered.
Equilibration properties of classical integrable field theories
NASA Astrophysics Data System (ADS)
De Luca, Andrea; Mussardo, Giuseppe
2016-06-01
We study the equilibration properties of classical integrable field theories at a finite energy density, with a time evolution that starts from initial conditions far from equilibrium. These classical field theories may be regarded as quantum field theories in the regime of high occupation numbers. This observation permits to recover the classical quantities from the quantum ones by taking a proper \\hslash \\to 0 limit. In particular, the time averages of the classical theories can be expressed in terms of a suitable version of the LeClair-Mussardo formula relative to the generalized Gibbs ensemble. For the purposes of handling time averages, our approach provides a solution of the problem of the infinite gap solutions of the inverse scattering method.
Secure quantum communication using classical correlated channel
NASA Astrophysics Data System (ADS)
Costa, D.; de Almeida, N. G.; Villas-Boas, C. J.
2016-07-01
We propose a secure protocol to send quantum information from one part to another without a quantum channel. In our protocol, which resembles quantum teleportation, a sender (Alice) and a receiver (Bob) share classical correlated states instead of EPR ones, with Alice performing measurements in two different bases and then communicating her results to Bob through a classical channel. Our secure quantum communication protocol requires the same amount of classical bits as the standard quantum teleportation protocol. In our scheme, as in the usual quantum teleportation protocol, once the classical channel is established in a secure way, a spy (Eve) will never be able to recover the information of the unknown quantum state, even if she is aware of Alice's measurement results. Security, advantages, and limitations of our protocol are discussed and compared with the standard quantum teleportation protocol.
Classics in the Classroom: Great Expectations Fulfilled.
ERIC Educational Resources Information Center
Pearl, Shela
1986-01-01
Describes how an English teacher in a Queens, New York, ghetto school introduced her grade nine students to Charles Dickens's "Great Expectations." Focuses on students' responses, which eventually became enthusiastic, and discusses the use of classics within the curriculum. (KH)
Secure quantum communication using classical correlated channel
NASA Astrophysics Data System (ADS)
Costa, D.; de Almeida, N. G.; Villas-Boas, C. J.
2016-10-01
We propose a secure protocol to send quantum information from one part to another without a quantum channel. In our protocol, which resembles quantum teleportation, a sender (Alice) and a receiver (Bob) share classical correlated states instead of EPR ones, with Alice performing measurements in two different bases and then communicating her results to Bob through a classical channel. Our secure quantum communication protocol requires the same amount of classical bits as the standard quantum teleportation protocol. In our scheme, as in the usual quantum teleportation protocol, once the classical channel is established in a secure way, a spy (Eve) will never be able to recover the information of the unknown quantum state, even if she is aware of Alice's measurement results. Security, advantages, and limitations of our protocol are discussed and compared with the standard quantum teleportation protocol.
The Copernican Revolution in the Classics
ERIC Educational Resources Information Center
Jennings, Arnold
1976-01-01
It is argued that the purpose of the study of the classics should be to learn about the ancient Greeks and Romans as they were rather than as an end in itself. Traditional methods of teaching are evaluated. (RM)
Classical Proofs' Essence and Diagrammatic Computation
NASA Astrophysics Data System (ADS)
Lescanne, Pierre; Žunić, Dragiša
2011-09-01
We present a congruence relation on classical proofs represented in the sequent calculus, which identifies proofs up to trivial rule permutation. The study is performed in the framework of *X calculus, designed to provide a Curry-Howard correspondence for classical logic, and the diagrammatic calculus. We show that each congruence class has a single diagrammatic representation. Congruence equations are given explicitly and induce a congruence relation on terms so that reducing modulo this relation, on terms, corresponds to diagram reduction.
Understanding singularities — Classical and quantum
NASA Astrophysics Data System (ADS)
Konkowski, Deborah A.; Helliwell, Thomas M.
2016-01-01
The definitions of classical and quantum singularities are reviewed. Examples are given of both as well as their utility in general relativity. In particular, the classical and quantum singularity structure of certain interesting conformally static spherically symmetric spacetimes modeling scalar field collapse are reviewed. The spacetimes include the Roberts spacetime, the Husain-Martinez-Nuñez spacetime and the Fonarev spacetime. The importance of understanding spacetime singularity structure is discussed.
Quantum and Classical Electrostatics Among Atoms
NASA Astrophysics Data System (ADS)
Doerr, T. P.; Obolensky, O. I.; Ogurtsov, A. Y.; Yu, Yi-Kuo
Quantum theory has been unquestionably successful at describing physics at the atomic scale. However, it becomes more difficult to apply as the system size grows. On the other hand, classical physics breaks down at sufficiently short length scales but is clearly correct at larger distances. The purpose of methods such as QM/MM is to gain the advantages of both quantum and classical regimes: quantum theory should provide accuracy at the shortest scales, and classical theory, with its somewhat more tractable computational demands, allows results to be computed for systems that would be inaccessible with a purely quantum approach. This strategy will be most effective when one knows with good accuracy the length scale at which quantum calculations are no longer necessary and classical calculations are sufficient. To this end, we have performed both classical and quantum calculations for systems comprising a small number of atoms for which experimental data is also available. The classical calculations are fully exact; the quantum calculations are at the MP4(SDTQ)/aug-cc-pV5Z and CCSD(T)/aug-cc-pV5Z levels. The precision of both sets of calculations along with the existence of experimental results allows us to draw conclusions about the range of utility of the respective calculations. This research was supported by the Intramural Research Program of the NIH, NLM and utilized the computational resources of the NIH HPC Biowulf cluster.
Freeman, Hugh J.
2015-01-01
Celiac disease is a chronic genetically based gluten-sensitive immune-mediated enteropathic process primarily affecting the small intestinal mucosa. The disorder classically presents with diarrhea and weight loss; however, more recently, it has been characterized by subclinical occult or latent disease associated with few or no intestinal symptoms. Diagnosis depends on the detection of typical histopathological biopsy changes followed by a gluten-free diet response. A broad range of clinical disorders may mimic celiac disease, along with a wide range of drugs and other therapeutic agents. Recent and intriguing archeological data, largely from the Gobleki Tepe region of the Fertile Crescent, indicate that celiac disease probably emerged as humans transitioned from hunter-gatherer groups to societies dependent on agriculture to secure a stable food supply. Longitudinal studies performed over several decades have suggested that changes in the prevalence of the disease, even apparent epidemic disease, may be due to superimposed or novel environmental factors that may precipitate its appearance. Recent therapeutic approaches are being explored that may supplement, rather than replace, gluten-free diet therapy and permit more nutritional options for future management. PMID:25547088
The occurrence of phi in dento-facial beauty of fine art from antiquity through the Renaissance.
Wiener, R Constance; Wiener Pla, Regina M
2012-01-01
External beauty is a complex construct that influences lives and may be impacted by dentists. Beauty is not easily quantified, but one cited anthropometric of beauty is the ratio phi, the number 1.618033(...). This study examined phi as a measure of female frontal facial beauty in classic Western art, using pre- Renaissance (N = 30), and Renaissance (N = 30) artwork. Four horizontal and five vertical ratios were determined in the works of art, which were then compared with the phi ratio. All horizontal ratios for both pre-Renaissance and Renaissance artwork were similar to each other, but did not contain the phi ratio (P < 0.001). Nevertheless, all vertical ratios for pre-Renaissance and Renaissance art-work did contain the phi ratio within their confidence intervals with the exception of the vertical ratio, "intereye point to soft tissue menton/ intereye point to stomion", that was found to be less than phi in the Renaissance group. The study provides evidence of the presence of the phi ratio in vertical aspect of females in artwork from pre-Renaissance through the Renaissance demonstrating consistent temporal preferences. Therefore, the phi ratio seems to be an important consideration in altering vertical facial dimensions in full mouth rehabilitation and reconstructive orthognathic surgery involving females.
Freeman, Hugh J
2015-01-01
Celiac disease is a chronic genetically based gluten-sensitive immune-mediated enteropathic process primarily affecting the small intestinal mucosa. The disorder classically presents with diarrhea and weight loss; however, more recently, it has been characterized by subclinical occult or latent disease associated with few or no intestinal symptoms. Diagnosis depends on the detection of typical histopathological biopsy changes followed by a gluten-free diet response. A broad range of clinical disorders may mimic celiac disease, along with a wide range of drugs and other therapeutic agents. Recent and intriguing archeological data, largely from the Gobleki Tepe region of the Fertile Crescent, indicate that celiac disease probably emerged as humans transitioned from hunter-gatherer groups to societies dependent on agriculture to secure a stable food supply. Longitudinal studies per-formed over several decades have suggested that changes in the prevalence of the disease, even apparent epidemic disease, may be due to superimposed or novel environmental factors that may precipitate its appearance. Recent therapeutic approaches are being explored that may supplement, rather than replace, gluten-free diet therapy and permit more nutritional options for future management.
Non-classical light for quantum information
NASA Astrophysics Data System (ADS)
Goldschmidt, Elizabeth Anne
Non-classical light is both easily encoded with quantum information and robust against decoherence, making it a key resource that enables many quantum information applications including quantum computing, quantum communication, and quantum metrology. We present a wide range of experimental and theoretical research toward the generation, detection, characterization, and storage of non-classical states of light with an eye toward quantum information applications. To provide a basis for the rest of the work, we begin by discussing theoretically the role of photon number statistics in optical quantum information and the use of second-order optical coherence to characterize non-classical light. Building on that, we present an original tool for the difficult problem of reconstructing the underlying mode distribution of multi-mode optical fields using simple measurements of higher-order optical coherence. We then move on to the problem of generating and storing single photons. We do this in a solid-state medium, a rare-earth ion-doped crystal, with a long-lived spin transition ideal for storing quantum information. We experimentally demonstrate the feasibility of this concept by showing correlations between the optical fields that herald storage and retrieval of collective excitations. This scheme can be used for the two important and distinct applications of generating single photons on-demand and storing quantum information and entanglement. The detection of non-classical light is a task as important as its generation. To this end, we study detectors with near unity detection efficiency and photon number resolution for use in quantum-enabled metrology. We use such a detector to experimentally demonstrate compression of spatial fringes and investigate the possibility of improving measurement resolution with classical and non-classical light. Finally, we report a set of experiments using photon number statistics to characterize classical and non-classical light. We
NASA Astrophysics Data System (ADS)
Izdebski, Adam; Pickett, Jordan; Roberts, Neil; Waliszewski, Tomasz
2016-03-01
This paper examines the evidence for climatic changes in the Eastern Mediterranean for the period 200-800 AD and offers hypotheses on the role of climatic fluctuations in the societal developments that occurred in this region at the end of Antiquity. The geographical focus of the paper includes Anatolia and the Levant, two major regions of the Eastern Roman Empire that are rich in environmental, historical and archaeological data. The paper starts with the review of current research on the economic, settlement and vegetation history of the Eastern Mediterranean in Late Antiquity, which provides the necessary framework for the study of potential climate impacts. The core of the article is devoted to the analysis of the palaeoclimatic evidence, which is divided in two groups. The first one encompasses the direct evidence, that is palaeoclimate proxies and the textual record of extreme weather events, while the second includes indirect information on climate, in particular multi-proxy studies that include pollen analysis, archaeological evidence, and the historical evidence of subsistence crises. We conclude that during our study period there occurred three periods of substantially different climatic conditions. A late Roman drought ∼350-470 AD was followed by a dramatic shift to much wetter climatic conditions. These in turn changed into increasing dryness after ∼730 AD in Anatolia and ∼670 AD in the Levant. The lack of chronological precision in the dating of the archaeological evidence and of some climatic records makes it impossible at present to make conclusive observations regarding the societal responses to these climatic fluctuations. Nonetheless in all probability, the extended and - in some areas - severe late Roman drought did not cause any major social upheaval or economic decline in Anatolia or the Levant, although it appears to have contributed to a change in patterns of water use in the cities. In contrast, the increased availability of moisture
Unraveling Quantum Annealers using Classical Hardness.
Martin-Mayor, Victor; Hen, Itay
2015-01-01
Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as 'D-Wave' chips, promise to solve practical optimization problems potentially faster than conventional 'classical' computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize 'temperature chaos' as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257
The classical model for moment tensors
NASA Astrophysics Data System (ADS)
Tape, W.; Tape, C.
2013-12-01
A seismic moment tensor is a description of an earthquake source, but the description is indirect. The moment tensor describes seismic radiation rather than the actual physical process that initiates the radiation. A moment tensor 'model' then ties the physical process to the moment tensor. The model is not unique, and the physical process is therefore not unique. In the classical moment tensor model (Aki and Richards, 1980), an earthquake arises from slip along a planar fault, but with the slip not necessarily in the plane of the fault. The model specifies the resulting moment tensor in terms of the slip vector, the fault normal vector, and the Lame elastic parameters, assuming isotropy. We review the classical model in the context of the fundamental lune. The lune is closely related to the space of moment tensors, and it provides a setting that is conceptually natural as well as pictorial. In addition to the classical model, we consider a crack plus double couple model (CDC model) in which a moment tensor is regarded as the sum of a crack tensor and a double couple. A compilation of full moment tensors from the literature reveals large deviations in Poisson's ratio as implied by the classical model. Either the classical model is inadequate or the published full moment tensors have very large uncertainties. We question the common interpretation of the isotropic component as a volume change in the source region.
Trading Classical and Quantum Computational Resources
NASA Astrophysics Data System (ADS)
Bravyi, Sergey; Smith, Graeme; Smolin, John A.
2016-04-01
We propose examples of a hybrid quantum-classical simulation where a classical computer assisted by a small quantum processor can efficiently simulate a larger quantum system. First, we consider sparse quantum circuits such that each qubit participates in O (1 ) two-qubit gates. It is shown that any sparse circuit on n +k qubits can be simulated by sparse circuits on n qubits and a classical processing that takes time 2O (k )poly (n ) . Second, we study Pauli-based computation (PBC), where allowed operations are nondestructive eigenvalue measurements of n -qubit Pauli operators. The computation begins by initializing each qubit in the so-called magic state. This model is known to be equivalent to the universal quantum computer. We show that any PBC on n +k qubits can be simulated by PBCs on n qubits and a classical processing that takes time 2O (k )poly (n ). Finally, we propose a purely classical algorithm that can simulate a PBC on n qubits in a time 2α npoly (n ) , where α ≈0.94 . This improves upon the brute-force simulation method, which takes time 2npoly (n ). Our algorithm exploits the fact that n -fold tensor products of magic states admit a low-rank decomposition into n -qubit stabilizer states.
Effective dynamics of a classical point charge
Polonyi, Janos
2014-03-15
The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham–Lorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-pole of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out. -- Highlights: •Extension of the classical action principle for dissipative systems. •New derivation of the Abraham–Lorentz force for a point charge. •Absence of a runaway solution of the Abraham–Lorentz force. •Acausality in classical electrodynamics. •Renormalization of classical electrodynamics of point charges.
Quantum-classical crossover in electrodynamics
Polonyi, Janos
2006-09-15
A classical field theory is proposed for the electric current and the electromagnetic field interpolating between microscopic and macroscopic domains. It represents a generalization of the density functional for the dynamics of the current and the electromagnetic field in the quantum side of the crossover and reproduces standard classical electrodynamics on the other side. The effective action derived in the closed time path formalism and the equations of motion follow from the variational principle. The polarization of the Dirac-sea can be taken into account in the quadratic approximation of the action by the introduction of the deplacement field strengths as in conventional classical electrodynamics. Decoherence appears naturally as a simple one-loop effect in this formalism. It is argued that the radiation time arrow is generated from the quantum boundary conditions in time by decoherence at the quantum-classical crossover and the Abraham-Lorentz force arises from the accelerating charge or from other charges in the macroscopic or the microscopic side, respectively. The functional form of the quantum renormalization group, the generalization of the renormalization group method for the density matrix, is proposed to follow the scale dependence through the quantum-classical crossover in a systematical manner.
Vibrational predissociation quasiclassical tunnelling and classical diffusion
NASA Astrophysics Data System (ADS)
Karni, Y.; Nikitin, E. E.
A comparative study of vibrational predissociation dynamics is presented Two collinear models of the van der Waals complex are used with a realistic medium strength coupling parameter The predissociation rates are calculated by four different approaches an accurate quantum mechanical method by the complex scaling technique first order approximations in the diabatic FOD and adiabatic FOA basis and purely classically It is shown that FOA within the improved semiclassical Landau method provides an excellent description of the dynamical tunnelling of the system from all the quasibound states into continuum at the same time FOD yields noticeably higher rates though the transition probabilities are very low At low excitation energies of the van der Waals bond the classical description yields zero rates in accord with the KAM theorem At higher excitation energies the classical rates are higher than the quasiclassical rates since the classical system dissociates via the diffusion through the holes in the phase space which are still too narrow to let the quantum system escape A simple explanation of a parallelism between quantum and classical rates is suggested under a condition when the first order quantum treatment is applicable
Quantum entanglement capacity with classical feedback
NASA Astrophysics Data System (ADS)
Leung, Alan W.
2008-01-01
For any quantum discrete memoryless channel, we define a quantity called quantum entanglement capacity with classical feedback (EB) , and we show that this quantity lies between two other well-studied quantities. These two quantities—namely the quantum capacity assisted by two-way classical communication (Q2) and the quantum capacity with classical feedback (QB) —are widely conjectured to be different: There exists a quantum discrete memoryless channel for which Q2>QB . We then present a general scheme to convert any quantum error-correcting codes into adaptive protocols for this newly defined quantity of the quantum depolarizing channel, and illustrate with the repetition code and Shor code. We contrast the present notion with entanglement purification protocols by showing that, whilst the Leung-Shor protocol can be applied directly, recurrence methods need to be supplemented with other techniques but at the same time offer a way to improve the aforementioned repetition code. For the quantum depolarizing channel, we prove a formula that gives lower bounds on the quantum capacity with classical feedback from any EB protocols. We then apply this formula to the EB protocols that we discuss to obtain lower bounds on the quantum capacity with classical feedback of the quantum depolarizing channel.
Unraveling Quantum Annealers using Classical Hardness.
Martin-Mayor, Victor; Hen, Itay
2015-10-20
Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as 'D-Wave' chips, promise to solve practical optimization problems potentially faster than conventional 'classical' computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize 'temperature chaos' as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip.
Modeling Classical Heat Conduction in FLAG
Ramsey, Scott D.; Hendon, Raymond Cori
2015-01-12
The Los Alamos National Laboratory FLAG code contains both electron and ion heat conduction modules; these have been constructed to be directly relevant to user application problems. However, formal code verification of these modules requires quantitative comparison to exact solutions of the underlying mathematical models. A wide variety of exact solutions to the classical heat conduction equation are available for this purpose. This report summarizes efforts involving the representation of the classical heat conduction equation as following from the large electron-ion coupling limit of the electron and ion 3T temperature equations, subject to electron and ion conduction processes. In FLAG, this limiting behavior is quantitatively verified using a simple exact solution of the classical heat conduction equation. For this test problem, both heat conduction modules produce nearly identical spatial electron and ion temperature profiles that converge at slightly less than 2nd order to the corresponding exact solution.
Classical approach to multichromophoric resonance energy transfer.
Duque, Sebastián; Brumer, Paul; Pachón, Leonardo A
2015-09-11
A classical formulation of the quantum multichromophoric theory of resonance energy transfer is developed on the basis of classical electrodynamics. The theory allows for the identification of a variety of processes of different order in the interactions that contribute to the energy transfer in molecular aggregates with intracoupling in donors and acceptor chromophores. Enhanced rates in multichromophoric resonance energy transfer are shown to be well described by this theory. Specifically, in a coupling configuration between N_{A} acceptors and N_{D} donors, the theory correctly predicts an enhancement of the energy transfer rate dependent on the total number of donor-acceptor pairs. As an example, the theory, applied to the transfer rate in light harvesting II, gives results in excellent agreement with experiment. Finally, it is explicitly shown that as long as linear response theory holds, the classical multichromophoric theory formally coincides with the quantum formulation.
Non-Classical Inhibition of Carbonic Anhydrase
Lomelino, Carrie L.; Supuran, Claudiu T.; McKenna, Robert
2016-01-01
Specific isoforms from the carbonic anhydrase (CA) family of zinc metalloenzymes have been associated with a variety of diseases. Isoform-specific carbonic anhydrase inhibitors (CAIs) are therefore a major focus of attention for specific disease treatments. Classical CAIs, primarily sulfonamide-based compounds and their bioisosteres, are examined as antiglaucoma, antiepileptic, antiobesity, antineuropathic pain and anticancer compounds. However, many sulfonamide compounds inhibit all CA isoforms nonspecifically, diluting drug effectiveness and causing undesired side effects due to off-target inhibition. In addition, a small but significant percentage of the general population cannot be treated with sulfonamide-based compounds due to a sulfa allergy. Therefore, CAIs must be developed that are not only isoform specific, but also non-classical, i.e. not based on sulfonamides, sulfamates, or sulfamides. This review covers the classes of non-classical CAIs and the recent advances in the development of isoform-specific inhibitors based on phenols, polyamines, coumarins and their derivatives. PMID:27438828
Quantum dynamics simulation with classical oscillators
NASA Astrophysics Data System (ADS)
Briggs, John S.; Eisfeld, Alexander
2013-12-01
In a previous paper [J. S. Briggs and A. Eisfeld, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.85.052111 85, 052111 (2012)] we showed that the time development of the complex amplitudes of N coupled quantum states can be mapped by the time development of positions and velocities of N coupled classical oscillators. Here we examine to what extent this mapping can be realized to simulate the “quantum,” properties of entanglement and qubit manipulation. By working through specific examples, e.g., of quantum gate operation, we seek to illuminate quantum and classical differences which hitherto have been treated more mathematically. In addition, we show that important quantum coupled phenomena, such as the Landau-Zener transition and the occurrence of Fano resonances can be simulated by classical oscillators.
Classical approach to multichromophoric resonance energy transfer.
Duque, Sebastián; Brumer, Paul; Pachón, Leonardo A
2015-09-11
A classical formulation of the quantum multichromophoric theory of resonance energy transfer is developed on the basis of classical electrodynamics. The theory allows for the identification of a variety of processes of different order in the interactions that contribute to the energy transfer in molecular aggregates with intracoupling in donors and acceptor chromophores. Enhanced rates in multichromophoric resonance energy transfer are shown to be well described by this theory. Specifically, in a coupling configuration between N_{A} acceptors and N_{D} donors, the theory correctly predicts an enhancement of the energy transfer rate dependent on the total number of donor-acceptor pairs. As an example, the theory, applied to the transfer rate in light harvesting II, gives results in excellent agreement with experiment. Finally, it is explicitly shown that as long as linear response theory holds, the classical multichromophoric theory formally coincides with the quantum formulation. PMID:26406811
Coexistence of peptides with classical neurotransmitters.
Hökfelt, T; Millhorn, D; Seroogy, K; Tsuruo, Y; Ceccatelli, S; Lindh, B; Meister, B; Melander, T; Schalling, M; Bartfai, T
1987-07-15
In the present article the fact is emphasized that neuropeptides often are located in the same neurons as classical transmitters such as acetylcholine, 5-hydroxy-tryptamine, catecholamines, gamma-aminobutyric acid (GABA) etc. This raises the possibility that neurons produce, store and release more than one messenger molecule. The exact functional role of such coexisting peptides is often difficult to evaluate, especially in the central nervous system. In the periphery some studies indicate apparently meaningful interactions of different types with the classical transmitter, but other types of actions including trophic effects have been observed. More recently it has been shown that some neurons contain more than one classical transmitter, e.g. 5-HT plus GABA, further underlining the view that transfer of information across synapses may be more complex than perhaps hitherto assumed. PMID:2885215
Classical analogs of double electromagnetically induced transparency
NASA Astrophysics Data System (ADS)
Bai, Zhengyang; Hang, Chao; Huang, Guoxiang
2013-03-01
Double electromagnetically induced transparency (DEIT) in a four-level atomic system with tripod-type energy-level configuration is modeled by using two classical systems. The first is a set of three coupled harmonic oscillators subject to frictional forces and external drives and the second is a set of three coupled RLC circuits with electric resistors and alternating voltage sources. It is shown that both of the two classical systems have absorption spectra of DEIT similar to that of the four-level tripod-type atomic system. These classical analogies provide simple and intuitive physical description of quantum interference processes and can be used to illustrate experimental observations of the DEIT in quantum systems.
Quantum and classical optics-emerging links
NASA Astrophysics Data System (ADS)
Eberly, J. H.; Qian, Xiao-Feng; Qasimi, Asma Al; Ali, Hazrat; Alonso, M. A.; Gutiérrez-Cuevas, R.; Little, Bethany J.; Howell, John C.; Malhotra, Tanya; Vamivakas, A. N.
2016-06-01
Quantum optics and classical optics are linked in ways that are becoming apparent as a result of numerous recent detailed examinations of the relationships that elementary notions of optics have with each other. These elementary notions include interference, polarization, coherence, complementarity and entanglement. All of them are present in both quantum and classical optics. They have historic origins, and at least partly for this reason not all of them have quantitative definitions that are universally accepted. This makes further investigation into their engagement in optics very desirable. We pay particular attention to effects that arise from the mere co-existence of separately identifiable and readily available vector spaces. Exploitation of these vector-space relationships are shown to have unfamiliar theoretical implications and new options for observation. It is our goal to bring emerging quantum-classical links into wider view and to indicate directions in which forthcoming and future work will promote discussion and lead to unified understanding.
Slaus, Mario; Novak, Mario; Bedić, Zeljka; Strinović, Davor
2012-09-01
To test the historically documented hypothesis of a general increase in deliberate violence in the eastern Adriatic from the antique (AN; 2nd-6th c.) through the early medieval (EM; 7th-11th c.) to the late-medieval period (LM; 12th-16th c.), an analysis of the frequency and patterning of bone trauma was conducted in three skeletal series from these time periods. A total of 1,125 adult skeletons-346 from the AN, 313 from the EM, and 466 from the LM series-were analyzed. To differentiate between intentional violence and accidental injuries, data for trauma frequencies were collected for the complete skeleton, individual long bones, and the craniofacial region as well as by type of injury (perimortem vs. antemortem). The results of our analyses show a significant temporal increase in total fracture frequencies when calculated by skeleton as well as of individuals exhibiting one skeletal indicator of deliberate violence (sharp force lesions, craniofacial injuries, "parry" fractures, or perimortem trauma). No significant temporal increases were, however, noted in the frequencies of craniofacial trauma, "parry" fractures, perimortem injuries, or of individuals exhibiting multiple skeletal indicators of intentional violence. Cumulatively, these data suggest that the temporal increase in total fracture frequencies recorded in the eastern Adriatic was caused by a combination of factors that included not only an increase of intentional violence but also a significant change in lifestyle that accompanied the transition from a relatively affluent AN urban lifestyle to a more primitive rural medieval way of life.
Rosenberger, Alfred L; Pickering, Robyn; Green, Helen; Cooke, Siobhán B; Tallman, Melissa; Morrow, Andrea; Rímoli, Renato
2015-11-01
Endemic New World monkeys are an important element of the extinct mammal faunas of the Caribbean's Greater Antilles. Here we report the first geochronometric evidence that the primate Antillothrix bernensis existed in the Dominican Republic during the Pleistocene, based on the uranium-series age of carbonate speleothem that encased a tibia when it was collected in a flooded cave. Three-dimensional geometric morphometrics of laser-scanned living and extinct samples provide evidence to support the hypothesis that this specimen and other Dominican primate tibial remains belong to that same species. U-Th dating of the host cave carbonate returns ages consistently at the 600 ka upper limit of the technique. However, U-Pb, capable of resolving ages of greater antiquity, is more robust in this context, returning a secure age of 1.32 ± 0.11 Ma, which is the oldest chronometric age recorded for a Hispaniolan mammal. While its origins and manner and time of arrival are obscure, the morphometric studies are consistent with phylogenetic analyses that place A. bernensis within the pitheciid clade of the platyrrhines. The species apparently endured for over 1 million years during the climatic perturbations of the Pleistocene, as a frugivorous climbing quadruped, one of two known primate species occupying the hazard prone island of Hispaniola. PMID:26321147
Rosenberger, Alfred L; Pickering, Robyn; Green, Helen; Cooke, Siobhán B; Tallman, Melissa; Morrow, Andrea; Rímoli, Renato
2015-11-01
Endemic New World monkeys are an important element of the extinct mammal faunas of the Caribbean's Greater Antilles. Here we report the first geochronometric evidence that the primate Antillothrix bernensis existed in the Dominican Republic during the Pleistocene, based on the uranium-series age of carbonate speleothem that encased a tibia when it was collected in a flooded cave. Three-dimensional geometric morphometrics of laser-scanned living and extinct samples provide evidence to support the hypothesis that this specimen and other Dominican primate tibial remains belong to that same species. U-Th dating of the host cave carbonate returns ages consistently at the 600 ka upper limit of the technique. However, U-Pb, capable of resolving ages of greater antiquity, is more robust in this context, returning a secure age of 1.32 ± 0.11 Ma, which is the oldest chronometric age recorded for a Hispaniolan mammal. While its origins and manner and time of arrival are obscure, the morphometric studies are consistent with phylogenetic analyses that place A. bernensis within the pitheciid clade of the platyrrhines. The species apparently endured for over 1 million years during the climatic perturbations of the Pleistocene, as a frugivorous climbing quadruped, one of two known primate species occupying the hazard prone island of Hispaniola.
Hall, J A; Walter, G H
2014-08-01
An apparent contradiction in the ecology of cycad plants is that their seeds are known to be highly poisonous, and yet they seem well adapted for seed dispersal by animals, as shown by their visually conspicuous seed cones and large seeds presented within a brightly colored fleshy "fruit" of sarcotesta. We tested if this sarcotesta could function as a reward for cycad seed dispersal fauna, by establishing if the toxic compound cycasin, known from the seeds, is absent from the sarcotesta. The Australian cycads Macrozamia miquelii and Cycas ophiolitica were tested (N = 10 individuals per species) using gas chromatography / mass spectrometry. Cycasin was detected at 0.34 % (fresh weight) in seed endosperm of M. miquelii and 0.28 % (fresh weight) in seed endosperm of C. ophiolitica. Cycasin was absent from the sarcotesta of the same propagules (none detected in the case of M. miquelii, and trace quantities detected in sarcotesta of only four of the ten C. ophiolitica propagules). This laboratory finding was supported by field observations of native animals eating the sarcotesta of these cycads but discarding the toxic seed intact. These results suggest cycads are adapted for dispersal fauna capable of swallowing the large, heavy propagules whole, digesting the non-toxic sarcotesta flesh internally, and then voiding the toxic seed intact. Megafauna species such as extant emus or cassowaries, or extinct Pleistocene megafauna such as Genyornis, are plausible candidates for such dispersal. Cycads are an ancient lineage, and the possible antiquity of their megafaunal seed dispersal adaptations are discussed. PMID:25172315
Sezen, F; Aval, E; Ağkurt, T; Yilmaz, Ş; Temel, F; Güleşen, R; Korukluoğlu, G; Sucakli, M B; Torunoğlu, M A; Zhu, B-P
2015-03-01
We investigated a gastroenteritis outbreak in Erzurum city, Turkey in December 2012 to identify its cause and mode of transmission. We defined a probable case as onset of diarrhoea (⩾3 episodes/day) or vomiting, plus fever or nausea or abdominal pain during 19-27 December, 2012 in an Erzurum city resident. In a case-control study we compared exposures of 95 randomly selected probable cases and 95 neighbourhood-matched controls. We conducted bacterial culture and real-time multiplex PCR for identification of pathogens. During the week before illness onset, 72% of cases and 15% of controls only drank water from antique neighbourhood fountains; conversely, 16% of cases and 65% of controls only drank bottled or tap water (adjusted odds ratio 20, 95% confidence interval 4·6-84, after controlling for age and sex using conditional logistic regression). Of eight stool specimens collected, two were positive for Shigella sonnei, one for astrovirus, one for astrovirus and norovirus, and one for astrovirus and rotavirus. Water samples from the fountains had elevated total coliform (38-300/100 ml) and Escherichia coli (22-198/100 ml) counts. In conclusion, drinking contaminated fountain water caused this multi-pathogen outbreak. Residents should stop drinking water from these fountains, and clean water from the water treatment plant should be connected to the fountains.
Karenberg, A; Hort, I
1998-12-01
This first of a series of papers on the history of stroke presents an examination of a number of exemplary Greek and Latin sources, ranging from late antiquity to the dawn of the Middle Ages. We first establish a chronological order of various groups of texts and, whenever possible, ascertain the relationship of one group of writings to another. In the second century A.D., Galen had used the Hippocratic concept of humoral imbalance as a fundamental explanatory mechanism for the interpretation of clinical manifestations of apoplexy. Galen definitely rejected the Aristotelian precept of the primacy of the heart. According to his teaching, stroke resulted from the accumulation of a thick and dense humor in the ventricles of the brain blocking the passage of the animal spirit. Galen's Greek texts became axiomatic for compilers of the Byzantine period (Aetius of Amida, Alexander of Tralles, Paulus of Aegina). But his ideas contrasted starkly with the theories of the Methodical School which exerted - through the Latin writings of Caelius Aurelianus - a certain influence on authors of the Latin West (Cassius Felix, Theodorus Priscianus). References to stroke can also be found in many theological writings of the early Middle Ages. PMID:11623840
Hall, J A; Walter, G H
2014-08-01
An apparent contradiction in the ecology of cycad plants is that their seeds are known to be highly poisonous, and yet they seem well adapted for seed dispersal by animals, as shown by their visually conspicuous seed cones and large seeds presented within a brightly colored fleshy "fruit" of sarcotesta. We tested if this sarcotesta could function as a reward for cycad seed dispersal fauna, by establishing if the toxic compound cycasin, known from the seeds, is absent from the sarcotesta. The Australian cycads Macrozamia miquelii and Cycas ophiolitica were tested (N = 10 individuals per species) using gas chromatography / mass spectrometry. Cycasin was detected at 0.34 % (fresh weight) in seed endosperm of M. miquelii and 0.28 % (fresh weight) in seed endosperm of C. ophiolitica. Cycasin was absent from the sarcotesta of the same propagules (none detected in the case of M. miquelii, and trace quantities detected in sarcotesta of only four of the ten C. ophiolitica propagules). This laboratory finding was supported by field observations of native animals eating the sarcotesta of these cycads but discarding the toxic seed intact. These results suggest cycads are adapted for dispersal fauna capable of swallowing the large, heavy propagules whole, digesting the non-toxic sarcotesta flesh internally, and then voiding the toxic seed intact. Megafauna species such as extant emus or cassowaries, or extinct Pleistocene megafauna such as Genyornis, are plausible candidates for such dispersal. Cycads are an ancient lineage, and the possible antiquity of their megafaunal seed dispersal adaptations are discussed.
Learning, Realizability and Games in Classical Arithmetic
NASA Astrophysics Data System (ADS)
Aschieri, Federico
2010-12-01
In this dissertation we provide mathematical evidence that the concept of learning can be used to give a new and intuitive computational semantics of classical proofs in various fragments of Predicative Arithmetic. First, we extend Kreisel modified realizability to a classical fragment of first order Arithmetic, Heyting Arithmetic plus EM1 (Excluded middle axiom restricted to Sigma^0_1 formulas). We introduce a new realizability semantics we call "Interactive Learning-Based Realizability". Our realizers are self-correcting programs, which learn from their errors and evolve through time. Secondly, we extend the class of learning based realizers to a classical version PCFclass of PCF and, then, compare the resulting notion of realizability with Coquand game semantics and prove a full soundness and completeness result. In particular, we show there is a one-to-one correspondence between realizers and recursive winning strategies in the 1-Backtracking version of Tarski games. Third, we provide a complete and fully detailed constructive analysis of learning as it arises in learning based realizability for HA+EM1, Avigad's update procedures and epsilon substitution method for Peano Arithmetic PA. We present new constructive techniques to bound the length of learning processes and we apply them to reprove - by means of our theory - the classic result of Godel that provably total functions of PA can be represented in Godel's system T. Last, we give an axiomatization of the kind of learning that is needed to computationally interpret Predicative classical second order Arithmetic. Our work is an extension of Avigad's and generalizes the concept of update procedure to the transfinite case. Transfinite update procedures have to learn values of transfinite sequences of non computable functions in order to extract witnesses from classical proofs.
Observable signatures of a classical transition
NASA Astrophysics Data System (ADS)
Johnson, Matthew C.; Lin, Wei
2016-03-01
Eternal inflation arising from a potential landscape predicts that our universe is one realization of many possible cosmological histories. One way to access different cosmological histories is via the nucleation of bubble universes from a metastable false vacuum. Another way to sample different cosmological histories is via classical transitions, the creation of pocket universes through the collision between bubbles. Using relativistic numerical simulations, we examine the possibility of observationally determining if our observable universe resulted from a classical transition. We find that classical transitions produce spatially infinite, approximately open Friedman-Robertson-Walker universes. The leading set of observables in the aftermath of a classical transition are negative spatial curvature and a contribution to the Cosmic Microwave Background temperature quadrupole. The level of curvature and magnitude of the quadrupole are dependent on the position of the observer, and we determine the possible range of observables for two classes of single-scalar field models. For the first class, where the inflationary phase has a lower energy than the vacuum preceding the classical transition, the magnitude of the observed quadrupole generally falls to zero with distance from the collision while the spatial curvature grows to a constant. For the second class, where the inflationary phase has a higher energy than the vacuum preceding the classical transition, the magnitude of the observed quadrupole generically falls to zero with distance from the collision while the spatial curvature grows without bound. We find that the magnitude of the quadrupole and curvature grow with increasing centre of mass energy of the collision, and explore variations of the parameters in the scalar field lagrangian.
Quantization of soluble classical constrained systems
Belhadi, Z.; Menas, F.; Bérard, A.; Mohrbach, H.
2014-12-15
The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way.
The classic. Review article: Traffic accidents. 1966.
Tscherne, H
2013-09-01
This Classic Article is a translation of the original work by Prof. Harald Tscherne, Der Straßenunfall [Traffic Accidents]. An accompanying biographical sketch of Prof. Tscherne is available at DOI 10.1007/s11999-013-3011-x . An online version of the original German article is available as supplemental material. The Classic Article is reproduced with permission from Brüder Hollinek & Co. GesmbH, Purkersdorf, Austria. The original article was published in Wien Med Wochenschr. 1966;116:105-108. (Translated by Dr. Roman Pfeifer.).
Classical dynamics on curved Snyder space
NASA Astrophysics Data System (ADS)
Ivetić, B.; Meljanac, S.; Mignemi, S.
2014-05-01
We study the classical dynamics of a particle in nonrelativistic Snyder-de Sitter space. We show that for spherically symmetric systems, parameterizing the solutions in terms of an auxiliary time variable, which is a function only of the physical time and of the energy and angular momentum of the particles, one can reduce the problem to the equivalent one in classical mechanics. We also discuss a relativistic extension of these results, and a generalization to the case in which the algebra is realized in flat space.
Are Volume Plasmons Excitable by Classical Light?
NASA Astrophysics Data System (ADS)
Höflich, Katja; Gösele, Ulrich; Christiansen, Silke
2009-08-01
Volume plasmons are collective eigenmodes of the free-electron gas inside a metal. Because of their longitudinal character and the transversal nature of light, the photoexcitation of volume plasmons is forbidden in classical electrodynamics. Nevertheless, we show their existence for metallic nanoshells using analytical solutions of the classical scattering problem. Solely for the case of a vanishing real part of the shell permittivity, a local maximum at the natural plasma frequency appears in the extinction spectra. For explaining our observations, we suggest a simple physical picture which is supported by examples on silver and gold shells.
Are volume plasmons excitable by classical light?
Höflich, Katja; Gösele, Ulrich; Christiansen, Silke
2009-08-21
Volume plasmons are collective eigenmodes of the free-electron gas inside a metal. Because of their longitudinal character and the transversal nature of light, the photoexcitation of volume plasmons is forbidden in classical electrodynamics. Nevertheless, we show their existence for metallic nanoshells using analytical solutions of the classical scattering problem. Solely for the case of a vanishing real part of the shell permittivity, a local maximum at the natural plasma frequency appears in the extinction spectra. For explaining our observations, we suggest a simple physical picture which is supported by examples on silver and gold shells.
Quantization of soluble classical constrained systems
NASA Astrophysics Data System (ADS)
Belhadi, Z.; Menas, F.; Bérard, A.; Mohrbach, H.
2014-12-01
The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac's formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way.
Thermodynamic integration from classical to quantum mechanics
Habershon, Scott; Manolopoulos, David E.
2011-12-14
We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable.
Decoherence, chaos, the quantum and the classical
Zurek, W.H.; Paz, J.P.
1994-04-01
The key ideas of the environment-induced decoherence approach are reviewed. Application of decoherence to the transition from quantum to classical in open quantum systems with chaotic classical analogs is described. The arrow of time is, in this context, a result of the information loss to the correlations with the environment. The asymptotic rate of entropy production (which is reached quickly, on the dynamical timescale) is independent of the details of the coupling of the quantum system to the environment, and is set by the Lyapunov exponents. We also briefly outline the existential interpretation of quantum mechanics, justifying the slogan ``No information without representation.``
The molecular mechanisms of classic Hodgkin's lymphoma.
Felberbaum, Rachael S.
2005-01-01
Classic Hodgkin's lymphoma is characterized by the appearance of giant abnormal cells called Hodgkin and Reed-Sternberg (HRS) cells. HRS cells arise from germinal center B lymphocytes and in about 50 percent of patients, are infected with Epstein-Barr Virus. In addition, HRS cells show constitutive NF-kappaB activation and are resistant to apoptosis. This paper reviews several recent studies that for the first time implicate specific molecules in the pathogenesis of classic Hodgkin's lymphoma. Targeting these molecules could lead to the development of novel therapies for this disease. PMID:16720015
Classical communication cost of quantum steering
NASA Astrophysics Data System (ADS)
Sainz, Ana Belén; Aolita, Leandro; Brunner, Nicolas; Gallego, Rodrigo; Skrzypczyk, Paul
2016-07-01
Quantum steering is observed when performing appropriate local measurements on an entangled state. Here we discuss the possibility of simulating classically this effect, using classical communication instead of entanglement. We show that infinite communication is necessary for exactly simulating steering for any pure entangled state, as well as for a class of mixed entangled states. Moreover, we discuss the communication cost of steering for general entangled states, as well as approximate simulation. Our findings reveal striking differences between Bell nonlocality and steering and provide a natural way of measuring the strength of the latter.
Enhancing non-classicality in mechanical systems
NASA Astrophysics Data System (ADS)
Li, Jie; Gröblacher, Simon; Paternostro, Mauro
2013-03-01
We study the effects of post-selection measurements on both the non-classicality of the state of a mechanical oscillator and the entanglement between two mechanical systems that are part of a distributed optomechanical network. We address the cases of both Gaussian and non-Gaussian measurements, identifying in which cases simple photon counting and Geiger-like measurements are effective in distilling a strongly non-classical mechanical state and enhancing the purely mechanical entanglement between two elements of the network.
Classical swine fever in China: a minireview.
Luo, Yuzi; Li, Su; Sun, Yuan; Qiu, Hua-Ji
2014-08-01
Classical swine fever (CSF), caused by Classical swine fever virus (CSFV), is an OIE-listed, highly contagious, often fatal disease of swine worldwide. Currently, the disease is controlled by prophylactic vaccination in China and many other countries using the modified live vaccines derived from C-strain, which was developed in China in the mid-1950s. This minireview summarizes the epidemiology, diagnostic assays, control and challenges of CSF in China. Though CSF is essentially under control, complete eradication of CSF in China remains a challenging task and needs long-term, joint efforts of stakeholders.
Classic papers in Solar Energy: Solar distillation
Howe, E.D.
1990-06-01
The following Classic Paper was presented by Professor Howe at the first international Conference on Solar Energy at Tucson, Arizona, USA in 1955. That conference was sponsored by the Association of Applied solar Energy (AFASE), the precursor of ISES. Although this paper does not represent the many developments in solar distillation later applied by Professor Howe in the South Pacific, it is a classic paper because it presents Professor Howe's pioneering work in setting up the Seawater Conversion Laboratory in Richmond for the University of California at Berkeley, US. The research of Professor Howe and his colleagues at the Seawater Conversion Laboratory formed the foundation of contemporary solar energy desalination and distillation systems.
Can Communicative Principles Enhance Classical Language Acquisition?
ERIC Educational Resources Information Center
Overland, Paul; Fields, Lee; Noonan, Jennifer
2011-01-01
Is it feasible for nonfluent instructors to teach Biblical Hebrew by communicative principles? If it is feasible, will communicative instruction enhance postsecondary learning of a classical language? To begin answering these questions, two consultants representing second language acquisition (SLA) and technology-assisted language learning led 8…
Maxwell and the classical wave particle dualism.
Mendonça, J T
2008-05-28
Maxwell's equations are one of the greatest theoretical achievements in physics of all times. They have survived three successive theoretical revolutions, associated with the advent of relativity, quantum mechanics and modern quantum field theory. In particular, they provide the theoretical framework for the understanding of the classical wave particle dualism.
Classic hallucinogens in the treatment of addictions.
Bogenschutz, Michael P; Johnson, Matthew W
2016-01-01
Addictive disorders are very common and have devastating individual and social consequences. Currently available treatment is moderately effective at best. After many years of neglect, there is renewed interest in potential clinical uses for classic hallucinogens in the treatment of addictions and other behavioral health conditions. In this paper we provide a comprehensive review of both historical and recent clinical research on the use of classic hallucinogens in the treatment of addiction, selectively review other relevant research concerning hallucinogens, and suggest directions for future research. Clinical trial data are very limited except for the use of LSD in the treatment of alcoholism, where a meta-analysis of controlled trials has demonstrated a consistent and clinically significant beneficial effect of high-dose LSD. Recent pilot studies of psilocybin-assisted treatment of nicotine and alcohol dependence had strikingly positive outcomes, but controlled trials will be necessary to evaluate the efficacy of these treatments. Although plausible biological mechanisms have been proposed, currently the strongest evidence is for the role of mystical or other meaningful experiences as mediators of therapeutic effects. Classic hallucinogens have an excellent record of safety in the context of clinical research. Given our limited understanding of the clinically relevant effects of classic hallucinogens, there is a wealth of opportunities for research that could contribute important new knowledge and potentially lead to valuable new treatments for addiction. PMID:25784600
The Classical Version of Stokes' Theorem Revisited
ERIC Educational Resources Information Center
Markvorsen, Steen
2008-01-01
Using only fairly simple and elementary considerations--essentially from first year undergraduate mathematics--we show how the classical Stokes' theorem for any given surface and vector field in R[superscript 3] follows from an application of Gauss' divergence theorem to a suitable modification of the vector field in a tubular shell around the…
Multi-time equations, classical and quantum
Petrat, Sören; Tumulka, Roderich
2014-01-01
Multi-time equations are evolution equations involving several time variables, one for each particle. Such equations have been considered for the purpose of making theories manifestly Lorentz invariant. We compare their status and significance in classical and quantum physics. PMID:24711721
The Strange World of Classical Physics
ERIC Educational Resources Information Center
Green, David
2010-01-01
We have heard many times that the commonsense world of classical physics was shattered by Einstein's revelation of the laws of relativity. This is certainly true; the shift from our everyday notions of time and space to those revealed by relativity is one of the greatest stretches the mind can make. What is seldom appreciated is that the laws of…
Foreign Language, the Classics, and College Admissions.
ERIC Educational Resources Information Center
LaFleur, Richard A.
1993-01-01
This article reports the results of a survey, funded by the American Classical League (ACL) and conducted during 1990-91, that assessed attitudes toward high school foreign-language study, in particular the study of Latin and Greek, in the college admissions process. (21 references) (VWL)
Classical Physics Experiments in the Amusement Park
ERIC Educational Resources Information Center
Bagge, Sara; Pendrill, Ann-Marie
2002-01-01
An amusement park is a large physics laboratory, full of rotating and accelerated coordinate systems. The forces are experienced throughout the body and can be studied with simple equipment or with electronics depending on age and experience. In this paper, we propose adaptations of classical physics experiments for use on traditional rides.…
Classical physics experiments in the amusement park
NASA Astrophysics Data System (ADS)
Bagge, Sara; Pendrill, Ann-Marie
2002-11-01
An amusement park is a large physics laboratory, full of rotating and accelerated coordinate systems. The forces are experienced throughout the body and can be studied with simple equipment or with electronics depending on age and experience. In this paper, we propose adaptations of classical physics experiments for use on traditional rides.
Classical "Topoi" and the Academic Commonplace.
ERIC Educational Resources Information Center
Musgrove, Laurence E.
An investigation of the various ways the term "topos" is used in classical rhetoric reveals the limited range of invention strategies offered by academic discourse pedagogy. Donald Bartholmae's work on basic writing addresses the relationship of the commonplace to topical invention within academic discourse. Investigation of the history of…
Using CAS to Solve Classical Mathematics Problems
ERIC Educational Resources Information Center
Burke, Maurice J.; Burroughs, Elizabeth A.
2009-01-01
Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…
Classical Pragmatism on Mind and Rationality
ERIC Educational Resources Information Center
Maattanen, Pentti
2005-01-01
One of the major changes in twentieth century philosophy was the so-called linguistic turn, in which natural and formal languages became central subjects of study. This meant that theories of meaning became mostly about linguistic meaning, thinking was now analyzed in terms of symbol manipulation, and rules of classical logic formed the nucleus of…
Classical and quantum Kummer shape algebras
NASA Astrophysics Data System (ADS)
Odzijewicz, A.; Wawreniuk, E.
2016-07-01
We study a family of integrable systems of nonlinearly coupled harmonic oscillators on the classical and quantum levels. We show that the integrability of these systems follows from their symmetry characterized by algebras, here called Kummer shape algebras. The resolution of identity for a wide class of reproducing kernels is found. A number of examples, illustrating this theory, are also presented.
Zeno's arrow and classical phase space logics
NASA Astrophysics Data System (ADS)
Westmoreland, Michael D.; Schumacher, Benjamin W.
1994-06-01
We analyze the Zeno's familiar paradox of the arrow using recently developed non-Boolean derived logics for classical systems. We show that the paradox depends upon a premise that is identically false in such logics, so that the language of experimental propositions is immune to the paradox.
Louis Guttman's Contributions to Classical Test Theory
ERIC Educational Resources Information Center
Zimmerman, Donald W.; Williams, Richard H.; Zumbo, Bruno D.; Ross, Donald
2005-01-01
This article focuses on Louis Guttman's contributions to the classical theory of educational and psychological tests, one of the lesser known of his many contributions to quantitative methods in the social sciences. Guttman's work in this field provided a rigorous mathematical basis for ideas that, for many decades after Spearman's initial work,…
Classic Readers Theatre for Young Adults.
ERIC Educational Resources Information Center
Barchers, Suzanne I.; Kroll, Jennifer L.
This book presents 16 original scripts that have been adapted from classic works of literature for use for readers theatre with young adults and ESL (English as a Second Language) students. Adaptations of the following works are included: "Little Women" (Louisa May Alcott); episodes from "Don Quixote" (Miguel de Cervantes; "The Necklace" (Guy de…
Essays on Classical Rhetoric and Modern Discourse.
ERIC Educational Resources Information Center
Connors, Robert J., Ed.; And Others
Noting the rediscovery by composition scholars of the tradition of classical rhetoric, this collection of essays explores the resurgence in the teaching of written discourse in college English departments. The 18 articles and their authors are as follows: (1) "The Revival of Rhetoric in America," by Robert Connors, Lisa Ede, and Andrea Lunsford;…
Classical analog of electromagnetically induced transparency
NASA Astrophysics Data System (ADS)
Garrido Alzar, C. L.; Martinez, M. A. G.; Nussenzveig, P.
2002-01-01
We present a classical analog of electromagnetically induced transparency (EIT). In a system of just two coupled harmonic oscillators subject to a harmonic driving force, we reproduce the phenomenology observed in EIT. We also describe a simple experiment with two linearly coupled RLC circuits which can be incorporated into an undergraduate laboratory.
Fertility preservation in female classic galactosemia patients
2013-01-01
Almost every female classic galactosemia patient develops primary ovarian insufficiency (POI) as a diet-independent complication of the disease. This is a major concern for patients and their parents, and physicians are often asked about possible options to preserve fertility. Unfortunately, there are no recommendations on fertility preservation in this group. The unique pathophysiology of classic galactosemia with a severely reduced follicle pool at an early age requires an adjusted approach. In this article recommendations for physicians based on current knowledge concerning galactosemia and fertility preservation are made. Fertility preservation is only likely to be successful in very young prepubertal patients. In this group, cryopreservation of ovarian tissue is currently the only available technique. However, this technique is not ready for clinical application, it is considered experimental and reduces the ovarian reserve. Fertility preservation at an early age also raises ethical questions that should be taken into account. In addition, spontaneous conception despite POI is well described in classic galactosemia. The uncertainty surrounding fertility preservation and the significant chance of spontaneous pregnancy warrant counseling towards conservative application of these techniques. We propose that fertility preservation should only be offered with appropriate institutional research ethics approval to classic galactosemia girls at a young prepubertal age. PMID:23866841
On the emergence of classical gravity
NASA Astrophysics Data System (ADS)
Larjo, Klaus
In this thesis I will discuss how certain black holes arise as an effective, thermodynamical description from non-singular microstates in string theory. This provides a possible solution to the information paradox, and strengthens the case for treating black holes as thermodynamical objects. I will characterize the data defining a microstate of a black hole in several settings, and demonstrate that most of the data is unmeasurable for a classical observer. I will further show that the data that is measurable is universal for nearly all microstates, making it impossible for a classical observer to distinguish between microstates, thus giving rise to an effective statistical description for the black hole. In the first half of the thesis I will work with two specific systems: the half-BPS sector of [Special characters omitted.] = 4 super Yang-Mills the and the conformal field theory corresponding to the D1/D5 system; in both cases the high degree of symmetry present provides great control over potentially intractable computations. For these systems, I will further specify the conditions a quantum mechanical microstate must satisfy in order to have a classical description in terms of a unique metric, and define a 'metric operator' whose eigenstates correspond to classical geometries. In the second half of the thesis I will consider a much broader setting, general [Special characters omitted.] = I superconformal quiver gauge the= ories and their dual gravity theories, and demonstrate that a similar effective description arises also in this setting.
Entanglement in Quantum-Classical Hybrid
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
It is noted that the phenomenon of entanglement is not a prerogative of quantum systems, but also occurs in other, non-classical systems such as quantum-classical hybrids, and covers the concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems. Application of hybrid systems for physics of life, as well as for quantum-inspired computing, has been outlined. In representing the Schroedinger equation in the Madelung form, there is feedback from the Liouville equation to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the same topology, the innovators replaced the quantum potential with other types of feedback, and investigated the property of these hybrid systems. A function of probability density has been introduced. Non-locality associated with a global geometrical constraint that leads to an entanglement effect was demonstrated. Despite such a quantum like characteristic, the hybrid can be of classical scale and all the measurements can be performed classically. This new emergence of entanglement sheds light on the concept of non-locality in physics.
Classic hallucinogens in the treatment of addictions.
Bogenschutz, Michael P; Johnson, Matthew W
2016-01-01
Addictive disorders are very common and have devastating individual and social consequences. Currently available treatment is moderately effective at best. After many years of neglect, there is renewed interest in potential clinical uses for classic hallucinogens in the treatment of addictions and other behavioral health conditions. In this paper we provide a comprehensive review of both historical and recent clinical research on the use of classic hallucinogens in the treatment of addiction, selectively review other relevant research concerning hallucinogens, and suggest directions for future research. Clinical trial data are very limited except for the use of LSD in the treatment of alcoholism, where a meta-analysis of controlled trials has demonstrated a consistent and clinically significant beneficial effect of high-dose LSD. Recent pilot studies of psilocybin-assisted treatment of nicotine and alcohol dependence had strikingly positive outcomes, but controlled trials will be necessary to evaluate the efficacy of these treatments. Although plausible biological mechanisms have been proposed, currently the strongest evidence is for the role of mystical or other meaningful experiences as mediators of therapeutic effects. Classic hallucinogens have an excellent record of safety in the context of clinical research. Given our limited understanding of the clinically relevant effects of classic hallucinogens, there is a wealth of opportunities for research that could contribute important new knowledge and potentially lead to valuable new treatments for addiction.
Priority in the Classical Conditioning of Children.
ERIC Educational Resources Information Center
Windholz, George; Lamal, P. A.
1986-01-01
Contrary to widely held belief, Watons and Rayner's (1920) experiment with Little Albert is not first reported case of classical conditioning of a child. Their work was preceded by that of Bogen and of Krasnogorskii. Mateer's work either preceded or coincided with Watons and Rayner's. This article clarifies chronology of these early studies of…
The Role of Contingency in Classical Conditioning.
ERIC Educational Resources Information Center
Papini, Mauricio R.; Bitterman, M. E.
1990-01-01
Early experiments suggesting that classical conditioning depends on the contingency between conditioned stimulus (CS) and the unconditioned stimulus (US) are reconsidered along with later evidence that shows conditioning of the CS and its context in random training. CS-US contingency is neither necessary nor sufficient for conditioning. (SLD)
Stimulus Configuration, Classical Conditioning, and Hippocampal Function.
ERIC Educational Resources Information Center
Schmajuk, Nestor A.; DiCarlo, James J.
1991-01-01
The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)
Attitudes of Children Established by Classical Conditioning.
ERIC Educational Resources Information Center
Barnabei, Fred; And Others
This study examined the attitudes of children established by classical conditioning. Subjects were 4th graders (26 males and 31 females). Each child was randomly assigned to either an experimental or a control group. A posttest-only design was used with positive and negative word associations presented to the experimental group, and neutral word…
Unified classical path theories of pressure broadening.
NASA Technical Reports Server (NTRS)
Bottcher, C.
1971-01-01
Derivation of a unified classical path theory of pressure broadening, using only elementary concepts. It is shown that the theory of Smith, Cooper and Vidal (1969) is only correct at all frequencies to first order in the number density of perturbers.
Comparison of Classical and Quantum Mechanical Uncertainties.
ERIC Educational Resources Information Center
Peslak, John, Jr.
1979-01-01
Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)
Classical Linguistics in the United States.
ERIC Educational Resources Information Center
Poultney, James W.
1988-01-01
Reviews the history of classical linguistic studies in the United States. Cites many of the important American classicists from the nineteenth century to the present. Also gives the history of some scholarly organizations, including the Linguistic Society of America and the American Philological Association. (LMO)
Arbitrated quantum signature of classical messages without using authenticated classical channels
NASA Astrophysics Data System (ADS)
Luo, Yi-Ping; Hwang, Tzonelih
2014-01-01
This paper points out design confusion existing in all the arbitrated quantum signatures (AQS) that require public discussions over authenticated classical channels. Instead, an AQS scheme of classical messages without using authenticated classical channels is proposed here. A cryptographic hash function is used in combine with quantum mechanics to check the existence of an eavesdropping or to verify a signature. In addition, by using only single photons, this scheme provides higher efficiency both in quantum transmissions and generations. The proposed AQS scheme is shown to be immune to several well-known attacks, i.e., the Trojan-horse attacks and the existential forgery attack.
Classical Photogrammetry and Uav - Selected Ascpects
NASA Astrophysics Data System (ADS)
Mikrut, S.
2016-06-01
The UAV technology seems to be highly future-oriented due to its low costs as compared to traditional aerial images taken from classical photogrammetry aircrafts. The AGH University of Science and Technology in Cracow - Department of Geoinformation, Photogrammetry and Environmental Remote Sensing focuses mainly on geometry and radiometry of recorded images. Various scientific research centres all over the world have been conducting the relevant research for years. The paper presents selected aspects of processing digital images made with the UAV technology. It provides on a practical example a comparison between a digital image taken from an airborne (classical) height, and the one made from an UAV level. In his research the author of the paper is trying to find an answer to the question: to what extent does the UAV technology diverge today from classical photogrammetry, and what are the advantages and disadvantages of both methods? The flight plan was made over the Tokarnia Village Museum (more than 0.5 km2) for two separate flights: the first was made by an UAV - System FT-03A built by FlyTech Solution Ltd. The second was made with the use of a classical photogrammetric Cesna aircraft furnished with an airborne photogrammetric camera (Ultra Cam Eagle). Both sets of photographs were taken with pixel size of about 3 cm, in order to have reliable data allowing for both systems to be compared. The project has made aerotriangulation independently for the two flights. The DTM was generated automatically, and the last step was the generation of an orthophoto. The geometry of images was checked under the process of aerotriangulation. To compare the accuracy of these two flights, control and check points were used. RMSE were calculated. The radiometry was checked by a visual method and using the author's own algorithm for feature extraction (to define edges with subpixel accuracy). After initial pre-processing of data, the images were put together, and shown side by side
Stereodynamics of chemical reactions: quasi-classical, quantum and mixed quantum-classical theories
NASA Astrophysics Data System (ADS)
Xu, Wenwu; Zhao, Guangjiu
2012-04-01
In this review, some benchmark works by Han and coworkers on the stereodynamics of typical chemical reactions, triatomic reactions H + D2, Cl + H2 and O + H2 and polyatomic reaction Cl+CH4/CD4, are presented by using the quasi-classical, quantum and mixed quantum-classical methods. The product alignment and orientation in these A+BC model reactions are discussed in detail. We have also compared our theoretical results with experimental measurements and demonstrated that our theoretical results are in good agreement with the experimental results. Quasi-classical trajectory (QCT) method ignores some quantum effects like the tunneling effect and zero-point energy. The quantum method will be very time-consuming. Moreover, the mixed quantum-classical method can take into account some quantum effects and hence is expected to be applicable to large systems and widely used in chemical stereodynamics studies.
Classical and Quantum Probability for Biologists - Introduction
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei.
2010-01-01
The aim of this review (oriented to biologists looking for applications of QM) is to provide a detailed comparative analysis of classical (Kolmogorovian) and quantum (Dirac-von Neumann) models. We will stress differences in the definition of conditional probability and as a consequence in the structures of matrices of transition probabilities, especially the condition of double stochasticity which arises naturally in QM. One of the most fundamental differences between two models is deformation of the classical formula of total probability (FTP) which plays an important role in statistics and decision making. An additional term appears in the QM-version of FTP - so called interference term. Finally, we discuss Bell's inequality and show that the common viewpoint that its violation induces either nonlocality or "death of realism" has not been completely justified. For us it is merely a sign of non-Kolmogorovianity of probabilistic data collected in a few experiments with incompatible setups of measurement devices.
Hearing loss among classical-orchestra musicians.
Toppila, Esko; Koskinen, Heli; Pyykkö, Ilmari
2011-01-01
This study intended to evaluate classical musicians' risk of hearing loss. We studied 63 musicians from four Helsinki classical orchestras. We measured their hearing loss with an audiometer, found their prior amount of exposure to sound and some individual susceptibility factors with a questionnaire, measured their present sound exposure with dosimeters, and tested their blood pressure and cholesterol levels, then compared their hearing loss to ISO 1999-1990's predictions. The musicians' hearing loss distribution corresponded to that of the general population, but highly exposed musicians had greater hearing loss at frequencies over 3 kHz than less-exposed ones. Their individual susceptibility factors were low. Music deteriorates hearing, but by less than what ISO 1999-1990 predicted. The low number of individual susceptibility factors explained the difference, but only reduced hearing loss and not the prevalence of tinnitus.
Effective dynamics of a classical point charge
NASA Astrophysics Data System (ADS)
Polonyi, Janos
2014-03-01
The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham-Lorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-pole of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out.
Radiative corrections in symmetrized classical electrodynamics
Van Meter JR; Kerman; Chen; Hartemann
2000-12-01
The physics of radiation reaction for a point charge is discussed within the context of classical electrodynamics. The fundamental equations of classical electrodynamics are first symmetrized to include magnetic charges: a double four-potential formalism is introduced, in terms of which the field tensor and its dual are employed to symmetrize Maxwell's equations and the Lorentz force equation in covariant form. Within this framework, the symmetrized Dirac-Lorentz equation is derived, including radiation reaction (self-force) for a particle possessing both electric and magnetic charge. The connection with electromagnetic duality is outlined, and an in-depth discussion of nonlocal four-momentum conservation for the wave-particle system is given.
Hidden invariance of the free classical particle
Garcia, S. )
1994-06-01
A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group [ital G] is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under [ital G] leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by [ital U](1) leads to quantum mechanics.
CLASSICAL CEPHEIDS REQUIRE ENHANCED MASS LOSS
Neilson, Hilding R.; Langer, Norbert; Izzard, Robert; Engle, Scott G.; Guinan, Ed
2012-11-20
Measurements of rates of period change of Classical Cepheids probe stellar physics and evolution. Additionally, better understanding of Cepheid structure and evolution provides greater insight into their use as standard candles and tools for measuring the Hubble constant. Our recent study of the period change of the nearest Cepheid, Polaris, suggested that it is undergoing enhanced mass loss when compared to canonical stellar evolution model predictions. In this work, we expand the analysis to rates of period change measured for about 200 Galactic Cepheids and compare them to population synthesis models of Cepheids including convective core overshooting and enhanced mass loss. Rates of period change predicted from stellar evolution models without mass loss do not agree with observed rates, whereas including enhanced mass loss yields predicted rates in better agreement with observations. This is the first evidence that enhanced mass loss as suggested previously for Polaris and {delta} Cephei must be a ubiquitous property of Classical Cepheids.
Crossover from quantum to classical transport
NASA Astrophysics Data System (ADS)
Morr, Dirk K.
2016-01-01
Understanding the crossover from quantum to classical transport has become of fundamental importance not only for technological applications due to the creation of sub-10-nm transistors - an important building block of our modern life - but also for elucidating the role played by quantum mechanics in the evolutionary fitness of biological complexes. This article provides a basic introduction into the nature of charge and energy transport in the quantum and classical regimes. It discusses the characteristic transport properties in both limits and demonstrates how they can be connected through the loss of quantum mechanical coherence. The salient features of the crossover physics are identified, and their importance in opening new transport regimes and in understanding efficient and robust energy transport in biological complexes are demonstrated.
Axions: Bose Einstein condensate or classical field?
NASA Astrophysics Data System (ADS)
Davidson, Sacha
2015-05-01
The axion is a motivated dark matter candidate, so it would be interesting to find features in Large Scale Structures specific to axion dark matter. Such features were proposed for a Bose Einstein condensate of axions, leading to confusion in the literature (to which I contributed) about whether axions condense due to their gravitational interactions. This note argues that the Bose Einstein condensation of axions is a red herring: the axion dark matter produced by the misalignment mechanism is already a classical field, which has the distinctive features attributed to the axion condensate (BE condensates are described as classical fields). This note also estimates that the rate at which axion particles condense to the field, or the field evaporates to particles, is negligible.
An Introduction to Classical Electromagnetic Radiation
NASA Astrophysics Data System (ADS)
Smith, Glenn S.
1997-08-01
A fundamental and thorough description of classical electromagnetic radiation, this book is a balance of physical and mathematical explanation and includes over 300 illustrations. Starting from Maxwell's equations, the author demonstrates how fundamental concepts are applied in a wide variety of examples from areas such as classical optics, antenna analysis, and electromagnetic scattering. An interweaving of theoretical and experimental results gives insight into the physical and historical foundations of the subject. The book gives equal footing to the radiation of pulses and the more conventional time harmonic signals. With more than 140 problems, it can be used as a textbook for advanced undergraduate and graduate courses in electrical engineering and physics, and will also be of interest to scientists and engineers working in applied electromagnetics. A solutions manual is available for instructors.
Quantum and classical dissipation of charged particles
Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H.; Kunold, A.; Roa-Neri, J.A.E.
2013-08-15
A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge.
Coherently enhanced measurements in classical mechanics
NASA Astrophysics Data System (ADS)
Braun, Daniel; Popescu, Sandu
2014-08-01
In all quantitative sciences, it is common practice to increase the signal-to-noise ratio of noisy measurements by measuring identically prepared systems N times and averaging the measurement results. This leads to a scaling of the sensitivity as 1/√N, known in quantum measurement theory as the "standard quantum limit" (SQL). It is known that if one puts the N systems into an entangled state, a scaling as 1/N can be achieved, the socalled "Heisenberg limit" (HL), but decoherence problems have so far prevented implementation of such protocols for large N. Here we show that a method of coherent averaging inspired by a recent entanglement-free quantum enhanced measurement protocol is capable of achieving a sensitivity that scales as 1/N in a purely classical setup. This may substantially improve the measurement of very weak interactions in the classical realm, and, in particular, open a novel route to measuring the gravitational constant with enhanced precision.
The classical geometrization of the electromagnetism
NASA Astrophysics Data System (ADS)
de Araujo Duarte, Celso
2015-08-01
Following the line of the history, if by one side the electromagnetic theory was consolidated on the 19th century, the emergence of the special and the general relativity theories on the 20th century opened possibilities of further developments, with the search for the unification of the gravitation and the electromagnetism on a single unified theory. Some attempts to the geometrization of the electromagnetism emerged in this context, where these first models resided strictly on a classical basis. Posteriorly, they were followed by more complete and embracing quantum field theories. The present work reconsiders the classical viewpoint, with the purpose of showing that at first-order of approximation the electromagnetism constitutes a geometric structure aside other phenomena as gravitation, and that magnetic monopoles do not exist at least up to this order of approximation. Even though being limited, the model is consistent and offers the possibility of an experimental test of validity.
Monodisperse cluster crystals: Classical and quantum dynamics.
Díaz-Méndez, Rogelio; Mezzacapo, Fabio; Cinti, Fabio; Lechner, Wolfgang; Pupillo, Guido
2015-11-01
We study the phases and dynamics of a gas of monodisperse particles interacting via soft-core potentials in two spatial dimensions, which is of interest for soft-matter colloidal systems and quantum atomic gases. Using exact theoretical methods, we demonstrate that the equilibrium low-temperature classical phase simultaneously breaks continuous translational symmetry and dynamic space-time homogeneity, whose absence is usually associated with out-of-equilibrium glassy phenomena. This results in an exotic self-assembled cluster crystal with coexisting liquidlike long-time dynamical properties, which corresponds to a classical analog of supersolid behavior. We demonstrate that the effects of quantum fluctuations and bosonic statistics on cluster-glassy crystals are separate and competing: Zero-point motion tends to destabilize crystalline order, which can be restored by bosonic statistics. PMID:26651695
Time in classical and in quantum mechanics
NASA Astrophysics Data System (ADS)
Elçi, A.
2010-07-01
This paper presents an analysis of the time concept in classical mechanics from the perspective of the invariants of a motion. The analysis shows that there is a conceptual gap concerning time in the Dirac-Heisenberg-von Neumann formalism and that Bohr's complementarity principle does not fill the gap. In the Dirac-Heisenberg-von Neumann formalism, a particle's properties are represented by Heisenberg matrices. This axiom is the source of the time problem in quantum mechanics.
Classical Analogs of a Diatomic Chain
Gutierrez, L.; Diaz-de-Anda, A.; Mendez-Sanchez, R. A.; Morales, A.; Flores, J.; Monsivais, G.
2010-12-21
Using one dimensional rods with different configurations classical analogs of quantum mechanical systems frequently used in solid state physics can be obtained. Among this analogs we have recently discussed locally periodic rods which lead to band spectra; the effect of a topological defect, and the Wannier Stark ladders. In this paper, we present an elastic analog of the diatomic chain and show how the acoustical and optical bands emerge, as well of the nature of the wave amplitudes.
New variables for classical and quantum gravity
NASA Technical Reports Server (NTRS)
Ashtekar, Abhay
1986-01-01
A Hamiltonian formulation of general relativity based on certain spinorial variables is introduced. These variables simplify the constraints of general relativity considerably and enable one to imbed the constraint surface in the phase space of Einstein's theory into that of Yang-Mills theory. The imbedding suggests new ways of attacking a number of problems in both classical and quantum gravity. Some illustrative applications are discussed.
INCLINATION MIXING IN THE CLASSICAL KUIPER BELT
Volk, Kathryn; Malhotra, Renu
2011-07-20
We investigate the long-term evolution of the inclinations of the known classical and resonant Kuiper Belt objects (KBOs). This is partially motivated by the observed bimodal inclination distribution and by the putative physical differences between the low- and high-inclination populations. We find that some classical KBOs undergo large changes in inclination over gigayear timescales, which means that a current member of the low-inclination population may have been in the high-inclination population in the past, and vice versa. The dynamical mechanisms responsible for the time variability of inclinations are predominantly distant encounters with Neptune and chaotic diffusion near the boundaries of mean motion resonances. We reassess the correlations between inclination and physical properties including inclination time variability. We find that the size-inclination and color-inclination correlations are less statistically significant than previously reported (mostly due to the increased size of the data set since previous works with some contribution from inclination variability). The time variability of inclinations does not change the previous finding that binary classical KBOs have lower inclinations than non-binary objects. Our study of resonant objects in the classical Kuiper Belt region includes objects in the 3:2, 7:4, 2:1, and eight higher-order mean motion resonances. We find that these objects (some of which were previously classified as non-resonant) undergo larger changes in inclination compared to the non-resonant population, indicating that their current inclinations are not generally representative of their original inclinations. They are also less stable on gigayear timescales.
Quantum-classical transitions in complex networks
NASA Astrophysics Data System (ADS)
Javarone, Marco Alberto; Armano, Giuliano
2013-04-01
The inherent properties of specific physical systems can be used as metaphors for investigation of the behavior of complex networks. This insight has already been put into practice in previous work, e.g., studying the network evolution in terms of phase transitions of quantum gases or representing distances among nodes as if they were particle energies. This paper shows that the emergence of different structures in complex networks, such as the scale-free and the winner-takes-all networks, can be represented in terms of a quantum-classical transition for quantum gases. In particular, we propose a model of fermionic networks that allows us to investigate the network evolution and its dependence on the system temperature. Simulations, performed in accordance with the cited model, clearly highlight the separation between classical random and winner-takes-all networks, in full correspondence with the separation between classical and quantum regions for quantum gases. We deem this model useful for the analysis of synthetic and real complex networks.
The classical model for moment tensors
NASA Astrophysics Data System (ADS)
Tape, Walter; Tape, Carl
2013-12-01
A seismic moment tensor is a description of an earthquake source, but the description is indirect. The moment tensor describes seismic radiation rather than the actual physical process that initiates the radiation. A moment tensor `model' then ties the physical process to the moment tensor. The model is not unique, and the physical process is therefore not unique. In the classical moment tensor model, an earthquake arises from slip along a planar fault, but with the slip not necessarily in the plane of the fault. The model specifies the resulting moment tensor in terms of the slip vector, the fault normal vector and the Lamé elastic parameters, assuming isotropy. We review the classical model in the context of the fundamental lune. The lune is closely related to the space of moment tensors, and it provides a setting that is conceptually natural as well as pictorial. In addition to the classical model, we consider a crack plus double-couple model (CDC model) in which a moment tensor is regarded as the sum of a crack tensor and a double couple.
Defining Astrology in Ancient and Classical History
NASA Astrophysics Data System (ADS)
Campion, Nicholas
2015-05-01
Astrology in the ancient and classical worlds can be partly defined by its role, and partly by the way in which scholars spoke about it. The problem is complicated by the fact that the word is Greek - it has no Babylonian or Egyptian cognates - and even in Greece it was interchangeable with its cousin, 'astronomy'. Yet if we are to understand the role of the sky, stars and planets in culture, debates about the nature of ancient astrology, by both classical and modern scholars, must be taken into account. This talk will consider modern scholars' typologies of ancient astrology, together with ancient debates from Cicero in the 1st century BC, to Plotinus (204/5-270 AD) and Isidore of Seville (c. 560 - 4 April 636). It will consider the implications for our understanding of astronomy's role in culture, and conclude that in the classical period astrology may be best understood through its diversity and allegiance to competing philosophies, and that its functions were therefore similarly varied.
Large classical universes emerging from quantum cosmology
Pinto-Neto, Nelson
2009-04-15
It is generally believed that one cannot obtain a large universe from quantum cosmological models without an inflationary phase in the classical expanding era because the typical size of the universe after leaving the quantum regime should be around the Planck length, and the standard decelerated classical expansion after that is not sufficient to enlarge the universe in the time available. For instance, in many quantum minisuperspace bouncing models studied in the literature, solutions where the universe leaves the quantum regime in the expanding phase with appropriate size have negligible probability amplitude with respect to solutions leaving this regime around the Planck length. In this paper, I present a general class of moving Gaussian solutions of the Wheeler-DeWitt equation where the velocity of the wave in minisuperspace along the scale factor axis, which is the new large parameter introduced in order to circumvent the above-mentioned problem, induces a large acceleration around the quantum bounce, forcing the universe to leave the quantum regime sufficiently big to increase afterwards to the present size, without needing any classical inflationary phase in between, and with reasonable relative probability amplitudes with respect to models leaving the quantum regime around the Planck scale. Furthermore, linear perturbations around this background model are free of any trans-Planckian problem.
Acoustical study of classical Peking Opera singing.
Sundberg, Johan; Gu, Lide; Huang, Qiang; Huang, Ping
2012-03-01
Acoustic characteristics of classical opera singing differ considerably between the Western and the Chinese cultures. Singers in the classical Peking opera tradition specialize on one out of a limited number of standard roles. Audio and electroglottograph signals were recorded for four performers of the Old Man role and three performers of the Colorful Face role. Recordings were made of the singers' speech and when they sang recitatives and songs from their roles. Sound pressure level, fundamental frequency, and spectrum characteristics were analyzed. Histograms showing the distribution of fundamental frequency showed marked peaks for the songs, suggesting a scale tone structure. Some of the intervals between these peaks were similar to those used in Western music. Vibrato rate was about 3.5Hz, that is, considerably slower than in Western classical singing. Spectra of vibrato-free tones contained unbroken series of harmonic partials sometimes reaching up to 17 000Hz. Long-term-average spectrum (LTAS) curves showed no trace of a singer's formant cluster. However, the Colorful Face role singers' LTAS showed a marked peak near 3300Hz, somewhat similar to that found in Western pop music singers. The mean LTAS spectrum slope between 700 and 6000Hz decreased by about 0.2dB/octave per dB of equivalent sound level. PMID:21621380
The Strange World of Classical Physics
NASA Astrophysics Data System (ADS)
Green, David
2010-02-01
We have heard many times that the commonsense world of classical physics was shattered by Einstein's revelation of the laws of relativity. This is certainly true; the shift from our everyday notions of time and space to those revealed by relativity is one of the greatest stretches the mind can make. What is seldom appreciated is that the laws of classical physics yield equally strange (or arguably even stranger) results if the observer happens to be in a very high velocity reference frame. This article addresses two questions: In Part I we examine what the world would look like if relativity was not in effect and you happened to be in a reference frame traveling at a high percentage of the speed of light or faster than light (perfectly allowable in this model), a conceptual world that existed on a foundation of Newtonian physics and the aether. It turns out that this is a weirder place than is generally realized. In Part II we see that classical physics in these frames is self-contradictory. Neither the consideration of Maxwell's equations nor the Michelson-Morley experiment is necessary to see these contradictions; they are implicit in the logic of the physics itself.
Acoustical study of classical Peking Opera singing.
Sundberg, Johan; Gu, Lide; Huang, Qiang; Huang, Ping
2012-03-01
Acoustic characteristics of classical opera singing differ considerably between the Western and the Chinese cultures. Singers in the classical Peking opera tradition specialize on one out of a limited number of standard roles. Audio and electroglottograph signals were recorded for four performers of the Old Man role and three performers of the Colorful Face role. Recordings were made of the singers' speech and when they sang recitatives and songs from their roles. Sound pressure level, fundamental frequency, and spectrum characteristics were analyzed. Histograms showing the distribution of fundamental frequency showed marked peaks for the songs, suggesting a scale tone structure. Some of the intervals between these peaks were similar to those used in Western music. Vibrato rate was about 3.5Hz, that is, considerably slower than in Western classical singing. Spectra of vibrato-free tones contained unbroken series of harmonic partials sometimes reaching up to 17 000Hz. Long-term-average spectrum (LTAS) curves showed no trace of a singer's formant cluster. However, the Colorful Face role singers' LTAS showed a marked peak near 3300Hz, somewhat similar to that found in Western pop music singers. The mean LTAS spectrum slope between 700 and 6000Hz decreased by about 0.2dB/octave per dB of equivalent sound level.
Local Refinements in Classical Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Fackeldey, Konstantin; Weber, Marcus
2014-03-01
Quantum mechanics provide a detailed description of the physical and chemical behavior of molecules. However, with increasing size of the system the complexity rises exponentially, which is prohibitive for efficient dynamical simulation. In contrast, classical molecular dynamics procure a coarser description by using less degrees of freedom. Thus, it seems natural to seek for an adequate trade-off between accurateness and computational feasibility in the simulation of molecules. Here, we propose a novel method, which combines classical molecular simulations with quantum mechanics for molecular systems. For this we decompose the state space of the respective molecule into subsets, by employing a meshfree partition of unity. We show, that this partition allows us to localize an empirical force field and to run locally constrained classical trajectories. Within each subset, we compute the energy on the quantum level for a fixed number of spatial states (ab initio points). With these energy values from the ab initio points we have a local scattered data problem, which can be solved by the moving least squares method.
Gauge-fields and integrated quantum-classical theory
Stapp, H.P.
1986-01-01
Physical situations in which quantum systems communicate continuously to their classically described environment are not covered by contemporary quantum theory, which requires a temporary separation of quantum degrees of freedom from classical ones. A generalization would be needed to cover these situations. An incomplete proposal is advanced for combining the quantum and classical degrees of freedom into a unified objective description. It is based on the use of certain quantum-classical structures of light that arise from gauge invariance to coordinate the quantum and classical degrees of freedom. Also discussed is the question of where experimenters should look to find phenomena pertaining to the quantum-classical connection. 17 refs.
Realization of Hardy’s thought experiment using classical light
NASA Astrophysics Data System (ADS)
Zhang, Xiong; Sun, Yifan; Song, Xinbing; Zhang, Xiangdong
2016-09-01
We report the realization of Hardy’s thought experiment in classical optical systems. Two different classical optical experiments are implemented. One is based on orbital angular momentum and polarization correlation in a classical optical beam, and the other is based on non-local classical correlation from two separated classical optical beams. All experimental results show that they are analogous to Hardy’s paradox experiments. This means that Hardy’s non-locality proof without inequalities, which is usually used in a quantum system, can also be achieved in classical optical systems.
NUCLEAR MIXING METERS FOR CLASSICAL NOVAE
Kelly, Keegan J.; Iliadis, Christian; Downen, Lori; Champagne, Art; José, Jordi
2013-11-10
Classical novae are caused by mass transfer episodes from a main-sequence star onto a white dwarf via Roche lobe overflow. This material possesses angular momentum and forms an accretion disk around the white dwarf. Ultimately, a fraction of this material spirals in and piles up on the white dwarf surface under electron-degenerate conditions. The subsequently occurring thermonuclear runaway reaches hundreds of megakelvin and explosively ejects matter into the interstellar medium. The exact peak temperature strongly depends on the underlying white dwarf mass, the accreted mass and metallicity, and the initial white dwarf luminosity. Observations of elemental abundance enrichments in these classical nova events imply that the ejected matter consists not only of processed solar material from the main-sequence partner but also of material from the outer layers of the underlying white dwarf. This indicates that white dwarf and accreted matter mix prior to the thermonuclear runaway. The processes by which this mixing occurs require further investigation to be understood. In this work, we analyze elemental abundances ejected from hydrodynamic nova models in search of elemental abundance ratios that are useful indicators of the total amount of mixing. We identify the abundance ratios ΣCNO/H, Ne/H, Mg/H, Al/H, and Si/H as useful mixing meters in ONe novae. The impact of thermonuclear reaction rate uncertainties on the mixing meters is investigated using Monte Carlo post-processing network calculations with temperature-density evolutions of all mass zones computed by the hydrodynamic models. We find that the current uncertainties in the {sup 30}P(p, γ){sup 31}S rate influence the Si/H abundance ratio, but overall the mixing meters found here are robust against nuclear physics uncertainties. A comparison of our results with observations of ONe novae provides strong constraints for classical nova models.
Meteorological phenomena in Western classical orchestral music
NASA Astrophysics Data System (ADS)
Williams, P. D.; Aplin, K. L.
2012-12-01
The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765
Classical chaos in nonseparable wave propagation problems
NASA Astrophysics Data System (ADS)
Palmer, David R.; Brown, Michael G.; Tappert, Frederick D.; Bezdek, Hugo F.
1988-06-01
Numerical calculations show that acoustic ray paths in a weakly range-dependent deterministic ocean model exhibit chaotic behavior, that is, have an exponentially sensitive dependence on initial conditions. Since the ray equations define a nonautonomous Hamiltonian system with one degree of freedom, these results may be understood in terms of recent advances in classical chaos. The Hamiltonian structure of ray equations in general suggests that chaotic ray trajectories will be present in all types of linear wave motion in geophysics when variables do not separate, as in laterally inhomogeneous media.
Classic Peripheral Signs of Subacute Bacterial Endocarditis
Chong, Yooyoung; Han, Sung Joon; Rhee, Youn Ju; Kang, Shin Kwang; Yu, Jae Hyeon; Na, Myung Hoon
2016-01-01
A 50-year-old female patient with visual disturbances was referred for further evaluation of a heart murmur. Fundoscopy revealed a Roth spot in both eyes. A physical examination showed peripheral signs of infective endocarditis, including Osler nodes, Janeway lesions, and splinter hemorrhages. Our preoperative diagnosis was subacute bacterial endocarditis with severe aortic regurgitation. The patient underwent aortic valve replacement and was treated with intravenous antibiotics for 6 weeks postoperatively. The patient made a remarkable recovery and was discharged without complications. We report this case of subacute endocarditis with all 4 classic peripheral signs in a patient who presented with visual disturbance. PMID:27734006
Selected Studies in Classical and Quantum Gravity
NASA Astrophysics Data System (ADS)
Saotome, Ryo
This thesis is composed of two parts, one corresponding to classical and the other to quantum gravitational phenomena. In the classical part, we focus on the behavior of various classical scalar fields in the presence of black holes. New fundamental results discussed include the first confirmation of the Belinskii, Khalatnikov, and Lifschitz (BKL) conjecture for an asymptotically flat spacetime, where we find that the dynamics of a canonical test scalar field near a black hole singularity are dominated by terms with time derivatives. We also perform a numerical simulation of the gravitational collapse of a non-canonical scalar field showing that signals can escape black holes in the k-essence dark energy model and find numerical confirmation that the accretion of various scalar fields onto a black hole from generic initial conditions is stationary. In the second part, we focus on the long distance behavior of perturbative quantum gravity. New results discussed include a proof of the cancellation of collinear divergences to all orders in the amplitudes of the theory as well as a characterization of all infrared divergent diagrams. In particular, we find that the only diagrams that can have soft divergences are ladder and crossed ladder diagrams, and that the only collinearly divergent diagrams are those with only three point vertices and no internal jet loops. Also presented is a construction of a double copy relation between gravity and gauge theory amplitudes similar to that conjectured by Bern, Carrasco, and Johansson for the case where there is no hard momentum exchange in the scattering, which we find implies a squaring relation between the classical shockwave solutions of the two theories as well. Finally, the first calculation of a gravitational scattering amplitude through the next-to-leading eikonal order is performed. We find that this correction to the scattering amplitude exponentiates, and that these power corrections probe smaller impact parameters
Hybridizing matter-wave and classical accelerometers
Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A.
2014-10-06
We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.
Born rule in quantum and classical mechanics
Brumer, Paul; Gong Jiangbin
2006-05-15
Considerable effort has been devoted to deriving the Born rule [i.e., that {psi}(x){sup 2}dx is the probability of finding a system, described by {psi}, between x and x+dx] in quantum mechanics. Here we show that the Born rule is not solely quantum mechanical; rather, it arises naturally in the Hilbert-space formulation of classical mechanics as well. These results provide insights into the nature of the Born rule, and impact on its understanding in the framework of quantum mechanics.
Classical problems in computational aero-acoustics
NASA Technical Reports Server (NTRS)
Hardin, Jay C.
1996-01-01
In relation to the expected problems in the development of computational aeroacoustics (CAA), the preliminary applications were to classical problems where the known analytical solutions could be used to validate the numerical results. Such comparisons were used to overcome the numerical problems inherent in these calculations. Comparisons were made between the various numerical approaches to the problems such as direct simulations, acoustic analogies and acoustic/viscous splitting techniques. The aim was to demonstrate the applicability of CAA as a tool in the same class as computational fluid dynamics. The scattering problems that occur are considered and simple sources are discussed.
Soliton splitting in quenched classical integrable systems
NASA Astrophysics Data System (ADS)
Gamayun, O.; Semenyakin, M.
2016-08-01
We take a soliton solution of a classical non-linear integrable equation and quench (suddenly change) its non-linearity parameter. For that we multiply the amplitude or the width of a soliton by a numerical factor η and take the obtained profile as a new initial condition. We find the values of η for which the post-quench solution consists of only a finite number of solitons. The parameters of these solitons are found explicitly. Our approach is based on solving the direct scattering problem analytically. We demonstrate how it works for Korteweg–de Vries, sine-Gordon and non-linear Schrödinger integrable equations.
Electroweak Baryogenesis from a Classical Force
Joyce, M.; Prokopec, T.; Turok, N.
1995-08-28
We describe a new effect that produces baryons at a first order electroweak phase transition. It operates when there is a {ital CP}-violating field present on propagating bubble walls. The novel aspect is that it involves a purely classical force, which alters the motion of particles across the wall and through diffusion creates a chiral asymmetry in front of the wall. We develop a technique for computing the baryon asymmetry using the Boltzmann equation, and a fluid approximation which allows us to model strong scattering effects. The final formula for the baryon asymmetry has a remarkably simple form.
Classical dynamics of free electromagnetic laser pulses
NASA Astrophysics Data System (ADS)
Goto, S.; Tucker, R. W.; Walton, T. J.
2016-02-01
We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Landé and Podolsky.
Classical Simulated Annealing Using Quantum Analogues
NASA Astrophysics Data System (ADS)
La Cour, Brian R.; Troupe, James E.; Mark, Hans M.
2016-08-01
In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.
Hybridizing matter-wave and classical accelerometers
NASA Astrophysics Data System (ADS)
Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A.
2014-10-01
We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.
Barker, Graeme; Barton, Huw; Bird, Michael; Daly, Patrick; Datan, Ipoi; Dykes, Alan; Farr, Lucy; Gilbertson, David; Harrisson, Barbara; Hunt, Chris; Higham, Tom; Kealhofer, Lisa; Krigbaum, John; Lewis, Helen; McLaren, Sue; Paz, Victor; Pike, Alistair; Piper, Phil; Pyatt, Brian; Rabett, Ryan; Reynolds, Tim; Rose, Jim; Rushworth, Garry; Stephens, Mark; Stringer, Chris; Thompson, Jill; Turney, Chris
2007-03-01
Recent research in Europe, Africa, and Southeast Asia suggests that we can no longer assume a direct and exclusive link between anatomically modern humans and behavioral modernity (the 'human revolution'), and assume that the presence of either one implies the presence of the other: discussions of the emergence of cultural complexity have to proceed with greater scrutiny of the evidence on a site-by-site basis to establish secure associations between the archaeology present there and the hominins who created it. This paper presents one such case study: Niah Cave in Sarawak on the island of Borneo, famous for the discovery in 1958 in the West Mouth of the Great Cave of a modern human skull, the 'Deep Skull,' controversially associated with radiocarbon dates of ca. 40,000 years before the present. A new chronostratigraphy has been developed through a re-investigation of the lithostratigraphy left by the earlier excavations, AMS-dating using three different comparative pre-treatments including ABOX of charcoal, and U-series using the Diffusion-Absorption model applied to fragments of bones from the Deep Skull itself. Stratigraphic reasons for earlier uncertainties about the antiquity of the skull are examined, and it is shown not to be an 'intrusive' artifact. It was probably excavated from fluvial-pond-desiccation deposits that accumulated episodically in a shallow basin immediately behind the cave entrance lip, in a climate that ranged from times of comparative aridity with complete desiccation, to episodes of greater surface wetness, changes attributed to regional climatic fluctuations. Vegetation outside the cave varied significantly over time, including wet lowland forest, montane forest, savannah, and grassland. The new dates and the lithostratigraphy relate the Deep Skull to evidence of episodes of human activity that range in date from ca. 46,000 to ca. 34,000 years ago. Initial investigations of sediment scorching, pollen, palynomorphs, phytoliths, plant
Will the digital computer transform classical mathematics?
Rotman, Brian
2003-08-15
Mathematics and machines have influenced each other for millennia. The advent of the digital computer introduced a powerfully new element that promises to transform the relation between them. This paper outlines the thesis that the effect of the digital computer on mathematics, already widespread, is likely to be radical and far-reaching. To articulate this claim, an abstract model of doing mathematics is introduced based on a triad of actors of which one, the 'agent', corresponds to the function performed by the computer. The model is used to frame two sorts of transformation. The first is pragmatic and involves the alterations and progressive colonization of the content and methods of enquiry of various mathematical fields brought about by digital methods. The second is conceptual and concerns a fundamental antagonism between the infinity enshrined in classical mathematics and physics (continuity, real numbers, asymptotic definitions) and the inherently real and material limit of processes associated with digital computation. An example which lies in the intersection of classical mathematics and computer science, the P=NP problem, is analysed in the light of this latter issue.
Optimal search behavior and classic foraging theory
NASA Astrophysics Data System (ADS)
Bartumeus, F.; Catalan, J.
2009-10-01
Random walk methods and diffusion theory pervaded ecological sciences as methods to analyze and describe animal movement. Consequently, statistical physics was mostly seen as a toolbox rather than as a conceptual framework that could contribute to theory on evolutionary biology and ecology. However, the existence of mechanistic relationships and feedbacks between behavioral processes and statistical patterns of movement suggests that, beyond movement quantification, statistical physics may prove to be an adequate framework to understand animal behavior across scales from an ecological and evolutionary perspective. Recently developed random search theory has served to critically re-evaluate classic ecological questions on animal foraging. For instance, during the last few years, there has been a growing debate on whether search behavior can include traits that improve success by optimizing random (stochastic) searches. Here, we stress the need to bring together the general encounter problem within foraging theory, as a mean for making progress in the biological understanding of random searching. By sketching the assumptions of optimal foraging theory (OFT) and by summarizing recent results on random search strategies, we pinpoint ways to extend classic OFT, and integrate the study of search strategies and its main results into the more general theory of optimal foraging.
Classical helium atom with radiation reaction
Camelio, G.; Carati, A.; Galgani, L.
2012-06-15
We study a classical model of helium atom in which, in addition to the Coulomb forces, the radiation reaction forces are taken into account. This modification brings in the model a new qualitative feature of a global character. Indeed, as pointed out by Dirac, in any model of classical electrodynamics of point particles involving radiation reaction one has to eliminate, from the a priori conceivable solutions of the problem, those corresponding to the emission of an infinite amount of energy. We show that the Dirac prescription solves a problem of inconsistency plaguing all available models which neglect radiation reaction, namely, the fact that in all such models, most initial data lead to a spontaneous breakdown of the atom. A further modification is that the system thus acquires a peculiar form of dissipation. In particular, this makes attractive an invariant manifold of special physical interest, the zero-dipole manifold that corresponds to motions in which no energy is radiated away (in the dipole approximation). We finally study numerically the invariant measure naturally induced by the time-evolution on such a manifold, and this corresponds to studying the formation process of the atom. Indications are given that such a measure may be singular with respect to that of Lebesgue.
Nanoplasmonics: classical down to the nanometer scale.
Duan, Huigao; Fernández-Domínguez, Antonio I; Bosman, Michel; Maier, Stefan A; Yang, Joel K W
2012-03-14
We push the fabrication limit of gold nanostructures to the exciting sub-nanometer regime, in which light-matter interactions have been anticipated to be strongly affected by the quantum nature of electrons in metals. Doing so allows us to (1) evaluate the validity of classical electrodynamics to describe plasmonic effects at this length scale and (2) witness the gradual (instead of sudden) evolution of plasmon modes when two gold nanoprisms are brought into contact. Using electron energy-loss spectroscopy and transmission electron microscope imaging, we investigated nanoprisms separated by gaps of only 0.5 nm and connected by conductive bridges as narrow as 3 nm. Good agreement of our experimental results with electromagnetic calculations and LC circuit models evidence the gradual evolution of the plasmonic resonances toward the quantum coupling regime. We demonstrate that down to the nanometer length scales investigated classical electrodynamics still holds, and a full quantum description of electrodynamics phenomena in such systems might be required only when smaller gaps of a few angstroms are considered. Our results show also the gradual onset of the charge-transfer plasmon mode and the evolution of the dipolar bright mode into a 3λ/2 mode as one literally bridges the gap between two gold nanoprisms.
Classical helium atom with radiation reaction.
Camelio, G; Carati, A; Galgani, L
2012-06-01
We study a classical model of helium atom in which, in addition to the Coulomb forces, the radiation reaction forces are taken into account. This modification brings in the model a new qualitative feature of a global character. Indeed, as pointed out by Dirac, in any model of classical electrodynamics of point particles involving radiation reaction one has to eliminate, from the a priori conceivable solutions of the problem, those corresponding to the emission of an infinite amount of energy. We show that the Dirac prescription solves a problem of inconsistency plaguing all available models which neglect radiation reaction, namely, the fact that in all such models, most initial data lead to a spontaneous breakdown of the atom. A further modification is that the system thus acquires a peculiar form of dissipation. In particular, this makes attractive an invariant manifold of special physical interest, the zero-dipole manifold that corresponds to motions in which no energy is radiated away (in the dipole approximation). We finally study numerically the invariant measure naturally induced by the time-evolution on such a manifold, and this corresponds to studying the formation process of the atom. Indications are given that such a measure may be singular with respect to that of Lebesgue.
NASA Astrophysics Data System (ADS)
Iriondo, M. H.; Kröhling, D. M.
2007-12-01
The purpose of this contribution is to describe the sequence of physical and chemical processes resulting in the sediment-type named loess, a fine-grained sediment deposit of universal occurrence. Owing to historical causes, loess has been (and still is) implicitly linked to glacial/periglacial environments among most naturalists. However it is known today that most eolian dust is deflated from tropical deserts. Hence, that sequence of processes is more comprehensive than the former narrow cold scenario. Six examples of different "non-classical" cases (from South America and Europe) that fit well to the loess definition are developed: 1) volcanic loess in Ecuador: pyroclastic eruptions/valley wind/mountain praire/silica structuring; 2) tropical loess in northeastern Argentina, Brazil and Uruguay: deflation of river and fan splays/savanna/iron sesquioxide structuring; 3) gypsum loess in northern Spain: destruction of anhydrite/gypsiferous layers in a dry climate/valley wind/Saharian shrub peridesert/gypsum structuring; 4) trade-wind deposits in Venezuela and Brazil: deflation in tidal flats/trade wind into the continent/savanna/iron hydroxide structuring; 5) anticyclonic gray loess in Argentina: continental anticyclone on plains/anti-clockwise winds and whirls/steppe/carbonate structuring. All these non-classical types conform to the accepted loess definitions and they also share the most important field characteristics of loess such as grain size, friability, vertical or sub-vertical slopes in outcrops, subfusion and others. Other cases can probably be recognized when systematically scrutinized.
Extending classical molecular theory with polarization.
Keyes, Tom; Napoleon, Raeanne L
2011-01-27
A classical, polarizable, electrostatic theory of short-ranged atom-atom interactions, incorporating the smeared nature of atomic partial charges, is presented. Detailed models are constructed for CO monomer and for CO interacting with an iron atom, as a first step toward heme proteins. A good representation is obtained of the bond-length-dependent dipole of CO monomer from fitting at the equilibrium distance only. Essential features of the binding of CO to myoglobin (Mb) and model heme compounds, including the binding energy, the position of the minimum in the Fe-C potential, the Fe-C frequency, the bending energy, the linear geometry of FeCO, and the increase of the Stark tuning rate and IR intensity, are obtained, suggesting that a substantial part of the Fe-CO interaction consists of a classical, noncovalent, "electrostatic bond ". The binding energy is primarily polarization energy, and the polarization energy of an OH pair in water is shown to be comparable to the experimental hydrogen bond energy.
Simple improvements to classical bubble nucleation models.
Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg
2015-08-01
We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.
Simple improvements to classical bubble nucleation models
NASA Astrophysics Data System (ADS)
Tanaka, Kyoko K.; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg
2015-08-01
We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3 σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.
How quantum are classical spin ices?
NASA Astrophysics Data System (ADS)
Gingras, Michel J. P.; Rau, Jeffrey G.
The pyrochlore spin ice compounds Dy2TiO7 and Ho2Ti2O7 are well described by classical Ising models down to low temperatures. Given the empirical success of this description, the question of the importance of quantum effects in these materials has been mostly ignored. We argue that the common wisdom that the strictly Ising moments of non-interacting Dy3+ and Ho3+ ions imply Ising interactions is too naive and that a more complex argument is needed to explain the close agreement between the classical Ising model theory and experiments. By considering a microscopic picture of the interactions in rare-earth oxides, we show that the high-rank multipolar interactions needed to induce quantum effects in these two materials are generated only very weakly by superexchange. Using this framework, we formulate an estimate of the scale of quantum effects in Dy2Ti2O7 and Ho2Ti2O7, finding it to be well below experimentally relevant temperatures. Published as: PHYSICAL REVIEW B 92, 144417 (2015).
Robust topological degeneracy of classical theories
NASA Astrophysics Data System (ADS)
Vaezi, Mohammad-Sadegh; Ortiz, Gerardo; Nussinov, Zohar
2016-05-01
We challenge the hypothesis that the ground states of a physical system whose degeneracy depends on topology must necessarily realize topological quantum order and display nonlocal entanglement. To this end, we introduce and study a classical rendition of the Toric Code model embedded on Riemann surfaces of different genus numbers. We find that the minimal ground state degeneracy (and those of all levels) depends on the topology of the embedding surface alone. As the ground states of this classical system may be distinguished by local measurements, a characteristic of Landau orders, this example illustrates that topological degeneracy is not a sufficient condition for topological quantum order. This conclusion is generic and, as shown, it applies to many other models. We also demonstrate that certain lattice realizations of these models, and other theories, display a ground state entropy (and those of all levels) that is "holographic", i.e., extensive in the system boundary. We find that clock and U (1 ) gauge theories display topological (in addition to gauge) degeneracies.
Simple improvements to classical bubble nucleation models.
Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg
2015-08-01
We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations. PMID:26382410
Observables in classical canonical gravity: Folklore demystified
NASA Astrophysics Data System (ADS)
Pons, J. M.; Salisbury, D. C.; Sundermeyer, K. A.
2010-04-01
We give an overview of some conceptual difficulties, sometimes called paradoxes, that have puzzled for years the physical interpetation of classical canonical gravity and, by extension, the canonical formulation of generally covariant theories. We identify these difficulties as stemming form some terminological misunderstandings as to what is meant by "gauge invariance", or what is understood classically by a "physical state". We make a thorough analysis of the issue and show that all purported paradoxes disappear when the right terminology is in place. Since this issue is connected with the search of observables - gauge invariant quantities - for these theories, we formally show that time evolving observables can be constructed for every observer. This construction relies on the fixation of the gauge freedom of diffeomorphism invariance by means of a scalar coordinatization. We stress the condition that the coordinatization must be made with scalars. As an example of our method for obtaining observables we discuss the case of the massive particle in AdS spacetime.
Measurements of classical transport of fast ions
Zhao, L.; Heidbrink, W.W.; Boehmer, H.; McWilliams, R.; Leneman, D.; Vincena, S.
2005-05-15
To study the fast-ion transport in a well controlled background plasma, a 3-cm diameter rf ion gun launches a pulsed, {approx}300 eV ribbon shaped argon ion beam parallel to or at 15 deg. to the magnetic field in the Large Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)] at UCLA. The parallel energy of the beam is measured by a two-grid energy analyzer at two axial locations (z=0.32 m and z=6.4 m) from the ion gun in LAPD. The calculated ion beam slowing-down time is consistent to within 10% with the prediction of classical Coulomb collision theory using the LAPD plasma parameters measured by a Langmuir probe. To measure cross-field transport, the beam is launched at 15 deg. to the magnetic field. The beam then is focused periodically by the magnetic field to avoid geometrical spreading. The radial beam profile measurements are performed at different axial locations where the ion beam is periodically focused. The measured cross-field transport is in agreement to within 15% with the analytical classical collision theory and the solution to the Fokker-Planck kinetic equation. Collisions with neutrals have a negligible effect on the beam transport measurement but do attenuate the beam current.
Quantum-classical dynamics of wave fields.
Sergi, Alessandro
2007-02-21
An approach to the quantum-classical mechanics of phase space dependent operators, which has been proposed recently, is remodeled as a formalism for wave fields. Such wave fields obey a system of coupled nonlinear equations that can be written by means of a suitable non-Hamiltonian bracket. As an example, the theory is applied to the relaxation dynamics of the spin-boson model. In the adiabatic limit, a good agreement with calculations performed by the operator approach is obtained. Moreover, the theory proposed in this paper can take nonadiabatic effects into account without resorting to surface-hopping approximations. Hence, the results obtained follow qualitatively those of previous surface-hopping calculations and increase by a factor of (at least) 2, the time length over which nonadiabatic dynamics can be propagated with small statistical errors. Moreover, it is worth to note that the dynamics of quantum-classical wave fields proposed here is a straightforward non-Hamiltonian generalization of the formalism for nonlinear quantum mechanics that Weinberg introduced recently.
Evaluating the TD model of classical conditioning.
Ludvig, Elliot A; Sutton, Richard S; Kehoe, E James
2012-09-01
The temporal-difference (TD) algorithm from reinforcement learning provides a simple method for incrementally learning predictions of upcoming events. Applied to classical conditioning, TD models suppose that animals learn a real-time prediction of the unconditioned stimulus (US) on the basis of all available conditioned stimuli (CSs). In the TD model, similar to other error-correction models, learning is driven by prediction errors--the difference between the change in US prediction and the actual US. With the TD model, however, learning occurs continuously from moment to moment and is not artificially constrained to occur in trials. Accordingly, a key feature of any TD model is the assumption about the representation of a CS on a moment-to-moment basis. Here, we evaluate the performance of the TD model with a heretofore unexplored range of classical conditioning tasks. To do so, we consider three stimulus representations that vary in their degree of temporal generalization and evaluate how the representation influences the performance of the TD model on these conditioning tasks.
Relational Quadrilateralland i: the Classical Theory
NASA Astrophysics Data System (ADS)
Anderson, Edward
2014-12-01
Relational particle mechanics models bolster the relational side of the absolute versus relational motion debate. They are additionally toy models for the dynamical formulation of general relativity (GR) and its problem of time (PoT). They cover two aspects that the more commonly studied minisuperspace GR models do not: (1) by having a nontrivial notion of structure and thus of cosmological structure formation and of localized records. (2) They have linear as well as quadratic constraints, which is crucial as regards modeling many PoT facets. I previously solved relational triangleland classically, quantum mechanically and as regards a local resolution of the PoT. This rested on triangleland's shape space being 𝕊2 with isometry group SO(3), allowing for use of widely-known geometry, methods and atomic/molecular physics analogies. I now extend this work to the relational quadrilateral, which is far more typical of the general N-a-gon, represents a "diagonal to nondiagonal Bianchi IX minisuperspace" step-up in complexity, and encodes further PoT subtleties. The shape space now being ℂℙ2 with isometry group SU(3)/ℤ3, I now need to draw on geometry, shape statistics and particle physics to solve this model; this is therefore an interdisciplinary paper. This Paper treats quadrilateralland at the classical level, and then paper II provides a quantum treatment.
Classical Influence on the Founding of the American Republic.
ERIC Educational Resources Information Center
Molanphy, Helen M.
The founding fathers of the United States were products of a classical education, and they used the Greek and Roman classics as republican models and classical virtues. In their writings, the founders frequently associated liberty and republicanism with the ancient commonwealths. John Adams spoke on three separate occasions of the need to reflect…
75 FR 19250 - Safety Zone; BWRC Spring Classic, Parker, AZ
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-14
..., Arizona for the Blue Water Resort and Casino Spring Classic. This temporary safety zone is necessary to... Speedboat Club is sponsoring the Blue Water Resort and Casino Spring Classic, which is held on the Lake... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; BWRC Spring Classic, Parker, AZ...
Antiquity Belongs to the World
ERIC Educational Resources Information Center
Cuno, James
2008-01-01
Increasingly over the 20th century, nations, many of them newly formed as the result of the dissolution of empires, instituted those kinds of cultural-property laws and signed bilateral treaties and international conventions as means of strengthening them. Still the looting of archaeological sites continues. Iraq is but one example. Wherever…
Modern Space Craft - Antique Specifications
NASA Technical Reports Server (NTRS)
Brewer, Ron; Trout, Dawn
2006-01-01
Spacecraft now and of the future are being controlled by EMC requirements of the past. Little has been done by the launch vehicle/spacecraft manufacturers to abandon MIL-STD-461C which was released in 1986 because most of the electronics equipment being used aboard current launch vehicles is approved by similarity and heritage to MIL-STD-46 1 C and its predecessors. Twenty years later these electronic equipment items are still not tested to today's MIL-STD-461E requirements because there is a risk that the items will fail to meet the requirements and thus the cost will increase if it becomes necessary to redesign the equipment. That cost is insignificant compared with the cost of losing an entire mission! In the 20 years that have elapsed since MIL-STD-461C was released, the EMC environment has undergone major changes. High speed digital devices have been created that have fundamental clock and bus frequencies that span the entire LV/SC frequency range from the Flight Termination Systems through C and S-Band telemetry. Personnel involved in ground operations routinely carry and use hand held transceivers and cellular telephones close by sensitive electronics equipment. There are now many more orbiting receivers and emitters, plus range assets have increased dramatically since 2001. It's way past time to bring requirements up-to-date!
Antiquity of American Polyploid Cotton.
Smith, C E; Macneish, R S
1964-02-14
Fragments of a boll of Gossypium hirsutum L. from archeological excavations near Tehuacán, Mexico, prove that this species existed in 5800 B. C. No doubt remains that American tetraploid cotton species originated through natural hiybridization.
Live from Antiquity! [Lesson Plan].
ERIC Educational Resources Information Center
2000
Ancient languages are the deepest root of the humanities, drawing life from that distant time when the study of history, philosophy, literature, and of language itself began. On the Internet, students can return to those times, re-enter that age of discovery, and gain the linguistic skills to help keep the many branches of the humanities rooted…
From Antiquity to Tommorrow's Classroom
NASA Astrophysics Data System (ADS)
Tauer, Pilvi; Vitsut, Ave; Mattisen, Malle; Sepp, Lii
2013-04-01
Explanation: We did our presentation on the basis of four ancient elements: fire (energy and climate change), air (measurements of soot), water and earth (soil and waterbodies as components of ecosystems). All these four projects make use of outdoor learning opportunities and group work; thus students' cooperation and presentation skills are developed and improved. * Climate Change Purpose - to examine the causes of climate change and its impact on the people and the economy of Estonia. The emphasis is on the fact that climate change can be slowed by changing the behaviour of an individual. Methods, activities, results - students will be divided into groups. As an example, one group conducts polls on parents' opinion of the climate changes and changes in their consumption habits during their lifetime, etc. Other groups will examine the climate changes within a bigger picture, track the ecological footprint and energy consumption in the schoolhouse. Another group will explore how each of us can reduce our personal impact on climate change. The results obtained by the groups will currently be displayed on school billboards in the form of figures, tables, comic strips etc. The research project will end with a conference where different groups of students present their work to the school audience using appropriate computer-based facilities. The project will be completed with a joint work by all groups who will make a sculpture from industrial waste. * Measurements of soot Students measured NO2, O3, NH3, SO2, black carbon and different elements. This gave them knowledge about the effects of intensive agriculture and wastewater management, big cities and highways, use of high - sulfur fuel oil, and biomass burning in households. All the gathered data can be compared with the results obtained by other schools who participatied in this project. This means that students can think about why their neighbourhood air pollution levels differ from the cities or villages from the other part of Estonia. * Soil and Waterbodies as Components of Ecosystems Both these projects - soil and waterbodies - involve meeting with scientists, practical investigation into these ecosystems and laboratory work at school, students' written studies and reports presented at a conference. The above mentioned projects were conducted under the supervision of young academics working at Estonian University of Life Sciences and the Museum of Soils in Tartu, as well as and the Limnology Centre at lake Võrtsjärv. Samples of soils were collected from Viljandi and some fields in the county to determine the texture , pH level, carbonates, content of organic matter, N-P-K level; conductivity and chemical absorption were studied also. In conclusion the soils in the town were in good condition, fertile, mostly sandy loam and lightly acid. As an outcome suggestions were given for garden projects. In the Limnology Centre at lake Võrtsjärv water samples were taken and conclusions drawn on the condition and hydrochemical characteristics and of the ecosystem of Estonia's second largest lake.
[On two antique medical texts].
Rosa, Maria Carlota
2005-01-01
The two texts presented here--Regimento proueytoso contra ha pestenença [literally, "useful regime against pestilence"] and Modus curandi cum balsamo ["curing method using balm"]--represent the extent of Portugal's known medical library until circa 1530, produced in gothic letters by foreign printers: Germany's Valentim Fernandes, perhaps the era's most important printer, who worked in Lisbon between 1495 and 1518, and Germdo Galharde, a Frenchman who practiced his trade in Lisbon and Coimbra between 1519 and 1560. Modus curandi, which came to light in 1974 thanks to bibliophile José de Pina Martins, is anonymous. Johannes Jacobi is believed to be the author of Regimento proueytoso, which was translated into Latin (Regimen contra pestilentiam), French, and English. Both texts are presented here in facsimile and in modern Portuguese, while the first has also been reproduced in archaic Portuguese using modern typographical characters. This philological venture into sixteenth-century medicine is supplemented by a scholarly glossary which serves as a valuable tool in interpreting not only Regimento proueytoso but also other texts from the era. Two articles place these documents in historical perspective.
Antique Telescope Society's Inaugural Meeting
NASA Astrophysics Data System (ADS)
Wingate, Bruce
The first ATS meeting held at the United States Naval Observatory. 26 inch Clark shown. Other instruments pictured (displayed by ATS members) were: John Adams Gregorian; Bardou and Sons refractor; Zeiss refractor; George Dollond refractor; Mogey refractor; Browning filar micrometer, and a reflector; several Clark refractors; Fitz eyepieces; portraits by Alvan Clark; Stackpole & Bro.'s transit; and a Brashear Comet-Seeker.
HST observations of faint Cold Classical KBOs
NASA Astrophysics Data System (ADS)
Penteado, Paulo F.; Trilling, David E.; Grundy, Will
2016-10-01
The size distribution of the known Kuiper Belt Objects has been described by a double power law, with a break at R magnitude 25. There are two leading interpretations to this break: 1) It is the result of the collisional evolution, with the objects smaller than the break being the population most affected by collisional erosion. 2) The size distribution break is primordial, set during the Kuiper Belt formation.The low inclination KBOs, the Cold Classical population, is thought to have been dynamically isolated since the formation of the Solar System, and thus only collisions between Cold Classicals would have affected their size distribution. If the distribution is collisional, it probes parameters of the Kuiper Belt history: strengths of the bodies, impact energies and frequency, and the the number of objects. If the distribution is primordial, it reveals parameters of the Kuiper Belt accretion, as well as limits on its subsequent collisional history.We obtained HST observations of 16 faint Cold Classicals, which we combine with archival HST observations of 20 others, to examine the distribution of two properties of the smallest KBOs: colors and binary fraction. These properties can differentiate between a primordial and a collisional origin of the size distribution break. If the smaller bodies have been through extensive collisional evolution, they will have exposed materials from their interiors, which has not been exposed to weathering, and thus should be bluer than the old surfaces of the larger bodies. Another constraint can be derived from the fraction of binary objects: the angular momentum of the observed binaries is typically too high to result from collisions, thus a collisionally-evolved population would have a lower binary fraction, due to the easier separation of binaries, compared to the disruption of similar-sized bodies, and the easier disruption of the binary components, due to the smaller size.We present the constraints to the color and binary
[Classical and non-classical taxonomy: where does the boundary pass?].
Pavlinov, I Ia
2006-01-01
Rise of non-classical science during XX century had certain influence upon development of biological taxonomy. Scientific pluralism (especially normative naturalism of Laudan), contrary to positivist and early post-positivist treatments, made taxonomy acknowledged scientific discipline of its own right. The present state of some schools of taxonomy makes it possible to consider them as a part of non-classical science and constituting the non-classical taxonomy. The latter is characterized by the following most important features. Ontological substantiation of both classificatory approaches and particular classifications is requested which invalidates such formal approaches as nominalistic and phenetic (numerical) schools. This substantiation takes a form of content-wise background preferably causal models which include certain axioms and presumptions about taxonomic diversity being studied, together with its causes, and thus define initial conditions of classificatory procedures. From this viewoint, phylogenetic classificatory approach is the most developed part of non-classical taxonomy. The entire taxonomic diversity is structured into several aspects of different levels of generality, each being outlined by a particular consideration aspect. The latter makes personal knowledge constituting an irremovable part of any scientific statement about taxonomic diversity, thus opposition of "objectively" and "subjectively" elaborated classifications becomes vague. Interrelation of various species concepts corresponding to its different consideration aspects is described by uncertainty relation principle. Classificatory algorithms are to be compatible with the conditions of a background model to ensure particular classifications obtained by their means are interpretable within the same model: this is provided by the correspondence principle. Classification is considered as a taxonomic hypothesis, i.e. a conjectural judgement about structure of particular fragment of
Quantum cryptography approaching the classical limit.
Weedbrook, Christian; Pirandola, Stefano; Lloyd, Seth; Ralph, Timothy C
2010-09-10
We consider the security of continuous-variable quantum cryptography as we approach the classical limit, i.e., when the unknown preparation noise at the sender's station becomes significantly noisy or thermal (even by as much as 10(4) times greater than the variance of the vacuum mode). We show that, provided the channel transmission losses do not exceed 50%, the security of quantum cryptography is not dependent on the channel transmission, and is therefore incredibly robust against significant amounts of excess preparation noise. We extend these results to consider for the first time quantum cryptography at wavelengths considerably longer than optical and find that regions of security still exist all the way down to the microwave.
Eyeblink classical conditioning in the preweanling lamb.
Johnson, Timothy B; Stanton, Mark E; Goodlett, Charles R; Cudd, Timothy A
2008-06-01
Classical conditioning of eyeblink responses has been one of the most important models for studying the neurobiology of learning, with many comparative, ontogenetic, and clinical applications. The current study reports the development of procedures to conduct eyeblink conditioning in preweanling lambs and demonstrates successful conditioning using these procedures. These methods will permit application of eyeblink conditioning procedures in the analysis of functional correlates of cerebellar damage in a sheep model of fetal alcohol spectrum disorders, which has significant advantages over more common laboratory rodent models. Because sheep have been widely used for studies of pathogenesis and mechanisms of injury with many different prenatal or perinatal physiological insults, eyeblink conditioning can provide a well-studied method to assess postnatal behavioral outcomes, which heretofore have not typically been pursued with ovine models of developmental insults.
Quantum and classical dynamics in adiabatic computation
NASA Astrophysics Data System (ADS)
Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.
2014-10-01
Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.
Classical acoustic waves in damped media.
Albuquerque, E L; Mauriz, P W
2003-05-01
A Green function technique is employed to investigate the propagation of classical damped acoustic waves in complex media. The calculations are based on the linear response function approach, which is very convenient to deal with this kind of problem. Both the displacement and the gradient displacement Green functions are determined. All deformations in the media are supposed to be negligible, so the motions considered here are purely acoustic waves. The damping term gamma is included in a phenomenological way into the wave vector expression. By using the fluctuation-dissipation theorem, the power spectrum of the acoustic waves is also derived and has interesting properties, the most important of them being a possible relation with the analysis of seismic reflection data.
On energy absorption in classical electromagnetism
NASA Astrophysics Data System (ADS)
Goedecke, G. H.
2001-02-01
Using only classical electromagnetic energy conservation laws and causality, we show that the net average power absorbed by any mechanically isolated illuminated medium in steady state must be zero, but that for linear model media it is nonzero. This contradiction implies that all media must behave inelastically. We also show in general that the average power absorbed at an incident frequency, which is equal to the total taken from an incident wave minus that scattered elastically, is also equal to the average power scattered inelastically plus that carried off mechanically, if any. Finally, we infer that while the conventional linear theory cannot predict the spectral distribution of inelastic scattering, it may be applied as always to predict the propagation, absorption, and elastic scattering of weak illumination in passive media.
Quantum cryptography approaching the classical limit.
Weedbrook, Christian; Pirandola, Stefano; Lloyd, Seth; Ralph, Timothy C
2010-09-10
We consider the security of continuous-variable quantum cryptography as we approach the classical limit, i.e., when the unknown preparation noise at the sender's station becomes significantly noisy or thermal (even by as much as 10(4) times greater than the variance of the vacuum mode). We show that, provided the channel transmission losses do not exceed 50%, the security of quantum cryptography is not dependent on the channel transmission, and is therefore incredibly robust against significant amounts of excess preparation noise. We extend these results to consider for the first time quantum cryptography at wavelengths considerably longer than optical and find that regions of security still exist all the way down to the microwave. PMID:20867556
Classical least squares multivariate spectral analysis
Haaland, David M.
2002-01-01
An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.
Interaction vertex for classical spinning particles
NASA Astrophysics Data System (ADS)
Rempel, Trevor; Freidel, Laurent
2016-08-01
We consider a model of the classical spinning particle in which the coadjoint orbits of the Poincaré group are parametrized by two pairs of canonically conjugate four-vectors, one representing the standard position and momentum variables, and the other encoding the spinning degrees of freedom. This "dual phase space model" is shown to be a consistent theory of both massive and massless particles and allows for coupling to background fields such as electromagnetism. The on-shell action is derived and shown to be a sum of two terms, one associated with motion in spacetime, and the other with motion in "spin space." Interactions between spinning particles are studied, and a necessary and sufficient condition for consistency of a three-point vertex is established.
A new theory of simple classical fluids
NASA Technical Reports Server (NTRS)
Rosenfeld, Y.; Ashcroft, N. W.
1979-01-01
The paper presents a unified structural and thermodynamic theory of simple classical fluids in which the interactions between the particles can be represented by spherically symmetric pairwise potentials. Both the excess entropy and the gross features of the radial distribution function are determined mainly by excluded volume effects, which are in turn governed by a hard-core property intrinsic to any pair potential. The potential beyond this effective hard core is considered relatively weak and can be treated as a perturbation. It is also considered essential to sum all subclasses of diagrams to infinite order. The basic form of a diagrammatic scheme which allows both summation and the determination of the structure and excess entropy is presented, and a statement of universality is derived. The statement has been confirmed within the accuracy of present-day computer simulations, and a possible procedure for calculating both the structure and thermodynamics of every physically conceivable pair potential is presented.
Chiral fermions as classical massless spinning particles
NASA Astrophysics Data System (ADS)
Duval, C.; Horváthy, P. A.
2015-02-01
Semiclassical chiral fermion models with Berry term are studied in a symplectic framework. In the free case, the system can be obtained from Souriau's model for a relativistic massless spinning particle by "enslaving" the spin. The Berry term is identified with the classical spin two-form of the latter model. The Souriau model carries a natural Poincaré symmetry that we highlight, but spin enslavement breaks the boost symmetry. However the relation between the models allows us to derive a Poincaré symmetry of unconventional form for chiral fermions. Then we couple our system to an external electromagnetic field. For gyromagnetic ratio g =0 we get curious superluminal Hall-type motions; for g =2 and in a pure constant magnetic field in particular, we find instead spiraling motions.
Innovations in classical hormonal targets for endometriosis.
Pluchino, Nicola; Freschi, Letizia; Wenger, Jean-Marie; Streuli, Isabelle
2016-01-01
Endometriosis is a chronic disease of unknown etiology that affects approximately 10% of women in reproductive age. Several evidences show that endometriosis lesions are associated to hormonal imbalance, including estrogen synthesis, metabolism and responsiveness and progesterone resistance. These hormonal alterations influence the ability of endometrial cells to proliferate, migrate and to infiltrate the mesothelium, causing inflammation, pain and infertility. Hormonal imbalance in endometriosis represents also a target for treatment. We provide an overview on therapeutic strategies based on innovations of classical hormonal mechanisms involved in the development of endometriosis lesions. The development phase of new molecules targeting these pathways is also discussed. Endometriosis is a chronic disease involving young women and additional biological targets of estrogen and progesterone pharmacological manipulation (brain, bone and cardiovascular tissue) need to be carefully considered in order to improve and overcome current limits of long-term medical management of endometriosis.
Classical and quantum physics of hydrogen clusters.
Mezzacapo, Fabio; Boninsegni, Massimo
2009-04-22
We present results of a comprehensive theoretical investigation of the low temperature (T) properties of clusters of para-hydrogen (p-H(2)), both pristine as well as doped with isotopic impurities (i.e., ortho-deuterium, o-D(2)). We study clusters comprising up to N = 40 molecules, by means of quantum simulations based on the continuous-space Worm algorithm. Pristine p-H(2) clusters are liquid-like and superfluid in the [Formula: see text] limit. The superfluid signal is uniform throughout these clusters; it is underlain by long cycles of permutation of molecules. Clusters with more than 22 molecules display solid-like, essentially classical behavior at temperatures down to T∼1 K; some of them are seen to turn liquid-like at sufficiently low T (quantum melting).
Quantum-Classical Hybrid for Information Processing
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for instantaneous transmissions of non-intentional messages (chosen at random) to remote distances is proposed. The idea is to implement instantaneous transmission of conditional information on remote distances via a quantum-classical hybrid that preserves superposition of random solutions, while allowing one to measure its state variables using classical methods. Such a hybrid system reinforces the advantages, and minimizes the limitations, of both quantum and classical characteristics. Consider n observers, and assume that each of them gets a copy of the system and runs it separately. Although they run identical systems, the outcomes of even synchronized runs may be different because the solutions of these systems are random. However, the global constrain must be satisfied. Therefore, if the observer #1 (the sender) made a measurement of the acceleration v(sub 1) at t =T, then the receiver, by measuring the corresponding acceleration v(sub 1) at t =T, may get a wrong value because the accelerations are random, and only their ratios are deterministic. Obviously, the transmission of this knowledge is instantaneous as soon as the measurements have been performed. In addition to that, the distance between the observers is irrelevant because the x-coordinate does not enter the governing equations. However, the Shannon information transmitted is zero. None of the senders can control the outcomes of their measurements because they are random. The senders cannot transmit intentional messages. Nevertheless, based on the transmitted knowledge, they can coordinate their actions based on conditional information. If the observer #1 knows his own measurements, the measurements of the others can be fully determined. It is important to emphasize that the origin of entanglement of all the observers is the joint probability density that couples their actions. There is no centralized source
Galactic kinematics derived from classical cepheids
NASA Astrophysics Data System (ADS)
Zhu, Zi
On the basis of radial velocity and Hipparcos proper motion data, we have analyzed the galactic kinematics of classical Cepheids. Using the 3-D Ogorodnikov-Milne model we have determined the rotational velocity of the Galaxy to be V0 = 240.5 ± 10.2 km/s, on assuming a glactocentric distance of the Sun of R0 = 8.5 kpc. The results clearly indicate a contracting motion in the solar neighbourhood of (∂V θ∂θ)/R = -2.60 ± 1.07 km s -1 kpc -1, along the direction of galactic rotation. Possible reason for this motion is discussed. The solar motion found here is S⊙ = 18.78 ± 0.86 km/s in the direction l⊙ = 54.4° ± 2.9° and b⊙ = +26.6° ± 2.6°.
Nonlinear quantum equations: Classical field theory
Rego-Monteiro, M. A.; Nobre, F. D.
2013-10-15
An exact classical field theory for nonlinear quantum equations is presented herein. It has been applied recently to a nonlinear Schrödinger equation, and it is shown herein to hold also for a nonlinear generalization of the Klein-Gordon equation. These generalizations were carried by introducing nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard, linear equations, are recovered in the limit q→ 1. The main characteristic of this field theory consists on the fact that besides the usual Ψ(x(vector sign),t), a new field Φ(x(vector sign),t) needs to be introduced in the Lagrangian, as well. The field Φ(x(vector sign),t), which is defined by means of an additional equation, becomes Ψ{sup *}(x(vector sign),t) only when q→ 1. The solutions for the fields Ψ(x(vector sign),t) and Φ(x(vector sign),t) are found herein, being expressed in terms of a q-plane wave; moreover, both field equations lead to the relation E{sup 2}=p{sup 2}c{sup 2}+m{sup 2}c{sup 4}, for all values of q. The fact that such a classical field theory works well for two very distinct nonlinear quantum equations, namely, the Schrödinger and Klein-Gordon ones, suggests that this procedure should be appropriate for a wider class nonlinear equations. It is shown that the standard global gauge invariance is broken as a consequence of the nonlinearity.
Excitation energy transfer in a classical analogue of photosynthetic antennae.
Mančal, Tomáš
2013-09-26
We formulate a classical pure dephasing system-bath interaction model in a full correspondence to the well-studied quantum model of natural light-harvesting antennae. The equations of motion of our classical model not only represent the correct classical analogy to the quantum description of excitonic systems, but they also have exactly the same functional form. We demonstrate derivation of classical dissipation and relaxation tensor in second order perturbation theory. We find that the only difference between the classical and quantum descriptions is in the interpretation of the state and in certain limitations imposed on the parameters of the model by classical physics. The effects of delocalization, transfer pathway interference, and the transition from coherent to diffusive transfer can be found already in the classical realm. The only qualitatively new effect occurring in quantum systems is the preference for a downhill energy transfer and the resulting possibility of trapping the energy in the lowest energy state.
Renema, R A; Robinson, F E; Oosterhoff, H H; Feddes, J J; Wilson, J L
2001-01-01
The effects of light intensity during sexual maturation on ovarian and carcass morphology at first oviposition [sexual maturity (SM)] were examined in two Single Comb White Leghorn (SCWL) strains. A modern commercial layer strain (COMM; Shaver Starcross 288) and an antique randombred control strain (ANT) were used to compare the effects of changes in laying stock on their response to varying light intensities from photostimulation (PS) until SM. Two hundred pullets from each strain were reared following COMM breeder guidelines. At 18 wk of age, 32 COMM and 32 ANT pullets were individually caged in individually lit cages and photostimulated with light intensities of 1, 5, 50, and 500 lx. Each bird was processed when it reached SM, and carcass and ovarian morphology were assessed. The ANT birds came into production 9.1 d later than the COMM birds, on average. The ANT pullets consumed 7.0% more feed per day than COMM pullets but gained at a slower rate (ANT = 12.9 g/d; COMM = 15.0 g/d). The ANT birds reached SM at a greater weight and with a smaller ovary than did COMM birds. Although the number of large yellow follicles (LYF) was similar between strains (mean = 6.72), both LYF weight and first egg weight were lower in ANT birds than in COMM birds. The COMM layer strain was more growth efficient and had a greater emphasis on ovary maintenance. Light intensity had no effect on the timing of SM or on BW at SM, indicating that all intensities used were effectively able to stimulate the sexual maturation process. However, ovary weight and number of LYF exhibited an increasing dose response to light intensity, particularly in the COMM birds. Overall, the birds photostimulated with 1 lx of light had reduced ovary development and were heavier than their counterparts exposed to 50 and 500 lx. Within the ANT strain, LYF numbers were not significantly affected by light intensities, whereas, within the COMM strain, LYF numbers were 4.88, 6.63, 7.88, and 8.13 for the 1-, 5-, 50
Classic to postclassic in highland central Mexico.
Dumond, D E; Muller, F
1972-03-17
The data and argument we have presented converge on three points. 1) With the decline and abandonment of Teotihuacan by the end of the Metepec phase (Teotihuacan IV), the valleys of Mexico and of Puebla-Tlax-cala witnessed the development of a ceramic culture that was represented, on the one hand, by obvious Teotihuacan derivations in presumably ritual ware and possible Teotihuacan derivations in simpler pottery of red-on-buff, and, on the other hand, by elements that seem to represent a resurgence of Preclassic characteristics. Whether the development is explained through a measure of outside influence or as a local phenomenon, the direct derivation of a substantial portion of the complex from Classic Teotihuacan is unmistakable. This transitional horizon predated the arrival of plumbate tradeware in highland central Mexico. 2) The transitional horizon coincided with (and no doubt was an integral part of) an alteration of Classic settlement patterns so drastic that it must bespeak political disruption. Nevertheless, there is no evidence that the Postclassic center of Tula represented a significant force in the highlands at that time. There is no evidence that the center of Cholula, which may even have been substantially abandoned during the previous period, was able to exert any force at this juncture; it appears more likely that Cholula was largely reoccupied after the abandonment of Teotihuacan. There is no direct evidence of domination by Xochicalco or any other known major foreign center, although some ceramic traits suggest that relatively minor influences may have emanated from Xochicalco; unfortunately, the state of research at that center does not permit a determination at this time. Thus the most reasonable view on the basis of present evidence is that the abandonment of Teotihuacan was not the direct result of the strength of another centralized power, although some outside populations may have been involved in a minor way. Whatever the proximate cause
[Interrelations of Buddhism and classical Indian medicine].
Butzenberger, K; Fedorova, M
1989-01-01
In ancient India, two branches of knowledge are concerned with human suffering, trying to theoretically explain as well as to practically overcome its reasons: (practical) philosophy and medicine. In spite of being concerned with the same problem, both rest on different premises: philosophy on highly abstract insights into the core of the phenomenal world, the atman, which is a priori free from suffering; and classical (- classical as opposed to modern, westernized -) medicine on concrete daily manifestations of suffering. Both kinds of occupation with human suffering implicitly follow a common method, the abstract, i.e. structural investigation and expression of which we call methodology. This methodology being explicitly stated in medical texts, we speak of medical methodology, regardless of the (most probably inanswerable) question in what branch of knowledge this methodology has been originally developed. The article is divided into two parts. In the first part, the Buddha's denial of a transcendent atman is investigated with regard to its implications concerning the problem of human suffering. Not being able to accept the solution proposed in the Upanisads, the Buddha conceives a new explanation and solution of the problem. For that purpose, he explicitly reiterates the medical methodology, thus attaining a fourfold progressive method which consists in: (1) experience of suffering, (2) diagnosis, (3) prognosis, (4) solution. In account of this method's isomorphy to the medical method, Buddhism was regarded as a medical discipline. The second part of the article is focussed on the third step of the methodology, the prognosis. According to medical texts, the physician has to decide in advance whether an illness is curable or not; in the latter case, he is advised to refrain from treating it. Although this position might be justified from a pragmatic point of view, it remains unsatisfying when considered with regard to a categorial system of ethics as it is
Quantum and classical simulations of molecular clusters
NASA Astrophysics Data System (ADS)
Dong, Xiao
to a fast discovery of accessible topological paths towards the global minimum. The ATMC can be readily linked to systems described by classical model potentials or systems described quantum mechanically. Serial and parallel versions of the ATMC have been implemented and applied for the structural optimization of classical Lennard-Jones nanoclusters and Morse nanoclusters, and tight-binding calcium nanoclusters, crystallization of infinite Lennard-Jones liquid, and optimization of the folding process leading to the native state of a polypeptide chain.
Thermodynamics and Kinetics of Prenucleation Clusters, Classical and Non-Classical Nucleation
Zahn, Dirk
2015-01-01
Recent observations of prenucleation species and multi-stage crystal nucleation processes challenge the long-established view on the thermodynamics of crystal formation. Here, we review and generalize extensions to classical nucleation theory. Going beyond the conventional implementation as has been used for more than a century now, nucleation inhibitors, precursor clusters and non-classical nucleation processes are rationalized as well by analogous concepts based on competing interface and bulk energy terms. This is illustrated by recent examples of species formed prior to/instead of crystal nucleation and multi-step nucleation processes. Much of the discussed insights were obtained from molecular simulation using advanced sampling techniques, briefly summarized herein for both nucleation-controlled and diffusion-controlled aggregate formation. PMID:25914369
Classical and quantum superintegrability with applications
NASA Astrophysics Data System (ADS)
Miller, Willard, Jr.; Post, Sarah; Winternitz, Pavel
2013-10-01
A superintegrable system is, roughly speaking, a system that allows more integrals of motion than degrees of freedom. This review is devoted to finite dimensional classical and quantum superintegrable systems with scalar potentials and integrals of motion that are polynomials in the momenta. We present a classification of second-order superintegrable systems in two-dimensional Riemannian and pseudo-Riemannian spaces. It is based on the study of the quadratic algebras of the integrals of motion and on the equivalence of different systems under coupling constant metamorphosis. The determining equations for the existence of integrals of motion of arbitrary order in real Euclidean space E2 are presented and partially solved for the case of third-order integrals. A systematic exposition is given of systems in two and higher dimensional space that allow integrals of arbitrary order. The algebras of integrals of motions are not necessarily quadratic but close polynomially or rationally. The relation between superintegrability and the classification of orthogonal polynomials is analyzed.
Necessary and sufficient factors in classical conditioning.
Damianopoulos, E N
1982-01-01
The issue of necessary and sufficient factors (pairing-contiguity vs. contingency-correlation) in classical (Pavlovian) excitatory conditioning is examined: first, in terms of definitional (logical) and manipulational requirements of "necessary" and "sufficient"; second, in terms of Boolean logic test models indicating experimental and control manipulations in tests of pairing and contingency as necessary and sufficient factors; and, third, by a selective review of reference experiments showing appropriate experimental and control manipulations of pairing and contingency indicated in the Boolean logic test models. Results of examination show pairing-contiguity as the sole necessary and sufficient factor for excitatory conditioning, while contingency-correlation is conceptualized as a modulating factor controlling minimal-maximal effects of pairing-contiguity. Reservations and diagnostic experiments are indicated to assess effects of uncontrolled conditioned stimulus--unconditioned stimulus (--CS--US) probability characteristics (e.g., p (CS--US)/p (--CS--US) in truly random (TR) schedule manipulations). Similar analysis of conditioned inhibition reveals insufficient evidence to support a choice among current alternatives.
New developments in classical chaotic scattering.
Seoane, Jesús M; Sanjuán, Miguel A F
2013-01-01
Classical chaotic scattering is a topic of fundamental interest in nonlinear physics due to the numerous existing applications in fields such as celestial mechanics, atomic and nuclear physics and fluid mechanics, among others. Many new advances in chaotic scattering have been achieved in the last few decades. This work provides a current overview of the field, where our attention has been mainly focused on the most important contributions related to the theoretical framework of chaotic scattering, the fractal dimension, the basins boundaries and new applications, among others. Numerical techniques and algorithms, as well as analytical tools used for its analysis, are also included. We also show some of the experimental setups that have been implemented to study diverse manifestations of chaotic scattering. Furthermore, new theoretical aspects such as the study of this phenomenon in time-dependent systems, different transitions and bifurcations to chaotic scattering and a classification of boundaries in different types according to symbolic dynamics are also shown. Finally, some recent progress on chaotic scattering in higher dimensions is also described. PMID:23242261
The Directedness of Time in Classical Cosmology
NASA Astrophysics Data System (ADS)
Bartels, Andreas; Wohlfarth, Daniel
2014-03-01
The aim of this paper is to show that a new understanding of fundamentality can be applied successfully in classical cosmology based on General Relativity. We are thereby able to achieve an account of cosmological time asymmetry as an intrinsic and fun-damental property of the universe. First, we consider Price's arguments against the fundamental status of time-asymmetry (Price (1996, 2002, 2011)). We show that these arguments have some force, but their force depends on understanding fundamentality as law-likeness. Second, we show that alternative approaches attempting to explain time directedness either by applying an anthropic strategy based on a multiverse approach, or by using the empirical fact of accelerated expansion of the universe, equally fail to provide a fundamental explanation of time directedness. In the third part, we present our own new concept of fundamentality based on properties of the solution space of fundamental laws. We demonstrate how this new concept of fundamentality is effective in understanding the cosmological asymmetry.
Comparison of timing and classical conditioning.
Holder, M D; Roberts, S
1985-04-01
Four experiments with rats investigated if the timing of a stimulus (sound) correlated with the strength of a conditioned response (CR) to the stimulus. The timing (effective duration) of the stimulus was measured using the peak procedure, similar to a discrete-trials fixed-interval procedure. The rats were trained so that their response rate reached a maximum about 40 s or 60 s after the onset of a light; the time of the maximum measured from the start of the light (peak time) was the measure of timing. On some trials, the light was preceded by a short (5 s) or long (20 s or 30 s) interval of sound. We assumed that the difference in peak time after long and short sounds reflected the timing of the sound--if the sound was timed, the longer sound would produce a lower peak time; if the sound was not timed, the two durations of sound would produce the same peak time. The CR was lever-pressing during the sound. The sound was treated in various ways: presented alone (Experiments 1, 3, and 4), followed by food (Experiments 1, 3, and 4), preceded by food (Experiment 3), and followed by food after 20 s (Experiment 4). Treatments that produced no timing of sound produced no CR, and treatments that increased (or diseased) timing also increased (or decreased) the CR. The results suggest that there is overlap between the mechanisms that produce time discrimination and the mechanisms that produce classical conditioning.
A critical review of classical bouncing cosmologies
NASA Astrophysics Data System (ADS)
Battefeld, Diana; Peter, Patrick
2015-04-01
Given the proliferation of bouncing models in recent years, we gather and critically assess these proposals in a comprehensive review. The PLANCK data shows an unmistakably red, quasi scale-invariant, purely adiabatic primordial power spectrum and no primary non-Gaussianities. While these observations are consistent with inflationary predictions, bouncing cosmologies aspire to provide an alternative framework to explain them. Such models face many problems, both of the purely theoretical kind, such as the necessity of violating the NEC and instabilities, and at the cosmological application level, as exemplified by the possible presence of shear. We provide a pedagogical introduction to these problems and also assess the fitness of different proposals with respect to the data. For example, many models predict a slightly blue spectrum and must be fine-tuned to generate a red spectral index; as a side effect, large non-Gaussianities often result. We highlight several promising attempts to violate the NEC without introducing dangerous instabilities at the classical and/or quantum level. If primordial gravitational waves are observed, certain bouncing cosmologies, such as the cyclic scenario, are in trouble, while others remain valid. We conclude that, while most bouncing cosmologies are far from providing an alternative to the inflationary paradigm, a handful of interesting proposals have surfaced, which warrant further research. The constraints and lessons learned as laid out in this review might guide future research.
Augmented Classical Least Squares Multivariate Spectral Analysis
Haaland, David M.; Melgaard, David K.
2005-01-11
A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.
Augmented Classical Least Squares Multivariate Spectral Analysis
Haaland, David M.; Melgaard, David K.
2005-07-26
A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.
Augmented classical least squares multivariate spectral analysis
Haaland, David M.; Melgaard, David K.
2004-02-03
A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.
Embedding Quantum into Classical: Contextualization vs Conditionalization
Dzhafarov, Ehtibar N.; Kujala, Janne V.
2014-01-01
We compare two approaches to embedding joint distributions of random variables recorded under different conditions (such as spins of entangled particles for different settings) into the framework of classical, Kolmogorovian probability theory. In the contextualization approach each random variable is “automatically” labeled by all conditions under which it is recorded, and the random variables across a set of mutually exclusive conditions are probabilistically coupled (imposed a joint distribution upon). Analysis of all possible probabilistic couplings for a given set of random variables allows one to characterize various relations between their separate distributions (such as Bell-type inequalities or quantum-mechanical constraints). In the conditionalization approach one considers the conditions under which the random variables are recorded as if they were values of another random variable, so that the observed distributions are interpreted as conditional ones. This approach is uninformative with respect to relations between the distributions observed under different conditions because any set of such distributions is compatible with any distribution assigned to the conditions. PMID:24681665
Resolution of a paradox in classical electrodynamics
Pinto, Fabrizio
2006-05-15
It is an early result of electrostatics in curved space that the gravitational mass of a charge distribution changes by an amount equal to U{sub es}/c{sup 2}, where U{sub es} is the internal electrostatic potential energy and c is the speed of light, if the system is supported at rest by external forces. This fact, independently rediscovered in recent years in the case of a simple dipole, confirms a very reasonable expectation grounded in the mass-energy equivalency equation. However, it is an unsolved paradox of classical electrodynamics that the renormalized mass of an accelerated dipole calculated from the self-forces due to the distortion of the Coulomb field differs in general from that expected from the energy correction, U{sub es}/c{sup 2}, unless the acceleration is transversal to the orientation of the dipole. Here we show that this apparent paradox disappears for any dipole orientation if the self-force is evaluated by means of Whittaker's exact solution for the field of the single charge in a homogeneous gravitational field described in the Rindler metric. The discussion is supported by computer algebra results, diagrams of the electric fields distorted by gravitation, and a brief analysis of the prospects for realistic experimentation. The gravitational correction to dipole-dipole interactions is also discussed.
Renormalization from Classical to Quantum Physics
NASA Astrophysics Data System (ADS)
Kar, Arnab
The concept of renormalization was first introduced by Dirac to investigate the infinite self energy of an electron classically. This radical theory was probably the first time when an infinity occurring in a physical system was systematically investigated. This thesis presents a new perspective of renormalization by introducing methods from metric geometry to control divergences. We start by extending Dirac's work and analyzing how the radiation reaction due to the precision of the electron's magnetic moment affects its motion. This is followed by modeling scalar field theory on lattices of various kinds. Scale invariance, which plays a major role in the very few renormalizable theories in nature, is inbuilt in our formalism. We also use Wilson's ideas of effective theory and finite element methods to study continuum systems. Renormalization group transformations form the central theme in this picture. By incorporating finite element methods, an idea borrowed from mechanical engineering, we study scalar fields on triangular lattices in a hierarchal manner. In our case, the cotangent formula turns out to be a fixed point of the renormalization group transformations. We end our thesis by introducing a new metric for space-time which emerges from the scalar field itself. The standard techniques used in the theory of renormalization so far attempt to redefine coupling constants of the theory to remove divergences at short distance scales. In our formalism, we deduce the distance scale itself. In our notion of distance, built from correlation functions of the fields, the divergences disappear.
Pembrolizumab in classical Hodgkin’s lymphoma
Maly, Joseph; Alinari, Lapo
2016-01-01
Pembrolizumab is a humanized monoclonal antibody directed against programmed cell death protein 1 (PD-1), a key immune-inhibitory molecule expressed on T cells and implicated in CD4+ T-cell exhaustion and tumor immune-escape mechanisms. Classical Hodgkin’s lymphoma (cHL) is a unique B-cell malignancy in the sense that malignant Reed–Sternberg (RS) cells represent a small percentage of cells within an extensive immune cell infiltrate. PD-1 ligands are upregulated on RS cells as a consequence of both chromosome 9p24.1 amplification and Epstein–Barr virus infection and by interacting with PD-1 promote an immune-suppressive effect. By augmenting antitumor immune response, pembrolizumab and nivolumab, another monoclonal antibody against PD-1, have shown significant activity in patients with relapsed/refractory cHL as well as an acceptable toxicity profile with immune-related adverse events that are generally manageable. In this review, we explore the rationale for targeting PD-1 in cHL, review the clinical trial results supporting the use of checkpoint inhibitors in this disease, and present future directions for investigation in which this approach may be used. PMID:27147112
Tachyons in classical de Sitter vacua
NASA Astrophysics Data System (ADS)
Junghans, Daniel
2016-06-01
We revisit the possibility of de Sitter vacua and slow-roll inflation in type II string theory at the level of the classical two-derivative supergravity approximation. Previous attempts at explicit constructions were plagued by ubiquitous tachyons with a large η parameter whose origin has not been fully understood so far. In this paper, we determine and explain the tachyons in two setups that are known to admit unstable dS critical points: an SU(3) structure compactification of massive type IIA with O6-planes and an SU(2) structure compactification of type IIB with O5/O7-planes. We explicitly show that the tachyons are always close to, but never fully aligned with the sgoldstino direction in the considered examples and argue that this behavior is explained by a generalized version of a no-go theorem by Covi et al, which holds in the presence of large mixing in the mass matrix between the sgoldstino and the orthogonal moduli. This observation may also provide a useful stability criterion for general dS vacua in supergravity and string theory.
New developments in classical chaotic scattering.
Seoane, Jesús M; Sanjuán, Miguel A F
2013-01-01
Classical chaotic scattering is a topic of fundamental interest in nonlinear physics due to the numerous existing applications in fields such as celestial mechanics, atomic and nuclear physics and fluid mechanics, among others. Many new advances in chaotic scattering have been achieved in the last few decades. This work provides a current overview of the field, where our attention has been mainly focused on the most important contributions related to the theoretical framework of chaotic scattering, the fractal dimension, the basins boundaries and new applications, among others. Numerical techniques and algorithms, as well as analytical tools used for its analysis, are also included. We also show some of the experimental setups that have been implemented to study diverse manifestations of chaotic scattering. Furthermore, new theoretical aspects such as the study of this phenomenon in time-dependent systems, different transitions and bifurcations to chaotic scattering and a classification of boundaries in different types according to symbolic dynamics are also shown. Finally, some recent progress on chaotic scattering in higher dimensions is also described.
Better relaxations of classical discrete optimization problems.
Lancia, Giuseppe; Konjevod, Goran; Carr, Robert D.; Parehk, Ojas
2008-08-01
A mathematical program is an optimization problem expressed as an objective function of multiple variables subject to set of constraints. When the optimization problem has specific structure, the problem class usually has a special name. A linear program is the optimization of a linear objective function subject to linear constraints. An integer program is a linear program where some of the variables must take only integer values. A semidefinite program is a linear program where the variables are arranged in a matrix and for all feasible solutions, this matrix must be positive semidefinite. There are general-purpose solvers for each of these classes of mathematical program. There are usually many ways to express a problem as a correct, say, linear program. However, equivalent formulations can have significantly different practical tractability. In this poster, we present new formulations for two classic discrete optimization problems, maximum cut (max cut) and the graphical traveling salesman problem (GTSP), that are significantly stronger, and hence more computationally tractable, than any previous formulations of their class. Both partially answer longstanding open theoretical questions in polyhedral combinatorics.
Generalized fluctuation theorems for classical systems
NASA Astrophysics Data System (ADS)
Agarwal, G. S.; Dattagupta, Sushanta
2015-11-01
The fluctuation theorem has a very special place in the study of nonequilibrium dynamics of physical systems. The form in which it is used most extensively is the Gallavoti-Cohen fluctuation theorem which is in terms of the distribution of the work p (W )/p (-W )=exp(α W ) . We derive the general form of the fluctuation theorems for an arbitrary multidimensional Gaussian Markov process. Interestingly, the parameter α is by no means universal, hitherto taken for granted in the case of linear Gaussian processes. As a matter of fact, conditions under which α does become a universal parameter 1 /K T are found to be rather restrictive. As an application we consider fluctuation theorems for classical cyclotron motion of an electron in a parabolic potential. The motion of the electron is described by four coupled Langevin equations and thus is nontrivial. The generalized theorems are equally valid for nonequilibrium steady states and could be especially important in the presence of anisotropic diffusion.
Models of classical and recurrent novae
NASA Technical Reports Server (NTRS)
Friedjung, Michael; Duerbeck, Hilmar W.
1993-01-01
The behavior of novae may be divided roughly into two separate stages: quiescence and outburst. However, at closer inspection, both stages cannot be separated. It should be attempted to explain features in both stages with a similar model. Various simple models to explain the observed light and spectral observations during post optical maximum activity are conceivable. In instantaneous ejection models, all or nearly all material is ejected in a time that is short compared with the duration of post optical maximum activity. Instantaneous ejection type 1 models are those where the ejected material is in a fairly thin shell, the thickness of which remains small. In the instantaneous ejection type 2 model ('Hubble Flow'), a thick envelope is ejected instantaneously. This envelope remains thick as different parts have different velocities. Continued ejection models emphasize the importance of winds from the nova after optical maximum. Ejection is supposed to occur from one of the components of the central binary, and one can imagine a general swelling of one of the components, so that something resembling a normal, almost stationary, stellar photosphere is observed after optical maximum. The observed characteristics of recurrent novae in general are rather different from those of classical novae, thus, models for these stars need not be the same.
High vacuum cells for classical surface techniques
Martinez, Imee Su; Baldelli, Steven
2010-04-15
Novel glass cells were designed and built to be able to perform surface potential and surface tension measurements in a contained environment. The cells can withstand pressures of approximately 1x10{sup -6} Torr, providing a reasonable level of control in terms of the amounts of volatile contaminants during experimentation. The measurements can take several hours; thus the cells help maintain the integrity of the sample in the course of the experiment. To test for the feasibility of the cell design, calibration measurements were performed. For the surface potential cell, the modified TREK 6000B-7C probe exhibited performance comparable to its unmodified counterpart. The correlation measurements between applied potential on the test surface and the measured potential showed R-values very close to 1 as well as standard deviation values of less than 1. Results also demonstrate improved measurement values for experiments performed in vacuum. The surface tension cell, on the other hand, which was used to perform the pendant drop method, was tested on common liquids and showed percentage errors of 0.5% when compared to literature values. The fabricated cells redefine measurements using classical surface techniques, providing unique and novel methods of sample preparation, premeasurement preparation, and sample analysis at highly beneficial expenditure cost.
The classic cadherins in synaptic specificity
Basu, Raunak; Taylor, Matthew R; Williams, Megan E
2015-01-01
During brain development, billions of neurons organize into highly specific circuits. To form specific circuits, neurons must build the appropriate types of synapses with appropriate types of synaptic partners while avoiding incorrect partners in a dense cellular environment. Defining the cellular and molecular rules that govern specific circuit formation has significant scientific and clinical relevance because fine scale connectivity defects are thought to underlie many cognitive and psychiatric disorders. Organizing specific neural circuits is an enormously complicated developmental process that requires the concerted action of many molecules, neural activity, and temporal events. This review focuses on one class of molecules postulated to play an important role in target selection and specific synapse formation: the classic cadherins. Cadherins have a well-established role in epithelial cell adhesion, and although it has long been appreciated that most cadherins are expressed in the brain, their role in synaptic specificity is just beginning to be unraveled. Here, we review past and present studies implicating cadherins as active participants in the formation, function, and dysfunction of specific neural circuits and pose some of the major remaining questions. PMID:25837840
Indeterminism in Classical Dynamics of Particle Motion
NASA Astrophysics Data System (ADS)
Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Burns, Randal; Meneveau, Charles; Szalay, Alex
2013-03-01
We show that ``God plays dice'' not only in quantum mechanics but also in the classical dynamics of particles advected by turbulent fluids. With a fixed deterministic flow velocity and an exactly known initial position, the particle motion is nevertheless completely unpredictable! In analogy with spontaneous magnetization in ferromagnets which persists as external field is taken to zero, the particle trajectories in turbulent flow remain random as external noise vanishes. The necessary ingredient is a rough advecting field with a power-law energy spectrum extending to smaller scales as noise is taken to zero. The physical mechanism of ``spontaneous stochasticity'' is the explosive dispersion of particle pairs proposed by L. F. Richardson in 1926, so the phenomenon should be observable in laboratory and natural turbulent flows. We present here the first empirical corroboration of these effects in high Reynolds-number numerical simulations of hydrodynamic and magnetohydrodynamic fluid turbulence. Since power-law spectra are seen in many other systems in condensed matter, geophysics and astrophysics, the phenomenon should occur rather widely. Fast reconnection in solar flares and other astrophysical systems can be explained by spontaneous stochasticity of magnetic field-line motion
Comparisons of classical and quantum dynamics for initially localized states
Davis, M.J.; Heller, E.J.
1984-05-15
We compare the dynamics of quantum wave packets with the dynamics of classical trajectory ensembles. The wave packets are Gaussian with expectation values of position and momenta which centers them in phase space. The classical trajectory ensembles are generated directly from the quantum wave packets via the Wigner transform. Quantum and classical dynamics are then compared using several quantum measures and the analogous classical ones derived from the Wigner equivalent formalism. Comparisons are made for several model potentials and it is found that there is generally excellent classical--quantum correspondence except for certain specific cases of tunneling and interference. In general, this correspondence is also very good in regions of phase space where there is classical chaos.
Classical-driving-assisted quantum speed-up
NASA Astrophysics Data System (ADS)
Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Cao, Jun-Peng; Fan, Heng
2015-03-01
We propose a method of accelerating the speed of evolution of an open system by an external classical driving field for a qubit in a zero-temperature structured reservoir. It is shown that, with a judicious choice of the driving strength of the applied classical field, a speed-up evolution of an open system can be achieved in both the weak system-environment couplings and the strong system-environment couplings. By considering the relationship between non-Makovianity of environment and the classical field, we can drive the open system from the Markovian to the non-Markovian regime by manipulating the driving strength of the classical field. That is the intrinsic physical reason that the classical field may induce the speed-up process. In addition, the role of this classical field on the variation of quantum evolution speed in the whole decoherence process is discussed.
Nondivergent classical response functions from uncertainty principle: quasiperiodic systems.
Kryvohuz, Maksym; Cao, Jianshu
2005-01-01
Time-divergence in linear and nonlinear classical response functions can be removed by taking a phase-space average within the quantized uncertainty volume O(hn) around the microcanonical energy surface. For a quasiperiodic system, the replacement of the microcanonical distribution density in the classical response function with the quantized uniform distribution density results in agreement of quantum and classical expressions through Heisenberg's correspondence principle: each matrix element (u/alpha(t)/v) corresponds to the (u-v)th Fourier component of alpha(t) evaluated along the classical trajectory with mean action (Ju+Jv)/2. Numerical calculations for one- and two-dimensional systems show good agreement between quantum and classical results. The generalization to the case of N degrees of freedom is made. Thus, phase-space averaging within the quantized uncertainty volume provides a useful way to establish the classical-quantum correspondence for the linear and nonlinear response functions of a quasiperiodic system.
Classical and quantum communication without a shared reference frame.
Bartlett, Stephen D; Rudolph, Terry; Spekkens, Robert W
2003-07-11
We show that communication without a shared reference frame is possible using entangled states. Both classical and quantum information can be communicated with perfect fidelity without a shared reference frame at a rate that asymptotically approaches one classical bit or one encoded qubit per transmitted qubit. We present an optical scheme to communicate classical bits without a shared reference frame using entangled photon pairs and linear optical Bell state measurements.
Polaractivation for classical zero-error capacity of qudit channels
Gyongyosi, Laszlo; Imre, Sandor
2014-12-04
We introduce a new phenomenon for zero-error transmission of classical information over quantum channels that initially were not able for zero-error classical communication. The effect is called polaractivation, and the result is similar to the superactivation effect. We use the Choi-Jamiolkowski isomorphism and the Schmidt-theorem to prove the polaractivation of classical zero-error capacity and define the polaractivator channel coding scheme.
Classical phase space and statistical mechanics of identical particles.
Hansson, T H; Isakov, S B; Leinaas, J M; Lindström, U
2001-02-01
Starting from the quantum theory of identical particles, we show how to define a classical mechanics that retains information about the quantum statistics. We consider two examples of relevance for the quantum Hall effect: identical particles in the lowest Landau level, and vortices in the Chern-Simons Ginzburg-Landau model. In both cases the resulting classical statistical mechanics is shown to be a nontrivial classical limit of Haldane's exclusion statistics.
Shear viscosity of the Φ4 theory from classical simulation
NASA Astrophysics Data System (ADS)
Homor, M. M.; Jakovac, A.
2015-11-01
Shear viscosity of the classical Φ4 theory is measured using classical microcanonical simulation. To calculate the Kubo formula, we measure the energy-momentum tensor correlation function and apply the Green-Kubo relation. Given that this is a classical theory, the results depend on the cutoff, which should be chosen in the range of the temperature. Comparison with experimentally accessible systems is also performed.
On the correspondence between quantum and classical variational principles
Ruiz, D. E.; Dodin, I. Y.
2015-06-10
Here, classical variational principles can be deduced from quantum variational principles via formal reparameterization of the latter. It is shown that such reparameterization is possible without invoking any assumptions other than classicality and without appealing to dynamical equations. As examples, first principle variational formulations of classical point-particle and cold-fluid motion are derived from their quantum counterparts for Schrodinger, Pauli, and Klein-Gordon particles.
Beyond quantum-classical analogies: high time for agreement?
NASA Astrophysics Data System (ADS)
Marrocco, Michele
Lately, many quantum-classical analogies have been investigated and published in many acknowledged journals. Such a surge of research on conceptual connections between quantum and classical physics forces us to ask whether the correspondence between the quantum and classical interpretation of the reality is deeper than the correspondence principle stated by Bohr. Here, after a short introduction to quantum-classical analogies from the recent literature, we try to examine the question from the perspective of a possible agreement between quantum and classical laws. A paradigmatic example is given in the striking equivalence between the classical Mie theory of electromagnetic scattering from spherical scatterers and the corresponding quantum-mechanical wave scattering analyzed in terms of partial waves. The key features that make the correspondence possible are examined and finally employed to deal with the fundamental blackbody problem that marks the initial separation between classical and quantum physics. The procedure allows us to recover the blackbody spectrum in classical terms and the proof is rich in consequences. Among them, the strong analogy between the quantum vacuum and its classical counterpart.
Classical Dynamics Based on the Minimal Length Uncertainty Principle
NASA Astrophysics Data System (ADS)
Chung, Won Sang
2016-02-01
In this paper we consider the quadratic modification of the Heisenberg algebra and its classical limit version which we call the β-deformed Poisson bracket for corresponding classical variables. We use the β-deformed Poisson bracket to discuss some physical problems in the β-deformed classical dynamics. Finally, we consider the ( α, β)- deformed classical dynamics in which minimal length uncertainty principle is given by [ hat {x} , hat {p}] = i hbar (1 + α hat {x}2 + β hat {p}2 ) . For two small parameters α, β, we discuss the free fall of particle and a composite system in a uniform gravitational field.
Sharing the Quantum State and the Classical Information Simultaneously
NASA Astrophysics Data System (ADS)
Qin, Huawang; Dai, Yuewei
2016-08-01
An efficient quantum secret sharing scheme is proposed, in which the quantum state and the classical information can be shared simultaneously through only one distribution. The dealer uses the operations of quantum-controlled-not and Hadamard gate to encode the secret quantum state and classical information, and the participants use the single-particle measurements to recover the original quantum state and classical information. Compared to the existing schemes, our scheme is more efficient when the quantum state and the classical information need to be shared simultaneously.
Computational quantum-classical boundary of noisy commuting quantum circuits.
Fujii, Keisuke; Tamate, Shuhei
2016-01-01
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039
Computational quantum-classical boundary of noisy commuting quantum circuits
NASA Astrophysics Data System (ADS)
Fujii, Keisuke; Tamate, Shuhei
2016-05-01
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.
Computational quantum-classical boundary of noisy commuting quantum circuits
Fujii, Keisuke; Tamate, Shuhei
2016-01-01
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039
Classical novae and recurrent novae: General properties
NASA Technical Reports Server (NTRS)
Hack, Margherita; Selvelli, Pierluigi; Duerbeck, Hilmar W.
1993-01-01
We describe the observable characteristics of classical novae and recurrent novae obtained by different techniques (photometry, spectroscopy, and imaging) in all the available spectral ranges. We consider the three stages in the life of a nova: quiescence (pre- and post-outburst), outburst, final decline and nebular phase. We describe the photometric properties during the quiescent phase. We describe the photometric properties during outburst, the classification according the rate of decline (magnitudes per day), which permits us to define very fast, fast, intermediate, slow, and very slow novae and the correlation between luminosity and speed class. We report the scanty data on the spectra of the few known prenovae and those on the spectra of old novae and those of dwarf novae and nova-like, which, however, are almost undistinguishable. We describe the typical spectra appearing from the beginning of the outburst, just before maximum, up to the nebular phase and the correlation between spectral type at maximum, expansional velocity, and speed class of the nova. We report the existing infrared observations, which permit us to explain some of the characteristics of the outburst light curve, and give evidence of the formation of a dust shell in slow and intermediate novae (with the important exception of the very slow nova HR Del 1967) and its absence or quasi-absence in fast novae. The ultraviolet and X-ray observations are described. The X ray observations of novae, mainly from the two satellites EINSTEIN and EXOSAT, are reported. Observations of the final decline and of the envelopes appearing several months after outburst are also reported.
Classical and modern orbit determination for asteroids
NASA Astrophysics Data System (ADS)
Gronchi, Giovanni F.
2005-04-01
With the substantial improvements in observational techniques we have to deal with very big databases, consisting of a few positions of an object over a short time span; this is often not enough to compute a preliminary orbit with traditional tools. In this paper we first review a classical method by C.F. Gauss to compute a preliminary orbit for asteroids. This method, followed by a least squares fit to improve the orbit, still today gives successful results when we have at least three separate observations. Then we introduce the basics of a very recent orbit determination theory, that has been thought just to be used with modern sets of data. These data allow us in many cases to know the angular position and velocity of an asteroid at a given time, even though the radial distance and velocity (r,dot r), needed to compute its full orbit, are unknown. The variables (r,dot r) can be constrained to a compact set, that we call the admissible region(AR), whose definition requires that the body belongs to the Solar System, that it is not a satellite of the Earth, and that it is not a "shooting star" (i.e. very close and very small). We provide a mathematical description of the AR: its topological properties are surprisingly simple, in fact it turns out that the AR cannot have more than two connected components. A sampling of the AR can be performed by means of a Delaunay triangulation; a finite number of six-parameter sets of initial conditions are thus defined, with each node of the triangulation representing a possible orbit (a virtual asteroid).
Inverse Problems in Classical and Quantum Physics
NASA Astrophysics Data System (ADS)
Almasy, Andrea A.
2009-12-01
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. In this thesis, also two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A promising result is that one can qualitatively reconstruct the conductivity inside the cross-section of a human chest. Even though the human volunteer is neither two-dimensional nor circular, such reconstructions can be useful in medical applications: monitoring for lung problems such as accumulating fluid or a collapsed lung and noninvasive monitoring of heart function and blood flow.
Classic versus millennial medical lab anatomy.
Benninger, Brion; Matsler, Nik; Delamarter, Taylor
2014-10-01
This study investigated the integration, implementation, and use of cadaver dissection, hospital radiology modalities, surgical tools, and AV technology during a 12-week contemporary anatomy course suggesting a millennial laboratory. The teaching of anatomy has undergone the greatest fluctuation of any of the basic sciences during the past 100 years in order to make room for the meteoric rise in molecular sciences. Classically, anatomy consisted of a 2-year methodical, horizontal, anatomy course; anatomy has now morphed into a 12-week accelerated course in a vertical curriculum, at most institutions. Surface and radiological anatomy is the language for all clinicians regardless of specialty. The objective of this study was to investigate whether integration of full-body dissection anatomy and modern hospital technology, during the anatomy laboratory, could be accomplished in a 12-week anatomy course. Literature search was conducted on anatomy text, journals, and websites regarding contemporary hospital technology integrating multiple image mediums of 37 embalmed cadavers, surgical suite tools and technology, and audio/visual technology. Surgical and radiology professionals were contracted to teach during the anatomy laboratory. Literature search revealed no contemporary studies integrating full-body dissection with hospital technology and behavior. About 37 cadavers were successfully imaged with roentograms, CT, and MRI scans. Students were in favor of the dynamic laboratory consisting of multiple activity sessions occurring simultaneously. Objectively, examination scores proved to be a positive outcome and, subjectively, feedback from students was overwhelmingly positive. Despite the surging molecular based sciences consuming much of the curricula, full-body dissection anatomy is irreplaceable regarding both surface and architectural, radiological anatomy. Radiology should not be a small adjunct to understand full-body dissection, but rather, full-body dissection
BOOK REVIEW: Quantum-Classical Correspondence: Dynamical Quantization and the Classical Limit
NASA Astrophysics Data System (ADS)
Turner, L.
2004-11-01
In only 150 pages, not counting appendices, references, or the index, this book is one author’s perspective of the massive theoretical and philosophical hurdles in the no-man’s-land separating the classical and quantum domains of physics. It ends with him emphasizing his own theoretical contribution to this area. In his own words, he has attempted to answer: 1. ‘How can we obtain the quantum dynamics of open systems initially described by the equations of motion of classical physics (quantization process)? 2. ‘How can we retrieve classical dynamics from the quantum mechanical equations of motion by means of a classical limiting process (dequantization process)?’ However, this monograph seems overly ambitious. Although the publisher’s description refers to this book as ‘an accessible entrée’, we find that this author scrambles too hastily over the peaks of information that are contained in his large collection of 272 references. Introductory motivating discussions are lacking. Profound ideas are glossed over superficially and shoddily. Equations morph. But no new convincing understanding of the physical world results. The author takes the viewpoint that physical systems are always in interaction with their environment and are thus not isolated and, therefore, not Hamiltonian. This impels him to produce a method of quantization of these stochastic systems without the need of a Hamiltonian. He also has interest in obtaining the classical limit of the quantized results. However, this reviewer does not understand why one needs to consider open systems to understand ‘quantum-classical correspondence’. The author demonstrates his method using various examples of the Smoluchowski form of the Fokker--Planck equation. He then renders these equations in a Wigner representation, uses what he terms ‘an infinitesimality condition’, and associates with a constant having the dimensions of an action. He thereby claims to develop master equations, such as
[Oceanography and King Dom Carlos I's collection of iconography].
Jardim, Maria Estela; Peres, Isabel Marília; Ré, Pedro Barcia; Costa, Fernanda Madalena
2014-01-01
After the Challenger expedition (1872-1878), other nations started to show interest in oceanographic research and organizing their own expeditions. As of 1885, Prince Albert I of Monaco conducted oceanographic campaigns with the collaboration of some of the best marine biologists and physical oceanographers of the day, inventing new techniques and instruments for the oceanographic work. Prince Albert's scientific activity certainly helped kindle the interest of his friend, Dom Carlos I, king of Portugal, in the study of the oceans and marine life. Both shared the need to use photography to document their studies. This article analyzes the role of scientific photography in oceanography, especially in the expeditions organized by the Portuguese monarch.
Child Soldiers and Iconography: Portrayals and (Mis)Representations
ERIC Educational Resources Information Center
Denov, Myriam
2012-01-01
Over the past decade, child soldiers have inundated the popular media. Images of boys armed with AK47s appear ubiquitous, providing a cautionary tale of innocent childhood gone awry. While these representations turn commonly held assumptions of a protected and innocuous childhood on its head, what they conceal is as provocative as what they…
Supernovae in Binary Systems: An Application of Classical Mechanics.
ERIC Educational Resources Information Center
Mitalas, R.
1980-01-01
Presents the supernova explosion in a binary system as an application of classical mechanics. This presentation is intended to illustrate the power of the equivalent one-body problem and provide undergraduate students with a variety of insights into elementary classical mechanics. (HM)
Close Relationship of Ruminant Pestiviruses and Classical Swine Fever Virus
Postel, Alexander; Schmeiser, Stefanie; Oguzoglu, Tuba Cigdem; Indenbirken, Daniela; Alawi, Malik; Fischer, Nicole; Grundhoff, Adam
2015-01-01
To determine why serum from small ruminants infected with ruminant pestiviruses reacted positively to classical swine fever virus (CSFV)–specific diagnostic tests, we analyzed 2 pestiviruses from Turkey. They differed genetically and antigenically from known Pestivirus species and were closely related to CSFV. Cross-reactions would interfere with classical swine fever diagnosis in pigs. PMID:25811683
German Children's Classics: Heirs and Pretenders to an Eclectic Heritage
ERIC Educational Resources Information Center
Doderer, Klaus
1973-01-01
There are no classic children's books, if by classics we mean books that will last forever. Instead, it is a matter of constant reevaluation. At most, we have older works that are still valuable today because they touch upon the human and artistic problems of our time. (Author/SJ)
The Bernoulli or Coanda Conundrum and Other Classical Demonstration Myths
NASA Astrophysics Data System (ADS)
Stille, Dale
2009-11-01
Lecture Demonstration professionals have recently taken a closer look at demonstrations that were traditionally labeled ``Bernoulli Demonstrations'' in most textbooks. This examination has shown that in most cases the Coanda Effect, Magnus Effect, and Entrainment may be better explanations for most of these classic demonstrations. A discussion of other similarly classic demonstrations and some of their problems or misconceptions will also be presented.
Turning Points in the Development of Classical Musicians
ERIC Educational Resources Information Center
Gabor, Elena
2011-01-01
This qualitative study investigated the vocational socialization turning points in families of classical musicians. I sampled and interviewed 20 parent-child dyads, for a total of 46 interviews. Data analysis revealed that classical musicians' experiences were marked by 11 turning points that affected their identification with the occupation:…
In Search of Introductory Psychology's Classic Core Vocabulary.
ERIC Educational Resources Information Center
Griggs, Richard A.; Mitchell, Montserrat C.
2002-01-01
Examines whether there was a common vocabulary present within introductory psychology textbooks during the 1950s and if a classic core vocabulary exists. Reports that no common core existed in the textbooks during the 1950s, but there is a set of 100 classic vocabulary terms. (CMK)
Cicero: A Framework for Multimedia Projects for Classics.
ERIC Educational Resources Information Center
Frischer, Bernard
1986-01-01
This paper focuses on a short term plan for a computerized multimedia expert system in the field of the classics that is under development at the University of California at Los Angeles. Noting both increased enrollments in classics courses and the problems associated with finding textbooks for courses in ancient civilizations that cover a variety…
Planck's radiation law: is a quantum-classical perspective possible?
NASA Astrophysics Data System (ADS)
Marrocco, Michele
2016-05-01
Planck's radiation law provides the solution to the blackbody problem that marks the decline of classical physics and the rise of the quantum theory of the radiation field. Here, we venture to suggest the possibility that classical physics might be equally suitable to deal with the blackbody problem. A classical version of the Planck's radiation law seems to be achievable if we learn from the quantum-classical correspondence between classical Mie theory and quantum-mechanical wave scattering from spherical scatterers (partial wave analysis). This correspondence designs a procedure for countable energy levels of the radiation trapped within the blackbody treated within the multipole approach of classical electrodynamics (in place of the customary and problematic expansion in terms of plane waves that give rise to the ultraviolet catastrophe). In turn, introducing the Boltzmann discretization of energy levels, the tools of classical thermodynamics and statistical theory become available for the task. On the other hand, the final result depends on a free parameter whose physical units are those of an action. Tuning this parameter on the value given by the Planck constant makes the classical result agree with the canonical Planck's radiation law.
Inexpensive Books for Teaching the Classics: 19th Annual List.
ERIC Educational Resources Information Center
Schoenheim, Ursula
1968-01-01
All the materials in this bibliography are designed for use in courses in classical literature in translation, classical civilization, and for supplementary reading in Latin and Greek courses. All the books are in English and are meant for grade levels seven and above. Books are grouped under subheadings which include (1) Authors, Texts,…
The Statistical Interpretation of Classical Thermodynamic Heating and Expansion Processes
ERIC Educational Resources Information Center
Cartier, Stephen F.
2011-01-01
A statistical model has been developed and applied to interpret thermodynamic processes typically presented from the macroscopic, classical perspective. Through this model, students learn and apply the concepts of statistical mechanics, quantum mechanics, and classical thermodynamics in the analysis of the (i) constant volume heating, (ii)…
Supplemental Reading for Ninth Graders: Classic or Young Adult Literature
ERIC Educational Resources Information Center
Hill, Katherine Jane Roney
2012-01-01
The project addressed the debate over supplemental literature: young adult or classic selections to better support teaching ninth graders Tennessee's English I curriculum standards. Research supported both classical and contemporary literature for teaching ninth graders, making it difficult to determine which type of literature might produce…