Tug-of-war between classical and multicenter bonds in H-(Be)n-H species
NASA Astrophysics Data System (ADS)
Lundell, Katie A.; Boldyrev, Alexander I.
2018-05-01
Quantum chemical calculations were performed for beryllium homocatenated compounds [H-(Be)n-H]. Global minimum structures were found using machine searches (Coalescence Kick method) with density functional theory. Chemical bonding analysis was performed with the Adaptive Natural Density Partitioning method. It was found that H-(Be)2-H and H-(Be)3-H clusters are linear with classical two-center two-electron bonds, while for n > 3, three-dimensional structures are more stable with multicenter bonding. Thus, at n = 4, multicenter bonding wins the tug-of-war vs. the classical bonding.
ERIC Educational Resources Information Center
Sevilla, F. J.; Olivares-Quiroz, L.
2012-01-01
In this work, we address the concept of the chemical potential [mu] in classical and quantum gases towards the calculation of the equation of state [mu] = [mu](n, T) where n is the particle density and "T" the absolute temperature using the methods of equilibrium statistical mechanics. Two cases seldom discussed in elementary textbooks are…
A review of promising new immunoassay technology for monitoring forest herbicides
Charles K. McMahon
1993-01-01
Rising costs of classical instrumental methods of chemical analysis coupled with an increasing need for environmental monitoring has lead to the development of highly sensitive, low-cost immunochemical methods of analysis for the detection of environmental contaminants. These methods known simply as immunoassays are chemical assays which use antibodies as reagents. A...
A quantum–quantum Metropolis algorithm
Yung, Man-Hong; Aspuru-Guzik, Alán
2012-01-01
The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature. PMID:22215584
A METHOD TO INCORPORATE ECOLOGY INTO RESIDENCE TIME OF CHEMICALS IN EMBAYMENTS: LOCAL EFFECT TIME
Residence times are classically defined by the physical and chemical aspects of water bodies rather than by their ecological implications. Therefore, a more clear and direct connection between the residence times and ecological effects is necessary to quantitatively relate these ...
Study of Intelligent Secure Chemical Inventory Management System
NASA Astrophysics Data System (ADS)
Shukran, Mohd Afizi Mohd; Naim Abdullah, Muhammad; Nazri Ismail, Mohd; Maskat, Kamaruzaman; Isa, Mohd Rizal Mohd; Shahfee Ishak, Muhammad; Adib Khairuddin, Muhamad
2017-08-01
Chemical inventory management system has been experiencing a new revolution from traditional inventory system which is manual to an automated inventory management system. In this paper, some review of the classic and modern approaches to chemical inventory management system has been discussed. This paper also describe about both type of inventory management. After a comparative analysis of the traditional method and automated method, it can be said that both methods have some distinctive characteristics. Moreover, the automated inventory management method has higher accuracy of calculation because the calculations are handled by software, eliminating possible errors and saving time. The automated inventory system also allows users and administrators to track the availability, location and consumption of chemicals. The study of this paper can provide forceful review analysis support for the chemical inventory management related research.
NASA Astrophysics Data System (ADS)
Andersen, A.; Govind, N.; Laskin, A.
2017-12-01
Mineral surfaces have been implicated as potential protectors of soil organic matter (SOM) against decomposition and ultimate mineralization to small molecules which can provide nutrients for plants and soil microbes and can also contribute to the Earth's elemental cycles. SOM is a complex mixture of organic molecules of biological origin at varying degrees of decomposition and can, itself, self-assemble in such a way as to expose some biomolecule types to biotic and abiotic attack while protecting other biomolecule types. The organization of SOM and SOM with mineral surfaces and solvated metal ions is driven by an interplay of van der Waals and electrostatic interactions leading to partitioning of hydrophilic (e.g. sugars) and hydrophobic (e.g., lipids) SOM components that can be bridged with amphiphilic molecules (e.g., proteins). Classical molecular dynamics simulations can shed light on assemblies of organic molecules alone or complexation with mineral surfaces. The role of chemical reactions is also an important consideration in potential chemical changes of the organic species such as oxidation/reduction, degradation, chemisorption to mineral surfaces, and complexation with solvated metal ions to form organometallic systems. For the study of chemical reactivity, quantum chemistry methods can be employed and combined with structural insight provided by classical MD simulations. Moreover, quantum chemistry can also simulate spectroscopic signatures based on chemical structure and is a valuable tool in interpreting spectra from, notably, x-ray absorption spectroscopy (XAS). In this presentation, we will discuss our classical MD and quantum chemistry findings on a model SOM system interacting with mineral surfaces and solvated metal ions.
NASA Technical Reports Server (NTRS)
Hong, Z. C.
1975-01-01
A review of various methods of calculating turbulent chemically reacting flow such as the Green Function, Navier-Stokes equation, and others is presented. Nonequilibrium degrees of freedom were employed to study the mixing behavior of a multiscale turbulence field. Classical and modern theories are discussed.
Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu
2008-01-01
A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.
Metal Ion Modeling Using Classical Mechanics
2017-01-01
Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509
Mining chemical reactions using neighborhood behavior and condensed graphs of reactions approaches.
de Luca, Aurélie; Horvath, Dragos; Marcou, Gilles; Solov'ev, Vitaly; Varnek, Alexandre
2012-09-24
This work addresses the problem of similarity search and classification of chemical reactions using Neighborhood Behavior (NB) and Condensed Graphs of Reaction (CGR) approaches. The CGR formalism represents chemical reactions as a classical molecular graph with dynamic bonds, enabling descriptor calculations on this graph. Different types of the ISIDA fragment descriptors generated for CGRs in combination with two metrics--Tanimoto and Euclidean--were considered as chemical spaces, to serve for reaction dissimilarity scoring. The NB method has been used to select an optimal combination of descriptors which distinguish different types of chemical reactions in a database containing 8544 reactions of 9 classes. Relevance of NB analysis has been validated in generic (multiclass) similarity search and in clustering with Self-Organizing Maps (SOM). NB-compliant sets of descriptors were shown to display enhanced mapping propensities, allowing the construction of better Self-Organizing Maps and similarity searches (NB and classical similarity search criteria--AUC ROC--correlate at a level of 0.7). The analysis of the SOM clusters proved chemically meaningful CGR substructures representing specific reaction signatures.
Nonadiabatic Molecular Dynamics and Orthogonality Constrained Density Functional Theory
NASA Astrophysics Data System (ADS)
Shushkov, Philip Georgiev
The exact quantum dynamics of realistic, multidimensional systems remains a formidable computational challenge. In many chemical processes, however, quantum effects such as tunneling, zero-point energy quantization, and nonadiabatic transitions play an important role. Therefore, approximate approaches that improve on the classical mechanical framework are of special practical interest. We propose a novel ring polymer surface hopping method for the calculation of chemical rate constants. The method blends two approaches, namely ring polymer molecular dynamics that accounts for tunneling and zero-point energy quantization, and surface hopping that incorporates nonadiabatic transitions. We test the method against exact quantum mechanical calculations for a one-dimensional, two-state model system. The method reproduces quite accurately the tunneling contribution to the rate and the distribution of reactants between the electronic states for this model system. Semiclassical instanton theory, an approach related to ring polymer molecular dynamics, accounts for tunneling by the use of periodic classical trajectories on the inverted potential energy surface. We study a model of electron transfer in solution, a chemical process where nonadiabatic events are prominent. By representing the tunneling electron with a ring polymer, we derive Marcus theory of electron transfer from semiclassical instanton theory after a careful analysis of the tunneling mode. We demonstrate that semiclassical instanton theory can recover the limit of Fermi's Golden Rule rate in a low-temperature, deep-tunneling regime. Mixed quantum-classical dynamics treats a few important degrees of freedom quantum mechanically, while classical mechanics describes affordably the rest of the system. But the interface of quantum and classical description is a challenging theoretical problem, especially for low-energy chemical processes. We therefore focus on the semiclassical limit of the coupled nuclear-electronic dynamics. We show that the time-dependent Schrodinger equation for the electrons employed in the widely used fewest switches surface hopping method is applicable only in the limit of nearly identical classical trajectories on the different potential energy surfaces. We propose a short-time decoupling algorithm that restricts the use of the Schrodinger equation only to the interaction regions. We test the short-time approximation on three model systems against exact quantum-mechanical calculations. The approximation improves the performance of the surface hopping approach. Nonadiabatic molecular dynamics simulations require the efficient and accurate computation of ground and excited state potential energy surfaces. Unlike the ground state calculations where standard methods exist, the computation of excited state properties is a challenging task. We employ time-independent density functional theory, in which the excited state energy is represented as a functional of the total density. We suggest an adiabatic-like approximation that simplifies the excited state exchange-correlation functional. We also derive a set of minimal conditions to impose exactly the orthogonality of the excited state Kohn-Sham determinant to the ground state determinant. This leads to an efficient, variational algorithm for the self-consistent optimization of the excited state energy. Finally, we assess the quality of the excitation energies obtained by the new method on a set of 28 organic molecules. The new approach provides results of similar accuracy to time-dependent density functional theory.
Discrete stochastic simulation methods for chemically reacting systems.
Cao, Yang; Samuels, David C
2009-01-01
Discrete stochastic chemical kinetics describe the time evolution of a chemically reacting system by taking into account the fact that, in reality, chemical species are present with integer populations and exhibit some degree of randomness in their dynamical behavior. In recent years, with the development of new techniques to study biochemistry dynamics in a single cell, there are increasing studies using this approach to chemical kinetics in cellular systems, where the small copy number of some reactant species in the cell may lead to deviations from the predictions of the deterministic differential equations of classical chemical kinetics. This chapter reviews the fundamental theory related to stochastic chemical kinetics and several simulation methods based on that theory. We focus on nonstiff biochemical systems and the two most important discrete stochastic simulation methods: Gillespie's stochastic simulation algorithm (SSA) and the tau-leaping method. Different implementation strategies of these two methods are discussed. Then we recommend a relatively simple and efficient strategy that combines the strengths of the two methods: the hybrid SSA/tau-leaping method. The implementation details of the hybrid strategy are given here and a related software package is introduced. Finally, the hybrid method is applied to simple biochemical systems as a demonstration of its application.
NASA Technical Reports Server (NTRS)
Lindh, Roland; Rice, Julia E.; Lee, Timothy J.
1991-01-01
The energy separation between the classical and nonclassical forms of protonated acetylene has been reinvestigated in light of the recent experimentally deduced lower bound to this value of 6.0 kcal/mol. The objective of the present study is to use state-of-the-art ab initio quantum mechanical methods to establish this energy difference to within chemical accuracy (i.e., about 1 kcal/mol). The one-particle basis sets include up to g-type functions and the electron correlation methods include single and double excitation coupled-cluster (CCSD), the CCSD(T) extension, multireference configuration interaction, and the averaged coupled-pair functional methods. A correction for zero-point vibrational energies has also been included, yielding a best estimate for the energy difference between the classical and nonclassical forms of 3.7 + or - 1.3 kcal/mol.
Thermodynamic properties for applications in chemical industry via classical force fields.
Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran
2012-01-01
Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.
Chemically intuited, large-scale screening of MOFs by machine learning techniques
NASA Astrophysics Data System (ADS)
Borboudakis, Giorgos; Stergiannakos, Taxiarchis; Frysali, Maria; Klontzas, Emmanuel; Tsamardinos, Ioannis; Froudakis, George E.
2017-10-01
A novel computational methodology for large-scale screening of MOFs is applied to gas storage with the use of machine learning technologies. This approach is a promising trade-off between the accuracy of ab initio methods and the speed of classical approaches, strategically combined with chemical intuition. The results demonstrate that the chemical properties of MOFs are indeed predictable (stochastically, not deterministically) using machine learning methods and automated analysis protocols, with the accuracy of predictions increasing with sample size. Our initial results indicate that this methodology is promising to apply not only to gas storage in MOFs but in many other material science projects.
Classical molecular dynamics simulation of electronically non-adiabatic processes.
Miller, William H; Cotton, Stephen J
2016-12-22
Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).
Exact and approximate stochastic simulation of intracellular calcium dynamics.
Wieder, Nicolas; Fink, Rainer H A; Wegner, Frederic von
2011-01-01
In simulations of chemical systems, the main task is to find an exact or approximate solution of the chemical master equation (CME) that satisfies certain constraints with respect to computation time and accuracy. While Brownian motion simulations of single molecules are often too time consuming to represent the mesoscopic level, the classical Gillespie algorithm is a stochastically exact algorithm that provides satisfying results in the representation of calcium microdomains. Gillespie's algorithm can be approximated via the tau-leap method and the chemical Langevin equation (CLE). Both methods lead to a substantial acceleration in computation time and a relatively small decrease in accuracy. Elimination of the noise terms leads to the classical, deterministic reaction rate equations (RRE). For complex multiscale systems, hybrid simulations are increasingly proposed to combine the advantages of stochastic and deterministic algorithms. An often used exemplary cell type in this context are striated muscle cells (e.g., cardiac and skeletal muscle cells). The properties of these cells are well described and they express many common calcium-dependent signaling pathways. The purpose of the present paper is to provide an overview of the aforementioned simulation approaches and their mutual relationships in the spectrum ranging from stochastic to deterministic algorithms.
Polynomial-time quantum algorithm for the simulation of chemical dynamics
Kassal, Ivan; Jordan, Stephen P.; Love, Peter J.; Mohseni, Masoud; Aspuru-Guzik, Alán
2008-01-01
The computational cost of exact methods for quantum simulation using classical computers grows exponentially with system size. As a consequence, these techniques can be applied only to small systems. By contrast, we demonstrate that quantum computers could exactly simulate chemical reactions in polynomial time. Our algorithm uses the split-operator approach and explicitly simulates all electron-nuclear and interelectronic interactions in quadratic time. Surprisingly, this treatment is not only more accurate than the Born–Oppenheimer approximation but faster and more efficient as well, for all reactions with more than about four atoms. This is the case even though the entire electronic wave function is propagated on a grid with appropriately short time steps. Although the preparation and measurement of arbitrary states on a quantum computer is inefficient, here we demonstrate how to prepare states of chemical interest efficiently. We also show how to efficiently obtain chemically relevant observables, such as state-to-state transition probabilities and thermal reaction rates. Quantum computers using these techniques could outperform current classical computers with 100 qubits. PMID:19033207
Hojnik, Nataša; Cvelbar, Uroš; Tavčar-Kalcher, Gabrijela; Walsh, James L; Križaj, Igor
2017-04-28
Mycotoxins are secondary metabolites produced by several filamentous fungi, which frequently contaminate our food, and can result in human diseases affecting vital systems such as the nervous and immune systems. They can also trigger various forms of cancer. Intensive food production is contributing to incorrect handling, transport and storage of the food, resulting in increased levels of mycotoxin contamination. Mycotoxins are structurally very diverse molecules necessitating versatile food decontamination approaches, which are grouped into physical, chemical and biological techniques. In this review, a new and promising approach involving the use of cold atmospheric pressure plasma is considered, which may overcome multiple weaknesses associated with the classical methods. In addition to its mycotoxin destruction efficiency, cold atmospheric pressure plasma is cost effective, ecologically neutral and has a negligible effect on the quality of food products following treatment in comparison to classical methods.
NASA Astrophysics Data System (ADS)
Dinç, Erdal; Kanbur, Murat; Baleanu, Dumitru
2007-10-01
Comparative simultaneous determination of chlortetracycline and benzocaine in the commercial veterinary powder product was carried out by continuous wavelet transform (CWT) and classical derivative transform (or classical derivative spectrophotometry). In this quantitative spectral analysis, two proposed analytical methods do not require any chemical separation process. In the first step, several wavelet families were tested to find an optimal CWT for the overlapping signal processing of the analyzed compounds. Subsequently, we observed that the coiflets (COIF-CWT) method with dilation parameter, a = 400, gives suitable results for this analytical application. For a comparison, the classical derivative spectrophotometry (CDS) approach was also applied to the simultaneous quantitative resolution of the same analytical problem. Calibration functions were obtained by measuring the transform amplitudes corresponding to zero-crossing points for both CWT and CDS methods. The utility of these two analytical approaches were verified by analyzing various synthetic mixtures consisting of chlortetracycline and benzocaine and they were applied to the real samples consisting of veterinary powder formulation. The experimental results obtained from the COIF-CWT approach were statistically compared with those obtained by classical derivative spectrophotometry and successful results were reported.
Bond breaking in epoxy systems: A combined QM/MM approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, Stephen A.; Ecker, Allison M.; Berry, Rajiv J., E-mail: Rajiv.Berry@us.af.mil
2016-06-28
A novel method to combine quantum mechanics (QM) and molecular mechanics has been developed to accurately and efficiently account for covalent bond breaking in polymer systems under high strain without the use of predetermined break locations. Use of this method will provide a better fundamental understanding of the mechano-chemical origins of fracture in thermosets. Since classical force fields cannot accurately account for bond breaking, and QM is too demanding to simulate large systems, a hybrid approach is required. In the method presented here, strain is applied to the system using a classical force field, and all bond lengths are monitored.more » When a bond is stretched past a threshold value, a zone surrounding the bond is used in a QM energy minimization to determine which, if any, bonds break. The QM results are then used to reconstitute the system to continue the classical simulation at progressively larger strain until another QM calculation is triggered. In this way, a QM calculation is only computed when and where needed, allowing for efficient simulations. A robust QM method for energy minimization has been determined, as well as appropriate values for the QM zone size and the threshold bond length. Compute times do not differ dramatically from classical molecular mechanical simulations.« less
NASA Astrophysics Data System (ADS)
Jara, Daniel; de Dreuzy, Jean-Raynald; Cochepin, Benoit
2017-12-01
Reactive transport modeling contributes to understand geophysical and geochemical processes in subsurface environments. Operator splitting methods have been proposed as non-intrusive coupling techniques that optimize the use of existing chemistry and transport codes. In this spirit, we propose a coupler relying on external geochemical and transport codes with appropriate operator segmentation that enables possible developments of additional splitting methods. We provide an object-oriented implementation in TReacLab developed in the MATLAB environment in a free open source frame with an accessible repository. TReacLab contains classical coupling methods, template interfaces and calling functions for two classical transport and reactive software (PHREEQC and COMSOL). It is tested on four classical benchmarks with homogeneous and heterogeneous reactions at equilibrium or kinetically-controlled. We show that full decoupling to the implementation level has a cost in terms of accuracy compared to more integrated and optimized codes. Use of non-intrusive implementations like TReacLab are still justified for coupling independent transport and chemical software at a minimal development effort but should be systematically and carefully assessed.
Understanding the biological effects of exposures to chemicals in the environment relies on classical methods and emerging technologies in the areas of genomics, proteomics, and metabonomics. Linkages between the historical and newer toxicological tools are currently being devel...
Engel, Hamutal; Doron, Dvir; Kohen, Amnon; Major, Dan Thomas
2012-04-10
The inclusion of nuclear quantum effects such as zero-point energy and tunneling is of great importance in studying condensed phase chemical reactions involving the transfer of protons, hydrogen atoms, and hydride ions. In the current work, we derive an efficient quantum simulation approach for the computation of the momentum distribution in condensed phase chemical reactions. The method is based on a quantum-classical approach wherein quantum and classical simulations are performed separately. The classical simulations use standard sampling techniques, whereas the quantum simulations employ an open polymer chain path integral formulation which is computed using an efficient Monte Carlo staging algorithm. The approach is validated by applying it to a one-dimensional harmonic oscillator and symmetric double-well potential. Subsequently, the method is applied to the dihydrofolate reductase (DHFR) catalyzed reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to yield S-5,6,7,8-tetrahydrofolate and NADP(+). The key chemical step in the catalytic cycle of DHFR involves a stereospecific hydride transfer. In order to estimate the amount of quantum delocalization, we compute the position and momentum distributions for the transferring hydride ion in the reactant state (RS) and transition state (TS) using a recently developed hybrid semiempirical quantum mechanics-molecular mechanics potential energy surface. Additionally, we examine the effect of compression of the donor-acceptor distance (DAD) in the TS on the momentum distribution. The present results suggest differential quantum delocalization in the RS and TS, as well as reduced tunneling upon DAD compression.
NASA Astrophysics Data System (ADS)
Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei
2018-04-01
A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.
ERIC Educational Resources Information Center
Ponsa, Sergio; Sanchez, Antoni
2011-01-01
At present, due to the overall adaptation to the European Higher Education Area (EHEA), a new concept regarding the teaching methodology was thought to be essential for engineering subjects. In this paper we describe our experience teaching the altered content of the courses on two classical subjects; Chemical Reactors (Chemical Engineering) and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Rachel M; Tfaily, Malak M
These data are provided in support of the Commentary, Advanced molecular techniques provide a rigorous method for characterizing organic matter quality in complex systems, Wilson and Tfaily (2018). Measurement results demonstrate that optical characterization of peatland dissolved organic matter (DOM) may not fully capture classically identified chemical characteristics and may, therefore, not be the best measure of organic matter quality.
The application of computational chemistry to lignin
Thomas Elder; Laura Berstis; Nele Sophie Zwirchmayr; Gregg T. Beckham; Michael F. Crowley
2017-01-01
Computational chemical methods have become an important technique in the examination of the structure and reactivity of lignin. The calculations can be based either on classical or quantum mechanics, with concomitant differences in computational intensity and size restrictions. The current paper will concentrate on results developed from the latter type of calculations...
Sellers, Michael S; Lísal, Martin; Brennan, John K
2016-03-21
We present an extension of various free-energy methodologies to determine the chemical potential of the solid and liquid phases of a fully-flexible molecule using classical simulation. The methods are applied to the Smith-Bharadwaj atomistic potential representation of cyclotrimethylene trinitramine (RDX), a well-studied energetic material, to accurately determine the solid and liquid phase Gibbs free energies, and the melting point (Tm). We outline an efficient technique to find the absolute chemical potential and melting point of a fully-flexible molecule using one set of simulations to compute the solid absolute chemical potential and one set of simulations to compute the solid-liquid free energy difference. With this combination, only a handful of simulations are needed, whereby the absolute quantities of the chemical potentials are obtained, for use in other property calculations, such as the characterization of crystal polymorphs or the determination of the entropy. Using the LAMMPS molecular simulator, the Frenkel and Ladd and pseudo-supercritical path techniques are adapted to generate 3rd order fits of the solid and liquid chemical potentials. Results yield the thermodynamic melting point Tm = 488.75 K at 1.0 atm. We also validate these calculations and compare this melting point to one obtained from a typical superheated simulation technique.
Wolf, Paul L
2005-11-01
Many myths, theories, and speculations exist as to the exact etiology of the diseases, drugs, and chemicals that affected the creativity and productivity of famous sculptors, classic painters, classic music composers, and authors. To emphasize the importance of a modern clinical chemistry laboratory and hematology coagulation laboratory in interpreting the basis for the creativity and productivity of various artists. This investigation analyzed the lives of famous artists, including classical sculptor Benvenuto Cellini; classical sculptor and painter Michelangelo Buonarroti; classic painters Ivar Arosenius, Edvard Munch, and Vincent Van Gogh; classic music composer Louis Hector Berlioz; and English essayist Thomas De Quincey. The analysis includes their illnesses, their famous artistic works, and the modern clinical chemistry, toxicology, and hematology coagulation tests that would have been important in the diagnosis and treatment of their diseases. The associations between illness and art may be close and many because of both the actual physical limitations of the artists and their mental adaptation to disease. Although they were ill, many continued to be productive. If modern clinical chemistry, toxicology, and hematology coagulation laboratories had existed during the lifetimes of these various well-known individuals, clinical laboratories might have unraveled the mysteries of their afflictions. The illnesses these people endured probably could have been ascertained and perhaps treated. Diseases, drugs, and chemicals may have influenced their creativity and productivity.
Skiera, Christina; Steliopoulos, Panagiotis; Kuballa, Thomas; Diehl, Bernd; Holzgrabe, Ulrike
2014-05-01
Indices like acid value, peroxide value, and saponification value play an important role in quality control and identification of lipids. Requirements on these parameters are given by the monographs of the European pharmacopeia. (1)H NMR spectroscopy provides a fast and simple alternative to these classical approaches. In the present work a new (1)H NMR approach to determine the acid value is described. The method was validated using a statistical approach based on a variance components model. The performance under repeatability and in-house reproducibility conditions was assessed. We applied this (1)H NMR assay to a wide range of different fatty oils. A total of 305 oil and fat samples were examined by both the classical and the NMR method. Except for hard fat, the data obtained by the two methods were in good agreement. The (1)H NMR method was adapted to analyse waxes and oleyloleat. Furthermore, the effect of solvent and in the case of castor oil the effect of the oil matrix on line broadening and chemical shift of the carboxyl group signal are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Interaction between benzenedithiolate and gold: Classical force field for chemical bonding
NASA Astrophysics Data System (ADS)
Leng, Yongsheng; Krstić, Predrag S.; Wells, Jack C.; Cummings, Peter T.; Dean, David J.
2005-06-01
We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as ˜100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.
Interaction between benzenedithiolate and gold: classical force field for chemical bonding.
Leng, Yongsheng; Krstić, Predrag S; Wells, Jack C; Cummings, Peter T; Dean, David J
2005-06-22
We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as approximately 100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.
The interdependence between screening methods and screening libraries.
Shelat, Anang A; Guy, R Kiplin
2007-06-01
The most common methods for discovery of chemical compounds capable of manipulating biological function involves some form of screening. The success of such screens is highly dependent on the chemical materials - commonly referred to as libraries - that are assayed. Classic methods for the design of screening libraries have depended on knowledge of target structure and relevant pharmacophores for target focus, and on simple count-based measures to assess other properties. The recent proliferation of two novel screening paradigms, structure-based screening and high-content screening, prompts a profound rethink about the ideal composition of small-molecule screening libraries. We suggest that currently utilized libraries are not optimal for addressing new targets by high-throughput screening, or complex phenotypes by high-content screening.
Realistic finite temperature simulations of magnetic systems using quantum statistics
NASA Astrophysics Data System (ADS)
Bergqvist, Lars; Bergman, Anders
2018-01-01
We have performed realistic atomistic simulations at finite temperatures using Monte Carlo and atomistic spin dynamics simulations incorporating quantum (Bose-Einstein) statistics. The description is much improved at low temperatures compared to classical (Boltzmann) statistics normally used in these kind of simulations, while at higher temperatures the classical statistics are recovered. This corrected low-temperature description is reflected in both magnetization and the magnetic specific heat, the latter allowing for improved modeling of the magnetic contribution to free energies. A central property in the method is the magnon density of states at finite temperatures, and we have compared several different implementations for obtaining it. The method has no restrictions regarding chemical and magnetic order of the considered materials. This is demonstrated by applying the method to elemental ferromagnetic systems, including Fe and Ni, as well as Fe-Co random alloys and the ferrimagnetic system GdFe3.
Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification
Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander
2013-01-01
Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138
NASA Astrophysics Data System (ADS)
Xing, Guan; Wu, Guo-Zhen
2001-02-01
A classical coset Hamiltonian is introduced for the system of one electron in multi-sites. By this Hamiltonian, the dynamical behaviour of the electronic motion can be readily simulated. The simulation reproduces the retardation of the electron density decay in a lattice with site energies randomly distributed - an analogy with Anderson localization. This algorithm is also applied to reproduce the Hammett equation which relates the reaction rate with the property of the substitutions in the organic chemical reactions. The advantages and shortcomings of this algorithm, as contrasted with traditional quantum methods such as the molecular orbital theory, are also discussed.
Reduced order surrogate modelling (ROSM) of high dimensional deterministic simulations
NASA Astrophysics Data System (ADS)
Mitry, Mina
Often, computationally expensive engineering simulations can prohibit the engineering design process. As a result, designers may turn to a less computationally demanding approximate, or surrogate, model to facilitate their design process. However, owing to the the curse of dimensionality, classical surrogate models become too computationally expensive for high dimensional data. To address this limitation of classical methods, we develop linear and non-linear Reduced Order Surrogate Modelling (ROSM) techniques. Two algorithms are presented, which are based on a combination of linear/kernel principal component analysis and radial basis functions. These algorithms are applied to subsonic and transonic aerodynamic data, as well as a model for a chemical spill in a channel. The results of this thesis show that ROSM can provide a significant computational benefit over classical surrogate modelling, sometimes at the expense of a minor loss in accuracy.
Shahbazi Mojarrad, Javid; Zamani, Zahra; Nazemiyeh, Hossein; Ghasemi, Saeed; Asgari, Davoud
2011-01-01
Introduction: We report the synthesis of novel 1,4-dihydropyridine derivatives containing biphenyl-2'-tetrazole moieties. We hypothesized that merging the key structural elements present in an AT1 receptor antagonist with key structural elements in 1,4-dihydropyridine calcium channel blockers would yield novel analogs with potential dual activity for both receptors. This strategy led to the design and synthesis of dialkyl 1,4-dihydro-2,6-dimethyl-4-[2-n-alkyl-1-[2΄-(1H-tetrazole-5-yl) biphenyl -4-yl] methyl] imidazole-4(or 5)-yl]- 3, 5-pyridinedicarboxylate analogs. Methods: These compounds were obtained by two methods starting from biphenyltetrazolyl-4-(or 5)-imidazolecarboxaldehyde intermediates employing in classical Hantzsch condensation reaction. In the first method, triphenylmethyl protecting group of 4- or 5-carboxaldehyde intermediate was first removed in acidic media and then classical Hantzsch reaction was employed in order to obtain the final products. In the second method, without further deprotection process, protected 4- or 5-carboxaldehyde intermediate directly was used in Hantzsch reaction. Results: The second method was more efficient than the first method since the deprotection and ring closure reaction occurs simultaneously in one pot. Conclusion: Eight novel dihydropridines analogs were synthesized using classic Hantzsch condensation reaction. Chemical structures of the compounds were characterized by 1H NMR, infrared and mass spectroscopy. PMID:24312750
Unicorns in the world of chemical bonding models.
Frenking, Gernot; Krapp, Andreas
2007-01-15
The appearance and the significance of heuristically developed bonding models are compared with the phenomenon of unicorns in mythical saga. It is argued that classical bonding models played an essential role for the development of the chemical science providing the language which is spoken in the territory of chemistry. The advent and the further development of quantum chemistry demands some restrictions and boundary conditions for classical chemical bonding models, which will continue to be integral parts of chemistry. Copyright (c) 2006 Wiley Periodicals, Inc.
Wunderli, S; Fortunato, G; Reichmuth, A; Richard, Ph
2003-06-01
A new method to correct for the largest systematic influence in mass determination-air buoyancy-is outlined. A full description of the most relevant influence parameters is given and the combined measurement uncertainty is evaluated according to the ISO-GUM approach [1]. A new correction method for air buoyancy using an artefact is presented. This method has the advantage that only a mass artefact is used to correct for air buoyancy. The classical approach demands the determination of the air density and therefore suitable equipment to measure at least the air temperature, the air pressure and the relative air humidity within the demanded uncertainties (i.e. three independent measurement tasks have to be performed simultaneously). The calculated uncertainty is lower for the classical method. However a field laboratory may not always be in possession of fully traceable measurement systems for these room climatic parameters.A comparison of three approaches applied to the calculation of the combined uncertainty of mass values is presented. Namely the classical determination of air buoyancy, the artefact method, and the neglecting of this systematic effect as proposed in the new EURACHEM/CITAC guide [2]. The artefact method is suitable for high-precision measurement in analytical chemistry and especially for the production of certified reference materials, reference values and analytical chemical reference materials. The method could also be used either for volume determination of solids or for air density measurement by an independent method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Da; Zheng, Bin; Lin, Guang
2014-08-29
We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is themore » number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.« less
The ReaxFF reactive force-field: Development, applications, and future directions
Senftle, Thomas; Hong, Sungwook; Islam, Md Mahbubul; ...
2016-03-04
The reactive force-field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties. Methods based on the principles of quantum mechanics (QM), while offering valuable theoretical guidance at the electronic level, are often too computationally intense for simulations that consider the full dynamic evolution of a system. Alternatively, empirical interatomic potentials that are based on classical principles require significantly fewer computational resources, which enables simulations to better describe dynamic processes over longer timeframes and on larger scales. Such methods, however, typically require a predefined connectivity between atoms, precluding simulations that involve reactive events. The ReaxFFmore » method was developed to help bridge this gap. Approaching the gap from the classical side, ReaxFF casts the empirical interatomic potential within a bond-order formalism, thus implicitly describing chemical bonding without expensive QM calculations. As a result, this article provides an overview of the development, application, and future directions of the ReaxFF method.« less
NASA Astrophysics Data System (ADS)
Vincenzo, F.; Matteucci, F.; Spitoni, E.
2017-04-01
We present a theoretical method for solving the chemical evolution of galaxies by assuming an instantaneous recycling approximation for chemical elements restored by massive stars and the delay time distribution formalism for delayed chemical enrichment by Type Ia Supernovae. The galaxy gas mass assembly history, together with the assumed stellar yields and initial mass function, represents the starting point of this method. We derive a simple and general equation, which closely relates the Laplace transforms of the galaxy gas accretion history and star formation history, which can be used to simplify the problem of retrieving these quantities in the galaxy evolution models assuming a linear Schmidt-Kennicutt law. We find that - once the galaxy star formation history has been reconstructed from our assumptions - the differential equation for the evolution of the chemical element X can be suitably solved with classical methods. We apply our model to reproduce the [O/Fe] and [Si/Fe] versus [Fe/H] chemical abundance patterns as observed at the solar neighbourhood by assuming a decaying exponential infall rate of gas and different delay time distributions for Type Ia Supernovae; we also explore the effect of assuming a non-linear Schmidt-Kennicutt law, with the index of the power law being k = 1.4. Although approximate, we conclude that our model with the single-degenerate scenario for Type Ia Supernovae provides the best agreement with the observed set of data. Our method can be used by other complementary galaxy stellar population synthesis models to predict also the chemical evolution of galaxies.
Exchange repulsive potential adaptable for electronic structure changes during chemical reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp
2015-04-28
Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as themore » main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase.« less
Genovino, Julien; Lütz, Stephan; Sames, Dalibor; Touré, B Barry
2013-08-21
The isolation, quantitation, and characterization of drug metabolites in biological fluids remain challenging. Rapid access to oxidized drugs could facilitate metabolite identification and enable early pharmacology and toxicity studies. Herein, we compared biotransformations to classical and new chemical C-H oxidation methods using oxcarbazepine, naproxen, and an early compound hit (phthalazine 1). These studies illustrated the low preparative efficacy of biotransformations and the inability of chemical methods to oxidize complex pharmaceuticals. We also disclose an aerobic catalytic protocole (CuI/air) to oxidize tertiary amines and benzylic CH's in drugs. The reaction tolerates a broad range of functionalities and displays a high level of chemoselectivity, which is not generally explained by the strength of the C-H bonds but by the individual structural chemotype. This study represents a first step toward establishing a chemical toolkit (chemotransformations) that can selectively oxidize C-H bonds in complex pharmaceuticals and rapidly deliver drug metabolites.
Roto-chemical heating in a neutron star with fall-back disc accretion
NASA Astrophysics Data System (ADS)
Wei, Wei; Liu, Xi-Wei; Zheng, Xiao-Ping
2018-07-01
Recent research on the classical pulsar B0950+08 demonstrates that the explanation of its high surface temperature by roto-chemical heating encounters some difficulties. We assume that there is a fall-back disc around the newborn neutron star, which originates from the supernova ejecta and influences the spin and magnetic evolution of the star. By taking into account disc accretion and magnetic field evolution simultaneously, the effect of the fall-back disc accretion process on the roto-chemical heating in the neutron star is studied. The results show that there are two roto-chemical deviation phases (spin-up deviation and spin-down deviation), but that only the spin-down deviation leads to heating. The specific cooling curve depends on the accretion disc mass, the initial magnetic field and the magnetic field decay rate. Most importantly, the observations of surface temperature, magnetic field strength and spin period of the classical pulsar B0950+08 are well explained by the accretion roto-chemical heating model. The fall-back accretion process is important in roto-chemical heating for explanations of classical pulsars with high temperature. Given the absence of any evidence of fall-back accretion on to B0950+08, our study is purely hypothetical.
Wang, Ting; Li, Weiying; Zheng, Xiaofeng; Lin, Zhifen; Kong, Deyang
2014-02-01
During the last past decades, there is an increasing number of studies about estrogenic activities of the environmental pollutants on amphibians and many determination methods have been proposed. However, these determination methods are time-consuming and expensive, and a rapid and simple method to screen and test the chemicals for estrogenic activities to amphibians is therefore imperative. Herein is proposed a new decision tree formulated not only with physicochemical parameters but also a biological parameter that was successfully used to screen estrogenic activities of the chemicals on amphibians. The biological parameter, CDOCKER interaction energy (Ebinding ) between chemicals and the target proteins was calculated based on the method of molecular docking, and it was used to revise the decision tree formulated by Hong only with physicochemical parameters for screening estrogenic activity of chemicals in rat. According to the correlation between Ebinding of rat and Xenopus laevis, a new decision tree for estrogenic activities in Xenopus laevis is finally proposed. Then it was validated by using the randomly 8 chemicals which can be frequently exposed to Xenopus laevis, and the agreement between the results from the new decision tree and the ones from experiments is generally satisfactory. Consequently, the new decision tree can be used to screen the estrogenic activities of the chemicals, and combinational use of the Ebinding and classical physicochemical parameters can greatly improves Hong's decision tree. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reactive Collisions and Final State Analysis in Hypersonic Flight Regime
2016-09-13
Kelvin.[7] The gas-phase, surface reactions and energy transfer at these tempera- tures are essentially uncharacterized and the experimental methodologies...high temperatures (1000 to 20000 K) and compared with results from experimentally derived thermodynamics quantities from the NASA CEA (NASA Chemical...with a reproducing kernel Hilbert space (RKHS) method[13] combined with Legendre polynomials; (2) quasi classical trajectory (QCT) calculations to study
Nonlinear scalar forcing based on a reaction analogy
NASA Astrophysics Data System (ADS)
Daniel, Don; Livescu, Daniel
2017-11-01
We present a novel reaction analogy (RA) based forcing method for generating stationary passive scalar fields in incompressible turbulence. The new method can produce more general scalar PDFs (e.g. double-delta) than current methods, while ensuring that scalar fields remain bounded, unlike existent forcing methodologies that can potentially violate naturally existing bounds. Such features are useful for generating initial fields in non-premixed combustion or for studying non-Gaussian scalar turbulence. The RA method mathematically models hypothetical chemical reactions that convert reactants in a mixed state back into its pure unmixed components. Various types of chemical reactions are formulated and the corresponding mathematical expressions derived. For large values of the scalar dissipation rate, the method produces statistically steady double-delta scalar PDFs. Gaussian scalar statistics are recovered for small values of the scalar dissipation rate. In contrast, classical forcing methods consistently produce unimodal Gaussian scalar fields. The ability of the new method to produce fully developed scalar fields is discussed using 2563, 5123, and 10243 periodic box simulations.
Vasudev, Milana C; Anderson, Kyle D; Bunning, Timothy J; Tsukruk, Vladimir V; Naik, Rajesh R
2013-05-22
Chemical vapor deposition (CVD) has been used historically for the fabrication of thin films composed of inorganic materials. But the advent of specialized techniques such as plasma-enhanced chemical vapor deposition (PECVD) has extended this deposition technique to various monomers. More specifically, the deposition of polymers of responsive materials, biocompatible polymers, and biomaterials has made PECVD attractive for the integration of biotic and abiotic systems. This review focuses on the mechanisms of thin-film growth using low-pressure PECVD and current applications of classic PECVD thin films of organic and inorganic materials in biological environments. The last part of the review explores the novel application of low-pressure PECVD in the deposition of biological materials.
Mycotoxin Decontamination of Food: Cold Atmospheric Pressure Plasma versus “Classic” Decontamination
Hojnik, Nataša; Cvelbar, Uroš; Tavčar-Kalcher, Gabrijela; Walsh, James L.; Križaj, Igor
2017-01-01
Mycotoxins are secondary metabolites produced by several filamentous fungi, which frequently contaminate our food, and can result in human diseases affecting vital systems such as the nervous and immune systems. They can also trigger various forms of cancer. Intensive food production is contributing to incorrect handling, transport and storage of the food, resulting in increased levels of mycotoxin contamination. Mycotoxins are structurally very diverse molecules necessitating versatile food decontamination approaches, which are grouped into physical, chemical and biological techniques. In this review, a new and promising approach involving the use of cold atmospheric pressure plasma is considered, which may overcome multiple weaknesses associated with the classical methods. In addition to its mycotoxin destruction efficiency, cold atmospheric pressure plasma is cost effective, ecologically neutral and has a negligible effect on the quality of food products following treatment in comparison to classical methods. PMID:28452957
Zamberlin, Šimun; Samaržija, Dubravka
2017-06-15
Classical and probiotic set yogurt were made using non-standard heat treatment of sheep's milk at 60°C/5min. Physico-chemical properties, sensory characteristics, and the viability of bacteria that originated from cultures in classical and probiotic yogurt were analysed during 21days of storage at 4°C. For the production of yogurt, a standard yogurt culture and a probiotic strain Lactobacillus rhamnosus GG were used. At the end of storage time of the classical and probiotic yogurt the totals of non-denatured whey proteins were 92.31 and 91.03%. The viability of yogurt culture bacteria and Lactobacillus rhamnosus GG were higher than 10 6 cfu/g. The total sensory score (maximum - 20) was 18.49 for the classical and 18.53 for the probiotic. In nutritional and functional terms it is possible to produce classical and probiotic sheep's milk yogurt by using a non-standard temperature of heat treatment with a shelf life of 21days. Copyright © 2017 Elsevier Ltd. All rights reserved.
The rate constant of a quantum-diffusion-controlled bimolecular reaction
NASA Astrophysics Data System (ADS)
Bondarev, B. V.
1986-04-01
A quantum-mechanical equation is derived in the tight-bond approximation which describes the motion and chemical interaction of a pair of species A and B when their displacement in the matrix is caused by tunnelling. Within the framework of the discrete model of random walks, definitions are given of the probability and rate constant of a reaction A + B → P (products) proceeding in a condensed medium. A method is suggested for calculating the rate constant of a quantum-diffusion-controlled bimolecular reaction. By this method, an expression is obtained for the rate constant in the stationary spherically symmetrical case. An equation for the density matrix is also proposed which describes the motion and chemical interaction of a pair of species when the quantum and classical diffusion are competitive.
NASA Technical Reports Server (NTRS)
Paquette, John A.; Nuth, Joseph A., III
2011-01-01
Classical nucleation theory has been used in models of dust nucleation in circumstellar outflows around oxygen-rich asymptotic giant branch stars. One objection to the application of classical nucleation theory (CNT) to astrophysical systems of this sort is that an equilibrium distribution of clusters (assumed by CNT) is unlikely to exist in such conditions due to a low collision rate of condensable species. A model of silicate grain nucleation and growth was modified to evaluate the effect of a nucleation flux orders of magnitUde below the equilibrium value. The results show that a lack of chemical equilibrium has only a small effect on the ultimate grain distribution.
NASA Technical Reports Server (NTRS)
Pratt, D. T.; Radhakrishnan, K.
1986-01-01
The design of a very fast, automatic black-box code for homogeneous, gas-phase chemical kinetics problems requires an understanding of the physical and numerical sources of computational inefficiency. Some major sources reviewed in this report are stiffness of the governing ordinary differential equations (ODE's) and its detection, choice of appropriate method (i.e., integration algorithm plus step-size control strategy), nonphysical initial conditions, and too frequent evaluation of thermochemical and kinetic properties. Specific techniques are recommended (and some advised against) for improving or overcoming the identified problem areas. It is argued that, because reactive species increase exponentially with time during induction, and all species exhibit asymptotic, exponential decay with time during equilibration, exponential-fitted integration algorithms are inherently more accurate for kinetics modeling than classical, polynomial-interpolant methods for the same computational work. But current codes using the exponential-fitted method lack the sophisticated stepsize-control logic of existing black-box ODE solver codes, such as EPISODE and LSODE. The ultimate chemical kinetics code does not exist yet, but the general characteristics of such a code are becoming apparent.
Advances in visual representation of molecular potentials.
Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen
2010-06-01
The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.
First principles statistical mechanics of alloys and magnetism
NASA Astrophysics Data System (ADS)
Eisenbach, Markus; Khan, Suffian N.; Li, Ying Wai
Modern high performance computing resources are enabling the exploration of the statistical physics of phase spaces with increasing size and higher fidelity of the Hamiltonian of the systems. For selected systems, this now allows the combination of Density Functional based first principles calculations with classical Monte Carlo methods for parameter free, predictive thermodynamics of materials. We combine our locally selfconsistent real space multiple scattering method for solving the Kohn-Sham equation with Wang-Landau Monte-Carlo calculations (WL-LSMS). In the past we have applied this method to the calculation of Curie temperatures in magnetic materials. Here we will present direct calculations of the chemical order - disorder transitions in alloys. We present our calculated transition temperature for the chemical ordering in CuZn and the temperature dependence of the short-range order parameter and specific heat. Finally we will present the extension of the WL-LSMS method to magnetic alloys, thus allowing the investigation of the interplay of magnetism, structure and chemical order in ferrous alloys. This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and it used Oak Ridge Leadership Computing Facility resources at Oak Ridge National Laboratory.
Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines.
Mkandawire, Martin
2013-11-01
The discharges of uranium and associated radionuclides as well as heavy metals and metalloids from waste and tailing dumps in abandoned uranium mining and processing sites pose contamination risks to surface and groundwater. Although many more are being planned for nuclear energy purposes, most of the abandoned uranium mines are a legacy of uranium production that fuelled arms race during the cold war of the last century. Since the end of cold war, there have been efforts to rehabilitate the mining sites, initially, using classical remediation techniques based on high chemical and civil engineering. Recently, bioremediation technology has been sought as alternatives to the classical approach due to reasons, which include: (a) high demand of sites requiring remediation; (b) the economic implication of running and maintaining the facilities due to high energy and work force demand; and (c) the pattern and characteristics of contaminant discharges in most of the former uranium mining and processing sites prevents the use of classical methods. This review discusses risks of uranium contamination from abandoned uranium mines from the biogeochemical point of view and the potential and limitation of uranium bioremediation technique as alternative to classical approach in abandoned uranium mining and processing sites.
Clerc, Daryl G
2016-07-21
An ab initio approach was used to study the molecular-level interactions that connect gene-mutation to changes in an organism׳s phenotype. The study provides new insights into the evolutionary process and presents a simplification whereby changes in phenotypic properties may be studied in terms of the binding affinities of the chemical interactions affected by mutation, rather than by correlation to the genes. The study also reports the role that nonlinear effects play in the progression of organs, and how those effects relate to the classical theory of evolution. Results indicate that the classical theory of evolution occurs as a special case within the ab initio model - a case having two attributes. The first attribute: proteins and promoter regions are not shared among organs. The second attribute: continuous limiting behavior exists in the physical properties of organs as well as in the binding affinity of the associated chemical interactions, with respect to displacements in the chemical properties of proteins and promoter regions induced by mutation. Outside of the special case, second-order coupling contributions are significant and nonlinear effects play an important role, a result corroborated by analyses of published activity levels in binding and transactivation assays. Further, gradations in the state of perfection of an organ may be small or large depending on the type of mutation, and not necessarily closely-separated as maintained by the classical theory. Results also indicate that organs progress with varying degrees of interdependence, the likelihood of successful mutation decreases with increasing complexity of the affected chemical system, and differences between the ab initio model and the classical theory increase with increasing complexity of the organism. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
Nuclear quantum effects and kinetic isotope effects in enzyme reactions.
Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas
2015-09-15
Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool. Copyright © 2015 Elsevier Inc. All rights reserved.
... to Main Content Two Ways to Explore Toxic Chemicals in Your Community TOXMAP classic provides an Advanced ... group of TOXNET databases related to toxicology, hazardous chemicals, environmental health, and toxic releases. Connect with Us ...
Theoretical Studies in Chemical Kinetics - Annual Report, 1970.
DOE R&D Accomplishments Database
Karplus, Martin
1970-10-01
The research performed includes (a) Alkali-Halide, Alkali-Halide (MX, M?X?) Exchange Reactions; (b) Inversion Problem; (c) Quantum Mechanics of Scattering Processes, (d) Transition State Analysis of Classical Trajectories, (e) Differential Cross Sections from Classical Trajectories; and (f) Other Studies.
NASA Astrophysics Data System (ADS)
Mohammed, Eddya; Bouazza, Tbib; Khalil, El-Hami
2018-02-01
In this paper, we report the first synthesis of hydroxyapatite (Hap) by sol-gel using the albumin (egg white) compared with the four classical elaboration methods such as co-precipitation, solid state, and solid-liquid samples of hydroxyapatite. We use a reference sample of hydroxyapatite bought from Fluka Chemika company (Lot and Filling code 385330/1 14599). All samples are characterized by X-ray diffraction (XRD), Uv-visible spectroscopy (Uv-Vis), and Fourier transforms infrared spectroscopy (FT-IR). The XRD study showed the existence of a Hexagonal phase for all our samples prepared in our laboratory and an orthorhombic phase for the Fulka Chemika sample of Hap (Lot and Filling code 385330/1 14599). The study by Uv-visible spectroscopy was performed to determine and compare the optical gap and the disorder of each sample of Hap. The FT-IR spectroscopy demonstrated that all our Hap samples had a similar mode of vibration of the chemical bonds (OH-) and (PO4)3-.
Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.
Gao, J
2016-01-01
Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects. © 2016 Elsevier Inc. All rights reserved.
Ultrasonic and densimetric titration applied for acid-base reactions.
Burakowski, Andrzej; Gliński, Jacek
2014-01-01
Classical acoustic acid-base titration was monitored using sound speed and density measurements. Plots of these parameters, as well as of the adiabatic compressibility coefficient calculated from them, exhibit changes with the volume of added titrant. Compressibility changes can be explained and quantitatively predicted theoretically in terms of Pasynski theory of non-compressible hydrates combined with that of the additivity of the hydration numbers with the amount and type of ions and molecules present in solution. It also seems that this development could be applied in chemical engineering for monitoring the course of chemical processes, since the applied experimental methods can be carried out almost independently on the medium under test (harmful, aggressive, etc.).
Anticancer drug discovery and pharmaceutical chemistry: a history.
Braña, Miguel F; Sánchez-Migallón, Ana
2006-10-01
There are several procedures for the chemical discovery and design of new drugs from the point of view of the pharmaceutical or medicinal chemistry. They range from classical methods to the very new ones, such as molecular modeling or high throughput screening. In this review, we will consider some historical approaches based on the screening of natural products, the chances for luck, the systematic screening of new chemical entities and serendipity. Another group comprises rational design, as in the case of metabolic pathways, conformation versus configuration and, finally, a brief description on available new targets to be carried out. In each approach, the structure of some examples of clinical interest will be shown.
Virtual Metrology applied in Run-to-Run Control for a Chemical Mechanical Planarization process
NASA Astrophysics Data System (ADS)
Jebri, M. A.; El Adel, E. M.; Graton, G.; Ouladsine, M.; Pinaton, J.
2017-01-01
This paper deals with missing data in semiconductor manufacturing derived from a measurement sampling strategies. The idea is to construct a virtual metrology module to estimate non measured variables using a new modified Just-In-Time Learning approach (JITL). The aim of this paper is to integrate estimated data into product control loop. In collaboration with our industrial partner STMicroelectronics Rousset, the accuracy of the proposed method is illustrated by using industrial data-sets derived from Chemical Mechanical Planarization (CMP) process that enables us to compare results obtained with the classical and the modified version of JITL approach. Then, the contribution of the estimated data is shown in product quality improvement.
Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review.
Wieczerzak, M; Namieśnik, J; Kudłak, B
2016-09-01
For centuries, mankind has contributed to irreversible environmental changes, but due to the modern science of recent decades, scientists are able to assess the scale of this impact. The introduction of laws and standards to ensure environmental cleanliness requires comprehensive environmental monitoring, which should also meet the requirements of Green Chemistry. The broad spectrum of Green Chemistry principle applications should also include all of the techniques and methods of pollutant analysis and environmental monitoring. The classical methods of chemical analyses do not always match the twelve principles of Green Chemistry, and they are often expensive and employ toxic and environmentally unfriendly solvents in large quantities. These solvents can generate hazardous and toxic waste while consuming large volumes of resources. Therefore, there is a need to develop reliable techniques that would not only meet the requirements of Green Analytical Chemistry, but they could also complement and sometimes provide an alternative to conventional classical analytical methods. These alternatives may be found in bioassays. Commercially available certified bioassays often come in the form of ready-to-use toxkits, and they are easy to use and relatively inexpensive in comparison with certain conventional analytical methods. The aim of this study is to provide evidence that bioassays can be a complementary alternative to classical methods of analysis and can fulfil Green Analytical Chemistry criteria. The test organisms discussed in this work include single-celled organisms, such as cell lines, fungi (yeast), and bacteria, and multicellular organisms, such as invertebrate and vertebrate animals and plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
On-Site Detection as a Countermeasure to Chemical Warfare/Terrorism.
Seto, Y
2014-01-01
On-site monitoring and detection are necessary in the crisis and consequence management of wars and terrorism involving chemical warfare agents (CWAs) such as sarin. The analytical performance required for on-site detection is mainly determined by the fatal vapor concentration and volatility of the CWAs involved. The analytical performance for presently available on-site technologies and commercially available on-site equipment for detecting CWAs interpreted and compared in this review include: classical manual methods, photometric methods, ion mobile spectrometry, vibrational spectrometry, gas chromatography, mass spectrometry, sensors, and other methods. Some of the data evaluated were obtained from our experiments using authentic CWAs. We concluded that (a) no technologies perfectly fulfill all of the on-site detection requirements and (b) adequate on-site detection requires (i) a combination of the monitoring-tape method and ion-mobility spectrometry for point detection and (ii) a combination of the monitoring-tape method, atmospheric pressure chemical ionization mass spectrometry with counterflow introduction, and gas chromatography with a trap and special detectors for continuous monitoring. The basic properties of CWAs, the concept of on-site detection, and the sarin gas attacks in Japan as well as the forensic investigations thereof, are also explicated in this article. Copyright © 2014 Central Police University.
Markin, Craig J; Spyracopoulos, Leo
2012-12-01
NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements from NMR-monitored chemical shift titrations, for which the dependence of K ( D ) on the chemical shift difference (Δω) between free and bound states is extrapolated to Δω = 0. The demonstrated accuracy and precision for k ( off ) will be valuable for the interpretation of biological kinetics in weakly interacting protein-protein networks, where a small change in the magnitude of the underlying kinetics of a given pathway may lead to large changes in the associated downstream signaling cascade.
Optogenetic Random Mutagenesis Using Histone-miniSOG in C. elegans.
Noma, Kentaro; Jin, Yishi
2016-11-14
Forward genetic screening in model organisms is the workhorse to discover functionally important genes and pathways in many biological processes. In most mutagenesis-based screens, researchers have relied on the use of toxic chemicals, carcinogens, or irradiation, which requires designated equipment, safety setup, and/or disposal of hazardous materials. We have developed a simple approach to induce heritable mutations in C. elegans using germline-expressed histone-miniSOG, a light-inducible potent generator of reactive oxygen species. This mutagenesis method is free of toxic chemicals and requires minimal laboratory safety and waste management. The induced DNA modifications include single-nucleotide changes and small deletions, and complement those caused by classical chemical mutagenesis. This methodology can also be used to induce integration of extrachromosomal transgenes. Here, we provide the details of the LED setup and protocols for standard mutagenesis and transgene integration.
Double layers and double wells in arbitrary degenerate plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari-Moghanjoughi, M.
Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η{sub 0}, ranging from dilutemore » classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η{sub 0} < 0 and quantum with η{sub 0} > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.« less
NASA Astrophysics Data System (ADS)
Lemasle, B.; Groenewegen, M. A. T.; Grebel, E. K.; Bono, G.; Fiorentino, G.; François, P.; Inno, L.; Kovtyukh, V. V.; Matsunaga, N.; Pedicelli, S.; Primas, F.; Pritchard, J.; Romaniello, M.; da Silva, R.
2017-12-01
Context. Cepheids are excellent tracers of young stellar populations. They play a crucial role in astrophysics as standard candles. The chemistry of classical Cepheids in the Milky Way is now quite well-known, however despite a much larger sample, the chemical composition of Magellanic Cepheids has been only scarcely investigated. Aims: For the first time, we study the chemical composition of several Cepheids located in the same populous cluster: NGC 1866, in the Large Magellanic Cloud (LMC). To also investigate the chemical composition of Cepheids at lower metallicity, we look at four targets located in the Small Magellanic Cloud (SMC). Our sample allows us to increase the number of Cepheids with known metallicities in the LMC/SMC by 20%/25% and the number of Cepheids with detailed chemical composition in the LMC/SMC by 46%/50%. Methods: We use canonical spectroscopic analysis to determine the chemical composition of Cepheids and provide abundances for a good number of α, iron-peak, and neutron-capture elements. Results: We find that six Cepheids in the LMC cluster NGC 1866 have a very homogeneous chemical composition, also consistent with red giant branch (RGB) stars in the cluster. Period-age relations that include no or average rotation indicate that all the Cepheids in NGC 1866 have a similar age and therefore belong to the same stellar population. Our results are in good agreement with theoretical models accounting for luminosity and radial velocity variations. Using distances based on period-luminosity relations in the near- or mid-infrared, we investigate for the first time the metallicity distribution of the young population in the SMC in the depth direction. Preliminary results show no metallicity gradient along the SMC main body, but our sample is small and does not contain Cepheids in the inner few degrees of the SMC. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 082.D-0792(B).
NEUROBEHAVIORAL EVALUATIONS OF BINARY AND TERTIARY MIXTURES OF CHEMICALS: LESSIONS LEARNING.
The classical approach to the statistical analysis of binary chemical mixtures is to construct full dose-response curves for one compound in the presence of a range of doses of the second compound (isobolographic analyses). For interaction studies using more than two chemicals, ...
Design criteria for extraction with chemical reaction and liquid membrane permeation
NASA Technical Reports Server (NTRS)
Bart, H. J.; Bauer, A.; Lorbach, D.; Marr, R.
1988-01-01
The design criteria for heterogeneous chemical reactions in liquid/liquid systems formally correspond to those of classical physical extraction. More complex models are presented which describe the material exchange at the individual droplets in an extraction with chemical reaction and in liquid membrane permeation.
Classics in Chemical Neuroscience: Haloperidol.
Tyler, Marshall W; Zaldivar-Diez, Josefa; Haggarty, Stephen J
2017-03-15
The discovery of haloperidol catalyzed a breakthrough in our understanding of the biochemical basis of schizophrenia, improved the treatment of psychosis, and facilitated deinstitutionalization. In doing so, it solidified the role for chemical neuroscience as a means to elucidate the molecular underpinnings of complex neuropsychiatric disorders. In this Review, we will cover aspects of haloperidol's synthesis, manufacturing, metabolism, pharmacology, approved and off-label indications, and adverse effects. We will also convey the fascinating history of this classic molecule and the influence that it has had on the evolution of neuropsychopharmacology and neuroscience.
Quantum probability ranking principle for ligand-based virtual screening.
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal
2017-04-01
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.
Quantum probability ranking principle for ligand-based virtual screening
NASA Astrophysics Data System (ADS)
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal
2017-04-01
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.
Torres-Climent, A; Gomis, P; Martín-Mata, J; Bustamante, M A; Marhuenda-Egea, F C; Pérez-Murcia, M D; Pérez-Espinosa, A; Paredes, C; Moral, R
2015-01-01
The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.
Torres-Climent, A.; Gomis, P.; Martín-Mata, J.; Bustamante, M. A.; Marhuenda-Egea, F. C.; Pérez-Murcia, M. D.; Pérez-Espinosa, A.; Paredes, C.; Moral, R.
2015-01-01
The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio. PMID:26418458
Quantum chemical calculations for polymers and organic compounds
NASA Technical Reports Server (NTRS)
Lopez, J.; Yang, C.
1982-01-01
The relativistic effects of the orbiting electrons on a model compound were calculated. The computational method used was based on 'Modified Neglect of Differential Overlap' (MNDO). The compound tetracyanoplatinate was used since empirical measurement and calculations along "classical" lines had yielded many known properties. The purpose was to show that for large molecules relativity effects could not be ignored and that these effects could be calculated and yield data in closer agreement to empirical measurements. Both the energy band structure and molecular orbitals are depicted.
Unimolecular decomposition reactions at low-pressure: A comparison of competitive methods
NASA Technical Reports Server (NTRS)
Adams, G. F.
1980-01-01
The lack of a simple rate coefficient expression to describe the pressure and temperature dependence hampers chemical modeling of flame systems. Recently developed simplified models to describe unimolecular processes include the calculation of rate constants for thermal unimolecular reactions and recombinations at the low pressure limit, at the high pressure limit and in the intermediate fall-off region. Comparison between two different applications of Troe's simplified model and a comparison between the simplified model and the classic RRKM theory are described.
Hocek, Michal
2014-11-07
The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.
Surface etching technologies for monocrystalline silicon wafer solar cells
NASA Astrophysics Data System (ADS)
Tang, Muzhi
With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.
Movement and fate of atrazine and bromide in central Kansas croplands
Sophocleous, M.; Townsend, M.A.; Whittemore, Donald O.
1990-01-01
Two flooding experiments were conducted at two sites with different soils to study the transport and fate of the commonly used herbicide atrazine and inorganic chemicals in the Great Bend Prairie croplands of south-central Kansas. The instantaneous profile method supplemented by the use of an organic (atrazine) and an inorganic (bromide) tracer chemical was used to characterize in situ the hydraulic and chemical properties of the appropriately instrumented field sites. Atrazine readily degraded to hydroxyatrazine and biodegradation by-products and was not detected deeper in the soil profile and underlying shallow aquifer. The classical processes of chemical movement based on porous media-equilibrium-diffuse flow did not fit the data well at either site. Incompletely mixed, slug flow appeared to predominate at one of the sites and preferential flow at the other. The slug movement caused 'piston-type' displacement of more saline solutions in the soil profile to the shallow water table. Recommendations for conducting related field studies based on our sampling experience are given. ?? 1990.
Mixed quantum-classical studies of energy partitioning in unimolecular chemical reactions
NASA Astrophysics Data System (ADS)
Bladow, Landon Lowell
A mixed quantum-classical reaction path Hamiltonian method is utilized to study the dynamics of unimolecular reactions. The method treats motion along the reaction path classically and treats the transverse vibrations quantum mechanically. The theory leads to equations that predict the disposai of the exit-channel potential energy to product translation and vibration. In addition, vibrational state distributions are obtained for the product normal modes. Vibrational excitation results from the curvature of the minimum energy reaction path. The method is applied to six unimolecular reactions: HF elimination from fluoroethane, 1,1-difluoroethane, 1,1-difluoroethene, and trifluoromethane; and HCl elimination from chloroethane and acetyl chloride. The minimum energy paths were calculated at either the MP2 or B3LYP level of theory. In all cases, the majority of the vibrational excitation of the products occurs in the HX fragment. The results are compared to experimental data and other theoretical results, where available. The best agreement between the experimental and calculated HX vibrational distributions is found for the halogenated ethanes, and the experimental deduction that the majority of the HX vibrational excitation arises from the potential energy release is supported. It is believed that the excess energy provided in experiments contributes to the poorer agreement between experiment and theory observed for HF elimination from 1,1-difluoroethene and trifluoromethane. An attempt is described to incorporate a treatment of the excess energy into the present method. However, the sign of the curvature coupling elements is then found to affect the dynamics. Overall, the method appears to be an efficient dynamical tool for modeling the disposal of the exit-channel potential energy in unimolecular reactions.
A Simple Derivation of Chemically Important Classical Observables and Superselection Rules.
ERIC Educational Resources Information Center
Muller-Herold, U.
1985-01-01
Explores the question "Why are so many stationary states allowed by traditional quantum mechanics not realized in nature?" through discussion of classical observables and superselection rules. Three examples are given that can be used in introductory courses (including the fermion/boson property and the mass of a "nonrelativistic" particle). (JN)
Efficient free energy calculations of quantum systems through computer simulations
NASA Astrophysics Data System (ADS)
Antonelli, Alex; Ramirez, Rafael; Herrero, Carlos; Hernandez, Eduardo
2009-03-01
In general, the classical limit is assumed in computer simulation calculations of free energy. This approximation, however, is not justifiable for a class of systems in which quantum contributions for the free energy cannot be neglected. The inclusion of quantum effects is important for the determination of reliable phase diagrams of these systems. In this work, we present a new methodology to compute the free energy of many-body quantum systems [1]. This methodology results from the combination of the path integral formulation of statistical mechanics and efficient non-equilibrium methods to estimate free energy, namely, the adiabatic switching and reversible scaling methods. A quantum Einstein crystal is used as a model to show the accuracy and reliability the methodology. This new method is applied to the calculation of solid-liquid coexistence properties of neon. Our findings indicate that quantum contributions to properties such as, melting point, latent heat of fusion, entropy of fusion, and slope of melting line can be up to 10% of the calculated values using the classical approximation. [1] R. M. Ramirez, C. P. Herrero, A. Antonelli, and E. R. Hernández, Journal of Chemical Physics 129, 064110 (2008)
Quantum-classical correspondence in the vicinity of periodic orbits
NASA Astrophysics Data System (ADS)
Kumari, Meenu; Ghose, Shohini
2018-05-01
Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to quantify Bohr's correspondence principle and calculate the size of quantum numbers for which we can expect to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in chaotic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinson, Jake L.; Kathmann, Shawn M.; Ford, Ian J.
2014-01-14
The nucleation of particles from trace gases in the atmosphere is an important source of cloud condensation nuclei (CCN), and these are vital for the formation of clouds in view of the high supersaturations required for homogeneous water droplet nucleation. The methods of quantum chemistry have increasingly been employed to model nucleation due to their high accuracy and efficiency in calculating configurational energies; and nucleation rates can be obtained from the associated free energies of particle formation. However, even in such advanced approaches, it is typically assumed that the nuclei have a classical nature, which is questionable for some systems.more » The importance of zero-point motion (also known as quantum nuclear dynamics) in modelling small clusters of sulphuric acid and water is tested here using the path integral molecular dynamics (PIMD) method at the density functional theory (DFT) level of theory. We observe a small zero-point effect on the the equilibrium structures of certain clusters. One configuration is found to display a bimodal behaviour at 300 K in contrast to the stable ionised state suggested from a zero temperature classical geometry optimisation. The general effect of zero-point motion is to promote the extent of proton transfer with respect to classical behaviour. We thank Prof. Angelos Michaelides and his group in University College London (UCL) for practical advice and helpful discussions. This work benefited from interactions with the Thomas Young Centre through seminar and discussions involving the PIMD method. SMK was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. JLS and IJF were supported by the IMPACT scheme at UCL and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. We are grateful for use of the UCL Legion High Performance Computing Facility and the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the U.S. Department of Energy, Office of Science of the under Contract No. DE-AC02-05CH11231.« less
Estimating Tree Height-Diameter Models with the Bayesian Method
Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei
2014-01-01
Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the “best” model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2. PMID:24711733
Estimating tree height-diameter models with the Bayesian method.
Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei
2014-01-01
Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the "best" model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2.
Classical methods and modern analysis for studying fungal diversity
John Paul Schmit
2005-01-01
In this chapter, we examine the use of classical methods to study fungal diversity. Classical methods rely on the direct observation of fungi, rather than sampling fungal DNA. We summarize a wide variety of classical methods, including direct sampling of fungal fruiting bodies, incubation of substrata in moist chambers, culturing of endophytes, and particle plating. We...
Classical Methods and Modern Analysis for Studying Fungal Diversity
J. P. Schmit; D. J. Lodge
2005-01-01
In this chapter, we examine the use of classical methods to study fungal diversity. Classical methods rely on the direct observation of fungi, rather than sampling fungal DNA. We summarize a wide variety of classical methods, including direct sampling of fungal fruiting bodies, incubation of substrata in moist chambers, culturing of endophytes, and particle plating. We...
Predicting Protein-Protein Interaction Sites with a Novel Membership Based Fuzzy SVM Classifier.
Sriwastava, Brijesh K; Basu, Subhadip; Maulik, Ujjwal
2015-01-01
Predicting residues that participate in protein-protein interactions (PPI) helps to identify, which amino acids are located at the interface. In this paper, we show that the performance of the classical support vector machine (SVM) algorithm can further be improved with the use of a custom-designed fuzzy membership function, for the partner-specific PPI interface prediction problem. We evaluated the performances of both classical SVM and fuzzy SVM (F-SVM) on the PPI databases of three different model proteomes of Homo sapiens, Escherichia coli and Saccharomyces Cerevisiae and calculated the statistical significance of the developed F-SVM over classical SVM algorithm. We also compared our performance with the available state-of-the-art fuzzy methods in this domain and observed significant performance improvements. To predict interaction sites in protein complexes, local composition of amino acids together with their physico-chemical characteristics are used, where the F-SVM based prediction method exploits the membership function for each pair of sequence fragments. The average F-SVM performance (area under ROC curve) on the test samples in 10-fold cross validation experiment are measured as 77.07, 78.39, and 74.91 percent for the aforementioned organisms respectively. Performances on independent test sets are obtained as 72.09, 73.24 and 82.74 percent respectively. The software is available for free download from http://code.google.com/p/cmater-bioinfo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutjahr, A.L.; Kincaid, C.T.; Mercer, J.W.
1987-04-01
The objective of this report is to summarize the various modeling approaches that were used to simulate solute transport in a variably saturated emission. In particular, the technical strengths and weaknesses of each approach are discussed, and conclusions and recommendations for future studies are made. Five models are considered: (1) one-dimensional analytical and semianalytical solutions of the classical deterministic convection-dispersion equation (van Genuchten, Parker, and Kool, this report ); (2) one-dimensional simulation using a continuous-time Markov process (Knighton and Wagenet, this report); (3) one-dimensional simulation using the time domain method and the frequency domain method (Duffy and Al-Hassan, this report);more » (4) one-dimensional numerical approach that combines a solution of the classical deterministic convection-dispersion equation with a chemical equilibrium speciation model (Cederberg, this report); and (5) three-dimensional numerical solution of the classical deterministic convection-dispersion equation (Huyakorn, Jones, Parker, Wadsworth, and White, this report). As part of the discussion, the input data and modeling results are summarized. The models were used in a data analysis mode, as opposed to a predictive mode. Thus, the following discussion will concentrate on the data analysis aspects of model use. Also, all the approaches were similar in that they were based on a convection-dispersion model of solute transport. Each discussion addresses the modeling approaches in the order listed above.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakthivel, Dhayalan; Rathkanthiwar, Shashwat; Raghavan, Srinivasan, E-mail: sraghavan@cense.iisc.ernet.in
2015-04-28
Si nanowire growth on sapphire substrates by the vapor-liquid-solid (VLS) method using Au catalyst particles has been studied. Sapphire was chosen as the substrate to ensure that the vapor phase is the only source of Si. Three hitherto unreported observations are described. First, an incubation period of 120–480 s, which is shown to be the incubation period as defined in classical nucleation theory, is reported. This incubation period permits the determination of a desolvation energy of Si from Au-Si alloys of 15 kT. Two, transmission electron microscopy studies of incubation, point to Si loss by reverse reaction as an important partmore » of the mechanism of Si nanowire growth by VLS. Three, calculations using these physico-chemical parameters determined from incubation and measured steady state growth rates of Si nanowires show that wire growth happens from a supersaturated catalyst droplet.« less
Classical conditioning through auditory stimuli in Drosophila: methods and models
Menda, Gil; Bar, Haim Y.; Arthur, Ben J.; Rivlin, Patricia K.; Wyttenbach, Robert A.; Strawderman, Robert L.; Hoy, Ronald R.
2011-01-01
SUMMARY The role of sound in Drosophila melanogaster courtship, along with its perception via the antennae, is well established, as is the ability of this fly to learn in classical conditioning protocols. Here, we demonstrate that a neutral acoustic stimulus paired with a sucrose reward can be used to condition the proboscis-extension reflex, part of normal feeding behavior. This appetitive conditioning produces results comparable to those obtained with chemical stimuli in aversive conditioning protocols. We applied a logistic model with general estimating equations to predict the dynamics of learning, which successfully predicts the outcome of training and provides a quantitative estimate of the rate of learning. Use of acoustic stimuli with appetitive conditioning provides both an alternative to models most commonly used in studies of learning and memory in Drosophila and a means of testing hearing in both sexes, independently of courtship responsiveness. PMID:21832129
Hybrid least squares multivariate spectral analysis methods
Haaland, David M.
2002-01-01
A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.
Sagiyama, Koki; Rudraraju, Shiva; Garikipati, Krishna
2016-09-13
Here, we consider solid state phase transformations that are caused by free energy densities with domains of non-convexity in strain-composition space; we refer to the non-convex domains as mechano-chemical spinodals. The non-convexity with respect to composition and strain causes segregation into phases with different crystal structures. We work on an existing model that couples the classical Cahn-Hilliard model with Toupin’s theory of gradient elasticity at finite strains. Both systems are represented by fourth-order, nonlinear, partial differential equations. The goal of this work is to develop unconditionally stable, second-order accurate time-integration schemes, motivated by the need to carry out large scalemore » computations of dynamically evolving microstructures in three dimensions. We also introduce reduced formulations naturally derived from these proposed schemes for faster computations that are still second-order accurate. Although our method is developed and analyzed here for a specific class of mechano-chemical problems, one can readily apply the same method to develop unconditionally stable, second-order accurate schemes for any problems for which free energy density functions are multivariate polynomials of solution components and component gradients. Apart from an analysis and construction of methods, we present a suite of numerical results that demonstrate the schemes in action.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breuer, Marian; Zarzycki, Piotr P.; Shi, Liang
2012-12-01
The free energy profile for electron flow through the bacterial deca-heme cytochrome MtrF has been computed using thermodynamic integration and classical molecular dynamics. The extensive calculations on two versions of the structure help validate the method and results, because differences in the profiles can be related to differences in the charged amino acids local to specific heme groups. First estimates of reorganization free energies λ yield a range consistent with expectations for partially solvent exposed cofactors, and reveal an activation energy range surmountable for electron flow. Future work will aim at increasing the accuracy of λ with polarizable force fieldmore » dynamics and quantum chemical energy gap calculations, as well as quantum chemical computation of electronic coupling matrix elements.« less
Gillingham, Dennis; Sauter, Basilius
2018-05-06
Drugs that covalently modify DNA are components of most chemotherapy regimens, often serving as first-line treatments. Classically the chemical reactivity of DNA alkylators has been determined in vitro with short oligonucleotides. Here we use next generation RNA sequencing to report on the chemoselectivity of alkylating agents. We develop the method with the well-known clinically used DNA modifiying drugs streptozotocin and temozolomide, and then apply the technique to profile RNA modification with uncharacterized alkylation reactions such as with powerful electrophiles like trimethylsilyldiazomethane. The multiplexed and massively parallel format of NGS offers analyses of chemical reactivity in nucleic acids to be accomplished in less time with greater statistical power. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical plant innovative safety investments decision-support methodology.
Reniers, G L L; Audenaert, A
2009-01-01
This article examines the extent to which investing in safety during the creation of a new chemical installation proves profitable. The authors propose a management supporting cost-benefit model that identifies and evaluates investments in safety within a chemical company. This innovative model differentiates between serious accidents and less serious accidents, thus providing an authentic image of prevention-related costs and benefits. In classic cost-benefit analyses, which do not make such differentiations, only a rudimentary image of potential profitability resulting from investments in safety is obtained. The resulting management conclusions that can be drawn from such classical analyses are of a very limited nature. The proposed model, however, is applied to a real case study and the proposed investments in safety at an appointed chemical installation are weighed against the estimated hypothetical benefits resulting from the preventive measures to be installed at the installation. In the case-study carried out in question, it would appear that the proposed prevention investments are justified. Such an economic exercise may be very important to chemical corporations trying to (further) improve their safety investments.
Abolfath, Ramin M; Biswas, P K; Rajnarayanam, R; Brabec, Thomas; Kodym, Reinhard; Papiez, Lech
2012-04-19
Understanding the damage of DNA bases from hydrogen abstraction by free OH radicals is of particular importance to understanding the indirect effect of ionizing radiation. Previous studies address the problem with truncated DNA bases as ab initio quantum simulations required to study such electronic-spin-dependent processes are computationally expensive. Here, for the first time, we employ a multiscale and hybrid quantum mechanical-molecular mechanical simulation to study the interaction of OH radicals with a guanine-deoxyribose-phosphate DNA molecular unit in the presence of water, where all of the water molecules and the deoxyribose-phosphate fragment are treated with the simplistic classical molecular mechanical scheme. Our result illustrates that the presence of water strongly alters the hydrogen-abstraction reaction as the hydrogen bonding of OH radicals with water restricts the relative orientation of the OH radicals with respect to the DNA base (here, guanine). This results in an angular anisotropy in the chemical pathway and a lower efficiency in the hydrogen-abstraction mechanisms than previously anticipated for identical systems in vacuum. The method can easily be extended to single- and double-stranded DNA without any appreciable computational cost as these molecular units can be treated in the classical subsystem, as has been demonstrated here. © 2012 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Tsun-Mei; Dang, Liem X.
Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li+ and the dissociation kinetics of ion pairs Li+-[BF4] and Li+-[PF6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux; Impey, Madden, and McDonald approaches; and Grote-Hynes theory. We found the residence times of EC around Li+ ions varied from 70 to 450 ps, depending on the correction method used. We found the relaxation times changed significantlymore » from Li+-[BF4] to Li+-[PF6] ion pairs in EC. Our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influence the dissociation kinetics of ion pairing. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
The development of catalytic nucleophilic additions of terminal alkynes in water.
Li, Chao-Jun
2010-04-20
One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in classical alkyne reactions, including the pregeneration of metal acetylides with stoichiometric, highly basic reagents and the preprotection of sensitive functional groups. Accordingly, these techniques have greatly enhanced overall synthetic efficiencies and furthered our long-term objective of developing Grignard-type reactions in water.
Temme, K; Osborne, T J; Vollbrecht, K G; Poulin, D; Verstraete, F
2011-03-03
The original motivation to build a quantum computer came from Feynman, who imagined a machine capable of simulating generic quantum mechanical systems--a task that is believed to be intractable for classical computers. Such a machine could have far-reaching applications in the simulation of many-body quantum physics in condensed-matter, chemical and high-energy systems. Part of Feynman's challenge was met by Lloyd, who showed how to approximately decompose the time evolution operator of interacting quantum particles into a short sequence of elementary gates, suitable for operation on a quantum computer. However, this left open the problem of how to simulate the equilibrium and static properties of quantum systems. This requires the preparation of ground and Gibbs states on a quantum computer. For classical systems, this problem is solved by the ubiquitous Metropolis algorithm, a method that has basically acquired a monopoly on the simulation of interacting particles. Here we demonstrate how to implement a quantum version of the Metropolis algorithm. This algorithm permits sampling directly from the eigenstates of the Hamiltonian, and thus evades the sign problem present in classical simulations. A small-scale implementation of this algorithm should be achievable with today's technology.
X-Ray Diffraction of different samples of Swarna Makshika Bhasma.
Gupta, Ramesh Kumar; Lakshmi, Vijay; Jha, Chandra Bhushan
2015-01-01
Shodhana and Marana are a series of complex procedures that identify the undesirable effects of heavy metals/minerals and convert them into absorbable and assimilable forms. Study on the analytical levels is essential to evaluate the structural and chemical changes that take place during and after following such procedures as described in major classical texts to understand the mystery behind these processes. X-Ray Diffraction (XRD) helps to identify and characterize minerals/metals and fix up the particular characteristics pattern of prepared Bhasma. To evaluate the chemical changes in Swarna Makshika Bhasma prepared by using different media and methods. In this study, raw Swarna Makshika, purified Swarna Makshika and four types of Swarna Makshika Bhasma prepared by using different media and methods were analyzed by XRD study. XRD study of different samples revealed strongest peaks of iron oxide in Bhasma. Other phases of Cu2O, FeS2, Cu2S, FeSO4, etc., were also identified in many of the samples. XRD study revealed that Swarna Makshika Bhasma prepared by Kupipakwa method is better, convenient, and can save time.
NASA Astrophysics Data System (ADS)
Bouharati, S.; Benmahammed, K.; Harzallah, D.; El-Assaf, Y. M.
The classical methods for detecting the micro biological pollution in water are based on the detection of the coliform bacteria which indicators of contamination. But to check each water supply for these contaminants would be a time-consuming job and a qualify operators. In this study, we propose a novel intelligent system which provides a detection of microbiological pollution in fresh water. The proposed system is a hierarchical integration of an Artificial Neuro-Fuzzy Inference System (ANFIS). This method is based on the variations of the physical and chemical parameters occurred during bacteria growth. The instantaneous result obtained by the measurements of the variations of the physical and chemical parameters occurred during bacteria growth-temperature, pH, electrical potential and electrical conductivity of many varieties of water (surface water, well water, drinking water and used water) on the number Escherichia coli in water. The instantaneous result obtained by measurements of the inputs parameters of water from sensors.
Chen, Lin-Wei; Wang, Qin; Qin, Kun-Ming; Wang, Xiao-Li; Wang, Bin; Chen, Dan-Ni; Cai, Bao-Chang; Cai, Ting
2016-02-01
The present study was designed to develop and validate a sensitive and reliable ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) method to separate and identify the chemical constituents of Qixue Shuangbu Tincture (QXSBT), a classic traditional Chinese medicine (TCM) prescription. Under the optimized UPLC and QTOF/MS conditions, 56 components in QXSBT, including chalcones, triterpenoids, protopanaxatriol, flavones and flavanones were identified and tentatively characterized within a running time of 42 min. The components were identified by comparing the retention times, accurate mass, and mass spectrometric fragmentation characteristic ions, and matching empirical molecular formula with that of the published compounds. In conclusion, the established UPLC-QTOF/MS method was reliable for a rapid identification of complicated components in the TCM prescriptions. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Siemiaszko, Dariusz; Kowalska, Beata; Jóźwik, Paweł; Kwiatkowska, Monika
2015-01-01
This paper presents the results of studies on the influence of oxygen partial pressure (vacuum level in the chamber) on the properties of FeAl intermetallics. One of the problems in the application of classical methods of prepared Fe-Al intermetallic is the occurrence of oxides. Applying a vacuum during sintering should reduce this effect. In order to analyze the effect of oxygen partial pressure on sample properties, five samples were processed (by a pressure-assisted induction sintering—PAIS method) under the following pressures: 3, 8, 30, 80, and 300 mbar (corresponding to oxygen partial pressures of 0.63, 1.68, 6.3, 16.8, and 63 mbar, respectively). The chemical and phase composition, hardness, density, and microstructure observations indicate that applying a vacuum significantly impacts intermetallic samples. The compact sintered at pressure 3 mbar is characterized by the most homogeneous microstructure, the highest density, high hardness, and nearly homogeneous chemical composition. PMID:28788015
Radiative gas dynamics of the Fire-II superorbital space vehicle
NASA Astrophysics Data System (ADS)
Surzhikov, S. T.
2016-03-01
The rates of convective and radiative heating of the Fire-II reentry vehicle are calculated, and the results are compared with experimental flight data. The computational model is based on solving a complete set of equations for (i) the radiative gas dynamics of a physically and chemically nonequilibrium viscous heatconducting gas and (ii) radiative transfer in 2D axisymmetric statement. The spectral optical parameters of high-temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The transfer of selective thermal radiation in terms of atomic lines is calculated using the line-by-line method on a specially generated computational grid that is nonuniform in radiation wavelength.
Parrish, Rudolph S.; Smith, Charles N.
1990-01-01
A quantitative method is described for testing whether model predictions fall within a specified factor of true values. The technique is based on classical theory for confidence regions on unknown population parameters and can be related to hypothesis testing in both univariate and multivariate situations. A capability index is defined that can be used as a measure of predictive capability of a model, and its properties are discussed. The testing approach and the capability index should facilitate model validation efforts and permit comparisons among competing models. An example is given for a pesticide leaching model that predicts chemical concentrations in the soil profile.
NASA Astrophysics Data System (ADS)
Gicheva, Natalia I.
2017-11-01
The subject of this research is a chemical reactor for producing tungsten. A physical and mathematical model of fluid motion and heat and mass transfer in a vortex chamber of the chemical reactor under forced and free convection has been described and simulated using two methods. The numerical simulation was carried out in «vortex - stream functions and «velocity - pressure» variables. The velocity field, the mass and the temperature distributions in the reactor were obtained. The influence of a rotation effect upon the hydrodynamics and heat and mass transport was showed. The rotation is important for more uniform distribution of temperature and matter in the vortex chamber. Parametric studies on effects of the Reynolds, Prandtl and Rossbi criteria on the flow characteristics were also performed. Reliability of the calculations was verified by comparing the results obtained by the methods mentioned above. Also, the created model was applied for numerically solving of the classical test problem of the velocity distribution in an annular channel and that of a rotating infinite disk in a stationary liquid. The study findings showed a good agreement with the exact solutions.
Insecticide ADME for support of early-phase discovery: combining classical and modern techniques.
David, Michael D
2017-04-01
The two factors that determine an insecticide's potency are its binding to a target site (intrinsic activity) and the ability of its active form to reach the target site (bioavailability). Bioavailability is dictated by the compound's stability and transport kinetics, which are determined by both physical and biochemical characteristics. At BASF Global Insecticide Research, we characterize bioavailability in early research with an ADME (Absorption, Distribution, Metabolism and Excretion) approach, combining classical and modern techniques. For biochemical assessment of metabolism, we purify native insect enzymes using classical techniques, and recombinantly express individual insect enzymes that are known to be relevant in insecticide metabolism and resistance. For analytical characterization of an experimental insecticide and its metabolites, we conduct classical radiotracer translocation studies when a radiolabel is available. In discovery, where typically no radiolabel has been synthesized, we utilize modern high-resolution mass spectrometry to probe complex systems for the test compounds and its metabolites. By using these combined approaches, we can rapidly compare the ADME properties of sets of new experimental insecticides and aid in the design of structures with an improved potential to advance in the research pipeline. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Wang, Chao; Yang, Lu; Wang, Shu; Zhang, Zhan; Yu, Yongquan; Wang, Meilin; Cromie, Meghan; Gao, Weimin; Wang, Shou-Lin
2016-01-25
The association between endocrine disrupting chemicals (EDCs) and human sperm quality is controversial due to the inconsistent literature findings, therefore, a systematic review with meta-analysis was performed. Through the literature search and selection based on inclusion criteria, a total of 9 studies (7 cross-sectional, 1 case-control, and 1 pilot study) were analyzed for classic EDCs (5 studies for phthalate esters and 4 studies for organochlorines). Funnel plots revealed a symmetrical distribution with no evidence of publication bias (Begg's test: intercept = 0.40; p = 0.692). The summary odds ratios (OR) of human sperm quality associated with the classic EDCs was 1.67 (95% CI: 1.31-2.02). After stratification by specific chemical class, consistent increases in the risk of abnormal sperm quality were found in phthalate ester group (OR = 1.52; 95% CI: 1.09-1.95) and organochlorine group (OR = 1.98; 95% CI: 1.34-2.62). Additionally, identification of official data, and a comprehensive review of the mechanisms were performed, and better elucidated the increased risk of these classic EDCs on abnormal sperm quality. The present systematic review and meta-analysis helps to identify the impact of classic EDCs on human sperm quality. However, it still highlights the need for additional epidemiological studies in a larger variety of geographic locations.
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Lu; Wang, Shu; Zhang, Zhan; Yu, Yongquan; Wang, Meilin; Cromie, Meghan; Gao, Weimin; Wang, Shou-Lin
2016-01-01
The association between endocrine disrupting chemicals (EDCs) and human sperm quality is controversial due to the inconsistent literature findings, therefore, a systematic review with meta-analysis was performed. Through the literature search and selection based on inclusion criteria, a total of 9 studies (7 cross-sectional, 1 case-control, and 1 pilot study) were analyzed for classic EDCs (5 studies for phthalate esters and 4 studies for organochlorines). Funnel plots revealed a symmetrical distribution with no evidence of publication bias (Begg’s test: intercept = 0.40 p = 0.692). The summary odds ratios (OR) of human sperm quality associated with the classic EDCs was 1.67 (95% CI: 1.31-2.02). After stratification by specific chemical class, consistent increases in the risk of abnormal sperm quality were found in phthalate ester group (OR = 1.52 95% CI: 1.09-1.95) and organochlorine group (OR = 1.98 95% CI: 1.34-2.62). Additionally, identification of official data, and a comprehensive review of the mechanisms were performed, and better elucidated the increased risk of these classic EDCs on abnormal sperm quality. The present systematic review and meta-analysis helps to identify the impact of classic EDCs on human sperm quality. However, it still highlights the need for additional epidemiological studies in a larger variety of geographic locations.
Vajna, Balázs; Farkas, Attila; Pataki, Hajnalka; Zsigmond, Zsolt; Igricz, Tamás; Marosi, György
2012-01-27
Chemical imaging is a rapidly emerging analytical method in pharmaceutical technology. Due to the numerous chemometric solutions available, characterization of pharmaceutical samples with unknown components present has also become possible. This study compares the performance of current state-of-the-art curve resolution methods (multivariate curve resolution-alternating least squares, positive matrix factorization, simplex identification via split augmented Lagrangian and self-modelling mixture analysis) in the estimation of pure component spectra from Raman maps of differently manufactured pharmaceutical tablets. The batches of different technologies differ in the homogeneity level of the active ingredient, thus, the curve resolution methods are tested under different conditions. An empirical approach is shown to determine the number of components present in a sample. The chemometric algorithms are compared regarding the number of detected components, the quality of the resolved spectra and the accuracy of scores (spectral concentrations) compared to those calculated with classical least squares, using the true pure component (reference) spectra. It is demonstrated that using appropriate multivariate methods, Raman chemical imaging can be a useful tool in the non-invasive characterization of unknown (e.g. illegal or counterfeit) pharmaceutical products. Copyright © 2011 Elsevier B.V. All rights reserved.
A classical but new kinetic equation for hydride transfer reactions.
Zhu, Xiao-Qing; Deng, Fei-Huang; Yang, Jin-Dong; Li, Xiu-Tao; Chen, Qiang; Lei, Nan-Ping; Meng, Fan-Kun; Zhao, Xiao-Peng; Han, Su-Hui; Hao, Er-Jun; Mu, Yuan-Yuan
2013-09-28
A classical but new kinetic equation to estimate activation energies of various hydride transfer reactions was developed according to transition state theory using the Morse-type free energy curves of hydride donors to release a hydride anion and hydride acceptors to capture a hydride anion and by which the activation energies of 187 typical hydride self-exchange reactions and more than thirty thousand hydride cross transfer reactions in acetonitrile were safely estimated in this work. Since the development of the kinetic equation is only on the basis of the related chemical bond changes of the hydride transfer reactants, the kinetic equation should be also suitable for proton transfer reactions, hydrogen atom transfer reactions and all the other chemical reactions involved with breaking and formation of chemical bonds. One of the most important contributions of this work is to have achieved the perfect unity of the kinetic equation and thermodynamic equation for hydride transfer reactions.
Microscale Organic Lab Course Has Many Assets.
ERIC Educational Resources Information Center
Rawls, Rebecca
1984-01-01
Describes a microscale laboratory course in which students perform many classic organic reactions using only one-hundredth to one-thousandth the amount of starting material usual in student experiments. Reduction of toxic chemicals concentration in laboratory air and savings in chemical costs and experimental time are benefits of the novel course.…
Preparation, Characterization, and Selectivity Study of Mixed-Valence Sulfites
ERIC Educational Resources Information Center
Silva, Luciana A.; de Andrade, Jailson B.
2010-01-01
A project involving the synthesis of an isomorphic double sulfite series and characterization by classical inorganic chemical analyses is described. The project is performed by upper-level undergraduate students in the laboratory. This compound series is suitable for examining several chemical concepts and analytical techniques in inorganic…
Exposure of organisms in aquatic ecosystems to chemicals which possess endocrine disrupting properties can produce numerous detrimental effects. Furthermore, due to the potency of these chemicals, even relatively low level exposures can reduce fitness. As a result, classical expo...
NASA Astrophysics Data System (ADS)
Jangi, Mehdi; Lucchini, Tommaso; Gong, Cheng; Bai, Xue-Song
2015-09-01
An Eulerian stochastic fields (ESF) method accelerated with the chemistry coordinate mapping (CCM) approach for modelling spray combustion is formulated, and applied to model diesel combustion in a constant volume vessel. In ESF-CCM, the thermodynamic states of the discretised stochastic fields are mapped into a low-dimensional phase space. Integration of the chemical stiff ODEs is performed in the phase space and the results are mapped back to the physical domain. After validating the ESF-CCM, the method is used to investigate the effects of fuel cetane number on the structure of diesel spray combustion. It is shown that, depending of the fuel cetane number, liftoff length is varied, which can lead to a change in combustion mode from classical diesel spray combustion to fuel-lean premixed burned combustion. Spray combustion with a shorter liftoff length exhibits the characteristics of the classical conceptual diesel combustion model proposed by Dec in 1997 (http://dx.doi.org/10.4271/970873), whereas in a case with a lower cetane number the liftoff length is much larger and the spray combustion probably occurs in a fuel-lean-premixed mode of combustion. Nevertheless, the transport budget at the liftoff location shows that stabilisation at all cetane numbers is governed primarily by the auto-ignition process.
Classical Molecular Dynamics with Mobile Protons.
Lazaridis, Themis; Hummer, Gerhard
2017-11-27
An important limitation of standard classical molecular dynamics simulations is the inability to make or break chemical bonds. This restricts severely our ability to study processes that involve even the simplest of chemical reactions, the transfer of a proton. Existing approaches for allowing proton transfer in the context of classical mechanics are rather cumbersome and have not achieved widespread use and routine status. Here we reconsider the combination of molecular dynamics with periodic stochastic proton hops. To ensure computational efficiency, we propose a non-Boltzmann acceptance criterion that is heuristically adjusted to maintain the correct or desirable thermodynamic equilibria between different protonation states and proton transfer rates. Parameters are proposed for hydronium, Asp, Glu, and His. The algorithm is implemented in the program CHARMM and tested on proton diffusion in bulk water and carbon nanotubes and on proton conductance in the gramicidin A channel. Using hopping parameters determined from proton diffusion in bulk water, the model reproduces the enhanced proton diffusivity in carbon nanotubes and gives a reasonable estimate of the proton conductance in gramicidin A.
Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin
2016-04-27
The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea') decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea' under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea' was determined. MW irradiation energy was partially transformed to reduce the Ea', and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.
Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin
2016-01-01
The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea’) decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea’ under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea’ was determined. MW irradiation energy was partially transformed to reduce the Ea’, and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology. PMID:27118640
NASA Astrophysics Data System (ADS)
Saheb, Vahid; Maleki, Samira
2018-03-01
The hydrogen abstraction reactions from CH3Cl2F (R-141b) and CH3CClF2 (R-142b) by OH radicals are studied theoretically by semi-classical transition state theory. The stationary points for the reactions are located by using KMLYP density functional method along with 6-311++G(2 d,2 p) basis set and MP2 method along with 6-311+G( d, p) basis set. Single-point energy calculations are performed by the CBS-Q and G4 combination methods on the geometries optimized at the KMLYP/6-311++G(2 d,2 p) level of theory. Vibrational anharmonicity coefficients, x ij , which are needed for semi-classical transition state theory calculations, are computed at the KMLYP/6-311++G(2 d,2 p) and MP2/6-311+G( d, p) levels of theory. The computed barrier heights are slightly sensitive to the quantum-chemical method. Thermal rate coefficients are computed over the temperature range from 200 to 2000 K and they are shown to be in accordance with available experimental data. On the basis of the computed rate coefficients, the tropospheric lifetime of the CH3CCl2F and CH3CClF2 are estimated to be about 6.5 and 12.0 years, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denbleyker, Alan; Liu, Yuzhi; Meurice, Y.
We consider the sign problem for classical spin models at complexmore » $$\\beta =1/g_0^2$$ on $$L\\times L$$ lattices. We show that the tensor renormalization group method allows reliable calculations for larger Im$$\\beta$$ than the reweighting Monte Carlo method. For the Ising model with complex $$\\beta$$ we compare our results with the exact Onsager-Kaufman solution at finite volume. The Fisher zeros can be determined precisely with the TRG method. We check the convergence of the TRG method for the O(2) model on $$L\\times L$$ lattices when the number of states $$D_s$$ increases. We show that the finite size scaling of the calculated Fisher zeros agrees very well with the Kosterlitz-Thouless transition assumption and predict the locations for larger volume. The location of these zeros agree with Monte Carlo reweighting calculation for small volume. The application of the method for the O(2) model with a chemical potential is briefly discussed.« less
Classical Wigner method with an effective quantum force: application to reaction rates.
Poulsen, Jens Aage; Li, Huaqing; Nyman, Gunnar
2009-07-14
We construct an effective "quantum force" to be used in the classical molecular dynamics part of the classical Wigner method when determining correlation functions. The quantum force is obtained by estimating the most important short time separation of the Feynman paths that enter into the expression for the correlation function. The evaluation of the force is then as easy as classical potential energy evaluations. The ideas are tested on three reaction rate problems. The resulting transmission coefficients are in much better agreement with accurate results than transmission coefficients from the ordinary classical Wigner method.
Air quality as reflected by injury to metropolitan vegetation
A. F. Rhoads; E. Brennan
1977-01-01
Chemical monitoring is the classical way of defining air quality. However, the ability of plants to reflect changes in air quality must not be overlooked because certain species respond in definite ways to gaseous pollutants. In New Jersey, chemical-monitoring data and plant-injury data have proved supportive for SO2. While oxidant concentrations...
Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature
O’Reilly, Edward J.; Olaya-Castro, Alexandra
2014-01-01
Advancing the debate on quantum effects in light-initiated reactions in biology requires clear identification of non-classical features that these processes can exhibit and utilize. Here we show that in prototype dimers present in a variety of photosynthetic antennae, efficient vibration-assisted energy transfer in the sub-picosecond timescale and at room temperature can manifest and benefit from non-classical fluctuations of collective pigment motions. Non-classicality of initially thermalized vibrations is induced via coherent exciton–vibration interactions and is unambiguously indicated by negativities in the phase–space quasi-probability distribution of the effective collective mode coupled to the electronic dynamics. These quantum effects can be prompted upon incoherent input of excitation. Our results therefore suggest that investigation of the non-classical properties of vibrational motions assisting excitation and charge transport, photoreception and chemical sensing processes could be a touchstone for revealing a role for non-trivial quantum phenomena in biology. PMID:24402469
Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics
NASA Astrophysics Data System (ADS)
Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.
2018-03-01
We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.
Intermittent turbulence in flowing bacterial suspensions
Secchi, Eleonora; Rusconi, Roberto; Buzzaccaro, Stefano; Salek, M. Mehdi; Smriga, Steven; Piazza, Roberto; Stocker, Roman
2016-01-01
Dense suspensions of motile bacteria, possibly including the human gut microbiome, exhibit collective dynamics akin to those observed in classic, high Reynolds number turbulence with important implications for chemical and biological transport, yet this analogy has remained primarily qualitative. Here, we present experiments in which a dense suspension of Bacillus subtilis bacteria was flowed through microchannels and the velocity statistics of the flowing suspension were quantified using a recently developed velocimetry technique coupled with vortex identification methods. Observations revealed a robust intermittency phenomenon, whereby the average velocity profile of the suspension fluctuated between a plug-like flow and a parabolic flow profile. This intermittency is a hallmark of the onset of classic turbulence and Lagrangian tracking revealed that it here originates from the presence of transient vortices in the active, collective motion of the bacteria locally reinforcing the externally imposed flow. These results link together two entirely different manifestations of turbulence and show the potential of the microfluidic approach to mimic the environment characteristic of certain niches of the human microbiome. PMID:27307513
Photocatalytic fluoroalkylation reactions of organic compounds.
Barata-Vallejo, Sebastián; Bonesi, Sergio M; Postigo, Al
2015-12-14
Photocatalytic methods for fluoroalkyl-radical generation provide more convenient alternatives to the classical perfluoroalkyl-radical (Rf) production through chemical initiators, such as azo or peroxide compounds or the employment of transition metals through a thermal electron transfer (ET) initiation process. The mild photocatalytic reaction conditions tolerate a variety of functional groups and, thus, are handy to the late-stage modification of bioactive molecules. Transition metal-photocatalytic reactions for Rf radical generation profit from the redox properties of coordinatively saturated Ru or Ir organocomplexes to act as both electron donor and reductive species, thus allowing for the utilization of electron accepting and donating fluoroalkylating agents for Rf radical production. On the other hand, laboratory-available and inexpensive photoorgano catalysts (POC), in the absence of transition metals, can also act as electron exchange species upon excitation, resulting in ET reactions that produce Rf radicals. In this work, a critical account of transition metal and transition metal-free Rf radical production will be described with photoorgano catalysts, studying classical examples and the most recent investigations in the field.
Intermittent turbulence in flowing bacterial suspensions.
Secchi, Eleonora; Rusconi, Roberto; Buzzaccaro, Stefano; Salek, M Mehdi; Smriga, Steven; Piazza, Roberto; Stocker, Roman
2016-06-01
Dense suspensions of motile bacteria, possibly including the human gut microbiome, exhibit collective dynamics akin to those observed in classic, high Reynolds number turbulence with important implications for chemical and biological transport, yet this analogy has remained primarily qualitative. Here, we present experiments in which a dense suspension of Bacillus subtilis bacteria was flowed through microchannels and the velocity statistics of the flowing suspension were quantified using a recently developed velocimetry technique coupled with vortex identification methods. Observations revealed a robust intermittency phenomenon, whereby the average velocity profile of the suspension fluctuated between a plug-like flow and a parabolic flow profile. This intermittency is a hallmark of the onset of classic turbulence and Lagrangian tracking revealed that it here originates from the presence of transient vortices in the active, collective motion of the bacteria locally reinforcing the externally imposed flow. These results link together two entirely different manifestations of turbulence and show the potential of the microfluidic approach to mimic the environment characteristic of certain niches of the human microbiome. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Chang, Tsun-Mei; Dang, Liem X.
2017-10-01
Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li+ and the dissociation kinetics of ion pairs Li+-[BF4] and Li+-[PF6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found that the residence times of EC around Li+ ions varied from 60 to 450 ps, depending on the correction method used. We found that the relaxation times changed significantly from Li+-[BF4] to Li+-[PF6] ion pairs in EC. Our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influences the dissociation kinetics of ion pairing.
The role of atomic lines in radiation heating of the experimental space vehicle Fire-II
NASA Astrophysics Data System (ADS)
Surzhikov, S. T.
2015-10-01
The results of calculating the convective and radiation heating of the Fire-II experimental space vehicle allowing for atomic lines of atoms and ions using the NERAT-ASTEROID computer platform are presented. This computer platform is intended to solve the complete set of equations of radiation gas dynamics of viscous, heat-conductive, and physically and chemically nonequilibrium gas, as well as radiation transfer. The spectral optical properties of high temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The calculation of the transfer of selective thermal radiation is performed using a line-by-line method using specially generated computational grids over the radiation wavelengths, which make it possible to attain a noticeable economy of computational resources.
A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods
2014-08-01
Approved for public release; distribution is unlimited. A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods...ABSTRACT A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods Report Title This experiment tests whether a virtual... PEDAGOGICAL EFFECTIVENESS OF VIRTUAL WORLDS AND OF TRADITIONAL TRAINING METHODS A Thesis by BENJAMIN PETERS
DARK Classics in Chemical Neuroscience: Methamphetamine.
Abbruscato, Thomas J; Trippier, Paul C
2018-04-06
Methamphetamine has the second highest prevalence of drug abuse after cannabis, with estimates of 35 million users worldwide. The ( S)-(+)-enantiomer is the illicit drug, active neurostimulant, and eutomer, while the ( R)-(-)-enantiomer is contained in over the counter decongestants. While designated a schedule II drug in 1970, ( S)-(+)-methamphetamine is available by prescription for the treatment of attention-deficit disorder and obesity. The illicit use of ( S)-(+)-methamphetamine results in the sudden "rush" of stimulation to the motivation, movement, pleasure, and reward centers in the brain, caused by rapid release of dopamine. In this review, we will provide an overview of the synthesis, pharmacology, adverse effects, and drug metabolism of this widely abused psychostimulant that distinguish it as a DARK classic in Chemical Neuroscience.
Classics in Chemical Neuroscience: Memantine.
Alam, Shahrina; Lingenfelter, Kaelyn Skye; Bender, Aaron M; Lindsley, Craig W
2017-09-20
Memantine was the first breakthrough medication for the treatment of moderate to severe Alzheimer's disease (AD) patients and represents a fundamentally new mechanism of action (moderate-affinity, uncompetitive, voltage-dependent, N-methyl-d-aspartate (NMDA) receptor antagonist that exhibits fast on/off kinetics) to modulate glutamatergic dysfunction. Since its approval by the FDA in 2003, memantine, alone and in combination with donepezil, has improved patient outcomes in terms of cognition, behavioral disturbances, daily functioning, and delaying time to institutionalization. In this review, we will highlight the historical significance of memantine to AD (and other neuropsychiatric disorders) as well as provide an overview of the synthesis, pharmacology, and drug metabolism of this unique NMDA uncompetitive antagonist that clearly secures its place among the Classics in Chemical Neuroscience.
Smith, Douglas D.; Hiller, John M.
1998-01-01
The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.D.; Hiller, J.M.
1998-02-24
The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changesmore » in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.« less
Smith, D.D.; Hiller, J.M.
1998-02-24
The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.
Mirski, Tomasz; Bartoszcze, Michał; Bielawska-Drózd, Agata; Cieślik, Piotr; Michalski, Aleksander J; Niemcewicz, Marcin; Kocik, Janusz; Chomiczewski, Krzysztof
2014-01-01
Modern threats of bioterrorism force the need to develop methods for rapid and accurate identification of dangerous biological agents. Currently, there are many types of methods used in this field of studies that are based on immunological or genetic techniques, or constitute a combination of both methods (immuno-genetic). There are also methods that have been developed on the basis of physical and chemical properties of the analytes. Each group of these analytical assays can be further divided into conventional methods (e.g. simple antigen-antibody reactions, classical PCR, real-time PCR), and modern technologies (e.g. microarray technology, aptamers, phosphors, etc.). Nanodiagnostics constitute another group of methods that utilize the objects at a nanoscale (below 100 nm). There are also integrated and automated diagnostic systems, which combine different methods and allow simultaneous sampling, extraction of genetic material and detection and identification of the analyte using genetic, as well as immunological techniques.
NASA Astrophysics Data System (ADS)
Li, Ziyi
2017-12-01
Generalized uncertainty principle (GUP), also known as the generalized uncertainty relationship, is the modified form of the classical Heisenberg’s Uncertainty Principle in special cases. When we apply quantum gravity theories such as the string theory, the theoretical results suggested that there should be a “minimum length of observation”, which is about the size of the Planck-scale (10-35m). Taking into account the basic scale of existence, we need to fix a new common form of Heisenberg’s uncertainty principle in the thermodynamic system and make effective corrections to statistical physical questions concerning about the quantum density of states. Especially for the condition at high temperature and high energy levels, generalized uncertainty calculations have a disruptive impact on classical statistical physical theories but the present theory of Femtosecond laser is still established on the classical Heisenberg’s Uncertainty Principle. In order to improve the detective accuracy and temporal resolution of the Femtosecond laser, we applied the modified form of generalized uncertainty principle to the wavelength, energy and pulse time of Femtosecond laser in our work. And we designed three typical systems from micro to macro size to estimate the feasibility of our theoretical model and method, respectively in the chemical solution condition, crystal lattice condition and nuclear fission reactor condition.
Bin Sayeed, Muhammad Shahdaat; Karim, Selim Muhammad Rezaul; Sharmin, Tasnuva; Morshed, Mohammed Monzur
2016-01-01
Beta-sitosterol (BS) is a phytosterol, widely distributed throughout the plant kingdom and known to be involved in the stabilization of cell membranes. To compile the sources, physical and chemical properties, spectral and chromatographic analytical methods, synthesis, systemic effects, pharmacokinetics, therapeutic potentials, toxicity, drug delivery and finally, to suggest future research with BS, classical as well as on-line literature were studied. Classical literature includes classical books on ethnomedicine and phytochemistry, and the electronic search included Pubmed, SciFinder, Scopus, the Web of Science, Google Scholar, and others. BS could be obtained from different plants, but the total biosynthetic pathway, as well as its exact physiological and structural function in plants, have not been fully understood. Different pharmacological effects have been studied, but most of the mechanisms of action have not been studied in detail. Clinical trials with BS have shown beneficial effects in different diseases, but long-term study results are not available. These have contributed to its current status as an “orphan phytosterol”. Therefore, extensive research regarding its effect at cellular and molecular level in humans as well as addressing the claims made by commercial manufacturers such as the cholesterol lowering ability, immunological activity etc. are highly recommended. PMID:28930139
Huang, Yande; Su, Bao-Ning; Ye, Qingmei; Palaniswamy, Venkatapuram A; Bolgar, Mark S; Raglione, Thomas V
2014-01-01
The classical internal standard quantitative NMR (qNMR) method determines the purity of an analyte by the determination of a solution containing the analyte and a standard. Therefore, the standard must meet the requirements of chemical compatibility and lack of resonance interference with the analyte as well as a known purity. The identification of such a standard can be time consuming and must be repeated for each analyte. In contrast, the external standard qNMR method utilizes a standard with a known purity to calibrate the NMR instrument. The external standard and the analyte are measured separately, thereby eliminating the matter of chemical compatibility and resonance interference between the standard and the analyte. However, the instrumental factors, including the quality of NMR tubes, must be kept the same. Any deviations will compromise the accuracy of the results. An innovative qNMR method reported herein utilizes an internal reference substance along with an external standard to assume the role of the standard used in the traditional internal standard qNMR method. In this new method, the internal reference substance must only be chemically compatible and be free of resonance-interference with the analyte or external standard whereas the external standard must only be of a known purity. The exact purity or concentration of the internal reference substance is not required as long as the same quantity is added to the external standard and the analyte. The new method reduces the burden of searching for an appropriate standard for each analyte significantly. Therefore the efficiency of the qNMR purity assay increases while the precision of the internal standard method is retained. Copyright © 2013 Elsevier B.V. All rights reserved.
Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association.
Taegtmeyer, Heinrich; Young, Martin E; Lopaschuk, Gary D; Abel, E Dale; Brunengraber, Henri; Darley-Usmar, Victor; Des Rosiers, Christine; Gerszten, Robert; Glatz, Jan F; Griffin, Julian L; Gropler, Robert J; Holzhuetter, Hermann-Georg; Kizer, Jorge R; Lewandowski, E Douglas; Malloy, Craig R; Neubauer, Stefan; Peterson, Linda R; Portman, Michael A; Recchia, Fabio A; Van Eyk, Jennifer E; Wang, Thomas J
2016-05-13
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity. © 2016 American Heart Association, Inc.
Taegtmeyer, Heinrich; Young, Martin E.; Lopaschuk, Gary D.; Abel, E. Dale; Brunengraber, Henri; Darley-Usmar, Victor; Des Rosiers, Christine; Gerszten, Robert; Glatz, Jan F.; Griffin, Julian L.; Gropler, Robert J.; Holzhuetter, Hermann-Georg; Kizer, Jorge R.; Lewandowski, E. Douglas; Malloy, Craig R.; Neubauer, Stefan; Peterson, Linda R.; Portman, Michael A.; Recchia, Fabio A.; Van Eyk, Jennifer E.; Wang, Thomas J.
2016-01-01
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart’s needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on “Assessing Cardiac Metabolism” seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity. PMID:27012580
NASA Astrophysics Data System (ADS)
Ortan, Alina; Fierascu, Irina; Ungureanu, Camelia; Fierascu, Radu Claudiu; Avramescu, Sorin Marius; Dumitrescu, Ovidiu; Dinu-Pirvu, Cristina Elena
2015-12-01
While in the early era of nanotechnology, nanoparticles of noble metals were obtained through expensive methods, using toxic chemical reagents, in the last decade attempts are made to obtain the desired chemical composition, size, morphology, and other properties by eco and green synthesis, using plants. The aim of this paper is to compare two extraction methods (hydroalcoholic extraction and microwave extraction) used to phytosynthesize silver nanoparticles, in terms of nanoparticle (NP) morphology, antioxidant, and antifungal action, using an European native plant, Anthriscus cerefolium (L.) Hoffm. The extracts and the obtained NPs were characterized by modern analytical techniques (GC-MS, UV-Vis, SEM, TEM) and by phytochemical assays (total flavonoids, total terpenoids and total phenolic content). The antifungal activity (evaluated using the Kirby-Bauer method, against Aspergillus niger and Penicillium hirsutum) and the antioxidant activity (determined by the DPPH assay and a chemiluminescence assay) revealed notable differences between the samples, differences due to the extraction procedure followed. Also, preliminary studies regarding the stability and the toxicity of the nanoparticles are presented. By using the microwave-assisted extraction, not only smaller particles (less than 10 nm) were obtained, but also with better antifungal and antioxidant properties than the ones obtained by classical extraction.
Wickering, Ellis; Gaspard, Nicolas; Zafar, Sahar; Moura, Valdery J; Biswal, Siddharth; Bechek, Sophia; OʼConnor, Kathryn; Rosenthal, Eric S; Westover, M Brandon
2016-06-01
The purpose of this study is to evaluate automated implementations of continuous EEG monitoring-based detection of delayed cerebral ischemia based on methods used in classical retrospective studies. We studied 95 patients with either Fisher 3 or Hunt Hess 4 to 5 aneurysmal subarachnoid hemorrhage who were admitted to the Neurosciences ICU and underwent continuous EEG monitoring. We implemented several variations of two classical algorithms for automated detection of delayed cerebral ischemia based on decreases in alpha-delta ratio and relative alpha variability. Of 95 patients, 43 (45%) developed delayed cerebral ischemia. Our automated implementation of the classical alpha-delta ratio-based trending method resulted in a sensitivity and specificity (Se,Sp) of (80,27)%, compared with the values of (100,76)% reported in the classic study using similar methods in a nonautomated fashion. Our automated implementation of the classical relative alpha variability-based trending method yielded (Se,Sp) values of (65,43)%, compared with (100,46)% reported in the classic study using nonautomated analysis. Our findings suggest that improved methods to detect decreases in alpha-delta ratio and relative alpha variability are needed before an automated EEG-based early delayed cerebral ischemia detection system is ready for clinical use.
Juárez, M; Polvillo, O; Contò, M; Ficco, A; Ballico, S; Failla, S
2008-05-09
Four different extraction-derivatization methods commonly used for fatty acid analysis in meat (in situ or one-step method, saponification method, classic method and a combination of classic extraction and saponification derivatization) were tested. The in situ method had low recovery and variation. The saponification method showed the best balance between recovery, precision, repeatability and reproducibility. The classic method had high recovery and acceptable variation values, except for the polyunsaturated fatty acids, showing higher variation than the former methods. The combination of extraction and methylation steps had great recovery values, but the precision, repeatability and reproducibility were not acceptable. Therefore the saponification method would be more convenient for polyunsaturated fatty acid analysis, whereas the in situ method would be an alternative for fast analysis. However the classic method would be the method of choice for the determination of the different lipid classes.
Hou, Zhifei; Sun, Guoxiang; Guo, Yong
2016-01-01
The present study demonstrated the use of the Linear Quantitative Profiling Method (LQPM) to evaluate the quality of Alkaloids of Sophora flavescens (ASF) based on chromatographic fingerprints in an accurate, economical and fast way. Both linear qualitative and quantitative similarities were calculated in order to monitor the consistency of the samples. The results indicate that the linear qualitative similarity (LQLS) is not sufficiently discriminating due to the predominant presence of three alkaloid compounds (matrine, sophoridine and oxymatrine) in the test samples; however, the linear quantitative similarity (LQTS) was shown to be able to obviously identify the samples based on the difference in the quantitative content of all the chemical components. In addition, the fingerprint analysis was also supported by the quantitative analysis of three marker compounds. The LQTS was found to be highly correlated to the contents of the marker compounds, indicating that quantitative analysis of the marker compounds may be substituted with the LQPM based on the chromatographic fingerprints for the purpose of quantifying all chemicals of a complex sample system. Furthermore, once reference fingerprint (RFP) developed from a standard preparation in an immediate detection way and the composition similarities calculated out, LQPM could employ the classical mathematical model to effectively quantify the multiple components of ASF samples without any chemical standard.
Hirth, Sabine; Cena, Lorenzo; Cox, Gerhard; Tomović, Zeljko; Peters, Thomas; Wohlleben, Wendel
2013-04-01
Nanocomposite materials may be considered as a low-risk application of nanotechnology, if the nanofillers remain embedded throughout the life-cycle of the products in which they are embedded. We hypothesize that release of free CNTs occurs by a combination of mechanical stress and chemical degradation of the polymer matrix. We experimentally address limiting cases: Mechanically released fragments may show tubular protrusions on their surface. Here we identify these protrusions unambiguously as naked CNTs by chemically resolved microscopy and a suitable preparation protocol. By size-selective quantification of fragments we establish as a lower limit that at least 95 % of the CNTs remain embedded. Contrary to classical fiber composite approaches, we link this phenomenon to matrix materials with only a few percent elongation at break, predicting which materials should still cover their CNT nanofillers after machining. Protruding networks of CNTs remain after photochemical degradation of the matrix, and we show that it takes the worst case combinations of weathering plus high-shear wear to release free CNTs in the order of mg/m 2 /year. Synergy of chemical degradation and mechanical energy input is identified as the priority scenario of CNT release, but its lab simulation by combined methods is still far from real-world validation.
NASA Astrophysics Data System (ADS)
Blanco-Cuaresma, S.; Anderson, R. I.; Eyer, L.; Mowlavi, N.
2017-03-01
Classical Cepheids and RR Lyrae stars are radially pulsating stars where the spectral type varies according to pulsation phase. Several studies used synthesis and the equivalent width method to determine the variations of effective temperature, surface gravity and metallicity for classical Cepheids and RR Lyrae stars (Luck and Andrievsky 2004; Kovtyukh et al. 2005; Andrievsky et al 2005; Luck et al 2008; Takeda et al. 2013; Fossati et al. 2014). We evaluated the applicability of iSpec (Blanco-Cuaresma et al. 2014 - http://www.blancocuaresma.com/s/), which has been extensively used with non-pulsating FGK stars, and derived atmospheric parameters as a function of phase for δ Cephei and RR Lyrae (the two prototypes stars for each class). The results showed that when we apply a non-adapted traditional spectroscopic method to pulsating stars, derived gravities do not seem to follow a physically logical evolution. Nevertheless, metallicity is globally stable and effective temperature variations globally agree with expectations from the radius variations indicated by the radial velocity variability. Max/min values and average results agree with the literature. In terms of broadening parameters, macroturbulent and projected rotation velocities are very difficult to disentangle even if their profiles are not exactly the same. Individual chemical abundances as function of phase are stable as it was expected (the chemical composition of the star should not vary). We plan to use this information to identify absorption lines that are reliable and stable (less affected by blending) during the whole pulsating cycle. This new line selection may help to improve the determination of atmospheric parameters and it could allow us to be more confident in the study of other less known Cepheids and RR Lyrae stars.
NASA Astrophysics Data System (ADS)
Jastrzębska, Agnieszka Maria; Karwowska, Ewa; Wojciechowski, Tomasz; Ziemkowska, Wanda; Rozmysłowska, Anita; Chlubny, Leszek; Olszyna, Andrzej
2018-02-01
The expanded Ti2C and Ti3C2 MXene phases were synthesized from their parent Ti2AlC and Ti3AlC2 MAX phases using the same conditions of the classical acidic aluminum extraction method. The assumption for the study was that the expanded Ti2C and Ti3C2 MXenes are composed of the same atoms and if are synthesized from MAX phases using the same conditions of the classical acidic aluminum extraction method, the observed bio-effects can be related only to the changes in their structures. The scanning electron microscope investigations indicated that the expanded Ti2C and Ti3C2 sheets formed the specific network of slit-shaped nano-pores. The x-ray photoelectron spectroscopy for chemical analysis (ESCA-XPS) showed almost no difference in surface chemistry of Ti2C and Ti3C2 MXenes. The high-resolution transmission electron microscope investigations revealed, however, differences in atomic structure of the individual Ti2C and Ti3C2 sheets. Measured distance between Ti-C atomic layers in Ti2C was 9.76 Å and was larger by 0.53 Å in comparison with Ti3C2 (9.23 Å). Our investigations of bioactive properties toward model gram-negative Escherichia coli bacterial strain showed that the Ti2C MXene did not influence the viability of bacteria. Contrarily, the Ti3C2 MXene showed antibacterial properties. The results of the study indicate that the structure at the atomic scale may play a key role in the bioactivity of MXenes of the same chemical composition, but different stoichiometry, just like in case of Ti2C and Ti3C2.
This example scenario describes a hazardous release of liquid chlorine at a chemical manufacturing facility, notification of the National Response Center, and deployment of an on-scene coordinator and subsequent response procedures.
ERIC Educational Resources Information Center
Lozano-Parada, Jaime H.; Burnham, Helen; Martinez, Fiderman Machuca
2018-01-01
A classical nonlinear system, the "Brusselator", was used to illustrate the modeling and simulation of oscillating chemical systems using stability analysis techniques with modern software tools such as Comsol Multiphysics, Matlab, and Excel. A systematic approach is proposed in order to establish a regime of parametric conditions that…
Pilot installation for the thermo-chemical characterisation of solid wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marculescu, C.; Antonini, G.; Badea, A.
The increasing production and the large variety of wastes require operators of thermal treatment units to continuously adapt the installations or the functioning parameters to the different physical and chemical properties of the wastes. Usually, the treated waste is encountered in the form of heterogeneous mixtures. The classical tests such as thermogravimetry and calorimetric bomb operate component by component, separately. In addition to this, they can analyse only small quantities of waste at a time (a few grams). These common tests are necessary but insufficient in the global waste analysis in the view further thermal treatment. This paper presents anmore » experimental installation, which was designed and built at the CNRS Science Division, Department of Industrial Methods, Compiegne University of Technology, France. It allows the determination of waste thermal and chemical properties by means of thermal treatment. Also, it is capable of continuously analysing significant quantities of waste (up to 50 kg/h) as compared to the classical tests and it can work under various conditions: {center_dot}oxidant or reductive atmosphere (on choice); {center_dot}variable temperature between 400 and 1000 deg. C; {center_dot}independently set residence time of treated sample in the installation and flow conditions. The installation reproduces the process conditions from incinerators or pyrolysis reactors. It also provides complete information on the kinetics of the waste thermal degradation and on the pollutant emissions. Using different mixtures of components present in the municipal solid waste and also in the reconstituted MSW samples, we defined a series of criteria for characterising waste behaviour during the stages of the main treatment process such as: feeding, devolatilisation/oxidation, advancement, solid residue evacuation, and pollutants emission.« less
NASA Astrophysics Data System (ADS)
Liu, Bing; Teng, Zhidong; Chen, Lansun
2006-08-01
According to biological and chemical control strategy for pest control, we investigate the dynamic behavior of a Holling II functional response predator-prey system concerning impulsive control strategy-periodic releasing natural enemies and spraying pesticide at different fixed times. By using Floquet theorem and small amplitude perturbation method, we prove that there exists a stable pest-eradication periodic solution when the impulsive period is less than some critical value. Further, the condition for the permanence of the system is also given. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by periodic, quasiperiodic and chaotic solutions, which implies that the presence of pulses makes the dynamic behavior more complex. Finally, we conclude that our impulsive control strategy is more effective than the classical one if we take chemical control efficiently.
A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics
ERIC Educational Resources Information Center
Pujol, O.; Perez, J. P.
2007-01-01
The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…
Kuhtz-Buschbeck, Johann P; Andresen, Wiebke; Göbel, Stephan; Gilster, René; Stick, Carsten
2010-06-01
About four decades ago, Perl and collaborators were the first ones who unambiguously identified specifically nociceptive neurons in the periphery. In their classic work, they recorded action potentials from single C-fibers of a cutaneous nerve in cats while applying carefully graded stimuli to the skin (Bessou P, Perl ER. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32: 1025-1043, 1969). They discovered polymodal nociceptors, which responded to mechanical, thermal, and chemical stimuli in the noxious range, and differentiated them from low-threshold thermoreceptors. Their classic findings form the basis of the present method that undergraduate medical students experience during laboratory exercises of sensory physiology, namely, quantitative testing of the thermal detection and pain thresholds. This diagnostic method examines the function of thin afferent nerve fibers. We collected data from nearly 300 students that showed that 1) women are more sensitive to thermal detection and thermal pain at the thenar than men, 2) habituation shifts thermal pain thresholds during repetititve testing, 3) the cold pain threshold is rather variable and lower when tested after heat pain than in the reverse case (order effect), and 4) ratings of pain intensity on a visual analog scale are correlated with the threshold temperature for heat pain but not for cold pain. Median group results could be reproduced in a retest. Quantitative sensory testing of thermal thresholds is feasible and instructive in the setting of a laboratory exercise and is appreciated by the students as a relevant and interesting technique.
Nahta, Rita; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Andrade-Vieira, Rafaela; Bay, Sarah; G. Brown, Dustin; Calaf, Gloria M.; Castellino, Robert C.; Cohen-Solal, Karine A.; Colacci, Annamaria; Cruickshanks, Nichola; Dent, Paul; Di Fiore, Riccardo; Forte, Stefano; Goldberg, Gary S.; Hamid, Roslida A.; Krishnan, Harini; Laird, Dale W.; Lasfar, Ahmed; Marignani, Paola A.; Memeo, Lorenzo; Mondello, Chiara; Naus, Christian C.; Ponce-Cusi, Richard; Raju, Jayadev; Roy, Debasish; Roy, Rabindra; P. Ryan, Elizabeth; Salem, Hosni K.; Scovassi, A. Ivana; Singh, Neetu; Vaccari, Monica; Vento, Renza; Vondráček, Jan; Wade, Mark; Woodrick, Jordan; Bisson, William H.
2015-01-01
As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks. PMID:26106139
Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei
2012-04-07
We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.
NASA Astrophysics Data System (ADS)
Delle Site, Luigi
2018-01-01
A theoretical scheme for the treatment of an open molecular system with electrons and nuclei is proposed. The idea is based on the Grand Canonical description of a quantum region embedded in a classical reservoir of molecules. Electronic properties of the quantum region are calculated at constant electronic chemical potential equal to that of the corresponding (large) bulk system treated at full quantum level. Instead, the exchange of molecules between the quantum region and the classical environment occurs at the chemical potential of the macroscopic thermodynamic conditions. The Grand Canonical Adaptive Resolution Scheme is proposed for the treatment of the classical environment; such an approach can treat the exchange of molecules according to first principles of statistical mechanics and thermodynamic. The overall scheme is build on the basis of physical consistency, with the corresponding definition of numerical criteria of control of the approximations implied by the coupling. Given the wide range of expertise required, this work has the intention of providing guiding principles for the construction of a well founded computational protocol for actual multiscale simulations from the electronic to the mesoscopic scale.
Alexander, Crispin G.; Wanner, Randy; Johnson, Christopher M.; Breitsprecher, Dennis; Winter, Gerhard; Duhr, Stefan; Baaske, Philipp; Ferguson, Neil
2014-01-01
Chemical denaturant titrations can be used to accurately determine protein stability. However, data acquisition is typically labour intensive, has low throughput and is difficult to automate. These factors, combined with high protein consumption, have limited the adoption of chemical denaturant titrations in commercial settings. Thermal denaturation assays can be automated, sometimes with very high throughput. However, thermal denaturation assays are incompatible with proteins that aggregate at high temperatures and large extrapolation of stability parameters to physiological temperatures can introduce significant uncertainties. We used capillary-based instruments to measure chemical denaturant titrations by intrinsic fluorescence and microscale thermophoresis. This allowed higher throughput, consumed several hundred-fold less protein than conventional, cuvette-based methods yet maintained the high quality of the conventional approaches. We also established efficient strategies for automated, direct determination of protein stability at a range of temperatures via chemical denaturation, which has utility for characterising stability for proteins that are difficult to purify in high yield. This approach may also have merit for proteins that irreversibly denature or aggregate in classical thermal denaturation assays. We also developed procedures for affinity ranking of protein–ligand interactions from ligand-induced changes in chemical denaturation data, and proved the principle for this by correctly ranking the affinity of previously unreported peptide–PDZ domain interactions. The increased throughput, automation and low protein consumption of protein stability determinations afforded by using capillary-based methods to measure denaturant titrations, can help to revolutionise protein research. We believe that the strategies reported are likely to find wide applications in academia, biotherapeutic formulation and drug discovery programmes. PMID:25262836
Theoretical determination of chemical rate constants using novel time-dependent methods
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.
1994-01-01
The work completed within the grant period 10/1/91 through 12/31/93 falls primarily in the area of reaction dynamics using both quantum and classical mechanical methodologies. Essentially four projects have been completed and have been or are in preparation of being published. The majority of time was spent in the determination of reaction rate coefficients in the area of hydrocarbon fuel combustion reactions which are relevant to NASA's High Speed Research Program (HSRP). These reaction coefficients are important in the design of novel jet engines with low NOx emissions, which through a series of catalytic reactions contribute to the deterioration of the earth's ozone layer. A second area of research studied concerned the control of chemical reactivity using ultrashort (femtosecond) laser pulses. Recent advances in pulsed-laser technologies have opened up a vast new field to be investigated both experimentally and theoretically. The photodissociation of molecules adsorbed on surfaces using novel time-independent quantum mechanical methods was a third project. And finally, using state-of-the-art, high level ab initio electronic structure methods in conjunction with accurate quantum dynamical methods, the rovibrational energy levels of a triatomic molecule with two nonhydrogen atoms (HCN) were calculated to unprecedented levels of agreement between theory and experiment.
Klimkiewicz, Paulina; Klimkiewicz, Robert; Jankowska, Agnieszka; Kubsik, Anna; Widłak, Patrycja; Łukasiak, Adam; Janczewska, Katarzyna; Kociuga, Natalia; Nowakowski, Tomasz; Woldańska-Okońska, Marta
2018-01-01
Introduction: In this article, the authors focused on the symptoms of ischemic stroke and the effect of neurorehabilitation methods on the functional status of patients after ischemic stroke. The aim of the study was to evaluate and compare the functional status of patients after ischemic stroke with improved classic kinesiotherapy, classic kinesiotherapy and NDT-Bobath and classic kinesiotherapy and PNF. Materials and methods: The study involved 120 patients after ischemic stroke. Patients were treated in the Department of Rehabilitation and Physical Medicine USK of Medical University in Lodz. Patients were divided into 3 groups of 40 people. Group 1 was rehabilitated by classical kinesiotherapy. Group 2 was rehabilitated by classic kinesiotherapy and NTD-Bobath. Group 3 was rehabilitated by classical kinesiotherapy and PNF. In all patient groups, magnetostimulation was performed using the Viofor JPS System. The study was conducted twice: before treatment and immediately after 5 weeks after the therapy. The effects of applied neurorehabilitation methods were assessed on the basis of the Rivermead Motor Assessment (RMA). Results: In all three patient groups, functional improvement was achieved. However, a significantly higher improvement was observed in patients in the second group, enhanced with classical kinesitherapy and NDT-Bobath. Conclusions: The use of classical kinesiotherapy combined with the NDT-Bobath method is noticeably more effective in improving functional status than the use only classical kinesiotherapy or combination of classical kinesiotherapy and PNF patients after ischemic stroke.
Time averaging of NMR chemical shifts in the MLF peptide in the solid state.
De Gortari, Itzam; Portella, Guillem; Salvatella, Xavier; Bajaj, Vikram S; van der Wel, Patrick C A; Yates, Jonathan R; Segall, Matthew D; Pickard, Chris J; Payne, Mike C; Vendruscolo, Michele
2010-05-05
Since experimental measurements of NMR chemical shifts provide time and ensemble averaged values, we investigated how these effects should be included when chemical shifts are computed using density functional theory (DFT). We measured the chemical shifts of the N-formyl-L-methionyl-L-leucyl-L-phenylalanine-OMe (MLF) peptide in the solid state, and then used the X-ray structure to calculate the (13)C chemical shifts using the gauge including projector augmented wave (GIPAW) method, which accounts for the periodic nature of the crystal structure, obtaining an overall accuracy of 4.2 ppm. In order to understand the origin of the difference between experimental and calculated chemical shifts, we carried out first-principles molecular dynamics simulations to characterize the molecular motion of the MLF peptide on the picosecond time scale. We found that (13)C chemical shifts experience very rapid fluctuations of more than 20 ppm that are averaged out over less than 200 fs. Taking account of these fluctuations in the calculation of the chemical shifts resulted in an accuracy of 3.3 ppm. To investigate the effects of averaging over longer time scales we sampled the rotameric states populated by the MLF peptides in the solid state by performing a total of 5 micros classical molecular dynamics simulations. By averaging the chemical shifts over these rotameric states, we increased the accuracy of the chemical shift calculations to 3.0 ppm, with less than 1 ppm error in 10 out of 22 cases. These results suggests that better DFT-based predictions of chemical shifts of peptides and proteins will be achieved by developing improved computational strategies capable of taking into account the averaging process up to the millisecond time scale on which the chemical shift measurements report.
Portfolio Analysis for Vector Calculus
ERIC Educational Resources Information Center
Kaplan, Samuel R.
2015-01-01
Classic stock portfolio analysis provides an applied context for Lagrange multipliers that undergraduate students appreciate. Although modern methods of portfolio analysis are beyond the scope of vector calculus, classic methods reinforce the utility of this material. This paper discusses how to introduce classic stock portfolio analysis in a…
NASA Astrophysics Data System (ADS)
Pokorný, Jaroslav; Pavlíková, Milena; Medved, Igor; Pavlík, Zbyšek; Zahálková, Jana; Rovnaníková, Pavla; Černý, Robert
2016-06-01
Active silica containing materials in the sub-micrometer size range are commonly used for modification of strength parameters and durability of cement based composites. In addition, these materials also assist to accelerate cement hydration. In this paper, two types of diatomaceous earths are used as partial cement replacement in composition of cement paste mixtures. For raw binders, basic physical and chemical properties are studied. The chemical composition of tested materials is determined using classical chemical analysis combined with XRD method that allowed assessment of SiO2 amorphous phase content. For all tested mixtures, initial and final setting times are measured. Basic physical and mechanical properties are measured on hardened paste samples cured 28 days in water. Here, bulk density, matrix density, total open porosity, compressive and flexural strength, are measured. Relationship between compressive strength and total open porosity is studied using several empirical models. The obtained results give evidence of high pozzolanic activity of tested diatomite earths. Their application leads to the increase of both initial and final setting times, decrease of compressive strength, and increase of flexural strength.
Huang, Ruili; Southall, Noel; Xia, Menghang; Cho, Ming-Hsuang; Jadhav, Ajit; Nguyen, Dac-Trung; Inglese, James; Tice, Raymond R.; Austin, Christopher P.
2009-01-01
In support of the U.S. Tox21 program, we have developed a simple and chemically intuitive model we call weighted feature significance (WFS) to predict the toxicological activity of compounds, based on the statistical enrichment of structural features in toxic compounds. We trained and tested the model on the following: (1) data from quantitative high–throughput screening cytotoxicity and caspase activation assays conducted at the National Institutes of Health Chemical Genomics Center, (2) data from Salmonella typhimurium reverse mutagenicity assays conducted by the U.S. National Toxicology Program, and (3) hepatotoxicity data published in the Registry of Toxic Effects of Chemical Substances. Enrichments of structural features in toxic compounds are evaluated for their statistical significance and compiled into a simple additive model of toxicity and then used to score new compounds for potential toxicity. The predictive power of the model for cytotoxicity was validated using an independent set of compounds from the U.S. Environmental Protection Agency tested also at the National Institutes of Health Chemical Genomics Center. We compared the performance of our WFS approach with classical classification methods such as Naive Bayesian clustering and support vector machines. In most test cases, WFS showed similar or slightly better predictive power, especially in the prediction of hepatotoxic compounds, where WFS appeared to have the best performance among the three methods. The new algorithm has the important advantages of simplicity, power, interpretability, and ease of implementation. PMID:19805409
Wang, Ping; Lv, Hai tao; Zhang, Ai hua; Sun, Hui; Yan, Guang li; Han, Ying; Wu, Xiu hong; Wang, Xi jun
2013-11-01
Liuwei Dihuang Wan (LDW), a classic Chinese medicinal formula, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition, and memory. It has attracted increasing attention as one of the most popular and valuable herbal medicines. However, the systematic analysis of the chemical constituents of LDW is difficult and thus has not been well established. In this paper, a rapid, sensitive, and reliable ultra-performance LC with ESI quadrupole TOF high-definition MS method with automated MetaboLynx analysis in positive and negative ion mode was established to characterize the chemical constituents of LDW. The analysis was performed on a Waters UPLC™ HSS T3 using a gradient elution system. MS/MS fragmentation behavior was proposed for aiding the structural identification of the components. Under the optimized conditions, a total of 50 peaks were tentatively characterized by comparing the retention time and MS data. It is concluded that a rapid and robust platform based on ultra-performance LC with ESI quadrupole TOF high-definition MS has been successfully developed for globally identifying multiple constituents of traditional Chinese medicine prescriptions. This is the first report on the systematic analysis of the chemical constituents of LDW. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Austin, Rickey W.
In Einstein's theory of Special Relativity (SR), one method to derive relativistic kinetic energy is via applying the classical work-energy theorem to relativistic momentum. This approach starts with a classical based work-energy theorem and applies SR's momentum to the derivation. One outcome of this derivation is relativistic kinetic energy. From this derivation, it is rather straight forward to form a kinetic energy based time dilation function. In the derivation of General Relativity a common approach is to bypass classical laws as a starting point. Instead a rigorous development of differential geometry and Riemannian space is constructed, from which classical based laws are derived. This is in contrast to SR's approach of starting with classical laws and applying the consequences of the universal speed of light by all observers. A possible method to derive time dilation due to Newtonian gravitational potential energy (NGPE) is to apply SR's approach to deriving relativistic kinetic energy. It will be shown this method gives a first order accuracy compared to Schwarzschild's metric. The SR's kinetic energy and the newly derived NGPE derivation are combined to form a Riemannian metric based on these two energies. A geodesic is derived and calculations compared to Schwarzschild's geodesic for an orbiting test mass about a central, non-rotating, non-charged massive body. The new metric results in high accuracy calculations when compared to Einsteins General Relativity's prediction. The new method provides a candidate approach for starting with classical laws and deriving General Relativity effects. This approach mimics SR's method of starting with classical mechanics when deriving relativistic equations. As a compliment to introducing General Relativity, it provides a plausible scaffolding method from classical physics when teaching introductory General Relativity. A straight forward path from classical laws to General Relativity will be derived. This derivation provides a minimum first order accuracy to Schwarzschild's solution to Einstein's field equations.
The polarization signature from the circumstellar disks of classical Be stars
NASA Astrophysics Data System (ADS)
Halonen, R. J.; Jones, C. E.
2012-05-01
The scattering of light in the nonspherical circumstellar envelopes of classical Be stars produces distinct polarimetric properties that can be used to investigate the physical nature of the scattering environment. Both the continuum and emission line polarization are potentially important diagnostic tools in the modeling of these systems. We combine the use of a new multiple scattering code with an established non-LTE radiative transfer code to study the characteristic wavelength-dependence of the intrinsic polarization of classical Be stars. We construct models using realistic chemical composition and self-consistent calculations of the thermal structure of the disk, and then determine the fraction of emergent polarized light. In particular, the aim of this theoretical research project is to investigate the effect of gas density and metallicity on the observed polarization properties of classical Be stars.
NASA Astrophysics Data System (ADS)
Caballero, Marcos D.; Doughty, Leanne; Turnbull, Anna M.; Pepper, Rachel E.; Pollock, Steven J.
2017-06-01
Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper division. The Colorado Classical Mechanics and Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post test that probes student learning in the first half of a two-semester classical mechanics and math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.
Kinetics of homogeneous nucleation on many-component systems
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.
1974-01-01
Reiss's (1950) classical treatment of the kinetics of homogeneous nucleation in a system containing two chemical components is extended to many-component systems. The formulation is analogous to the pseudostationary-state theory of chemical reaction rates, with the free energy as a function of the composition of the embryo taking the place of the potential energy as a function of interatomic distances.
Kinetics of homogeneous nucleation in many component systems
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.
1974-01-01
Reiss's classical treatment of the kinetics of homogeneous nucleation in a system containing two chemical components is extended to many-component systems. The formulation is analogous to the pseudo-stationary state theory of chemical reaction rates with the free energy as a function of the composition of the embryo taking the place of the potential energy as a function of interatomic distances.
[Progress in industrial bioprocess engineering in China].
Zhuang, Yingping; Chen, Hongzhang; Xia, Jianye; Tang, Wenjun; Zhao, Zhimin
2015-06-01
The advances of industrial biotechnology highly depend on the development of industrial bioprocess researches. In China, we are facing several challenges because of a huge national industrial fermentation capacity. The industrial bioprocess development experienced several main stages. This work mainly reviews the development of the industrial bioprocess in China during the past 30 or 40 years: including the early stage kinetics model study derived from classical chemical engineering, researching method based on control theory, multiple-parameter analysis techniques of on-line measuring instruments and techniques, and multi-scale analysis theory, and also solid state fermentation techniques and fermenters. In addition, the cutting edge of bioprocess engineering was also addressed.
Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook
Kurzweil, Peter
2009-01-01
Novel applications of online pH determinations at temperatures from -35 °C to 130 °C in technical and biological media, which are all but ideal aqueous solutions, require new approaches to pH monitoring. The glass electrode, introduced nearly hundred years ago, and chemical sensors based on field effect transistors (ISFET) show specific drawbacks with respect to handling and long-time stability. Proton sensitive metal oxides seem to be a promising and alternative to the state-of-the-art measuring methods, and might overcome some problems of classical hydrogen electrodes and reference electrodes. PMID:22408563
Single-crystalline δ-Ni2Si nanowires with excellent physical properties
2013-01-01
In this article, we report the synthesis of single-crystalline nickel silicide nanowires (NWs) via chemical vapor deposition method using NiCl2·6H2O as a single-source precursor. Various morphologies of δ-Ni2Si NWs were successfully acquired by controlling the growth conditions. The growth mechanism of the δ-Ni2Si NWs was thoroughly discussed and identified with microscopy studies. Field emission measurements show a low turn-on field (4.12 V/μm), and magnetic property measurements show a classic ferromagnetic characteristic, which demonstrates promising potential applications for field emitters, magnetic storage, and biological cell separation. PMID:23782805
Escande, Vincent; Velati, Alicia; Grison, Claude
2015-04-01
A direct, general and efficient method to synthesize 2H-chromenes (2H-benzo[b]pyrans), identified as environmentally friendly pesticides, has been developed. This approach lays on the new concept of ecocatalysis, which involves the use of biomass from phytoextraction processes, as a valuable source of metallic elements for chemical synthesis. This methodology is similar or superior to known methods, affording 2H-chromenes with good to excellent yields (60-98%), including the preparation of precocene I, a natural insect growth regulator, with 91% yield. The approach is ideal for poor reactive substrates such as phenol or naphthol, classically transformed into 2H-chromenes by methodologies associated with environmental issues. These results illustrate the interest of combining phytoextraction and green synthesis of natural insecticides.
A comparison of classical histology to anatomy revealed by hard x-rays
NASA Astrophysics Data System (ADS)
Richter, Claus-Peter; Tan, Xiaodong; Young, Hunter; Stock, Stuart; Robinson, Alan; Byskosh, Orest; Zheng, Jing; Soriano, Carmen; Xiao, Xianghui; Whitlon, Donna
2016-10-01
Many diseases trigger morphological changes in affected tissue. Today, classical histology is still the "gold standard" used to study and describe those changes. Classical histology, however, is time consuming and requires chemical tissue manipulations that can result in significant tissue distortions. It is sometimes difficult to separate tissue-processing artifacts from changes caused by the disease process. We show that synchrotron X-ray phase-contrast micro-computed tomography (micro-CT) can be used to examine non-embedded, hydrated tissue at a resolution comparable to that obtained with classical histology. The data analysis from stacks of reconstructed micro-CT images is more flexible and faster than when using the classical, physically embedded sections that are by necessity fixed in a particular orientation. We show that in a three-dimensional (3D) structure with meticulous structural details such as the cochlea and the kidney, micro-CT is more flexible, faster and more convenient for morphological studies and disease diagnoses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiswenger, Toya N.; Gallagher, Neal B.; Myers, Tanya L.
The identification of minerals, including uranium-bearing minerals, is traditionally a labor-intensive-process using x-ray diffraction (XRD), fluorescence, or other solid-phase and wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field identification, handheld infrared reflectance spectrometers can also be used in industrial or field environments, with rapid, non-destructive identification possible via spectral analysis of the solid’s reflectance spectrum. We have recently developed standard laboratory measurement methods for the infrared (IR) reflectance of solids and have investigated using these techniques for the identification of uranium-bearing minerals, using XRD methods for ground-truth. Due to the rich colors of such species,more » including distinctive spectroscopic signatures in the infrared, identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g. boltwoodite, schoepite, tyuyamunite, carnotite, etc.) or non-uranium minerals. The method can be used to detect not only pure and partial minerals, but is quite sensitive to chemical change such as hydration (e.g. schoepite). We have further applied statistical methods, in particular classical least squares (CLS) and multivariate curve resolution (MCR) for discrimination of such uranium minerals and two uranium pure chemicals (U3O8 and UO2) against common background materials (e.g. silica sand, asphalt, calcite, K-feldspar) with good success. Each mineral contains unique infrared spectral features; some of the IR features are similar or common to entire classes of minerals, typically arising from similar chemical moieties or functional groups in the minerals: phosphates, sulfates, carbonates, etc. These characteristic 2 infrared bands generate the unique (or class-specific) bands that distinguish the mineral from the interferents or backgrounds. We have observed several cases where the chemical moieties that provide the spectral discrimination in the longwave IR do so by generating upward-going reststrahlen bands in the reflectance data, but the same minerals have other weaker (overtone) bands, sometimes from the same chemical groups, that are manifest as downward-going transmission-type features in the midwave and shortwave infrared.« less
Chemical regulators of plant hormones and their applications in basic research and agriculture.
Jiang, Kai; Asami, Tadao
2018-04-20
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Chemical genomics in plant biology.
Sadhukhan, Ayan; Sahoo, Lingaraj; Panda, Sanjib Kumar
2012-06-01
Chemical genomics is a newly emerged and rapidly progressing field in biology, where small chemical molecules bind specifically and reversibly to protein(s) to modulate their function(s), leading to the delineation and subsequent unravelling of biological processes. This approach overcomes problems like lethality and redundancy of classical genetics. Armed with the powerful techniques of combinatorial synthesis, high-throughput screening and target discovery chemical genomics expands its scope to diverse areas in biology. The well-established genetic system of Arabidopsis model allows chemical genomics to enter into the realm of plant biology exploring signaling pathways of growth regulators, endomembrane signaling cascades, plant defense mechanisms and many more events.
Determination of mycotoxins in foods: current state of analytical methods and limitations.
Köppen, Robert; Koch, Matthias; Siegel, David; Merkel, Stefan; Maul, Ronald; Nehls, Irene
2010-05-01
Mycotoxins are natural contaminants produced by a range of fungal species. Their common occurrence in food and feed poses a threat to the health of humans and animals. This threat is caused either by the direct contamination of agricultural commodities or by a "carry-over" of mycotoxins and their metabolites into animal tissues, milk, and eggs after feeding of contaminated hay or corn. As a consequence of their diverse chemical structures and varying physical properties, mycotoxins exhibit a wide range of biological effects. Individual mycotoxins can be genotoxic, mutagenic, carcinogenic, teratogenic, and oestrogenic. To protect consumer health and to reduce economic losses, surveillance and control of mycotoxins in food and feed has become a major objective for producers, regulatory authorities and researchers worldwide. However, the variety of chemical structures makes it impossible to use one single technique for mycotoxin analysis. Hence, a vast number of analytical methods has been developed and validated. The heterogeneity of food matrices combined with the demand for a fast, simultaneous and accurate determination of multiple mycotoxins creates enormous challenges for routine analysis. The most crucial issues will be discussed in this review. These are (1) the collection of representative samples, (2) the performance of classical and emerging analytical methods based on chromatographic or immunochemical techniques, (3) the validation of official methods for enforcement, and (4) the limitations and future prospects of the current methods.
ZAHABIUN, Farzaneh; SADJJADI, Seyed Mahmoud; ESFANDIARI, Farideh
2015-01-01
Background: Permanent slide preparation of nematodes especially small ones is time consuming, difficult and they become scarious margins. Regarding this problem, a modified double glass mounting method was developed and compared with classic method. Methods: A total of 209 nematode samples from human and animal origin were fixed and stained with Formaldehyde Alcohol Azocarmine Lactophenol (FAAL) followed by double glass mounting and classic dehydration method using Canada balsam as their mounting media. The slides were evaluated in different dates and times, more than four years. Different photos were made with different magnification during the evaluation time. Results: The double glass mounting method was stable during this time and comparable with classic method. There were no changes in morphologic structures of nematodes using double glass mounting method with well-defined and clear differentiation between different organs of nematodes in this method. Conclusion: Using this method is cost effective and fast for mounting of small nematodes comparing to classic method. PMID:26811729
Gupta, B L
1991-06-01
This review surveys the emergence of electron probe X-ray microanalysis as a quantitative method for measuring the chemical elements in situ. The extension of the method to the biological sciences under the influence of Ted Hall is reviewed. Some classical experiments by Hall and his colleagues in Cambridge, UK, previously unpublished, are described; as are some of the earliest quantitative results from the cryo-sections obtained in Cambridge and elsewhere. The progress of the methodology is critically evaluated from the earliest starts to the present state of the art. Particular attention has been focused on the application of the method in providing fresh insights into the role of ions in cell and tissue physiology and pathology. A comprehensive list of references is included for a further pursuit of the topics by the interested reader.
Simulation of wave packet tunneling of interacting identical particles
NASA Astrophysics Data System (ADS)
Lozovik, Yu. E.; Filinov, A. V.; Arkhipov, A. S.
2003-02-01
We demonstrate a different method of simulation of nonstationary quantum processes, considering the tunneling of two interacting identical particles, represented by wave packets. The used method of quantum molecular dynamics (WMD) is based on the Wigner representation of quantum mechanics. In the context of this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These classical trajectories obey Hamiltonian-like equations, where the effective potential consists of the usual classical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term is calculated using local distribution of trajectories in phase space, therefore, classical trajectories are not independent, contrary to classical molecular dynamics. The developed WMD method takes into account the influence of exchange and interaction between particles. The role of direct and exchange interactions in tunneling is analyzed. The tunneling times for interacting particles are calculated.
Controlling sign problems in spin models using tensor renormalization
NASA Astrophysics Data System (ADS)
Denbleyker, Alan; Liu, Yuzhi; Meurice, Y.; Qin, M. P.; Xiang, T.; Xie, Z. Y.; Yu, J. F.; Zou, Haiyuan
2014-01-01
We consider the sign problem for classical spin models at complex β =1/g02 on L ×L lattices. We show that the tensor renormalization group method allows reliable calculations for larger Imβ than the reweighting Monte Carlo method. For the Ising model with complex β we compare our results with the exact Onsager-Kaufman solution at finite volume. The Fisher zeros can be determined precisely with the tensor renormalization group method. We check the convergence of the tensor renormalization group method for the O(2) model on L×L lattices when the number of states Ds increases. We show that the finite size scaling of the calculated Fisher zeros agrees very well with the Kosterlitz-Thouless transition assumption and predict the locations for larger volume. The location of these zeros agree with Monte Carlo reweighting calculation for small volume. The application of the method for the O(2) model with a chemical potential is briefly discussed.
Chemical enrichment in Ultra-Faint Dwarf galaxies
NASA Astrophysics Data System (ADS)
Romano, Donatella
2016-08-01
Our view of the Milky Way's satellite population has radically changed after the discovery, ten years ago, of the first Ultra-Faint Dwarf galaxies (UFDs). These extremely faint, dark-matter dominated, scarcely evolved stellar systems are found in ever-increasing number in our cosmic neighbourhood and constitute a gold-mine for studies of early star formation conditions and early chemical enrichment pathways. Here we show what can be learned from the measurements of chemical abundances in UFD stars read through the lens of chemical evolution studies, point out the limitations of the classic approach, and discuss the way to go to improve the models.
Quality control evaluation of Keshamasi, Keshanjana and Keshamasi eye ointment
Dhiman, Kartar Singh; Shukla, Vinay J.; Bhalodia, Nayan R.; Sharma, Vinay R.
2014-01-01
Background: Keshanjana (collyrium) is a well known Ayurvedic preparation prepared out of Keshamasi (ash prepared by scalp hairs) mixed with Goghrita (cow's ghee). This medicine is indicated for the treatment of Shushkakshipaka (dry eye syndrome) in the classical literature of Ayurveda; hence, it was under taken for standardization and clinical evaluation in an extra-mural research project from Central Council for Research in Ayurvedic Sciences, Department of AYUSH, New Delhi. Aim: To develop standard quality parameters for the Keshamasi, Keshanjana and Keshamasi ointment. Materials and Methods: Scalp hairs of male and females collected from saloons were converted to classical Masi Kalpana and mixed with cow ghee and petrolatum in the ratio of 1:5 to prepare the Keshanjana and Keshamasi ointment respectively. Standard Operation Procedure (SOP) were adopted and recorded accordingly. The raw material, furnished products and plain Goghrita were subjected for quality control parameters i.e., physico-chemical evaluation, anti-microbial study, particle size analysis, heavy metal analysis through inductive couple plasma spectroscopy with high performance thin layer liquid chromatography fingerprints. Results: Rancidity was negative in all the samples, indicating that the physico-chemical parameters are in acceptable range. Lead and zinc were present in most of the samples; while all samples are were free from microbial contamination. Conclusion: As no standards are available to compare the results of the current study, the observations cannot be compared. Thus the profile generated in the current study can be considered as standard to refer in future studies. PMID:25364202
A comparative study of different methods for calculating electronic transition rates
NASA Astrophysics Data System (ADS)
Kananenka, Alexei A.; Sun, Xiang; Schubert, Alexander; Dunietz, Barry D.; Geva, Eitan
2018-03-01
We present a comprehensive comparison of the following mixed quantum-classical methods for calculating electronic transition rates: (1) nonequilibrium Fermi's golden rule, (2) mixed quantum-classical Liouville method, (3) mean-field (Ehrenfest) mixed quantum-classical method, and (4) fewest switches surface-hopping method (in diabatic and adiabatic representations). The comparison is performed on the Garg-Onuchic-Ambegaokar benchmark charge-transfer model, over a broad range of temperatures and electronic coupling strengths, with different nonequilibrium initial states, in the normal and inverted regimes. Under weak to moderate electronic coupling, the nonequilibrium Fermi's golden rule rates are found to be in good agreement with the rates obtained via the mixed quantum-classical Liouville method that coincides with the fully quantum-mechanically exact results for the model system under study. Our results suggest that the nonequilibrium Fermi's golden rule can serve as an inexpensive yet accurate alternative to Ehrenfest and the fewest switches surface-hopping methods.
Zahabiun, Farzaneh; Sadjjadi, Seyed Mahmoud; Esfandiari, Farideh
2015-01-01
Permanent slide preparation of nematodes especially small ones is time consuming, difficult and they become scarious margins. Regarding this problem, a modified double glass mounting method was developed and compared with classic method. A total of 209 nematode samples from human and animal origin were fixed and stained with Formaldehyde Alcohol Azocarmine Lactophenol (FAAL) followed by double glass mounting and classic dehydration method using Canada balsam as their mounting media. The slides were evaluated in different dates and times, more than four years. Different photos were made with different magnification during the evaluation time. The double glass mounting method was stable during this time and comparable with classic method. There were no changes in morphologic structures of nematodes using double glass mounting method with well-defined and clear differentiation between different organs of nematodes in this method. Using this method is cost effective and fast for mounting of small nematodes comparing to classic method.
NASA Astrophysics Data System (ADS)
Starkenburg, E.; Hill, V.; Tolstoy, E.; González Hernández, J. I.; Irwin, M.; Helmi, A.; Battaglia, G.; Jablonka, P.; Tafelmeyer, M.; Shetrone, M.; Venn, K.; de Boer, T.
2010-04-01
The NIR Ca ii triplet absorption lines have proven to be an important tool for quantitative spectroscopy of individual red giant branch stars in the Local Group, providing a better understanding of metallicities of stars in the Milky Way and dwarf galaxies and thereby an opportunity to constrain their chemical evolution processes. An interesting puzzle in this field is the significant lack of extremely metal-poor stars, below [Fe/H] = -3, found in classical dwarf galaxies around the Milky Way using this technique. The question arises whether these stars are really absent, or if the empirical Ca ii triplet method used to study these systems is biased in the low-metallicity regime. Here we present results of synthetic spectral analysis of the Ca ii triplet, that is focused on a better understanding of spectroscopic measurements of low-metallicity giant stars. Our results start to deviate strongly from the widely-used and linear empirical calibrations at [Fe/H] < -2. We provide a new calibration for Ca ii triplet studies which is valid for -0.5 ≥ [Fe/H] ≥ -4. We subsequently apply this new calibration to current data sets and suggest that the classical dwarf galaxies are not so devoid of extremely low-metallicity stars as was previously thought. Using observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile proposal 171.B-0588.
One-Proton Breakup of 18F and the 17O(p,γ)18F Reaction in Classical Novae
NASA Astrophysics Data System (ADS)
Isherwood, Bryan; Banu, A.; E491 Collaboration
2013-10-01
Classical nova studies are of considerable interest for understanding the chemical evolution of the Galaxy. They have been proposed as the most significant source for the nucleosynthesis of the isotopes 13C, 15N, and 17O in the Universe. Novae are also likely to synthesize the short-lived radioisotope 18F (T1/2 = 110 min), which is expected to be the most important contributor to the observed emission of 511 keV gamma radiation by space-based γ-ray telescopes. This emission is produced by electron-positron annihilation following the beta + decay of radioactive nuclei. A detection of these gamma rays could significantly constrain the nova simulation models. 18F nucleosynthesis in classical novae strongly depends on the thermonuclear rate of the 17O(p,γ)18F reaction, which is part of the CNO cycle. This work presents preliminary results toward determination of the 17O(p,γ)18F reaction cross section, which was measured by the indirect method of one-proton nuclear breakup at intermediate energies. The experiment was carried out at GANIL using a beam of 18F at 40 MeV/u impinging on a carbon target. Longitudinal momentum distributions of the 17O breakup fragments were measured in coincidence with γ-rays emitted by 17O residues.
An alternative approach to the Boltzmann distribution through the chemical potential
NASA Astrophysics Data System (ADS)
D'Anna, Michele; Job, Georg
2016-05-01
The Boltzmann distribution is one of the most significant results of classical physics. Despite its importance and its wide range of application, at high school level it is mostly presented without any derivation or link to some basic ideas. In this contribution we present an approach based on the chemical potential that allows to derive it directly from the basic idea of thermodynamical equilibrium.
Lipophilicity of oils and fats estimated by TLC.
Naşcu-Briciu, Rodica D; Sârbu, Costel
2013-04-01
A representative series of natural toxins belonging to alkaloids and mycotoxins classes was investigated by TLC on classical chemically bonded plates and also on oils- and fats-impregnated plates. Their lipophilicity indices are employed in the characterization and comparison of oils and fats. The retention results allowed an accurate indirect estimation of oils and fats lipophilicity. The investigated fats and oils near classical chemically bonded phases are classified and compared by means of multivariate exploratory techniques, such as cluster analysis, principal component analysis, or fuzzy-principal component analysis. Additionally, a concrete hierarchy of oils and fats derived from the observed lipophilic character is suggested. Human fat seems to be very similar to animal fats, but also possess RP-18, RP-18W, and RP-8. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
De la Flor-Martínez, Maria; Galindo-Moreno, Pablo; Sánchez-Fernández, Elena; Piattelli, Adriano; Cobo, Manuel Jesus; Herrera-Viedma, Enrique
2016-10-01
The study of classic papers permits analysis of the past, present, and future of a specific area of knowledge. This type of analysis is becoming more frequent and more sophisticated. Our objective was to use the H-classics method, based on the h-index, to analyze classic papers in Implant Dentistry, Periodontics, and Oral Surgery (ID, P, and OS). First, an electronic search of documents related to ID, P, and OS was conducted in journals indexed in Journal Citation Reports (JCR) 2014 within the category 'Dentistry, Oral Surgery & Medicine'. Second, Web of Knowledge databases were searched using Mesh terms related to ID, P, and OS. Finally, the H-classics method was applied to select the classic articles in these disciplines, collecting data on associated research areas, document type, country, institutions, and authors. Of 267,611 documents related to ID, P, and OS retrieved from JCR journals (2014), 248 were selected as H-classics. They were published in 35 journals between 1953 and 2009, most frequently in the Journal of Clinical Periodontology (18.95%), the Journal of Periodontology (18.54%), International Journal of Oral and Maxillofacial Implants (9.27%), and Clinical Oral Implant Research (6.04%). These classic articles derived from the USA in 49.59% of cases and from Europe in 47.58%, while the most frequent host institution was the University of Gothenburg (17.74%) and the most frequent authors were J. Lindhe (10.48%) and S. Socransky (8.06%). The H-classics approach offers an objective method to identify core knowledge in clinical disciplines such as ID, P, and OS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2016-01-01
Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena. PMID:26815602
Derived heuristics-based consistent optimization of material flow in a gold processing plant
NASA Astrophysics Data System (ADS)
Myburgh, Christie; Deb, Kalyanmoy
2018-01-01
Material flow in a chemical processing plant often follows complicated control laws and involves plant capacity constraints. Importantly, the process involves discrete scenarios which when modelled in a programming format involves if-then-else statements. Therefore, a formulation of an optimization problem of such processes becomes complicated with nonlinear and non-differentiable objective and constraint functions. In handling such problems using classical point-based approaches, users often have to resort to modifications and indirect ways of representing the problem to suit the restrictions associated with classical methods. In a particular gold processing plant optimization problem, these facts are demonstrated by showing results from MATLAB®'s well-known fmincon routine. Thereafter, a customized evolutionary optimization procedure which is capable of handling all complexities offered by the problem is developed. Although the evolutionary approach produced results with comparatively less variance over multiple runs, the performance has been enhanced by introducing derived heuristics associated with the problem. In this article, the development and usage of derived heuristics in a practical problem are presented and their importance in a quick convergence of the overall algorithm is demonstrated.
Molecular modeling: An open invitation for applied mathematics
NASA Astrophysics Data System (ADS)
Mezey, Paul G.
2013-10-01
Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Tsun-Mei; Dang, Liem X.
Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine in this paper the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li + and the dissociation kinetics of ion pairs Li +–[BF 4] and Li +–[PF 6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found that the residence times of EC around Li + ions varied from 60 to 450 ps, depending on themore » correction method used. We found that the relaxation times changed significantly from Li +–[BF 4] to Li +–[PF 6] ion pairs in EC. Finally, our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influences the dissociation kinetics of ion pairing.« less
Chang, Tsun-Mei; Dang, Liem X.
2017-07-19
Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine in this paper the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li + and the dissociation kinetics of ion pairs Li +–[BF 4] and Li +–[PF 6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found that the residence times of EC around Li + ions varied from 60 to 450 ps, depending on themore » correction method used. We found that the relaxation times changed significantly from Li +–[BF 4] to Li +–[PF 6] ion pairs in EC. Finally, our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influences the dissociation kinetics of ion pairing.« less
Beiswenger, Toya N; Gallagher, Neal B; Myers, Tanya L; Szecsody, James E; Tonkyn, Russell G; Su, Yin-Fong; Sweet, Lucas E; Lewallen, Tricia A; Johnson, Timothy J
2018-02-01
The identification of minerals, including uranium-bearing species, is often a labor-intensive process using X-ray diffraction (XRD), fluorescence, or other solid-phase or wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field applications, handheld infrared (IR) reflectance spectrometers can now also be used in industrial or field environments, with rapid, nondestructive identification possible via analysis of the solid's reflectance spectrum providing information not found in other techniques. In this paper, we report the use of laboratory methods that measure the IR hemispherical reflectance of solids using an integrating sphere and have applied it to the identification of mineral mixtures (i.e., rocks), with widely varying percentages of uranium mineral content. We then apply classical least squares (CLS) and multivariate curve resolution (MCR) methods to better discriminate the minerals (along with two pure uranium chemicals U 3 O 8 and UO 2 ) against many common natural and anthropogenic background materials (e.g., silica sand, asphalt, calcite, K-feldspar) with good success. Ground truth as to mineral content was attained primarily by XRD. Identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g., boltwoodite, tyuyamunite, etc.) or non-uranium minerals. The characteristic IR bands generate unique (or class-specific) bands, typically arising from similar chemical moieties or functional groups in the minerals: uranyls, phosphates, silicates, etc. In some cases, the chemical groups that provide spectral discrimination in the longwave IR reflectance by generating upward-going (reststrahlen) bands can provide discrimination in the midwave and shortwave IR via downward-going absorption features, i.e., weaker overtone or combination bands arising from the same chemical moieties.
Thermodynamic integration from classical to quantum mechanics.
Habershon, Scott; Manolopoulos, David E
2011-12-14
We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable. © 2011 American Institute of Physics
Analysis of Chemical Constituents in Wuzi-Yanzong-Wan by UPLC-ESI-LTQ-Orbitrap-MS.
Zou, Dixin; Wang, Jinfeng; Zhang, Bo; Xie, Suhua; Wang, Qing; Xu, Kexin; Lin, Ruichao
2015-12-01
Wuzi-Yanzong-Wan (WZYZW), a classical traditional Chinese medicine (TCM) prescription containing Fructus Lych, Semen Cuscutae (fried), Fructus Rubi, Fructus Schisandrae chinensis (steamed) and Semen Plantaginis (fried with salt), is widely used to treat impotence, sterility, spermatorrhea, premature ejaculation, lumbago and post-micturation dribble. However, the chemical profile of WZYZW has not been established yet. In this work, a rapid and sensitive method for systematically screening and identifying the chemical constituents of WZYZW in both positive and negative ion modes using Ultra-Performance LC coupled with ESI-linear ion trap-Orbitrap tandem mass spectrometry (UPLC-ESI-LTQ-Orbitrap-MS) has been developed. Based on the chromatographic and spectrometric data, and referring to the literature, we could tentatively identify 106 compounds, including organic acids, flavonoids, phenylpropanoids, alkaloids and terpenoids. Fourteen ingredients from Fructus Lych were identified, while 10 ingredients were from Semen Cuscutae (fried), 33 ingredients were from Fructus Rubi, 37 ingredients were from Fructus Schisandrae chinensis (steamed), and 20 ingredients were from Semen Plantaginis (fried with salt). The results may provide essential data for further quality control, pharmacological research and clinical evaluation of WZYZW. Furthermore, this study indicates the developed approach based on UPLC-ESI-LTQ-Orbitrap-MS is suitable for characterizing the chemical profiles of TCM prescriptions. This is the first report to provide a comprehensive analysis of the chemical constituents of WZYZW.
Delesma, Francisco A; Van den Bossche, Maxime; Grönbeck, Henrik; Calaminici, Patrizia; Köster, Andreas M; Pettersson, Lars G M
2018-01-19
In this paper we remind the reader of a simple, intuitive picture of chemical shifts in X-ray photoelectron spectroscopy (XPS) as the difference in chemical bonding between the probed atom and its neighbor to the right in the periodic table, the so called Z+1 approximation. We use the classical ESCA molecule, ethyl trifluoroacetate, and 4d-transition metals to explicitly demonstrate agreement between core-level shifts computed as differences between final core-hole states and the approach where each core-ionized atom is replaced by a Z+1 atom. In this final state, or total energy picture, the XPS shift arises due to the more or less unfavorable chemical bonding of the effective nitrogen in the carbon geometry for the ESCA molecule. Surface core level shifts in metals are determined by whether the Z+1 atom as an alloy segregates to the surface or is more soluble in the bulk. As further illustration of this more chemical picture, we compare the geometry of C 1s and O 1s core-ionized CO with that of, respectively, NO + and CF + . The scope is not to propose a new method to compute XPS shifts but rather to stress the validity of this simple interpretation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Müller, Marco; Schmidt, Friedemann; Clark, Timothy
2012-09-24
Current 3D-QSAR methods such as CoMFA or CoMSIA make use of classical force-field approaches for calculating molecular fields. Thus, they can not adequately account for noncovalent interactions involving halogen atoms like halogen bonds or halogen-π interactions. These deficiencies in the underlying force fields result from the lack of treatment of the anisotropy of the electron density distribution of those atoms, known as the "σ-hole", although recent developments have begun to take specific interactions such as halogen bonding into account. We have now replaced classical force field derived molecular fields by local properties such as the local ionization energy, local electron affinity, or local polarizability, calculated using quantum-mechanical (QM) techniques that do not suffer from the above limitation for 3D-QSAR. We first investigate the characteristics of QM-based local property fields to show that they are suitable for statistical analyses after suitable pretreatment. We then analyze these property fields with partial least-squares (PLS) regression to predict biological affinities of two data sets comprising factor Xa and GABA-A/benzodiazepine receptor ligands. While the resulting models perform equally well or even slightly better in terms of consistency and predictivity than the classical CoMFA fields, the most important aspect of these augmented field-types is that the chemical interpretation of resulting QM-based property field models reveals unique SAR trends driven by electrostatic and polarizability effects, which cannot be extracted directly from CoMFA electrostatic maps. Within the factor Xa set, the interaction of chlorine and bromine atoms with a tyrosine side chain in the protease S1 pocket are correctly predicted. Within the GABA-A/benzodiazepine ligand data set, PLS models of high predictivity resulted for our QM-based property fields, providing novel insights into key features of the SAR for two receptor subtypes and cross-receptor selectivity of the ligands. The detailed interpretation of regression models derived using improved QM-derived property fields thus provides a significant advantage by revealing chemically meaningful correlations with biological activity and helps in understanding novel structure-activity relationship features. This will allow such knowledge to be used to design novel molecules on the basis of interactions additional to steric and hydrogen-bonding features.
Hou, Zhifei; Sun, Guoxiang; Guo, Yong
2016-01-01
The present study demonstrated the use of the Linear Quantitative Profiling Method (LQPM) to evaluate the quality of Alkaloids of Sophora flavescens (ASF) based on chromatographic fingerprints in an accurate, economical and fast way. Both linear qualitative and quantitative similarities were calculated in order to monitor the consistency of the samples. The results indicate that the linear qualitative similarity (LQLS) is not sufficiently discriminating due to the predominant presence of three alkaloid compounds (matrine, sophoridine and oxymatrine) in the test samples; however, the linear quantitative similarity (LQTS) was shown to be able to obviously identify the samples based on the difference in the quantitative content of all the chemical components. In addition, the fingerprint analysis was also supported by the quantitative analysis of three marker compounds. The LQTS was found to be highly correlated to the contents of the marker compounds, indicating that quantitative analysis of the marker compounds may be substituted with the LQPM based on the chromatographic fingerprints for the purpose of quantifying all chemicals of a complex sample system. Furthermore, once reference fingerprint (RFP) developed from a standard preparation in an immediate detection way and the composition similarities calculated out, LQPM could employ the classical mathematical model to effectively quantify the multiple components of ASF samples without any chemical standard. PMID:27529425
Methods for Multiloop Identification of Visual and Neuromuscular Pilot Responses.
Olivari, Mario; Nieuwenhuizen, Frank M; Venrooij, Joost; Bülthoff, Heinrich H; Pollini, Lorenzo
2015-12-01
In this paper, identification methods are proposed to estimate the neuromuscular and visual responses of a multiloop pilot model. A conventional and widely used technique for simultaneous identification of the neuromuscular and visual systems makes use of cross-spectral density estimates. This paper shows that this technique requires a specific noninterference hypothesis, often implicitly assumed, that may be difficult to meet during actual experimental designs. A mathematical justification of the necessity of the noninterference hypothesis is given. Furthermore, two methods are proposed that do not have the same limitations. The first method is based on autoregressive models with exogenous inputs, whereas the second one combines cross-spectral estimators with interpolation in the frequency domain. The two identification methods are validated by offline simulations and contrasted to the classic method. The results reveal that the classic method fails when the noninterference hypothesis is not fulfilled; on the contrary, the two proposed techniques give reliable estimates. Finally, the three identification methods are applied to experimental data from a closed-loop control task with pilots. The two proposed techniques give comparable estimates, different from those obtained by the classic method. The differences match those found with the simulations. Thus, the two identification methods provide a good alternative to the classic method and make it possible to simultaneously estimate human's neuromuscular and visual responses in cases where the classic method fails.
Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.
Liu, Jinfeng; Zhu, Tong; Wang, Xianwei; He, Xiao; Zhang, John Z H
2015-12-08
Developing ab initio molecular dynamics (AIMD) methods for practical application in protein dynamics is of significant interest. Due to the large size of biomolecules, applying standard quantum chemical methods to compute energies for dynamic simulation is computationally prohibitive. In this work, a fragment based ab initio molecular dynamics approach is presented for practical application in protein dynamics study. In this approach, the energy and forces of the protein are calculated by a recently developed electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. For simulation in explicit solvent, mechanical embedding is introduced to treat protein interaction with explicit water molecules. This AIMD approach has been applied to MD simulations of a small benchmark protein Trpcage (with 20 residues and 304 atoms) in both the gas phase and in solution. Comparison to the simulation result using the AMBER force field shows that the AIMD gives a more stable protein structure in the simulation, indicating that quantum chemical energy is more reliable. Importantly, the present fragment-based AIMD simulation captures quantum effects including electrostatic polarization and charge transfer that are missing in standard classical MD simulations. The current approach is linear-scaling, trivially parallel, and applicable to performing the AIMD simulation of proteins with a large size.
ERIC Educational Resources Information Center
Matthews, Dorothy, Ed.
1979-01-01
The eight articles in this bulletin suggest methods of introducing classical literature into the English curriculum. Article titles are: "Ideas for Teaching Classical Mythology"; "What Novels Should High School Students Read?"; "Enlivening the Classics for Live Students"; "Poetry in Performance: The Value of Song and Oral Interpretation in…
Wang, Hongkai; Zhou, Zongwei; Li, Yingci; Chen, Zhonghua; Lu, Peiou; Wang, Wenzhi; Liu, Wanyu; Yu, Lijuan
2017-12-01
This study aimed to compare one state-of-the-art deep learning method and four classical machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer (NSCLC) from 18 F-FDG PET/CT images. Another objective was to compare the discriminative power of the recently popular PET/CT texture features with the widely used diagnostic features such as tumor size, CT value, SUV, image contrast, and intensity standard deviation. The four classical machine learning methods included random forests, support vector machines, adaptive boosting, and artificial neural network. The deep learning method was the convolutional neural networks (CNN). The five methods were evaluated using 1397 lymph nodes collected from PET/CT images of 168 patients, with corresponding pathology analysis results as gold standard. The comparison was conducted using 10 times 10-fold cross-validation based on the criterion of sensitivity, specificity, accuracy (ACC), and area under the ROC curve (AUC). For each classical method, different input features were compared to select the optimal feature set. Based on the optimal feature set, the classical methods were compared with CNN, as well as with human doctors from our institute. For the classical methods, the diagnostic features resulted in 81~85% ACC and 0.87~0.92 AUC, which were significantly higher than the results of texture features. CNN's sensitivity, specificity, ACC, and AUC were 84, 88, 86, and 0.91, respectively. There was no significant difference between the results of CNN and the best classical method. The sensitivity, specificity, and ACC of human doctors were 73, 90, and 82, respectively. All the five machine learning methods had higher sensitivities but lower specificities than human doctors. The present study shows that the performance of CNN is not significantly different from the best classical methods and human doctors for classifying mediastinal lymph node metastasis of NSCLC from PET/CT images. Because CNN does not need tumor segmentation or feature calculation, it is more convenient and more objective than the classical methods. However, CNN does not make use of the import diagnostic features, which have been proved more discriminative than the texture features for classifying small-sized lymph nodes. Therefore, incorporating the diagnostic features into CNN is a promising direction for future research.
The Theory of Thermodynamics for Chemical Reactions in Dispersed Heterogeneous Systems
Yongqiang; Baojiao; Jianfeng
1997-07-01
In this paper, the expressions of Gibbs energy change, enthalpy change, entropy change, and equilibrium constant for chemical reactions in dispersed heterogeneous systems are derived using classical thermodynamics theory. The thermodynamical relations for the same reaction system between the dispersed and the block state are also derived. The effects of degree of dispersion on thermodynamical properties, reaction directions, and chemical equilibria are discussed. The results show that the present equation of thermodynamics for chemical reactions is only a special case of the above-mentioned formulas and that the effect of the dispersity of a heterogeneous system on the chemical reaction obeys the Le Chatelier principle of movement of equilibria.
A strategy for quantum algorithm design assisted by machine learning
NASA Astrophysics Data System (ADS)
Bang, Jeongho; Ryu, Junghee; Yoo, Seokwon; Pawłowski, Marcin; Lee, Jinhyoung
2014-07-01
We propose a method for quantum algorithm design assisted by machine learning. The method uses a quantum-classical hybrid simulator, where a ‘quantum student’ is being taught by a ‘classical teacher’. In other words, in our method, the learning system is supposed to evolve into a quantum algorithm for a given problem, assisted by a classical main-feedback system. Our method is applicable for designing quantum oracle-based algorithms. We chose, as a case study, an oracle decision problem, called a Deutsch-Jozsa problem. We showed by using Monte Carlo simulations that our simulator can faithfully learn a quantum algorithm for solving the problem for a given oracle. Remarkably, the learning time is proportional to the square root of the total number of parameters, rather than showing the exponential dependence found in the classical machine learning-based method.
Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation
NASA Technical Reports Server (NTRS)
Doremus, R. H.
1982-01-01
It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.
NASA Technical Reports Server (NTRS)
Hack, Margherita; Selvelli, Pierluigi
1993-01-01
Recurrent novae seem to be a rather inhomogeneous group: T CrB is a binary with a M III companion; U Sco probably has a late dwarf as companion. Three are fast novae; two are slow novae. Some of them appear to have normal chemical composition; others may present He and CNO excess. Some present a mass-loss that is lower by two orders of magnitude than classical novae. However, our sample is too small for saying whether there are several classes of recurrent novae, which may be related to the various classes of classical novae, or whether the low mass-loss is a general property of the class or just a peculiarity of one member of the larger class of classical novae and recurrent novae.
Generalized trajectory surface hopping method based on the Zhu-Nakamura theory
NASA Astrophysics Data System (ADS)
Oloyede, Ponmile; Mil'nikov, Gennady; Nakamura, Hiroki
2006-04-01
We present a generalized formulation of the trajectory surface hopping method applicable to a general multidimensional system. The method is based on the Zhu-Nakamura theory of a nonadiabatic transition and therefore includes the treatment of classically forbidden hops. The method uses a generalized recipe for the conservation of angular momentum after forbidden hops and an approximation for determining a nonadiabatic transition direction which is crucial when the coupling vector is unavailable. This method also eliminates the need for a rigorous location of the seam surface, thereby ensuring its applicability to a wide class of chemical systems. In a test calculation, we implement the method for the DH2+ system, and it shows a remarkable agreement with the previous results of C. Zhu, H. Kamisaka, and H. Nakamura, [J. Chem. Phys. 116, 3234 (2002)]. We then apply it to a diatomic-in-molecule model system with a conical intersection, and the results compare well with exact quantum calculations. The successful application to the conical intersection system confirms the possibility of directly extending the present method to an arbitrary potential of general topology.
NASA Astrophysics Data System (ADS)
Landsgesell, Jonas; Holm, Christian; Smiatek, Jens
2017-03-01
The reaction ensemble and the constant pH method are well-known chemical equilibrium approaches to simulate protonation and deprotonation reactions in classical molecular dynamics and Monte Carlo simulations. In this article, we demonstrate the similarity between both methods under certain conditions. We perform molecular dynamics simulations of a weak polyelectrolyte in order to compare the titration curves obtained by both approaches. Our findings reveal a good agreement between the methods when the reaction ensemble is used to sweep the reaction constant. Pronounced differences between the reaction ensemble and the constant pH method can be observed for stronger acids and bases in terms of adaptive pH values. These deviations are due to the presence of explicit protons in the reaction ensemble method which induce a screening of electrostatic interactions between the charged titrable groups of the polyelectrolyte. The outcomes of our simulation hint to a better applicability of the reaction ensemble method for systems in confined geometries and titrable groups in polyelectrolytes with different pKa values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spycher, Nicolas; Peiffer, Loic; Finsterle, Stefan
GeoT implements the multicomponent geothermometry method developed by Reed and Spycher (1984, Geochim. Cosmichim. Acta 46 513–528) into a stand-alone computer program, to ease the application of this method and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated from statistical analyses of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are all implemented into the same computer program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization using existing parameter estimationmore » software, such as iTOUGH2, PEST, or UCODE. This integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss.« less
Dabkiewicz, Vanessa Emídio; de Mello Pereira Abrantes, Shirley; Cassella, Ricardo Jorgensen
2018-08-05
Near infrared spectroscopy (NIR) with diffuse reflectance associated to multivariate calibration has as main advantage the replacement of the physical separation of interferents by the mathematical separation of their signals, rapidly with no need for reagent consumption, chemical waste production or sample manipulation. Seeking to optimize quality control analyses, this spectroscopic analytical method was shown to be a viable alternative to the classical Kjeldahl method for the determination of protein nitrogen in yellow fever vaccine. The most suitable multivariate calibration was achieved by the partial least squares method (PLS) with multiplicative signal correction (MSC) treatment and data mean centering (MC), using a minimum number of latent variables (LV) equal to 1, with the lower value of the square root of the mean squared prediction error (0.00330) associated with the highest percentage value (91%) of samples. Accuracy ranged 95 to 105% recovery in the 4000-5184 cm -1 region. Copyright © 2018 Elsevier B.V. All rights reserved.
Chai, Cheng-Zhi; Yu, Bo-Yang
2018-06-01
Many classical prescriptions still have superior clinical values nowadays, and their modern studies also have far-reaching scientific research demonstration values. Gegen decoction, a representative prescription for common cold due to wind-cold, can treat primary dysmenorrhea due to cold and dampness, characterized by continuous administration without recurrence. It is not only in accordance with the principle of homotherapy for heteropathy, but also demonstrates the unique feature of traditional Chinese medicine of relieving the primary and secondary symptoms simultaneously. This article aimed to discuss the method and strategy of Gegen decoction study based on the discovery of its novel application in treatment of primary dysmenorrhea and previous research progress of our group. It was assumed that modern medicine and biology studies, as well as chemical research based on biological activity should be used for reference. Principal active ingredients (groups) in Gegen decoction could be accurately and effectively identified, and its possible mechanism in treatment of primary dysmenorrhea could be eventually elucidated as well. Simultaneously, the theoretical and clinical advantages of traditional Chinese medicine were explored in this paper, focusing on the compatibility characteristics of Gegen decoction. The research hypothesis showed the necessity of following the characteristics and advantages of traditional Chinese medicine in the modern research and reflected the importance of basic research based on the clinical efficacy, expecting to provide some ideas and methods for reference for further modern studies of classical prescriptions. Copyright© by the Chinese Pharmaceutical Association.
McCain, Stephanie L; Flatland, Bente; Schumacher, Juergen P; Clarke Iii, Elsburgh O; Fry, Michael M
2010-12-01
Advantages of handheld and small bench-top biochemical analyzers include requirements for smaller sample volume and practicality for use in the field or in practices, but little has been published on the performance of these instruments compared with standard reference methods in analysis of reptilian blood. The aim of this study was to compare reptilian blood biochemical values obtained using the Abaxis VetScan Classic bench-top analyzer and a Heska i-STAT handheld analyzer with values obtained using a Roche Hitachi 911 chemical analyzer. Reptiles, including 14 bearded dragons (Pogona vitticeps), 4 blue-tongued skinks (Tiliqua gigas), 8 Burmese star tortoises (Geochelone platynota), 10 Indian star tortoises (Geochelone elegans), 5 red-tailed boas (Boa constrictor), and 5 Northern pine snakes (Pituophis melanoleucus melanoleucus), were manually restrained, and a single blood sample was obtained and divided for analysis. Results for concentrations of albumin, bile acids, calcium, glucose, phosphates, potassium, sodium, total protein, and uric acid and activities of aspartate aminotransferase and creatine kinase obtained from the VetScan Classic and Hitachi 911 were compared. Results for concentrations of chloride, glucose, potassium, and sodium obtained from the i-STAT and Hitachi 911 were compared. Compared with results from the Hitachi 911, those from the VetScan Classic and i-STAT had variable correlations, and constant or proportional bias was found for many analytes. Bile acid data could not be evaluated because results for 44 of 45 samples fell below the lower linearity limit of the VetScan Classic. Although the 2 portable instruments might provide measurements with clinical utility, there were significant differences compared with the reference analyzer, and development of analyzer-specific reference intervals is recommended. ©2010 American Society for Veterinary Clinical Pathology.
Modern drug discovery technologies: opportunities and challenges in lead discovery.
Guido, Rafael V C; Oliva, Glaucius; Andricopulo, Adriano D
2011-12-01
The identification of promising hits and the generation of high quality leads are crucial steps in the early stages of drug discovery projects. The definition and assessment of both chemical and biological space have revitalized the screening process model and emphasized the importance of exploring the intrinsic complementary nature of classical and modern methods in drug research. In this context, the widespread use of combinatorial chemistry and sophisticated screening methods for the discovery of lead compounds has created a large demand for small organic molecules that act on specific drug targets. Modern drug discovery involves the employment of a wide variety of technologies and expertise in multidisciplinary research teams. The synergistic effects between experimental and computational approaches on the selection and optimization of bioactive compounds emphasize the importance of the integration of advanced technologies in drug discovery programs. These technologies (VS, HTS, SBDD, LBDD, QSAR, and so on) are complementary in the sense that they have mutual goals, thereby the combination of both empirical and in silico efforts is feasible at many different levels of lead optimization and new chemical entity (NCE) discovery. This paper provides a brief perspective on the evolution and use of key drug design technologies, highlighting opportunities and challenges.
Rate Theory of Ion Pairing at the Water Liquid–Vapor Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Schenter, Gregory K.; Wick, Collin D.
There is overwhelming evidence that certain ions are present near the vapor–liquid interface of aqueous salt solutions. Despite their importance in many chemical reactive phenomena, how ion–ion interactions are affected by interfaces and their influence on kinetic processes is not well understood. Molecular simulations were carried out to exam the thermodynamics and kinetics of small alkali halide ions in the bulk and near the water vapor–liquid interface. We calculated dissociation rates using classical transition state theory, and corrected them with transmission coefficients determined by the reactive flux method and Grote-Hynes theory. Our results show that, in addition to affecting themore » free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results obtained from the reactive flux method and Grote-Hynes theory on the relaxation time present an unequivocal picture of the interface suppressing ion dissociation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
ERIC Educational Resources Information Center
Caballero, Marcos D.; Doughty, Leanne; Turnbull, Anna M.; Pepper, Rachel E.; Pollock, Steven J.
2017-01-01
Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1) at CU Boulder, we have developed a tool to assess student…
Geometric tuning of self-propulsion for Janus catalytic particles
NASA Astrophysics Data System (ADS)
Michelin, Sébastien; Lauga, Eric
2017-02-01
Catalytic swimmers have attracted much attention as alternatives to biological systems for examining collective microscopic dynamics and the response to physico-chemical signals. Yet, understanding and predicting even the most fundamental characteristics of their individual propulsion still raises important challenges. While chemical asymmetry is widely recognized as the cornerstone of catalytic propulsion, different experimental studies have reported that particles with identical chemical properties may propel in opposite directions. Here, we show that, beyond its chemical properties, the detailed shape of a catalytic swimmer plays an essential role in determining its direction of motion, demonstrating the compatibility of the classical theoretical framework with experimental observations.
Geometric tuning of self-propulsion for Janus catalytic particles
Michelin, Sébastien; Lauga, Eric
2017-01-01
Catalytic swimmers have attracted much attention as alternatives to biological systems for examining collective microscopic dynamics and the response to physico-chemical signals. Yet, understanding and predicting even the most fundamental characteristics of their individual propulsion still raises important challenges. While chemical asymmetry is widely recognized as the cornerstone of catalytic propulsion, different experimental studies have reported that particles with identical chemical properties may propel in opposite directions. Here, we show that, beyond its chemical properties, the detailed shape of a catalytic swimmer plays an essential role in determining its direction of motion, demonstrating the compatibility of the classical theoretical framework with experimental observations. PMID:28205563
Geometric tuning of self-propulsion for Janus catalytic particles.
Michelin, Sébastien; Lauga, Eric
2017-02-13
Catalytic swimmers have attracted much attention as alternatives to biological systems for examining collective microscopic dynamics and the response to physico-chemical signals. Yet, understanding and predicting even the most fundamental characteristics of their individual propulsion still raises important challenges. While chemical asymmetry is widely recognized as the cornerstone of catalytic propulsion, different experimental studies have reported that particles with identical chemical properties may propel in opposite directions. Here, we show that, beyond its chemical properties, the detailed shape of a catalytic swimmer plays an essential role in determining its direction of motion, demonstrating the compatibility of the classical theoretical framework with experimental observations.
Defining the concept of ‘tick repellency’ in veterinary medicine
HALOS, L.; BANETH, G.; BEUGNET, F.; BOWMAN, A. S.; CHOMEL, B.; FARKAS, R.; FRANC, M.; GUILLOT, J.; INOKUMA, H.; KAUFMAN, R.; JONGEJAN, F.; JOACHIM, A.; OTRANTO, D.; PFISTER, K.; POLLMEIER, M.; SAINZ, A.; WALL, R.
2012-01-01
SUMMARY Although widely used, the term repellency needs to be employed with care when applied to ticks and other periodic or permanent ectoparasites. Repellency has classically been used to describe the effects of a substance that causes a flying arthropod to make oriented movements away from its source. However, for crawling arthropods such as ticks, the term commonly subsumes a range of effects that include arthropod irritation and consequent avoiding or leaving the host, failing to attach, to bite, or to feed. The objective of the present article is to highlight the need for clarity, to propose consensus descriptions and methods for the evaluation of various effects on ticks caused by chemical substances. PMID:22216951
Anomalous high capacitance in a coaxial single nanowire capacitor.
Liu, Zheng; Zhan, Yongjie; Shi, Gang; Moldovan, Simona; Gharbi, Mohamed; Song, Li; Ma, Lulu; Gao, Wei; Huang, Jiaqi; Vajtai, Robert; Banhart, Florian; Sharma, Pradeep; Lou, Jun; Ajayan, Pulickel M
2012-06-06
Building entire multiple-component devices on single nanowires is a promising strategy for miniaturizing electronic applications. Here we demonstrate a single nanowire capacitor with a coaxial asymmetric Cu-Cu(2)O-C structure, fabricated using a two-step chemical reaction and vapour deposition method. The capacitance measured from a single nanowire device corresponds to ~140 μF cm(-2), exceeding previous reported values for metal-insulator-metal micro-capacitors and is more than one order of magnitude higher than what is predicted by classical electrostatics. Quantum mechanical calculations indicate that this unusually high capacitance may be attributed to a negative quantum capacitance of the dielectric-metal interface, enhanced significantly at the nanoscale.
Hybrid classical/quantum simulation for infrared spectroscopy of water
NASA Astrophysics Data System (ADS)
Maekawa, Yuki; Sasaoka, Kenji; Ube, Takuji; Ishiguro, Takashi; Yamamoto, Takahiro
2018-05-01
We have developed a hybrid classical/quantum simulation method to calculate the infrared (IR) spectrum of water. The proposed method achieves much higher accuracy than conventional classical molecular dynamics (MD) simulations at a much lower computational cost than ab initio MD simulations. The IR spectrum of water is obtained as an ensemble average of the eigenvalues of the dynamical matrix constructed by ab initio calculations, using the positions of oxygen atoms that constitute water molecules obtained from the classical MD simulation. The calculated IR spectrum is in excellent agreement with the experimental IR spectrum.
AIR POLLUTION, OXIDATIVE STRESS AND NEUROTOXICITY.
Increased incidents of classic and variant forms of neurodegenerative diseases suggest that environmental chemicals and susceptibility factors (e.g., genetics, diseased states, obesity, etc.) may be contributory. Particulate matter (PM) is a type of air pollution that is associat...
Data Analysis Techniques for Physical Scientists
NASA Astrophysics Data System (ADS)
Pruneau, Claude A.
2017-10-01
Preface; How to read this book; 1. The scientific method; Part I. Foundation in Probability and Statistics: 2. Probability; 3. Probability models; 4. Classical inference I: estimators; 5. Classical inference II: optimization; 6. Classical inference III: confidence intervals and statistical tests; 7. Bayesian inference; Part II. Measurement Techniques: 8. Basic measurements; 9. Event reconstruction; 10. Correlation functions; 11. The multiple facets of correlation functions; 12. Data correction methods; Part III. Simulation Techniques: 13. Monte Carlo methods; 14. Collision and detector modeling; List of references; Index.
Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium.
Qian, Hong; Beard, Daniel A
2005-04-22
The principles of thermodynamics apply to both equilibrium and nonequilibrium biochemical systems. The mathematical machinery of the classic thermodynamics, however, mainly applies to systems in equilibrium. We introduce a thermodynamic formalism for the study of metabolic biochemical reaction (open, nonlinear) networks in both time-dependent and time-independent nonequilibrium states. Classical concepts in equilibrium thermodynamics-enthalpy, entropy, and Gibbs free energy of biochemical reaction systems-are generalized to nonequilibrium settings. Chemical motive force, heat dissipation rate, and entropy production (creation) rate, key concepts in nonequilibrium systems, are introduced. Dynamic equations for the thermodynamic quantities are presented in terms of the key observables of a biochemical network: stoichiometric matrix Q, reaction fluxes J, and chemical potentials of species mu without evoking empirical rate laws. Energy conservation and the Second Law are established for steady-state and dynamic biochemical networks. The theory provides the physiochemical basis for analyzing large-scale metabolic networks in living organisms.
Whole-rock analyses of core samples from the 1988 drilling of Kilauea Iki lava lake, Hawaii
Helz, Rosalind Tuthill; Taggart, Joseph E.
2010-01-01
This report presents and evaluates 64 major-element analyses of previously unanalyzed Kilauea Iki drill core, plus three samples from the 1959 and 1960 eruptions of Kilauea, obtained by X-ray fluorescence (XRF) analysis during the period 1992 to 1995. All earlier major-element analyses of Kilauea Iki core, obtained by classical (gravimetric) analysis, were reported and evaluated in Helz and others (1994). In order to assess how well the newer data compare with this earlier suite of analyses, a subset of 24 samples, which had been analyzed by classical analysis, was reanalyzed using the XRF technique; those results are presented and evaluated in this report also. The XRF analyses have not been published previously. This report also provides an overview of how the chemical variations observed in these new data fit in with the chemical zonation patterns and petrologic processes inferred in earlier studies of Kilauea Iki.
Temperature-Dependent Kinetic Prediction for Reactions Described by Isothermal Mathematics
Dinh, L. N.; Sun, T. C.; McLean, W.
2016-09-12
Most kinetic models are expressed in isothermal mathematics. In addition, this may lead unaware scientists either to the misconception that classical isothermal kinetic models cannot be used for any chemical process in an environment with a time-dependent temperature profile or, even worse, to a misuse of them. In reality, classical isothermal models can be employed to make kinetic predictions for reactions in environments with time-dependent temperature profiles, provided that there is a continuity/conservation in the reaction extent at every temperature–time step. In this article, fundamental analyses, illustrations, guiding tables, and examples are given to help the interested readers using eithermore » conventional isothermal reacted fraction curves or rate equations to make proper kinetic predictions for chemical reactions in environments with temperature profiles that vary, even arbitrarily, with time simply by the requirement of continuity/conservation of reaction extent whenever there is an external temperature change.« less
Kandelbauer, A; Kessler, W; Kessler, R W
2008-03-01
The laccase-catalysed transformation of indigo carmine (IC) with and without a redox active mediator was studied using online UV-visible spectroscopy. Deconvolution of the mixture spectra obtained during the reaction was performed on a model-free basis using multivariate curve resolution (MCR). Thereby, the time courses of educts, products, and reaction intermediates involved in the transformation were reconstructed without prior mechanistic assumptions. Furthermore, the spectral signature of a reactive intermediate which could not have been detected by a classical hard-modelling approach was extracted from the chemometric analysis. The findings suggest that the combined use of UV-visible spectroscopy and MCR may lead to unexpectedly deep mechanistic evidence otherwise buried in the experimental data. Thus, although rather an unspecific method, UV-visible spectroscopy can prove useful in the monitoring of chemical reactions when combined with MCR. This offers a wide range of chemists a cheap and readily available, highly sensitive tool for chemical reaction online monitoring.
Pharmacokinetic properties and in silico ADME modeling in drug discovery.
Honório, Kathia M; Moda, Tiago L; Andricopulo, Adriano D
2013-03-01
The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME--absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.
One drop chemical derivatization--DESI-MS analysis for metabolite structure identification.
Lubin, Arnaud; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip
2015-07-01
Structural elucidation of metabolites is an important part during the discovery and development process of new pharmaceutical drugs. Liquid Chromatography (LC) in combination with Mass Spectrometry (MS) is usually the technique of choice for structural identification but cannot always provide precise structural identification of the studied metabolite (e.g. site of hydroxylation and site of glucuronidation). In order to identify those metabolites, different approaches are used combined with MS data including nuclear magnetic resonance, hydrogen/deuterium exchange and chemical derivatization followed by LC-MS. Those techniques are often time-consuming and/or require extra sample pre-treatment. In this paper, a fast and easy to set up tool using desorption electrospray ionization-MS for metabolite identification is presented. In the developed method, analytes in solution are simply dried on a glass plate with printed Teflon spots and then a single drop of derivatization mixture is added. Once the spot is dried, the derivatized compound is analyzed. Six classic chemical derivatizations were adjusted to work as a one drop reaction and applied on a list of compounds with relevant functional groups. Subsequently, two successive reactions on a single spot of amoxicillin were tested and the methodology described was successfully applied on an in vitro incubated alprazolam metabolite. All reactions and analyses were performed within an hour and gave useful structural information by derivatizing functional groups, making the method a time-saving and efficient tool for metabolite identification if used in addition or in some cases as an alternative to common methods. Copyright © 2015 John Wiley & Sons, Ltd.
Off-diagonal expansion quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Albash, Tameem; Wagenbreth, Gene; Hen, Itay
2017-12-01
We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.
Off-diagonal expansion quantum Monte Carlo.
Albash, Tameem; Wagenbreth, Gene; Hen, Itay
2017-12-01
We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.
Using of bayesian networks to estimate the probability of "NATECH" scenario occurrence
NASA Astrophysics Data System (ADS)
Dobes, Pavel; Dlabka, Jakub; Jelšovská, Katarína; Polorecká, Mária; Baudišová, Barbora; Danihelka, Pavel
2015-04-01
In the twentieth century, implementation of Bayesian statistics and probability was not much used (may be it wasn't a preferred approach) in the area of natural and industrial risk analysis and management. Neither it was used within analysis of so called NATECH accidents (chemical accidents triggered by natural events, such as e.g. earthquakes, floods, lightning etc.; ref. E. Krausmann, 2011, doi:10.5194/nhess-11-921-2011). Main role, from the beginning, played here so called "classical" frequentist probability (ref. Neyman, 1937), which rely up to now especially on the right/false results of experiments and monitoring and didn't enable to count on expert's beliefs, expectations and judgements (which is, on the other hand, one of the once again well known pillars of Bayessian approach to probability). In the last 20 or 30 years, there is possible to observe, through publications and conferences, the Renaissance of Baysssian statistics into many scientific disciplines (also into various branches of geosciences). The necessity of a certain level of trust in expert judgment within risk analysis is back? After several decades of development on this field, it could be proposed following hypothesis (to be checked): "We couldn't estimate probabilities of complex crisis situations and their TOP events (many NATECH events could be classified as crisis situations or emergencies), only by classical frequentist approach, but also by using of Bayessian approach (i.e. with help of prestaged Bayessian Network including expert belief and expectation as well as classical frequentist inputs). Because - there is not always enough quantitative information from monitoring of historical emergencies, there could be several dependant or independant variables necessary to consider and in generally - every emergency situation always have a little different run." In this topic, team of authors presents its proposal of prestaged typized Bayessian network model for specified NATECH scenario (heavy rainfalls AND/OR melting snow OR earthquake -> landslides AND/OR floods -> major chemical accident), comparing it with "Black Box approach" and with so called "Bow-tie approach" (ref. C. A. Brebbia, Risk Analysis VIII, p.103-111 , WIT Press, 2012) - visualisation of development of the scenario with possibility to calculate frequencies (TOP event of the scenario, developed both ways down to initation events and upwards to end accidental events, using Fault Tree Analysis and Event Tree Analysis methods). This model can include also possible terrorist attack on the chemical facility with potential of major release of chemical into the environmental compartments (water, soil, air), with the goal to threaten environmental safety in the specific area. The study was supported by the project no. VG20132015128 "Increasing of the Environmental Safety & Security by the Prevention of Industrial Chemicals Misuse to the Terrorism", supported by the Ministry of the Interior of the Czech Republic through Security Research Programme, 2013-2015.
ERIC Educational Resources Information Center
Hester, Yvette
Least squares methods are sophisticated mathematical curve fitting procedures used in all classical parametric methods. The linear least squares approximation is most often associated with finding the "line of best fit" or the regression line. Since all statistical analyses are correlational and all classical parametric methods are least…
NASA Astrophysics Data System (ADS)
Ginsberg, Mark D.; Smith, Eddy D.; VanBlaricum, Vicki; Hock, Vincent F.; Kroll, Dan; Russell, Kevin J.
2010-04-01
Both real events and models have proven that drinking water systems are vulnerable to deliberate and/or accidental contamination. Additionally, homeland security initiatives and modeling efforts have determined that it is relatively easy to orchestrate the contamination of potable water supplies. Such contamination can be accomplished with classic and non-traditional chemical agents, toxic industrial chemicals (TICs), and/or toxic industrial materials (TIMs). Subsequent research and testing has developed a proven network for detection and response to these threats. The method uses offthe- shelf, broad-spectrum analytical instruments coupled with advanced interpretive algorithms. The system detects and characterizes any backflow events involving toxic contaminants by employing unique chemical signature (fingerprint) response data. This instrumentation has been certified by the Office of Homeland Security for detecting deliberate and/or accidental contamination of critical water infrastructure. The system involves integration of several mature technologies (sensors, SCADA, dynamic models, and the HACH HST Guardian Blue instrumentation) into a complete, real-time, management system that also can be used to address other water distribution concerns, such as corrosion. This paper summarizes the reasons and results for installing such a distribution-based detection and protection system.
From chemical neuroanatomy to an understanding of the olfactory system
Oboti, L.; Peretto, P.; De Marchis, S.; Fasolo, A.
2011-01-01
The olfactory system of mammals is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents. PMID:22297441
A micromethod for the enzymatic estimation of the degree of glycogen ramification.
Serafini, M T; Alemany, M
1987-10-01
A comparison of methods for the evaluation of glycogen content in liver tissue of rats has been carried out by determining the recoveries in the differential ethanol precipitation of glycogen from alkaline tissue digests as well as the actual quantitative equivalence between glycogen content and actual glucose measured. Hydrolytic/enzymatic methods gave lower results than non-specific chemical methods such as anthrone. These lower values, combined with the losses in the purification process resulted in much lower glycogen estimations than the actual estimated tissue content. A method has been devised for the measurement of glycogen ramification in small liver tissue samples, using neutral periodate oxidation of the molecule, followed by determination of the formic acid evolved from the branch ends with formic acid dehydrogenase. The method gave results very similar to the classical methods in which the acid formed is measured titrimetrically. Rat liver tissue contained a mean 323 +/- 69 mmol of glucose equivalents of glycogen per gram of tissue; this glycogen had a mean chain length of 11.4 +/- 0.8 units.
High-pressure phase transitions - Examples of classical predictability
NASA Astrophysics Data System (ADS)
Celebonovic, Vladan
1992-09-01
The applicability of the Savic and Kasanin (1962-1967) classical theory of dense matter to laboratory experiments requiring estimates of high-pressure phase transitions was examined by determining phase transition pressures for a set of 19 chemical substances (including elements, hydrocarbons, metal oxides, and salts) for which experimental data were available. A comparison between experimental and transition points and those predicted by the Savic-Kasanin theory showed that the theory can be used for estimating values of transition pressures. The results also support conclusions obtained in previous astronomical applications of the Savic-Kasanin theory.
NASA Astrophysics Data System (ADS)
Ignatyev, A. V.; Ignatyev, V. A.; Onischenko, E. V.
2017-11-01
This article is the continuation of the work made bt the authors on the development of the algorithms that implement the finite element method in the form of a classical mixed method for the analysis of geometrically nonlinear bar systems [1-3]. The paper describes an improved algorithm of the formation of the nonlinear governing equations system for flexible plane frames and bars with large displacements of nodes based on the finite element method in a mixed classical form and the use of the procedure of step-by-step loading. An example of the analysis is given.
Chemical Sensors Based on Cyclodextrin Derivatives.
Ogoshi, Tomoki; Harada, Akira
2008-08-25
This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various "turn-off" and "turn-on" fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with p-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review.
Organocards--Chemical Card Game 2
ERIC Educational Resources Information Center
Kristol, D.; Perlmutter, H. D.
1971-01-01
Describes the use of the game cards designed to help students master a large number of seemingly diverse yet fundamental reactions of classical organic chemistry. Claims that cards have stimulated students to learn organic reactions more willingly and more independently. (Author/PR)
Classical Neurotransmitters and their Significance within the Nervous System.
ERIC Educational Resources Information Center
Veca, A.; Dreisbach, J. H.
1988-01-01
Describes some of the chemical compounds involved in the nervous system and their roles in transmitting nerve signals. Discusses acetylcholine, dopamine, norepinephrine, serotonin, histamine, glycine, glutemate, and gamma-aminobutyric acid and their effects within the nervous system. (CW)
The "Mushroom Cloud" Demonstration Revisited
ERIC Educational Resources Information Center
Panzarasa, Guido; Sparnacci, Katia
2013-01-01
A revisitation of the classical "mushroom cloud" demonstration is described. Instead of aniline and benzoyl peroxide, the proposed reaction involves household chemicals such as alpha-pinene (turpentine oil) and trichloroisocyanuric acid ("Trichlor") giving an impressive demonstration of oxidation and combustion reactions that…
Classical Trajectories and Quantum Spectra
NASA Technical Reports Server (NTRS)
Mielnik, Bogdan; Reyes, Marco A.
1996-01-01
A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.
NASA Astrophysics Data System (ADS)
Chevalier, S.; Meyer, O.; Weil, R.; Fourrierlamer, A.; Petit, A.; Loupy, A.; Maurel, F.
2001-09-01
An instrumentation system for measuring wide frequency band complex permittivity of a sample submitted to a microwave irradiation has been optimized in order to allow macroscopic temperature measurements. The reaction of saponification of aromatic esters is studied using this instrumentation. We take interest in the behavior of the ionic conductivity phenomenon occurring in the reactive medium during microwave heating, and we compare it with the results obtained under classical heating. We show that the activation energy associated with ionic conductivity is lower when the reaction is performed under microwaves than when it is performed under classical heating. We thus deduce that microwaves act on the reaction advancement as a catalyst, and thus makes the reaction easier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kehimkar, Benjamin; Hoggard, Jamin C.; Marney, Luke C.
There is an increased need to more fully assess and control the composition of kerosene based rocket propulsion fuels, namely RP-1 and RP-2. In particular, it is crucial to be able to make better quantitative connections between the following three attributes: (a) fuel performance, (b) fuel properties (flash point, density, kinematic viscosity, net heat of combustion, hydrogen content, etc) and (c) the chemical composition of a given fuel (i.e., specific chemical compounds and compound classes present as a result of feedstock blending and processing). Indeed, recent efforts in predicting fuel performance through modeling put greater emphasis on detailed and accuratemore » fuel properties and fuel compositional information. In this regard, advanced distillation curve (ADC) metrology provides improved data relative to classical boiling point and volatility curve techniques. Using ADC metrology, data obtained from RP-1 and RP-2 fuels provides compositional variation information that is directly relevant to predictive modeling of fuel performance. Often, in such studies, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is typically employed to provide chemical composition information. Building on approaches using GC-MS, but to glean substantially more chemical composition information from these complex fuels, we have recently studied the use of comprehensive two dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC - TOFMS) to provide chemical composition data that is significantly richer than that provided by GC-MS methods. In this report, by applying multivariate data analysis techniques, referred to as chemometrics, we are able to readily model (correlate) the chemical compositional information from RP-1 and RP-2 fuels provided using GC × GC - TOFMS, to the fuel property information such as that provided by the ADC method and other specification properties. We anticipate that this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an optimized approach to fuel formulation and specification for advanced engine cycles.« less
NASA Astrophysics Data System (ADS)
Bonhommeau, David; Truhlar, Donald G.
2008-07-01
The photodissociation dynamics of ammonia upon excitation of the out-of-plane bending mode (mode ν2 with n2=0,…,6 quanta of vibration) in the à electronic state is investigated by means of several mixed quantum/classical methods, and the calculated final-state properties are compared to experiments. Five mixed quantum/classical methods are tested: one mean-field approach (the coherent switching with decay of mixing method), two surface-hopping methods [the fewest switches with time uncertainty (FSTU) and FSTU with stochastic decay (FSTU/SD) methods], and two surface-hopping methods with zero-point energy (ZPE) maintenance [the FSTU /SD+trajectory projection onto ZPE orbit (TRAPZ) and FSTU /SD+minimal TRAPZ (mTRAPZ) methods]. We found a qualitative difference between final NH2 internal energy distributions obtained for n2=0 and n2>1, as observed in experiments. Distributions obtained for n2=1 present an intermediate behavior between distributions obtained for smaller and larger n2 values. The dynamics is found to be highly electronically nonadiabatic with all these methods. NH2 internal energy distributions may have a negative energy tail when the ZPE is not maintained throughout the dynamics. The original TRAPZ method was designed to maintain ZPE in classical trajectories, but we find that it leads to unphysically high internal vibrational energies. The mTRAPZ method, which is new in this work and provides a general method for maintaining ZPE in either single-surface or multisurface trajectories, does not lead to unphysical results and is much less time consuming. The effect of maintaining ZPE in mixed quantum/classical dynamics is discussed in terms of agreement with experimental findings. The dynamics for n2=0 and n2=6 are also analyzed to reveal details not available from experiment, in particular, the time required for quenching of electronic excitation and the adiabatic energy gap and geometry at the time of quenching.
Bonhommeau, David; Truhlar, Donald G
2008-07-07
The photodissociation dynamics of ammonia upon excitation of the out-of-plane bending mode (mode nu(2) with n(2)=0,[ellipsis (horizontal)],6 quanta of vibration) in the A electronic state is investigated by means of several mixed quantum/classical methods, and the calculated final-state properties are compared to experiments. Five mixed quantum/classical methods are tested: one mean-field approach (the coherent switching with decay of mixing method), two surface-hopping methods [the fewest switches with time uncertainty (FSTU) and FSTU with stochastic decay (FSTU/SD) methods], and two surface-hopping methods with zero-point energy (ZPE) maintenance [the FSTUSD+trajectory projection onto ZPE orbit (TRAPZ) and FSTUSD+minimal TRAPZ (mTRAPZ) methods]. We found a qualitative difference between final NH(2) internal energy distributions obtained for n(2)=0 and n(2)>1, as observed in experiments. Distributions obtained for n(2)=1 present an intermediate behavior between distributions obtained for smaller and larger n(2) values. The dynamics is found to be highly electronically nonadiabatic with all these methods. NH(2) internal energy distributions may have a negative energy tail when the ZPE is not maintained throughout the dynamics. The original TRAPZ method was designed to maintain ZPE in classical trajectories, but we find that it leads to unphysically high internal vibrational energies. The mTRAPZ method, which is new in this work and provides a general method for maintaining ZPE in either single-surface or multisurface trajectories, does not lead to unphysical results and is much less time consuming. The effect of maintaining ZPE in mixed quantum/classical dynamics is discussed in terms of agreement with experimental findings. The dynamics for n(2)=0 and n(2)=6 are also analyzed to reveal details not available from experiment, in particular, the time required for quenching of electronic excitation and the adiabatic energy gap and geometry at the time of quenching.
Using CAS to Solve Classical Mathematics Problems
ERIC Educational Resources Information Center
Burke, Maurice J.; Burroughs, Elizabeth A.
2009-01-01
Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…
Eigensystem analysis of classical relaxation techniques with applications to multigrid analysis
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Maksymiuk, Catherine
1987-01-01
Classical relaxation techniques are related to numerical methods for solution of ordinary differential equations. Eigensystems for Point-Jacobi, Gauss-Seidel, and SOR methods are presented. Solution techniques such as eigenvector annihilation, eigensystem mixing, and multigrid methods are examined with regard to the eigenstructure.
Hamilton's Principle and Approximate Solutions to Problems in Classical Mechanics
ERIC Educational Resources Information Center
Schlitt, D. W.
1977-01-01
Shows how to use the Ritz method for obtaining approximate solutions to problems expressed in variational form directly from the variational equation. Application of this method to classical mechanics is given. (MLH)
Maggi, Maristella; Scotti, Claudia
2017-08-01
Single domain antibodies (sdAbs) are small antigen-binding domains derived from naturally occurring, heavy chain-only immunoglobulins isolated from camelid and sharks. They maintain the same binding capability of full-length IgGs but with improved thermal stability and permeability, which justifies their scientific, medical and industrial interest. Several described recombinant forms of sdAbs have been produced in different hosts and with different strategies. Here we present an optimized method for a time-saving, high yield production and extraction of a poly-histidine-tagged sdAb from Escherichia coli classical inclusion bodies. Protein expression and extraction were attempted using 4 different methods (e.g. autoinducing or IPTG-induced soluble expression, non-classical and classical inclusion bodies). The best method resulted to be expression in classical inclusion bodies and urea-mediated protein extraction which yielded 60-70 mg/l bacterial culture. The method we here describe can be of general interest for an enhanced and efficient heterologous expression of sdAbs for research and industrial purposes. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Moustafa, Azza A.; Hegazy, Maha A.; Mohamed, Dalia; Ali, Omnia
2016-02-01
A novel approach for the resolution and quantitation of severely overlapped quaternary mixture of carbinoxamine maleate (CAR), pholcodine (PHL), ephedrine hydrochloride (EPH) and sunset yellow (SUN) in syrup was demonstrated utilizing different spectrophotometric assisted multivariate calibration methods. The applied methods have used different processing and pre-processing algorithms. The proposed methods were partial least squares (PLS), concentration residuals augmented classical least squares (CRACLS), and a novel method; continuous wavelet transforms coupled with partial least squares (CWT-PLS). These methods were applied to a training set in the concentration ranges of 40-100 μg/mL, 40-160 μg/mL, 100-500 μg/mL and 8-24 μg/mL for the four components, respectively. The utilized methods have not required any preliminary separation step or chemical pretreatment. The validity of the methods was evaluated by an external validation set. The selectivity of the developed methods was demonstrated by analyzing the drugs in their combined pharmaceutical formulation without any interference from additives. The obtained results were statistically compared with the official and reported methods where no significant difference was observed regarding both accuracy and precision.
Emil Fischer and the "art of chemical experimentation".
Jackson, Catherine M
2017-03-01
What did nineteenth-century chemists know? This essay uses Emil Fischer's classic study of the sugars in 1880s and 90s Germany to argue that chemists' knowledge was not primarily vested in the theories of valence, structure, and stereochemistry that have been the subject of so much historical and philosophical analysis of chemistry in this period. Nor can chemistry be reduced to a merely manipulative exercise requiring little or no intellectual input. Examining what chemists themselves termed the "art of chemical experimentation" reveals chemical practice as inseparable from its cognitive component, and it explains how chemists integrated theory with experiment through reason.
Nguyen, Q Nhu N; Schwochert, Joshua; Tantillo, Dean J; Lokey, R Scott
2018-05-10
Solving conformations of cyclic peptides can provide insight into structure-activity and structure-property relationships, which can help in the design of compounds with improved bioactivity and/or ADME characteristics. The most common approaches for determining the structures of cyclic peptides are based on NMR-derived distance restraints obtained from NOESY or ROESY cross-peak intensities, and 3J-based dihedral restraints using the Karplus relationship. Unfortunately, these observables are often too weak, sparse, or degenerate to provide unequivocal, high-confidence solution structures, prompting us to investigate an alternative approach that relies only on 1H and 13C chemical shifts as experimental observables. This method, which we call conformational analysis from NMR and density-functional prediction of low-energy ensembles (CANDLE), uses molecular dynamics (MD) simulations to generate conformer families and density functional theory (DFT) calculations to predict their 1H and 13C chemical shifts. Iterative conformer searches and DFT energy calculations on a cyclic peptide-peptoid hybrid yielded Boltzmann ensembles whose predicted chemical shifts matched the experimental values better than any single conformer. For these compounds, CANDLE outperformed the classic NOE- and 3J-coupling-based approach by disambiguating similar β-turn types and also enabled the structural elucidation of the minor conformer. Through the use of chemical shifts, in conjunction with DFT and MD calculations, CANDLE can help illuminate conformational ensembles of cyclic peptides in solution.
Nahta, Rita; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Andrade-Vieira, Rafaela; Bay, Sarah N; Brown, Dustin G; Calaf, Gloria M; Castellino, Robert C; Cohen-Solal, Karine A; Colacci, Annamaria; Cruickshanks, Nichola; Dent, Paul; Di Fiore, Riccardo; Forte, Stefano; Goldberg, Gary S; Hamid, Roslida A; Krishnan, Harini; Laird, Dale W; Lasfar, Ahmed; Marignani, Paola A; Memeo, Lorenzo; Mondello, Chiara; Naus, Christian C; Ponce-Cusi, Richard; Raju, Jayadev; Roy, Debasish; Roy, Rabindra; Ryan, Elizabeth P; Salem, Hosni K; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Vento, Renza; Vondráček, Jan; Wade, Mark; Woodrick, Jordan; Bisson, William H
2015-06-01
As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Classical versus Computer Algebra Methods in Elementary Geometry
ERIC Educational Resources Information Center
Pech, Pavel
2005-01-01
Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…
Chen, Mohan; Vella, Joseph R.; Panagiotopoulos, Athanassios Z.; ...
2015-04-08
The structure and dynamics of liquid lithium are studied using two simulation methods: orbital-free (OF) first-principles molecular dynamics (MD), which employs OF density functional theory (DFT), and classical MD utilizing a second nearest-neighbor embedded-atom method potential. The properties we studied include the dynamic structure factor, the self-diffusion coefficient, the dispersion relation, the viscosity, and the bond angle distribution function. Our simulation results were compared to available experimental data when possible. Each method has distinct advantages and disadvantages. For example, OFDFT gives better agreement with experimental dynamic structure factors, yet is more computationally demanding than classical simulations. Classical simulations can accessmore » a broader temperature range and longer time scales. The combination of first-principles and classical simulations is a powerful tool for studying properties of liquid lithium.« less
Predicting hydration free energies of amphetamine-type stimulants with a customized molecular model
NASA Astrophysics Data System (ADS)
Li, Jipeng; Fu, Jia; Huang, Xing; Lu, Diannan; Wu, Jianzhong
2016-09-01
Amphetamine-type stimulants (ATS) are a group of incitation and psychedelic drugs affecting the central nervous system. Physicochemical data for these compounds are essential for understanding the stimulating mechanism, for assessing their environmental impacts, and for developing new drug detection methods. However, experimental data are scarce due to tight regulation of such illicit drugs, yet conventional methods to estimate their properties are often unreliable. Here we introduce a tailor-made multiscale procedure for predicting the hydration free energies and the solvation structures of ATS molecules by a combination of first principles calculations and the classical density functional theory. We demonstrate that the multiscale procedure performs well for a training set with similar molecular characteristics and yields good agreement with a testing set not used in the training. The theoretical predictions serve as a benchmark for the missing experimental data and, importantly, provide microscopic insights into manipulating the hydrophobicity of ATS compounds by chemical modifications.
Ultrafast protein structure-based virtual screening with Panther
NASA Astrophysics Data System (ADS)
Niinivehmas, Sanna P.; Salokas, Kari; Lätti, Sakari; Raunio, Hannu; Pentikäinen, Olli T.
2015-10-01
Molecular docking is by far the most common method used in protein structure-based virtual screening. This paper presents Panther, a novel ultrafast multipurpose docking tool. In Panther, a simple shape-electrostatic model of the ligand-binding area of the protein is created by utilizing the protein crystal structure. The features of the possible ligands are then compared to the model by using a similarity search algorithm. On average, one ligand can be processed in a few minutes by using classical docking methods, whereas using Panther processing takes <1 s. The presented Panther protocol can be used in several applications, such as speeding up the early phases of drug discovery projects, reducing the number of failures in the clinical phase of the drug development process, and estimating the environmental toxicity of chemicals. Panther-code is available in our web pages (http://www.jyu.fi/panther) free of charge after registration.
Ultrafast protein structure-based virtual screening with Panther.
Niinivehmas, Sanna P; Salokas, Kari; Lätti, Sakari; Raunio, Hannu; Pentikäinen, Olli T
2015-10-01
Molecular docking is by far the most common method used in protein structure-based virtual screening. This paper presents Panther, a novel ultrafast multipurpose docking tool. In Panther, a simple shape-electrostatic model of the ligand-binding area of the protein is created by utilizing the protein crystal structure. The features of the possible ligands are then compared to the model by using a similarity search algorithm. On average, one ligand can be processed in a few minutes by using classical docking methods, whereas using Panther processing takes <1 s. The presented Panther protocol can be used in several applications, such as speeding up the early phases of drug discovery projects, reducing the number of failures in the clinical phase of the drug development process, and estimating the environmental toxicity of chemicals. Panther-code is available in our web pages (http://www.jyu.fi/panther) free of charge after registration.
Automated measurement and monitoring of bioprocesses: key elements of the M(3)C strategy.
Sonnleitner, Bernhard
2013-01-01
The state-of-routine monitoring items established in the bioprocess industry as well as some important state-of-the-art methods are briefly described and the potential pitfalls discussed. Among those are physical and chemical variables such as temperature, pressure, weight, volume, mass and volumetric flow rates, pH, redox potential, gas partial pressures in the liquid and molar fractions in the gas phase, infrared spectral analysis of the liquid phase, and calorimetry over an entire reactor. Classical as well as new optical versions are addressed. Biomass and bio-activity monitoring (as opposed to "measurement") via turbidity, permittivity, in situ microscopy, and fluorescence are critically analyzed. Some new(er) instrumental analytical tools, interfaced to bioprocesses, are explained. Among those are chromatographic methods, mass spectrometry, flow and sequential injection analyses, field flow fractionation, capillary electrophoresis, and flow cytometry. This chapter surveys the principles of monitoring rather than compiling instruments.
NASA Astrophysics Data System (ADS)
Tao, Laifa; Lu, Chen; Noktehdan, Azadeh
2015-10-01
Battery capacity estimation is a significant recent challenge given the complex physical and chemical processes that occur within batteries and the restrictions on the accessibility of capacity degradation data. In this study, we describe an approach called dynamic spatial time warping, which is used to determine the similarities of two arbitrary curves. Unlike classical dynamic time warping methods, this approach can maintain the invariance of curve similarity to the rotations and translations of curves, which is vital in curve similarity search. Moreover, it utilizes the online charging or discharging data that are easily collected and do not require special assumptions. The accuracy of this approach is verified using NASA battery datasets. Results suggest that the proposed approach provides a highly accurate means of estimating battery capacity at less time cost than traditional dynamic time warping methods do for different individuals and under various operating conditions.
NASA Astrophysics Data System (ADS)
Ivanov, Sergey V.; Buzykin, Oleg G.
2016-12-01
A classical approach is applied to calculate pressure broadening coefficients of CO2 vibration-rotational spectral lines perturbed by Ar. Three types of spectra are examined: electric dipole (infrared) absorption; isotropic and anisotropic Raman Q branches. Simple and explicit formulae of the classical impact theory are used along with exact 3D Hamilton equations for CO2-Ar molecular motion. The calculations utilize vibrationally independent most accurate ab initio potential energy surface (PES) of Hutson et al. expanded in Legendre polynomial series up to lmax = 24. New improved algorithm of classical rotational frequency selection is applied. The dependences of CO2 half-widths on rotational quantum number J up to J=100 are computed for the temperatures between 77 and 765 K and compared with available experimental data as well as with the results of fully quantum dynamical calculations performed on the same PES. To make the picture complete, the predictions of two independent variants of the semi-classical Robert-Bonamy formalism for dipole absorption lines are included. This method. however, has demonstrated poor accuracy almost for all temperatures. On the contrary, classical broadening coefficients are in excellent agreement both with measurements and with quantum results at all temperatures. The classical impact theory in its present variant is capable to produce quickly and accurately the pressure broadening coefficients of spectral lines of linear molecules for any J value (including high Js) using full-dimensional ab initio - based PES in the cases where other computational methods are either extremely time consuming (like the quantum close coupling method) or give erroneous results (like semi-classical methods).
NASA Technical Reports Server (NTRS)
Barker, L. E., Jr.; Bowles, R. L.; Williams, L. H.
1973-01-01
High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods.
Geochemical Reaction Mechanism Discovery from Molecular Simulation
Stack, Andrew G.; Kent, Paul R. C.
2014-11-10
Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less
NASA Astrophysics Data System (ADS)
Greco, Enrico; Ciliberto, Enrico; Cirino, Antonio M. E.; Capitani, Donatella; Di Tullio, Valeria
2016-05-01
The use of nanotechnology in conservation is a relatively new concept. Usually, classical cleanup methods take into account the use of other chemicals: On the one hand they help the environment destroying pollutants, but on the other hand they often become new pollutants. Among the new oxidation methods called advanced oxidation processes, heterogeneous photocatalysis has appeared an emerging technology with several economic and environmental advantages. A new sol-gel method of synthesis of TiO2 anatase is reported in this work using lithium and cobalt (II) salts. The activation energy of the doped photocatalyst was analyzed by solid-state UV-Vis spectrophotometer. The mobility of Li ions on TiO2 NPs surface was studied by 7Li MAS NMR spectroscopy. Use of doped nanotitania is suggested from authors for the removal of pollutants in confined areas containing goods that must be preserved from decomposition and aging phenomena.
1975-09-01
In the Visible and Near Ultraviolet CHEMICAL FORMULA WAVE LENGTH (A) N02 3000-6000 NITROGEN DIOXIDE N20 2800-3065 NITROUS OXIDE CH3CHO 2500-3500...Electronic Transitions In the Visible and Near Ultraviolet (Cont.) i i i CHEMICAL FORMULA WAVE LENGTH (Ä) PrF 5172 Br20 3330.4011 ci2 4796 AND AN...of characteristic frequency v . The total elastic scattering cross section is given by the classical formula [3-1] : o = —*- r* ; r = • (3-1
Classics in Chemical Neuroscience: Diazepam (Valium)
2014-01-01
Diazepam (Valium) is among the most successful drugs from the onset of the psychopharmacological revolution that began during the 1950s. Efficacious in treating a wide-spectrum of CNS disorders, including anxiety and epilepsy, it set the standard for pharmacotherapy in terms of potency, onset of action, and safety. In this Review, the legacy of diazepam to chemical neuroscience will be considered along with its synthesis, pharmacology, drug metabolism, adverse events and dependence, clinical use, and regulatory issues. PMID:24552479
Applicability of computational systems biology in toxicology.
Kongsbak, Kristine; Hadrup, Niels; Audouze, Karine; Vinggaard, Anne Marie
2014-07-01
Systems biology as a research field has emerged within the last few decades. Systems biology, often defined as the antithesis of the reductionist approach, integrates information about individual components of a biological system. In integrative systems biology, large data sets from various sources and databases are used to model and predict effects of chemicals on, for instance, human health. In toxicology, computational systems biology enables identification of important pathways and molecules from large data sets; tasks that can be extremely laborious when performed by a classical literature search. However, computational systems biology offers more advantages than providing a high-throughput literature search; it may form the basis for establishment of hypotheses on potential links between environmental chemicals and human diseases, which would be very difficult to establish experimentally. This is possible due to the existence of comprehensive databases containing information on networks of human protein-protein interactions and protein-disease associations. Experimentally determined targets of the specific chemical of interest can be fed into these networks to obtain additional information that can be used to establish hypotheses on links between the chemical and human diseases. Such information can also be applied for designing more intelligent animal/cell experiments that can test the established hypotheses. Here, we describe how and why to apply an integrative systems biology method in the hypothesis-generating phase of toxicological research. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
de Lacerda Neto, Luis Jardelino; Ramos, Andreza Guedes Barbosa; Santos Sales, Valterlucio; de Souza, Severino Denicio Gonçalves; Dos Santos, Antonia Thassya Lucas; de Oliveira, Larissa Rolim; Kerntopf, Marta Regina; de Albuquerque, Thais Rodrigues; Coutinho, Henrique Douglas Melo; Quintans-Júnior, Lucindo Jose; Wanderley, Almir Gonçalves; de Menezes, Irwin Rose Alencar
2017-01-05
This work aimed to determine the chemical fingerprint of hydroethanolic extract of leaves of Caryocar coriaceum (HELCC) and the gastroprotective activity. The chemical fingerprint of HELCC was analyzed by HPLC-DAD, to quantify total phenols and flavonoids were carried out by Folin-Ciocalteu reagent and aluminum chloride assay, while in vitro antioxidant activity was evaluated by the DPPH method. The methods used to determine pharmacological activity were: gastroprotective screening test in classical models of induced acute and chronic gastric lesions and physical barrier test. Further assays were performed to demonstrate the involvement of NO, prostaglandins, ATP-dependent potassium channels, TRPV, noradrenergic α2 receptors, histamines, and opioids. The DPPH method demonstrated the antioxidant activity of the extract, in vitro, explained by the presence of polyphenols and flavonoids. Oral administration of the extract, previously dissolved in deionized water, at a dose of 100 mg/kg decreased the lesions induced by indomethacin, acidified ethanol, ethanol and acetic acid by 75.0, 72.8, 69.4 and 86.2% respectively. It was demonstrated that opioid receptors, α 2 -adrenergic receptors and primary afferent neurons sensitive to capsaicin were involved in the mechanism of gastric protection, in addition to the contribution of NO and prostaglandins. The results show that extract is a promising candidate for the treatment of gastric ulcers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Carotenoids and Retinoids: Nomenclature, Chemistry, and Analysis.
Harrison, Earl H; Curley, Robert W
Carotenoids are polyenes synthesized in plants and certain microorganisms and are pigments used by plants and animals in various physiological processes. Some of the over 600 known carotenoids are capable of metabolic conversion to the essential nutrient vitamin A (retinol) in higher animals. Vitamin A also gives rise to a number of other metabolites which, along with their analogs, are known as retinoids. To facilitate discussion about these important molecules, a nomenclature is required to identify specific substances. The generally accepted rules for naming these important molecules have been agreed to by various Commissions of the International Union of Pure and Applied Chemistry and International Union of Biochemistry. These naming conventions are explained along with comparisons to more systematic naming rules that apply for these organic chemicals. Identification of the carotenoids and retinoids has been advanced by their chemical syntheses, and here, both classical and modern methods for synthesis of these molecules, as well as their analogs, are described. Because of their importance in biological systems, sensitive methods for the detection and quantification of these compounds from various sources have been essential. Early analyses that relied on liquid adsorption and partition chromatography have given way to high-performance liquid chromatography (HPLC) coupled with various detection methods. The development of HPLC coupled to mass spectrometry, particularly LC/MS-MS with Multiple Reaction Monitoring, has resulted in the greatest sensitivity and specificity in these analyses.
Maya, Fernando; Estela, José Manuel; Cerdà, Víctor
2009-07-01
In this work, the hyphenation of the multisyringe flow injection analysis technique with a 100-cm-long pathlength liquid core waveguide has been accomplished. The Cl-/Hg(SCN)2/Fe3+ reaction system for the spectrophotometric determination of chloride (Cl(-)) in waters was used as chemical model. As a result, this classic analytical methodology has been improved, minimizing dramatically the consumption of reagents, in particular, that of the highly biotoxic chemical Hg(SCN)2. The proposed method features a linear dynamic range composed of two steps between (1) 0.2-2 and (2) 2-8 mg Cl- L(-1), thus extended applicability due to on-line sample dilution (up to 400 mg Cl- L(-1)). It also presents improved limits of detection and quantification of 0.06 and 0.20 mg Cl- L(-1), respectively. The coefficient of variation and the injection throughput were 1.3% (n = 10, 2 mg Cl- L(-1)) and 21 h(-1). Furthermore, a very low consumption of reagents per Cl- determination of 0.2 microg Hg(II) and 28 microg Fe3+ has been achieved. The method was successfully applied to the determination of Cl- in different types of water samples. Finally, the proposed system is critically compared from a green analytical chemistry point of view against other flow systems for the same purpose.
Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth
A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.
Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth
A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two-level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.
Size determination of Acipenser ruthenus spermatozoa in different types of electron microscopy.
Psenicka, Martin; Tesarová, Martina; Tesitel, Jakub; Nebesárová, Jana
2010-07-01
In this study three types of scanning electron microscopes were used for the size determination of spermatozoa of sterlet Acipenser ruthenus - high vacuum scanning electron microscope (SEM, JEOL 6300), environmental scanning electron microscope (ESEM, Quanta 200 FEG), field emission scanning electron microscope (FESEM, JEOL 7401F) with cryoattachment Alto 2500 (Gatan) and transmission electron microscope (TEM, JEOL 1010). The use of particular microscopes was tied with different specimen preparation techniques. The aim of this study was to evaluate to what degree the type of used electron microscope can influence the size of different parts of spermatozoa. For high vacuum SEM the specimen was prepared using two slightly different procedures. After chemical fixation with 2.5% glutaraldehyde in 0.1M phosphate buffer and post-fixation by 1% osmium tetroxide, the specimen was dehydrated by acetone series and dried either by critical point method or by means of t-butylalcohol. For ESEM fresh, unfixed material was used, which was dropped on microscopic copper grids. In FESEM working in cryo-mode the specimen was observed in a frozen state. Ultrathin sections from chemically fixed and Epon embedded specimens were prepared for TEM observation. Distinct parts of sterlet spermatozoa were measured in each microscope and the data obtained was statistically processed. Results confirmed that the classical chemical procedure of specimen preparation for SEM including critical point drying method led to a significant contraction of all measured values, which could deviate up to 30% in comparison with values measured on the fresh chemically untreated specimen in ESEM. Surprisingly sperm dimensions determinated on ultrathin sections by TEM are comparable with values obtained in ESEM or FESEM. Copyright 2010 Elsevier Ltd. All rights reserved.
Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils.
Lottermoser, Bernd G; Schnug, Ewald; Haneklaus, Silvia
2011-08-15
There is a rising need for scientifically sound and quantitative as well as simple, rapid, cheap and readily available soil testing procedures. The purpose of this study was to explore selected soft drinks (Coca-Cola Classic®, Diet Coke®, Coke Zero®) as indicators of bioaccessible uranium and other trace elements (As, Ce, Cu, La, Mn, Ni, Pb, Th, Y, Zn) in contaminated soils of the Mary Kathleen uranium mine site, Australia. Data of single extraction tests using Coca-Cola Classic®, Diet Coke® and Coke Zero® demonstrate that extractable arsenic, copper, lanthanum, manganese, nickel, yttrium and zinc concentrations correlate significantly with DTPA- and CaCl₂-extractable metals. Moreover, the correlation between DTPA-extractable uranium and that extracted using Coca-Cola Classic® is close to unity (+0.98), with reduced correlations for Diet Coke® (+0.66) and Coke Zero® (+0.55). Also, Coca-Cola Classic® extracts uranium concentrations near identical to DTPA, whereas distinctly higher uranium fractions were extracted using Diet Coke® and Coke Zero®. Results of this study demonstrate that the use of Coca-Cola Classic® in single extraction tests provided an excellent indication of bioaccessible uranium in the analysed soils and of uranium uptake into leaves and stems of the Sodom apple (Calotropis procera). Moreover, the unconventional reagent is superior in terms of availability, costs, preparation and disposal compared to traditional chemicals. Contaminated site assessments and rehabilitation of uranium mine sites require a solid understanding of the chemical speciation of environmentally significant elements for estimating their translocation in soils and plant uptake. Therefore, Cola soft drinks have potential applications in single extraction tests of uranium contaminated soils and may be used for environmental impact assessments of uranium mine sites, nuclear fuel processing plants and waste storage and disposal facilities. Copyright © 2011 Elsevier B.V. All rights reserved.
Paradigm shift in plant growth control.
Körner, Christian
2015-06-01
For plants to grow they need resources and appropriate conditions that these resources are converted into biomass. While acknowledging the importance of co-drivers, the classical view is still that carbon, that is, photosynthetic CO2 uptake, ranks above any other drivers of plant growth. Hence, theory and modelling of growth traditionally is carbon centric. Here, I suggest that this view is not reflecting reality, but emerged from the availability of methods and process understanding at leaf level. In most cases, poorly understood processes of tissue formation and cell growth are governing carbon demand, and thus, CO2 uptake. Carbon can only be converted into biomass to the extent chemical elements other than carbon, temperature or cell turgor permit. Copyright © 2015. Published by Elsevier Ltd.
Electronic Nose for Identification of Lung Diseases
NASA Astrophysics Data System (ADS)
Ogorodnik, V.; Kleperis, J.; Taivans, I.; Jurka, N.; Bukovskis, M.
2008-01-01
In the paper, the authors analyze the preliminary results of testing a classical gas sensing instrument - the electronic nose (a metal oxide transistor sensor of chemical substances) in a hospital where patients with different lung diseases are treated. To reveal the correlation between the amplitudes of the sensor's responses and the patients' diagnoses, different statistical analysis methods have been used. It is shown that the lung cancer can easily be discriminated from other lung diseases if short breath sampling and analysis time (less than 1 min) is used in the test. Volatiles obtained from a breath sample of a patient with lung cancer give the major contribution to the responses of different e-nose sensors, so in these cases highly precise identification could be achieved.
Guthausen, Gisela; von Garnier, Agnes; Reimert, Rainer
2009-10-01
Low-field nuclear magnetic resonance (NMR) spectroscopy is applied to study the hydrogenation of toluene in a lab-scale reactor. A conventional benchtop NMR system was modified to achieve chemical shift resolution. After an off-line validity check of the approach, the reaction product is analyzed on-line during the process, applying chemometric data processing. The conversion of toluene to methylcyclohexane is compared with off-line gas chromatographic analysis. Both classic analytical and chemometric data processing was applied. As the results, which are obtained within a few tens of seconds, are equivalent within the experimental accuracy of both methods, low-field NMR spectroscopy was shown to provide an analytical tool for reaction characterization and immediate feedback.
Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy
NASA Astrophysics Data System (ADS)
Alfonso-García, Alba; Smith, Tim D.; Datta, Rupsa; Luu, Thuy U.; Gratton, Enrico; Potma, Eric O.; Liu, Wendy F.
2016-04-01
Macrophages adopt a variety of phenotypes that are a reflection of the many functions they perform as part of the immune system. In particular, metabolism is a phenotypic trait that differs between classically activated, proinflammatory macrophages, and alternatively activated, prohealing macrophages. Inflammatory macrophages have a metabolism based on glycolysis while alternatively activated macrophages generally rely on oxidative phosphorylation to generate chemical energy. We employ this shift in metabolism as an endogenous marker to identify the phenotype of individual macrophages via live-cell fluorescence lifetime imaging microscopy (FLIM). We demonstrate that polarized macrophages can be readily discriminated with the aid of a phasor approach to FLIM, which provides a fast and model-free method for analyzing fluorescence lifetime images.
Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids
Ren, Yuanhang; Wang, Meiyin; Chen, Xueying; Yue, Bin; He, Heyong
2015-01-01
Organic–inorganic hybrid polyoxometalate (POM) compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis. PMID:28788017
ADVANCES IN DISCOVERING SMALL MOLECULES TO PROBE PROTEIN FUNCTION IN A SYSTEMS CONTEXT
Doyle, Shelby K; Pop, Marius S; Evans, Helen L; Koehler, Angela N
2015-01-01
High throughput screening has historically been used for drug discovery almost exclusively by the pharmaceutical industry. Due to a significant decrease in costs associated with establishing a high throughput facility and an exponential interest in discovering probes of development and disease associated biomolecules, HTS core facilities have become an integral part of most academic and non-profit research institutions over the past decade. This major shift has led to the development of new HTS methodologies extending beyond the capabilities and target classes used in classical drug discovery approaches such as traditional enzymatic activity-based screens. In this brief review we describe some of the most interesting developments in HTS technologies and methods for chemical probe discovery. PMID:26615565
Toxicology has classically been seen as the science of poisons. In the modern world, however, it has evolved into a composite of related, but distinct disciplines, which together seek to understand how chemicals of all kinds - both man-made and natural - affect human health and t...
EMBAYMENT CHARACTERISTIC TIME AND BIOLOGY VIA TIDAL PRISM MODEL
Transport time scales in water bodies are classically based on their physical and chemical aspects rather than on their ecological and biological character. The direct connection between a physical time scale and ecological effects has to be investigated in order to quantitativel...
A Review of Classical Methods of Item Analysis.
ERIC Educational Resources Information Center
French, Christine L.
Item analysis is a very important consideration in the test development process. It is a statistical procedure to analyze test items that combines methods used to evaluate the important characteristics of test items, such as difficulty, discrimination, and distractibility of the items in a test. This paper reviews some of the classical methods for…
NASA Astrophysics Data System (ADS)
Espejo, Elio; Winkler, Michael
2018-04-01
The interplay of chemotaxis, convection and reaction terms is studied in the particular framework of a refined model for coral broadcast spawning, consisting of three equations describing the population densities of unfertilized sperms and eggs and the concentration of a chemical released by the latter, coupled to the incompressible Navier-Stokes equations. Under mild assumptions on the initial data, global existence of classical solutions to an associated initial-boundary value problem in bounded planar domains is established. Moreover, all these solutions are shown to approach a spatially homogeneous equilibrium in the large time limit.
Joint Processing of Envelope Alignment and Phase Compensation for Isar Imaging
NASA Astrophysics Data System (ADS)
Chen, Tao; Jin, Guanghu; Dong, Zhen
2018-04-01
Range envelope alignment and phase compensation are spilt into two isolated parts in the classical methods of translational motion compensation in Inverse Synthetic Aperture Radar (ISAR) imaging. In classic method of the rotating object imaging, the two reference points of the envelope alignment and the Phase Difference (PD) estimation are probably not the same point, making it difficult to uncouple the coupling term by conducting the correction of Migration Through Resolution Cell (MTRC). In this paper, an improved approach of joint processing which chooses certain scattering point as the sole reference point is proposed to perform with utilizing the Prominent Point Processing (PPP) method. With this end in view, we firstly get the initial image using classical methods from which a certain scattering point can be chose. The envelope alignment and phase compensation using the selected scattering point as the same reference point are subsequently conducted. The keystone transform is thus smoothly applied to further improve imaging quality. Both simulation experiments and real data processing are provided to demonstrate the performance of the proposed method compared with classical method.
[Today's meaning of classical authors of political thinking].
Weinacht, Paul-Ludwig
2005-01-01
How can classical political authors be actualised? The question is asked in a discipline which is founded in old traditions: the political science. One of its great matters is the history of political ideas. Classic authors are treated in many books, but they are viewed in different perspectives; colleagues do not agree with shining and bad examples. For actualising classic we have to go a methodically reflected way: historic not historicistic, with sensibility for classic and christian norms without dogmatism or scepticism. Searching the permanent problems we try to translate the original concepts of the classic authors carefully in our time. For demonstrating our method of actualising, we choose the French classical author Montesquieu. His famous concept of division of powers is misunderstood as a "liberal" mechanism which works in itself in favour of freedom (such as Kant made work a "natural mechanism" in a people of devils in favour of their legality); in reality Montesquieu acknoledges that constitutional und organisational work cannot stabilise themselves but must be found in social character and in human virtues.
2013-01-01
Background Cholera has been endemic in Douala, since 1971 when it was first recorded in Cameroon. Outbreaks have often started in slum areas of the city including New Bell. Despite the devastating nature of outbreaks, always resulting in high mortality and morbidity, a paucity of information exists on the reservoirs of the causative agent, V. cholerae, and factors maintaining its persistence. This has complicated disease prevention, resulting in frequent outbreaks of cholera. We investigated water sources in New Bell for contamination with V. cholerae O1 with pathogenic potential, to highlight their role in disease transmission. Antibiotic susceptibility pattern of isolates and the environmental factors maintaining its persistence were investigated. Method Water samples from various sources (taps, dug wells, streams) were analyzed for contamination with V. cholerae O1 using standard methods. Antibiotic susceptibility was determined by disc diffusion method. Pathogenic potential of isolates was determined by analyzing for genes for cholera toxin (ctx), toxin co-regulated pilus (tcpA), and zonula occludens toxin (zot) by PCR. Physico-chemical characteristics of water (pH, temperature and salinity) were investigated using standard methods. The Spearman’s Rank correlation was used to analyze the relationship between physico-chemical factors and the occurrence of V. cholerae O1. Differences were considered significant at P≤0.05. Results Twenty-five V. cholerae O1 strains were isolated from stream and well samples in both dry and rainy seasons. Twenty-three (92%) isolates were multidrug resistant. All isolates had genes for at least one virulence factor. Cholera toxin gene was detected in 7 isolates. Of the 15 isolates positive for tcpA gene, two had Classical type tcpA while 13 had tcpA El Tor. All tcpA Classical positive isolates were positive for ctx gene. Isolates were grouped into nine genotypes based on the genes analyzed. pH and salinity significantly correlated with isolation of V. cholerae O1. Conclusion Multidrug resistant Vibrio cholerae O1 with pathogenic potential is present in some wells and streams in study area. pH and salinity are among the factors maintaining the persistence of the organism. Findings indicate an urgent need for potable water supply in study area and in addition, regular disinfection of water from contaminated sources to prevent outbreak of cholera. PMID:23919373
NASA Astrophysics Data System (ADS)
Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa
2018-02-01
The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.
NASA Astrophysics Data System (ADS)
de Sousa, J. Ricardo; de Albuquerque, Douglas F.
1997-02-01
By using two approaches of renormalization group (RG), mean field RG (MFRG) and effective field RG (EFRG), we study the critical properties of the simple cubic lattice classical XY and classical Heisenberg models. The methods are illustrated by employing its simplest approximation version in which small clusters with one ( N‧ = 1) and two ( N = 2) spins are used. The thermal and magnetic critical exponents, Yt and Yh, and the critical parameter Kc are numerically obtained and are compared with more accurate methods (Monte Carlo, series expansion and ε-expansion). The results presented in this work are in excellent agreement with these sophisticated methods. We have also shown that the exponent Yh does not depend on the symmetry n of the Hamiltonian, hence the criteria of universality for this exponent is only a function of the dimension d.
KECSA-Movable Type Implicit Solvation Model (KMTISM)
2015-01-01
Computation of the solvation free energy for chemical and biological processes has long been of significant interest. The key challenges to effective solvation modeling center on the choice of potential function and configurational sampling. Herein, an energy sampling approach termed the “Movable Type” (MT) method, and a statistical energy function for solvation modeling, “Knowledge-based and Empirical Combined Scoring Algorithm” (KECSA) are developed and utilized to create an implicit solvation model: KECSA-Movable Type Implicit Solvation Model (KMTISM) suitable for the study of chemical and biological systems. KMTISM is an implicit solvation model, but the MT method performs energy sampling at the atom pairwise level. For a specific molecular system, the MT method collects energies from prebuilt databases for the requisite atom pairs at all relevant distance ranges, which by its very construction encodes all possible molecular configurations simultaneously. Unlike traditional statistical energy functions, KECSA converts structural statistical information into categorized atom pairwise interaction energies as a function of the radial distance instead of a mean force energy function. Within the implicit solvent model approximation, aqueous solvation free energies are then obtained from the NVT ensemble partition function generated by the MT method. Validation is performed against several subsets selected from the Minnesota Solvation Database v2012. Results are compared with several solvation free energy calculation methods, including a one-to-one comparison against two commonly used classical implicit solvation models: MM-GBSA and MM-PBSA. Comparison against a quantum mechanics based polarizable continuum model is also discussed (Cramer and Truhlar’s Solvation Model 12). PMID:25691832
The Chemical Adventures of Sherlock Holmes: The Problem of Woolthshrap Prison
NASA Astrophysics Data System (ADS)
Rybolt, Thomas R.; Waddell, Thomas G.
1995-12-01
A story describing a chemical mystery with an emphasis on scientific observation and the criminal use of classic reaction of chemistry is related. This is the seventh article in a series presenting a scientific problem in mystery form in the context of the popular and beloved characters, Sherlock Holmes and Dr. Watson. There is a break in the story where the reader (students and teachers) can ponder and solve the mystery. Sherlock Holmes provides his solution in the paragraphs following this break.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.
Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical andmore » radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.« less
Ecological and agricultural applications of synchrotron IR microscopy
NASA Astrophysics Data System (ADS)
Raab, T. K.; Vogel, J. P.
2004-10-01
The diffraction-limited spot size of synchrotron-based IR microscopes provides cell-specific, spectrochemical imaging of cleared leaf, stem and root tissues of the model genetic organism Arabidopsis thaliana, and mutant plants created either by T-DNA insertional inactivation or chemical mutagenesis. Spectra in the wavelength region from 6 to 12 μm provide chemical and physical information on the cell wall polysaccharides of mutants lacking particular biosynthetic enzymes ("Cellulose synthase-like" genes). In parallel experiments, synchrotron IR microscopy delineates the role of Arabidopsis cell wall enzymes as susceptibility factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes, pmr4, pmr5, and pmr6 have been characterized by these methods, and biochemical relations between two of the genes suggested by IR spectroscopy and multivariate statistical techniques could not have been inferred through classical molecular biology. In ecological experiments, live plants can also be imaged in small microcosms with mid-IR transmitting ZnSe windows. Small exudate molecules may be spatially mapped in relation to root architecture at diffraction-limited resolution, and the effect of microbial symbioses on the quantity and quality of exudates inferred. Synchrotron IR microscopy provides a useful adjunct to molecular biological methods and underground observatories in the ongoing assessment of the role of root-soil-microbe communication.
Methods development for total organic carbon accountability
NASA Technical Reports Server (NTRS)
Benson, Brian L.; Kilgore, Melvin V., Jr.
1991-01-01
This report describes the efforts completed during the contract period beginning November 1, 1990 and ending April 30, 1991. Samples of product hygiene and potable water from WRT 3A were supplied by NASA/MSFC prior to contract award on July 24, 1990. Humidity condensate samples were supplied on August 3, 1990. During the course of this contract chemical analyses were performed on these samples to qualitatively determine specific components comprising, the measured organic carbon concentration. In addition, these samples and known standard solutions were used to identify and develop methodology useful to future comprehensive characterization of similar samples. Standard analyses including pH, conductivity, and total organic carbon (TOC) were conducted. Colorimetric and enzyme linked assays for total protein, bile acid, B-hydroxybutyric acid, methylene blue active substances (MBAS), urea nitrogen, ammonia, and glucose were also performed. Gas chromatographic procedures for non-volatile fatty acids and EPA priority pollutants were also performed. Liquid chromatography was used to screen for non-volatile, water soluble compounds not amenable to GC techniques. Methods development efforts were initiated to separate and quantitate certain chemical classes not classically analyzed in water and wastewater samples. These included carbohydrates, organic acids, and amino acids. Finally, efforts were initiated to identify useful concentration techniques to enhance detection limits and recovery of non-volatile, water soluble compounds.
Hervás, César; Silva, Manuel; Serrano, Juan Manuel; Orejuela, Eva
2004-01-01
The suitability of an approach for extracting heuristic rules from trained artificial neural networks (ANNs) pruned by a regularization method and with architectures designed by evolutionary computation for quantifying highly overlapping chromatographic peaks is demonstrated. The ANN input data are estimated by the Levenberg-Marquardt method in the form of a four-parameter Weibull curve associated with the profile of the chromatographic band. To test this approach, two N-methylcarbamate pesticides, carbofuran and propoxur, were quantified using a classic peroxyoxalate chemiluminescence reaction as a detection system for chromatographic analysis. Straightforward network topologies (one and two outputs models) allow the analytes to be quantified in concentration ratios ranging from 1:7 to 5:1 with an average standard error of prediction for the generalization test of 2.7 and 2.3% for carbofuran and propoxur, respectively. The reduced dimensions of the selected ANN architectures, especially those obtained after using heuristic rules, allowed simple quantification equations to be developed that transform the input variables into output variables. These equations can be easily interpreted from a chemical point of view to attain quantitative analytical information regarding the effect of both analytes on the characteristics of chromatographic bands, namely profile, dispersion, peak height, and residence time. Copyright 2004 American Chemical Society
Identification of a Drosophila glucose receptor using Ca2+ imaging of single chemosensory neurons.
Miyamoto, Tetsuya; Chen, Yan; Slone, Jesse; Amrein, Hubert
2013-01-01
Evaluation of food compounds by chemosensory cells is essential for animals to make appropriate feeding decisions. In the fruit fly Drosophila melanogaster, structurally diverse chemicals are detected by multimeric receptors composed of members of a large family of Gustatory receptor (Gr) proteins. Putative sugar and bitter receptors are expressed in distinct subsets of Gustatory Receptor Neurons (GRN) of taste sensilla, thereby assigning distinct taste qualities to sugars and bitter tasting compounds, respectively. Here we report a Ca(2+) imaging method that allows association of ligand-mediated responses to a single GRN. We find that different sweet neurons exhibit distinct response profiles when stimulated with various sugars, and likewise, different bitter neurons exhibit distinct response profiles when stimulated with a set of bitter chemicals. These observations suggest that individual neurons within a taste modality are represented by distinct repertoires of sweet and bitter taste receptors, respectively. Furthermore, we employed this novel method to identify glucose as the primary ligand for the sugar receptor Gr61a, which is not only expressed in sweet sensing neurons of classical chemosensory sensilla, but also in two supersensitive neurons of atypical taste sensilla. Thus, single cell Ca(2+) imaging can be employed as a powerful tool to identify ligands for orphan Gr proteins.
Understanding the biological effects of exposures to chemicals in the environment relies on classical and emerging technologies in the areas of genomics, proteomics, and metabonomics. Linkages between the historical and newer toxicological tools are currently being developed in o...
Swimming pattern of Pseudomonas putida - navigating with stops and reversals
NASA Astrophysics Data System (ADS)
Hintsche, Marius; Waljor, Veronika; Alirezaeizanjani, Zahra; Theves, Matthias; Beta, Carsten
Bacterial swimming strategies depend on factors such as the chemical and physical environment, as well as the flagellation pattern of a species. For some bacteria the motility pattern and the underlying flagellar dynamics are well known, such as the classical run-and-tumble behavior of E. coli. Here we study the swimming motility and chemotactic behavior of the polar, multi-flagellated soil dwelling bacterium Pseudomonas putida. Compared to E. coli, its motility pattern is more diverse. In addition to different speed levels, P. putida exhibits two types of reorientation events, stops and reversals, the occurrence of which is modulated according to the growth conditions. We also analyzed the swimming pattern in the presence of chemical gradients. Using benzoate as a chemoattractant, we measured key motility parameters in order to characterize P. putida's chemotaxis strategy and to quantify the directional bias in its random walk. Our results indicate a change in the reversal frequency depending on changes in the chemoattractant concentration consistent with the classical scenario of temporal sensing. DFG.
Computing the Evans function via solving a linear boundary value ODE
NASA Astrophysics Data System (ADS)
Wahl, Colin; Nguyen, Rose; Ventura, Nathaniel; Barker, Blake; Sandstede, Bjorn
2015-11-01
Determining the stability of traveling wave solutions to partial differential equations can oftentimes be computationally intensive but of great importance to understanding the effects of perturbations on the physical systems (chemical reactions, hydrodynamics, etc.) they model. For waves in one spatial dimension, one may linearize around the wave and form an Evans function - an analytic Wronskian-like function which has zeros that correspond in multiplicity to the eigenvalues of the linearized system. If eigenvalues with a positive real part do not exist, the traveling wave will be stable. Two methods exist for calculating the Evans function numerically: the exterior-product method and the method of continuous orthogonalization. The first is numerically expensive, and the second reformulates the originally linear system as a nonlinear system. We develop a new algorithm for computing the Evans function through appropriate linear boundary-value problems. This algorithm is cheaper than the previous methods, and we prove that it preserves analyticity of the Evans function. We also provide error estimates and implement it on some classical one- and two-dimensional systems, one being the Swift-Hohenberg equation in a channel, to show the advantages.
Zonal wavefront reconstruction in quadrilateral geometry for phase measuring deflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Xue, Junpeng; Gao, Bo
2017-06-14
There are wide applications for zonal reconstruction methods in slope-based metrology due to its good capability of reconstructing the local details on surface profile. It was noticed in the literature that large reconstruction errors occur when using zonal reconstruction methods designed for rectangular geometry to process slopes in a quadrilateral geometry, which is a more general geometry with phase measuring deflectometry. In this paper, we present a new idea for the zonal methods for quadrilateral geometry. Instead of employing the intermediate slopes to set up height-slope equations, we consider the height increment as a more general connector to establish themore » height-slope relations for least-squares regression. The classical zonal methods and interpolation-assisted zonal methods are compared with our proposal. Results of both simulation and experiment demonstrate the effectiveness of the proposed idea. In implementation, the modification on the classical zonal methods is addressed. Finally, the new methods preserve many good aspects of the classical ones, such as the ability to handle a large incomplete slope dataset in an arbitrary aperture, and the low computational complexity comparable with the classical zonal method. Of course, the accuracy of the new methods is much higher when integrating the slopes in quadrilateral geometry.« less
Terlier, T; Lee, J; Lee, K; Lee, Y
2018-02-06
Technological progress has spurred the development of increasingly sophisticated analytical devices. The full characterization of structures in terms of sample volume and composition is now highly complex. Here, a highly improved solution for 3D characterization of samples, based on an advanced method for 3D data correction, is proposed. Traditionally, secondary ion mass spectrometry (SIMS) provides the chemical distribution of sample surfaces. Combining successive sputtering with 2D surface projections enables a 3D volume rendering to be generated. However, surface topography can distort the volume rendering by necessitating the projection of a nonflat surface onto a planar image. Moreover, the sputtering is highly dependent on the probed material. Local variation of composition affects the sputter yield and the beam-induced roughness, which in turn alters the 3D render. To circumvent these drawbacks, the correlation of atomic force microscopy (AFM) with SIMS has been proposed in previous studies as a solution for the 3D chemical characterization. To extend the applicability of this approach, we have developed a methodology using AFM-time-of-flight (ToF)-SIMS combined with an empirical sputter model, "dynamic-model-based volume correction", to universally correct 3D structures. First, the simulation of 3D structures highlighted the great advantages of this new approach compared with classical methods. Then, we explored the applicability of this new correction to two types of samples, a patterned metallic multilayer and a diblock copolymer film presenting surface asperities. In both cases, the dynamic-model-based volume correction produced an accurate 3D reconstruction of the sample volume and composition. The combination of AFM-SIMS with the dynamic-model-based volume correction improves the understanding of the surface characteristics. Beyond the useful 3D chemical information provided by dynamic-model-based volume correction, the approach permits us to enhance the correlation of chemical information from spectroscopic techniques with the physical properties obtained by AFM.
Application of singular value decomposition to structural dynamics systems with constraints
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Pinson, L. D.
1985-01-01
Singular value decomposition is used to construct a coordinate transformation for a linear dynamic system subject to linear, homogeneous constraint equations. The method is compared with two commonly used methods, namely classical Gaussian elimination and Walton-Steeves approach. Although the classical method requires fewer numerical operations, the singular value decomposition method is more accurate and convenient in eliminating the dependent coordinates. Numerical examples are presented to demonstrate the application of the method.
Morabia, Alfredo
2015-03-18
Before World War II, epidemiology was a small discipline, practiced by a handful of people working mostly in the United Kingdom and in the United States. Today it is practiced by tens of thousands of people on all continents. Between 1945 and 1965, during what is known as its "classical" phase, epidemiology became recognized as a major academic discipline in medicine and public health. On the basis of a review of the historical evidence, this article examines to which extent classical epidemiology has been a golden age of an action-driven, problem-solving science, in which epidemiologists were less concerned with the sophistication of their methods than with the societal consequences of their work. It also discusses whether the paucity of methods stymied or boosted classical epidemiology's ability to convince political and financial agencies about the need to intervene in order to improve the health of the people.
Escher, Beate I; Cowan-Ellsberry, Christina E; Dyer, Scott; Embry, Michelle R; Erhardt, Susan; Halder, Marlies; Kwon, Jung-Hwan; Johanning, Karla; Oosterwijk, Mattheus T T; Rutishauser, Sibylle; Segner, Helmut; Nichols, John
2011-07-18
Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity. © 2011 American Chemical Society
Treatment of Actual Chemical Wastewater by a Heterogeneous Fenton Process Using Natural Pyrite
Sun, Liang; Li, Yan; Li, Aimin
2015-01-01
Wastewater from chemical plants has remarkable antibiotic effects on the microorganisms in traditional biological treatment processes. An enhanced Fenton system catalyzed by natural pyrite was developed to degrade this kind of wastewater. Approximately 30% chemical oxygen demand (COD) was removed within 120 min when 50 mmol/L H2O2 and 10 g/L natural pyrite were used at initial pH from 1.8 to 7. A BOD5/COD enhancement efficiency of 210% and an acute biotoxicity removal efficiency of 84% were achieved. The COD removal efficiency was less sensitive to initial pH than was the classic Fenton process. Excessive amounts of pyrite and H2O2 did not negatively affect the pyrite Fenton system. The amount of aniline generated indicated that nitrobenzene reduction by pyrite was promoted using a low initial concentration of H2O2 (<5 mmol/L). Fluorescence excitation emission matrix analyses illustrated that H2O2 facilitated the reduction by natural pyrite of organic molecules containing an electron-withdrawing group to electron-donating group. Thus, the Fenton-like process catalyzed by pyrite can remediate wastewater containing organic pollutants under mild reaction conditions and provide an alternative environmentally friendly method by which to reuse natural pyrite. PMID:26516893
Zhou, Zaiming; Zhang, Guanghui; Yan, Mingjiang; Wang, Jinzhe
2012-06-01
To characterize the spatial distribution of groundwater level (GWL) and its chemistry characteristics in the low plain around the Bohai Sea, shallow groundwater depth of 130 wells were determined. Water soluble ions composition, total dissolved solid (TDS), electric conductivity (EC), total hardness (TH), total alkalinity (TA), and total salt content (TS) of 128 representative groundwater samples were also measured. Classical statistics, geostatistical method combined with GIS technique were then used to analyze the spatial variability and distribution of GWL and groundwater chemical properties. Results show that GWL, TDS, EC, TH, TA, and TS all presented a lognormal distribution and could be fitted by different semivariogram models (spherical, exponential, and Gaussian). Spatial structure of GWL, TDS, EC, TH, TA, and TS changed obviously. GWL decreased from west inland plain to the east coastal plain, however, TDS, EC, and TS increased from west to east, TH and TA were higher in the middle and coastal plain area. Groundwater chemical type in the coastal plain was SO (4) (2-) ·Cl(-)-Na(+) while chemical types in the inland plain were SO (4) (2-) ·Cl(-)-Ca(2+)·Mg(2+) and HCO (3) (-) -Ca(2+)·Mg(2+).
Contact stresses in gear teeth: A new method of analysis
NASA Technical Reports Server (NTRS)
Somprakit, Paisan; Huston, Ronald L.; Oswald, Fred B.
1991-01-01
A new, innovative procedure called point load superposition for determining the contact stresses in mating gear teeth. It is believed that this procedure will greatly extend both the range of applicability and the accuracy of gear contact stress analysis. Point load superposition is based upon fundamental solutions from the theory of elasticity. It is an iterative numerical procedure which has distinct advantages over the classical Hertz method, the finite element method, and over existing applications with the boundary element method. Specifically, friction and sliding effects, which are either excluded from or difficult to study with the classical methods, are routinely handled with the new procedure. Presented here are the basic theory and the algorithms. Several examples are given. Results are consistent with those of the classical theories. Applications to spur gears are discussed.
NASA Astrophysics Data System (ADS)
Figueira, Joana; José, Jordi; García-Berro, Enrique; Campbell, Simon W.; García-Senz, Domingo; Mohamed, Shazrene
2018-05-01
Context. Classical novae are thermonuclear explosions hosted by accreting white dwarfs in stellar binary systems. Material piles up on top of the white dwarf star under mildly degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope, mostly proton-capture reactions and β+-decays, heats the material up to peak temperatures ranging from 100 to 400 MK. In these events, about 10-3-10-7 M⊙, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, and Al) are ejected into the interstellar medium. Aims: To date, most of the efforts undertaken in the modeling of classical nova outbursts have focused on the early stages of the explosion and ejection, ignoring the interaction of the ejecta, first with the accretion disk orbiting the white dwarf and ultimately with the secondary star. Methods: A suite of 3D, smoothed-particle hydrodynamics (SPH) simulations of the interaction between the nova ejecta, accretion disk, and stellar companion were performed to fill this gap; these simulations were aimed at testing the influence of the model parameters—that is, the mass and velocity of the ejecta, mass and the geometry of the accretion disk—on the dynamical and chemical properties of the system. Results: We discuss the conditions that lead to the disruption of the accretion disk and to mass loss from the binary system. In addition, we discuss the likelihood of chemical contamination of the stellar secondary induced by the impact with the nova ejecta and its potential effect on the next nova cycle. Movies showing the full evolution of several models are available online at http://https://www.aanda.org and at http://www.fen.upc.edu/users/jjose/Downloads.html
Line mixing effects in isotropic Raman spectra of pure N{sub 2}: A classical trajectory study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Sergey V., E-mail: serg.vict.ivanov@gmail.com; Boulet, Christian; Buzykin, Oleg G.
2014-11-14
Line mixing effects in the Q branch of pure N{sub 2} isotropic Raman scattering are studied at room temperature using a classical trajectory method. It is the first study using an extended modified version of Gordon's classical theory of impact broadening and shift of rovibrational lines. The whole relaxation matrix is calculated using an exact 3D classical trajectory method for binary collisions of rigid N{sub 2} molecules employing the most up-to-date intermolecular potential energy surface (PES). A simple symmetrizing procedure is employed to improve off-diagonal cross-sections to make them obeying exactly the principle of detailed balance. The adequacy of themore » results is confirmed by the sum rule. The comparison is made with available experimental data as well as with benchmark fully quantum close coupling [F. Thibault, C. Boulet, and Q. Ma, J. Chem. Phys. 140, 044303 (2014)] and refined semi-classical Robert-Bonamy [C. Boulet, Q. Ma, and F. Thibault, J. Chem. Phys. 140, 084310 (2014)] results. All calculations (classical, quantum, and semi-classical) were made using the same PES. The agreement between classical and quantum relaxation matrices is excellent, opening the way to the analysis of more complex molecular systems.« less
Spike solutions in Gierer#x2013;Meinhardt model with a time dependent anomaly exponent
NASA Astrophysics Data System (ADS)
Nec, Yana
2018-01-01
Experimental evidence of complex dispersion regimes in natural systems, where the growth of the mean square displacement in time cannot be characterised by a single power, has been accruing for the past two decades. In such processes the exponent γ(t) in ⟨r2⟩ ∼ tγ(t) at times might be approximated by a piecewise constant function, or it can be a continuous function. Variable order differential equations are an emerging mathematical tool with a strong potential to model these systems. However, variable order differential equations are not tractable by the classic differential equations theory. This contribution illustrates how a classic method can be adapted to gain insight into a system of this type. Herein a variable order Gierer-Meinhardt model is posed, a generic reaction- diffusion system of a chemical origin. With a fixed order this system possesses a solution in the form of a constellation of arbitrarily situated localised pulses, when the components' diffusivity ratio is asymptotically small. The pattern was shown to exist subject to multiple step-like transitions between normal diffusion and sub-diffusion, as well as between distinct sub-diffusive regimes. The analytical approximation obtained permits qualitative analysis of the impact thereof. Numerical solution for typical cross-over scenarios revealed such features as earlier equilibration and non-monotonic excursions before attainment of equilibrium. The method is general and allows for an approximate numerical solution with any reasonably behaved γ(t).
An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines
NASA Technical Reports Server (NTRS)
Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng
2014-01-01
We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.
Studies on copper-yttria nanocomposites: high-energy ball milling versus chemical reduction method.
Joshi, P B; Rehani, Bharati; Naik, Palak; Patel, Swati; Khanna, P K
2012-03-01
Oxide dispersion-strengthened copper-base composites are widely used for applications demanding high tensile strength, high hardness along with good electrical and thermal conductivity. Oxides of metals like aluminium, cerium, yttrium and zirconium are often used for this purpose as fine and uniformly distributed dispersoid particles in soft and ductile copper matrix. Such composites find applications as electrical contacts, resistance-welding tips, lead wires, continuous casting moulds, etc. In this investigation an attempt has been made to produce copper-yttria nanocomposites using two different morphologies of copper powder and two different processing routes namely, high-energy milling and in-situ chemical reduction. The synthesized powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) for their phase identification and morphological study. The nanocomposite powders in each case were subsequently processed to obtain bulk solids by classical powder metallurgy route of press-sinter-repress. The resultant bulk solid compacts were subjected to property evaluation. The study revealed that the properties of Cu-Y2O3 nanocomposites depend on the processing route used and in turn on the resultant powder morphology.
NASA Astrophysics Data System (ADS)
Wolf, Bernhard; Kraus, Michael
Acidic microenvironmental conditions combined with large hypoxic areas are ubiquitous hallmarks of most solid tumors. They result from a poorly organized vascularization and a deviant energy metabolism. There is convincing evidence supporting the hypothesis that such physico-chemical conditions promote the microevolution of malignant cells, inhibit the cellular immune response, and favor tumor cell invasion. In agreement with published data, our cell biological analyses and computer simulations indicate that treatment schemes which restore a tumor microenvironment reflecting that one found in normal tissues might improve the efficiency of immunotherapies and classical methods for cancer treatment. We suggest that the tumor microenvironment could be effectively monitored and manipulated by means of silicon-based feedback bioactuators which are controlled by integrated microsensors. In principle, miniaturized bioactuators can be implanted directly at the sites of inoperable tumors and metastases where they function as a "pH clamp" and thereby can reconstitute normal physico-chemical conditions. Drug application could be precisely controlled by an integrated microprocessor. Our paper summarizes the current state of development of microsensor-based feedback bioactuators and outlines possible applications in biophysical cancer treatment.
NASA Astrophysics Data System (ADS)
Narakidze, N. D.; Shaykhutdinov, D. V.; Shirokov, K. M.; Gorbatenko, N. I.; Yanvarev, S. G.
2017-02-01
The quality of lubricating oil in mechanical engineering, technology of creation of units, in particular in equipment of transmission gears, is a factor which considerably defines reliability and safety of the whole propulsion system or the greased constructive components. There are many soluble oil additives such as, for example, different additives for extreme compression conditions or additives against wear. Additives are used with mineral oils, products from mineral oils or synthetic oils for lubricant action or chemical properties improvement. The most exact way of definition of the chemical composition of a substance at the moment is the method of nuclear magnetic resonance (NMR). In the first section of this article, a brief and very simplified review of the NMR basic principles using classical physics is provided. The second section is focused on the description of the hardware solutions and the architecture of the NMR spectrometers. The software developments (LabVIEW programs) of the data-acquisition and signal processing techniques are presented in the third section. At the end, results of measurements are provided.
Estimation of plant sampling uncertainty: an example based on chemical analysis of moss samples.
Dołęgowska, Sabina
2016-11-01
In order to estimate the level of uncertainty arising from sampling, 54 samples (primary and duplicate) of the moss species Pleurozium schreberi (Brid.) Mitt. were collected within three forested areas (Wierna Rzeka, Piaski, Posłowice Range) in the Holy Cross Mountains (south-central Poland). During the fieldwork, each primary sample composed of 8 to 10 increments (subsamples) was taken over an area of 10 m 2 whereas duplicate samples were collected in the same way at a distance of 1-2 m. Subsequently, all samples were triple rinsed with deionized water, dried, milled, and digested (8 mL HNO 3 (1:1) + 1 mL 30 % H 2 O 2 ) in a closed microwave system Multiwave 3000. The prepared solutions were analyzed twice for Cu, Fe, Mn, and Zn using FAAS and GFAAS techniques. All datasets were checked for normality and for normally distributed elements (Cu from Piaski, Zn from Posłowice, Fe, Zn from Wierna Rzeka). The sampling uncertainty was computed with (i) classical ANOVA, (ii) classical RANOVA, (iii) modified RANOVA, and (iv) range statistics. For the remaining elements, the sampling uncertainty was calculated with traditional and/or modified RANOVA (if the amount of outliers did not exceed 10 %) or classical ANOVA after Box-Cox transformation (if the amount of outliers exceeded 10 %). The highest concentrations of all elements were found in moss samples from Piaski, whereas the sampling uncertainty calculated with different statistical methods ranged from 4.1 to 22 %.
Velopharyngeal Port Status during Classical Singing
ERIC Educational Resources Information Center
Tanner, Kristine; Roy, Nelson; Merrill, Ray M.; Power, David
2005-01-01
Purpose: This investigation was undertaken to examine the status of the velopharyngeal (VP) port during classical singing. Method: Using aeromechanical instrumentation, nasal airflow (mL/s), oral pressure (cm H[subscript 2]O), and VP orifice area estimates (cm[squared]) were studied in 10 classically trained sopranos during singing and speaking.…
Fluorine in the solar neighborhood: Chemical evolution models
NASA Astrophysics Data System (ADS)
Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.
2018-04-01
Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.
A new procedure for calculating contact stresses in gear teeth
NASA Technical Reports Server (NTRS)
Somprakit, Paisan; Huston, Ronald L.
1991-01-01
A numerical procedure for evaluating and monitoring contact stresses in meshing gear teeth is discussed. The procedure is intended to extend the range of applicability and to improve the accuracy of gear contact stress analysis. The procedure is based upon fundamental solution from the theory of elasticity. It is an iterative numerical procedure. The method is believed to have distinct advantages over the classical Hertz method, the finite-element method, and over existing approaches with the boundary element method. Unlike many classical contact stress analyses, friction effects and sliding are included. Slipping and sticking in the contact region are studied. Several examples are discussed. The results are in agreement with classical results. Applications are presented for spur gears.
Schmiedt, Hanno; Schlemmer, Stephan; Yurchenko, Sergey N.; Yachmenev, Andrey
2017-01-01
We report a new semi-classical method to compute highly excited rotational energy levels of an asymmetric-top molecule. The method forgoes the idea of a full quantum mechanical treatment of the ro-vibrational motion of the molecule. Instead, it employs a semi-classical Green's function approach to describe the rotational motion, while retaining a quantum mechanical description of the vibrations. Similar approaches have existed for some time, but the method proposed here has two novel features. First, inspired by the path integral method, periodic orbits in the phase space and tunneling paths are naturally obtained by means of molecular symmetry analysis. Second, the rigorous variational method is employed for the first time to describe the molecular vibrations. In addition, we present a new robust approach to generating rotational energy surfaces for vibrationally excited states; this is done in a fully quantum-mechanical, variational manner. The semi-classical approach of the present work is applied to calculating the energies of very highly excited rotational states and it reduces dramatically the computing time as well as the storage and memory requirements when compared to the fullly quantum-mechanical variational approach. Test calculations for excited states of SO2 yield semi-classical energies in very good agreement with the available experimental data and the results of fully quantum-mechanical calculations. PMID:28000807
Controlling lightwave in Riemann space by merging geometrical optics with transformation optics.
Liu, Yichao; Sun, Fei; He, Sailing
2018-01-11
In geometrical optical design, we only need to choose a suitable combination of lenses, prims, and mirrors to design an optical path. It is a simple and classic method for engineers. However, people cannot design fantastical optical devices such as invisibility cloaks, optical wormholes, etc. by geometrical optics. Transformation optics has paved the way for these complicated designs. However, controlling the propagation of light by transformation optics is not a direct design process like geometrical optics. In this study, a novel mixed method for optical design is proposed which has both the simplicity of classic geometrical optics and the flexibility of transformation optics. This mixed method overcomes the limitations of classic optical design; at the same time, it gives intuitive guidance for optical design by transformation optics. Three novel optical devices with fantastic functions have been designed using this mixed method, including asymmetrical transmissions, bidirectional focusing, and bidirectional cloaking. These optical devices cannot be implemented by classic optics alone and are also too complicated to be designed by pure transformation optics. Numerical simulations based on both the ray tracing method and full-wave simulation method are carried out to verify the performance of these three optical devices.
NASA Astrophysics Data System (ADS)
Carnevale, V.; Raugei, S.
2009-12-01
Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.
Chemical and Biochemical Approaches in the Study of Histone Methylation and Demethylation
Li, Keqin Kathy; Luo, Cheng; Wang, Dongxia; Jiang, Hualiang; Zheng, Y. George
2014-01-01
Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and provide information otherwise difficulty to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation (ChIP), chemical ligation, mass spectrometry (MS), biochemical assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of the biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic application in the clinic. PMID:22777714
Pressure and Chemical Potential: Effects Hydrophilic Soils Have on Adsorption and Transport
NASA Astrophysics Data System (ADS)
Bennethum, L. S.; Weinstein, T.
2003-12-01
Using the assumption that thermodynamic properties of fluid is affected by its proximity to the solid phase, a theoretical model has been developed based on upscaling and fundamental thermodynamic principles (termed Hybrid Mixture Theory). The theory indicates that Darcy's law and the Darcy-scale chemical potential (which determines the rate of adsorption and diffusion) need to be modified in order to apply to soils containing hydrophilic soils. In this talk we examine the Darcy-scale definition of pressure and chemical potential, especially as it applies to hydrophilic soils. To arrive at our model, we used hybrid mixture theory - first pioneered by Hassanizadeh and Gray in 1979. The technique involves averaging the field equations (i.e. conservation of mass, momentum balance, energy balance, etc.) to obtain macroscopic field equations, where each field variable is defined precisely in terms of its microscale counterpart. To close the system consistently with classical thermodynamics, the entropy inequality is exploited in the sense of Coleman and Noll. With the exceptions that the macroscale field variables are defined precisely in terms of their microscale counterparts and that microscopic interfacial equations can also be treated in a similar manner, the resulting system of equations is consistent with those derived using classical mixture theory. Hence the terminology, Hybrid Mixture Theory.
Zero-point energy constraint in quasi-classical trajectory calculations.
Xie, Zhen; Bowman, Joel M
2006-04-27
A method to constrain the zero-point energy in quasi-classical trajectory calculations is proposed and applied to the Henon-Heiles system. The main idea of this method is to smoothly eliminate the coupling terms in the Hamiltonian as the energy of any mode falls below a specified value.
Li, Q L; Yi, S C; Li, D Z; Nie, X P; Li, S Q; Wang, M-Q; Zhou, A M
2018-06-01
Odorant binding proteins (OBPs) are considered as the core molecular targets in reverse chemical ecology, which is a convenient and efficient method by which to screen potential semiochemicals. Herein, we identified a classic OBP, AbamOBP1 from Aenasius bambawalei, which showed high mRNA expression in male antennae. Fluorescence competitive binding assay (FCBA) results demonstrated that AbamOBP1 has higher binding affinity with ligands at acid pH, suggesting the physiologically inconsistent binding affinity of this protein. Amongst the four compounds with the highest binding affinities at acid pH, 2, 4, 4-trimethyl-2-pentene and 1-octen-3-one were shown to have attractant activity for male adults, whereas (-)-limonene and an analogue of 1-octen-3-ol exhibited nonbehavioural activity. Further homology modelling and fluorescence quenching experiments demonstrated that the stoichiometry of the binding of this protein to these ligands was not 1: 1, suggesting that the results of FCBA were false. In contrast, the apparent association constants (Ka) of fluorescence quenching experiments seemed to be more reliable, because 2, 4, 4-trimethyl-2-pentene and 1-octen-3-one had observably higher Ka than (-)-limonene and 1-octen-3-ol at neutral pH. Based on the characteristics of different OBPs, various approaches should be applied to study their binding affinities with ligands, which could modify and complement the results of FCBA and contribute to the application of reverse chemical ecology. © 2018 The Royal Entomological Society.
The raison d'être of chemical ecology.
Raguso, Robert A; Agrawal, Anurag A; Douglas, Angela E; Jander, Georg; Kessler, André; Poveda, Katja; Thaler, Jennifer S
2015-03-01
Chemical ecology is a mechanistic approach to understanding the causes and consequences of species interactions, distribution, abundance, and diversity. The promise of chemical ecology stems from its potential to provide causal mechanisms that further our understanding of ecological interactions and allow us to more effectively manipulate managed systems. Founded on the notion that all organisms use endogenous hormones and chemical compounds that mediate interactions, chemical ecology has flourished over the past 50 years since its origin. In this essay we highlight the breadth of chemical ecology, from its historical focus on pheromonal communication, plant-insect interactions, and coevolution to frontier themes including community and ecosystem effects of chemically mediated species interactions. Emerging approaches including the -omics, phylogenetic ecology, the form and function of microbiomes, and network analysis, as well as emerging challenges (e.g., sustainable agriculture and public health) are guiding current growth of this field. Nonetheless, the directions and approaches we advocate for the future are grounded in classic ecological theories and hypotheses that continue to motivate our broader discipline.
Quantum approach to classical statistical mechanics.
Somma, R D; Batista, C D; Ortiz, G
2007-07-20
We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.
Response surface methodology, often supported by factorial designs, is the classical experimental approach that is widely accepted for detecting and characterizing interactions among chemicals in a mixture. In an effort to reduce the experimental effort as the number of compound...
Chemical and morphological distinctions between vertical and lateral podzolization at Hubbard Brook
Rebecca R. Bourgault; Donald S. Ross; Scott W. Bailey
2015-01-01
Classical podzolization studies assumed vertical percolation and pedon-scale horizon development. However, hillslope-scale lateral podzolization also occurs where lateral subsurface water flux predominates. In this hydropedologic study, 99 podzols were observed in Watershed 3, Hubbard Brook Experimental Forest, New Hampshire. Soil horizon samples were extracted with...
Unified Approximations: A New Approach for Monoprotic Weak Acid-Base Equilibria
ERIC Educational Resources Information Center
Pardue, Harry; Odeh, Ihab N.; Tesfai, Teweldemedhin M.
2004-01-01
The unified approximations reduce the conceptual complexity by combining solutions for a relatively large number of different situations into just two similar sets of processes. Processes used to solve problems by either the unified or classical approximations require similar degrees of understanding of the underlying chemical processes.
Introducing Hurst exponent in pair trading
NASA Astrophysics Data System (ADS)
Ramos-Requena, J. P.; Trinidad-Segovia, J. E.; Sánchez-Granero, M. A.
2017-12-01
In this paper we introduce a new methodology for pair trading. This new method is based on the calculation of the Hurst exponent of a pair. Our approach is inspired by the classical concepts of co-integration and mean reversion but joined under a unique strategy. We will show how Hurst approach presents better results than classical Distance Method and Correlation strategies in different scenarios. Results obtained prove that this new methodology is consistent and suitable by reducing the drawdown of trading over the classical ones getting as a result a better performance.
Corrosion-resistant high-entropy alloys: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yunzhu; Yang, Bin; Liaw, Peter
Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs) possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods onmore » the corrosion resistance are analyzed in detail. Finally, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhanagopalan, Shriram; White, Ralph E.
Rotating ring disc electrode (RRDE) experiments are a classic tool for investigating kinetics of electrochemical reactions. Several standardized methods exist for extracting transport parameters and reaction rate constants using RRDE measurements. Here in this work, we compare some approximate solutions to the convective diffusion used popularly in the literature to a rigorous numerical solution of the Nernst-Planck equations coupled to the three dimensional flow problem. In light of these computational advancements, we explore design aspects of the RRDE that will help improve sensitivity of our parameter estimation procedure to experimental data. We use the oxygen reduction in acidic media involvingmore » three charge transfer reactions and a chemical reaction as an example, and identify ways to isolate reaction currents for the individual processes in order to accurately estimate the exchange current densities.« less
PyRETIS: A well-done, medium-sized python library for rare events.
Lervik, Anders; Riccardi, Enrico; van Erp, Titus S
2017-10-30
Transition path sampling techniques are becoming common approaches in the study of rare events at the molecular scale. More efficient methods, such as transition interface sampling (TIS) and replica exchange transition interface sampling (RETIS), allow the investigation of rare events, for example, chemical reactions and structural/morphological transitions, in a reasonable computational time. Here, we present PyRETIS, a Python library for performing TIS and RETIS simulations. PyRETIS directs molecular dynamics (MD) simulations in order to sample rare events with unbiased dynamics. PyRETIS is designed to be easily interfaced with any molecular simulation package and in the present release, it has been interfaced with GROMACS and CP2K, for classical and ab initio MD simulations, respectively. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Corrosion-resistant high-entropy alloys: A review
Shi, Yunzhu; Yang, Bin; Liaw, Peter
2017-02-05
Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs) possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods onmore » the corrosion resistance are analyzed in detail. Finally, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.« less
Eckert, Heiner
2017-02-25
Several novel methods, catalysts and reagents have been developed to improve organic synthesis. Synergistic effects between reactions, reagents and catalysts can lead to minor heats of reaction and occur as an inherent result of multicomponent reactions (MCRs) and their extensions. They enable syntheses to be performed at a low energy level and the number of synthesis steps to be drastically reduced in comparison with 'classical' two-component reactions, fulfilling the rules of Green Chemistry . The very high potential for variability, diversity and complexity of MCRs additionally generates an extremely diverse range of products, thus bringing us closer to the aim of being able to produce tailor-made and extremely low-cost materials, drugs and compound libraries.
Taking-On: A Grounded Theory of Addressing Barriers in Task Completion
ERIC Educational Resources Information Center
Austinson, Julie Ann
2011-01-01
This study of taking-on was conducted using classical grounded theory methodology (Glaser, 1978, 1992, 1998, 2001, 2005; Glaser & Strauss, 1967). Classical grounded theory is inductive, empirical, and naturalistic; it does not utilize manipulation or constrained time frames. Classical grounded theory is a systemic research method used to generate…
Describing transport across complex biological interfaces
NASA Astrophysics Data System (ADS)
Lervik, A.; Kjelstrup, S.
2013-05-01
It has long been known that proteins are capable of transporting ions against a gradient in the chemical potential, using the energy available from a chemical reaction. This is called active transport. A well studied example is the Ca2+-transport by means of hydrolysis of adenosine triphoshpate (ATP) at the surface of the Ca2+-ATPase in sarcoplasmic reticulum. The cycle of events is known to be reversible, and has recently also been associated with a characteristic, and also reversible, heat production. We use the case of the Ca2+-ATPase to present and discuss various central theoretical approaches to describe active transport, with focus on two schools of development, namely the kinetic and the thermodynamic schools. Among the kinetic descriptions, Hill's diagram method gives the most sophisticated description, reducing to the common Post-Albers scheme with simple enzyme kinetic reactions. Among the thermodynamic approaches, we review the now classical approach of Katchalsky and Curran, and its extension to proper pathways by Caplan and Essig, before the most recent development based on mesoscopic theory is outlined. The mesoscopic approach gives a non-linear theory compatible with Hill's most general method when the active transport is isothermal. We show how the old question of scalar-vector coupling is resolved using rules for non-equilibrium thermodynamics for interfaces. Also thermal driving forces can then be accounted for. Essential physical concepts behind all methods are presented and advantages/deficiencies are pointed out. Emphasis is made on the connection to experiments.
DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K
2012-04-05
We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.
NASA Astrophysics Data System (ADS)
Protasov, M.; Gadylshin, K.
2017-07-01
A numerical method is proposed for the calculation of exact frequency-dependent rays when the solution of the Helmholtz equation is known. The properties of frequency-dependent rays are analysed and compared with classical ray theory and with the method of finite-difference modelling for the first time. In this paper, we study the dependence of these rays on the frequency of signals and show the convergence of the exact rays to the classical rays with increasing frequency. A number of numerical experiments demonstrate the distinctive features of exact frequency-dependent rays, in particular, their ability to penetrate into shadow zones that are impenetrable for classical rays.
Megawati, Monica; Chua, Chun Kiang; Sofer, Zdenek; Klímová, Kateřina; Pumera, Martin
2017-06-21
Graphene, produced via chemical methods, has been widely applied for electrochemical sensing due to its structural and electrochemical properties as well as its ease of production in large quantity. While nitrogen-doped graphenes are widely studied materials, the literature showing an effect of graphene oxide preparation methods on nitrogen quantity and chemical states as well as on defects and, in turn, on electrochemical sensing is non-existent. In this study, the properties of nitrogen-doped graphene materials, prepared via hydrothermal synthesis using graphite oxide produced by various classical methods using permanganate or chlorate oxidants Staudenmaier, Hummers, Hofmann and Brodie oxidation methods, were studied; the resulting nitrogen-doped graphene oxides were labeled as ST-GO, HU-GO, HO-GO and BR-GO, respectively. The electrochemical oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine, nicotinamide adenine nucleotide and DNA free bases, was carried out using cyclic voltammetry and differential pulse voltammetry techniques. The nitrogen content in doped graphene oxides increased in the order ST-GO < BR-GO < HO-GO < HU-GO. In the same way, the pyridinic form of nitrogen increased and the electrocatalytic effect of N-doped graphene followed this trend, as shown in the cyclic voltammograms. This is a very important finding that provides insight into the electrocatalytic effect of N-doped graphene. The nitrogen-doped graphene materials exhibited improved sensitivity over bare glassy carbon for ascorbic acid, uric acid and dopamine detection. These studies will enhance our understanding of the effects of graphite oxide precursors on the electrochemical sensing properties of nitrogen-doped graphene materials.
Schober, Yvonne; Wahl, Hans Günther; Renz, Harald; Nockher, Wolfgang Andreas
2017-01-01
Cellular fatty acid (FA) profiles have been acknowledged as biomarkers in various human diseases. Nevertheless, common FA analysis by gas chromatography mass spectrometry (GC-MS) requires long analysis time. Hence, there is a need for feasible methods for high throughput analysis in clinical studies. FA was extracted from red blood cells (RBC) and derivatized to fatty acid methyl esters (FAME). A method using gas chromatography tandem mass spectrometry (GC-MS/MS) with ammonia-induced chemical ionization (CI) was developed for the analysis of FA profiles in human RBC. We compared this method with classical single GC-MS using electron impact ionization (EI). The FA profiles of 703 RBC samples were determined by GC-MS/MS. In contrast to EI ammonia-induced CI resulted in adequate amounts of molecular ions for further fragmentation of FAME. Specific fragments for confident quantification and fragmentation were determined for 45 FA. The GC-MS/MS method has a total run time of 9min compared to typical analysis times of up to 60min in conventional GC-MS. Intra and inter assay variations were <10% for all FA analyzed. Analysis of RBC FA composition revealed an age-dependent increase of the omega-3 eicosapentaenoic and docosahexaenoic acid, and a decline of the omega-6 linoleic acid with a corresponding rise of the omega-3 index. The combination of ammonia-induced CI and tandem mass spectrometry after GC separation allows for high-throughput, robust and confident analysis of FA profiles in the clinical laboratory. Copyright © 2016. Published by Elsevier B.V.
[Research and development strategies in classical herbal formulae].
Chen, Chang; Cheng, Jin-Tang; Liu, An
2017-05-01
As an outstanding representative of traditional Chinese medicine prescription, classical herbal formulae are the essence of traditional Chinese medicine great treasure. To support the development of classical herbal formulae, the state and relevant administrative departments have successively promulgated the relevant encouraged policies.But some key issues of classic herbal formulae in the development process have not reached a unified consensus and standard, and these problems were discussed in depth here.The authors discussed the registration requirements of classical herbal formulae, proposed the screening specific indicators of classical herbal formulae, determination basis of prescription and dosage,screening method of production process, and the basic principle of clinical localization, in order to bring out valuable opinions and provide a reference for classical herbal formulae development and policy formulation. Copyright© by the Chinese Pharmaceutical Association.
Antiswarming: Structure and dynamics of repulsive chemically active particles
NASA Astrophysics Data System (ADS)
Yan, Wen; Brady, John F.
2017-12-01
Chemically active Brownian particles with surface catalytic reactions may repel each other due to diffusiophoretic interactions in the reaction and product concentration fields. The system behavior can be described by a "chemical" coupling parameter Γc that compares the strength of diffusiophoretic repulsion to Brownian motion, and by a mapping to the classical electrostatic one component plasma (OCP) system. When confined to a constant-volume domain, body-centered cubic (bcc) crystals spontaneously form from random initial configurations when the repulsion is strong enough to overcome Brownian motion. Face-centered cubic (fcc) crystals may also be stable. The "melting point" of the "liquid-to-crystal transition" occurs at Γc≈140 for both bcc and fcc lattices.
An Aural Learning Project: Assimilating Jazz Education Methods for Traditional Applied Pedagogy
ERIC Educational Resources Information Center
Gamso, Nancy M.
2011-01-01
The Aural Learning Project (ALP) was developed to incorporate jazz method components into the author's classical practice and her applied woodwind lesson curriculum. The primary objective was to place a more focused pedagogical emphasis on listening and hearing than is traditionally used in the classical applied curriculum. The components of the…
The origin, composition and history of cometary ices from spectroscopic studies
NASA Technical Reports Server (NTRS)
Allamandola, L. J.
1989-01-01
The spectroscopic analysis of pristine cometary material provides a very important probe of the chemical identity of the material as well as of the physical and chemical conditions which prevailed during the comet's history. Concerning classical spectroscopy, the spectral regions which will most likely prove most useful are the infrared, the visible and ultraviolet. Newer spectroscopic techniques which have the potential to provide equally important information include nuclear magnetic resonance (NMR) and electron spin resonance (ESR). Each technique is summarized with emphasis placed on the kind of information which can be obtained.
Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics.
Crespo-Otero, Rachel; Barbatti, Mario
2018-05-16
Nonadiabatic mixed quantum-classical (NA-MQC) dynamics methods form a class of computational theoretical approaches in quantum chemistry tailored to investigate the time evolution of nonadiabatic phenomena in molecules and supramolecular assemblies. NA-MQC is characterized by a partition of the molecular system into two subsystems: one to be treated quantum mechanically (usually but not restricted to electrons) and another to be dealt with classically (nuclei). The two subsystems are connected through nonadiabatic couplings terms to enforce self-consistency. A local approximation underlies the classical subsystem, implying that direct dynamics can be simulated, without needing precomputed potential energy surfaces. The NA-MQC split allows reducing computational costs, enabling the treatment of realistic molecular systems in diverse fields. Starting from the three most well-established methods-mean-field Ehrenfest, trajectory surface hopping, and multiple spawning-this review focuses on the NA-MQC dynamics methods and programs developed in the last 10 years. It stresses the relations between approaches and their domains of application. The electronic structure methods most commonly used together with NA-MQC dynamics are reviewed as well. The accuracy and precision of NA-MQC simulations are critically discussed, and general guidelines to choose an adequate method for each application are delivered.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.
2006-01-01
The radial return and Mendelson methods for integrating the equations of classical plasticity, which appear independently in the literature, are shown to be identical. Both methods are presented in detail as are the specifics of their algorithmic implementation. Results illustrate the methods' equivalence across a range of conditions and address the question of when the methods require iteration in order for the plastic state to remain on the yield surface. FORTRAN code implementations of the radial return and Mendelson methods are provided in the appendix.
Modifications of the PCPT method for HJB equations
NASA Astrophysics Data System (ADS)
Kossaczký, I.; Ehrhardt, M.; Günther, M.
2016-10-01
In this paper we will revisit the modification of the piecewise constant policy timestepping (PCPT) method for solving Hamilton-Jacobi-Bellman (HJB) equations. This modification is called piecewise predicted policy timestepping (PPPT) method and if properly used, it may be significantly faster. We will quickly recapitulate the algorithms of PCPT, PPPT methods and of the classical implicit method and apply them on a passport option pricing problem with non-standard payoff. We will present modifications needed to solve this problem effectively with the PPPT method and compare the performance with the PCPT method and the classical implicit method.
Optimization of protein electroextraction from microalgae by a flow process.
Coustets, Mathilde; Joubert-Durigneux, Vanessa; Hérault, Josiane; Schoefs, Benoît; Blanckaert, Vincent; Garnier, Jean-Pierre; Teissié, Justin
2015-06-01
Classical methods, used for large scale treatments such as mechanical or chemical extractions, affect the integrity of extracted cytosolic protein by releasing proteases contained in vacuoles. Our previous experiments on flow processes electroextraction on yeasts proved that pulsed electric field technology allows preserving the integrity of released cytosolic proteins, by not affecting vacuole membranes. Furthermore, large cell culture volumes are easily treated by the flow technology. Based on this previous knowledge, we developed a new protocol in order to electro-extract total cytoplasmic proteins from microalgae (Nannochloropsis salina, Chlorella vulgaris and Haematococcus pluvialis). Given that induction of electropermeabilization is under the control of target cell size, as the mean diameter for N. salina is only 2.5 μm, we used repetitive 2 ms long pulses of alternating polarities with stronger field strengths than previously described for yeasts. The electric treatment was followed by a 24h incubation period in a salty buffer. The amount of total protein release was observed by a classical Bradford assay. A more accurate evaluation of protein release was obtained by SDS-PAGE. Similar results were obtained with C. vulgaris and H. pluvialis under milder electrical conditions as expected from their larger size. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bishop, Kevin P.; Roy, Pierre-Nicholas
2018-03-01
Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.
Bishop, Kevin P; Roy, Pierre-Nicholas
2018-03-14
Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.
Breg Valjavec, Mateja; Zorn, Matija; Čarni, Andraž
2018-05-29
One of the frequently used bioindication methods is Ellenberg indicator values (EIVs), which are commonly applied in Central Europe as bioindicators of ecological characteristics. However, very few studies have tested EIVs as a bioindication of human-induced soil degradation. We tested the ability of EIVs to distinguish between localities of degraded karst depressions (dolines) and localities of semi-natural (agricultural) soils in preserved dolines on the Kras Plateau (Classical Karst, SW Slovenia). We compared the results of bioindications of soil nutrient content (N), soil reaction (R) and soil moisture (M) with measured soil parameters. Low values of organic carbon, a slightly alkaline soil reaction and low organic sulphur content are chemical indicators of soil degradation in dolines, in comparison with preserved reference dolines (high organic carbon, slightly acid reaction, higher S). EIV reaction is the most reliable plant indicator value that can distinguish between degraded and non-degraded soil plots. According to a regression tree, sulphur (S) and C/N are the most important factors for division on the basis of EIV reaction. By applying the EIV reaction of diagnostic plant species, we significantly improved bioindication of soil degradation, although in the case of EIV nutrients, bioindication was not improved. Copyright © 2018. Published by Elsevier B.V.
Classical and Quantum-Mechanical State Reconstruction
ERIC Educational Resources Information Center
Khanna, F. C.; Mello, P. A.; Revzen, M.
2012-01-01
The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…
ERIC Educational Resources Information Center
Zhong, Zhenshan; Sun, Mengyao
2018-01-01
The power of general education curriculum comes from the enduring classics. The authors apply research methods such as questionnaire survey, interview, and observation to investigate the state of general education curriculum implementation at N University and analyze problems faced by incorporating classics. Based on this, the authors propose that…
Continuous-Time Classical and Quantum Random Walk on Direct Product of Cayley Graphs
NASA Astrophysics Data System (ADS)
Salimi, S.; Jafarizadeh, M. A.
2009-06-01
In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on complicated graphs. Using this method, we calculate the probability of continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete Kn, charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t → ∞ but for quantum state is not always satisfied.
Excess electrons in methanol clusters: Beyond the one-electron picture
NASA Astrophysics Data System (ADS)
Pohl, Gábor; Mones, Letif; Turi, László
2016-10-01
We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, ("separators=" CH 3 OH ) n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.
Excess electrons in methanol clusters: Beyond the one-electron picture.
Pohl, Gábor; Mones, Letif; Turi, László
2016-10-28
We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, CH 3 OH n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.
Multiscale methods for computational RNA enzymology
Panteva, Maria T.; Dissanayake, Thakshila; Chen, Haoyuan; Radak, Brian K.; Kuechler, Erich R.; Giambaşu, George M.; Lee, Tai-Sung; York, Darrin M.
2016-01-01
RNA catalysis is of fundamental importance to biology and yet remains ill-understood due to its complex nature. The multi-dimensional “problem space” of RNA catalysis includes both local and global conformational rearrangements, changes in the ion atmosphere around nucleic acids and metal ion binding, dependence on potentially correlated protonation states of key residues and bond breaking/forming in the chemical steps of the reaction. The goal of this article is to summarize and apply multiscale modeling methods in an effort to target the different parts of the RNA catalysis problem space while also addressing the limitations and pitfalls of these methods. Classical molecular dynamics (MD) simulations, reference interaction site model (RISM) calculations, constant pH molecular dynamics (CpHMD) simulations, Hamiltonian replica exchange molecular dynamics (HREMD) and quantum mechanical/molecular mechanical (QM/MM) simulations will be discussed in the context of the study of RNA backbone cleavage transesterification. This reaction is catalyzed by both RNA and protein enzymes, and here we examine the different mechanistic strategies taken by the hepatitis delta virus ribozyme (HDVr) and RNase A. PMID:25726472
Heyndrickx, Wouter; Salvador, Pedro; Bultinck, Patrick; Solà, Miquel; Matito, Eduard
2011-02-01
Several definitions of an atom in a molecule (AIM) in three-dimensional (3D) space, including both fuzzy and disjoint domains, are used to calculate electron sharing indices (ESI) and related electronic aromaticity measures, namely, I(ring) and multicenter indices (MCI), for a wide set of cyclic planar aromatic and nonaromatic molecules of different ring size. The results obtained using the recent iterative Hirshfeld scheme are compared with those derived from the classical Hirshfeld method and from Bader's quantum theory of atoms in molecules. For bonded atoms, all methods yield ESI values in very good agreement, especially for C-C interactions. In the case of nonbonded interactions, there are relevant deviations, particularly between fuzzy and QTAIM schemes. These discrepancies directly translate into significant differences in the values and the trends of the aromaticity indices. In particular, the chemically expected trends are more consistently found when using disjoint domains. Careful examination of the underlying effects reveals the different reasons why the aromaticity indices investigated give the expected results for binary divisions of 3D space. Copyright © 2010 Wiley Periodicals, Inc.
Application of geometric algebra for the description of polymer conformations.
Chys, Pieter
2008-03-14
In this paper a Clifford algebra-based method is applied to calculate polymer chain conformations. The approach enables the calculation of the position of an atom in space with the knowledge of the bond length (l), valence angle (theta), and rotation angle (phi) of each of the preceding bonds in the chain. Hence, the set of geometrical parameters {l(i),theta(i),phi(i)} yields all the position coordinates p(i) of the main chain atoms. Moreover, the method allows the calculation of side chain conformations and the computation of rotations of chain segments. With these features it is, in principle, possible to generate conformations of any type of chemical structure. This method is proposed as an alternative for the classical approach by matrix algebra. It is more straightforward and its final symbolic representation considerably simpler than that of matrix algebra. Approaches for realistic modeling by means of incorporation of energetic considerations can be combined with it. This article, however, is entirely focused at showing the suitable mathematical framework on which further developments and applications can be built.
Investigation of laser-tissue interaction in medicine by means of laser spectroscopic measurements
NASA Astrophysics Data System (ADS)
Lademann, Juergen; Weigmann, Hans-Juergen
1995-01-01
Toxic and carcinogenic substances were produced during laser application in medicine for the cutting and evaporation of tissue. The laser smoke presents a danger potential for the medical staff and the patients. The laser tissue interaction process was investigated by means of laser spectroscopic measurements which give the possibility of measuring metastable molecular states directly as a prerequisite to understand and to influence fundamental laser tissue interaction processes in order to reduce the amount of harmful chemicals. Highly excited atomic and molecular states and free radicals (CN, OH, C2, CH, CH2) have been detected applying spontaneous and laser induced fluorescence methods. It was found that the formation of harmful substances in the laser plumes can be reduced significantly by optimization of the surrounding gas atmosphere. A high content of oxygen or water in the interaction zone has been found, in agreement with the results of classical and analytical methods, as a suitable way to decrease pollutant emission. The experimental methods and the principal results are applicable not only in laser medicine but in laser material treatment generally.
Rispin, Amy; Farrar, David; Margosches, Elizabeth; Gupta, Kailash; Stitzel, Katherine; Carr, Gregory; Greene, Michael; Meyer, William; McCall, Deborah
2002-01-01
The authors have developed an improved version of the up-and-down procedure (UDP) as one of the replacements for the traditional acute oral toxicity test formerly used by the Organisation for Economic Co-operation and Development member nations to characterize industrial chemicals, pesticides, and their mixtures. This method improves the performance of acute testing for applications that use the median lethal dose (classic LD50) test while achieving significant reductions in animal use. It uses sequential dosing, together with sophisticated computer-assisted computational methods during the execution and calculation phases of the test. Staircase design, a form of sequential test design, can be applied to acute toxicity testing with its binary experimental endpoints (yes/no outcomes). The improved UDP provides a point estimate of the LD50 and approximate confidence intervals in addition to observed toxic signs for the substance tested. It does not provide information about the dose-response curve. Computer simulation was used to test performance of the UDP without the need for additional laboratory validation.
[Study on expression styles of meridian diseases in the Internal Classic].
Jia-Jie; Zhao, Jing-sheng
2007-01-01
To probe expression styles of meridian diseases in the Internal Classic. Expression styles for meridian diseases in the Internal Classic were divided by using literature study methods. Expression styles of meridian diseases in the Internal Classic include the 4 types, i. e. twelve meridians, the six channels on the foot, indications of acupoints, and diseases of zang and fu organs. The recognition of later generations on the meridians diseases in the Lingshu Chanels has a certain history limitation.
A quantum-classical theory with nonlinear and stochastic dynamics
NASA Astrophysics Data System (ADS)
Burić, N.; Popović, D. B.; Radonjić, M.; Prvanović, S.
2014-12-01
The method of constrained dynamical systems on the quantum-classical phase space is utilized to develop a theory of quantum-classical hybrid systems. Effects of the classical degrees of freedom on the quantum part are modeled using an appropriate constraint, and the interaction also includes the effects of neglected degrees of freedom. Dynamical law of the theory is given in terms of nonlinear stochastic differential equations with Hamiltonian and gradient terms. The theory provides a successful dynamical description of the collapse during quantum measurement.
Akoachere, Jane-Francis Tatah Kihla; Masalla, Thomas Njinuwoh; Njom, Henry Akum
2013-08-07
Cholera has been endemic in Douala, since 1971 when it was first recorded in Cameroon. Outbreaks have often started in slum areas of the city including New Bell. Despite the devastating nature of outbreaks, always resulting in high mortality and morbidity, a paucity of information exists on the reservoirs of the causative agent, V. cholerae, and factors maintaining its persistence. This has complicated disease prevention, resulting in frequent outbreaks of cholera. We investigated water sources in New Bell for contamination with V. cholerae O1 with pathogenic potential, to highlight their role in disease transmission. Antibiotic susceptibility pattern of isolates and the environmental factors maintaining its persistence were investigated. Water samples from various sources (taps, dug wells, streams) were analyzed for contamination with V. cholerae O1 using standard methods. Antibiotic susceptibility was determined by disc diffusion method. Pathogenic potential of isolates was determined by analyzing for genes for cholera toxin (ctx), toxin co-regulated pilus (tcpA), and zonula occludens toxin (zot) by PCR. Physico-chemical characteristics of water (pH, temperature and salinity) were investigated using standard methods. The Spearman's Rank correlation was used to analyze the relationship between physico-chemical factors and the occurrence of V. cholerae O1. Differences were considered significant at P≤0.05. Twenty-five V. cholerae O1 strains were isolated from stream and well samples in both dry and rainy seasons. Twenty-three (92%) isolates were multidrug resistant. All isolates had genes for at least one virulence factor. Cholera toxin gene was detected in 7 isolates. Of the 15 isolates positive for tcpA gene, two had Classical type tcpA while 13 had tcpA El Tor. All tcpA Classical positive isolates were positive for ctx gene. Isolates were grouped into nine genotypes based on the genes analyzed. pH and salinity significantly correlated with isolation of V. cholerae O1. Multidrug resistant Vibrio cholerae O1 with pathogenic potential is present in some wells and streams in study area. pH and salinity are among the factors maintaining the persistence of the organism. Findings indicate an urgent need for potable water supply in study area and in addition, regular disinfection of water from contaminated sources to prevent outbreak of cholera.
Ammari, Faten; Jouan-Rimbaud-Bouveresse, Delphine; Boughanmi, Néziha; Rutledge, Douglas N
2012-09-15
The aim of this study was to find objective analytical methods to study the degradation of edible oils during heating and thus to suggest solutions to improve their stability. The efficiency of Nigella seed extract as natural antioxidant was compared with butylated hydroxytoluene (BHT) during accelerated oxidation of edible vegetable oils at 120 and 140 °C. The modifications during heating were monitored by 3D-front-face fluorescence spectroscopy along with Independent Components Analysis (ICA), (1)H NMR spectroscopy and classical physico-chemical methods such as anisidine value and viscosity. The results of the study clearly indicate that the natural seed extract at a level of 800 ppm exhibited antioxidant effects similar to those of the synthetic antioxidant BHT at a level of 200 ppm and thus contributes to an increase in the oxidative stability of the oil. Copyright © 2012 Elsevier B.V. All rights reserved.
Chen, Tinggui; Xiao, Renbin
2014-01-01
Due to fierce market competition, how to improve product quality and reduce development cost determines the core competitiveness of enterprises. However, design iteration generally causes increases of product cost and delays of development time as well, so how to identify and model couplings among tasks in product design and development has become an important issue for enterprises to settle. In this paper, the shortcomings existing in WTM model are discussed and tearing approach as well as inner iteration method is used to complement the classic WTM model. In addition, the ABC algorithm is also introduced to find out the optimal decoupling schemes. In this paper, firstly, tearing approach and inner iteration method are analyzed for solving coupled sets. Secondly, a hybrid iteration model combining these two technologies is set up. Thirdly, a high-performance swarm intelligence algorithm, artificial bee colony, is adopted to realize problem-solving. Finally, an engineering design of a chemical processing system is given in order to verify its reasonability and effectiveness.
A cut-cell immersed boundary technique for fire dynamics simulation
NASA Astrophysics Data System (ADS)
Vanella, Marcos; McDermott, Randall; Forney, Glenn
2015-11-01
Fire simulation around complex geometry is gaining increasing attention in performance based design of fire protection systems, fire-structure interaction and pollutant transport in complex terrains, among others. This presentation will focus on our present effort in improving the capability of FDS (Fire Dynamics Simulator, developed at the Fire Research Division, NIST. https://github.com/firemodels/fds-smv) to represent fire scenarios around complex bodies. Velocities in the vicinity of the bodies are reconstructed using a classical immersed boundary scheme (Fadlun and co-workers, J. Comput. Phys., 161:35-60, 2000). Also, a conservative treatment of scalar transport equations (i.e. for chemical species) will be presented. In our method, discrete conservation and no penetration of species across solid boundaries are enforced using a cut-cell finite volume scheme. The small cell problem inherent to the method is tackled using explicit-implicit domain decomposition for scalar, within the FDS time integration scheme. Some details on the derivation, implementation and numerical tests of this numerical scheme will be discussed.
NASA Astrophysics Data System (ADS)
Rizk, Sameh A.; El-Naggar, Abeer M.; El-Badawy, Azza A.
2018-03-01
A series of 5-cyano-2-thiouracil derivatives, containing diverse hydrophobic groups in the 2-, 4- and 6-positions, were synthesized through one pot reaction of thiophene 2-carboxaldehyde, ethylcyanoacetate and thiourea using classic reflux-based method as well as microwave-assisted methods. Such prepared compounds were reacted with different electrophilic reagents to synthesize potent anti-microbial agents, e.g. 1,3,4-thiadiazinopyrimidine, hydrazide and triazolopyrimidine derivatives (compounds 4a-e, 9 and 10-12) respectively. The density functional theory (DFT) was then applied to explore the structural and electronic characteristics of these materials. It is found that compound 12 exhibited the highest antibacterial and antifungal activity against C. Albicans showing six-fold increasing biological affinity compared to that of Colitrimazole drug with MIC values 7.8 and 49 μg/mL, respectively. All the synthesized compounds have been characterized based on their elemental analyses and spectral data. Such compounds can be submitted to in vivo antimicrobial studies in future works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donangelo, R.J.
An integral representation for the classical limit of the quantum mechanical S-matrix is developed and applied to heavy-ion Coulomb excitation and Coulomb-nuclear interference. The method combines the quantum principle of superposition with exact classical dynamics to describe the projectile-target system. A detailed consideration of the classical trajectories and of the dimensionless parameters that characterize the system is carried out. The results are compared, where possible, to exact quantum mechanical calculations and to conventional semiclassical calculations. It is found that in the case of backscattering the classical limit S-matrix method is able to almost exactly reproduce the quantum-mechanical S-matrix elements, andmore » therefore the transition probabilities, even for projectiles as light as protons. The results also suggest that this approach should be a better approximation for heavy-ion multiple Coulomb excitation than earlier semiclassical methods, due to a more accurate description of the classical orbits in the electromagnetic field of the target nucleus. Calculations using this method indicate that the rotational excitation probabilities in the Coulomb-nuclear interference region should be very sensitive to the details of the potential at the surface of the nucleus, suggesting that heavy-ion rotational excitation could constitute a sensitive probe of the nuclear potential in this region. The application to other problems as well as the present limits of applicability of the formalism are also discussed.« less
Comparison of adaptive critic-based and classical wide-area controllers for power systems.
Ray, Swakshar; Venayagamoorthy, Ganesh Kumar; Chaudhuri, Balarko; Majumder, Rajat
2008-08-01
An adaptive critic design (ACD)-based damping controller is developed for a thyristor-controlled series capacitor (TCSC) installed in a power system with multiple poorly damped interarea modes. The performance of this ACD computational intelligence-based method is compared with two classical techniques, which are observer-based state-feedback (SF) control and linear matrix inequality LMI-H(infinity) robust control. Remote measurements are used as feedback signals to the wide-area damping controller for modulating the compensation of the TCSC. The classical methods use a linearized model of the system whereas the ACD method is purely measurement-based, leading to a nonlinear controller with fixed parameters. A comparative analysis of the controllers' performances is carried out under different disturbance scenarios. The ACD-based design has shown promising performance with very little knowledge of the system compared to classical model-based controllers. This paper also discusses the advantages and disadvantages of ACDs, SF, and LMI-H(infinity).
Chen, Szu-Ying; Kaufman, Yair; Schrader, Alex M; Seo, Dongjin; Lee, Dong Woog; Page, Steven H; Koenig, Peter H; Isaacs, Sandra; Gizaw, Yonas; Israelachvili, Jacob N
2017-09-26
Measuring truly equilibrium adhesion energies or contact angles to obtain the thermodynamic values is experimentally difficult because it requires loading/unloading or advancing/receding boundaries to be measured at rates that can be slower than 1 nm/s. We have measured advancing-receding contact angles and loading-unloading adhesion energies for various systems and geometries involving molecularly smooth and chemically homogeneous surfaces moving at different but steady velocities in both directions, ±V, focusing on the thermodynamic limit of ±V → 0. We have used the Bell Theory (1978) to derive expressions for the dynamic (velocity-dependent) adhesion energies and contact angles suitable for both (i) dynamic adhesion measurements using the classic Johnson-Kendall-Roberts (JKR, 1971) theory of "contact mechanics" and (ii) dynamic contact angle hysteresis measurements of both rolling droplets and syringe-controlled (sessile) droplets on various surfaces. We present our results for systems that exhibited both steady and varying velocities from V ≈ 10 mm/s to 1 nm/s, where in all cases but one, the advancing (V > 0) and receding (V < 0) adhesion energies and/or contact angles converged toward the same theoretical (thermodynamic) values as V → 0. Our equations for the dynamic contact angles are similar to the classic equations of Blake & Haynes (1969) and fitted the experimental adhesion data equally well over the range of velocities studied, although with somewhat different fitting parameters for the characteristic molecular length/dimension or area and characteristic bond formation/rupture lifetime or velocity. Our theoretical and experimental methods and results unify previous kinetic theories of adhesion and contact angle hysteresis and offer new experimental methods for testing kinetic models in the thermodynamic, quasi-static, limit. Our analyses are limited to kinetic effects only, and we conclude that hydrodynamic, i.e., viscous, and inertial effects do not play a role at the interfacial velocities of our experiments, i.e., V < (1-10) mm/s (for water and hexadecane, but for viscous polymers it may be different), consistent with previously reported studies.
Use of FTA® classic cards for epigenetic analysis of sperm DNA.
Serra, Olga; Frazzi, Raffaele; Perotti, Alessio; Barusi, Lorenzo; Buschini, Annamaria
2018-02-01
FTA® technologies provide the most reliable method for DNA extraction. Although FTA technologies have been widely used for genetic analysis, there is no literature on their use for epigenetic analysis yet. We present for the first time, a simple method for quantitative methylation assessment based on sperm cells stored on Whatman FTA classic cards. Specifically, elution of seminal DNA from FTA classic cards was successfully tested with an elution buffer and an incubation step in a thermocycler. The eluted DNA was bisulfite converted, amplified by PCR, and a region of interest was pyrosequenced.
On the semi-classical limit of scalar products of the XXZ spin chain
NASA Astrophysics Data System (ADS)
Jiang, Yunfeng; Brunekreef, Joren
2017-03-01
We study the scalar products between Bethe states in the XXZ spin chain with anisotropy |Δ| > 1 in the semi-classical limit where the length of the spin chain and the number of magnons tend to infinity with their ratio kept finite and fixed. Our method is a natural yet non-trivial generalization of similar methods developed for the XXX spin chain. The final result can be written in a compact form as a contour integral in terms of Faddeev's quantum dilogarithm function, which in the isotropic limit reduces to the classical dilogarithm function.
Fluctuating local field method probed for a description of small classical correlated lattices
NASA Astrophysics Data System (ADS)
Rubtsov, Alexey N.
2018-05-01
Thermal-equilibrated finite classical lattices are considered as a minimal model of the systems showing an interplay between low-energy collective fluctuations and single-site degrees of freedom. Standard local field approach, as well as classical limit of the bosonic DMFT method, do not provide a satisfactory description of Ising and Heisenberg small lattices subjected to an external polarizing field. We show that a dramatic improvement can be achieved within a simple approach, in which the local field appears to be a fluctuating quantity related to the low-energy degree(s) of freedom.
Advanced classical thermodynamics
NASA Astrophysics Data System (ADS)
Emanuel, George
The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided.
Field and In-Lab Determination of Ca[superscript 2+] in Seawater
ERIC Educational Resources Information Center
Stoodley, Robin; Nun~ez, Jose R. Rodriguez; Bartz, Tessa
2014-01-01
Portions of classic undergraduate quantitative analysis experiments in complexiometric titration and potentiometry are combined with a field-sampling experience to create a two period (2 × 3 h) comparison-based experiment for second-year students. A multifunctional chemical analysis device is used with calcium ion-selective electrode for field…
ERIC Educational Resources Information Center
Duff, David B.; Abbe, Tyler G.; Goess, Brian C.
2012-01-01
A multistep synthesis of 5-isopropyl-1,3-cyclohexanedione is carried out from three commodity chemicals. The sequence involves an aldol condensation, Dieckmann-type annulation, ester hydrolysis, and decarboxylation. No purification is required until after the final step, at which point gravity column chromatography provides the desired product in…
Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae
2018-05-01
Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.
Riniker, Sereina
2018-03-26
In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.
Espiritu, Michael J; Cabalteja, Chino C; Sugai, Christopher K; Bingham, Jon-Paul
2014-01-01
Bioactive peptides from Conus venom contain a natural abundance of post-translational modifications that affect their chemical diversity, structural stability, and neuroactive properties. These modifications have continually presented hurdles in their identification and characterization. Early endeavors in their analysis relied on classical biochemical techniques that have led to the progressive development and use of novel proteomic-based approaches. The critical importance of these post-translationally modified amino acids and their specific assignment cannot be understated, having impact on their folding, pharmacological selectivity, and potency. Such modifications at an amino acid level may also provide additional insight into the advancement of conopeptide drugs in the quest for precise pharmacological targeting. To achieve this end, a concerted effort between the classical and novel approaches is needed to completely elucidate the role of post-translational modifications in conopeptide structure and dynamics. This paper provides a reflection in the advancements observed in dealing with numerous and multiple post-translationally modified amino acids within conotoxins and conopeptides and provides a summary of the current techniques used in their identification.
The Physics and Chemistry of Color: The Fifteen Causes of Color, 2nd Edition
NASA Astrophysics Data System (ADS)
Nassau, Kurt
2001-07-01
An updated and revised second edition of the acclaimed classic Have you ever wondered why the sky is blue, or a ruby red? This classic volume studies the physical and chemical origins of color by exploring fifteen separate causes of color and their varied and often subtle occurrences in biology, geology, mineralogy, the atmosphere, technology, and the visual arts. It covers all of the fundamental concepts at work and requires no specialized knowledge. Author Kurt Nassau includes hundreds of illustrations, tables, and photographs-as well as end-of-chapter problems-that aid in visualizing the concepts discussed. An updated bibliography permits readers to pursue their own particular interests and an expanded series of appendices cover advanced topics. The Physics and Chemistry of Color, Second Edition is a one-of-a-kind treatment of color that provides both detailed physical and chemical properties of color and a more general overview of the subject. It will prove highly useful to specialists and non-specialists alike-and fascinate those with varied interests from optics to art history.
Thermoelectric properties of fully hydrogenated graphene: Semi-classical Boltzmann theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reshak, A. H., E-mail: maalidph@yahoo.co.uk; Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis
2015-06-14
Based on the calculated band structure, the electronic transport coefficients of chair-/boat-like graphane were evaluated by using the semi-classical Boltzmann theory and rigid band model. The maximum value of electrical conductivity for chair (boat)-like graphane of about 1.4 (0.6) × 10{sup 19} (Ωms){sup −1} is achieved at 600 K. The charge carrier concentration and the electrical conductivity linearly increase with increasing the temperature in agreement with the experimental work for graphene. The investigated materials exhibit the highest value of Seebeck coefficient at 300 K. We should emphasize that in the chemical potential between ∓0.125 μ(eV) the investigated materials exhibit minimum value of electronic thermalmore » conductivity, therefore, maximum efficiency. As the temperature increases, the electronic thermal conductivity increases exponentially, in agreement with the experimental data of graphene. We also calculated the power factor of chair-/boat-like graphane at 300 and 600 K as a function of chemical potential between ∓0.25 μ(eV)« less
NASA Astrophysics Data System (ADS)
Plante, Ianik; Devroye, Luc
2017-10-01
Ionizing radiation interacts with the water molecules of the tissues mostly by ionizations and excitations, which result in the formation of the radiation track structure and the creation of radiolytic species such as H.,.OH, H2, H2O2, and e-aq. After their creation, these species diffuse and may chemically react with the neighboring species and with the molecules of the medium. Therefore radiation chemistry is of great importance in radiation biology. As the chemical species are not distributed homogeneously, the use of conventional models of homogeneous reactions cannot completely describe the reaction kinetics of the particles. Actually, many simulations of radiation chemistry are done using the Independent Reaction Time (IRT) method, which is a very fast technique to calculate radiochemical yields but which do not calculate the positions of the radiolytic species as a function of time. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time-consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. The SBS and IRT methods are both based on the Green's functions of the diffusion equation (GFDE). In this paper, several sampling algorithms of the GFDE and for the IRT method are presented. We show that the IRT and SBS methods are exactly equivalent for 2-particles systems for diffusion and partially diffusion-controlled reactions between non-interacting particles. We also show that the results obtained with the SBS simulation method with periodic boundary conditions are in agreement with the predictions by classical reaction kinetics theory, which is an important step towards using this method for modelling of biochemical networks and metabolic pathways involved in oxidative stress. Finally, the first simulation results obtained with the code RITRACKS (Relativistic Ion Tracks) are presented.
Teaching Semantic Tableaux Method for Propositional Classical Logic with a CAS
ERIC Educational Resources Information Center
Aguilera-Venegas, Gabriel; Galán-García, José Luis; Galán-García, María Ángeles; Rodríguez-Cielos, Pedro
2015-01-01
Automated theorem proving (ATP) for Propositional Classical Logic is an algorithm to check the validity of a formula. It is a very well-known problem which is decidable but co-NP-complete. There are many algorithms for this problem. In this paper, an educationally oriented implementation of Semantic Tableaux method is described. The program has…
DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.
2012-01-01
We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions. PMID:22338694
Optimal and adaptive methods of processing hydroacoustic signals (review)
NASA Astrophysics Data System (ADS)
Malyshkin, G. S.; Sidel'nikov, G. B.
2014-09-01
Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.
Systems metabolic engineering design: Fatty acid production as an emerging case study
Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V
2014-01-01
Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. PMID:24481660
In silico model-based inference: a contemporary approach for hypothesis testing in network biology.
Klinke, David J
2014-01-01
Inductive inference plays a central role in the study of biological systems where one aims to increase their understanding of the system by reasoning backwards from uncertain observations to identify causal relationships among components of the system. These causal relationships are postulated from prior knowledge as a hypothesis or simply a model. Experiments are designed to test the model. Inferential statistics are used to establish a level of confidence in how well our postulated model explains the acquired data. This iterative process, commonly referred to as the scientific method, either improves our confidence in a model or suggests that we revisit our prior knowledge to develop a new model. Advances in technology impact how we use prior knowledge and data to formulate models of biological networks and how we observe cellular behavior. However, the approach for model-based inference has remained largely unchanged since Fisher, Neyman and Pearson developed the ideas in the early 1900s that gave rise to what is now known as classical statistical hypothesis (model) testing. Here, I will summarize conventional methods for model-based inference and suggest a contemporary approach to aid in our quest to discover how cells dynamically interpret and transmit information for therapeutic aims that integrates ideas drawn from high performance computing, Bayesian statistics, and chemical kinetics. © 2014 American Institute of Chemical Engineers.
Systems metabolic engineering design: fatty acid production as an emerging case study.
Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V
2014-05-01
Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Kraft, Ralph P.; Burrows, David N.; Nousek, John A.
1991-01-01
Two different methods, classical and Bayesian, for determining confidence intervals involving Poisson-distributed data are compared. Particular consideration is given to cases where the number of counts observed is small and is comparable to the mean number of background counts. Reasons for preferring the Bayesian over the classical method are given. Tables of confidence limits calculated by the Bayesian method are provided for quick reference.
Modeling study of rarefied gas effects on hypersonic reacting stagnation flows
NASA Astrophysics Data System (ADS)
Wang, Zhihui; Bao, Lin
2014-12-01
Recent development of the near space hypersonic sharp leading vehicles has raised a necessity to fast and accurately predict the aeroheating in hypersonic rarefied flows, which challenges our understanding of the aerothermodynamics and aerothermochemistry. The present flow and heat transfer problem involves complex rarefied gas effects and nonequilibrium real gas effects which are beyond the scope of the traditional prediction theory based on the continuum hypothesis and equilibrium assumption. As a typical example, it has been found that the classical Fay-Riddell equation fails to predict the stagnation point heat flux, when the flow is either rarefied or chemical nonequilibrium. In order to design a more general theory covering the rarefied reacting flow cases, an intuitive model is proposed in this paper to describe the nonequilibrium dissociation-recombination flow along the stagnation streamline towards a slightly blunted nose in hypersonic rarefied flows. Some characteristic flow parameters are introduced, and based on these parameters, an explicitly analytical bridging function is established to correct the traditional theory to accurately predict the actual aeroheating performance. It is shown that for a small size nose in medium density flows, the flow at the outer edge of the stagnation point boundary layer could be highly nonequilibrium, and the aeroheating performance is distinguished from that of the big blunt body reentry flows at high altitudes. As a result, when the rarefied gas effects and the nonequilibrium real gas effects are both significant, the classical similarity law could be questionable, and it is inadequate to directly analogize results from the classical blunt body reentry problems to the present new generation sharp-leading vehicles. In addition, the direct simulation Monte Carlo method is also employed to validate the conclusion.
Zhang, Shihan; Lu, Hong; Lu, Yongqi
2013-12-03
A novel potassium-carbonate-based absorption process is currently being developed to reduce the energy consumption when capturing CO2 from coal combustion flue gas. The process employs the enzyme carbonic anhydrase (CA) as a catalyst to accelerate the rate of CO2 absorption. This study focused on the immobilization of a new variant of the CA enzyme onto a new group of nonporous nanoparticles to improve the enzyme's thermal stability and its chemical resistance to major impurities from the flue gas. The CA enzyme was manufactured at the pilot scale by a leading enzyme company. As carrier materials, two different batches of SiO2-ZrO2 composite nanoparticles and one batch of silica nanoparticle were synthesized using a flame spray pyrolysis method. Classic Danckwerts absorption theory with reaction was applied to determine the kinetics of the immobilized enzymes for CO2 absorption. The immobilized enzymes retained 56-88% of their original activity in a K2CO3/KHCO3 solution over a 60-day test period at 50 °C, compared with a 30% activity retention for their free CA enzyme counterpart. The immobilized CA enzymes also revealed improved chemical stability. The inactivation kinetics of the free and immobilized CA enzymes in the K2CO3/KHCO3 solution were experimentally quantified.
Arvanitoyannis, Ioannis S; Vlachos, Antonios
2007-01-01
The authenticity of products labeled as olive oils, and in particular as virgin olive oils, stands for a very important issue both in terms of its health and commercial aspects. In view of the continuously increasing interest in virgin olive oil therapeutic properties, the traditional methods of characterization and physical and sensory analysis were further enriched with more advanced and sophisticated methods such as HPLC-MS, HPLC-GC/C/IRMS, RPLC-GC, DEPT, and CSIA among others. The results of both traditional and "novel" methods were treated both by means of classical multivariate analysis (cluster, principal component, correspondence, canonical, and discriminant) and artificial intelligence methods showing that nowadays the adulteration of virgin olive oil with seed oil is detectable at very low percentages, sometimes even at less than 1%. Furthermore, the detection of geographical origin of olive oil is equally feasible and much more accurate in countries like Italy and Spain where databases of physical/chemical properties exist. However, this geographical origin classification can also be accomplished in the absence of such databases provided that an adequate number of oil samples are used and the parameters studied have "discriminating power."
Integral approximations to classical diffusion and smoothed particle hydrodynamics
Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.
2014-12-31
The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less
Quantum localization of classical mechanics
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Estimating parameters from rotating ring disc electrode measurements
Santhanagopalan, Shriram; White, Ralph E.
2017-10-21
Rotating ring disc electrode (RRDE) experiments are a classic tool for investigating kinetics of electrochemical reactions. Several standardized methods exist for extracting transport parameters and reaction rate constants using RRDE measurements. Here in this work, we compare some approximate solutions to the convective diffusion used popularly in the literature to a rigorous numerical solution of the Nernst-Planck equations coupled to the three dimensional flow problem. In light of these computational advancements, we explore design aspects of the RRDE that will help improve sensitivity of our parameter estimation procedure to experimental data. We use the oxygen reduction in acidic media involvingmore » three charge transfer reactions and a chemical reaction as an example, and identify ways to isolate reaction currents for the individual processes in order to accurately estimate the exchange current densities.« less
Vibrational Heat Transport in Molecular Junctions
NASA Astrophysics Data System (ADS)
Segal, Dvira; Agarwalla, Bijay Kumar
2016-05-01
We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.
Hasehira, Kayo; Miyanishi, Nobumitsu; Sumiyoshi, Wataru; Hirabayashi, Jun; Nakakita, Shin-ichi
2011-12-13
Rare sugars are monosaccharides that are found in relatively low abundance in nature. Herein, we describe a strategy for producing rare aldohexoses from ketohexoses using the classical Lobry de Bruyn-Alberda van Ekenstein transformation. Upon Schiff-base formation of keto sugars, a fluorescence-labeling reagent, 2-aminopyridine (2-AP), was used. While acting as a base catalyst, 2-AP efficiently promoted the ketose-to-aldose transformation, and acting as a Schiff-base reagent, it effectively froze the ketose-aldose equilibrium. We could also separate a mixture of Sor, Gul, and Ido in their Schiff-base forms using a normal-phase HPLC separation system. Although Gul and Ido represent the most unstable aldohexoses, our method provides a practical way to rapidly obtain these rare aldohexoses as needed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Analysis of non-equilibrium phenomena in inductively coupled plasma generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu; Lani, A.
This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) Amore » Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.« less
Analysis of non-equilibrium phenomena in inductively coupled plasma generators
NASA Astrophysics Data System (ADS)
Zhang, W.; Lani, A.; Panesi, M.
2016-07-01
This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.
Extraction of decision rules via imprecise probabilities
NASA Astrophysics Data System (ADS)
Abellán, Joaquín; López, Griselda; Garach, Laura; Castellano, Javier G.
2017-05-01
Data analysis techniques can be applied to discover important relations among features. This is the main objective of the Information Root Node Variation (IRNV) technique, a new method to extract knowledge from data via decision trees. The decision trees used by the original method were built using classic split criteria. The performance of new split criteria based on imprecise probabilities and uncertainty measures, called credal split criteria, differs significantly from the performance obtained using the classic criteria. This paper extends the IRNV method using two credal split criteria: one based on a mathematical parametric model, and other one based on a non-parametric model. The performance of the method is analyzed using a case study of traffic accident data to identify patterns related to the severity of an accident. We found that a larger number of rules is generated, significantly supplementing the information obtained using the classic split criteria.
Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán
2018-04-05
Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.
ERIC Educational Resources Information Center
Orsini, Gabriele
2015-01-01
The ever-increasing impact of molecular quantum calculations over chemical sciences implies a strong and urgent need for the elaboration of proper teaching strategies in university curricula. In such perspective, this paper proposes an extensive project for a student-driven, cooperative, from-scratch implementation of a general Hartree-Fock…
Racemization of Isobornyl Chloride via Carbocations: A Nonclassical Look at a Classic Mechanism
ERIC Educational Resources Information Center
Rzepa, Henry S.; Allan, Charlotte S. M.
2010-01-01
Our understanding of carbonium ions as intermediates in chemical reaction mechanisms derives from the early work of Julius Stieglitz and the more famous Hans Meerwein, the latter studying the racemization of isobornyl chloride when treated with Lewis acids. This review analyzes how key mechanistic concepts for this reaction evolved and gives the…
On-Line Synthesis and Analysis by Mass Spectrometry
ERIC Educational Resources Information Center
Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham
2015-01-01
In this laboratory experiment, students learn how to use ESI to accelerate chemical synthesis and to couple it with on-line mass spectrometry for structural analysis. The Hantzsch synthesis of symmetric 1,4-dihydropyridines is a classic example of a one-pot reaction in which multiple intermediates can serve to indicate the progress of the reaction…
ERIC Educational Resources Information Center
Sanger, Michael J.
2005-01-01
A total of 156 students were asked to provide free-response balanced chemical equations for a classic multiple-choice particulate-drawing question first used by Nurrenbern and Pickering. The balanced equations and the number of students providing each equation are reported in this study. The most common student errors included a confusion between…
Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes.
Faisal, Firas; Stumm, Corinna; Bertram, Manon; Waidhas, Fabian; Lykhach, Yaroslava; Cherevko, Serhiy; Xiang, Feifei; Ammon, Maximilian; Vorokhta, Mykhailo; Šmíd, Břetislav; Skála, Tomáš; Tsud, Nataliya; Neitzel, Armin; Beranová, Klára; Prince, Kevin C; Geiger, Simon; Kasian, Olga; Wähler, Tobias; Schuster, Ralf; Schneider, M Alexander; Matolín, Vladimír; Mayrhofer, Karl J J; Brummel, Olaf; Libuda, Jörg
2018-07-01
Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future 1-3 . However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to 'electrify' complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal-support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal-support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.
Vector population manipulation for control of arboviruses--a novel prospect for India.
Niranjan Reddy, Bp; Gupta, Bhavna; Rao, B Prasad
2014-04-01
India, the seventh largest country in the world, has diverse geographical and climatic regions with vast rural and peri-urban areas. Many are experiencing an escalation in the spread and intensity of numerous human diseases transmitted by insects. Classically, the management of these vector-borne diseases is underpinned by either chemical insecticides and/or environmental management targeted at the vector. However, these methods or their present implementation do not offer acceptable levels of control, and more effective and sustainable options are now available. Genetic strategies for the prevention of arbovirus transmission are most advanced for dengue and chikungunya, targeting their primary vector, Aedes aegypti. The national burden in terms of morbidity and mortality as a direct consequence of dengue virus in India is considered to be the largest worldwide, over 4 times that of any other country. Presently, new genetic technologies are undergoing field evaluation of their biosafety and efficacy in several countries. This paper discusses the merits of these approaches and argues for fair and transparent appraisal in India as a matter of urgency. Identification of any associated risks and their appropriate mitigation are fundamental to that process. © 2013 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Raguette, Lauren Elizabeth
Rechargeable lithium-ion battery technology is providing a revolution in energy storage. However, in order to fully realize this revolution, a better understanding is required of both the bulk properties of battery materials and their interfaces. This work endeavors to use classical molecular dynamics (MD) to investigate the electrochemical interfaces present in lithium-ion batteries to understand the impact of chemical reactions on ion transport. When batteries containing cyclic carbonates and lithium salts are charge cycled, both species can react with the electrodes to form complex solid mixtures at the electrode/electrolyte interface, known as a solid electrolyte interphase (SEI). While decades of experiments have yielded significant insights into the structure of these films and their chemical composition, there remains a lack of connection between the properties of the films and observed ion transport when interfaced with the electrolyte. A combination of MD and enhanced sampling methods will be presented to elucidate the link between the SEI, containing mixtures of dilithium ethylene dicarbonate (Li2EDC), lithium fluoride, and lithium carbonate, and battery performance. By performing extensive free energy calculations, clarity is provided to the impact of ion desolvation on the measured resistance to ion transport within lithium ion batteries.
Safoury, Omar Soliman; Zaki, Nagla Mohamed; El Nabarawy, Eman Ahmad; Farag, Eman Abas
2009-01-01
Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner's solution, modified Jessner's solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA) and modified Jessner's solution with 15% TCA on melasma. Materials and Methods: Twenty married females with melasma (epidermal type), with a mean age of 38.25 years, were included in this study. All were of skin type III or IV. Fifteen percent TCA was applied to the whole face, with the exception of the left malar area to which combined TCA 15% and modified Jessner's solution was applied. Results: Our results revealed statistically highly significant difference between MASI Score (Melasma Area and Severity Index) between the right malar area and the left malar area. Conclusion: Modified Jessner's solution proved to be useful as an adjuvant treatment with TCA in the treatment of melasma, improving the results and minimizing postinflammatory hyperpigmentation. PMID:20049268
Strain-controlled electrocatalysis on multimetallic nanomaterials
NASA Astrophysics Data System (ADS)
Luo, Mingchuan; Guo, Shaojun
2017-11-01
Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain-adsorption-reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field.
Track and vertex reconstruction: From classical to adaptive methods
NASA Astrophysics Data System (ADS)
Strandlie, Are; Frühwirth, Rudolf
2010-04-01
This paper reviews classical and adaptive methods of track and vertex reconstruction in particle physics experiments. Adaptive methods have been developed to meet the experimental challenges at high-energy colliders, in particular, the CERN Large Hadron Collider. They can be characterized by the obliteration of the traditional boundaries between pattern recognition and statistical estimation, by the competition between different hypotheses about what constitutes a track or a vertex, and by a high level of flexibility and robustness achieved with a minimum of assumptions about the data. The theoretical background of some of the adaptive methods is described, and it is shown that there is a close connection between the two main branches of adaptive methods: neural networks and deformable templates, on the one hand, and robust stochastic filters with annealing, on the other hand. As both classical and adaptive methods of track and vertex reconstruction presuppose precise knowledge of the positions of the sensitive detector elements, the paper includes an overview of detector alignment methods and a survey of the alignment strategies employed by past and current experiments.
Jackowski, Marek
2014-01-01
Introduction Acute pancreatitis (AP) consists of an extremely varied complex of pathological symptoms and clinical conditions, ranging from mild gastric complaints to multi-organ failure resulting in death. Aim To present the authors’ own experience regarding surgical treatment for pancreatic necrosis complicated by infection using different methods, including classic and laparoscopic methods as well as those combined with percutaneous techniques. Material and methods In the period 2007–2010, 34 patients with the diagnosis of severe AP were treated at the Department of General, Gastroenterological and Oncological Surgery, Collegium Medicum, Nicolaus Copernicus University. In 7 patients classic necrosectomy with repeated peritoneal flushing was performed (type 1), in 5 patients laparotomy with active drainage (type 2), in 12 video-assisted retroperitoneal debridement (type 3), and in 10 only percutaneous drainage methods (type 4). Results Total duration of hospitalisation was from 10 to 192 days. The highest death rate was observed for type 1 procedures. Significant differences with regard to the absolute number of postoperative complications between different groups were not observed; however, their quality varied. Classic methods were used in patients whose general and local condition was more severe. Conclusions When AP and its complications are diagnosed, a suitable method of surgical treatment has to be selected extremely precisely and in an individualised way. Minimally invasive methods used in selected patients provide better outcomes and higher safety superseding classic, open techniques of surgical treatment. PMID:25097683
Meta-analysis of diagnostic test data: a bivariate Bayesian modeling approach.
Verde, Pablo E
2010-12-30
In the last decades, the amount of published results on clinical diagnostic tests has expanded very rapidly. The counterpart to this development has been the formal evaluation and synthesis of diagnostic results. However, published results present substantial heterogeneity and they can be regarded as so far removed from the classical domain of meta-analysis, that they can provide a rather severe test of classical statistical methods. Recently, bivariate random effects meta-analytic methods, which model the pairs of sensitivities and specificities, have been presented from the classical point of view. In this work a bivariate Bayesian modeling approach is presented. This approach substantially extends the scope of classical bivariate methods by allowing the structural distribution of the random effects to depend on multiple sources of variability. Meta-analysis is summarized by the predictive posterior distributions for sensitivity and specificity. This new approach allows, also, to perform substantial model checking, model diagnostic and model selection. Statistical computations are implemented in the public domain statistical software (WinBUGS and R) and illustrated with real data examples. Copyright © 2010 John Wiley & Sons, Ltd.
The Green's functions for peridynamic non-local diffusion.
Wang, L J; Xu, J F; Wang, J X
2016-09-01
In this work, we develop the Green's function method for the solution of the peridynamic non-local diffusion model in which the spatial gradient of the generalized potential in the classical theory is replaced by an integral of a generalized response function in a horizon. We first show that the general solutions of the peridynamic non-local diffusion model can be expressed as functionals of the corresponding Green's functions for point sources, along with volume constraints for non-local diffusion. Then, we obtain the Green's functions by the Fourier transform method for unsteady and steady diffusions in infinite domains. We also demonstrate that the peridynamic non-local solutions converge to the classical differential solutions when the non-local length approaches zero. Finally, the peridynamic analytical solutions are applied to an infinite plate heated by a Gauss source, and the predicted variations of temperature are compared with the classical local solutions. The peridynamic non-local diffusion model predicts a lower rate of variation of the field quantities than that of the classical theory, which is consistent with experimental observations. The developed method is applicable to general diffusion-type problems.
Deriving the exact nonadiabatic quantum propagator in the mapping variable representation.
Hele, Timothy J H; Ananth, Nandini
2016-12-22
We derive an exact quantum propagator for nonadiabatic dynamics in multi-state systems using the mapping variable representation, where classical-like Cartesian variables are used to represent both continuous nuclear degrees of freedom and discrete electronic states. The resulting Liouvillian is a Moyal series that, when suitably approximated, can allow for the use of classical dynamics to efficiently model large systems. We demonstrate that different truncations of the exact Liouvillian lead to existing approximate semiclassical and mixed quantum-classical methods and we derive an associated error term for each method. Furthermore, by combining the imaginary-time path-integral representation of the Boltzmann operator with the exact Liouvillian, we obtain an analytic expression for thermal quantum real-time correlation functions. These results provide a rigorous theoretical foundation for the development of accurate and efficient classical-like dynamics to compute observables such as electron transfer reaction rates in complex quantized systems.
An efficient quantum algorithm for spectral estimation
NASA Astrophysics Data System (ADS)
Steffens, Adrian; Rebentrost, Patrick; Marvian, Iman; Eisert, Jens; Lloyd, Seth
2017-03-01
We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum-classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.
Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light
NASA Astrophysics Data System (ADS)
Emmanuel, Megan A.; Greenberg, Norman R.; Oblinsky, Daniel G.; Hyster, Todd K.
2016-12-01
Enzymes are ideal for use in asymmetric catalysis by the chemical industry, because their chemical compositions can be tailored to a specific substrate and selectivity pattern while providing efficiencies and selectivities that surpass those of classical synthetic methods. However, enzymes are limited to reactions that are found in nature and, as such, facilitate fewer types of transformation than do other forms of catalysis. Thus, a longstanding challenge in the field of biologically mediated catalysis has been to develop enzymes with new catalytic functions. Here we describe a method for achieving catalytic promiscuity that uses the photoexcited state of nicotinamide co-factors (molecules that assist enzyme-mediated catalysis). Under irradiation with visible light, the nicotinamide-dependent enzyme known as ketoreductase can be transformed from a carbonyl reductase into an initiator of radical species and a chiral source of hydrogen atoms. We demonstrate this new reactivity through a highly enantioselective radical dehalogenation of lactones—a challenging transformation for small-molecule catalysts. Mechanistic experiments support the theory that a radical species acts as an intermediate in this reaction, with NADH and NADPH (the reduced forms of nicotinamide adenine nucleotide and nicotinamide adenine dinucleotide phosphate, respectively) serving as both a photoreductant and the source of hydrogen atoms. To our knowledge, this method represents the first example of photo-induced enzyme promiscuity, and highlights the potential for accessing new reactivity from existing enzymes simply by using the excited states of common biological co-factors. This represents a departure from existing light-driven biocatalytic techniques, which are typically explored in the context of co-factor regeneration.
NASA Astrophysics Data System (ADS)
Michalska, Katarzyna; Gruba, Ewa; Mizera, Mikołaj; Lewandowska, Kornelia; Bednarek, Elżbieta; Bocian, Wojciech; Cielecka-Piontek, Judyta
2017-08-01
In the presented study, N-{[(5S)-3-(2-fluoro-4‧-{[(1H-1,2,3-triazol-5-ylmethyl)amino]methyl}biphenyl-4-yl)-2-oxo-1,3-oxazolidin-5-yl]methyl}acetamide (radezolid) was synthesized and characterized using FT-IR, Raman, ECD and NMR. The aim of this work was to assess the possibility of applying classical spectral methods such as FT-IR, Raman, ECD and NMR spectroscopy for studies on the identification and optical purity of radezolid. The experimental interpretation of FT-IR and Raman spectra of radezolid was conducted in combination with theoretical studies. Density functional theory (DFT) with the B3LYP hybrid functional was used for obtaining radezolid spectra. Full identification was carried out by COSY, 1H {13C} HSQC and 1H {13C} HMBC experiments. The experimental NMR chemical shifts and spin-spin coupling constants were compared with theoretical calculations using the DFT method and B3LYP functional employing the 6-311 ++G(d,p) basis set and the solvent polarizable continuum model (PCM). The experimental ECD spectra of synthesized radezolid were compared with experimental spectra of the reference standard of radezolid. Theoretical calculations enabled us to conduct HOMO and LUMO analysis and molecular electrostatic potential maps were used to determine the active sites of microbiologically active form of radezolid enantiomer. The relationship between results of ab initio calculations and knowledge about chemical-biological properties of S-radezolid and other oxazolidinone derivatives are also discussed.
ERIC Educational Resources Information Center
Waugh, Russell F.; Riddoch, Jane V.
2007-01-01
There are few studies measuring the effects on painting quality of playing background classical music at special schools. Primary students with severe intellectual disabilities (N=24) were taught abstract painting in a two-part method. The first part involved a Pictorial Only method and the second, immediately following it, involved a Pictorial…
On the convergence of a discrete Kirchhoff triangle method valid for shells of arbitrary shape
NASA Astrophysics Data System (ADS)
Bernadou, Michel; Eiroa, Pilar Mato; Trouve, Pascal
1994-10-01
In a recent paper by the same authors, we have thoroughly described how to extend to the case of general shells the well known DKT (discrete Kirchhoff triangle) methods which are now classically used to solve plate problems. In that paper we have also detailed how to realize the implementation and reported some numerical results obtained for classical benchmarks. The aim of this paper is to prove the convergence of a closely related method and to obtain corresponding error estimates.
Chemodynamical Clustering Applied to APOGEE Data: Rediscovering Globular Clusters
NASA Astrophysics Data System (ADS)
Chen, Boquan; D’Onghia, Elena; Pardy, Stephen A.; Pasquali, Anna; Bertelli Motta, Clio; Hanlon, Bret; Grebel, Eva K.
2018-06-01
We have developed a novel technique based on a clustering algorithm that searches for kinematically and chemically clustered stars in the APOGEE DR12 Cannon data. As compared to classical chemical tagging, the kinematic information included in our methodology allows us to identify stars that are members of known globular clusters with greater confidence. We apply our algorithm to the entire APOGEE catalog of 150,615 stars whose chemical abundances are derived by the Cannon. Our methodology found anticorrelations between the elements Al and Mg, Na and O, and C and N previously identified in the optical spectra in globular clusters, even though we omit these elements in our algorithm. Our algorithm identifies globular clusters without a priori knowledge of their locations in the sky. Thus, not only does this technique promise to discover new globular clusters, but it also allows us to identify candidate streams of kinematically and chemically clustered stars in the Milky Way.
Study of pulsations of chemically peculiar a stars
NASA Astrophysics Data System (ADS)
Sachkov, M. E.
2014-01-01
Rapidly oscillating chemically peculiar A stars (roAp) pulsate in high-overtone, low degree p-modes and form a sub-group of chemically peculiar magnetic A stars (Ap). Until recently, the classical asteroseismic research, i.e., frequency analysis, of these stars was based on photometric observations both ground-based and space-based. Significant progress has been achieved by obtaining uninterrupted, ultra-high precision data from the MOST, COROT, and Kepler satellites. Over the last ten years, a real breakthrough was achieved in the study of roAp stars due to the time-resolved, high spectral resolution spectroscopic observations. Unusual pulsational characteristics of these stars, caused by the interaction between propagating pulsationwaves and strong stratification of chemical elements, provide an opportunity to study the upper roAp star atmosphere in more detail than is possible for any star but the Sun, using spectroscopic data. In this paper the results of recent pulsation studies of these stars are reviewed.
Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants.
Jacobsen, Evert; Schouten, Henk J
2007-05-01
There are two ways for genetic improvement in classical plant breeding: crossing and mutation. Plant varieties can also be improved through genetic modification; however, the present GMO regulations are based on risk assessments with the transgenes coming from non-crossable species. Nowadays, DNA sequence information of crop plants facilitates the isolation of cisgenes, which are genes from crop plants themselves or from crossable species. The increasing number of these isolated genes, and the development of transformation protocols that do not leave marker genes behind, provide an opportunity to improve plant breeding while remaining within the gene pool of the classical breeder. Compared with induced translocation and introgression breeding, cisgenesis is an improvement for gene transfer from crossable plants: it is a one-step gene transfer without linkage drag of other genes, whereas induced translocation and introgression breeding are multiple step gene transfer methods with linkage drag. The similarity of the genes used in cisgenesis compared with classical breeding is a compelling argument to treat cisgenic plants as classically bred plants. In the case of the classical breeding method induced translocation breeding, the insertion site of the genes is a priori unknown, as it is in cisgenesis. This provides another argument to treat cisgenic plants as classically bred plants, by exempting cisgenesis of plants from the GMO legislations.
Encoded libraries of chemically modified peptides.
Heinis, Christian; Winter, Greg
2015-06-01
The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries. Copyright © 2015. Published by Elsevier Ltd.
Chiang, H-S; Huang, R-Y; Weng, P-W; Mau, L-P; Tsai, Y-W C; Chung, M-P; Chung, C-H; Yeh, H-W; Shieh, Y-S; Cheng, W-C
2018-03-01
Current bibliometric analyses of the evolving trends in research scope category across different time periods using the H-classics method in implantology are considerably limited. The purpose of this study was to identify the classic articles in implantology to analyse bibliometric characteristics and associated factors in implantology for the past four decades. H-Classics in implantology were identified within four time periods between 1977 and 2016, based on the h-index from the Scopus ® database. For each article, the principal bibliometric parameters of authorship, geographic origin, country origin, and institute origin, collaboration, centralisation, article type, scope of study and other associated factors were analysed in four time periods. A significant increase in mean numbers of authors per H-Classics was found across time. Both Europe and North America were the most productive region/country and steadily dominated this field in each time period. Collaborations of author, internationally and inter-institutionally had significantly increased across time. A significant decentralisation in authorships, institutes and journals was noted in past four decades. The journal of Clinical Oral Implant Researches has raised its importance for almost 30 years (1987-2016). Research on Complications, peri-implant infection/pathology/therapy had been increasing in production throughout each period. This is the first study to evaluate research trends in implantology in the past 40 years using the H-classics method, which through analysing via principle bibliometric characteristics reflected a historical perspective on evolutionary mainstream in the field. Prominence of research regarding complications may forecast innovative advancements in future. © 2018 John Wiley & Sons Ltd.
Much Polyphony but Little Harmony: Otto Sackur's Groping for a Quantum Theory of Gases
NASA Astrophysics Data System (ADS)
Badino, Massimiliano; Friedrich, Bretislav
2013-09-01
The endeavor of Otto Sackur (1880-1914) was driven, on the one hand, by his interest in Nernst's heat theorem, statistical mechanics, and the problem of chemical equilibrium and, on the other hand, by his goal to shed light on classical mechanics from the quantum vantage point. Inspired by the interplay between classical physics and quantum theory, Sackur chanced to expound his personal take on the role of the quantum in the changing landscape of physics in the turbulent 1910s. We tell the story of this enthusiastic practitioner of the old quantum theory and early contributor to quantum statistical mechanics, whose scientific ontogenesis provides a telling clue about the phylogeny of his contemporaries.
NASA Astrophysics Data System (ADS)
Darbandi, Masoud; Abrar, Bagher
2018-01-01
The spectral-line weighted-sum-of-gray-gases (SLW) model is considered as a modern global model, which can be used in predicting the thermal radiation heat transfer within the combustion fields. The past SLW model users have mostly employed the reference approach to calculate the local values of gray gases' absorption coefficient. This classical reference approach assumes that the absorption spectra of gases at different thermodynamic conditions are scalable with the absorption spectrum of gas at a reference thermodynamic state in the domain. However, this assumption cannot be reasonable in combustion fields, where the gas temperature is very different from the reference temperature. Consequently, the results of SLW model incorporated with the classical reference approach, say the classical SLW method, are highly sensitive to the reference temperature magnitude in non-isothermal combustion fields. To lessen this sensitivity, the current work combines the SLW model with a modified reference approach, which is a particular one among the eight possible reference approach forms reported recently by Solovjov, et al. [DOI: 10.1016/j.jqsrt.2017.01.034, 2017]. The combination is called "modified SLW method". This work shows that the modified reference approach can provide more accurate total emissivity calculation than the classical reference approach if it is coupled with the SLW method. This would be particularly helpful for more accurate calculation of radiation transfer in highly non-isothermal combustion fields. To approve this, we use both the classical and modified SLW methods and calculate the radiation transfer in such fields. It is shown that the modified SLW method can almost eliminate the sensitivity of achieved results to the chosen reference temperature in treating highly non-isothermal combustion fields.
ERIC Educational Resources Information Center
Huddleston, Gregory H.
1993-01-01
Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)
Comparison between an Alternative and the Classic Definition of Chronic Bronchitis in COPDGene
Crapo, James; Zhao, Huaqing; Jones, Paul W.; Silverman, Edwin K.; Comellas, Alejandro; Make, Barry J.; Criner, Gerard J.
2015-01-01
Rationale: Previous studies on chronic bronchitis (CB) have used varying definitions. Objectives: We sought to compare an alternative CB definition, using the St. George’s Respiratory Questionnaire (SGRQ), a commonly used assessment tool, with the classic definition and to investigate if it had independent or additive value. Methods: We analyzed data from 4,513 subjects from Global Initiative for Chronic Obstructive Lung Disease groups 1 to 4 in the COPDGene cohort. We compared the classic definition of CB with the SGRQ definition, defined by their answers to the questions about both cough and phlegm. We compared the Classic CB+ versus CB− groups, and the SGRQ CB+ and CB− groups. We also analyzed the cohort split into four groups: Classic CB+/SGRQ CB+, Classic CB+/SGRQ CB−, Classic CB−/SGRQ CB+, Classic CB−/SGRQ CB−. Measurements and Main Results: A total of 26.1% subjects were Classic CB+, whereas 39.9% were SGRQ CB+. When the SGRQ definition was compared with the Classic CB definition, using this as the gold standard, the SGRQ CB definition had a sensitivity and specificity of 0.87 and 0.77, respectively. The SGRQ CB+ and Classic CB+ groups were strikingly similar, with more respiratory symptoms and exacerbations, worse lung function, and greater airway wall thickness. In addition, the Classic CB+/SGRQ CB+, Classic CB+/SGRQ CB−, and Classic CB−/SGRQ CB+ groups shared similar characteristics as well. Conclusions: The SGRQ CB definition identifies more subjects with chronic cough and sputum who share a similar phenotype identified by the Classic CB definition. The addition of the SGRQ CB definition to the classic one can be used to identify more patients with chronic obstructive pulmonary disease at risk for poor outcomes. PMID:25575351
Cosine problem in EPRL/FK spinfoam model
NASA Astrophysics Data System (ADS)
Vojinović, Marko
2014-01-01
We calculate the classical limit effective action of the EPRL/FK spinfoam model of quantum gravity coupled to matter fields. By employing the standard QFT background field method adapted to the spinfoam setting, we find that the model has many different classical effective actions. Most notably, these include the ordinary Einstein-Hilbert action coupled to matter, but also an action which describes antigravity. All those multiple classical limits appear as a consequence of the fact that the EPRL/FK vertex amplitude has cosine-like large spin asymptotics. We discuss some possible ways to eliminate the unwanted classical limits.
Ota, Sarada; Singh, Arjun; Srikanth, Narayana; Sreedhar, Bojja; Ruknuddin, Galib; Dhiman, Kartar Singh
2017-01-01
Herbo-mineral formulations of Ayurveda contain specified metals or minerals as composition, which have their beneficial effects on biological systems. These metals or minerals are transformed into non-toxic forms through meticulous procedures explained in Ayurveda. Though literature is available on quality aspects of such herbo-mineral formulations; contemporary science is raising concerns at regular intervals on such formulations. Thus, it becomes mandate to develop quality profiles of all formulations that contain metals or minerals in their composition. Considering this, it is planned to evaluate analytical profile of Vasantakusumākara Rasa . To prepare Vasantakusumākara Rasa as per Standard operating Procedures (SoP) mentioned in classical text and to characterize it chemically using modern analytical techniques. The drug ( Vasantakusumākara Rasa ) in three batches was prepared in GMP certified pharmacy. Physico-chemical analysis, Assay of elements and HPTLC were carried out as per API. XRD was conducted using Rigaku Ultima-IV X-ray diffractometer. The analysis shown the presence of Mercury, Tin, Gold, Silver, Iron, Zinc and Calcium etc., and HPTLC revealed presence of organic constituents from plant material. The XRD indicated the presence of cinnabar (mercury sulphide from Rasa Sindhura ), cassiterite (tin oxide from Vaṅga Bhasma ), massicot (lead oxide from Nāga bhasma ) and Magnetite (di-iron oxide from Loha bhasma ). The physico chemical analysis reveals that VKR prepared by following classical guidelines is very effective in converting the macro elements into therapeutically effective medicines in micro form. Well prepared herbo-mineral drugs offer many advantages over plant medicines due to their longer shelf life, lesser doses, easy storing facilities, better palatability etc. The inferences and the standards laid down in this study certainly can be utilized as baseline data of standardization and QC.
Quantum computation in the analysis of hyperspectral data
NASA Astrophysics Data System (ADS)
Gomez, Richard B.; Ghoshal, Debabrata; Jayanna, Anil
2004-08-01
Recent research on the topic of quantum computation provides us with some quantum algorithms with higher efficiency and speedup compared to their classical counterparts. In this paper, it is our intent to provide the results of our investigation of several applications of such quantum algorithms - especially the Grover's Search algorithm - in the analysis of Hyperspectral Data. We found many parallels with Grover's method in existing data processing work that make use of classical spectral matching algorithms. Our efforts also included the study of several methods dealing with hyperspectral image analysis work where classical computation methods involving large data sets could be replaced with quantum computation methods. The crux of the problem in computation involving a hyperspectral image data cube is to convert the large amount of data in high dimensional space to real information. Currently, using the classical model, different time consuming methods and steps are necessary to analyze these data including: Animation, Minimum Noise Fraction Transform, Pixel Purity Index algorithm, N-dimensional scatter plot, Identification of Endmember spectra - are such steps. If a quantum model of computation involving hyperspectral image data can be developed and formalized - it is highly likely that information retrieval from hyperspectral image data cubes would be a much easier process and the final information content would be much more meaningful and timely. In this case, dimensionality would not be a curse, but a blessing.
Petruševska, Marija; Urleb, Uroš; Peternel, Luka
2013-11-01
The excipient-mediated precipitation inhibition is classically determined by the quantification of the dissolved compound in the solution. In this study, two alternative approaches were evaluated, one is the light scattering (nephelometer) and other is the turbidity (plate reader) microtiter plate-based methods which are based on the quantification of the compound precipitate. Following the optimization of the nephelometer settings (beam focus, laser gain) and the experimental conditions, the screening of 23 excipients on the precipitation inhibition of poorly soluble fenofibrate and dipyridamole was performed. The light scattering method resulted in excellent correlation (r>0.91) between the calculated precipitation inhibitor parameters (PIPs) and the precipitation inhibition index (PI(classical)) obtained by the classical approach for fenofibrate and dipyridamole. Among the evaluated PIPs AUC100 (nephelometer) resulted in only four false positives and lack of false negatives. In the case of the turbidity-based method a good correlation of the PI(classical) was obtained for the PIP maximal optical density (OD(max), r=0.91), however, only for fenofibrate. In the case of the OD(max) (plate reader) five false positives and two false negatives were identified. In conclusion, the light scattering-based method outperformed the turbidity-based one and could be reliably used for identification of novel precipitation inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.
The application of network synthesis to repeating classical gamma-ray bursts
NASA Technical Reports Server (NTRS)
Hurley, K.; Kouveliotou, C.; Fishman, J.; Meegan, C.; Laros, J.; Klebesadel, R.
1995-01-01
It has been suggested that the Burst and Transient Source Experiment (BATSE) gamma-ray burst catalog contains several groups of bursts clustered in space or in space and time, which provide evidence that a substantial fraction of the classical gamma-ray burst sources repeat. Because many of the bursts in these groups are weak, they are not directly detected by the Ulysses GRB experiment. We apply the network synthesis method to these events to test the repeating burst hypothesis. Although we find no evidence for repeating sources, the method must be applied under more general conditions before reaching any definite conclusions about the existence of classical gamma-ray burst repeating sources.
Limb Lengthening and Then Insertion of an Intramedullary Nail: A Case-matched Comparison
Kleinman, Dawn; Fragomen, Austin T.; Ilizarov, Svetlana
2008-01-01
Distraction osteogenesis is an effective method for lengthening, deformity correction, and treatment of nonunions and bone defects. The classic method uses an external fixator for both distraction and consolidation leading to lengthy times in frames and there is a risk of refracture after frame removal. We suggest a new technique: lengthening and then nailing (LATN) technique in which the frame is used for gradual distraction and then a reamed intramedullary nail inserted to support the bone during the consolidation phase, allowing early removal of the external fixator. We performed a retrospective case-matched comparison of patients lengthened with LATN (39 limbs in 27 patients) technique versus the classic (34 limbs in 27 patients). The LATN group wore the external fixator for less time than the classic group (12 versus 29 weeks). The LATN group had a lower external fixation index (0.5 versus 1.9) and a lower bone healing index (0.8 versus 1.9) than the classic group. LATN confers advantages over the classic method including shorter times needed in external fixation, quicker bone healing, and protection against refracture. There are also advantages over the lengthening over a nail and internal lengthening nail techniques. Level of Evidence: Level III, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18800209
Hanford, Amanda D; O'Connor, Patrick D; Anderson, James B; Long, Lyle N
2008-06-01
In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows.
Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClean, Jarrod R.; Kimchi-Schwartz, Mollie E.; Carter, Jonathan
Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One powerful example of such a hybrid quantum-classical approach optimized for classically intractable eigenvalue problems is the variational quantum eigensolver, built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed as leaders among the candidates for the first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even nonsystematic decoherence errors by introducing an exactly solvable channelmore » model of variational state preparation. Moreover, we develop a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions by leveraging additional measurements and classical resources. In conclusion, we demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error-correction codes.« less
SU-D-BRB-05: Quantum Learning for Knowledge-Based Response-Adaptive Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Naqa, I; Ten, R
Purpose: There is tremendous excitement in radiotherapy about applying data-driven methods to develop personalized clinical decisions for real-time response-based adaptation. However, classical statistical learning methods lack in terms of efficiency and ability to predict outcomes under conditions of uncertainty and incomplete information. Therefore, we are investigating physics-inspired machine learning approaches by utilizing quantum principles for developing a robust framework to dynamically adapt treatments to individual patient’s characteristics and optimize outcomes. Methods: We studied 88 liver SBRT patients with 35 on non-adaptive and 53 on adaptive protocols. Adaptation was based on liver function using a split-course of 3+2 fractions with amore » month break. The radiotherapy environment was modeled as a Markov decision process (MDP) of baseline and one month into treatment states. The patient environment was modeled by a 5-variable state represented by patient’s clinical and dosimetric covariates. For comparison of classical and quantum learning methods, decision-making to adapt at one month was considered. The MDP objective was defined by the complication-free tumor control (P{sup +}=TCPx(1-NTCP)). A simple regression model represented state-action mapping. Single bit in classical MDP and a qubit of 2-superimposed states in quantum MDP represented the decision actions. Classical decision selection was done using reinforcement Q-learning and quantum searching was performed using Grover’s algorithm, which applies uniform superposition over possible states and yields quadratic speed-up. Results: Classical/quantum MDPs suggested adaptation (probability amplitude ≥0.5) 79% of the time for splitcourses and 100% for continuous-courses. However, the classical MDP had an average adaptation probability of 0.5±0.22 while the quantum algorithm reached 0.76±0.28. In cases where adaptation failed, classical MDP yielded 0.31±0.26 average amplitude while the quantum approach averaged a more optimistic 0.57±0.4, but with high phase fluctuations. Conclusion: Our results demonstrate that quantum machine learning approaches provide a feasible and promising framework for real-time and sequential clinical decision-making in adaptive radiotherapy.« less
Oldenkamp, Rik; Hendriks, Harrie W M; van de Meent, Dik; Ragas, Ad M J
2015-09-01
Species in the aquatic environment differ in their toxicological sensitivity to the various chemicals they encounter. In aquatic risk assessment, this interspecies variation is often quantified via species sensitivity distributions. Because the information available for the characterization of these distributions is typically limited, optimal use of information is essential to reduce uncertainty involved in the assessment. In the present study, we show that the credibility intervals on the estimated potentially affected fraction of species after exposure to a mixture of chemicals at environmentally relevant surface water concentrations can be extremely wide if a classical approach is followed, in which each chemical in the mixture is considered in isolation. As an alternative, we propose a hierarchical Bayesian approach, in which knowledge on the toxicity of chemicals other than those assessed is incorporated. A case study with a mixture of 13 pharmaceuticals demonstrates that this hierarchical approach results in more realistic estimations of the potentially affected fraction, as a result of reduced uncertainty in species sensitivity distributions for data-poor chemicals.
Sublethal effects of phenanthrene, nicotine, and pinane on Daphnia pulex
Savino, Jacqueline F.; Tanabe, Lila L.
1989-01-01
Chronic studies of Daphnia Pulex exposed to different concentrations of phenanthrene, nicotine, and pinane produced consistent sublethal effects among replicates and concentrations. The LOEC's for growth and fecundity with each chemical tested were 3 to 30% of the 48-hr EC50's. Growth decreased as concentration increased for each chemical tested, and fecundity approached zero at 2 to 5 times the LOEC for each chemical. In this study chemicals representing PAHs, heterocyclic nitrogen compounds, and cyclic alkanes, produced detectable sublethal effects in daphnids at less than 0.1 ppm in water. These chronic studies, in conjuction with the more extensive acute toxicity testing (Passino and Smith 1987; Perry and Smith 1988; Smith et al. 1988), provided a relatively quick but thorough toxicological assessment of a large array of chemicals and demonstrated the relative importance of different classes of compounds in changing growth and survival trends in given populations of native organisms. Classic toxicity tests continue to provide a reliable backdrop of results with which the effects of new chemicals or mixtures can be compared.
Chemically reacting fluid flow in exoplanet and brown dwarf atmospheres
NASA Astrophysics Data System (ADS)
Bordwell, Baylee; Brown, Benjamin P.; Oishi, Jeffrey S.
2016-11-01
In the past few decades, spectral observations of planets and brown dwarfs have demonstrated significant deviations from predictions in certain chemical abundances. Starting with Jupiter, these deviations were successfully explained to be the effect of fast dynamics on comparatively slow chemical reactions. These dynamical effects are treated using mixing length theory in what is known as the "quench" approximation. In these objects, however, both radiative and convective zones are present, and it is not clear that this approximation applies. To resolve this issue, we solve the fully compressible equations of fluid dynamics in a matched polytropic atmosphere using the state-of-the-art pseudospectral simulation framework Dedalus. Through the inclusion of passive tracers, we explore the transport properties of convective and radiative zones, and verify the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes using abstract chemical reactions. By locating the quench point (the point at which the dynamical and chemical timescales are the same) in different dynamical regimes, we test the quench approximation, and generate prescriptions for the exoplanet and brown dwarf communities.
Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics.
Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso
2016-10-17
Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law.
Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics
Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso
2016-01-01
Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law. PMID:27748418
Concepts for compact mid-IR spectroscopy in photochemistry
NASA Astrophysics Data System (ADS)
Cu-Nguyen, Phuong-Ha; Wang, Ziyu; Zappe, Hans
2016-11-01
Mid-infrared (IR) spectroscopy, typically 3 to 5 µm, is often the technology of choice to monitor the interaction between and concentration of molecules during photochemical reactions. However, classical mid-IR spectrometers are bulky, complex and expensive, making them unsuitable for use in the miniaturized microreactors increasingly being employed for chemical synthesis. We present here the concept for an ultra-miniaturized mid-IR spectrometer directly integrated onto a chemical microreactor to monitor the chemical reaction. The spectrometer is based on micro-machined Fabry-Perot resonator filters realized using pairs of Bragg mirrors to achieve a high spectral resolution. The fabrication of the optical filters is outlined and the measurement of transmittance spectra in the mid-IR range show a good agreement with theory and are thus promising candidates for a fully integrated system.
Yang, Li; Sun, Rui; Hase, William L
2011-11-08
In a previous study (J. Chem. Phys.2008, 129, 094701) it was shown that for a large molecule, with a total energy much greater than its barrier for decomposition and whose vibrational modes are harmonic oscillators, the expressions for the classical Rice-Ramsperger-Kassel-Marcus (RRKM) (i.e., RRK) and classical transition-state theory (TST) rate constants become equivalent. Using this relationship, a molecule's unimolecular rate constants versus temperature may be determined from chemical dynamics simulations of microcanonical ensembles for the molecule at different total energies. The simulation identifies the molecule's unimolecular pathways and their Arrhenius parameters. In the work presented here, this approach is used to study the thermal decomposition of CH3-NH-CH═CH-CH3, an important constituent in the polymer of cross-linked epoxy resins. Direct dynamics simulations, at the MP2/6-31+G* level of theory, were used to investigate the decomposition of microcanonical ensembles for this molecule. The Arrhenius A and Ea parameters determined from the direct dynamics simulation are in very good agreement with the TST Arrhenius parameters for the MP2/6-31+G* potential energy surface. The simulation method applied here may be particularly useful for large molecules with a multitude of decomposition pathways and whose transition states may be difficult to determine and have structures that are not readily obvious.
CCS Observations of the Protostellar Envelope of B335
NASA Technical Reports Server (NTRS)
Velusamy, T.; Kuiper, T. B. H.; Langer, W. D.
1995-01-01
Knowledge of the density, velocity and chemical profiles around protostars is of fundamental importance for testing dynamical models of protostar evolution and understanding the nature of the material falling onto circumstellar disks. Presented are single dish and interferometric spectral line observations of CCS towards the core of B335, a classic example of a young, low mass stellar object.
Chemical and physical characteristics of water in estuaries of Texas, October 1976-September 1978
Fisher, J.C.
1982-01-01
The coastal waters of Texas are not classical estuaries, but are similar to them in ecosystems and mixing phenomena. A description of various types of estuaries is presented in "Estuaries" edited by Lauff (1967, p. 3-11). The term estuary as used in this report, refers to concomitant water bodies in which streamflow mixes with seawater.
2012 Gordon Research Conference, Electron donor-acceptor interactions, August 5-10 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCusker, James
The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.
[Scabies of the nail unit in an infant].
Finon, A; Desoubeaux, G; Nadal, M; Georgescou, G; Baran, R; Maruani, A
2017-05-01
There are no guidelines regarding the management of scabies in infants and recurrence is common at this age. We report the case of an infant with subungual hyperkeratosis and ungual lesions subsequent to classic scabies. A 7-month-girl, treated 6 weeks earlier with esdepallethrin for scabies, consulted for acquired lesions on 3 toe nails. These nails were thickened and displayed subungual hyperkeratosis. Physical examination of the skin, the finger nails and mucous membranes was otherwise normal. Fungal analyses were negative, but direct microscopic examination revealed numerous larvae of Sarcoptes scabiei as well as ovular debris. The child was treated with urea 40% to obtain chemical avulsion of the nails, and with topical esdepallethrin and a quarter tablet of ivermectin orally; there was no follow-up of the child. Ungual scabies has already been reported in crusted scabies and very rarely in classic scabies. Subungual and ungual locations of S. scabiei may constitute a source of reinfestation with scabies in infants. Treatment is not well defined and currently involves chemical avulsion of the nails and the application of topical antiscabies treatment. Copyright © 2016. Published by Elsevier Masson SAS.
Construction of the Second Quito Astrolabe Catalogue
NASA Astrophysics Data System (ADS)
Kolesnik, Y. B.
1994-03-01
A method for astrolabe catalogue construction is presented. It is based on classical concepts, but the model of conditional equations for the group reduction is modified, additional parameters being introduced in the step- wise regressions. The chain adjustment is neglected, and the advantages of this approach are discussed. The method has been applied to the data obtained with the astrolabe of the Quito Astronomical Observatory from 1964 to 1983. Various characteristics of the catalogue produced with this method are compared with those due to the rigorous classical method. Some improvement both in systematic and random errors is outlined.
The MusIC method: a fast and quasi-optimal solution to the muscle forces estimation problem.
Muller, A; Pontonnier, C; Dumont, G
2018-02-01
The present paper aims at presenting a fast and quasi-optimal method of muscle forces estimation: the MusIC method. It consists in interpolating a first estimation in a database generated offline thanks to a classical optimization problem, and then correcting it to respect the motion dynamics. Three different cost functions - two polynomial criteria and a min/max criterion - were tested on a planar musculoskeletal model. The MusIC method provides a computation frequency approximately 10 times higher compared to a classical optimization problem with a relative mean error of 4% on cost function evaluation.
Gavrilenko, T V; Es'kov, V M; Khadartsev, A A; Khimikova, O I; Sokolova, A A
2014-01-01
The behavior of the state vector of human cardio-vascular system in different age groups according to methods of theory of chaos-self-organization and methods of classical statistics was investigated. Observations were made on the indigenous people of North of the Russian Federation. Using methods of the theory of chaos-self-organization the differences in the parameters of quasi-attractors of the human state vector of cardio-vascular system of the people of Russian Federation North were shown. Comparison with the results obtained by classical statistics was made.
Real-time dynamics of matrix quantum mechanics beyond the classical approximation
NASA Astrophysics Data System (ADS)
Buividovich, Pavel; Hanada, Masanori; Schäfer, Andreas
2018-03-01
We describe a numerical method which allows to go beyond the classical approximation for the real-time dynamics of many-body systems by approximating the many-body Wigner function by the most general Gaussian function with time-dependent mean and dispersion. On a simple example of a classically chaotic system with two degrees of freedom we demonstrate that this Gaussian state approximation is accurate for significantly smaller field strengths and longer times than the classical one. Applying this approximation to matrix quantum mechanics, we demonstrate that the quantum Lyapunov exponents are in general smaller than their classical counterparts, and even seem to vanish below some temperature. This behavior resembles the finite-temperature phase transition which was found for this system in Monte-Carlo simulations, and ensures that the system does not violate the Maldacena-Shenker-Stanford bound λL < 2πT, which inevitably happens for classical dynamics at sufficiently small temperatures.
Effectiveness of the Stewart Method in the Evaluation of Blood Gas Parameters.
Gezer, Mustafa; Bulucu, Fatih; Ozturk, Kadir; Kilic, Selim; Kaldirim, Umit; Eyi, Yusuf Emrah
2015-03-01
In 1981, Peter A. Stewart published a paper describing his concept for employing Strong Ion Difference. In this study we compared the HCO3 levels and Anion Gap (AG) calculated using the classic method and the Stewart method. Four hundred nine (409) arterial blood gases of 90 patients were collected retrospectively. Some were obtained from the same patients in different times and conditions. All blood samples were evaluated using the same device (ABL 800 Blood Gas Analyzer). HCO3 level and AG were calculated using the Stewart method via the website AcidBase.org. HCO3 levels, AG and strong ion difference (SID) were calculated using the Stewart method, incorporating the parameters of age, serum lactate, glucose, sodium, and pH, etc. According to classic method, the levels of HCO3 and AG were 22.4±7.2 mEq/L and 20.1±4.1 mEq/L respectively. According to Stewart method, the levels of HCO3 and AG were 22.6±7.4 and 19.9±4.5 mEq/L respectively. There was strong correlation between the classic method and the Stewart method for calculating HCO3 and AG. The Stewart method may be more effective in the evaluation of complex metabolic acidosis.
NASA Astrophysics Data System (ADS)
Kahros, Argyris
Incorporating quantum mechanics into an atomistic simulation necessarily involves solving the Schrodinger equation. Unfortunately, the computational expense associated with solving this equation scales miserably with the number of included quantum degrees of freedom (DOF). The situation is so dire, in fact, that a molecular dynamics (MD) simulation cannot include more than a small number of quantum DOFs before it becomes computationally intractable. Thus, if one were to simulate a relatively large system, such as one containing several hundred atoms or molecules, it would be unreasonable to attempt to include the effects of all of the electrons associated with all of the components of the system. The mixed quantum/classical (MQC) approach provides a way to circumvent this issue. It involves treating the vast majority of the system classically, which incurs minimal computational expense, and reserves the consideration of quantum mechanical effects for only the few degrees of freedom more directly involved in the chemical phenomenon being studied. For example, if one were to study the bonding of a single diatomic molecule in the gas phase, one could employ a MQC approach by treating the nuclei of the molecule's two atoms classically---including the deeply bound, low-energy electrons that change relatively little---and solving the Schrodinger equation only for the high energy electron(s) directly involved in the bonding of the classical cores. In such a way, one could study the bonding of this molecule in a rigorous fashion while treating only the directly related degrees of freedom quantum mechanically. Pseudopotentials are then responsible for dictating the interactions between the quantum and classical degrees of freedom. As these potentials are the sole link between the quantum and classical DOFs, their proper development is of the utmost importance. This Thesis is concerned primarily with my work on the development of novel, rigorous and dynamical pseudopotentials for use in mixed quantum/ classical simulations in the condensed phase. The pseudopotentials discussed within are constructed in an ab initio fashion, without the introduction of any empiricism, and are able to exactly reproduce the results of higher level, fully quantum mechanical Hartree-Fock calculations. A recurring theme in the following pages is overcoming the so-called frozen core approximation (FCA). This essentially comes down to creating pseudopotentials that are able to respond in some way to the local molecular environment in a rigorous fashion. The various methods and discussions that are part of this document are presented in the context of two particular systems. The first is the sodium dimer cation molecule, which serves as a proof of concept for the development of coordinate-dependent pseudopotentials and is the subject of Chapters 2 and 3. Next, the hydrated electron---the excess electron in liquid water---is tackled in an effort to address the recent controversy concerning its true structure and is the subject of Chapters 4 and 5. In essence, the work in this Dissertation is concerned with finding new ways to overcome the problem of a lack of infinite computer processing power.
Physical break-down of the classical view on cancer cell invasion and metastasis.
Mierke, Claudia T
2013-03-01
Eight classical hallmarks of cancer have been proposed and are well-defined by using biochemical or molecular genetic methods, but are not yet precisely defined by cellular biophysical processes. To define the malignant transformation of neoplasms and finally reveal the functional pathway, which enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific biomechanical properties of cancer cells and their microenvironment such as the extracellular matrix and embedded cells such as fibroblasts, macrophages or endothelial cells. Nonetheless a main novel ninth hallmark of cancer is still elusive in classical tumor biological reviews, which is the aspect of physics in cancer disease by the natural selection of an aggressive (highly invasive) subtype of cancer cells. The physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light and will focus on novel physical methods to investigate the aggressiveness of cancer cells from a biophysicist's point of view. This may lead to novel insights into cancer disease and will overcome classical views on cancer. In addition, this review will discuss how physics of cancer can help to reveal whether cancer cells will invade connective tissue and metastasize. In particular, this review will point out how physics can improve, break-down or support classical approaches to examine tumor growth even across primary tumor boundaries, the invasion of single or collective cancer cells, transendothelial migration of cancer cells and metastasis in targeted organs. Finally, this review will show how physical measurements can be integrated into classical tumor biological analysis approaches. The insights into physical interactions between cancer cells, the primary tumor and the microenvironment may help to solve some "old" questions in cancer disease progression and may finally lead to novel approaches for development and improvement of cancer diagnostics and therapies. Copyright © 2013 Elsevier GmbH. All rights reserved.
Plazzotta, Beatrice; Diget, Jakob Stensgaard; Zhu, Kaizheng; Nyström, Bo
2016-01-01
ABSTRACT Determination of molecular masses of charged polymers is often nontrivial and most methods have their drawbacks. For polyelectrolytes, a new possibility for the determination of number‐average molecular masses is represented by small‐angle X‐ray scattering (SAXS) which allows fast determinations with a 10% accuracy. This is done by relating the mass to the position of a characteristic peak feature which arises in SAXS due to the local ordering caused by charge‐repulsions between polyelectrolytes. Advantages of the technique are the simplicity of data analysis, the independency from polymer architecture, and the low sample and time consumption. The method was tested on polyelectrolytes of various structures and chemical compositions, and the results were compared with those obtained from more conventional techniques, such as asymmetric flow field‐flow fractionation, gel permeation chromatography, and classical SAXS data analysis, showing that the accuracy of the suggested method is similar to that of the other techniques. © 2016 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1913–1917 PMID:27840558
Andromeda IV: A new local volume very metal-poor galaxy
NASA Astrophysics Data System (ADS)
Pustilnik, S. A.; Tepliakova, A. L.; Kniazev, A. Y.; Burenkov, A. N.
2008-06-01
And IV is a low surface brightness (LSB) dwarf galaxy at a distance of 6.1 Mpc, projecting close to M 31. In this paper the results of spectroscopy of the And IV two brightest HII regions with the SAO 6-m telescope (BTA) are presented. In spectra of both of them the faint line [OIII] λ4363 Å was detected and this allowed us to determine their O/H by the classical Te method. Their values for 12+log(O/H) are equal to 7.49±0.06 and 7.55±0.23, respectively. The comparison of the direct O/H calculations with the two most reliable semi-empirical and empirical methods shows the good consistency between these methods. For And IV absolute blue magnitude, MB = -12.6, our value for O/H corresponds to the ‘standard’ relation between O/H and LB for dwarf irregular galaxies (DIGs). And IV appears to be a new representative of the extremely metal-deficient gas-rich galaxies in the Local Volume. The very large range of M(HI) for LSB galaxies with close metallicities and luminosities indicates that simple models of LSBG chemical evolution are too limited to predict such striking diversity.
2015-01-01
Before the middle of the previous century, cell types of the pancreatic islets of Langerhans were identified primarily on the basis of their color reactions with histological dyes. At that time, the chemical basis for the staining properties of islet cells in relation to the identity, chemistry and structure of their hormones was not fully understood. Nevertheless, the definitive islet cell types that secrete glucagon, insulin, and somatostatin (A, B, and D cells, respectively) could reliably be differentiated from each other with staining protocols that involved variations of one or more tinctorial techniques, such as the Mallory-Heidenhain azan trichrome, chromium hematoxylin and phloxine, aldehyde fuchsin, and silver impregnation methods, which were popularly used until supplanted by immunohistochemical techniques. Before antibody-based staining methods, the most bona fide histochemical techniques for the identification of islet B cells were based on the detection of sulfhydryl and disulfide groups of insulin. The application of the classical islet tinctorial staining methods for pathophysiological studies and physiological experiments was fundamental to our understanding of islet architecture and the physiological roles of A and B cells in glucose regulation and diabetes. PMID:26216133
Crespo, Alejandro; Rodriguez-Granillo, Agustina; Lim, Victoria T
2017-01-01
The development and application of quantum mechanics (QM) methodologies in computer- aided drug design have flourished in the last 10 years. Despite the natural advantage of QM methods to predict binding affinities with a higher level of theory than those methods based on molecular mechanics (MM), there are only a few examples where diverse sets of protein-ligand targets have been evaluated simultaneously. In this work, we review recent advances in QM docking and scoring for those cases in which a systematic analysis has been performed. In addition, we introduce and validate a simplified QM/MM expression to compute protein-ligand binding energies. Overall, QMbased scoring functions are generally better to predict ligand affinities than those based on classical mechanics. However, the agreement between experimental activities and calculated binding energies is highly dependent on the specific chemical series considered. The advantage of more accurate QM methods is evident in cases where charge transfer and polarization effects are important, for example when metals are involved in the binding process or when dispersion forces play a significant role as in the case of hydrophobic or stacking interactions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Henchoz, Yveline; Guillarme, Davy; Martel, Sophie; Rudaz, Serge; Veuthey, Jean-Luc; Carrupt, Pierre-Alain
2009-08-01
Ultra-high-pressure liquid chromatography (UHPLC) systems able to work with columns packed with sub-2 microm particles offer very fast methods to determine the lipophilicity of new chemical entities. The careful development of the most suitable experimental conditions presented here will help medicinal chemists for high-throughput screening (HTS) log P(oct) measurements. The approach was optimized using a well-balanced set of 38 model compounds and a series of 28 basic compounds such as beta-blockers, local anesthetics, piperazines, clonidine, and derivatives. Different organic modifiers and hybrid stationary phases packed with 1.7-microm particles were evaluated in isocratic as well as gradient modes, and the advantages and limitations of tested conditions pointed out. The UHPLC approach offered a significant enhancement over the classical HPLC methods, by a factor 50 in the lipophilicity determination throughput. The hyphenation of UHPLC with MS detection allowed a further increase in the throughput. Data and results reported herein prove that the UHPLC-MS method can represent a progress in the HTS-measurement of lipophilicity due to its speed (at least a factor of 500 with respect to HPLC approaches) and to an extended field of application.
Scout 2008 Version 1.0 User Guide
The Scout 2008 version 1.0 software package provides a wide variety of classical and robust statistical methods that are not typically available in other commercial software packages. A major part of Scout deals with classical, robust, and resistant univariate and multivariate ou...
Tree Biomass Estimation of Chinese fir (Cunninghamia lanceolata) Based on Bayesian Method
Zhang, Jianguo
2013-01-01
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass. PMID:24278198
Tree biomass estimation of Chinese fir (Cunninghamia lanceolata) based on Bayesian method.
Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo
2013-01-01
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation W = a(D2H)b was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass.
NASA Astrophysics Data System (ADS)
Gomes, Bruna C.; Winkelströter, Lizziane K.; Dos Reis, Fernanda B.; de Martinis, Elaine C. P.
In the last decades important changes have been observed in the food science area, with increasing consumers demand for ready-to-eat (RTE) and minimally processed foods, as a reflection of the increasing awareness of the risks derived not only from foodborne pathogens but also from artificial chemical preservatives used to control them (Castellano, Belfiore, Fadda, & Vignolo, 2008; Parada, Caron, Medeiros, & Soccol, 2007; Rodríguez, Martínez, Horn, & Dodd, 2003; Schuenzel & Harrison, 2002). This tendency allied to strict government requirements for food safety has faced food producers with conflicting challenges (Settanni & Corsetti, 2008). The preservation techniques used in early days relied, without any understanding of the microbiology, on the inactivation of undesirable microorganisms through drying, salting, heating, or fermentation. These methods are still used today, combining various hurdles to inhibit growth of microorganisms, but some of the classic preservation techniques are not suitable for fresh meats and RTE products (Gram et al., 2002; Quintavalla & Vicini, 2002; Rao, Chander, & Sharma, 2008).
Simulated quantum computation of molecular energies.
Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin
2005-09-09
The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.
Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane.
Zhu, Haibo; Rosenfeld, Devon C; Anjum, Dalaver H; Caps, Valérie; Basset, Jean-Marie
2015-04-13
The straightforward solid-state grinding of a mixture of Ni nitrate and Nb oxalate crystals led to, after mild calcination (T<400 °C), nanostructured Ni-Nb oxide composites. These new materials efficiently catalyzed the oxidative dehydrogenation (ODH) of ethane to ethylene at a relatively low temperature (T<300 °C). These catalysts appear to be much more stable than the corresponding composites prepared by other chemical methods; more than 90 % of their original intrinsic activity was retained after 50 h with time on-stream. Furthermore, the stability was much less affected by the Nb content than in composites prepared by classical "wet" syntheses. These materials, obtained in a solvent-free way, are thus promising green and sustainable alternatives to the current Ni-Nb candidates for the low-temperature ODH of ethane. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabrello, Amandine; Dinoi, Chiara; Perrin, Lionel; Kalck, Philippe; Maron, Laurent; Urrutigoity, Martine; Dechy-Cabaret, Odile
2010-11-01
(103)Rh NMR represents a powerful tool to assess the global electronic and steric contribution of diphosphine ligands on [Rh(COD)(diphosphine)](+) complexes. In the case of DIOP, BINAP and MeDUPHOS, this approach proved to be more informative than classical CO-stretching frequency measurements. After validation, this method has been extended to a set of seven diphosphines. (103)Rh NMR measurements on [Rh(COD)(diphosphine)]PF(6) lead to the following order of donor properties: dppe > MeBPE > MeDUPHOS > dppb > DIOP > BINAP > Tol-BINAP. This trend has been validated by DFT in the case of DIOP, BINAP and MeDUPHOS. In conjunction, (31)P NMR chemical shift has been shown to reflect the ring constraints of the Rh-diphosphine scaffold. This contribution is a step towards a mechanistic investigation of the catalytic hydrogenation of unsaturated substrates by (103)Rh NMR and DFT. 2010 John Wiley & Sons, Ltd.
The production of oxygen and metal from lunar regolith
NASA Astrophysics Data System (ADS)
Schwandt, Carsten; Hamilton, James A.; Fray, Derek J.; Crawford, Ian A.
2012-12-01
The present article summarises the various methods that have been, and still are, explored for the production of oxygen from lunar materials. These include the classical concepts based on chemical reduction with hydrogen or methane, vapour phase pyrolysis, sulphuric acid treatment, and molten oxide electrolysis. Our main focus in this paper is on a novel approach developed at the University of Cambridge that employs molten salt electrochemistry to achieve the combined winning of oxygen and metal from solid lunar materials of varying composition. This makes the Cambridge process attractive because it will work equally well in mare as in highland regions. We also discuss the implications of the recent apparent discovery of water ice at the poles of the Moon and conclude that, even if this discovery is confirmed, it will nevertheless be desirable to provide oxygen at non-polar localities, and the Cambridge process is a strong candidate for achieving this.
NQR detection of explosive simulants using RF atomic magnetometers
NASA Astrophysics Data System (ADS)
Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.
2016-05-01
Nuclear Quadrupole Resonance (NQR) is a highly selective spectroscopic method that can be used to detect and identify a number of chemicals of interest to the defense, national security, and law enforcement community. In the past, there have been several documented attempts to utilize NQR to detect nitrogen bearing explosives using induction sensors to detect the NQR RF signatures. We present here our work on the NQR detection of explosive simulants using optically pumped RF atomic magnetometers. RF atomic magnetometers can provide an order of magnitude (or more) improvement in sensitivity versus induction sensors and can enable mitigation of RF interference, which has classically has been a problem for conventional NQR using induction sensors. We present the theory of operation of optically pumped RF atomic magnetometers along with the result of laboratory work on the detection of explosive simulant material. An outline of ongoing work will also be presented along with a path for a fieldable detection system.
Holographic photolysis of caged neurotransmitters
Lutz, Christoph; Otis, Thomas S.; DeSars, Vincent; Charpak, Serge; DiGregorio, David A.; Emiliani, Valentina
2009-01-01
Stimulation of light-sensitive chemical probes has become a powerful tool for the study of dynamic signaling processes in living tissue. Classically, this approach has been constrained by limitations of lens–based and point-scanning illumination systems. Here we describe a novel microscope configuration that incorporates a nematic liquid crystal spatial light modulator (LC-SLM) to generate holographic patterns of illumination. This microscope can produce illumination spots of variable size and number and patterns shaped to precisely match user-defined elements in a specimen. Using holographic illumination to photolyse caged glutamate in brain slices, we demonstrate that shaped excitation on segments of neuronal dendrites and simultaneous, multi-spot excitation of different dendrites enables precise spatial and rapid temporal control of glutamate receptor activation. By allowing the excitation volume shape to be tailored precisely, the holographic microscope provides an extremely flexible method for activation of various photosensitive proteins and small molecules. PMID:19160517
Study of blades inclination influence of gate impeller with a non-Newtonian fluid of Bingham
NASA Astrophysics Data System (ADS)
Rahmani, Lakhdar; Seghier, O.; Draoui, B.; Benachour, E.
2016-03-01
A large number of chemical operations, biochemical or petrochemical industry is very depending on the rheological fluids nature. In this work, we study the case of highly viscous of viscoplastic fluids in a classical system of agitation: a cylindrical tank with plate bottom without obstacles agitated by gate impeller agitator. We are interested to the laminar, incompressible and isothermal flows. We devote to a numerical approach carried out using an industrial code CFD Fluent 6.3.26 based on the method of finites volumes discretization of Navier - Stokes equations formulated in variables (U.V.P). The threshold of flow related to the viscoplastic behavior is modeled by a theoretical law of Bingham. The results obtained are used to compare between the five configurations suggested of power consumption. We study the influence of inertia by the variation of Reynolds number.
Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R
2016-09-13
The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models.
NASA Astrophysics Data System (ADS)
Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin
2014-01-01
DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.
The Expanding Landscape of the Thiol Redox Proteome*
Yang, Jing; Carroll, Kate S.; Liebler, Daniel C.
2016-01-01
Cysteine occupies a unique place in protein chemistry. The nucleophilic thiol group allows cysteine to undergo a broad range of redox modifications beyond classical thiol-disulfide redox equilibria, including S-sulfenylation (-SOH), S-sulfinylation (-SO2H), S-sulfonylation (-SO3H), S-nitrosylation (-SNO), S-sulfhydration (-SSH), S-glutathionylation (-SSG), and others. Emerging evidence suggests that these post-translational modifications (PTM) are important in cellular redox regulation and protection against oxidative damage. Identification of protein targets of thiol redox modifications is crucial to understanding their roles in biology and disease. However, analysis of these highly labile and dynamic modifications poses challenges. Recent advances in the design of probes for thiol redox forms, together with innovative mass spectrometry based chemoproteomics methods make it possible to perform global, site-specific, and quantitative analyses of thiol redox modifications in complex proteomes. Here, we review chemical proteomic strategies used to expand the landscape of thiol redox modifications. PMID:26518762
Thermal helium clusters at 3.2 Kelvin in classical and semiclassical simulations
NASA Astrophysics Data System (ADS)
Schulte, J.
1993-03-01
The thermodynamic stability of4He4-13 at 3.2 K is investigated with the classical Monte Carlo method, with the semiclassical path-integral Monte Carlo (PIMC) method, and with the semiclassical all-order many-body method. In the all-order many-body simulation the dipole-dipole approximation including short-range correction is used. The resulting stability plots are discussed and related to recent TOF experiments by Stephens and King. It is found that with classical Monte Carlo of course the characteristics of the measured mass spectrum cannot be resolved. With PIMC, switching on more and more quantum mechanics. by raising the number of virtual time steps results in more structure in the stability plot, but this did not lead to sufficient agreement with the TOF experiment. Only the all-order many-body method resolved the characteristic structures of the measured mass spectrum, including magic numbers. The result shows the influence of quantum statistics and quantum mechanics on the stability of small neutral helium clusters.
Kinetics of autocatalysis in small systems
NASA Astrophysics Data System (ADS)
Arslan, Erdem; Laurenzi, Ian J.
2008-01-01
Autocatalysis is a ubiquitous chemical process that drives a plethora of biological phenomena, including the self-propagation of prions etiological to the Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. To explain the dynamics of these systems, we have solved the chemical master equation for the irreversible autocatalytic reaction A +B→2A. This solution comprises the first closed form expression describing the probabilistic time evolution of the populations of autocatalytic and noncatalytic molecules from an arbitrary initial state. Grand probability distributions are likewise presented for autocatalysis in the equilibrium limit (A+B⇌2A), allowing for the first mechanistic comparison of this process with chemical isomerization (B⇌A) in small systems. Although the average population of autocatalytic (i.e., prion) molecules largely conforms to the predictions of the classical "rate law" approach in time and the law of mass action at equilibrium, thermodynamic differences between the entropies of isomerization and autocatalysis are revealed, suggesting a "mechanism dependence" of state variables for chemical reaction processes. These results demonstrate the importance of chemical mechanism and molecularity in the development of stochastic processes for chemical systems and the relationship between the stochastic approach to chemical kinetics and nonequilibrium thermodynamics.
NASA Astrophysics Data System (ADS)
Bai, Yan-Kui; Li, Shu-Shen; Zheng, Hou-Zhi
2005-11-01
We present a method for checking the Peres separability criterion in an arbitrary bipartite quantum state ρAB within local operations and classical communication scenario. The method does not require noise operation which is needed in making the partial transposition map physically implementable. The main task for the two observers, Alice and Bob, is to measure some specific functions of the partial transposed matrix. With these functions, they can determine the eigenvalues of ρABTB , among which the minimum serves as an entanglement witness.
NASA Astrophysics Data System (ADS)
Marcolongo, Juan P.; Zeida, Ari; Semelak, Jonathan A.; Foglia, Nicolás O.; Morzan, Uriel N.; Estrin, Dario A.; González Lebrero, Mariano C.; Scherlis, Damián A.
2018-03-01
In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU), that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.
Reduced hazard chemicals for solid rocket motor production
NASA Technical Reports Server (NTRS)
Caddy, Larry A.; Bowman, Ross; Richards, Rex A.
1995-01-01
During the last three years. the NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. NASA Marshall Space Flight Center (MSFC) and Thiokol Corporation have worked with other industry representatives and the U.S. Environmental Protection Agency (EPA) to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem-solving combined with a creative synthesis of new approaches to attack this challenge.