Sample records for classical density-functional theory

  1. Introduction to Classical Density Functional Theory by a Computational Experiment

    ERIC Educational Resources Information Center

    Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2014-01-01

    We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…

  2. Effective model hierarchies for dynamic and static classical density functional theories

    NASA Astrophysics Data System (ADS)

    Majaniemi, S.; Provatas, N.; Nonomura, M.

    2010-09-01

    The origin and methodology of deriving effective model hierarchies are presented with applications to solidification of crystalline solids. In particular, it is discussed how the form of the equations of motion and the effective parameters on larger scales can be obtained from the more microscopic models. It will be shown that tying together the dynamic structure of the projection operator formalism with static classical density functional theories can lead to incomplete (mass) transport properties even though the linearized hydrodynamics on large scales is correctly reproduced. To facilitate a more natural way of binding together the dynamics of the macrovariables and classical density functional theory, a dynamic generalization of density functional theory based on the nonequilibrium generating functional is suggested.

  3. A classical density functional theory of ionic liquids.

    PubMed

    Forsman, Jan; Woodward, Clifford E; Trulsson, Martin

    2011-04-28

    We present a simple, classical density functional approach to the study of simple models of room temperature ionic liquids. Dispersion attractions as well as ion correlation effects and excluded volume packing are taken into account. The oligomeric structure, common to many ionic liquid molecules, is handled by a polymer density functional treatment. The theory is evaluated by comparisons with simulations, with an emphasis on the differential capacitance, an experimentally measurable quantity of significant practical interest.

  4. A classical density-functional theory for describing water interfaces.

    PubMed

    Hughes, Jessica; Krebs, Eric J; Roundy, David

    2013-01-14

    We develop a classical density functional for water which combines the White Bear fundamental-measure theory (FMT) functional for the hard sphere fluid with attractive interactions based on the statistical associating fluid theory variable range (SAFT-VR). This functional reproduces the properties of water at both long and short length scales over a wide range of temperatures and is computationally efficient, comparable to the cost of FMT itself. We demonstrate our functional by applying it to systems composed of two hard rods, four hard rods arranged in a square, and hard spheres in water.

  5. General dynamical density functional theory for classical fluids.

    PubMed

    Goddard, Benjamin D; Nold, Andreas; Savva, Nikos; Pavliotis, Grigorios A; Kalliadasis, Serafim

    2012-09-21

    We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.

  6. Density-functional theory simulation of large quantum dots

    NASA Astrophysics Data System (ADS)

    Jiang, Hong; Baranger, Harold U.; Yang, Weitao

    2003-10-01

    Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient method for the simulation of quantum dots using density-function theory is developed; it includes the particle-in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly minimize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional model system and show that numerical studies of large quantum dots with several hundred electrons become computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.

  7. Molecular simulation of disjoining-pressure isotherms for free liquid , Lennard-Jones thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Divesh; Newman, John; Radke, C.J.

    2001-10-01

    We present canonical-ensemble molecular-dynamics simulations of disjoining-pressure isotherms in Lennard-Jones free liquid films. Thermodynamics demands that the disjoining pressure is determined uniquely as a function of the chemical potential purely from the phase diagram of the fluid. Our results from molecular dynamics validate this argument. The inverse-sixth-power distance term in the Lennard-Jones intermolecular potential represents van der Waals dispersion forces. Hence, we compare our results with classical Hamaker theory that is based on dispersion forces but assumes a slab geometry for the density profile and completely neglects fluid structure and entropy. We find that the Hamaker constant obtained from ourmore » simulations is about an order of magnitude larger than that from classical theory. To investigate the origin of this discrepancy, we calculate the disjoining-pressure isotherm using a density-functional theory relaxing the inherent assumptions in the Hamaker theory and imparting to the fluid an approximate structure. For disjoining pressure as a function of chemical potential, the results of density-functional theory and molecular dynamics are very close. Even for disjoining-pressure isotherms, and the subsequently calculated Hamaker constant, results of the density-functional theory are closer to the molecular-dynamics simulations by about a factor of 4 compared to Hamaker theory. [References: 44]« less

  8. The force distribution probability function for simple fluids by density functional theory.

    PubMed

    Rickayzen, G; Heyes, D M

    2013-02-28

    Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.

  9. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-07

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.

  10. Joint density-functional theory and its application to systems in solution

    NASA Astrophysics Data System (ADS)

    Petrosyan, Sahak A.

    The physics of solvation, the interaction of water with solutes, plays a central role in chemistry and biochemistry, and it is essential for the very existence of life. Despite the central importance of water and the advent of the quantum theory early in the twentieth century, the link between the fundamental laws of physics and the observable properties of water remain poorly understood to this day. The central goal of this thesis is to develop a new formalism and framework to make the study of systems (solutes or surfaces) in contact with liquid water as practical and accurate as standard electronic structure calculations without the need for explicit averaging over large ensembles of configurations of water molecules. The thesis introduces a new form of density functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment. This theory rigorously joins an electron density-functional for the electrons of a solute with a classical density-functional theory for the liquid into a single variational principle for the free energy of the combined system. Using the new form of density-functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment, the thesis then presents the first detailed study of the impact of a solvent on the surface chemistry of Cr2O3, the passivating layer of stainless steel alloys. In comparison to a vacuum, we predict that the presence of water has little impact on the adsorption of chloride ions to the oxygen-terminated surface but has a dramatic effect on the binding of hydrogen to that surface. A key ingredient of a successful joint density functional theory is a good approximate functional for describing the solvent. We explore how the simplest examples of the best known class of approximate forms for the classical density functional fail when applied directly to water. The thesis then presents a computationally efficient density-functional theory for water which overcomes this difficulty and gives reasonable agreement with molecular dynamics simulation data for the solvation of hard spheres in water and sufficient agreement with experimental data for hydration of inert gas atoms to justify its use in a joint theory with standard approximate density functionals used in electronic structure calculations. The last study in the thesis combines the previous ideas and presenting an approximate model density functional which includes a description of cavitation effects through a classical density-functional theory; a description of dielectric effects through a non-local polarizability, and a description of the coupling of the solvent to the electrons of the solute through a pseudopotential. Without any empirical fitting of parameters to solvation data, this theory predicts solvation energies at least as well as state-of-the-art quantum-chemical cavity approaches, which do employ such fitting. Although this agreement without adjustable parameters is very encouraging and shows the promise of the joint density-functional approach, the functionals which we develop here are models and do not yet include all of the microscopic physics. The thesis concludes with a description of the directions future work should take to address this weakness.

  11. Electrical double layers and differential capacitance in molten salts from density functional theory

    DOE PAGES

    Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.

    2014-08-05

    Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. Inmore » conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.« less

  12. Applications of Density Functional Theory in Soft Condensed Matter

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, spherical particles with radially symmetric pair potentials will be treated (like hard spheres, the classical one-component plasma or Gaussian-core particles). Second, the DFT will be generalized towards Brownian dynamics in order to tackle nonequilibrium problems. After a general introduction to Brownian dynamics using the complementary Smoluchowski and Langevin pictures appropriate for the dynamics of colloidal suspensions, the dynamical density functional theory (DDFT) will be derived from the Smoluchowski equation. This will be done first for spherical particles (e.g. hard spheres or Gaussian-cores) without hydrodynamic interactions. Then we show how to incorporate hydrodynamic interactions between the colloidal particles into the DDFT framework and compare to Brownian dynamics computer simulations. Third orientational degrees of freedom (rod-like particles) will be considered as well. In the latter case, the stability of intermediate liquid crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally, the corresponding dynamical extension of density functional theory towards orientational degrees of freedom is proposed and the collective behaviour of "active" (self-propelled) Brownian particles is briefly discussed.

  13. Massively parallel GPU-accelerated minimization of classical density functional theory

    NASA Astrophysics Data System (ADS)

    Stopper, Daniel; Roth, Roland

    2017-08-01

    In this paper, we discuss the ability to numerically minimize the grand potential of hard disks in two-dimensional and of hard spheres in three-dimensional space within the framework of classical density functional and fundamental measure theory on modern graphics cards. Our main finding is that a massively parallel minimization leads to an enormous performance gain in comparison to standard sequential minimization schemes. Furthermore, the results indicate that in complex multi-dimensional situations, a heavy parallel minimization of the grand potential seems to be mandatory in order to reach a reasonable balance between accuracy and computational cost.

  14. Force-field functor theory: classical force-fields which reproduce equilibrium quantum distributions

    PubMed Central

    Babbush, Ryan; Parkhill, John; Aspuru-Guzik, Alán

    2013-01-01

    Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory. PMID:24790954

  15. Ginzburg-Landau theory for the solid-liquid interface of bcc elements. II - Application to the classical one-component plasma, the Wigner crystal, and He-4

    NASA Technical Reports Server (NTRS)

    Zeng, X. C.; Stroud, D.

    1989-01-01

    The previously developed Ginzburg-Landau theory for calculating the crystal-melt interfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al. (1987) yields for the surface tension 0.0012(Z-squared e-squared/a-cubed), where Ze is the ionic charge and a is the radius of the ionic sphere. Bose crystal-melt interface is treated by a quantum extension of the classical density-functional theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is applied to the metastable He-4 solid-superfluid interface at T = 0, with a resulting surface tension of 0.085 erg/sq cm, in reasonable agreement with the value extrapolated from the measured surface tension of the bcc solid in the range 1.46-1.76 K. These results suggest that the density-functional approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid interfaces, given knowledge of the uniform phases.

  16. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding asmore » a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.« less

  17. Restoring the consistency with the contact density theorem of a classical density functional theory of ions at a planar electrical double layer.

    PubMed

    Gillespie, Dirk

    2014-11-01

    Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.

  18. Electrostatics of DNA-Functionalized Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hoffmann, Kyle; Krishnamoorthy, Kurinji; Kewalramani, Sumit; Bedzyk, Michael; Olvera de La Cruz, Monica

    DNA-functionalized nanoparticles have applications in directed self-assembly and targeted cellular delivery of therapeutic proteins. In order to design specific systems, it is necessary to understand their self-assembly properties, of which the long-range electrostatic interactions are a critical component. We iteratively solved equations derived from classical density functional theory in order to predict the distribution of ions around DNA-functionalized Cg Catalase. We then compared estimates of the resonant intensity to those from SAXS measurements to estimate key features of DNA-functionalized proteins, such as the size of the region linking the protein and DNA and the extension of the single-stranded DNA. Using classical density functional theory and coarse-grained simulations, we are able to predict and understand these fundamental properties in order to rationally design new biomaterials.

  19. Transitioning NWChem to the Next Generation of Manycore Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.; Apra, Edoardo; Kowalski, Karol

    The NorthWest Chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers[6, 28, 49]. It contains an umbrella of modules that today includes Self Consistent Field (SCF), second order Mller-Plesset perturbation theory (MP2), Coupled Cluster, multi-conguration selfconsistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics, Car-Parrinello molecular dynamics, classical molecular dynamics (MD), QM/MM,more » AIMD/MM, GIAO NMR, COSMO, COSMO-SMD, and RISM solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities[ 22]. Moreover new capabilities continue to be added with each new release.« less

  20. Quantum electronic stress: density-functional-theory formulation and physical manifestation.

    PubMed

    Hu, Hao; Liu, Miao; Wang, Z F; Zhu, Junyi; Wu, Dangxin; Ding, Hepeng; Liu, Zheng; Liu, Feng

    2012-08-03

    The concept of quantum electronic stress (QES) is introduced and formulated within density functional theory to elucidate extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. A formal expression of QES (σ(QE)) is derived in relation to deformation potential of electronic states (Ξ) and variation of electron density (Δn), σ(QE) = ΞΔn as a quantum analog of classical Hooke's law. Two distinct QES manifestations are demonstrated quantitatively by density functional theory calculations: (1) in the form of bulk stress induced by charge carriers and (2) in the form of surface stress induced by quantum confinement. Implications of QES in some physical phenomena are discussed to underlie its importance.

  1. Multiconfiguration pair-density functional theory: barrier heights and main group and transition metal energetics.

    PubMed

    Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura

    2015-01-13

    Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.

  2. Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations.

    PubMed

    Bandura, A V; Sofo, J O; Kubicki, J D

    2006-04-27

    Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.

  3. Phase space explorations in time dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Rajam, Aruna K.

    Time dependent density functional theory (TDDFT) is one of the useful tools for the study of the dynamic behavior of correlated electronic systems under the influence of external potentials. The success of this formally exact theory practically relies on approximations for the exchange-correlation potential which is a complicated functional of the co-ordinate density, non-local in space and time. Adiabatic approximations (such as ALDA), which are local in time, are most commonly used in the increasing applications of the field. Going beyond ALDA, has been proved difficult leading to mathematical inconsistencies. We explore the regions where the theory faces challenges, and try to answer some of them via the insights from two electron model systems. In this thesis work we propose a phase-space extension of the TDDFT. We want to answer the challenges the theory is facing currently by exploring the one-body phase-space. We give a general introduction to this theory and its mathematical background in the first chapter. In second chapter, we carryout a detailed study of instantaneous phase-space densities and argue that the functionals of distributions can be a better alternative to the nonlocality issue of the exchange-correlation potentials. For this we study in detail the interacting and the non-interacting phase-space distributions for Hookes atom model. The applicability of ALDA-based TDDFT for the dynamics in strongfields can become severely problematic due to the failure of single-Slater determinant picture.. In the third chapter, we analyze how the phase-space distributions can shine some light into this problem. We do a comparative study of Kohn-Sham and interacting phase-space and momentum distributions for single ionization and double ionization systems. Using a simple model of two-electron systems, we have showed that the momentum distribution computed directly from the exact KS system contains spurious oscillations: a non-classical description of the essentially classical two-electron dynamics. In Time dependent density matrix functional theory (TDDMFT), the evolution scheme of the 1RDM (first order reduced density matrix) contains second-order reduced density matrix (2RDM), which has to be expressed in terms of 1RDMs. Any non-correlated approximations (Hartree-Fock) for 2RDM would fail to capture the natural occupations of the system. In our fourth chapter, we show that by applying the quasi-classical and semi-classical approximations one can capture the natural occupations of the excited systems. We study a time-dependent Moshinsky atom model for this. The fifth chapter contains a comparative work on the existing non-local exchange-correlation kernels that are based on current density response frame work and the co-moving frame work. We show that the two approaches though coinciding with each other in linear response regime, actually turn out to be different in non-linear regime.

  4. Transitioning NWChem to the Next Generation of Manycore Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.; Apra, E; Kowalski, Karol

    The NorthWest chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers [1-3]. It contains an umbrella of modules that today includes self-consistent eld (SCF), second order Møller-Plesset perturbation theory (MP2), coupled cluster (CC), multiconguration self-consistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real-time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (MD), classical MD, hybrid quantum mechanicsmore » molecular mechanics (QM/MM), hybrid ab initio molecular dynamics molecular mechanics (AIMD/MM), gauge independent atomic orbital nuclear magnetic resonance (GIAO NMR), conductor like screening solvation model (COSMO), conductor-like screening solvation model based on density (COSMO-SMD), and reference interaction site model (RISM) solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities [4]. Moreover, new capabilities continue to be added with each new release.« less

  5. Comparison of Molecular Dynamics with Classical Density Functional and Poisson–Boltzmann Theories of the Electric Double Layer in Nanochannels

    PubMed Central

    2012-01-01

    Comparisons are made among Molecular Dynamics (MD), Classical Density Functional Theory (c-DFT), and Poisson–Boltzmann (PB) modeling of the electric double layer (EDL) for the nonprimitive three component model (3CM) in which the two ion species and solvent molecules are all of finite size. Unlike previous comparisons between c-DFT and Monte Carlo (MC), the present 3CM incorporates Lennard-Jones interactions rather than hard-sphere and hard-wall repulsions. c-DFT and MD results are compared over normalized surface charges ranging from 0.2 to 1.75 and bulk ion concentrations from 10 mM to 1 M. Agreement between the two, assessed by electric surface potential and ion density profiles, is found to be quite good. Wall potentials predicted by PB begin to depart significantly from c-DFT and MD for charge densities exceeding 0.3. Successive layers are observed to charge in a sequential manner such that the solvent becomes fully excluded from each layer before the onset of the next layer. Ultimately, this layer filling phenomenon results in fluid structures, Debye lengths, and electric surface potentials vastly different from the classical PB predictions. PMID:23316120

  6. Ion distributions, exclusion coefficients, and separation factors of electrolytes in a charged cylindrical nanopore: a partially perturbative density functional theory study.

    PubMed

    Peng, Bo; Yu, Yang-Xin

    2009-10-07

    The structural and thermodynamic properties for charge symmetric and asymmetric electrolytes as well as mixed electrolyte system inside a charged cylindrical nanopore are investigated using a partially perturbative density functional theory. The electrolytes are treated in the restricted primitive model and the internal surface of the cylindrical nanopore is considered to have a uniform charge density. The proposed theory is directly applicable to the arbitrary mixed electrolyte solution containing ions with the equal diameter and different valences. Large amount of simulation data for ion density distributions, separation factors, and exclusion coefficients are used to determine the range of validity of the partially perturbative density functional theory for monovalent and multivalent counterion systems. The proposed theory is found to be in good agreement with the simulations for both mono- and multivalent counterion systems. In contrast, the classical Poisson-Boltzmann equation only provides reasonable descriptions of monovalent counterion system at low bulk density, and is qualitatively and quantitatively wrong in the prediction for the multivalent counterion systems due to its neglect of the strong interionic correlations in these systems. The proposed density functional theory has also been applied to an electrolyte absorbed into a pore that is a model of the filter of a physiological calcium channel.

  7. Modeling micelle formation and interfacial properties with iSAFT classical density functional theory

    NASA Astrophysics Data System (ADS)

    Wang, Le; Haghmoradi, Amin; Liu, Jinlu; Xi, Shun; Hirasaki, George J.; Miller, Clarence A.; Chapman, Walter G.

    2017-03-01

    Surfactants reduce the interfacial tension between phases, making them an important additive in a number of industrial and commercial applications from enhanced oil recovery to personal care products (e.g., shampoo and detergents). To help obtain a better understanding of the dependence of surfactant properties on molecular structure, a classical density functional theory, also known as interfacial statistical associating fluid theory, has been applied to study the effects of surfactant architecture on micelle formation and interfacial properties for model nonionic surfactant/water/oil systems. In this approach, hydrogen bonding is explicitly included. To minimize the free energy, the system minimizes interactions between hydrophobic components and hydrophilic components with water molecules hydrating the surfactant head group. The theory predicts micellar structure, effects of surfactant architecture on critical micelle concentration, aggregation number, and interfacial tension isotherm of surfactant/water systems in qualitative agreement with experimental data. Furthermore, this model is applied to study swollen micelles and reverse swollen micelles that are necessary to understand the formation of a middle-phase microemulsion.

  8. Hadronic density of states from string theory.

    PubMed

    Pando Zayas, Leopoldo A; Vaman, Diana

    2003-09-12

    We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.

  9. Classical density functional theory and Monte Carlo simulation study of electric double layer in the vicinity of a cylindrical electrode

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi; Lamperski, Stanisław; Sokołowska, Marta

    2017-07-01

    We have performed extensive Monte-Carlo simulations and classical density functional theory (DFT) calculations of the electrical double layer (EDL) near a cylindrical electrode in a primitive model (PM) modified by incorporating interionic dispersion interactions. It is concluded that (i) in general, an unsophisticated use of the mean field (MF) approximation for the interionic dispersion interactions does not distinctly worsen the classical DFT performance, even if the salt ions considered are highly asymmetrical in size (3:1) and charge (5:1), the bulk molar concentration considered is high up to a total bulk ion packing fraction of 0.314, and the surface charge density of up to 0.5 C m-2. (ii) More specifically, considering the possible noises in the simulation, the local volume charge density profiles are the most accurately predicted by the classical DFT in all situations, and the co- and counter-ion singlet distributions are also rather accurately predicted; whereas the mean electrostatic potential profile is relatively less accurately predicted due to an integral amplification of minor inaccuracy of the singlet distributions. (iii) It is found that the layered structure of the co-ion distribution is abnormally possible only if the surface charge density is high enough (for example 0.5 C m-2) moreover, the co-ion valence abnormally influences the peak height of the first counter-ion layer, which decreases with the former. (iv) Even if both the simulation and DFT indicate an insignificant contribution of the interionic dispersion interaction to the above three ‘local’ quantities, it is clearly shown by the classical DFT that the interionic dispersion interaction does significantly influence a ‘global’ quantity like the cylinder surface-aqueous electrolyte interfacial tension, and this may imply the role of the interionic dispersion interaction in explaining the specific Hofmeister effects. We elucidate all of the above observations based on the arguments from the liquid state theory and at the molecular scale.

  10. Bypassing the malfunction junction in warm dense matter simulations

    NASA Astrophysics Data System (ADS)

    Cangi, Attila; Pribram-Jones, Aurora

    2015-03-01

    Simulation of warm dense matter requires computational methods that capture both quantum and classical behavior efficiently under high-temperature and high-density conditions. The state-of-the-art approach to model electrons and ions under those conditions is density functional theory molecular dynamics, but this method's computational cost skyrockets as temperatures and densities increase. We propose finite-temperature potential functional theory as an in-principle-exact alternative that suffers no such drawback. In analogy to the zero-temperature theory developed previously, we derive an orbital-free free energy approximation through a coupling-constant formalism. Our density approximation and its associated free energy approximation demonstrate the method's accuracy and efficiency. A.C. has been partially supported by NSF Grant CHE-1112442. A.P.J. is supported by DOE Grant DE-FG02-97ER25308.

  11. Tug-of-war between classical and multicenter bonds in H-(Be)n-H species

    NASA Astrophysics Data System (ADS)

    Lundell, Katie A.; Boldyrev, Alexander I.

    2018-05-01

    Quantum chemical calculations were performed for beryllium homocatenated compounds [H-(Be)n-H]. Global minimum structures were found using machine searches (Coalescence Kick method) with density functional theory. Chemical bonding analysis was performed with the Adaptive Natural Density Partitioning method. It was found that H-(Be)2-H and H-(Be)3-H clusters are linear with classical two-center two-electron bonds, while for n > 3, three-dimensional structures are more stable with multicenter bonding. Thus, at n = 4, multicenter bonding wins the tug-of-war vs. the classical bonding.

  12. Density functional theory study of defects in unalloyed δ-Pu

    DOE PAGES

    Hernandez, S. C.; Freibert, F. J.; Wills, J. M.

    2017-03-19

    Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less

  13. Density functional theory study of defects in unalloyed δ-Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, S. C.; Freibert, F. J.; Wills, J. M.

    Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less

  14. Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pederson, Mark R., E-mail: mark.pederson@science.doe.gov

    2015-02-14

    A recent modification of the Perdew-Zunger self-interaction-correction to the density-functional formalism has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Löwdin orthonormalized Fermi-orbitals which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested, here, on atoms. Total energies and ionization energies in closed-shell singlet atoms, where correlation is less important, using the Perdew-Wang 1992 Local Density Approximation (PW92) functional, are in good agreement with experiment and non-relativistic quantum-Monte-Carlo results albeitmore » slightly too low.« less

  15. Nonadiabatic Molecular Dynamics and Orthogonality Constrained Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Shushkov, Philip Georgiev

    The exact quantum dynamics of realistic, multidimensional systems remains a formidable computational challenge. In many chemical processes, however, quantum effects such as tunneling, zero-point energy quantization, and nonadiabatic transitions play an important role. Therefore, approximate approaches that improve on the classical mechanical framework are of special practical interest. We propose a novel ring polymer surface hopping method for the calculation of chemical rate constants. The method blends two approaches, namely ring polymer molecular dynamics that accounts for tunneling and zero-point energy quantization, and surface hopping that incorporates nonadiabatic transitions. We test the method against exact quantum mechanical calculations for a one-dimensional, two-state model system. The method reproduces quite accurately the tunneling contribution to the rate and the distribution of reactants between the electronic states for this model system. Semiclassical instanton theory, an approach related to ring polymer molecular dynamics, accounts for tunneling by the use of periodic classical trajectories on the inverted potential energy surface. We study a model of electron transfer in solution, a chemical process where nonadiabatic events are prominent. By representing the tunneling electron with a ring polymer, we derive Marcus theory of electron transfer from semiclassical instanton theory after a careful analysis of the tunneling mode. We demonstrate that semiclassical instanton theory can recover the limit of Fermi's Golden Rule rate in a low-temperature, deep-tunneling regime. Mixed quantum-classical dynamics treats a few important degrees of freedom quantum mechanically, while classical mechanics describes affordably the rest of the system. But the interface of quantum and classical description is a challenging theoretical problem, especially for low-energy chemical processes. We therefore focus on the semiclassical limit of the coupled nuclear-electronic dynamics. We show that the time-dependent Schrodinger equation for the electrons employed in the widely used fewest switches surface hopping method is applicable only in the limit of nearly identical classical trajectories on the different potential energy surfaces. We propose a short-time decoupling algorithm that restricts the use of the Schrodinger equation only to the interaction regions. We test the short-time approximation on three model systems against exact quantum-mechanical calculations. The approximation improves the performance of the surface hopping approach. Nonadiabatic molecular dynamics simulations require the efficient and accurate computation of ground and excited state potential energy surfaces. Unlike the ground state calculations where standard methods exist, the computation of excited state properties is a challenging task. We employ time-independent density functional theory, in which the excited state energy is represented as a functional of the total density. We suggest an adiabatic-like approximation that simplifies the excited state exchange-correlation functional. We also derive a set of minimal conditions to impose exactly the orthogonality of the excited state Kohn-Sham determinant to the ground state determinant. This leads to an efficient, variational algorithm for the self-consistent optimization of the excited state energy. Finally, we assess the quality of the excitation energies obtained by the new method on a set of 28 organic molecules. The new approach provides results of similar accuracy to time-dependent density functional theory.

  16. Wetting of heterogeneous substrates. A classical density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Peter; Parry, Andrew O.; Rascón, Carlos; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2017-11-01

    Wetting is a nucleation of a third phase (liquid) on the interface between two different phases (solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid-fluid and fluid-substrate intermolecular interactions leads to the appearance of a whole ``zoo'' of exciting interface phase transitions, associated with the formation of nano-droplets/bubbles, and thin films. Practical applications of wetting at small scales are numerous and include the design of lab-on-a-chip devices and superhydrophobic surfaces. In this talk, we will use a fully microscopic approach to explore the phase space of a planar wall, decorated with patches of different hydrophobicity, and demonstrate the highly non-trivial behaviour of the liquid-gas interface near the substrate. We will present fluid density profiles, adsorption isotherms and wetting phase diagrams. Our analysis is based on a formulation of statistical mechanics, commonly known as classical density-functional theory. It provides a computationally-friendly and rigorous framework, suitable for probing small-scale physics of classical fluids and other soft-matter systems. EPSRC Grants No. EP/L027186,EP/K503733;ERC Advanced Grant No. 247031.

  17. JDFTx: Software for joint density-functional theory

    DOE PAGES

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.; ...

    2017-11-14

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  18. JDFTx: Software for joint density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  19. Molecular density functional theory of water describing hydrophobicity at short and long length scales

    NASA Astrophysics Data System (ADS)

    Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2013-10-01

    We present an extension of our recently introduced molecular density functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619 (2013)] to the solvation of hydrophobic solutes of various sizes, going from angstroms to nanometers. The theory is based on the quadratic expansion of the excess free energy in terms of two classical density fields: the particle density and the multipolar polarization density. Its implementation requires as input a molecular model of water and three measurable bulk properties, namely, the structure factor and the k-dependent longitudinal and transverse dielectric susceptibilities. The fine three-dimensional water structure around small hydrophobic molecules is found to be well reproduced. In contrast, the computed solvation free-energies appear overestimated and do not exhibit the correct qualitative behavior when the hydrophobic solute is grown in size. These shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by complementing the functional with a truncated hard-sphere functional acting beyond quadratic order in density, and making the resulting functional compatible with the Van-der-Waals theory of liquid-vapor coexistence at long range. Compared to available molecular simulations, the approach yields reasonable solvation structure and free energy of hard or soft spheres of increasing size, with a correct qualitative transition from a volume-driven to a surface-driven regime at the nanometer scale.

  20. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    NASA Astrophysics Data System (ADS)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M. N.; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-01

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  1. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory.

    PubMed

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  2. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE PAGES

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; ...

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  3. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  4. Computational Insights into Materials and Interfaces for Capacitive Energy Storage

    PubMed Central

    Zhan, Cheng; Lian, Cheng; Zhang, Yu; Thompson, Matthew W.; Xie, Yu; Wu, Jianzhong; Kent, Paul R. C.; Cummings, Peter T.; Wesolowski, David J.

    2017-01-01

    Supercapacitors such as electric double‐layer capacitors (EDLCs) and pseudocapacitors are becoming increasingly important in the field of electrical energy storage. Theoretical study of energy storage in EDLCs focuses on solving for the electric double‐layer structure in different electrode geometries and electrolyte components, which can be achieved by molecular simulations such as classical molecular dynamics (MD), classical density functional theory (classical DFT), and Monte‐Carlo (MC) methods. In recent years, combining first‐principles and classical simulations to investigate the carbon‐based EDLCs has shed light on the importance of quantum capacitance in graphene‐like 2D systems. More recently, the development of joint density functional theory (JDFT) enables self‐consistent electronic‐structure calculation for an electrode being solvated by an electrolyte. In contrast with the large amount of theoretical and computational effort on EDLCs, theoretical understanding of pseudocapacitance is very limited. In this review, we first introduce popular modeling methods and then focus on several important aspects of EDLCs including nanoconfinement, quantum capacitance, dielectric screening, and novel 2D electrode design; we also briefly touch upon pseudocapactive mechanism in RuO2. We summarize and conclude with an outlook for the future of materials simulation and design for capacitive energy storage. PMID:28725531

  5. Classical density functional theory and the phase-field crystal method using a rational function to describe the two-body direct correlation function.

    PubMed

    Pisutha-Arnond, N; Chan, V W L; Iyer, M; Gavini, V; Thornton, K

    2013-01-01

    We introduce a new approach to represent a two-body direct correlation function (DCF) in order to alleviate the computational demand of classical density functional theory (CDFT) and enhance the predictive capability of the phase-field crystal (PFC) method. The approach utilizes a rational function fit (RFF) to approximate the two-body DCF in Fourier space. We use the RFF to show that short-wavelength contributions of the two-body DCF play an important role in determining the thermodynamic properties of materials. We further show that using the RFF to empirically parametrize the two-body DCF allows us to obtain the thermodynamic properties of solids and liquids that agree with the results of CDFT simulations with the full two-body DCF without incurring significant computational costs. In addition, the RFF can also be used to improve the representation of the two-body DCF in the PFC method. Last, the RFF allows for a real-space reformulation of the CDFT and PFC method, which enables descriptions of nonperiodic systems and the use of nonuniform and adaptive grids.

  6. Thermal density functional theory, ensemble density functional theory, and potential functional theory for warm dense matter

    NASA Astrophysics Data System (ADS)

    Pribram-Jones, Aurora

    Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the potential to transform the simulation of warm dense matter. As a semiclassical method, it connects the normally disparate regimes of cold condensed matter physics and hot plasma physics. This orbital-free approach captures the smooth classical density envelope and quantum density oscillations that are both crucial to accurate modeling of materials where temperature and pressure effects are influential.

  7. A density functional approach to ferrogels

    NASA Astrophysics Data System (ADS)

    Cremer, P.; Heinen, M.; Menzel, A. M.; Löwen, H.

    2017-07-01

    Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. As a consequence, their structural and rheological properties are governed by a competition between magnetic particle-particle interactions and mechanical matrix elasticity. Typically, the particles are permanently fixed within the matrix, which makes them distinguishable by their positions. Over time, particle neighbors do not change due to the fixation by the matrix. Here we present a classical density functional approach for such ferrogels. We map the elastic matrix-induced interactions between neighboring colloidal particles distinguishable by their positions onto effective pairwise interactions between indistinguishable particles similar to a ‘pairwise pseudopotential’. Using Monte-Carlo computer simulations, we demonstrate for one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use the pseudopotential as an input into classical density functional theory of inhomogeneous fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In addition, we propose the use of an ‘external pseudopotential’ when one switches from the viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded in an infinitely extended bulk matrix. Our mapping approach paves the way to describe various inhomogeneous situations of ferrogels using classical density functional concepts of inhomogeneous fluids.

  8. Simulation of surface processes

    PubMed Central

    Jónsson, Hannes

    2011-01-01

    Computer simulations of surface processes can reveal unexpected insight regarding atomic-scale structure and transitions. Here, the strengths and weaknesses of some commonly used approaches are reviewed as well as promising avenues for improvements. The electronic degrees of freedom are usually described by gradient-dependent functionals within Kohn–Sham density functional theory. Although this level of theory has been remarkably successful in numerous studies, several important problems require a more accurate theoretical description. It is important to develop new tools to make it possible to study, for example, localized defect states and band gaps in large and complex systems. Preliminary results presented here show that orbital density-dependent functionals provide a promising avenue, but they require the development of new numerical methods and substantial changes to codes designed for Kohn–Sham density functional theory. The nuclear degrees of freedom can, in most cases, be described by the classical equations of motion; however, they still pose a significant challenge, because the time scale of interesting transitions, which typically involve substantial free energy barriers, is much longer than the time scale of vibrations—often 10 orders of magnitude. Therefore, simulation of diffusion, structural annealing, and chemical reactions cannot be achieved with direct simulation of the classical dynamics. Alternative approaches are needed. One such approach is transition state theory as implemented in the adaptive kinetic Monte Carlo algorithm, which, thus far, has relied on the harmonic approximation but could be extended and made applicable to systems with rougher energy landscape and transitions through quantum mechanical tunneling. PMID:21199939

  9. Investigation of thermoelectricity in KScSn half-Heusler compound

    NASA Astrophysics Data System (ADS)

    Shrivastava, Deepika; Acharya, Nikita; Sanyal, Sankar P.

    2018-05-01

    The electronic and transport properties of KScSn half-Heusler (HH) compound have been investigated using first-principles density functional theory and semi classical Boltzmann transport theory. The electronic band structure and density of states (total and partial) show semiconducting nature of KScSn with band gap 0.48 eV which agree well with previously reported results. The transport coefficient such as electrical conductivity, Seebeck coefficient, electronic thermal conductivity and power factor as a function of chemical potential are evaluated. KScSn has high power factor for p-type doping and is a potential candidate for thermoelectric applications.

  10. Optical properties of medium size noble and transition metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan C.; Pantelides, Sokrates T.

    2009-03-01

    Using first-principles methods within time dependent density functional theory and the local density approximation (TDLDA) the absorption spectra of medium size (˜20-80 atoms) silver, gold and copper nanoparticles have been calculated. The nanoparticles are fcc fragments with different aspect ratios. We find that in the case of Ag nanoparticles is well reproduced by classical electrodynamics theory based in Mie's formalism, using the dielectric function of bulk Ag and taking into account the nanoparticle shape. For the case of Cu and Au, there is a similarity in the overall features of the quantum mechanical and classical spectra, but no detailed agreement. We will discuss the role that the d-electrons among all the different elements and the surface states play in controlling the optical properties of the nanoparticles. This work was supported by GOALI NSF grant (DMR-0513048), DOE, the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and Alcoa Inc.

  11. Density-functional theory for fluid-solid and solid-solid phase transitions.

    PubMed

    Bharadwaj, Atul S; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  12. PDF-based heterogeneous multiscale filtration model.

    PubMed

    Gong, Jian; Rutland, Christopher J

    2015-04-21

    Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.

  13. {Phi}{sup 4} kinks: Statistical mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, S.

    1995-12-31

    Some recent investigations of the thermal equilibrium properties of kinks in a 1+1-dimensional, classical {phi}{sup 4} field theory are reviewed. The distribution function, kink density, correlation function, and certain thermodynamic quantities were studied both theoretically and via large scale simulations. A simple double Gaussian variational approach within the transfer operator formalism was shown to give good results in the intermediate temperature range where the dilute gas theory is known to fail.

  14. Comparison of several classical density functional theories for the adsorption of flexible chain molecules into cylindrical nanopores.

    PubMed

    Hlushak, S P; Cummings, P T; McCabe, C

    2013-12-21

    Adsorption of flexible oligomers into narrow cylindrical pores has been studied by means of several versions of classical density functional theory (CDFT) and Monte Carlo simulation. The adsorption process is interesting to study due to the competition between the entropic depletion of oligomers from the pores and the wall-oligomer attraction. It is also challenging to describe using current CDFTs, which tend to overestimate the amount of the adsorbed fluid. From a comparison of several different CDFT approaches, we find that this is due to the assumption of ideal or freely jointed chain conformations. Moreover, it is demonstrated that it is impossible to obtain a reasonable description of the adsorption isotherms without taking into account accurate contact values in the distribution functions describing the structure of the reference monomer fluid. At low densities, more accurate result are obtained in comparison with Monte Carlo simulation data when accurate contact values are incorporated into the theory rather than the more commonly used hard-sphere contact value. However, even the CDFT with accurate contact values still overestimates the amount of the adsorbed fluid due to the ideal or freely jointed chain approximation, used for the description of chain conformations in most CDFT approaches. We find that significant improvement can achieved by employing self-consistent field theory, which samples self-avoiding chain conformations and decreases the number of possible chain conformations, and, consequently, the amount of the adsorbed fluid.

  15. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space.

    PubMed

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2015-12-15

    The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.

  16. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less

  17. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE PAGES

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    2017-04-04

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less

  18. Efficient molecular density functional theory using generalized spherical harmonics expansions.

    PubMed

    Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc

    2017-09-07

    We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.

  19. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory

    NASA Astrophysics Data System (ADS)

    Langenbach, K.; Heilig, M.; Horsch, M.; Hasse, H.

    2018-03-01

    A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO2). The molecular model of CO2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.

  20. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory.

    PubMed

    Langenbach, K; Heilig, M; Horsch, M; Hasse, H

    2018-03-28

    A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO 2 ). The molecular model of CO 2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.

  1. An improved exceedance theory for combined random stresses

    NASA Technical Reports Server (NTRS)

    Lester, H. C.

    1974-01-01

    An extension is presented of Rice's classic solution for the exceedances of a constant level by a single random process to its counterpart for an n-dimensional vector process. An interaction boundary, analogous to the constant level considered by Rice for the one-dimensional case, is assumed in the form of a hypersurface. The theory for the numbers of boundary exceedances is developed by using a joint statistical approach which fully accounts for all cross-correlation effects. An exact expression is derived for the n-dimensional exceedance density function, which is valid for an arbitrary interaction boundary. For application to biaxial states of combined random stress, the general theory is reduced to the two-dimensional case. An elliptical stress interaction boundary is assumed and the exact expression for the density function is presented. The equations are expressed in a format which facilitates calculating the exceedances by numerically evaluating a line integral. The behavior of the density function for the two-dimensional case is briefly discussed.

  2. Density functional theory study of β-hairpins in antiparallel β-sheets, a new classification based upon H-bond topology.

    PubMed

    Roy, Dipankar; Pohl, Gabor; Ali-Torres, Jorge; Marianski, Mateusz; Dannenberg, J J

    2012-07-10

    We present a new classification of β-turns specific to antiparallel β-sheets based upon the topology of H-bond formation. This classification results from ONIOM calculations using B3LYP/D95** density functional theory and AM1 semiempirical calculations as the high and low levels, respectively. We chose acetyl(Ala)(6)NH(2) as a model system as it is the simplest all-alanine system that can form all the H-bonds required for a β-turn in a sheet. Of the 10 different conformations we have found, the most stable structures have C(7) cyclic H-bonds in place of the C(10) interactions specified in the classic definition. Also, the chiralities specified for residues i + 1 and i + 2 in the classic definition disappear when the structures are optimized using our techniques, as the energetic differences among the four diastereomers of each structure are not substantial for 8 of the 10 conformations.

  3. Quantum Stress: Density Functional Theory Formulation and Physical Manifestation

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Liu, Feng

    2012-02-01

    The concept of ``quantum stress (QS)'' is introduced and formulated within density functional theory (DFT), to underlie extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. An explicit expression of QS (σ^Q) is derived in relation to the deformation potential of electronic states (ξ) and the variation of electron density (δn), σ^Q=ξ(δn), as a quantum analog of classical Hook's law. Two distinct QS manifestations are demonstrated quantitatively by DFT calculations: (1) in the form of bulk stress induced by charge carriers; and (2) in the form of surface stress induced by quantum confinement. QS has broad implications in physical phenomena and technological applications that are based on coupling of electronic structure with lattice strain.

  4. Numerical Solution of 3D Poisson-Nernst-Planck Equations Coupled with Classical Density Functional Theory for Modeling Ion and Electron Transport in a Confined Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Da; Zheng, Bin; Lin, Guang

    2014-08-29

    We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is themore » number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.« less

  5. A reference-modified density functional theory: An application to solvation free-energy calculations for a Lennard-Jones solution.

    PubMed

    Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Koga, Kenichiro

    2016-06-14

    In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids.

  6. Effect of elastic constants of liquid crystals in their electro-optical properties

    NASA Astrophysics Data System (ADS)

    Parang, Z.; Ghaffary, T.; Gharahbeigi, M. M.

    Recently following the success of the density functional theory (DFT) in obtaining the structure and thermodynamics of homogeneous and inhomogeneous classical systems such as simple fluids, dipolar fluid and binary hard spheres, this theory was also applied to obtain the density profile of a molecular fluid in between hard planar walls by Kalpaxis and Rickayzen. In the theory of molecular fluids, the direct correlation function (DCF) can be used to calculate the equation of state, free energy, phase transition, elastic constants, etc. It is well known that the hard core molecular models play an important role in understanding complex liquids such as liquid crystals. In this paper, a classical fluid of nonspherical molecules is studied. The required homogeneous (DCF) is obtained by solving Orenstein-Zernike (OZ) integral equation numerically. Some of the molecules in the liquid crystals have a sphere shape and this kind of molecular fluid is considered here. The DCF sphere of the molecular fluid is calculated and it will be shown that the results are in good agreement with the pervious works and the results of computer simulation. Finally the electro-optical properties of ellipsoid liquid crystal using DCF of these molecules are calculated.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strubbe, David

    Octopus is a scientific program aimed at the ab initio virtual experimentation on a hopefully ever-increasing range of system types. Electrons are described quantum-mechanically within density-functional theory (DFT), in its time-dependent form (TDDFT) when doing simulations in time. Nuclei are described classically as point particles. Electron-nucleus interaction is described within the pseudopotential approximation.

  8. Direct Measure of the Dense Methane Phase in Gas Shale Organic Porosity by Neutron Scattering

    DOE PAGES

    Eberle, Aaron P. R.; King, Hubert E.; Ravikovitch, Peter I.; ...

    2016-08-30

    Here, we report the first direct measurements of methane density in shale gas using small-angle neutron scattering. At a constant pressure, the density of methane in the inorganic pores is similar to the gas bulk density of the system conditions. Conversely, the methane density is 2.1 ± 0.2 times greater in the organic mesopores. Furthermore, classical density functional theory calculations show that this excess density in the organic pores persists to elevated temperatures, typical of shale gas reservoir conditions, providing new insight into the hydrocarbon storage mechanisms within these reservoirs.

  9. Ion Correlation Effects in Salt-Doped Block Copolymers

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; Seo, Youngmi; Hall, Lisa M.

    2018-03-01

    We apply classical density functional theory to study how salt changes the microphase morphology of diblock copolymers. Polymers are freely jointed and one monomer type favorably interacts with ions, to account for the selective solvation that arises from different dielectric constants of the microphases. By including correlations from liquid state theory of an unbound reference fluid, the theory can treat chain behavior, microphase separation, ion correlations, and preferential solvation, at the same coarse-grained level. We show good agreement with molecular dynamics simulations.

  10. Nonlinear Schrödinger equation and classical-field description of thermal radiation

    NASA Astrophysics Data System (ADS)

    Rashkovskiy, Sergey A.

    2018-03-01

    It is shown that the thermal radiation can be described without quantization of energy in the framework of classical field theory using the nonlinear Schrödinger equation which is considered as a classical field equation. Planck's law for the spectral energy density of thermal radiation and the Einstein A-coefficient for spontaneous emission are derived without using the concept of the energy quanta. It is shown that the spectral energy density of thermal radiation is apparently not a universal function of frequency, as follows from the Planck's law, but depends weakly on the nature of atoms, while Planck's law is valid only as an approximation in the limit of weak excitation of atoms. Spin and relativistic effects are not considered in this paper.

  11. Properties of a planar electric double layer under extreme conditions investigated by classical density functional theory and Monte Carlo simulations.

    PubMed

    Zhou, Shiqi; Lamperski, Stanisław; Zydorczak, Maria

    2014-08-14

    Monte Carlo (MC) simulation and classical density functional theory (DFT) results are reported for the structural and electrostatic properties of a planar electric double layer containing ions having highly asymmetric diameters or valencies under extreme concentration condition. In the applied DFT, for the excess free energy contribution due to the hard sphere repulsion, a recently elaborated extended form of the fundamental measure functional is used, and coupling of Coulombic and short range hard-sphere repulsion is described by a traditional second-order functional perturbation expansion approximation. Comparison between the MC and DFT results indicates that validity interval of the traditional DFT approximation expands to high ion valences running up to 3 and size asymmetry high up to diameter ratio of 4 whether the high valence ions or the large size ion are co- or counter-ions; and to a high bulk electrolyte concentration being close to the upper limit of the electrolyte mole concentration the MC simulation can deal with well. The DFT accuracy dependence on the ion parameters can be self-consistently explained using arguments of liquid state theory, and new EDL phenomena such as overscreening effect due to monovalent counter-ions, extreme layering effect of counter-ions, and appearance of a depletion layer with almost no counter- and co-ions are observed.

  12. Rough Interface Effects on N-S Proximity-Contact Systems

    NASA Astrophysics Data System (ADS)

    Nagato, Yasushi; Nagai, Katsuhiko

    2003-03-01

    We discuss the influence of atomic scale roughness of the interface on the properties of the N-S contact systems. To treat the interface roughness effects we extend our previous quasi-classical theory of the rough surface effect and construct a formal solution for the quasi-classical Green's function. We apply the formulation to N-S systems with two-dimensional anisotropic dx2-y2 superconductor and calculate the self-consistent pair potential and the density of states at the interface.

  13. Developing density functional theory for Bose-Einstein condensates. The case of chemical bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putz, Mihai V., E-mail: mvputz@cbg.uvt.ro

    Since the nowadays growing interest in Bose-Einstein condensates due to the expanded experimental evidence on various atomic systems within optical lattices in weak and strong coupling regimes, the connection with Density Functional Theory is firstly advanced within the mean field framework at three levels of comprehension: the many-body normalization condition, Thomas-Fermi limit, and the chemical hardness closure with the inter-bosonic strength and universal Hohenberg-Kohn functional. As an application the traditional Heitler-London quantum mechanical description of the chemical bonding for homopolar atomic systems is reloaded within the non-linear Schrödinger (Gross-Pitaevsky) Hamiltonian; the results show that a two-fold energetic solution is registeredmore » either for bonding and antibonding states, with the bosonic contribution being driven by the square of the order parameter for the Bose-Einstein condensate density in free (gas) motion, while the associate wave functions remain as in classical molecular orbital model.« less

  14. End-anchored polymers in good solvents from the single chain limit to high anchoring densities.

    PubMed

    Whitmore, Mark D; Grest, Gary S; Douglas, Jack F; Kent, Michael S; Suo, Tongchuan

    2016-11-07

    An increasing number of applications utilize grafted polymer layers to alter the interfacial properties of solid substrates, motivating refinement in our theoretical understanding of such layers. To assess existing theoretical models of them, we have investigated end-anchored polymer layers over a wide range of grafting densities, σ, ranging from a single chain to high anchoring density limits, chain lengths ranging over two orders of magnitude, for very good and marginally good solvent conditions. We compare Monte Carlo and molecular dynamics simulations, numerical self-consistent field calculations, and experimental measurements of the average layer thickness, h, with renormalization group theory, the Alexander-de Gennes mushroom theory, and the classical brush theory. Our simulations clearly indicate that appreciable inter-chain interactions exist at all simulated areal anchoring densities so that there is no mushroom regime in which the layer thickness is independent of σ. Moreover, we find that there is no high coverage regime in which h follows the predicted scaling, h ∼ Nσ 1/3 , for classical polymer brushes either. Given that no completely adequate analytic theory seems to exist that spans wide ranges of N and σ, we applied scaling arguments for h as a function of a suitably defined reduced anchoring density, defined in terms of the solution radius of gyration of the polymer chains and N. We find that such a scaling approach enables a smooth, unified description of h in very good solvents over the full range of anchoring density and chain lengths, although this type of data reduction does not apply to marginal solvent quality conditions.

  15. Information theory lateral density distribution for Earth inferred from global gravity field

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1981-01-01

    Information Theory Inference, better known as the Maximum Entropy Method, was used to infer the lateral density distribution inside the Earth. The approach assumed that the Earth consists of indistinguishable Maxwell-Boltzmann particles populating infinitesimal volume elements, and followed the standard methods of statistical mechanics (maximizing the entropy function). The GEM 10B spherical harmonic gravity field coefficients, complete to degree and order 36, were used as constraints on the lateral density distribution. The spherically symmetric part of the density distribution was assumed to be known. The lateral density variation was assumed to be small compared to the spherically symmetric part. The resulting information theory density distribution for the cases of no crust removed, 30 km of compensated crust removed, and 30 km of uncompensated crust removed all gave broad density anomalies extending deep into the mantle, but with the density contrasts being the greatest towards the surface (typically + or 0.004 g cm 3 in the first two cases and + or - 0.04 g cm 3 in the third). None of the density distributions resemble classical organized convection cells. The information theory approach may have use in choosing Standard Earth Models, but, the inclusion of seismic data into the approach appears difficult.

  16. A novel approach to the theory of homogeneous and heterogeneous nucleation.

    PubMed

    Ruckenstein, Eli; Berim, Gersh O; Narsimhan, Ganesan

    2015-01-01

    A new approach to the theory of nucleation, formulated relatively recently by Ruckenstein, Narsimhan, and Nowakowski (see Refs. [7-16]) and developed further by Ruckenstein and other colleagues, is presented. In contrast to the classical nucleation theory, which is based on calculating the free energy of formation of a cluster of the new phase as a function of its size on the basis of macroscopic thermodynamics, the proposed theory uses the kinetic theory of fluids to calculate the condensation (W(+)) and dissociation (W(-)) rates on and from the surface of the cluster, respectively. The dissociation rate of a monomer from a cluster is evaluated from the average time spent by a surface monomer in the potential well as obtained from the solution of the Fokker-Planck equation in the phase space of position and momentum for liquid-to-solid transition and the phase space of energy for vapor-to-liquid transition. The condensation rates are calculated using traditional expressions. The knowledge of those two rates allows one to calculate the size of the critical cluster from the equality W(+)=W(-) as well as the rate of nucleation. The developed microscopic approach allows one to avoid the controversial application of classical thermodynamics to the description of nuclei which contain a few molecules. The new theory was applied to a number of cases, such as the liquid-to-solid and vapor-to-liquid phase transitions, binary nucleation, heterogeneous nucleation, nucleation on soluble particles and protein folding. The theory predicts higher nucleation rates at high saturation ratios (small critical clusters) than the classical nucleation theory for both solid-to-liquid as well as vapor-to-liquid transitions. As expected, at low saturation ratios for which the size of the critical cluster is large, the results of the new theory are consistent with those of the classical one. The present approach was combined with the density functional theory to account for the density profile in the cluster. This approach was also applied to protein folding, viewed as the evolution of a cluster of native residues of spherical shape within a protein molecule, which could explain protein folding/unfolding and their dependence on temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix

    DOE PAGES

    Miller, William H.; Cotton, Stephen J.

    2016-08-28

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory - e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer valuesmore » of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states - and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.« less

  18. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix.

    PubMed

    Miller, William H; Cotton, Stephen J

    2016-08-28

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory-e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states-and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.

  19. Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density functional theory.

    PubMed

    Gillespie, Dirk; Khair, Aditya S; Bardhan, Jaydeep P; Pennathur, Sumita

    2011-07-15

    The electrokinetic behavior of nanofluidic devices is dominated by the electrical double layers at the device walls. Therefore, accurate, predictive models of double layers are essential for device design and optimization. In this paper, we demonstrate that density functional theory (DFT) of electrolytes is an accurate and computationally efficient method for computing finite ion size effects and the resulting ion-ion correlations that are neglected in classical double layer theories such as Poisson-Boltzmann. Because DFT is derived from liquid-theory thermodynamic principles, it is ideal for nanofluidic systems with small spatial dimensions, high surface charge densities, high ion concentrations, and/or large ions. Ion-ion correlations are expected to be important in these regimes, leading to nonlinear phenomena such as charge inversion, wherein more counterions adsorb at the wall than is necessary to neutralize its surface charge, leading to a second layer of co-ions. We show that DFT, unlike other theories that do not include ion-ion correlations, can predict charge inversion and other nonlinear phenomena that lead to qualitatively different current densities and ion velocities for both pressure-driven and electro-osmotic flows. We therefore propose that DFT can be a valuable modeling and design tool for nanofluidic devices as they become smaller and more highly charged. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Principles of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Landé, Alfred

    2013-10-01

    Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ρ (x) and σ (p); 11. Complementarity; 12. Mathematical relation between ρ (x) and σ (p) for free particles; 13. General relation between ρ (q) and σ (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ρ (t) and σ (є); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ρ and σ; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for Ψp (q) and Xq (p); 39. Differential equation for фβ (q); 40. The general probability amplitude Φβ' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schrödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.

  1. A recipe for free-energy functionals of polarizable molecular fluids

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.

    2014-04-01

    Classical density-functional theory is the most direct approach to equilibrium structures and free energies of inhomogeneous liquids, but requires the construction of an approximate free-energy functional for each liquid of interest. We present a general recipe for constructing functionals for small-molecular liquids based only on bulk experimental properties and ab initio calculations of a single solvent molecule. This recipe combines the exact free energy of the non-interacting system with fundamental measure theory for the repulsive contribution and a weighted density functional for the short-ranged attractive interactions. We add to these ingredients a weighted polarization functional for the long-range correlations in both the rotational and molecular-polarizability contributions to the dielectric response. We also perform molecular dynamics calculations for the free energy of cavity formation and the high-field dielectric response, and show that our free-energy functional adequately describes these properties (which are key for accurate solvation calculations) for all three solvents in our study: water, chloroform, and carbon tetrachloride.

  2. Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it

    NASA Astrophysics Data System (ADS)

    Härtel, Andreas

    2017-10-01

    Ongoing scientific interest is aimed at the properties and structure of electric double layers (EDLs), which are crucial for capacitive energy storage, water treatment, and energy harvesting technologies like supercapacitors, desalination devices, blue engines, and thermocapacitive heat-to-current converters. A promising tool to describe their physics on a microscopic level is (classical) density functional theory (DFT), which can be applied in order to analyze pair correlations and charge ordering in the primitive model of charged hard spheres. This simple model captures the main properties of ionic liquids and solutions and it predicts many of the phenomena that occur in EDLs. The latter often lead to anomalous response in the differential capacitance of EDLs. This work constructively reviews the powerful theoretical framework of DFT and its recent developments regarding the description of EDLs. It explains to what extent current approaches in DFT describe structural ordering and in-plane transitions in EDLs, which occur when the corresponding electrodes are charged. Further, the review briefly summarizes the history of modeling EDLs, presents applications, and points out limitations and strengths in present theoretical approaches. It concludes that DFT as a sophisticated microscopic theory for ionic systems is expecting a challenging but promising future in both fundamental research and applications in supercapacitive technologies.

  3. Description of plasmon-like band in silver clusters: the importance of the long-range Hartree-Fock exchange in time-dependent density-functional theory simulations.

    PubMed

    Rabilloud, Franck

    2014-10-14

    Absorption spectra of Ag20 and Ag55(q) (q = +1, -3) nanoclusters are investigated in the framework of the time-dependent density functional theory in order to analyse the role of the d electrons in plasmon-like band of silver clusters. The description of the plasmon-like band from calculations using density functionals containing an amount of Hartree-Fock exchange at long range, namely, hybrid and range-separated hybrid (RSH) density functionals, is in good agreement with the classical interpretation of the plasmon-like structure as a collective excitation of valence s-electrons. In contrast, using local or semi-local exchange functionals (generalized gradient approximations (GGAs) or meta-GGAs) leads to a strong overestimation of the role of d electrons in the plasmon-like band. The semi-local asymptotically corrected model potentials also describe the plasmon as mainly associated to d electrons, though calculated spectra are in fairly good agreement with those calculated using the RSH scheme. Our analysis shows that a portion of non-local exchange modifies the description of the plasmon-like band.

  4. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    PubMed

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microscopic aspects of wetting using classical density functional theory

    NASA Astrophysics Data System (ADS)

    Yatsyshin, P.; Durán-Olivencia, M.-A.; Kalliadasis, S.

    2018-07-01

    Wetting is a rather efficient mechanism for nucleation of a phase (typically liquid) on the interface between two other phases (typically solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid–fluid and fluid–substrate intermolecular interactions brings about an entire ‘zoo’ of possible fluid configurations, such as liquid films with a thickness of a few nanometers, liquid nanodrops and liquid bridges. These fluid configurations are often associated with phase transitions occurring at the solid–gas interface and at lengths of just several molecular diameters away from the substrate. In this special issue article, we demonstrate how a fully microscopic classical density-functional framework can be applied to the efficient, rational and systematic exploration of the rich phase space of wetting phenomena. We consider a number of model prototype systems such as wetting on a planar wall, a chemically patterned wall and a wedge. Through density-functional computations we demonstrate that for these simply structured substrates the behaviour of the solid–gas interface is already highly complex and non-trivial.

  6. Liquid li structure and dynamics: A comparison between OFDFT and second nearest-neighbor embedded-atom method

    DOE PAGES

    Chen, Mohan; Vella, Joseph R.; Panagiotopoulos, Athanassios Z.; ...

    2015-04-08

    The structure and dynamics of liquid lithium are studied using two simulation methods: orbital-free (OF) first-principles molecular dynamics (MD), which employs OF density functional theory (DFT), and classical MD utilizing a second nearest-neighbor embedded-atom method potential. The properties we studied include the dynamic structure factor, the self-diffusion coefficient, the dispersion relation, the viscosity, and the bond angle distribution function. Our simulation results were compared to available experimental data when possible. Each method has distinct advantages and disadvantages. For example, OFDFT gives better agreement with experimental dynamic structure factors, yet is more computationally demanding than classical simulations. Classical simulations can accessmore » a broader temperature range and longer time scales. The combination of first-principles and classical simulations is a powerful tool for studying properties of liquid lithium.« less

  7. Quasimodular instanton partition function and the elliptic solution of Korteweg-de Vries equations

    NASA Astrophysics Data System (ADS)

    He, Wei

    2015-02-01

    The Gauge/Bethe correspondence relates Omega-deformed N = 2 supersymmetric gauge theories to some quantum integrable models, in simple cases the integrable models can be treated as solvable quantum mechanics models. For SU(2) gauge theory with an adjoint matter, or with 4 fundamental matters, the potential of corresponding quantum model is the elliptic function. If the mass of matter takes special value then the potential is an elliptic solution of KdV hierarchy. We show that the deformed prepotential of gauge theory can be obtained from the average densities of conserved charges of the classical KdV solution, the UV gauge coupling dependence is assembled into the Eisenstein series. The gauge theory with adjoint mass is taken as the example.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motevaselian, M. H.; Mashayak, S. Y.; Aluru, N. R., E-mail: aluru@illinois.edu

    Empirical potential-based quasi-continuum theory (EQT) provides a route to incorporate atomistic detail into continuum framework such as the Nernst-Planck equation. EQT can also be used to construct a grand potential functional for classical density functional theory (cDFT). The combination of EQT and cDFT provides a simple and fast approach to predict the inhomogeneous density, potential profiles, and thermodynamic properties of confined fluids. We extend the EQT-cDFT approach to confined fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen inside slit-like channels of graphene. We show that the EQT-cDFT predictions for the structure of the confined fluidmore » mixture compare well with the molecular dynamics simulation results. In addition, our results show that graphene slit nanopores exhibit a selective adsorption of methane over hydrogen.« less

  9. Performance of some nucleation theories with a nonsharp droplet-vapor interface.

    PubMed

    Napari, Ismo; Julin, Jan; Vehkamäki, Hanna

    2010-10-21

    Nucleation theories involving the concept of nonsharp boundary between the droplet and vapor are compared to recent molecular dynamics (MD) simulation data of Lennard-Jones vapors at temperatures above the triple point. The theories are diffuse interface theory (DIT), extended modified liquid drop-dynamical nucleation theory (EMLD-DNT), square gradient theory (SGT), and density functional theory (DFT). Particular attention is paid to thermodynamic consistency in the comparison: the applied theories either use or, with a proper parameter adjustment, result in the same values of equilibrium vapor pressure, bulk liquid density, and surface tension as the MD simulations. Realistic pressure-density correlations are also used. The best agreement between the simulated nucleation rates and calculations is obtained from DFT, SGT, and EMLD-DNT, all of which, in the studied temperature range, show deviations of less than one order of magnitude in the nucleation rate. DIT underestimates the nucleation rate by up to two orders of magnitude. DFT and SGT give the best estimate of the molecular content of the critical nuclei. Overall, at the vapor conditions of this study, all the investigated theories perform better than classical nucleation theory in predicting nucleation rates.

  10. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  11. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    PubMed

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Paul R., E-mail: prhorn@berkeley.edu; Mao, Yuezhi; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu

    In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms formore » test cases that include the neon dimer, ammonia borane, water-Na{sup +}, water-Cl{sup −}, and the naphthalene dimer.« less

  13. The atomic scale structure of CXV carbon: wide-angle x-ray scattering and modeling studies.

    PubMed

    Hawelek, L; Brodka, A; Dore, J C; Honkimaki, V; Burian, A

    2013-11-13

    The disordered structure of commercially available CXV activated carbon produced from finely powdered wood-based carbon has been studied using the wide-angle x-ray scattering technique, molecular dynamics and density functional theory simulations. The x-ray scattering data has been converted to the real space representation in the form of the pair correlation function via the Fourier transform. Geometry optimizations using classical molecular dynamics based on the reactive empirical bond order potential and density functional theory at the B3LYP/6-31g* level have been performed to generate nanoscale models of CXV carbon consistent with the experimental data. The final model of the structure comprises four chain-like and buckled graphitic layers containing a small percentage of four-fold coordinated atoms (sp(3) defects) in each layer. The presence of non-hexagonal rings in the atomic arrangement has been also considered.

  14. Classical density-functional theory of inhomogeneous water including explicit molecular structure and nonlinear dielectric response.

    PubMed

    Lischner, Johannes; Arias, T A

    2010-02-11

    We present an accurate free-energy functional for liquid water written in terms of a set of effective potential fields in which fictitious noninteracting water molecules move. The functional contains an exact expression of the entropy of noninteracting molecules and thus provides an ideal starting point for the inclusion of complex intermolecular interactions which depend on the orientation of the interacting molecules. We show how an excess free-energy functional can be constructed to reproduce the following properties of water: the dielectric response; the experimental site-site correlation functions; the surface tension; the bulk modulus of the liquid and the variation of this modulus with pressure; the density of the liquid and the vapor phase; and liquid-vapor coexistence. As a demonstration, we present results for the application of this theory to the behavior of liquid water in a parallel plate capacitor. In particular, we make predictions for the dielectric response of water in the nonlinear regime, finding excellent agreement with known data.

  15. The Cassie-Wenzel transition of fluids on nanostructured substrates: Macroscopic force balance versus microscopic density-functional theory.

    PubMed

    Tretyakov, Nikita; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen; Dünweg, Burkhard; Daoulas, Kostas Ch

    2016-10-07

    Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.

  16. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect.

    PubMed

    Urbieta, Mattin; Barbry, Marc; Zhang, Yao; Koval, Peter; Sánchez-Portal, Daniel; Zabala, Nerea; Aizpurua, Javier

    2018-01-23

    Plasmonic gaps are known to produce nanoscale localization and enhancement of optical fields, providing small effective mode volumes of about a few hundred nm 3 . Atomistic quantum calculations based on time-dependent density functional theory reveal the effect of subnanometric localization of electromagnetic fields due to the presence of atomic-scale features at the interfaces of plasmonic gaps. Using a classical model, we explain this as a nonresonant lightning rod effect at the atomic scale that produces an extra enhancement over that of the plasmonic background. The near-field distribution of atomic-scale hot spots around atomic features is robust against dynamical screening and spill-out effects and follows the potential landscape determined by the electron density around the atomic sites. A detailed comparison of the field distribution around atomic hot spots from full quantum atomistic calculations and from the local classical approach considering the geometrical profile of the atoms' electronic density validates the use of a classical framework to determine the effective mode volume in these extreme subnanometric optical cavities. This finding is of practical importance for the community of surface-enhanced molecular spectroscopy and quantum nanophotonics, as it provides an adequate description of the local electromagnetic fields around atomic-scale features with use of simplified classical methods.

  17. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. I. The role of molecular anchoring

    NASA Astrophysics Data System (ADS)

    Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin

    2016-05-01

    In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.

  18. Molecular Theory for Electrokinetic Transport in pH-Regulated Nanochannels.

    PubMed

    Kong, Xian; Jiang, Jian; Lu, Diannan; Liu, Zheng; Wu, Jianzhong

    2014-09-04

    Ion transport through nanochannels depends on various external driving forces as well as the structural and hydrodynamic inhomogeneity of the confined fluid inside of the pore. Conventional models of electrokinetic transport neglect the discrete nature of ionic species and electrostatic correlations important at the boundary and often lead to inconsistent predictions of the surface potential and the surface charge density. Here, we demonstrate that the electrokinetic phenomena can be successfully described by the classical density functional theory in conjunction with the Navier-Stokes equation for the fluid flow. The new theoretical procedure predicts ion conductivity in various pH-regulated nanochannels under different driving forces, in excellent agreement with experimental data.

  19. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids

    DOE PAGES

    Lian, Cheng; Univ. of California, Riverside, CA; Zhao, Shuangliang; ...

    2016-11-29

    Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this paper, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the durationmore » of charging. Finally and furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.« less

  20. A potential half-Heusler thermoelectric material ScAuSn: A first principle study

    NASA Astrophysics Data System (ADS)

    Joshi, H.; Rai, D. P.; Thapa, R. K.

    2018-04-01

    Density Functional Theory along with semi classical Boltzmann transport theory have been applied to study the electronic and thermoelectric property of the Heusler alloy ScAuSn. It has been found that ScAuSn is an indirect band gap semiconductor with a gap of 0.344 eV. The thermoelectric properties such as electrical conductivity (σ), Seebeck coefficient (S), electronic thermal conductivity (κ) etc. are reported as a function of chemical potential in the region ± 2.0 eV, with respect to constant temperature. The calculated ZT value is almost equal to 1, thus making ScAuSn a potential thermoelectric candidate.

  1. Quantum to classical transition in quantum field theory

    NASA Astrophysics Data System (ADS)

    Lombardo, Fernando C.

    1998-12-01

    We study the quatum to classical transition process in the context of quantum field theory. Extending the influence functional formalism of Feynman and Vernon, we study the decoherence process for self-interacting quantum fields in flat space. We also use this formalism for arbitrary geometries to analyze the quantum to classical transition in quantum gravity. After summarizing the main results known for the quantum Brownian motion, we consider a self-interacting field theory in Minkowski spacetime. We compute a coarse grained effective action by integrating out the field modes with wavelength shorter than a critical value. From this effective action we obtain the evolution equation for the reduced density matrix (master equation). We compute the diffusion coefficients for this equation and analyze the decoherence induced on the long-wavelength modes. We generalize the results to the case of a conformally coupled scalar field in de Sitter spacetime. We show that the decoherence is effective as long as the critical wavelength is taken to be not shorter than the Hubble radius. On the other hand, we study the classical limit for scalar-tensorial models in two dimensions. We consider different couplings between the dilaton and the scalar field. We discuss the Hawking radiation process and, from an exact evaluation of the influence functional, we study the conditions by which decoherence ensures the validity of the semiclassical approximation in cosmological metrics. Finally we consider four dimensional models with massive scalar fields, arbitrary coupled to the geometry. We compute the Einstein-Langevin equations in order to study the effect of the fluctuations induced by the quantum fields on the classical geometry.

  2. Charged nanoparticle attraction in multivalent salt solution: A classical-fluids density functional theory and molecular dynamics study

    DOE PAGES

    Salerno, K. Michael; Frischknecht, Amalie L.; Stevens, Mark J.

    2016-04-08

    Here, negatively charged nanoparticles (NPs) in 1:1, 1:2, and 1:3 electrolyte solutions are studied in a primitive ion model using molecular dynamics (MD) simulations and classical density functional theory (DFT). We determine the conditions for attractive interactions between the like-charged NPs. Ion density profiles and NP–NP interaction free energies are compared between the two methods and are found to be in qualitative agreement. The NP interaction free energy is purely repulsive for monovalent counterions, but can be attractive for divalent and trivalent counterions. Using DFT, the NP interaction free energy for different NP diameters and charges is calculated. The depthmore » and location of the minimum in the interaction depend strongly on the NPs’ charge. For certain parameters, the depth of the attractive well can reach 8–10 k BT, indicating that kinetic arrest and aggregation of the NPs due to electrostatic interactions is possible. Rich behavior arises from the geometric constraints of counterion packing at the NP surface. Layering of counterions around the NPs is observed and, as secondary counterion layers form the minimum of the NP–NP interaction free energy shifts to larger separation, and the depth of the free energy minimum varies dramatically. We find that attractive interactions occur with and without NP overcharging.« less

  3. Viable inflationary evolution from Einstein frame loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Odintsov, S. D.; Oikonomou, V. K.

    2018-04-01

    In this work we construct a bottom-up reconstruction technique for loop quantum cosmology scalar-tensor theories, from the observational indices. Particularly, the reconstruction technique is based on fixing the functional form of the scalar-to-tensor ratio as a function of the e -foldings number. The aim of the technique is to realize viable inflationary scenarios, and the only assumption that must hold true in order for the reconstruction technique to work is that the dynamical evolution of the scalar field obeys the slow-roll conditions. We use two functional forms for the scalar-to-tensor ratio, one of which corresponds to a popular inflationary class of models, the α attractors. For the latter, we calculate the leading order behavior of the spectral index and we demonstrate that the resulting inflationary theory is viable and compatible with the latest Planck and BICEP2/Keck-Array data. In addition, we find the classical limit of the theory, and as we demonstrate, the loop quantum cosmology corrected theory and the classical theory are identical at leading order in the perturbative expansion quantified by the parameter ρc, which is the critical density of the quantum theory. Finally, by using the formalism of slow-roll scalar-tensor loop quantum cosmology, we investigate how several inflationary potentials can be realized by the quantum theory, and we calculate directly the slow-roll indices and the corresponding observational indices. In addition, the f (R ) gravity frame picture is presented.

  4. Fluids density functional theory and initializing molecular dynamics simulations of block copolymers

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; Seo, Youngmi; Maula, Tiara Ann D.; Hall, Lisa M.

    2016-03-01

    Classical, fluids density functional theory (fDFT), which can predict the equilibrium density profiles of polymeric systems, and coarse-grained molecular dynamics (MD) simulations, which are often used to show both structure and dynamics of soft materials, can be implemented using very similar bead-based polymer models. We aim to use fDFT and MD in tandem to examine the same system from these two points of view and take advantage of the different features of each methodology. Additionally, the density profiles resulting from fDFT calculations can be used to initialize the MD simulations in a close to equilibrated structure, speeding up the simulations. Here, we show how this method can be applied to study microphase separated states of both typical diblock and tapered diblock copolymers in which there is a region with a gradient in composition placed between the pure blocks. Both methods, applied at constant pressure, predict a decrease in total density as segregation strength or the length of the tapered region is increased. The predictions for the density profiles from fDFT and MD are similar across materials with a wide range of interfacial widths.

  5. An EQT-cDFT approach to determine thermodynamic properties of confined fluids.

    PubMed

    Mashayak, S Y; Motevaselian, M H; Aluru, N R

    2015-06-28

    We present a continuum-based approach to predict the structure and thermodynamic properties of confined fluids at multiple length-scales, ranging from a few angstroms to macro-meters. The continuum approach is based on the empirical potential-based quasi-continuum theory (EQT) and classical density functional theory (cDFT). EQT is a simple and fast approach to predict inhomogeneous density and potential profiles of confined fluids. We use EQT potentials to construct a grand potential functional for cDFT. The EQT-cDFT-based grand potential can be used to predict various thermodynamic properties of confined fluids. In this work, we demonstrate the EQT-cDFT approach by simulating Lennard-Jones fluids, namely, methane and argon, confined inside slit-like channels of graphene. We show that the EQT-cDFT can accurately predict the structure and thermodynamic properties, such as density profiles, adsorption, local pressure tensor, surface tension, and solvation force, of confined fluids as compared to the molecular dynamics simulation results.

  6. Dynamical density functional theory for arbitrary-shape colloidal fluids including inertia and hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Duran-Olivencia, Miguel A.; Goddard, Ben; Kalliadasis, Serafim

    2015-11-01

    Over the last few decades the classical density-functional theory (DFT) and its dynamic extensions (DDFTs) have become a remarkably powerful tool in the study of colloidal fluids. Recently there has been extensive research to generalise all previous DDFTs finally yielding a general DDFT equation (for spherical particles) which takes into account both inertia and hydrodynamic interactions (HI) which strongly influence non-equilibrium properties. The present work will be devoted to a further generalisation of such a framework to systems of anisotropic particles. To this end, the kinetic equation for the Brownian particle distribution function is derived starting from the Liouville equation and making use of Zwanzig's projection-operator techniques. By averaging over all but one particle, a DDFT equation is finally obtained with some similarities to that for spherical colloids. However, there is now an inevitable translational-rotational coupling which affects the diffusivity of asymmetric particles. Lastly, in the overdamped (high friction) limit the theory is notably simplified leading to a DDFT equation which agrees with previous derivations. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.

  7. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  8. Computational Insights into Materials and Interfaces for Capacitive Energy Storage

    DOE PAGES

    Zhan, Cheng; Lian, Cheng; Zhang, Yu; ...

    2017-04-24

    Supercapacitors such as electric double-layer capacitors (EDLCs) and pseudocapacitors are becoming increasingly important in the field of electrical energy storage. Theoretical study of energy storage in EDLCs focuses on solving for the electric double-layer structure in different electrode geometries and electrolyte components, which can be achieved by molecular simulations such as classical molecular dynamics (MD), classical density functional theory (classical DFT), and Monte-Carlo (MC) methods. In recent years, combining first-principles and classical simulations to investigate the carbon-based EDLCs has shed light on the importance of quantum capacitance in graphene-like 2D systems. More recently, the development of joint density functional theorymore » (JDFT) enables self-consistent electronic-structure calculation for an electrode being solvated by an electrolyte. In contrast with the large amount of theoretical and computational effort on EDLCs, theoretical understanding of pseudocapacitance is very limited. In this review, we first introduce popular modeling methods and then focus on several important aspects of EDLCs including nanoconfinement, quantum capacitance, dielectric screening, and novel 2D electrode design; we also briefly touch upon pseudocapactive mechanism in RuO 2. We summarize and conclude with an outlook for the future of materials simulation and design for capacitive energy storage.« less

  9. Temperature anisotropy at equilibrium reveals nonlocal entropic contributions to interfacial properties.

    PubMed

    Wilhelmsen, Øivind; Trinh, Thuat T; Lervik, Anders

    2018-01-01

    Density gradient theory for fluids has played a key role in the study of interfacial phenomena for a century. In this work, we revisit its fundamentals by examining the vapor-liquid interface of argon, represented by the cut and shifted Lennard-Jones fluid. The starting point has traditionally been a Helmholtz energy functional using mass densities as arguments. By using rather the internal energy as starting point and including the entropy density as an additional argument, following thereby the phenomenological approach from classical thermodynamics, the extended theory suggests that the configurational part of the temperature has different contributions from the parallel and perpendicular directions at the interface, even at equilibrium. We find a similar anisotropy by examining the configurational temperature in molecular dynamics simulations and obtain a qualitative agreement between theory and simulations. The extended theory shows that the temperature anisotropy originates in nonlocal entropic contributions, which are currently missing from the classical theory. The nonlocal entropic contributions discussed in this work are likely to play a role in the description of both equilibrium and nonequilibrium properties of interfaces. At equilibrium, they influence the temperature- and curvature-dependence of the surface tension. Across the vapor-liquid interface of the Lennard Jones fluid, we find that the maximum in the temperature anisotropy coincides precisely with the maximum in the thermal resistivity relative to the equimolar surface, where the integral of the thermal resistivity gives the Kapitza resistance. This links the temperature anisotropy at equilibrium to the Kapitza resistance of the vapor-liquid interface at nonequilibrium.

  10. Temperature anisotropy at equilibrium reveals nonlocal entropic contributions to interfacial properties

    NASA Astrophysics Data System (ADS)

    Wilhelmsen, Øivind; Trinh, Thuat T.; Lervik, Anders

    2018-01-01

    Density gradient theory for fluids has played a key role in the study of interfacial phenomena for a century. In this work, we revisit its fundamentals by examining the vapor-liquid interface of argon, represented by the cut and shifted Lennard-Jones fluid. The starting point has traditionally been a Helmholtz energy functional using mass densities as arguments. By using rather the internal energy as starting point and including the entropy density as an additional argument, following thereby the phenomenological approach from classical thermodynamics, the extended theory suggests that the configurational part of the temperature has different contributions from the parallel and perpendicular directions at the interface, even at equilibrium. We find a similar anisotropy by examining the configurational temperature in molecular dynamics simulations and obtain a qualitative agreement between theory and simulations. The extended theory shows that the temperature anisotropy originates in nonlocal entropic contributions, which are currently missing from the classical theory. The nonlocal entropic contributions discussed in this work are likely to play a role in the description of both equilibrium and nonequilibrium properties of interfaces. At equilibrium, they influence the temperature- and curvature-dependence of the surface tension. Across the vapor-liquid interface of the Lennard Jones fluid, we find that the maximum in the temperature anisotropy coincides precisely with the maximum in the thermal resistivity relative to the equimolar surface, where the integral of the thermal resistivity gives the Kapitza resistance. This links the temperature anisotropy at equilibrium to the Kapitza resistance of the vapor-liquid interface at nonequilibrium.

  11. Nuclear Fission: from more phenomenology and adjusted parameters to more fundamental theory and increased predictive power

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel; Jin, Shi; Magierski, Piotr; Roche, Kenneth; Schunck, Nicolas; Stetcu, Ionel

    2017-11-01

    Two major recent developments in theory and computational resources created the favorable conditions for achieving a microscopic description of fission dynamics in classically allowed regions of the collective potential energy surface, almost eighty years after its discovery in 1939 by Hahn and Strassmann [1]. The first major development was in theory, the extension of the Time-Dependent Density Functional Theory (TDDFT) [2-5] to superfluid fermion systems [6]. The second development was in computing, the emergence of powerful enough supercomputers capable of solving the complex systems of equations describing the time evolution in three dimensions without any restrictions of hundreds of strongly interacting nucleons. Thus the conditions have been created to renounce phenomenological models and incomplete microscopic treatments with uncontrollable approximations and/or assumptions in the description of the complex dynamics of fission. Even though the available nuclear energy density functionals (NEDFs) are phenomenological still, their accuracy is improving steadily and the prospects of being able to perform calculations of the nuclear fission dynamics and to predict many properties of the fission fragments, otherwise not possible to extract from experiments.

  12. Self-trapping of a light particle in a dense fluid: Application of scaled density-functional theory to the decay of orthopositronium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, T.; Miller, B.N.

    1990-11-15

    The localization of a light particle (e.g., electron, positron, or positronium atom) in a fluid is known as self-trapping. In an earlier paper (B. N. Miller and T. L. Reese, Phys. Rev. A 39, 4735 (1989)) we showed that (1) the density-functional theories (DFT's) of self-trapping could be derived from a mesoscopic model that employs a quantum-mechanical description of the light particle and a classical description of the fluid, and (2) the application of scaling to the simplest variant of DFT results in a universal model for all fluids that obey the principle of corresponding states. In this paper wemore » apply the fully scaled theory to the pickoff annihilation of orthopositronium. Predictions of three different versions of the theory are compared with the experimental measurements of McNutt and Sharma on ethane (J. Chem. Phys. 68, 130 (1978)) and Tuomisaari, Rytsola, and Hautojarvi on argon (Phys. Lett. 112A, 279 (1988)). Best agreement is obtained from a model that incorporates transitions between localized and extended states.« less

  13. Energy density and energy flow of surface waves in a strongly magnetized graphene

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2018-01-01

    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  14. Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum

    NASA Astrophysics Data System (ADS)

    Rips, Ilya

    2017-01-01

    Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990), 10.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988), 10.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ /ωb<0.26 ), which includes the turnover region. The dominant correction to the linear response theory result is associated with the "work function" and leads to reduction of the average energy loss and its dispersion. This reduction increases with the increasing dissipation strength (up to ˜10 % ) within the range of validity of the approach. We have also calculated corrections to the depopulation factor and the escape rate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.

  15. Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum.

    PubMed

    Rips, Ilya

    2017-01-01

    Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990)PLRAAN1050-294710.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988)PRLTAO0031-900710.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ/ω_{b}<0.26), which includes the turnover region. The dominant correction to the linear response theory result is associated with the "work function" and leads to reduction of the average energy loss and its dispersion. This reduction increases with the increasing dissipation strength (up to ∼10%) within the range of validity of the approach. We have also calculated corrections to the depopulation factor and the escape rate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.

  16. Structures and interactions in N-methylacetamide-water mixtures studied by IR spectra and density functional theory

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Li, Haoran; Lei, Yi; Han, Shijun

    2004-05-01

    IR spectra have been performed to study the structures and interactions in N-methylacetamide and water mixtures. Because of the competitions of acceptor and donor of the strong hydrogen bonds, some interesting phenomena of red shifts and blue shifts are observed in νCO and νN-H. It is due to the blue-shifting C-H⋯O hydrogen bond, the νC-H blue shifts more obviously. Then some representative cluster structures are suggested and further investigated by density functional theory method. The changes in bond length and frequency shift of the structures give good reasons for the red shift and blue shift, which represents excellent agreement with the IR experiment. The investigations of IR spectra and DFT calculations reveal that the weak C-H⋯O interactions play different roles compared with the classical strong hydrogen bonds in the NMA-water mixtures.

  17. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.

    PubMed

    Graziani, F R; Bauer, J D; Murillo, M S

    2014-09-01

    Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD. The STLS contribution produces an effective electron-proton interaction that involves the electron-proton structure factor, thereby extending the usual mean-field theory to correlated but near equilibrium systems. Finally, a third variant of KTMD is derived. It includes dynamical electrons and their correlations coupled to a MD description for the ions. A set of coupled equations for the one-particle electron Wigner function and the electron-electron and electron-proton correlation functions are coupled to a classical Liouville equation for the protons. This latter variation has both time and momentum dependent correlations.

  18. Heat of adsorption, adsorption stress, and optimal storage of methane in slit and cylindrical carbon pores predicted by classical density functional theory.

    PubMed

    Hlushak, Stepan

    2018-01-03

    Temperature, pressure and pore-size dependences of the heat of adsorption, adsorption stress, and adsorption capacity of methane in simple models of slit and cylindrical carbon pores are studied using classical density functional theory (CDFT) and grand-canonical Monte-Carlo (MC) simulation. Studied properties depend nontrivially on the bulk pressure and the size of the pores. Heat of adsorption increases with loading, but only for sufficiently narrow pores. While the increase is advantageous for gas storage applications, it is less significant for cylindrical pores than for slits. Adsorption stress and the average adsorbed fluid density show oscillatory dependence on the pore size and increase with bulk pressure. Slit pores exhibit larger amplitude of oscillations of the normal adsorption stress with pore size increase than cylindrical pores. However, the increase of the magnitude of the adsorption stress with bulk pressure increase is more significant for cylindrical than for slit pores. Adsorption stress appears to be negative for a wide range of pore sizes and external conditions. The pore size dependence of the average delivered density of the gas is analyzed and the optimal pore sizes for storage applications are estimated. The optimal width of slit pore appears to be almost independent of storage pressure at room temperature and pressures above 10 bar. Similarly to the case of slit pores, the optimal radius of cylindrical pores does not exhibit much dependence on the storage pressure above 15 bar. Both optimal width and optimal radii of slit and cylindrical pores increase as the temperature decreases. A comparison of the results of CDFT theory and MC simulations reveals subtle but important differences in the underlying fluid models employed by the approaches. The differences in the high-pressure behaviour between the hard-sphere 2-Yukawa and Lennard-Jones models of methane, employed by the CDFT and MC approaches, respectively, result in an overestimation of the heat of adsorption by the CDFT theory at higher loadings. However, both adsorption stress and adsorption capacity appear to be much less sensitive to the differences between the models and demonstrate excellent agreement between the theory and the computer experiment.

  19. Car and Parrinello meet Green and Kubo: simulating atomic heat transport from equilibrium ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Baroni, Stefano

    Modern simulation methods based on electronic-structure theory have long been deemed unfit to compute heat transport coefficients within the Green-Kubo formalism. This is so because the quantum-mechanical energy density from which the heat flux is derived is inherently ill defined, thus allegedly hampering the use of the Green-Kubo formula. While this objection would actually apply to classical systems as well, I will demonstrate that the thermal conductivity is indeed independent of the specific microscopic expression for the energy density and current from which it is derived. This fact results from a kind of gauge invariance stemming from energy conservation and extensivity, which I will illustrate numerically for a classical Lennard-Jones fluid. I will then introduce an expression for the adiabatic energy flux, derived within density-functional theory, that allows simulating atomic heat transport using equilibrium ab initio molecular dynamics. The resulting methodology is demonstrated by comparing results from ab-initio and classical molecular-dynamics simulations of a model liquid-Argon system, for which accurate inter-atomic potentials are derived by the force-matching method, and applied to compute the thermal conductivity of heavy water at ambient conditions. The problem of evaluating transport coefficients along with their accuracy from relatively short trajectories is finally addressed and discussed with a few representative examples. Partially funded by the European Union through the MaX Centre of Excellence (Grant No. 676598).

  20. Multiscale time-dependent density functional theory: Demonstration for plasmons.

    PubMed

    Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J

    2017-08-07

    Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.

  1. Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid

    NASA Astrophysics Data System (ADS)

    Gunawardana, K. G. S. H.; Song, Xueyu

    2018-05-01

    The first order curvature correction to the crystal-liquid interfacial free energy is calculated using a theoretical model based on the interfacial excess thermodynamic properties. The correction parameter (δ), which is analogous to the Tolman length at a liquid-vapor interface, is found to be 0.48 ± 0.05 for a Lennard-Jones (LJ) fluid. We show that this curvature correction is crucial in predicting the nucleation barrier when the size of the crystal nucleus is small. The thermodynamic driving force (Δμ) corresponding to available simulated nucleation conditions is also calculated by combining the simulated data with a classical density functional theory. In this paper, we show that the classical nucleation theory is capable of predicting the nucleation barrier with excellent agreement to the simulated results when the curvature correction to the interfacial free energy is accounted for.

  2. Tsallis non-extensive statistics and solar wind plasma complexity

    NASA Astrophysics Data System (ADS)

    Pavlos, G. P.; Iliopoulos, A. C.; Zastenker, G. N.; Zelenyi, L. M.; Karakatsanis, L. P.; Riazantseva, M. O.; Xenakis, M. N.; Pavlos, E. G.

    2015-03-01

    This article presents novel results revealing non-equilibrium phase transition processes in the solar wind plasma during a strong shock event, which took place on 26th September 2011. Solar wind plasma is a typical case of stochastic spatiotemporal distribution of physical state variables such as force fields (B → , E →) and matter fields (particle and current densities or bulk plasma distributions). This study shows clearly the non-extensive and non-Gaussian character of the solar wind plasma and the existence of multi-scale strong correlations from the microscopic to the macroscopic level. It also underlines the inefficiency of classical magneto-hydro-dynamic (MHD) or plasma statistical theories, based on the classical central limit theorem (CLT), to explain the complexity of the solar wind dynamics, since these theories include smooth and differentiable spatial-temporal functions (MHD theory) or Gaussian statistics (Boltzmann-Maxwell statistical mechanics). On the contrary, the results of this study indicate the presence of non-Gaussian non-extensive statistics with heavy tails probability distribution functions, which are related to the q-extension of CLT. Finally, the results of this study can be understood in the framework of modern theoretical concepts such as non-extensive statistical mechanics (Tsallis, 2009), fractal topology (Zelenyi and Milovanov, 2004), turbulence theory (Frisch, 1996), strange dynamics (Zaslavsky, 2002), percolation theory (Milovanov, 1997), anomalous diffusion theory and anomalous transport theory (Milovanov, 2001), fractional dynamics (Tarasov, 2013) and non-equilibrium phase transition theory (Chang, 1992).

  3. Periodic orbit spectrum in terms of Ruelle-Pollicott resonances

    NASA Astrophysics Data System (ADS)

    Leboeuf, P.

    2004-02-01

    Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g., a trajectory “p” returns to its initial conditions after some fixed time τp. Our aim is to investigate the spectrum {τ1,τ2,…} of periods of the periodic orbits. An explicit formula for the density ρ(τ)=∑pδ(τ-τp) is derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are given by the imaginary part of the complex eigenvalues (Ruelle-Pollicott resonances). For large periods, corrections to the well-known exponential growth of the smooth part of the density are obtained. An alternative formula for ρ(τ) in terms of the zeros and poles of the Ruelle ζ function is also discussed. The results are illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical properties of the corresponding quantum eigenvalues, random-matrix theory, and discrete maps are also considered. In particular, a random-matrix conjecture is proposed for the eigenvalues of the classical evolution operator of chaotic billiards.

  4. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    NASA Astrophysics Data System (ADS)

    Dahms, Rainer N.

    2016-04-01

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. The significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.

  5. Brønsted acidity of protic ionic liquids: a modern ab initio valence bond theory perspective.

    PubMed

    Patil, Amol Baliram; Mahadeo Bhanage, Bhalchandra

    2016-09-21

    Room temperature ionic liquids (ILs), especially protic ionic liquids (PILs), are used in many areas of the chemical sciences. Ionicity, the extent of proton transfer, is a key parameter which determines many physicochemical properties and in turn the suitability of PILs for various applications. The spectrum of computational chemistry techniques applied to investigate ionic liquids includes classical molecular dynamics, Monte Carlo simulations, ab initio molecular dynamics, Density Functional Theory (DFT), CCSD(t) etc. At the other end of the spectrum is another computational approach: modern ab initio Valence Bond Theory (VBT). VBT differs from molecular orbital theory based methods in the expression of the molecular wave function. The molecular wave function in the valence bond ansatz is expressed as a linear combination of valence bond structures. These structures include covalent and ionic structures explicitly. Modern ab initio valence bond theory calculations of representative primary and tertiary ammonium protic ionic liquids indicate that modern ab initio valence bond theory can be employed to assess the acidity and ionicity of protic ionic liquids a priori.

  6. Flow induced crystallisation of penetrable particles

    NASA Astrophysics Data System (ADS)

    Scacchi, Alberto; Brader, Joseph M.

    2018-03-01

    For a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallisation and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase diagram, but close to the crystallisation phase boundary, we observe that imposing a Poiseuille flow can induce nonequilibrium crystalline ordering in regions of low shear gradient. The physical mechanism responsible for this phenomenon is shear-induced particle migration, which causes particles to drift preferentially towards the center of the flow channel, thus increasing the local density in the channel center. The method employed is classical dynamical density functional theory.

  7. Flow induced crystallisation of penetrable particles.

    PubMed

    Scacchi, Alberto; Brader, Joseph M

    2018-03-07

    For a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallisation and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase diagram, but close to the crystallisation phase boundary, we observe that imposing a Poiseuille flow can induce nonequilibrium crystalline ordering in regions of low shear gradient. The physical mechanism responsible for this phenomenon is shear-induced particle migration, which causes particles to drift preferentially towards the center of the flow channel, thus increasing the local density in the channel center. The method employed is classical dynamical density functional theory.

  8. First-principles simulations of heat transport

    NASA Astrophysics Data System (ADS)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    2017-11-01

    Advances in understanding heat transport in solids were recently reported by both experiment and theory. However an efficient and predictive quantum simulation framework to investigate thermal properties of solids, with the same complexity as classical simulations, has not yet been developed. Here we present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at close to equilibrium conditions, which only requires calculations of first-principles trajectories and atomic forces, thus avoiding direct computation of heat currents and energy densities. In addition the method requires much shorter sequential simulation times than ordinary molecular dynamics techniques, making it applicable within density functional theory. We discuss results for a representative oxide, MgO, at different temperatures and for ordered and nanostructured morphologies, showing the performance of the method in different conditions.

  9. Augmented potential, energy densities, and virial relations in the weak- and strong-interaction limits of DFT

    NASA Astrophysics Data System (ADS)

    Vuckovic, Stefan; Levy, Mel; Gori-Giorgi, Paola

    2017-12-01

    The augmented potential introduced by Levy and Zahariev [Phys. Rev. Lett. 113, 113002 (2014)] is shifted with respect to the standard exchange-correlation potential of the Kohn-Sham density functional theory by a density-dependent constant that makes the total energy become equal to the sum of the occupied orbital energies. In this work, we analyze several features of this approach, focusing on the limit of infinite coupling strength and studying the shift and the corresponding energy density at different correlation regimes. We present and discuss coordinate scaling properties of the augmented potential, study its connection to the response potential, and use the shift to analyze the classical jellium and uniform gas models. We also study other definitions of the energy densities in relation to the functional construction by local interpolations along the adiabatic connection. Our findings indicate that the energy density that is defined in terms of the electrostatic potential of the exchange-correlation hole is particularly well suited for this purpose.

  10. Effects of Structural Deformation and Tube Chirality on Electronic Conductance of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anantram, M. P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    A combination of large scale classical force-field (UFF), density functional theory (DFT), and tight-binding Green's function transport calculations is used to study the electronic properties of carbon nanotubes under the twist, bending, and atomic force microscope (AFM)-tip deformation. We found that in agreement with experiment a significant change in electronic conductance can be induced by AFM-tip deformation of metallic zigzag tubes and by twist deformation of armchair tubes. The effect is explained in terms of bandstructure change under deformation.

  11. Fundamental Theory of Crystal Decomposition

    DTIC Science & Technology

    1991-05-01

    rather than combine them as is often the case in a computation based on the density functional method.4 In the Case of a cluster embedded in a...classical lattice, special care needs to be taken to ensure that mathematical consistency is achieved between the cluster and the embedding lattice. This has...localizing potential or KKLP. Simulation of a large crystallite or an infinite lattice containing a point defect represented by a cluster and a

  12. Density functional theory based molecular dynamics study of hydration and electronic properties of aqueous La(3+).

    PubMed

    Terrier, Cyril; Vitorge, Pierre; Gaigeot, Marie-Pierre; Spezia, Riccardo; Vuilleumier, Rodolphe

    2010-07-28

    Structural and electronic properties of La(3+) immersed in bulk water have been assessed by means of density functional theory (DFT)-based Car-Parrinello molecular dynamics (CPMD) simulations. Correct structural properties, i.e., La(III)-water distances and La(III) coordination number, can be obtained within the framework of Car-Parrinello simulations providing that both the La pseudopotential and conditions of the dynamics (fictitious mass and time step) are carefully set up. DFT-MD explicitly treats electronic densities and is shown here to provide a theoretical justification to the necessity of including polarization when studying highly charged cations such as lanthanoids(III) with classical MD. La(3+) was found to strongly polarize the water molecules located in the first shell, giving rise to dipole moments about 0.5 D larger than those of bulk water molecules. Finally, analyzing Kohn-Sham orbitals, we found La(3+) empty 4f orbitals extremely compact and to a great extent uncoupled from the water conduction band, while the 5d empty orbitals exhibit mixing with unoccupied states of water.

  13. Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.

    PubMed

    Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas

    2017-01-17

    The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than being a function of the spin-up and spin-down densities. In work carried out so far, the multiconfigurational wave function is a multiconfiguration self-consistent-field wave function. The new formulation has the advantage that the reference wave function has the correct spatial and spin symmetry and can describe bond dissociation (of both single and multiple bonds) and electronic excitations in a formally and physically correct way. We then review the formulation of density functionals in terms of the on-top pair density. Finally we review successful applications of the theory to bond energies and bond dissociation potential energy curves of main-group and transition metal bonds, to barrier heights (including pericyclic reactions), to proton affinities, to the hydrogen bond energy of water dimer, to ground- and excited-state charge transfer, to valence and Rydberg excitations of molecules, and to singlet-triplet splittings of radicals. We find that that MC-PDFT can give accurate results not only with complete-active-space multiconfiguration wave functions but also with generalized-active-space multiconfiguration wave functions, which are practical for larger numbers of active electrons and active orbitals than are complete-active-space wave functions. The separated-pair approximation, which is a special case of generalized active space self-consistent-field theory, is especially promising. MC-PDFT, because it requires much less computer time and storage than pure WFT methods, has the potential to open larger and more complex strongly correlated systems to accurate simulation.

  14. Theory of the interface between a classical plasma and a hard wall

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Pastore, G.; Tosi, M. P.

    1983-09-01

    The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody selfconsistently into the theory a contact theorem, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. The interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.

  15. Theory of the interface between a classical plasma and a hard wall

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Pastore, G.; Tosi, M. P.

    1984-12-01

    The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a “contact theorem”, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.

  16. Spiers Memorial Lecture. Quantum chemistry: the first seventy years.

    PubMed

    McWeeny, Roy

    2007-01-01

    Present-day theoretical chemistry is rooted in Quantum Mechanics. The aim of the opening lecture is to trace the evolution of Quantum Chemistry from the Heitler-London paper of 1927 up to the end of the last century, emphasizing concepts rather than calculations. The importance of symmetry concepts became evident in the early years: one thinks of the necessary anti-symmetry of the wave function under electron permutations, the Pauli principle, the aufbau scheme, and the classification of spectroscopic states. But for chemists perhaps the key concept is embodied in the Hellmann-Feynman theorem, which provides a pictorial interpretation of chemical bonding in terms of classical electrostatic forces exerted on the nuclei by the electron distribution. Much of the lecture is concerned with various electron distribution functions--the electron density, the current density, the spin density, and other 'property densities'--and with their use in interpreting both molecular structure and molecular properties. Other topics touched upon include Response theory and propagators; Chemical groups in molecules and the group function approach; Atoms in molecules and Bader's theory; Electron correlation and the 'pair function'. Finally, some long-standing controversies, in particular the EPR paradox, are re-examined in the context of molecular dissociation. By admitting the concept of symmetry breaking, along with the use of the von Neumann-Dirac statistical ensemble, orthodox quantum mechanics can lead to a convincing picture of the dissociation mechanism.

  17. Quantum plasmonics: optical properties of a nanomatryushka.

    PubMed

    Kulkarni, Vikram; Prodan, Emil; Nordlander, Peter

    2013-01-01

    Quantum mechanical effects can significantly reduce the plasmon-induced field enhancements around nanoparticles. Here we present a quantum mechanical investigation of the plasmon resonances in a nanomatryushka, which is a concentric core-shell nanoparticle consisting of a solid metallic core encapsulated in a thin metallic shell. We compute the optical response using the time-dependent density functional theory and compare the results with predictions based on the classical electromagnetic theory. We find strong quantum mechanical effects for core-shell spacings below 5 Å, a regime where both the absorption cross section and the local field enhancements differ significantly from the classical predictions. We also show that the workfunction of the metal is a crucial parameter determining the onset and magnitude of quantum effects. For metals with lower workfunctions such as aluminum, the quantum effects are found to be significantly more pronounced than for a noble metal such as gold.

  18. More on Weinberg's no-go theorem in quantum gravity

    NASA Astrophysics Data System (ADS)

    Nagahama, Munehiro; Oda, Ichiro

    2018-05-01

    We complement Weinberg's no-go theorem on the cosmological constant problem in quantum gravity by generalizing it to the case of a scale-invariant theory. Our analysis makes use of the effective action and the BRST symmetry in a manifestly covariant quantum gravity instead of the classical Lagrangian density and the G L (4 ) symmetry in classical gravity. In this sense, our proof is very general since it does not depend on details of quantum gravity and holds true for general gravitational theories which are invariant under diffeomorphisms. As an application of our theorem, we comment on an idea that in the asymptotic safety scenario the functional renormalization flow drives a cosmological constant to zero, solving the cosmological constant problem without reference to fine tuning of parameters. Finally, we also comment on the possibility of extending the Weinberg theorem in quantum gravity to the case where the translational invariance is spontaneously broken.

  19. Metal Ion Modeling Using Classical Mechanics

    PubMed Central

    2017-01-01

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509

  20. High-pressure and high-temperature physical properties of LiF studied by density functional theory calculations and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Wei; Liu, Zi-Jiang; Quan, Wei-Long; Song, Ting; Khenata, Rabah; Bin-Omran, Saad

    2018-05-01

    Using the revised Perdew-Burke-Ernzerhof generalized gradient approximation based on first-principles plane-wave pseudopotential density functional theory, the high-pressure structural phase transition of LiF is explored. From the analysis of Gibbs free energies, we find that no phase transition occurs for LiF in the presented pressure range from 0 to 1000 GPa, and this result is consistent with the theoretical prediction obtained via ab initio calculations [N.A. Smirnov, Phys. Rev. B 83 (2011) 014109]. Using the classical molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction, the melting phase diagram of LiF is determined. The obtained normalized volumes under pressure are in good agreement with our density functional theory results and the available experimental data. Meanwhile, with the help of the quasi-harmonic Debye model in which the phononic effects are considered, the thermodynamic properties of interest, including the volume thermal expansion coefficient, isothermal bulk modulus and its first and second pressure derivatives, heat capacity at constant volume, entropy, Debye temperature, and Grüneisen parameter of LiF are predicted systematically. All the properties of LiF with the stable NaCl-type structure in the temperature range of 0-4900 K and the pressure up to 1000 GPa are summarized.

  1. Spectral densities for Frenkel exciton dynamics in molecular crystals: A TD-DFTB approach

    NASA Astrophysics Data System (ADS)

    Plötz, Per-Arno; Megow, Jörg; Niehaus, Thomas; Kühn, Oliver

    2017-02-01

    Effects of thermal fluctuations on the electronic excitation energies and intermonomeric Coulomb couplings are investigated for a perylene-tetracarboxylic-diimide crystal. To this end, time dependent density functional theory based tight binding (TD-DFTB) in the linear response formulation is used in combination with electronic ground state classical molecular dynamics. As a result, a parametrized Frenkel exciton Hamiltonian is obtained, with the effect of exciton-vibrational coupling being described by spectral densities. Employing dynamically defined normal modes, these spectral densities are analyzed in great detail, thus providing insight into the effect of specific intramolecular motions on excitation energies and Coulomb couplings. This distinguishes the present method from approaches using fixed transition densities. The efficiency by which intramolecular contributions to the spectral density can be calculated is a clear advantage of this method as compared with standard TD-DFT.

  2. On the transition from the quantum to the classical regime for massive scalar particles: A spatiotemporal approach

    NASA Astrophysics Data System (ADS)

    Lusanna, Luca; Pauri, Massimo

    2014-08-01

    If the classical structure of space-time is assumed to define an a priori scenario for the formulation of quantum theory (QT), the coordinate representation of the solutions of the Schroedinger equation of a quantum system containing one ( N) massive scalar particle has a preferred status. Let us consider all of the solutions admitting a multipolar expansion of the probability density function (and more generally of the Wigner function) around a space-time trajectory to be properly selected. For every normalized solution there is a privileged trajectory implying the vanishing of the dipole moment of the multipolar expansion: it is given by the expectation value of the position operator . Then, the special subset of solutions which satisfy Ehrenfest's Theorem (named thereby Ehrenfest monopole wave functions (EMWF)), have the important property that this privileged classical trajectory is determined by a closed Newtonian equation of motion where the effective force is the Newtonian force plus non-Newtonian terms (of order ħ 2 or higher) depending on the higher multipoles of the probability distribution ρ. Note that the superposition of two EMWFs is not an EMWF, a result to be strongly hoped for, given the possible unwanted implications concerning classical spatial perception. These results can be extended to N-particle systems in such a way that, when N classical trajectories with all the dipole moments vanishing and satisfying Ehrenfest theorem are associated with the normalized wave functions of the N-body system, we get a natural transition from the 3 N-dimensional configuration space to the space-time. Moreover, these results can be extended to relativistic quantum mechanics. Consequently, in suitable states of N quantum particle which are EMWF, we get the "emergence" of corresponding "classical particles" following Newton-like trajectories in space-time. Note that all this holds true in the standard framework of quantum mechanics, i.e. assuming, in particular, the validity of Born's rule and the individual system interpretation of the wave function (no ensemble interpretation). These results are valid without any approximation (like ħ → 0, big quantum numbers, etc.). Moreover, we do not commit ourselves to any specific ontological interpretation of quantum theory (such as, e.g., the Bohmian one). We will argue that, in substantial agreement with Bohr's viewpoint, the macroscopic description of the preparation, certain intermediate steps and the detection of the final outcome of experiments involving massive particles are dominated by these classical "effective" trajectories. This approach can be applied to the point of view of de-coherence in the case of a diagonal reduced density matrix ρ red (an improper mixture) depending on the position variables of a massive particle and of a pointer. When both the particle and the pointer wave functions appearing in ρ red are EMWF, the expectation value of the particle and pointer position variables becomes a statistical average on a classical ensemble. In these cases an improper quantum mixture becomes a classical statistical one, thus providing a particular answer to an open problem of de-coherence about the emergence of classicality.

  3. General framework for fluctuating dynamic density functional theory

    NASA Astrophysics Data System (ADS)

    Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim

    2017-12-01

    We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier-Stokes equations, originally derived by Landau and Lifshitz. Our framework thus provides the formal apparatus for ab initio derivations of fluctuating DDFT equations capable of describing the dynamics of soft-matter systems in and out of equilibrium.

  4. Linear and angular coherence momenta in the classical second-order coherence theory of vector electromagnetic fields.

    PubMed

    Wang, Wei; Takeda, Mitsuo

    2006-09-01

    A new concept of vector and tensor densities is introduced into the general coherence theory of vector electromagnetic fields that is based on energy and energy-flow coherence tensors. Related coherence conservation laws are presented in the form of continuity equations that provide new insights into the propagation of second-order correlation tensors associated with stationary random classical electromagnetic fields.

  5. Nonequilibrium phase transitions of sheared colloidal microphases: Results from dynamical density functional theory

    NASA Astrophysics Data System (ADS)

    Stopper, Daniel; Roth, Roland

    2018-06-01

    By means of classical density functional theory and its dynamical extension, we consider a colloidal fluid with spherically symmetric competing interactions, which are well known to exhibit a rich bulk phase behavior. This includes complex three-dimensional periodically ordered cluster phases such as lamellae, two-dimensional hexagonally packed cylinders, gyroid structures, or spherical micelles. While the bulk phase behavior has been studied extensively in earlier work, in this paper we focus on such structures confined between planar repulsive walls under shear flow. For sufficiently high shear rates, we observe that microphase separation can become fully suppressed. For lower shear rates, however, we find that, e.g., the gyroid structure undergoes a kinetic phase transition to a hexagonally packed cylindrical phase, which is found experimentally and theoretically in amphiphilic block copolymer systems. As such, besides the known similarities between the latter and colloidal systems regarding the equilibrium phase behavior, our work reveals further intriguing nonequilibrium relations between copolymer melts and colloidal fluids with competing interactions.

  6. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard, E-mail: elliot1@uakron.edu

    2014-07-14

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A newmore » chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory reproduces the excess accumulation of ethane at the interface.« less

  7. Quantum Effects on the Capacitance of Graphene-Based Electrodes

    DOE PAGES

    Zhan, Cheng; Neal, Justin; Wu, Jianzhong; ...

    2015-09-08

    We recently measured quantum capacitance for electric double layers (EDL) at electrolyte/graphene interfaces. However, the importance of quantum capacitance in realistic carbon electrodes is not clear. Toward understanding that from a theoretical perspective, here we studied the quantum capacitance and total capacitance of graphene electrodes as a function of the number of graphene layers. The quantum capacitance was obtained from electronic density functional theory based on fixed band approximation with an implicit solvation model, while the EDL capacitances were from classical density functional theory. We found that quantum capacitance plays a dominant role in total capacitance of the single-layer graphenemore » both in aqueous and ionic-liquid electrolytes but the contribution decreases as the number of graphene layers increases. Moreover, the total integral capacitance roughly levels off and is dominated by the EDL capacitance beyond about four graphene layers. Finally, because many porous carbons have nanopores with stacked graphene layers at the surface, this research provides a good estimate of the effect of quantum capacitance on their electrochemical performance.« less

  8. Optical Properties of Free and Embedded Small Nanoparticles

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan

    2008-03-01

    It is well known that the absorption spectra, as well as the effective dielectric function, of nanoparticles in vacuum or surrounded by a dielectric medium can be obtained by classical Mie and Maxwell-Garnett theories. A limit as to how the particles can be for the theory to apply has not been established. Here I present theoretical results on the optical properties of small Ag, Au, and Si and Ge nanoparticles with tens of atoms in vacuum and in an embedded dielectric medium obtained from first-principles density-functional calculations. In particular, I will discuss the role that d-electron play on the optical properties of Ag and Au nanoparticles, and the cases when classical Mie and Maxwell-Garnett theories can be applied for nanoparticles of just few atoms in size and whose atoms are in bulk-like and not bulk-like positions. Comparison will be made for nanoparticles in vacuum and embedded in an alumina matrix. The quantum-mechanical results indicate that small nanoparticles in alumina can have an imprint on the effective dielectric function that is several times larger than would be predicted by Maxwell-Garnett theory for same-size particles. This work was supported by a GOALI NSF grant, DOE, the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and Alcoa Inc. Collaborators: S. ögüt, K. Jackson, J. Jellinek, A. Halabica. R. F. Haglund, R. Magruder, S.J. Pennycook and S.T. Pantelides.

  9. The evolving Planck mass in classically scale-invariant theories

    NASA Astrophysics Data System (ADS)

    Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.

    2017-04-01

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.

  10. On the classic and modern theories of matching.

    PubMed

    McDowell, J J

    2005-07-01

    Classic matching theory, which is based on Herrnstein's (1961) original matching equation and includes the well-known quantitative law of effect, is almost certainly false. The theory is logically inconsistent with known experimental findings, and experiments have shown that its central constant-k assumption is not tenable. Modern matching theory, which is based on the power function version of the original matching equation, remains tenable, although it has not been discussed or studied extensively. The modern theory is logically consistent with known experimental findings, it predicts the fact and details of the violation of the classic theory's constant-k assumption, and it accurately describes at least some data that are inconsistent with the classic theory.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William H.; Cotton, Stephen J.

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory - e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer valuesmore » of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states - and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.« less

  12. Computational design of surfaces, nanostructures and optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of the materials to ensure that no spurious phases had a lower cohesive energy. Thirdly, lanthanide doped and co-doped Y3Al5O 12 were examined using density functional theory (DFT) with semi-local and local functional. Theoretical results were compared and validated with experimental data and new co-doped materials with high efficiency were predicted. Finally, Transition element doped CH3NH3PbI3 were studied with DFT for validation of the model with experimental data and replacement materials for toxic Pb were predicted.

  13. Role of four-membered rings in C32 fullerene stability and mechanisms of generalized Stone-Wales transformation: a density functional theory investigation.

    PubMed

    Wang, Weiwei; Dang, Jingshuang; Zhao, Xiang

    2011-08-28

    Density functional theory (DFT) methods have been applied to study C(32) fullerenes built from four-, five-, and six-membered rings. The relative energies of pure C(32) fullerenes have been evaluated to locate three most stable structures, 32:D(4d) with two squares, 1:D(3) without square and 5:C(s) with one square. Structural analysis reveals that there is a rearrangement pathway between the lowest energy classical isomer 1:D(3) and the lowest energy non-classical isomer 32:D(4d), and 5:C(s) behaves just as an intermediate between them. The kinetic processes of generalized Stone-Wales transformation (GSWT) with four-membered rings have been explored and two distinct reaction mechanisms are determined by all the transition states and intrinsic reaction coordinates with PBE1PBE/6-31G(d) approach for the first time. One mechanism is the concerted reaction with a rotating dimer closed to the cage surface and another is the stepwise reaction with a carbene-like sp(3) structure, whereas the latter is sorted into two paths based on four-membered ring vanishing before or after the formation of the carbene-like structure. It is indicated that there is no absolute preference for any mechanism, which depends on the adaptability of different reactants on the diverse mechanisms. Furthermore, it's found that the interconversion process with the participation of squares is more reactive than the rearrangement between C(60)_I(h) and C(60)_C(2v), implying some potential importance of non-classical small fullerenes in the fullerene isomerization.

  14. Multiscale Experimental and Theoretical Investigations of Spin Crossover FeII Complexes: Examples of [Fe(phen)2(NCS)2] and [Fe(PM-BiA)2(NCS)2

    PubMed Central

    Matar, Samir F.; Guionneau, Philippe; Chastanet, Guillaume

    2015-01-01

    For spin crossover (SCO) complexes, computation results are reported and confirmed with experiments at multiscale levels of the isolated molecule and extended solid on the one hand and theory on the other hand. The SCO phenomenon which characterizes organometallics based on divalent iron in an octahedral FeN6-like environment with high spin (HS) and low spin (LS) states involves the LS/HS switching at the cost of small energies provided by temperature, pressure or light, the latter connected with Light-Induced Excited Spin-State Trapping (LIESST) process. Characteristic infra red (IR) and Raman vibration frequencies are computed within density functional theory (DFT) framework. In [Fe(phen)2(NCS)2] a connection of selected frequencies is established with an ultra-fast light-induced LS → HS photoswitching mechanism. In the extended solid, density of state DOS and electron localization function (ELF) are established for both LS and HS forms, leading to characterizion of the compound as an insulator in both spin states with larger gaps for LS configuration, while keeping molecular features in the solid. In [Fe(PM-BiA)2(NCS)2], by combining DFT and classical molecular dynamics, the properties and the domains of existence of the different phases are obtained by expressing the potential energy surfaces in a short range potential for Fe–N interactions. Applying such Fe–N potentials inserted in a classical force field and carrying out molecular dynamics (MD) in so-called “semi-classical MD” calculations, lead to the relative energies of HS/LS configurations of the crystal and to the assessment of the experimental (P, T) phase diagram. PMID:25686037

  15. π-π stacking tackled with density functional theory

    PubMed Central

    Swart, Marcel; van der Wijst, Tushar; Fonseca Guerra, Célia

    2007-01-01

    Through comparison with ab initio reference data, we have evaluated the performance of various density functionals for describing π-π interactions as a function of the geometry between two stacked benzenes or benzene analogs, between two stacked DNA bases, and between two stacked Watson–Crick pairs. Our main purpose is to find a robust and computationally efficient density functional to be used specifically and only for describing π-π stacking interactions in DNA and other biological molecules in the framework of our recently developed QM/QM approach "QUILD". In line with previous studies, most standard density functionals recover, at best, only part of the favorable stacking interactions. An exception is the new KT1 functional, which correctly yields bound π-stacked structures. Surprisingly, a similarly good performance is achieved with the computationally very robust and efficient local density approximation (LDA). Furthermore, we show that classical electrostatic interactions determine the shape and depth of the π-π stacking potential energy surface. Figure Additivity approximation for the π-π interaction between two stacked Watson–Crick base pairs in terms of pairwise interactions between individual bases Electronic supplementary material The online version of this article (doi:10.1007/s00894-007-0239-y) contains supplementary material, which is available to authorized users. PMID:17874150

  16. Electronic Transport Through Carbon Nanotubes: Effects of Structural Deformation and the Tube Chirality

    NASA Technical Reports Server (NTRS)

    Maiti, Amitesh; Svizhenko, Alexei; Anantram, M. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Atomistic simulations using a combination of classical force field and Density-Functional-Theory (DFT) show that carbon atoms remain essentially sp2 coordinated in either bent tubes or tubes pushed by an atomically sharp AFM tip. Subsequent Green's-function-based transport calculations reveal that for armchair tubes there is no significant drop in conductance, while for zigzag tubes the conductance can drop by several orders of magnitude in AFM-pushed tubes. The effect can be attributed to simple stretching of the tube under tip deformation, which opens up an energy gap at the Fermi surface.

  17. First Principles Optical Absorption Spectra of Organic Molecules Adsorbed on Titania Nanoparticles

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol; Ogut, Serdar; Mete, Ersen; Gulseren, Oguz; Ellialtioglu, Sinasi

    2012-02-01

    We present results from first principles computations on passivated rutile TiO2 nanoparticles in both free-standing and dye-sensitized configurations to investigate the size dependence of their optical absorption spectra. The computations are performed using time-dependent density functional theory (TDDFT) as well as GW-Bethe-Salpeter-Equation (GWBSE) methods and compared with each other. We interpret the first principles spectra for free-standing TiO2 nanoparticles within the framework of the classical Mie-Gans theory using the bulk dielectric function of TiO2. We investigate the effects of the titania support on the absorption spectra of a particular set of perylene-diimide (PDI) derived dye molecules, namely brominated PDI (Br2C24H8N2O4) and its glycine and aspartine derivatives.

  18. First-Principles Molecular Dynamics Simulations of NaCl in Water: Performance of Advanced Exchange-Correlation Approximations in Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Yao, Yi; Kanai, Yosuke

    Our ability to correctly model the association of oppositely charged ions in water is fundamental in physical chemistry and essential to various technological and biological applications of molecular dynamics (MD) simulations. MD simulations using classical force fields often show strong clustering of NaCl in the aqueous ionic solutions as a consequence of a deep contact pair minimum in the potential of mean force (PMF) curve. First-Principles Molecular Dynamics (FPMD) based on Density functional theory (DFT) with the popular PBE exchange-correlation approximation, on the other hand, show a different result with a shallow contact pair minimum in the PMF. We employed two of most promising exchange-correlation approximations, ωB97xv by Mardiorossian and Head-Gordon and SCAN by Sun, Ruzsinszky and Perdew, to examine the PMF using FPMD simulations. ωB97xv is highly empirically and optimized in the space of range-separated hybrid functional with a dispersion correction while SCAN is the most recent meta-GGA functional that is constructed by satisfying various known conditions in well-defined physical limits. We will discuss our findings for PMF, charge transfer, water dipoles, etc.

  19. Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.

    PubMed

    Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali

    2017-10-05

    Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.

  20. A multiscale quasi-continuum theory to determine thermodynamic properties of fluid mixtures in nanochannels

    NASA Astrophysics Data System (ADS)

    Motevaselian, Mohammad Hossein; Mashayak, Sikandar Y.; Aluru, Narayana R.

    2015-11-01

    We present an empirical potential-based quasi-continuum theory (EQT) that seamlessly integrates the interatomic potentials into a continuum framework such as the Nernst-Planck equation. EQT is a simple and fast approach, which provides accurate predictions of potential of mean force (PMF) and density distribution of confined fluids at multiple length-scales, ranging from few Angstroms to macro meters. The EQT potentials can be used to construct the excess free energy functional in the classical density functional theory (cDFT). The combination of EQT and cDFT (EQT-cDFT), allows one to predict the thermodynamic properties of confined fluids. Recently, the EQT-cDFT framework was developed for single component LJ fluids confined in slit-like graphene channels. In this work, we extend the framework to confined LJ fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen molecules inside slit-like graphene channels. We show that the EQT-cDFT predictions for the structure of the confined fluid mixture compare well with the MD simulations. In addition, our results show that graphene nanochannels exhibit a selective adsorption of methane over hydrogen.

  1. Capillary waves and the decay of density correlations at liquid surfaces

    NASA Astrophysics Data System (ADS)

    Hernández-Muñoz, Jose; Chacón, Enrique; Tarazona, Pedro

    2016-12-01

    Wertheim predicted strong density-density correlations at free liquid surfaces, produced by capillary wave fluctuations of the interface [M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976), 10.1063/1.433352]. That prediction has been used to search for a link between capillary wave (CW) theory and density functional (DF) formalism for classical fluids. In particular, Parry et al. have recently analyzed the decaying tails of these CW effects moving away from the interface as a clue for the extended CW theory [A. O. Parry et al., J. Phys.: Condens. Matter 28, 244013 (2016), 10.1088/0953-8984/28/24/244013], beyond the strict long-wavelength limit studied by Wertheim. Some apparently fundamental inconsistencies between the CW and the DF theoretical views of the fluid interfaces arose from the asymptotic analysis of the CW signal. In this paper we revisit the problem of the CW asymptotic decay with a separation of local non-CW surface correlation effects from those that are a truly nonlocal propagation of the CW fluctuations from the surface towards the liquid bulk.

  2. The standard mean-field treatment of inter-particle attraction in classical DFT is better than one might expect

    NASA Astrophysics Data System (ADS)

    Archer, Andrew J.; Chacko, Blesson; Evans, Robert

    2017-07-01

    In classical density functional theory (DFT), the part of the Helmholtz free energy functional arising from attractive inter-particle interactions is often treated in a mean-field or van der Waals approximation. On the face of it, this is a somewhat crude treatment as the resulting functional generates the simple random phase approximation (RPA) for the bulk fluid pair direct correlation function. We explain why using standard mean-field DFT to describe inhomogeneous fluid structure and thermodynamics is more accurate than one might expect based on this observation. By considering the pair correlation function g(x) and structure factor S(k) of a one-dimensional model fluid, for which exact results are available, we show that the mean-field DFT, employed within the test-particle procedure, yields results much superior to those from the RPA closure of the bulk Ornstein-Zernike equation. We argue that one should not judge the quality of a DFT based solely on the approximation it generates for the bulk pair direct correlation function.

  3. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    PubMed

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  4. Explanation of the unusual temperature dependence of the atmospherically important OH + H(2)S --> H(2)O + HS reaction and prediction of the rate constant at combustion temperatures.

    PubMed

    Ellingson, Benjamin A; Truhlar, Donald G

    2007-10-24

    Rate constants for the OH + H2S --> H2O + HS reaction, which is important for both atmospheric chemistry and combustion, are calculated by direct dynamics with the M06-2X density functional using the MG3S basis set. Energetics are compared to high-level MCG3/3//MC-QCISD/3 wave function theory and to results obtained by other density functionals. We employ canonical variational transition-state theory with multidimensional tunneling contributions and scaled generalized normal-mode frequencies evaluated in redundant curvilinear coordinates with anharmonicity included in the torsion. The transition state has a quantum mechanically distinguishable, nonsuperimposable mirror image that corresponds to a separate classical reaction path; the effect of the multiple paths is examined through use of a symmetry number and by torsional methods. Calculations with the reference-potential Pitzer-Gwinn treatment of the torsional mode agree with experiment, within experimental scatter, and predict a striking temperature dependence of the activation energy, increasing from -0.1 kcal/mol at 200 K to 0.2, 1.0, 3.4, and 9.8 kcal/mol at 300, 500, 1000, and 2400 K. The unusual temperature dependence arises from a dynamical bottleneck at an energy below reactants, following an addition complex on the reaction path with a classical binding energy of 4.4 kcal/mol. As a way to check the mechanism, kinetic isotope effects of the OH + D2S and OD + D2S reactions have been predicted.

  5. Density-Functional Theory with Dispersion-Correcting Potentials for Methane: Bridging the Efficiency and Accuracy Gap between High-Level Wave Function and Classical Molecular Mechanics Methods.

    PubMed

    Torres, Edmanuel; DiLabio, Gino A

    2013-08-13

    Large clusters of noncovalently bonded molecules can only be efficiently modeled by classical mechanics simulations. One prominent challenge associated with this approach is obtaining force-field parameters that accurately describe noncovalent interactions. High-level correlated wave function methods, such as CCSD(T), are capable of correctly predicting noncovalent interactions, and are widely used to produce reference data. However, high-level correlated methods are generally too computationally costly to generate the critical reference data required for good force-field parameter development. In this work we present an approach to generate Lennard-Jones force-field parameters to accurately account for noncovalent interactions. We propose the use of a computational step that is intermediate to CCSD(T) and classical molecular mechanics, that can bridge the accuracy and computational efficiency gap between them, and demonstrate the efficacy of our approach with methane clusters. On the basis of CCSD(T)-level binding energy data for a small set of methane clusters, we develop methane-specific, atom-centered, dispersion-correcting potentials (DCPs) for use with the PBE0 density-functional and 6-31+G(d,p) basis sets. We then use the PBE0-DCP approach to compute a detailed map of the interaction forces associated with the removal of a single methane molecule from a cluster of eight methane molecules and use this map to optimize the Lennard-Jones parameters for methane. The quality of the binding energies obtained by the Lennard-Jones parameters we obtained is assessed on a set of methane clusters containing from 2 to 40 molecules. Our Lennard-Jones parameters, used in combination with the intramolecular parameters of the CHARMM force field, are found to closely reproduce the results of our dispersion-corrected density-functional calculations. The approach outlined can be used to develop Lennard-Jones parameters for any kind of molecular system.

  6. Interaction between benzenedithiolate and gold: Classical force field for chemical bonding

    NASA Astrophysics Data System (ADS)

    Leng, Yongsheng; Krstić, Predrag S.; Wells, Jack C.; Cummings, Peter T.; Dean, David J.

    2005-06-01

    We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as ˜100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.

  7. Interaction between benzenedithiolate and gold: classical force field for chemical bonding.

    PubMed

    Leng, Yongsheng; Krstić, Predrag S; Wells, Jack C; Cummings, Peter T; Dean, David J

    2005-06-22

    We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as approximately 100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.

  8. Qubit dephasing due to low-frequency noise.

    NASA Astrophysics Data System (ADS)

    Sverdlov, Victor; Rabenstein, Kristian; Averin, Dmitri

    2004-03-01

    We have numerically investigated the effects of the classical low-frequency noise on the qubit dynamics beyond the standard lowest-order perturbation theory in coupling. Noise is generated as a random process with a correlation function characterized by two parameters, the amplitude v0 and the cut-off frequency 2π/τ. Time evolution of the density matrix was averaged over up to 10^7 noise realizations. Contrary to the relaxation time T_1, which for v_0<ω, where ω is the qubit oscillation frequency, is always given correctly by the ``golden-rule'' expression, the dephasing time deviates from the perturbation-theory result, when (v_0/ω)^2(ωτ) ≥1. In this regime, even for unbiased qubit for which the pure dephasing vanishes in perturbation theory, the dephasing is much larger than it's perturbation-theory value 1/(2 T_1).

  9. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahms, Rainer N.

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized whichmore » determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. As a result, the significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.« less

  10. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahms, Rainer N., E-mail: Rndahms@sandia.gov

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized whichmore » determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. The significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.« less

  11. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    DOE PAGES

    Dahms, Rainer N.

    2016-04-26

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized whichmore » determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. As a result, the significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.« less

  12. Quantum and classical behavior in interacting bosonic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzberg, Mark P.

    It is understood that in free bosonic theories, the classical field theory accurately describes the full quantum theory when the occupancy numbers of systems are very large. However, the situation is less understood in interacting theories, especially on time scales longer than the dynamical relaxation time. Recently there have been claims that the quantum theory deviates spectacularly from the classical theory on this time scale, even if the occupancy numbers are extremely large. Furthermore, it is claimed that the quantum theory quickly thermalizes while the classical theory does not. The evidence for these claims comes from noticing a spectacular differencemore » in the time evolution of expectation values of quantum operators compared to the classical micro-state evolution. If true, this would have dramatic consequences for many important phenomena, including laboratory studies of interacting BECs, dark matter axions, preheating after inflation, etc. In this work we critically examine these claims. We show that in fact the classical theory can describe the quantum behavior in the high occupancy regime, even when interactions are large. The connection is that the expectation values of quantum operators in a single quantum micro-state are approximated by a corresponding classical ensemble average over many classical micro-states. Furthermore, by the ergodic theorem, a classical ensemble average of local fields with statistical translation invariance is the spatial average of a single micro-state. So the correlation functions of the quantum and classical field theories of a single micro-state approximately agree at high occupancy, even in interacting systems. Furthermore, both quantum and classical field theories can thermalize, when appropriate coarse graining is introduced, with the classical case requiring a cutoff on low occupancy UV modes. We discuss applications of our results.« less

  13. Density-functional theory for internal magnetic fields

    NASA Astrophysics Data System (ADS)

    Tellgren, Erik I.

    2018-01-01

    A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.

  14. Communication: Correct charge transfer in CT complexes from the Becke'05 density functional

    NASA Astrophysics Data System (ADS)

    Becke, Axel D.; Dale, Stephen G.; Johnson, Erin R.

    2018-06-01

    It has been known for over twenty years that density functionals of the generalized-gradient approximation (GGA) type and exact-exchange-GGA hybrids with low exact-exchange mixing fraction yield enormous errors in the properties of charge-transfer (CT) complexes. Manifestations of this error have also plagued computations of CT excitation energies. GGAs transfer far too much charge in CT complexes. This error has therefore come to be called "delocalization" error. It remains, to this day, a vexing unsolved problem in density-functional theory (DFT). Here we report that a 100% exact-exchange-based density functional known as Becke'05 or "B05" [A. D. Becke, J. Chem. Phys. 119, 2972 (2003); 122, 064101 (2005)] predicts excellent charge transfers in classic CT complexes involving the electron donors NH3, C2H4, HCN, and C2H2 and electron acceptors F2 and Cl2. Our approach is variational, as in our recent "B05min" dipole moments paper [Dale et al., J. Chem. Phys. 147, 154103 (2017)]. Therefore B05 is not only an accurate DFT for thermochemistry but is promising as a solution to the delocalization problem as well.

  15. New general pore size distribution model by classical thermodynamics application: Activated carbon

    USGS Publications Warehouse

    Lordgooei, M.; Rood, M.J.; Rostam-Abadi, M.

    2001-01-01

    A model is developed using classical thermodynamics to characterize pore size distributions (PSDs) of materials containing micropores and mesopores. The thermal equation of equilibrium adsorption (TEEA) is used to provide thermodynamic properties and relate the relative pore filling pressure of vapors to the characteristic pore energies of the adsorbent/adsorbate system for micropore sizes. Pore characteristic energies are calculated by averaging of interaction energies between adsorbate molecules and adsorbent pore walls as well as considering adsorbate-adsorbate interactions. A modified Kelvin equation is used to characterize mesopore sizes by considering variation of the adsorbate surface tension and by excluding the adsorbed film layer for the pore size. The modified-Kelvin equation provides similar pore filling pressures as predicted by density functional theory. Combination of these models provides a complete PSD of the adsorbent for the micropores and mesopores. The resulting PSD is compared with the PSDs from Jaroniec and Choma and Horvath and Kawazoe models as well as a first-order approximation model using Polanyi theory. The major importance of this model is its basis on classical thermodynamic properties, less simplifying assumptions in its derivation compared to other methods, and ease of use.

  16. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  17. Neo-classical theory of competition or Adam Smith's hand as mathematized ideology

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2001-10-01

    Orthodox economic theory (utility maximization, rational agents, efficient markets in equilibrium) is based on arbitrarily postulated, nonempiric notions. The disagreement between economic reality and a key feature of neo-classical economic theory was criticized empirically by Osborne. I show that the orthodox theory is internally self-inconsistent for the very reason suggested by Osborne: lack of invertibility of demand and supply as functions of price to obtain price as functions of supply and demand. The reason for the noninvertibililty arises from nonintegrable excess demand dynamics, a feature of their theory completely ignored by economists.

  18. Influence of ion pairing in ionic liquids on electrical double layer structures and surface force using classical density functional approach.

    PubMed

    Ma, Ke; Forsman, Jan; Woodward, Clifford E

    2015-05-07

    We explore the influence of ion pairing in room temperature ionic liquids confined by planar electrode surfaces. Using a coarse-grained model for the aromatic ionic liquid [C4MIM(+)][BF4 (-)], we account for an ion pairing component as an equilibrium associating species within a classical density functional theory. We investigated the resulting structure of the electrical double layer as well as the ensuing surface forces and differential capacitance, as a function of the degree of ion association. We found that the short-range structure adjacent to surfaces was remarkably unaffected by the degree of ion pairing, up to several molecular diameters. This was even the case for 100% of ions being paired. The physical implications of ion pairing only become apparent in equilibrium properties that depend upon the long-range screening of charges, such as the asymptotic behaviour of surface forces and the differential capacitance, especially at low surface potential. The effect of ion pairing on capacitance is consistent with their invocation as a source of the anomalous temperature dependence of the latter. This work shows that ion pairing effects on equilibrium properties are subtle and may be difficult to extract directly from simulations.

  19. Multiscale Electrodynamics/Time-Dependent Density Functional Theory Modeling of Coupled Plasmon/Molecule Excitations

    NASA Astrophysics Data System (ADS)

    Lopata, Kenneth; Smith, Holden

    The coupled dynamics of molecular chromophores and plasmons at surface of metal nanostructures are important for a range of processes such as molecular sensing, light harvesting, and near-field photochemistry. Modeling these dynamics from first principles, however, is challenging, as the large system sizes precludes a purely quantum mechanical treatment. In this talk I will present an approach based on propagating the plasmonic currents and fields using electrodynamics (finite-difference time-domain) with each chromophore described using an isolated quantum sub-region embedded in the overall classical background. This approach can be readily parallelized over these quantum regions, which enables large multiscale simulations of tens or hundreds of dyes, each of which is described individually by real-time time-dependent density functional theory. Application to gold nanoparticles coated with malachite green and rhodamine 6G monolayers shows good agreement with experimentally measured coupling spectra, including the polariton peaks, as well as the plasmon and molecular depletions. This research was supported by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  20. Counterintuitive electron localisation from density-functional theory with polarisable solvent models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Stephen G., E-mail: sdale@ucmerced.edu; Johnson, Erin R., E-mail: erin.johnson@dal.ca

    2015-11-14

    Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minimamore » thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed.« less

  1. Quantum-like model of processing of information in the brain based on classical electromagnetic field.

    PubMed

    Khrennikov, Andrei

    2011-09-01

    We propose a model of quantum-like (QL) processing of mental information. This model is based on quantum information theory. However, in contrast to models of "quantum physical brain" reducing mental activity (at least at the highest level) to quantum physical phenomena in the brain, our model matches well with the basic neuronal paradigm of the cognitive science. QL information processing is based (surprisingly) on classical electromagnetic signals induced by joint activity of neurons. This novel approach to quantum information is based on representation of quantum mechanics as a version of classical signal theory which was recently elaborated by the author. The brain uses the QL representation (QLR) for working with abstract concepts; concrete images are described by classical information theory. Two processes, classical and QL, are performed parallely. Moreover, information is actively transmitted from one representation to another. A QL concept given in our model by a density operator can generate a variety of concrete images given by temporal realizations of the corresponding (Gaussian) random signal. This signal has the covariance operator coinciding with the density operator encoding the abstract concept under consideration. The presence of various temporal scales in the brain plays the crucial role in creation of QLR in the brain. Moreover, in our model electromagnetic noise produced by neurons is a source of superstrong QL correlations between processes in different spatial domains in the brain; the binding problem is solved on the QL level, but with the aid of the classical background fluctuations. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Classical Field Theory and the Stress-Energy Tensor

    NASA Astrophysics Data System (ADS)

    Swanson, Mark S.

    2015-09-01

    This book is a concise introduction to the key concepts of classical field theory for beginning graduate students and advanced undergraduate students who wish to study the unifying structures and physical insights provided by classical field theory without dealing with the additional complication of quantization. In that regard, there are many important aspects of field theory that can be understood without quantizing the fields. These include the action formulation, Galilean and relativistic invariance, traveling and standing waves, spin angular momentum, gauge invariance, subsidiary conditions, fluctuations, spinor and vector fields, conservation laws and symmetries, and the Higgs mechanism, all of which are often treated briefly in a course on quantum field theory. The variational form of classical mechanics and continuum field theory are both developed in the time-honored graduate level text by Goldstein et al (2001). An introduction to classical field theory from a somewhat different perspective is available in Soper (2008). Basic classical field theory is often treated in books on quantum field theory. Two excellent texts where this is done are Greiner and Reinhardt (1996) and Peskin and Schroeder (1995). Green's function techniques are presented in Arfken et al (2013).

  3. Many-Body Theory of Pyrochlore Iridates and Related Materials

    NASA Astrophysics Data System (ADS)

    Wang, Runzhi

    In this thesis we focus on two problems. First we propose a numerical method for generating optimized Wannier functions with desired properties. Second we perform the state of the art density functional plus dynamical mean-field calculations in pyrochlore iridates, to investigate the physics induced by the cooperation of spin-orbit coupling and electron correlation. We begin with the introduction for maximally localized Wannier functions and other related extensions. Then we describe the current research in the field of spin-orbit coupling and its interplay with correlation effects, followed by a brief introduction of the `hot' materials of iridates. Before the end of the introduction, we discuss the numerical methods employed in our work, including the density functional theory; dynamical mean-field theory and its combination with the exact diagonalization impurity solver. Then we propose our approach for constructing an optimized set of Wannier functions, which is a generalization of the functionality of the classic maximal localization method put forward by Marzari and Vanderbilt. Our work is motivated by the requirement of the effective description of the local subspace of the Hamiltonian by the beyond density functional theory methods. In extensions of density functional theory such as dynamical mean-field theory, one may want highly accurate description of particular local orbitals, including correct centers and symmetries; while the basis for the remaining degrees of freedom is unimportant. Therefore, we develop the selectively localized Wannier function approach which allows for a greater localization in the selected subset of Wannier functions and at the same time allows us to fix the centers and ensure the point symmetries. Applications in real materials are presented to demonstrate the power of our approach. Next we move to the investigation of pyrochlore iridates, focussing on the metal-insulator transition and material dependence in these compounds. We perform combined density functional plus dynamical mean-field calculations in Lu2Ir2O7, Y2Ir2O 7, Eu2Ir2O7, with spin-orbit coupling included and both single-site and cluster approximations appiled. A broad range of Weyl metal is predicted as the intervening phase in the metal-insulator transition. By comparing to experiments, we find that the single-site approximation fails to predict the gap values and substantial difference between the Y and Eu-compound, demonstrating the inadequacy of this approximation and indicating the key role played by the intersite effects. Finally, we provide a more accurate description of the vicinity of the metal-insulator and topological transitions implied by density functional plus cluster dynamical mean-field calculations of pyrochlore iridates. We find definitive evidence of the Weyl semimetal phase, the electronic structure of which can be approximately described as ``Weyl rings" with an extremely flat dispersion of one of the Weyl bands. This Weyl semimetal phase is further investigated by the k • p analysis fitting to the numerical results. We find that this unusual structure leads to interesting behavior in the optical conductivity including a Hall effect in the interband component, and to an enhanced susceptibility.

  4. Quantum theory of multiscale coarse-graining.

    PubMed

    Han, Yining; Jin, Jaehyeok; Wagner, Jacob W; Voth, Gregory A

    2018-03-14

    Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.

  5. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    PubMed

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-07

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.

  6. Integrating multiple fitting regression and Bayes decision for cancer diagnosis with transcriptomic data from tumor-educated blood platelets.

    PubMed

    Huang, Guangzao; Yuan, Mingshun; Chen, Moliang; Li, Lei; You, Wenjie; Li, Hanjie; Cai, James J; Ji, Guoli

    2017-10-07

    The application of machine learning in cancer diagnostics has shown great promise and is of importance in clinic settings. Here we consider applying machine learning methods to transcriptomic data derived from tumor-educated platelets (TEPs) from individuals with different types of cancer. We aim to define a reliability measure for diagnostic purposes to increase the potential for facilitating personalized treatments. To this end, we present a novel classification method called MFRB (for Multiple Fitting Regression and Bayes decision), which integrates the process of multiple fitting regression (MFR) with Bayes decision theory. MFR is first used to map multidimensional features of the transcriptomic data into a one-dimensional feature. The probability density function of each class in the mapped space is then adjusted using the Gaussian probability density function. Finally, the Bayes decision theory is used to build a probabilistic classifier with the estimated probability density functions. The output of MFRB can be used to determine which class a sample belongs to, as well as to assign a reliability measure for a given class. The classical support vector machine (SVM) and probabilistic SVM (PSVM) are used to evaluate the performance of the proposed method with simulated and real TEP datasets. Our results indicate that the proposed MFRB method achieves the best performance compared to SVM and PSVM, mainly due to its strong generalization ability for limited, imbalanced, and noisy data.

  7. Socio-Demographic Determinants of Economic Growth: Age-Structure, Preindustrial Heritage and Sociolinguistic Integration

    ERIC Educational Resources Information Center

    Crenshaw, Edward; Robison, Kristopher

    2010-01-01

    This study establishes a socio-demographic theory of international development derived from selected classical and contemporary sociological theories. Four hypotheses are tested: (1. population growth's effect on development depends on age-structure; (2. historic population density (used here as an indicator of preindustrial social complexity)…

  8. Non-classicality criteria: Glauber-Sudarshan P function and Mandel ? parameter

    NASA Astrophysics Data System (ADS)

    Alexanian, Moorad

    2018-01-01

    We calculate exactly the quantum mechanical, temporal Wigner quasiprobability density for a single-mode, degenerate parametric amplifier for a system in the Gaussian state, viz., a displaced-squeezed thermal state. The Wigner function allows us to calculate the fluctuations in photon number and the quadrature variance. We contrast the difference between the non-classicality criteria, which is independent of the displacement parameter ?, based on the Glauber-Sudarshan quasiprobability distribution ? and the classical/non-classical behaviour of the Mandel ? parameter, which depends strongly on ?. We find a phase transition as a function of ? such that at the critical point ?, ?, as a function of ?, goes from strictly classical, for ?, to a mixed classical/non-classical behaviour, for ?.

  9. Shock Waves in a Bose-Einstein Condensate

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Zak, Michail

    2005-01-01

    A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.

  10. A kinetic theory for age-structured stochastic birth-death processes

    NASA Astrophysics Data System (ADS)

    Chou, Tom; Greenman, Chris

    Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but they are structurally unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Conversely, current theories that include size-dependent population dynamics (e.g., carrying capacity) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a BBGKY-like hierarchy. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution. NSF.

  11. Liquid Drop Model for Charged Spherical Metal Clusters

    NASA Astrophysics Data System (ADS)

    Seidl, M.; Brack, M.

    1996-02-01

    The average ground-state energy of a charged spherical metal cluster withNatoms andzexcessive valence electrons, i.e., with net chargeQ=-ezand radiusR=rsN1/3, is presented in the liquid drop model (LDM) expansionE(N, z)=avN+asN2/3+acN1/3+a0(z)+a-1(z) N-1/3+O(N-2/3). We derive analytical expressions for the leading LDM coefficientsav,as,ac, and, in particular, for the charge dependence of the further LDM coefficientsa0anda-1, using the jellium model and density functional theory in the local density approximation. We obtain for the ionization energyI(R)=W+α(e2/R)+O(R-2), with the bulk work functionW=[Φ(+∞)-Φ(0)]-eb, given first by Mahan and Schaich in terms of the electrostatic potentialΦand the bulk energy per electroneb, and a new analytical expression for the dimensionless coefficientα. We demonstrate that within classical theoryα={1}/{2} but, in agreement with experimental information,αtends to ∼0.4 if quantum-mechanical contributions are included. In order to test and confirm our analytical expressions, we discuss the numerical results of semiclassical density variational calculations in the extended Thomas-Fermi model.

  12. Phase-field modeling of isothermal quasi-incompressible multicomponent liquids

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.

    2016-09-01

    In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fundamental equations of continuum mechanics, a general convection-diffusion dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary stress are determined in the framework of gradient theories. Next the general definition of incompressibility is given, which is taken into account in the derivation by using the Lagrange multiplier method. To validate the theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed free energy functional) and (ii) can influence nonequilibrium pattern formation significantly.

  13. cDF Theory Software for mesoscopic modeling of equilibrium and transport phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-12-01

    The approach is based on classical Density Functional Theory ((cDFT) coupled with the Poisson-Nernst-Planck (PNP) transport kinetics model and quantum mechanical description of short-range interaction and elementary transport processes. The model we proposed and implemented is fully atomistic, taking into account pairwise short-range and manybody long-range interactions. But in contrast to standard molecular dynamics (MD) simulations, where long-range manybody interactions are evaluated as a sum of pair-wise atom-atom contributions, we include them analytically based on wellestablished theories of electrostatic and excluded volume interactions in multicomponent systems. This feature of the PNP/cDFT approach allows us to reach well beyond the length-scalesmore » accessible to MD simulations, while retaining the essential physics of interatomic interactions from first principles and in a parameter-free fashion.« less

  14. SurfKin: an ab initio kinetic code for modeling surface reactions.

    PubMed

    Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K

    2014-10-05

    In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts. Copyright © 2014 Wiley Periodicals, Inc.

  15. Simple model dielectric functions for insulators

    NASA Astrophysics Data System (ADS)

    Vos, Maarten; Grande, Pedro L.

    2017-05-01

    The Drude dielectric function is a simple way of describing the dielectric function of free electron materials, which have an uniform electron density, in a classical way. The Mermin dielectric function describes a free electron gas, but is based on quantum physics. More complex metals have varying electron densities and are often described by a sum of Drude dielectric functions, the weight of each function being taken proportional to the volume with the corresponding density. Here we describe a slight variation on the Drude dielectric functions that describes insulators in a semi-classical way and a form of the Levine-Louie dielectric function including a relaxation time that does the same within the framework of quantum physics. In the optical limit the semi-classical description of an insulator and the quantum physics description coincide, in the same way as the Drude and Mermin dielectric function coincide in the optical limit for metals. There is a simple relation between the coefficients used in the classical and quantum approaches, a relation that ensures that the obtained dielectric function corresponds to the right static refractive index. For water we give a comparison of the model dielectric function at non-zero momentum with inelastic X-ray measurements, both at relative small momenta and in the Compton limit. The Levine-Louie dielectric function including a relaxation time describes the spectra at small momentum quite well, but in the Compton limit there are significant deviations.

  16. Nonlinear responses of chiral fluids from kinetic theory

    NASA Astrophysics Data System (ADS)

    Hidaka, Yoshimasa; Pu, Shi; Yang, Di-Lun

    2018-01-01

    The second-order nonlinear responses of inviscid chiral fluids near local equilibrium are investigated by applying the chiral kinetic theory (CKT) incorporating side-jump effects. It is shown that the local equilibrium distribution function can be nontrivially introduced in a comoving frame with respect to the fluid velocity when the quantum corrections in collisions are involved. For the study of anomalous transport, contributions from both quantum corrections in anomalous hydrodynamic equations of motion and those from the CKT and Wigner functions are considered under the relaxation-time (RT) approximation, which result in anomalous charge Hall currents propagating along the cross product of the background electric field and the temperature (or chemical-potential) gradient and of the temperature and chemical-potential gradients. On the other hand, the nonlinear quantum correction on the charge density vanishes in the classical RT approximation, which in fact satisfies the matching condition given by the anomalous equation obtained from the CKT.

  17. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions.

    PubMed

    Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua

    2004-04-15

    A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.

  18. Multiconfiguration Pair-Density Functional Theory Is as Accurate as CASPT2 for Electronic Excitation.

    PubMed

    Hoyer, Chad E; Ghosh, Soumen; Truhlar, Donald G; Gagliardi, Laura

    2016-02-04

    A correct description of electronically excited states is critical to the interpretation of visible-ultraviolet spectra, photochemical reactions, and excited-state charge-transfer processes in chemical systems. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory and a new kind of density functional called an on-top density functional. Here, we show that MC-PDFT with a first-generation on-top density functional performs as well as CASPT2 for an organic chemistry database including valence, Rydberg, and charge-transfer excitations. The results are very encouraging for practical applications.

  19. Application of a renormalization-group treatment to the statistical associating fluid theory for potentials of variable range (SAFT-VR).

    PubMed

    Forte, Esther; Llovell, Felix; Vega, Lourdes F; Trusler, J P Martin; Galindo, Amparo

    2011-04-21

    An accurate prediction of phase behavior at conditions far and close to criticality cannot be accomplished by mean-field based theories that do not incorporate long-range density fluctuations. A treatment based on renormalization-group (RG) theory as developed by White and co-workers has proven to be very successful in improving the predictions of the critical region with different equations of state. The basis of the method is an iterative procedure to account for contributions to the free energy of density fluctuations of increasing wavelengths. The RG method has been combined with a number of versions of the statistical associating fluid theory (SAFT), by implementing White's earliest ideas with the improvements of Prausnitz and co-workers. Typically, this treatment involves two adjustable parameters: a cutoff wavelength L for density fluctuations and an average gradient of the wavelet function Φ. In this work, the SAFT-VR (variable range) equation of state is extended with a similar crossover treatment which, however, follows closely the most recent improvements introduced by White. The interpretation of White's latter developments allows us to establish a straightforward method which enables Φ to be evaluated; only the cutoff wavelength L then needs to be adjusted. The approach used here begins with an initial free energy incorporating only contributions from short-wavelength fluctuations, which are treated locally. The contribution from long-wavelength fluctuations is incorporated through an iterative procedure based on attractive interactions which incorporate the structure of the fluid following the ideas of perturbation theories and using a mapping that allows integration of the radial distribution function. Good agreement close and far from the critical region is obtained using a unique fitted parameter L that can be easily related to the range of the potential. In this way the thermodynamic properties of a square-well (SW) fluid are given by the same number of independent intermolecular model parameters as in the classical equation. Far from the critical region the approach provides the correct limiting behavior reducing to the classical equation (SAFT-VR). In the critical region the β critical exponent is calculated and is found to take values close to the universal value. In SAFT-VR the free energy of an associating chain fluid is obtained following the thermodynamic perturbation theory of Wertheim from the knowledge of the free energy and radial distribution function of a reference monomer fluid. By determining L for SW fluids of varying well width a unique equation of state is obtained for chain and associating systems without further adjustment of critical parameters. We use computer simulation data of the phase behavior of chain and associating SW fluids to test the accuracy of the new equation.

  20. Application of quasi-distributions for solving inverse problems of neutron and {gamma}-ray transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogosbekyan, L.R.; Lysov, D.A.

    The considered inverse problems deal with the calculation of the unknown values of nuclear installations by means of the known (goal) functionals of neutron/{gamma}-ray distributions. The example of these problems might be the calculation of the automatic control rods position as function of neutron sensors reading, or the calculation of experimentally-corrected values of cross-sections, isotopes concentration, fuel enrichment via the measured functional. The authors have developed the new method to solve inverse problem. It finds flux density as quasi-solution of the particles conservation linear system adjointed to equalities for functionals. The method is more effective compared to the one basedmore » on the classical perturbation theory. It is suitable for vectorization and it can be used successfully in optimization codes.« less

  1. Dopamine and Caffeine Encapsulation within Boron Nitride (14,0) Nanotubes: Classical Molecular Dynamics and First Principles Calculations.

    PubMed

    García-Toral, Dolores; González-Melchor, Minerva; Rivas-Silva, Juan F; Meneses-Juárez, Efraín; Cano-Ordaz, José; H Cocoletzi, Gregorio

    2018-06-07

    Classical molecular dynamics (MD) and density functional theory (DFT) calculations are developed to investigate the dopamine and caffeine encapsulation within boron nitride (BN) nanotubes (NT) with (14,0) chirality. Classical MD studies are done at canonical and isobaric-isothermal conditions at 298 K and 1 bar in explicit water. Results reveal that both molecules are attracted by the nanotube; however, only dopamine is able to enter the nanotube, whereas caffeine moves in its vicinity, suggesting that both species can be transported: the first by encapsulation and the second by drag. Findings are analyzed using the dielectric behavior, pair correlation functions, diffusion of the species, and energy contributions. The DFT calculations are performed according to the BLYP approach and applying the atomic base of the divided valence 6-31g(d) orbitals. The geometry optimization uses the minimum-energy criterion, accounting for the total charge neutrality and multiplicity of 1. Adsorption energies in the dopamine encapsulation indicate physisorption, which induces the highly occupied molecular orbital-lower unoccupied molecular orbital gap reduction yielding a semiconductor behavior. The charge redistribution polarizes the BNNT/dopamine and BNNT/caffeine structures. The work function decrease and the chemical potential values suggest the proper transport properties in these systems, which may allow their use in nanobiomedicine.

  2. Self-Interaction Error in Density Functional Theory: An Appraisal.

    PubMed

    Bao, Junwei Lucas; Gagliardi, Laura; Truhlar, Donald G

    2018-05-03

    Self-interaction error (SIE) is considered to be one of the major sources of error in most approximate exchange-correlation functionals for Kohn-Sham density-functional theory (KS-DFT), and it is large with all local exchange-correlation functionals and with some hybrid functionals. In this work, we consider systems conventionally considered to be dominated by SIE. For these systems, we demonstrate that by using multiconfiguration pair-density functional theory (MC-PDFT), the error of a translated local density-functional approximation is significantly reduced (by a factor of 3) when using an MCSCF density and on-top density, as compared to using KS-DFT with the parent functional; the error in MC-PDFT with local on-top functionals is even lower than the error in some popular KS-DFT hybrid functionals. Density-functional theory, either in MC-PDFT form with local on-top functionals or in KS-DFT form with some functionals having 50% or more nonlocal exchange, has smaller errors for SIE-prone systems than does CASSCF, which has no SIE.

  3. Exact collisional moments for plasma fluid theories

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    2017-04-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rates.

  4. Exact collisional moments for plasma fluid theories

    NASA Astrophysics Data System (ADS)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  5. Exact collisional moments for plasma fluid theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can bemore » applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum-and energy-transfer rates.« less

  6. Exact collisional moments for plasma fluid theories

    DOE PAGES

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    2017-04-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can bemore » applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum-and energy-transfer rates.« less

  7. JOURNAL SCOPE GUIDELINES: Paper classification scheme

    NASA Astrophysics Data System (ADS)

    2005-06-01

    This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas

  8. Multiconfiguration Pair-Density Functional Theory.

    PubMed

    Li Manni, Giovanni; Carlson, Rebecca K; Luo, Sijie; Ma, Dongxia; Olsen, Jeppe; Truhlar, Donald G; Gagliardi, Laura

    2014-09-09

    We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.

  9. Scalability of a Low-Cost Multi-Teraflop Linux Cluster for High-End Classical Atomistic and Quantum Mechanical Simulations

    NASA Technical Reports Server (NTRS)

    Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash

    2003-01-01

    Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.

  10. Koopman-von Neumann formulation of classical Yang-Mills theories: I

    NASA Astrophysics Data System (ADS)

    Carta, P.; Gozzi, E.; Mauro, D.

    2006-03-01

    In this paper we present the Koopman-von Neumann (KvN) formulation of classical non-Abelian gauge field theories. In particular we shall explore the functional (or classical path integral) counterpart of the KvN method. In the quantum path integral quantization of Yang-Mills theories concepts like gauge-fixing and Faddeev-Popov determinant appear in a quite natural way. We will prove that these same objects are needed also in this classical path integral formulation for Yang-Mills theories. We shall also explore the classical path integral counterpart of the BFV formalism and build all the associated universal and gauge charges. These last are quite different from the analog quantum ones and we shall show the relation between the two. This paper lays the foundation of this formalism which, due to the many auxiliary fields present, is rather heavy. Applications to specific topics outlined in the paper will appear in later publications.

  11. Extension of many-body theory and approximate density functionals to fractional charges and fractional spins.

    PubMed

    Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J

    2013-09-14

    The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.

  12. Self-consistent self-interaction corrected density functional theory calculations for atoms using Fermi-Löwdin orbitals: Optimized Fermi-orbital descriptors for Li-Kr

    NASA Astrophysics Data System (ADS)

    Kao, Der-you; Withanage, Kushantha; Hahn, Torsten; Batool, Javaria; Kortus, Jens; Jackson, Koblar

    2017-10-01

    In the Fermi-Löwdin orbital method for implementing self-interaction corrections (FLO-SIC) in density functional theory (DFT), the local orbitals used to make the corrections are generated in a unitary-invariant scheme via the choice of the Fermi orbital descriptors (FODs). These are M positions in 3-d space (for an M-electron system) that can be loosely thought of as classical electron positions. The orbitals that minimize the DFT energy including the SIC are obtained by finding optimal positions for the FODs. In this paper, we present optimized FODs for the atoms from Li-Kr obtained using an unbiased search method and self-consistent FLO-SIC calculations. The FOD arrangements display a clear shell structure that reflects the principal quantum numbers of the orbitals. We describe trends in the FOD arrangements as a function of atomic number. FLO-SIC total energies for the atoms are presented and are shown to be in close agreement with the results of previous SIC calculations that imposed explicit constraints to determine the optimal local orbitals, suggesting that FLO-SIC yields the same solutions for atoms as these computationally demanding earlier methods, without invoking the constraints.

  13. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions.

    PubMed

    Banik, Suman Kumar; Bag, Bidhan Chandra; Ray, Deb Shankar

    2002-05-01

    Traditionally, quantum Brownian motion is described by Fokker-Planck or diffusion equations in terms of quasiprobability distribution functions, e.g., Wigner functions. These often become singular or negative in the full quantum regime. In this paper a simple approach to non-Markovian theory of quantum Brownian motion using true probability distribution functions is presented. Based on an initial coherent state representation of the bath oscillators and an equilibrium canonical distribution of the quantum mechanical mean values of their coordinates and momenta, we derive a generalized quantum Langevin equation in c numbers and show that the latter is amenable to a theoretical analysis in terms of the classical theory of non-Markovian dynamics. The corresponding Fokker-Planck, diffusion, and Smoluchowski equations are the exact quantum analogs of their classical counterparts. The present work is independent of path integral techniques. The theory as developed here is a natural extension of its classical version and is valid for arbitrary temperature and friction (the Smoluchowski equation being considered in the overdamped limit).

  14. Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in ϕ4-Theory

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Tolksdorf, Jürgen

    2012-05-01

    Solutions of the classical ϕ4-theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a "classical measurement process" in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.

  15. Communication: Two-step explosion processes of highly charged fullerene cations C{sub 60}{sup q+} (q = 20–60)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Kaoru; Nakamura, Takashi; Kanno, Manabu

    2014-09-28

    To establish the fundamental understanding of the fragmentation dynamics of highly positive charged nano- and bio-materials, we carried out on-the-fly classical trajectory calculations on the fragmentation dynamics of C{sub 60}{sup q+} (q = 20–60). We used the UB3LYP/3-21G level of density functional theory and the self-consistent charge density-functional based tight-binding theory. For q ≥ 20, we found that a two-step explosion mechanism governs the fragmentation dynamics: C{sub 60}{sup q+} first ejects singly and multiply charged fast atomic cations C{sup z+} (z ≥ 1) via Coulomb explosions on a timescale of 10 fs to stabilize the remaining core cluster. Thermal evaporationsmore » of slow atomic and molecular fragments from the core cluster subsequently occur on a timescale of 100 fs to 1 ps. Increasing the charge q makes the fragments smaller. This two-step mechanism governs the fragmentation dynamics in the most likely case that the initial kinetic energy accumulated upon ionization to C{sub 60}{sup q+} by ion impact or X-ray free electron laser is larger than 100 eV.« less

  16. Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory

    NASA Astrophysics Data System (ADS)

    Evans, Robert; Stewart, Maria C.; Wilding, Nigel B.

    2017-07-01

    We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν∥, which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.

  17. Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory.

    PubMed

    Evans, Robert; Stewart, Maria C; Wilding, Nigel B

    2017-07-28

    We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν ∥ , which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.

  18. UO(2) Oxidative Corrosion by Nonclassical Diffusion.

    PubMed

    Stubbs, Joanne E; Chaka, Anne M; Ilton, Eugene S; Biwer, Craig A; Engelhard, Mark H; Bargar, John R; Eng, Peter J

    2015-06-19

    Using x-ray scattering, spectroscopy, and density-functional theory, we determine the structure of the oxidation front when a UO(2) (111) surface is exposed to oxygen at ambient conditions. In contrast to classical diffusion and previously reported bulk UO(2+x) structures, we find oxygen interstitials order into a nanoscale superlattice with three-layer periodicity and uranium in three oxidation states: IV, V, and VI. This oscillatory diffusion profile is driven by the nature of the electron transfer process, and has implications for understanding the initial stages of oxidative corrosion in materials at the atomistic level.

  19. Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations

    NASA Astrophysics Data System (ADS)

    Kurban, Mustafa; Erkoç, Şakir

    2017-04-01

    Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that, using optimized geometries obtained, excess charge on atoms, dipole moments, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, HOMO-LUMO gaps (Eg) , total energies, spin density and the density of states (DOS) have been calculated with DFT. Simulation results such as heat capacity and segregation formation are compared with experimental bulk and theoretical results.

  20. Quantum-classical correspondence for the inverted oscillator

    NASA Astrophysics Data System (ADS)

    Maamache, Mustapha; Ryeol Choi, Jeong

    2017-11-01

    While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)

  1. Reliable energy level alignment at physisorbed molecule-metal interfaces from density functional theory.

    PubMed

    Egger, David A; Liu, Zhen-Fei; Neaton, Jeffrey B; Kronik, Leeor

    2015-04-08

    A key quantity for molecule-metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal-molecule interfaces. The method builds on the "DFT+Σ" approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule-metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors.

  2. Polarizable embedding with a multiconfiguration short-range density functional theory linear response method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense; Olsen, Jógvan Magnus Haugaard

    2015-03-21

    We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory, molecular properties such as excitation energies and oscillator strengths can be obtained. The PE-MC-srDFT method and the additional terms required for linearmore » response have been implemented in a development version of DALTON. To benchmark the PE-MC-srDFT approach against the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks.« less

  3. Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory

    PubMed Central

    2015-01-01

    A key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors. PMID:25741626

  4. Grid-Based Projector Augmented Wave (GPAW) Implementation of Quantum Mechanics/Molecular Mechanics (QM/MM) Electrostatic Embedding and Application to a Solvated Diplatinum Complex.

    PubMed

    Dohn, A O; Jónsson, E Ö; Levi, G; Mortensen, J J; Lopez-Acevedo, O; Thygesen, K S; Jacobsen, K W; Ulstrup, J; Henriksen, N E; Møller, K B; Jónsson, H

    2017-12-12

    A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H 2 O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds the differences in the QM and MM descriptions. Over 1 ns of liquid water, Born-Oppenheimer QM/MM molecular dynamics (MD) are sampled combining 10 parallel simulations, showing consistent liquid water structure over the QM/MM border. The method is applied in extensive parallel MD simulations of an aqueous solution of the diplatinum [Pt 2 (P 2 O 5 H 2 ) 4 ] 4- complex (PtPOP), spanning a total time period of roughly half a nanosecond. An average Pt-Pt distance deviating only 0.01 Å from experimental results, and a ground-state Pt-Pt oscillation frequency deviating by <2% from experimental results were obtained. The simulations highlight a remarkable harmonicity of the Pt-Pt oscillation, while also showing clear signs of Pt-H hydrogen bonding and directional coordination of water molecules along the Pt-Pt axis of the complex.

  5. Raman Optical Activity Spectra from Density Functional Perturbation Theory and Density-Functional-Theory-Based Molecular Dynamics.

    PubMed

    Luber, Sandra

    2017-03-14

    We describe the calculation of Raman optical activity (ROA) tensors from density functional perturbation theory, which has been implemented into the CP2K software package. Using the mixed Gaussian and plane waves method, ROA spectra are evaluated in the double-harmonic approximation. Moreover, an approach for the calculation of ROA spectra by means of density functional theory-based molecular dynamics is derived and used to obtain an ROA spectrum via time correlation functions, which paves the way for the calculation of ROA spectra taking into account anharmonicities and dynamic effects at ambient conditions.

  6. Properties of Shocked Polymers: Mbar experiments on Z and multi-scale simulations

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.

    2010-03-01

    Significant progress has been made over the last few years in understanding properties of matter subject to strong shocks and other extreme conditions. High-accuracy multi-Mbar experiments and first-principles theoretical studies together provide detailed insights into the physics and chemistry of high energy-density matter. While comprehensive advances have been made for pure elements like deuterium, helium, and carbon, progress has been slower for equally important, albeit more challenging, materials like molecular crystals, polymers, and foams. Hydrocarbon based polymer foams are common materials and in particular they are used in designing shock- and inertial confinement fusion experiments. Depending on their initial density, foams shock to relatively higher pressure and temperature compared to shocked dense polymers/plastics. As foams and polymers are shocked, they exhibit both structural and chemical transitions. We will present experimental and theoretical results for shocked polymers in the Mbar regime. By shock impact of magnetically launched flyer plates on poly(4-methyl-1-pentene) foams, we create multi-Mbar pressures in a dense plasma mixture of hydrogen, carbon, at temperatures of several eV. Concurrently with executing experiments, we analyze the system by multi-scale simulations, from density functional theory to continuum magneto-hydrodynamics simulations. In particular, density functional theory (DFT) molecular dynamics (MD) and classical MD simulations of the principal shock Hugoniot will be presented in detail for two hydrocarbon polymers: polyethylene (PE) and poly(4-methyl-1-pentene) (PMP).

  7. Density-Gradient Theory: A Macroscopic Approach to Quantum Confinement and Tunneling in Semiconductor Devices

    DTIC Science & Technology

    2011-01-01

    that are attractive as luminescent biolabels, and possibly also for optoelectronic devices and solar cells . The equilibrium nature of such situations...The boundary layers as- sociated with the diffusion and Debye lengths are familiar, while that of LQ defines the layer in which the quantum in...circuits, transmission lines Diffusion -drift, density-gradient Semi-classical electron dynamics, Boltzmann transport Schrödinger, density- matrix, Wigner

  8. The Green's functions for peridynamic non-local diffusion.

    PubMed

    Wang, L J; Xu, J F; Wang, J X

    2016-09-01

    In this work, we develop the Green's function method for the solution of the peridynamic non-local diffusion model in which the spatial gradient of the generalized potential in the classical theory is replaced by an integral of a generalized response function in a horizon. We first show that the general solutions of the peridynamic non-local diffusion model can be expressed as functionals of the corresponding Green's functions for point sources, along with volume constraints for non-local diffusion. Then, we obtain the Green's functions by the Fourier transform method for unsteady and steady diffusions in infinite domains. We also demonstrate that the peridynamic non-local solutions converge to the classical differential solutions when the non-local length approaches zero. Finally, the peridynamic analytical solutions are applied to an infinite plate heated by a Gauss source, and the predicted variations of temperature are compared with the classical local solutions. The peridynamic non-local diffusion model predicts a lower rate of variation of the field quantities than that of the classical theory, which is consistent with experimental observations. The developed method is applicable to general diffusion-type problems.

  9. Ab Initio Theoretical Studies on the Kinetics of Hydrogen Abstraction Type Reactions of Hydroxyl Radicals with CH3CCl2F and CH3CClF2

    NASA Astrophysics Data System (ADS)

    Saheb, Vahid; Maleki, Samira

    2018-03-01

    The hydrogen abstraction reactions from CH3Cl2F (R-141b) and CH3CClF2 (R-142b) by OH radicals are studied theoretically by semi-classical transition state theory. The stationary points for the reactions are located by using KMLYP density functional method along with 6-311++G(2 d,2 p) basis set and MP2 method along with 6-311+G( d, p) basis set. Single-point energy calculations are performed by the CBS-Q and G4 combination methods on the geometries optimized at the KMLYP/6-311++G(2 d,2 p) level of theory. Vibrational anharmonicity coefficients, x ij , which are needed for semi-classical transition state theory calculations, are computed at the KMLYP/6-311++G(2 d,2 p) and MP2/6-311+G( d, p) levels of theory. The computed barrier heights are slightly sensitive to the quantum-chemical method. Thermal rate coefficients are computed over the temperature range from 200 to 2000 K and they are shown to be in accordance with available experimental data. On the basis of the computed rate coefficients, the tropospheric lifetime of the CH3CCl2F and CH3CClF2 are estimated to be about 6.5 and 12.0 years, respectively.

  10. Continuum elastic theory for dynamics of surfaces and interfaces

    NASA Astrophysics Data System (ADS)

    Pykhtin, Michael V.

    This thesis is divided into three parts, different by problems they deal with, but similar by underlying assumptions (crystals are treated as classical elastic anisotropic media) and methods of solving (vibrational Green's functions). (i) In the first part we compute the density of vibrational modes for a vicinal Ni(977) surface. In the spectrum we find new step induced modes which are compared with recently reported experimental data for Ni(977) surface obtained by inelastic atom scattering. (ii) In the second part we study damping of low-frequency adsorbate vibrations via resonant coupling to the substrate phonons. Our theory provides a general expression for the vibrational damping rate which can be applied to widely varying coverages and arbitrary overlayer structures. The damping rates predicted by our theory for CO on Cu(100) are in excellent quantitative agreement with available experimental data. (iii) In the third part we develop a theory for the density of vibrational modes at the surface of a thin film of one anisotropic solid an on top of the other. We compute the density of modes for a GaN film on a sapphire substrate for a wide range of wavevector and frequency, and obtain dispersion maps which contain waves trapped between the surface of the film and the interface. Two families of the trapped modes were observed: Love waves and generalized Lamb waves. We also study the effect of threading edge dislocations (majority of defects in the GaN film) on the trapped modes. At the experimental dislocation density the effect is negligible.

  11. Manifestly covariant classical correlation dynamics I. General theory

    NASA Astrophysics Data System (ADS)

    Lin, Shiru; Wang, Yanchao; Chen, Zhongfang

    2018-06-01

    By means of density functional theory (DFT) computations and particle-swarm optimization (PSO) structure searches, we herein predict five low-lying energy structures of two-dimensional (2D) aluminum monoxide (AlO) nanosheets. Their high cohesive energy, absence of imaginary phonon dispersion, and good thermal stability make them feasible targets for experimental realization. These monolayers exhibit diverse structural topologies, for instance, PmA- and Pmm-AlO possess buckled four- and six-membered AlO rings, whereas P62-, PmB-, and P6 m-AlO have pores of varied sizes. Interestingly, the most energetically preferred monolayers, PmA- and Pmm-AlO, feature wide band gaps (2.45 and 5.13 eV, respectively), which are promising for green and blue light-emitting devices (LEDs) and photodetectors.

  12. Ion distribution and selectivity of ionic liquids in microporous electrodes.

    PubMed

    Neal, Justin N; Wesolowski, David J; Henderson, Douglas; Wu, Jianzhong

    2017-05-07

    The energy density of an electric double layer capacitor, also known as supercapacitor, depends on ion distributions in the micropores of its electrodes. Herein we study ion selectivity and partitioning of symmetric, asymmetric, and mixed ionic liquids among different pores using the classical density functional theory. We find that a charged micropore in contact with mixed ions of the same valence is always selective to the smaller ions, and the ion selectivity, which is strongest when the pore size is comparable to the ion diameters, drastically falls as the pore size increases. The partitioning behavior in ionic liquids is fundamentally different from those corresponding to ion distributions in aqueous systems whereby the ion selectivity is dominated by the surface energy and entropic effects insensitive to the degree of confinement.

  13. Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel

    NASA Astrophysics Data System (ADS)

    Yu, Zhisong; Ren, Guihua; Yu, Ziyang; Wei, Chenhuinan; Fan, Hongyi

    2018-06-01

    For developing quantum mechanics theory in phase space, we explore how the Wigner operator {Δ } (α ,α ^{\\ast } )≡ {1}/{π } :e^{-2(α ^{\\ast } -α ^{\\dag })(α -α )}:, when viewed as a quasi-density operator correponding to the Wigner quasiprobability distribution, evolves in a damping channel. with the damping constant κ. We derive that it evolves into 1/T + 1:\\exp 2/T + 1[-(α^{\\ast} e^{-κ t}-a^{\\dag} )(α e^{-κ t}-a)]: where T ≡ 1 - e - 2 κ t . This in turn helps to directly obtain the final state ρ( t) out of the dessipative channel from the initial classical function corresponding to initial ρ(0). Throught the work, the method of integration within ordered product (IWOP) of operators is employed.

  14. Stretched hydrogen molecule from a constrained-search density-functional perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valone, Steven M; Levy, Mel

    2009-01-01

    Constrained-search density functional theory gives valuable insights into the fundamentals of density functional theory. It provides exact results and bounds on the ground- and excited-state density functionals. An important advantage of the theory is that it gives guidance in the construction of functionals. Here they engage constrained search theory to explore issues associated with the functional behavior of 'stretched bonds' in molecular hydrogen. A constrained search is performed with familiar valence bond wavefunctions ordinarily used to describe molecular hydrogen. The effective, one-electron hamiltonian is computed and compared to the corresponding uncorrelated, Hartree-Fock effective hamiltonian. Analysis of the functional suggests themore » need to construct different functionals for the same density and to allow a competition among these functions. As a result the correlation energy functional is composed explicitly of energy gaps from the different functionals.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zhoufei; Ouyang, Xiaolong; Gong, Zhihao

    An extended hierarchy equation of motion (HEOM) is proposed and applied to study the dynamics of the spin-boson model. In this approach, a complete set of orthonormal functions are used to expand an arbitrary bath correlation function. As a result, a complete dynamic basis set is constructed by including the system reduced density matrix and auxiliary fields composed of these expansion functions, where the extended HEOM is derived for the time derivative of each element. The reliability of the extended HEOM is demonstrated by comparison with the stochastic Hamiltonian approach under room-temperature classical ohmic and sub-ohmic noises and the multilayermore » multiconfiguration time-dependent Hartree theory under zero-temperature quantum ohmic noise. Upon increasing the order in the hierarchical expansion, the result obtained from the extended HOEM systematically converges to the numerically exact answer.« less

  16. Thermostatistical description of gas mixtures from space partitions

    NASA Astrophysics Data System (ADS)

    Rohrmann, R. D.; Zorec, J.

    2006-10-01

    The new mathematical framework based on the free energy of pure classical fluids presented by Rohrmann [Physica A 347, 221 (2005)] is extended to multicomponent systems to determine thermodynamic and structural properties of chemically complex fluids. Presently, the theory focuses on D -dimensional mixtures in the low-density limit (packing factor η<0.01 ). The formalism combines the free-energy minimization technique with space partitions that assign an available volume v to each particle. v is related to the closeness of the nearest neighbor and provides a useful tool to evaluate the perturbations experimented by particles in a fluid. The theory shows a close relationship between statistical geometry and statistical mechanics. New, unconventional thermodynamic variables and mathematical identities are derived as a result of the space division. Thermodynamic potentials μil , conjugate variable of the populations Nil of particles class i with the nearest neighbors of class l are defined and their relationships with the usual chemical potentials μi are established. Systems of hard spheres are treated as illustrative examples and their thermodynamics functions are derived analytically. The low-density expressions obtained agree nicely with those of scaled-particle theory and Percus-Yevick approximation. Several pair distribution functions are introduced and evaluated. Analytical expressions are also presented for hard spheres with attractive forces due to Kac-tails and square-well potentials. Finally, we derive general chemical equilibrium conditions.

  17. Positional ordering of hard adsorbate particles in tubular nanopores

    NASA Astrophysics Data System (ADS)

    Gurin, Péter; Varga, Szabolcs; Martínez-Ratón, Yuri; Velasco, Enrique

    2018-05-01

    The phase behavior and structural properties of a monolayer of hard particles is examined in such a confinement where the adsorbed particles are constrained to the surface of a narrow hard cylindrical pore. The diameter of the pore is chosen such that only first- and second-neighbor interactions occur between the hard particles. The transfer operator method of [Percus and Zhang, Mol. Phys. 69, 347 (1990), 10.1080/00268979000100241] is reformulated to obtain information about the structure of the monolayer. We have found that a true phase transition is not possible in the examined range of pore diameters. The monolayer of hard spheres undergoes a structural change from fluidlike order to a zigzaglike solid one with increasing surface density. The case of hard cylinders is different in the sense that a layering takes place continuously between a low-density one-row and a high-density two-row monolayer. Our results reveal a clear discrepancy with classical density functional theories, which do not distinguish smecticlike ordering in bulk from that in narrow periodic pores.

  18. Developing Thermal Density Functional Theory Using the Asymmetric Hubbard Dimer

    NASA Astrophysics Data System (ADS)

    Smith, Justin Clifford

    In this dissertation, I introduce both ground-state and thermal density functional theory. Throughout I use the asymmetric two-site Hubbard model, called the Hubbard dimer for short, to better understand and/or develop these theories. This model is used because it can be solved analytically and it contains all the necessary physics while still being conceptually simple enough to tease apart the various aspects of density functional theory. Ground-state density functional theory has seen broad use in many disciplines including physics, chemistry, geology, and material science and has led to a number of important physical and technological successes. In the first two chapters I elucidate the behavior of the ground-state theory using the Hubbard dimer. The simplicity of the model allows me to showcase aspects of the theory that are common points of confusion within the electronic structure community, e.g. the fundamental gap problem. The next two chapters focus on thermal density functional theory which has been coming to prominence as the study of warm dense matter has become a growing interest at the national laboratories and in the astronomical body community. The Hubbard dimer allows me to do the first ever exact thermal density functional theory calculation. In this work I am better able to understand the approximations used in thermal density functional theory and can point to why they succeed and fail. This also allows me to illustrate old conditions and derive new ones. I conclude with an overview of the work and a few different directions in which the asymmetric Hubbard dimer could be used further.

  19. Negative energy, superluminosity, and holography

    NASA Astrophysics Data System (ADS)

    Polchinski, Joseph; Susskind, Leonard; Toumbas, Nicolaos

    1999-10-01

    The holographic connection between large N super Yang-Mills (SYM) theory and gravity in anti-de Sitter (AdS) space requires unfamiliar behavior of the SYM theory in the limit that the curvature of the AdS geometry becomes small. The paradoxical behavior includes superluminal oscillations and negative energy density. These effects typically occur in the SYM description of events which take place far from the boundary of AdS when the signal from the event arrives at the boundary. The paradoxes can be resolved by assuming a very rich collection of hidden degrees of freedom of the SYM theory which store information but give rise to no local energy density. These degrees of freedom, called precursors, are needed to make possible sudden apparently acausal energy momentum flows. Such behavior would be impossible in classical field theory as a consequence of the positivity of the energy density. However we show that these effects are not only allowed in quantum field theory but that we can model them in free quantum field theory.

  20. Transfer function modeling of damping mechanisms in viscoelastic plates

    NASA Technical Reports Server (NTRS)

    Slater, J. C.; Inman, D. J.

    1991-01-01

    This work formulates a method for the modeling of material damping characteristics in plates. The Sophie German equation of classical plate theory is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes, (1985). However, this procedure is not limited to this representation. The governing characteristic equation is decoupled through separation of variables, yielding a solution similar to that of undamped classical plate theory, allowing solution of the steady state as well as the transient response problem.

  1. A density functional theory for colloids with two multiple bonding associating sites.

    PubMed

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G

    2016-06-22

    Wertheim's multi-density formalism is extended for patchy colloidal fluids with two multiple bonding patches. The theory is developed as a density functional theory to predict the properties of an associating inhomogeneous fluid. The equation of state developed for this fluid depends on the size of the patch, and includes formation of cyclic, branched and linear clusters of associated species. The theory predicts the density profile and the fractions of colloids in different bonding states versus the distance from one wall as a function of bulk density and temperature. The predictions from our theory are compared with previous results for a confined fluid with four single bonding association sites. Also, comparison between the present theory and Monte Carlo simulation indicates a good agreement.

  2. Higher spin gauge theory on fuzzy \\boldsymbol {S^4_N}

    NASA Astrophysics Data System (ADS)

    Sperling, Marcus; Steinacker, Harold C.

    2018-02-01

    We examine in detail the higher spin fields which arise on the basic fuzzy sphere S^4N in the semi-classical limit. The space of functions can be identified with functions on classical S 4 taking values in a higher spin algebra associated to \

  3. Combining Density Functional Theory and Green's Function Theory: Range-Separated, Nonlocal, Dynamic, and Orbital-Dependent Hybrid Functional.

    PubMed

    Kananenka, Alexei A; Zgid, Dominika

    2017-11-14

    We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.

  4. Density functional theory for polymeric systems in 2D.

    PubMed

    Słyk, Edyta; Roth, Roland; Bryk, Paweł

    2016-06-22

    We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.

  5. Understanding PGM-free Catalysts by Linking Density Functional Theory Calculations and Structural Analysis: Perspectives and Challenges

    DOE PAGES

    Gonzales, Ivana; Artyushkova, Kateryna; Atanassov, Plamen

    2018-03-13

    Here, we discuss perspectives and challenges in applying density functional theory for the calculation of spectroscopic properties of platinum group metal (PGM)-free electrocatalysts for oxygen reduction. More specifically, we discuss recent advances in the density functional theory calculations of core-level shifts in binding energies of N 1s electrons as measured by X-ray photoelectron spectroscopy. The link between the density functional theory calculations, the electrocatalytic performance of the catalysts, and structural analysis using modern spectroscopic techniques is expected to significantly increase our understanding of PGM-free catalysts at the molecular level.

  6. Understanding PGM-free Catalysts by Linking Density Functional Theory Calculations and Structural Analysis: Perspectives and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, Ivana; Artyushkova, Kateryna; Atanassov, Plamen

    Here, we discuss perspectives and challenges in applying density functional theory for the calculation of spectroscopic properties of platinum group metal (PGM)-free electrocatalysts for oxygen reduction. More specifically, we discuss recent advances in the density functional theory calculations of core-level shifts in binding energies of N 1s electrons as measured by X-ray photoelectron spectroscopy. The link between the density functional theory calculations, the electrocatalytic performance of the catalysts, and structural analysis using modern spectroscopic techniques is expected to significantly increase our understanding of PGM-free catalysts at the molecular level.

  7. Ab Initio Calculations of Transport in Titanium and Aluminum Mixtures

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas; Novak, Brian; Tam, Ka Ming; Moldovan, Dorel; Jarrell, Mark

    In classical molecular dynamics simulations, the self-diffusion and shear viscosity of titanium about the melting point have fallen within the ranges provided by experimental data. However, the experimental data is difficult to collect and has been rather scattered, making it of limited value for the validation of these calculations. By using ab initio molecular dynamics simulations within the density functional theory framework, the classical molecular dynamics data can be validated. The dynamical data from the ab initio molecular dynamics can also be used to calculate new potentials for use in classical molecular dynamics, allowing for more accurate classical dynamics simulations for the liquid phase. For metallic materials such as titanium and aluminum alloys, these calculations are very valuable due to an increasing demand for the knowledge of their thermophysical properties that drive the development of new materials. For example, alongside knowledge of the surface tension, viscosity is an important input for modeling the additive manufacturing process at the continuum level. We are developing calculations of the viscosity along with the self-diffusion for aluminum, titanium, and titanium-aluminum alloys with ab initio molecular dynamics. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.

  8. A Concise Introduction to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Swanson, Mark S.

    2018-02-01

    Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confined to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic field. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum.

  9. Cubic Zig-Zag Enrichment of the Classical Kirchhoff Kinematics for Laminated and Sandwich Plates

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2012-01-01

    A detailed anaylsis and examples are presented that show how to enrich the kinematics of classical Kirchhoff plate theory by appending them with a set of continuous piecewise-cubic functions. This analysis is used to obtain functions that contain the effects of laminate heterogeneity and asymmetry on the variations of the inplane displacements and transverse shearing stresses, for use with a {3, 0} plate theory in which these distributions are specified apriori. The functions used for the enrichment are based on the improved zig-zag plate theory presented recently by Tessler, Di Scuva, and Gherlone. With the approach presented herein, the inplane displacements are represented by a set of continuous piecewise-cubic functions, and the transverse shearing stresses and strains are represented by a set of piecewise-quadratic functions that are discontinuous at the ply interfaces.

  10. The dielectric function of weakly ionized dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; China Research Institute of Radio wave Propagation; Wu, Jian

    2016-07-15

    Using classical Boltzmann kinetic theory, the dielectric function of weakly ionized unmagnetized dusty plasma is derived. The elastic Coulomb collision and inelastic charging collision of electrons with charged dust particle as well as charge variation on dust surface are taken into account. The theoretical result is applied to analyze the propagation of electromagnetic wave in a dusty plasma. It is demonstrated that the additional collision mechanism provided by charged dust particle can significantly increase the absorbed power of electromagnetic wave. These increases are mainly determined by the dust radius, density, and the charge numbers on the dust surface. The obtainedmore » results will support an enhanced understanding of the wave propagation processes in space and laboratory dusty plasmas.« less

  11. DFT-derived reactive potentials for the simulation of activated processes: the case of CdTe and CdTe:S.

    PubMed

    Hu, Xiao Liang; Ciaglia, Riccardo; Pietrucci, Fabio; Gallet, Grégoire A; Andreoni, Wanda

    2014-06-19

    We introduce a new ab initio derived reactive potential for the simulation of CdTe within density functional theory (DFT) and apply it to calculate both static and dynamical properties of a number of systems (bulk solid, defective structures, liquid, surfaces) at finite temperature. In particular, we also consider cases with low sulfur concentration (CdTe:S). The analysis of DFT and classical molecular dynamics (MD) simulations performed with the same protocol leads to stringent performance tests and to a detailed comparison of the two schemes. Metadynamics techniques are used to empower both Car-Parrinello and classical molecular dynamics for the simulation of activated processes. For the latter, we consider surface reconstruction and sulfur diffusion in the bulk. The same procedures are applied using previously proposed force fields for CdTe and CdTeS materials, thus allowing for a detailed comparison of the various schemes.

  12. Multicomponent density functional theory embedding formulation.

    PubMed

    Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  13. Multicomponent density functional theory embedding formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less

  14. Evaluation of the mathematical and economic basis for conversion processes in the LEAP energy-economy model

    NASA Astrophysics Data System (ADS)

    Oblow, E. M.

    1982-10-01

    An evaluation was made of the mathematical and economic basis for conversion processes in the Long-term Energy Analysis Program (LEAP) energy economy model. Conversion processes are the main modeling subunit in LEAP used to represent energy conversion industries and are supposedly based on the classical economic theory of the firm. Questions about uniqueness and existence of LEAP solutions and their relation to classical equilibrium economic theory prompted the study. An analysis of classical theory and LEAP model equations was made to determine their exact relationship. The conclusions drawn from this analysis were that LEAP theory is not consistent with the classical theory of the firm. Specifically, the capacity factor formalism used by LEAP does not support a classical interpretation in terms of a technological production function for energy conversion processes. The economic implications of this inconsistency are suboptimal process operation and short term negative profits in years where plant operation should be terminated. A new capacity factor formalism, which retains the behavioral features of the original model, is proposed to resolve these discrepancies.

  15. Representing the thermal state in time-dependent density functional theory

    DOE PAGES

    Modine, N. A.; Hatcher, R. M.

    2015-05-28

    Classical molecular dynamics (MD) provides a powerful and widely used approach to determining thermodynamic properties by integrating the classical equations of motion of a system of atoms. Time-Dependent Density Functional Theory (TDDFT) provides a powerful and increasingly useful approach to integrating the quantum equations of motion for a system of electrons. TDDFT efficiently captures the unitary evolution of a many-electron state by mapping the system into a fictitious non-interacting system. In analogy to MD, one could imagine obtaining the thermodynamic properties of an electronic system from a TDDFT simulation in which the electrons are excited from their ground state bymore » a time-dependent potential and then allowed to evolve freely in time while statistical data are captured from periodic snapshots of the system. For a variety of systems (e.g., many metals), the electrons reach an effective state of internal equilibrium due to electron-electron interactions on a time scale that is short compared to electron-phonon equilibration. During the initial time-evolution of such systems following electronic excitation, electron-phonon interactions should be negligible, and therefore, TDDFT should successfully capture the internal thermalization of the electrons. However, it is unclear how TDDFT represents the resulting thermal state. In particular, the thermal state is usually represented in quantum statistical mechanics as a mixed state, while the occupations of the TDDFT wave functions are fixed by the initial state in TDDFT. Two key questions involve (1) reformulating quantum statistical mechanics so that thermodynamic expectations can be obtained as an unweighted average over a set of many-body pure states and (2) constructing a family of non-interacting (single determinant) TDDFT states that approximate the required many-body states for the canonical ensemble. In Section II, we will address these questions by first demonstrating that thermodynamic expectations can be evaluated by averaging over certain many-body pure states, which we will call thermal states, and then constructing TDDFT states that approximate these thermal states. In Section III, we will present some numerical tests of the resulting theory, and in Section IV, we will summarize our main results and discuss some possible future directions for this work.« less

  16. Mode conversion in cold low-density plasma with a sheared magnetic field

    DOE PAGES

    Dodin, I. Y.; Ruiz, D. E.; Kubo, S.

    2017-12-19

    Here, a theory is proposed that describes mutual conversion of two electromagnetic modes in cold low-density plasma, specifically, in the high-frequency limit where the ion response is negligible. In contrast to the classic (Landau–Zener-type) theory of mode conversion, the region of resonant coupling in low-density plasma is not necessarily narrow, so the coupling matrix cannot be approximated with its first-order Taylor expansion; also, the initial conditions are set up differently. For the case of strong magnetic shear, a simple method is identified for preparing a two-mode wave such that it transforms into a single-mode wave upon entering high-density plasma. Themore » theory can be used for reduced modeling of wave-power input in fusion plasmas. In particular, applications are envisioned in stellarator research, where the mutual conversion of two electromagnetic modes near the plasma edge is a known issue.« less

  17. Mode conversion in cold low-density plasma with a sheared magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodin, I. Y.; Ruiz, D. E.; Kubo, S.

    Here, a theory is proposed that describes mutual conversion of two electromagnetic modes in cold low-density plasma, specifically, in the high-frequency limit where the ion response is negligible. In contrast to the classic (Landau–Zener-type) theory of mode conversion, the region of resonant coupling in low-density plasma is not necessarily narrow, so the coupling matrix cannot be approximated with its first-order Taylor expansion; also, the initial conditions are set up differently. For the case of strong magnetic shear, a simple method is identified for preparing a two-mode wave such that it transforms into a single-mode wave upon entering high-density plasma. Themore » theory can be used for reduced modeling of wave-power input in fusion plasmas. In particular, applications are envisioned in stellarator research, where the mutual conversion of two electromagnetic modes near the plasma edge is a known issue.« less

  18. Beyond Kohn-Sham Approximation: Hybrid Multistate Wave Function and Density Functional Theory.

    PubMed

    Gao, Jiali; Grofe, Adam; Ren, Haisheng; Bao, Peng

    2016-12-15

    A multistate density functional theory (MSDFT) is presented in which the energies and densities for the ground and excited states are treated on the same footing using multiconfigurational approaches. The method can be applied to systems with strong correlation and to correctly describe the dimensionality of the conical intersections between strongly coupled dissociative potential energy surfaces. A dynamic-then-static framework for treating electron correlation is developed to first incorporate dynamic correlation into contracted state functions through block-localized Kohn-Sham density functional theory (KSDFT), followed by diagonalization of the effective Hamiltonian to include static correlation. MSDFT can be regarded as a hybrid of wave function and density functional theory. The method is built on and makes use of the current approximate density functional developed in KSDFT, yet it retains its computational efficiency to treat strongly correlated systems that are problematic for KSDFT but too large for accurate WFT. The results presented in this work show that MSDFT can be applied to photochemical processes involving conical intersections.

  19. Linear-response time-dependent density-functional theory with pairing fields.

    PubMed

    Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.

  20. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electron transfer

    NASA Astrophysics Data System (ADS)

    Cotton, Stephen J.; Igumenshchev, Kirill; Miller, William H.

    2014-08-01

    It has recently been shown [S. J. Cotton and W. H. Miller, J. Chem. Phys. 139, 234112 (2013)] that a symmetrical windowing quasi-classical (SQC) approach [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] applied to the Meyer-Miller model [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] for the electronic degrees of freedom in electronically non-adiabatic dynamics is capable of quantitatively reproducing quantum mechanical results for a variety of test applications, including cases where "quantum" coherence effects are significant. Here we apply this same SQC methodology, within a flux-side correlation function framework, to calculate thermal rate constants corresponding to several proposed models of electron transfer processes [P. Huo, T. F. Miller III, and D. F. Coker, J. Chem. Phys. 139, 151103 (2013); A. R. Menzeleev, N. Ananth, and T. F. Miller III, J. Chem. Phys. 135, 074106 (2011)]. Good quantitative agreement with Marcus Theory is obtained over several orders of magnitude variation in non-adiabatic coupling. Moreover, the "inverted regime" in thermal rate constants (with increasing bias) known from Marcus Theory is also reproduced with good accuracy by this very simple classical approach. The SQC treatment is also applied to a recent model of photoinduced proton coupled electron transfer [C. Venkataraman, A. V. Soudackov, and S. Hammes-Schiffer, J. Chem. Phys. 131, 154502 (2009)] and population decay of the photoexcited donor state is found to be in reasonable agreement with results calculated via reduced density matrix theory.

  1. The Basics: What's Essential about Theory for Community Development Practice?

    ERIC Educational Resources Information Center

    Hustedde, Ronald J.; Ganowicz, Jacek

    2002-01-01

    Relates three classical theories (structural functionalism, conflict theory, symbolic interactionism) to fundamental concerns of community development (structure, power, and shared meaning). Links these theories to Giddens' structuration theory, which connects macro and micro structures and community influence on change through cultural norms.…

  2. Congested Aggregation via Newtonian Interaction

    NASA Astrophysics Data System (ADS)

    Craig, Katy; Kim, Inwon; Yao, Yao

    2018-01-01

    We consider a congested aggregation model that describes the evolution of a density through the competing effects of nonlocal Newtonian attraction and a hard height constraint. This provides a counterpoint to existing literature on repulsive-attractive nonlocal interaction models, where the repulsive effects instead arise from an interaction kernel or the addition of diffusion. We formulate our model as the Wasserstein gradient flow of an interaction energy, with a penalization to enforce the constraint on the height of the density. From this perspective, the problem can be seen as a singular limit of the Keller-Segel equation with degenerate diffusion. Two key properties distinguish our problem from previous work on height constrained equations: nonconvexity of the interaction kernel (which places the model outside the scope of classical gradient flow theory) and nonlocal dependence of the velocity field on the density (which causes the problem to lack a comparison principle). To overcome these obstacles, we combine recent results on gradient flows of nonconvex energies with viscosity solution theory. We characterize the dynamics of patch solutions in terms of a Hele-Shaw type free boundary problem and, using this characterization, show that in two dimensions patch solutions converge to a characteristic function of a disk in the long-time limit, with an explicit rate on the decay of the energy. We believe that a key contribution of the present work is our blended approach, combining energy methods with viscosity solution theory.

  3. Comparing ab initio density-functional and wave function theories: the impact of correlation on the electronic density and the role of the correlation potential.

    PubMed

    Grabowski, Ireneusz; Teale, Andrew M; Śmiga, Szymon; Bartlett, Rodney J

    2011-09-21

    The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn-Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 034104 (2005)]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys. 130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of exchange and correlation contributions within the KS framework that is more consistent with traditional ab initio wave function based methods.

  4. Basis convergence of range-separated density-functional theory.

    PubMed

    Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.

  5. Quantum dynamical simulation of the scattering of Ar from a frozen LiF(100) surface based on a first principles interaction potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azuri, Asaf; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il

    2015-07-07

    In-plane two and three dimensional diffraction patterns are computed for the vertical scattering of an Ar atom from a frozen LiF(100) surface. Suitable collimation of the incoming wavepacket serves to reveal the quantum mechanical diffraction. The interaction potential is based on a fit to an ab initio potential calculated using density functional theory with dispersion corrections. Due to the potential coupling found between the two horizontal surface directions, there are noticeable differences between the quantum angular distributions computed for two and three dimensional scattering. The quantum results are compared to analogous classical Wigner computations on the same surface and withmore » the same conditions. The classical dynamics largely provides the envelope for the quantum diffractive scattering. The classical results also show that the corrugation along the [110] direction of the surface is smaller than along the [100] direction, in qualitative agreement with experimental observations of unimodal and bimodal scattering for the [110] and [100] directions, respectively.« less

  6. The dissociative chemisorption of methane on Ni(100) and Ni(111): Classical and quantum studies based on the reaction path Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastromatteo, Michael; Jackson, Bret, E-mail: jackson@chem.umass.edu

    Electronic structure methods based on density functional theory are used to construct a reaction path Hamiltonian for CH{sub 4} dissociation on the Ni(100) and Ni(111) surfaces. Both quantum and quasi-classical trajectory approaches are used to compute dissociative sticking probabilities, including all molecular degrees of freedom and the effects of lattice motion. Both approaches show a large enhancement in sticking when the incident molecule is vibrationally excited, and both can reproduce the mode specificity observed in experiments. However, the quasi-classical calculations significantly overestimate the ground state dissociative sticking at all energies, and the magnitude of the enhancement in sticking with vibrationalmore » excitation is much smaller than that computed using the quantum approach or observed in the experiments. The origin of this behavior is an unphysical flow of zero point energy from the nine normal vibrational modes into the reaction coordinate, giving large values for reaction at energies below the activation energy. Perturbative assumptions made in the quantum studies are shown to be accurate at all energies studied.« less

  7. Genetic algorithm based approach to investigate doped metal oxide materials: Application to lanthanide-doped ceria

    NASA Astrophysics Data System (ADS)

    Hooper, James; Ismail, Arif; Giorgi, Javier B.; Woo, Tom K.

    2010-06-01

    A genetic algorithm (GA)-inspired method to effectively map out low-energy configurations of doped metal oxide materials is presented. Specialized mating and mutation operations that do not alter the identity of the parent metal oxide have been incorporated to efficiently sample the metal dopant and oxygen vacancy sites. The search algorithms have been tested on lanthanide-doped ceria (L=Sm,Gd,Lu) with various dopant concentrations. Using both classical and first-principles density-functional-theory (DFT) potentials, we have shown the methodology reproduces the results of recent systematic searches of doped ceria at low concentrations (3.2% L2O3 ) and identifies low-energy structures of concentrated samarium-doped ceria (3.8% and 6.6% L2O3 ) which relate to the experimental and theoretical findings published thus far. We introduce a tandem classical/DFT GA algorithm in which an inexpensive classical potential is first used to generate a fit gene pool of structures to enhance the overall efficiency of the computationally demanding DFT-based GA search.

  8. Comparative analyses of plasma probe diagnostics techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godyak, V. A.; Alexandrovich, B. M.

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much asmore » an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.« less

  9. Comparative analyses of plasma probe diagnostics techniques

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-01

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  10. The Green’s functions for peridynamic non-local diffusion

    PubMed Central

    Wang, L. J.; Xu, J. F.

    2016-01-01

    In this work, we develop the Green’s function method for the solution of the peridynamic non-local diffusion model in which the spatial gradient of the generalized potential in the classical theory is replaced by an integral of a generalized response function in a horizon. We first show that the general solutions of the peridynamic non-local diffusion model can be expressed as functionals of the corresponding Green’s functions for point sources, along with volume constraints for non-local diffusion. Then, we obtain the Green’s functions by the Fourier transform method for unsteady and steady diffusions in infinite domains. We also demonstrate that the peridynamic non-local solutions converge to the classical differential solutions when the non-local length approaches zero. Finally, the peridynamic analytical solutions are applied to an infinite plate heated by a Gauss source, and the predicted variations of temperature are compared with the classical local solutions. The peridynamic non-local diffusion model predicts a lower rate of variation of the field quantities than that of the classical theory, which is consistent with experimental observations. The developed method is applicable to general diffusion-type problems. PMID:27713658

  11. Multi-level molecular modelling for plasma medicine

    NASA Astrophysics Data System (ADS)

    Bogaerts, Annemie; Khosravian, Narjes; Van der Paal, Jonas; Verlackt, Christof C. W.; Yusupov, Maksudbek; Kamaraj, Balu; Neyts, Erik C.

    2016-02-01

    Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma-biomolecule interactions.

  12. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IANCU,E.; LEONIDOV,A.; MCLERRAN,L.

    2001-08-06

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.

  13. A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids

    NASA Astrophysics Data System (ADS)

    Ciancio, Vincenzo; Palumbo, Annunziata

    2018-04-01

    In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.

  14. Diffraction of stochastic electromagnetic fields by a hole in a thin film with real optical properties

    NASA Astrophysics Data System (ADS)

    Dorofeyev, Illarion

    2008-08-01

    The classical Kirchhoff theory of diffraction is extended to the case of real optical properties of a screen and its finite thickness. A spectral power density of diffracted electromagnetic fields by a hole in a thin film with real optical properties was calculated. The problem was solved by use of the vector Green theorems and related Green function of the boundary value problem. A spectral and spatial selectivity of the considered system was demonstrated. Diffracted patterns were calculated for the coherent and incoherent incident fields in case of holes array in a screen of perfect conductivity.

  15. Chemical reactivity and spectroscopy explored from QM/MM molecular dynamics simulations using the LIO code

    NASA Astrophysics Data System (ADS)

    Marcolongo, Juan P.; Zeida, Ari; Semelak, Jonathan A.; Foglia, Nicolás O.; Morzan, Uriel N.; Estrin, Dario A.; González Lebrero, Mariano C.; Scherlis, Damián A.

    2018-03-01

    In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU), that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.

  16. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  17. A molecular dynamics and ab initio analysis of the electronic structure of single-walled carbon nanotubes adhered to a substrate

    NASA Astrophysics Data System (ADS)

    Van Der Geest, A. G.; Lu, Z.; Lusk, M. T.; Dunn, M. L.

    2011-04-01

    Single-wall nanotubes can adhere to planar surfaces via van der Waals forces, and this causes the tubes to deform. We use classical molecular dynamics to estimate this deformation and density functional theory to quantify its impact on electronic band structure. For (n,0) tubes, adhesion causes the maximum bandgap to rise more rapidly with diameter, but the value of the maximum is not affected. The influence of adhesion forces on bandgap was found to correlate with that associated with lateral, uniaxial compression for moderate values of adhesion energy and compressive distortion.

  18. Predicting In-Situ X-ray Diffraction for the SrTiO3/Liquid Interface from First Principles

    NASA Astrophysics Data System (ADS)

    Letchworth-Weaver, Kendra; Gunceler, Deniz; Sundararaman, Ravishankar; Huang, Xin; Brock, Joel; Arias, T. A.

    2013-03-01

    Recent advances in experimental techniques, such as in-situ x-ray diffraction, allow researchers to probe the solid-liquid interface in electrochemical systems under operating conditions. These advances offer an unprecedented opportunity for theory to predict properties of electrode materials in aqueous environments and inform the design of energy conversion and storage devices. To compare with experiment, these theoretical studies require microscopic details of both the liquid and the electrode surface. Joint Density Functional Theory (JDFT), a computationally efficient alternative to molecular dynamics, couples a classical density-functional, which captures molecular structure of the liquid, to a quantum-mechanical functional for the electrode surface. We present a JDFT exploration of SrTiO3, which can catalyze solar-driven water splitting, in an electrochemical environment. We determine the geometry of the polar SrTiO3 surface and the equilibrium structure of the contacting liquid, as well as the influence of the liquid upon the electronic structure of the surface. We then predict the effect of the fluid environment on x-ray diffraction patterns and compare our predictions to in-situ measurements performed at the Cornell High Energy Synchrotron Source (CHESS). This material is based upon work supported by the Energy Materials Center at Cornell (EMC2), an Energy Frontier Research Center funded by the U.S. Department of Energy.

  19. Capacitive Energy Extraction by Few-Layer Graphene Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Cheng; Zhan, Cheng; Jiang, De-en

    Capacitive double-layer expansion is a promising technology to harvest energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the operation potentials and electrode materials. While carbonaceous materials such as graphene and various forms of activated carbons are routinely used as the electrodes, there is little knowledge on how the quantum capacitance and the electric double-layer (EDL) capacitance, which are on the same order of magnitude, affect the capacitive performance. Toward understanding that from a theoretical perspective, here we study the capacitive energy extraction with graphene electrodes as a function of themore » number of graphene layers. The classical density functional theory is joined with the electronic density functional theory to obtain the EDL and the quantum capacitance, respectively. The theoretical results show that the quantum capacitance contribution plays a dominant role in extracting energy using the single-layer graphene, but its effect diminishes as the number of graphene layers increases. The overall extracted energy is dominated by the EDL contribution beyond about four graphene layers. Electrodes with more graphene layers are able to extract more energy at low charging potential. Here, because many porous carbons have nanopores with stacked graphene layers, our theoretical predictions are useful to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different wall thickness.« less

  20. Capacitive Energy Extraction by Few-Layer Graphene Electrodes

    DOE PAGES

    Lian, Cheng; Zhan, Cheng; Jiang, De-en; ...

    2017-06-09

    Capacitive double-layer expansion is a promising technology to harvest energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the operation potentials and electrode materials. While carbonaceous materials such as graphene and various forms of activated carbons are routinely used as the electrodes, there is little knowledge on how the quantum capacitance and the electric double-layer (EDL) capacitance, which are on the same order of magnitude, affect the capacitive performance. Toward understanding that from a theoretical perspective, here we study the capacitive energy extraction with graphene electrodes as a function of themore » number of graphene layers. The classical density functional theory is joined with the electronic density functional theory to obtain the EDL and the quantum capacitance, respectively. The theoretical results show that the quantum capacitance contribution plays a dominant role in extracting energy using the single-layer graphene, but its effect diminishes as the number of graphene layers increases. The overall extracted energy is dominated by the EDL contribution beyond about four graphene layers. Electrodes with more graphene layers are able to extract more energy at low charging potential. Here, because many porous carbons have nanopores with stacked graphene layers, our theoretical predictions are useful to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different wall thickness.« less

  1. Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction

    NASA Astrophysics Data System (ADS)

    Krywonos, Andrey

    Scattering effects from rough surfaces are non-paraxial diffraction phenomena resulting from random phase variations in the reflected wavefront. The ability to predict these effects is important in a variety of applications including x-ray and EUV imaging, the design of stray light rejection systems, and reflection modeling for rendering realistic scenes and animations of physical objects in computer graphics. Rayleigh-Rice (small perturbation method) and Beckmann-Kirchoff (Kirchhoff approximation) theories are commonly used to predict surface scatter effects. In addition, Harvey and Shack developed a linear systems formulation of surface scatter phenomena in which the scattering behavior is characterized by a surface transfer function. This treatment provided insight and understanding not readily gleaned from the two previous theories, and has been incorporated into a variety of computer software packages (ASAP, Zemax, Tracepro). However, smooth surface and paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. In this dissertation, a linear systems formulation of non-paraxial scalar diffraction theory is first developed and then applied to sinusoidal phase gratings, resulting in diffraction efficiency predictions far more accurate than those provided by classical scalar theories. The application of the theory to these gratings was motivated by the fact that rough surfaces are frequently modeled as a superposition of sinusoidal surfaces of different amplitudes, periods, and orientations. The application of the non-paraxial scalar diffraction theory to surface scatter phenomena resulted first in a modified Beckmann-Kirchhoff surface scattering model, then a generalized Harvey-Shack theory, both of which produce accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattering angles than the classical Beckmann-Kirchhoff theory. These new developments enable the analysis and simplify the understanding of wide-angle scattering behavior from rough surfaces illuminated at large incident angles. In addition, they provide an improved BRDF (Bidirectional Reflectance Distribution Function) model, particularly for the smooth surface inverse scattering problem of determining surface power spectral density (PSD) curves from BRDF measurements.

  2. Cooking strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Clérouin, Jean

    2015-09-01

    We present the orbital-free method for dense plasmas which allows for efficient variable ionisation molecular dynamics. This approach is a literal application of density functional theory where the use of orbitals is bypassed by a semi-classical estimation of the electron kinetic energy through the Thomas-Fermi theory. Thanks to a coherent definition of ionisation, we evidence a particular regime in which the static structure no longer depends on the temperature: the Γ-plateau. With the help of the well-known Thomas-Fermi scaling laws, we derive the conditions required to obtain a plasma at a given value of the coupling parameter and deduce useful fits. Static and dynamical properties are predicted as well as a a simple equation of state valid on the Γ-plateau. We show that the one component plasma model can be helpful to describe the correlations in real systems.

  3. Size and shape dependence of electronic and optical excitations in TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol; Ogut, Serdar

    2013-03-01

    We present results for the electronic structures, quasi-particle gaps, and the absorption spectra of TiO2 nanocrystals of both rutile and anatase phases with various shapes, sizes, and surfaces exposed. We study the size and shape dependences of these electronic and optical properties, computed both within time-dependent density functional theory and many-body perturbation methods such as the GW-BSE, using appropriately passivated nanocrystals to mimic bulk termination. Surface effects are examined by using nanocrystals of various sizes with particular surfaces, such as (110) in rutile and (101) in anatase phases, exposed. We interpret the resulting optical absorption spectra of these nanocrystals in terms of the bulk spectra and compare them with predictions from classical Mie-Gans theory. This work was supported by the DOE Grant No. DE-FG02-09ER16072.

  4. Invertibility of retarded response functions for Laplace transformable potentials: Application to one-body reduced density matrix functional theory.

    PubMed

    Giesbertz, K J H

    2015-08-07

    A theorem for the invertibility of arbitrary response functions is presented under the following conditions: the time dependence of the potentials should be Laplace transformable and the initial state should be a ground state, though it might be degenerate. This theorem provides a rigorous foundation for all density-functional-like theories in the time-dependent linear response regime. Especially for time-dependent one-body reduced density matrix (1RDM) functional theory, this is an important step forward, since a solid foundation has currently been lacking. The theorem is equally valid for static response functions in the non-degenerate case, so can be used to characterize the uniqueness of the potential in the ground state version of the corresponding density-functional-like theory. Such a classification of the uniqueness of the non-local potential in ground state 1RDM functional theory has been lacking for decades. With the aid of presented invertibility theorem presented here, a complete classification of the non-uniqueness of the non-local potential in 1RDM functional theory can be given for the first time.

  5. Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory

    DOE PAGES

    Egger, David A.; Liu, Zhen-Fei; Neaton, Jeffrey B.; ...

    2015-03-05

    We report a key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways:more » first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fromm, Andrea; Bonitz, Michael; Dufty, James

    The idea of treating quantum systems by semiclassical representations using effective quantum potentials (forces) has been successfully applied in equilibrium by many authors, see e.g. [D. Bohm, Phys. Rev. 85 (1986) 166 and 180; D.K. Ferry, J.R. Zhou, Phys. Rev. B 48 (1993) 7944; A.V. Filinov, M. Bonitz, W. Ebeling, J. Phys. A 36 (2003) 5957 and references cited therein]. Here, this idea is extended to nonequilibrium quantum systems in an external field. A gauge-invariant quantum kinetic theory for weakly inhomogeneous charged particle systems in a strong electromagnetic field is developed within the framework of nonequilibrium Green's functions. The equationmore » for the spectral density is simplified by introducing a classical (local) form for the kinetics. Nonlocal quantum effects are accounted for in this way by replacing the bare external confinement potential with an effective quantum potential. The equation for this effective potential is identified and solved for weak inhomogeneity in the collisionless limit. The resulting nonequilibrium spectral function is used to determine the density of states and the modification of the Born collision operator in the kinetic equation for the Wigner function due to quantum confinement effects.« less

  7. Ionic structures and transport properties of hot dense W and U plasmas

    NASA Astrophysics Data System (ADS)

    Hou, Yong; Yuan, Jianmin

    2016-10-01

    We have combined the average-atom model with the hyper-netted chain approximation (AAHNC) to describe the electronic and ionic structure of uranium and tungsten in the hot dense matter regime. When the electronic structure is described within the average-atom model, the effects of others ions on the electronic structure are considered by the correlation functions. And the ionic structure is calculated though using the hyper-netted chain (HNC) approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution in the temperature-depended density functional theory. And electronic and ionic structures are determined self-consistently. On the basis of the ion-ion pair potential, we perform the classical (CMD) and Langevin (LMD) molecular dynamics to simulate the ionic transport properties, such as ionic self-diffusion and shear viscosity coefficients, through the ionic velocity correlation functions. Due that the free electrons become more and more with increasing the plasma temperature, the influence of the electron-ion collisions on the transport properties become more and more important.

  8. Riemannian geometry of thermodynamics and systems with repulsive power-law interactions.

    PubMed

    Ruppeiner, George

    2005-07-01

    A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 33.7913 a phase transition is required to go between these regimes; (7) for any alpha>3 we may include a first-order phase transition, which is expected from computer simulations; and (8) if alpha-->infinity, the density approaches a finite value as the pressure increases to infinity, with the pressure diverging logarithmically in the density difference.

  9. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    NASA Technical Reports Server (NTRS)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  10. Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective

    PubMed Central

    Wolters, Lando P; Bickelhaupt, F Matthias

    2012-01-01

    We have carried out extensive computational analyses of the structure and bonding mechanism in trihalides DX⋅⋅⋅A− and the analogous hydrogen-bonded complexes DH⋅⋅⋅A− (D, X, A=F, Cl, Br, I) using relativistic density functional theory (DFT) at zeroth-order regular approximation ZORA-BP86/TZ2P. One purpose was to obtain a set of consistent data from which reliable trends in structure and stability can be inferred over a large range of systems. The main objective was to achieve a detailed understanding of the nature of halogen bonds, how they resemble, and also how they differ from, the better understood hydrogen bonds. Thus, we present an accurate physical model of the halogen bond based on quantitative Kohn–Sham molecular orbital (MO) theory, energy decomposition analyses (EDA) and Voronoi deformation density (VDD) analyses of the charge distribution. It appears that the halogen bond in DX⋅⋅⋅A− arises not only from classical electrostatic attraction but also receives substantial stabilization from HOMO–LUMO interactions between the lone pair of A− and the σ* orbital of D–X. PMID:24551497

  11. Dynamics of Markets

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2009-09-01

    Preface; 1. Econophysics: why and what; 2. Neo-classical economic theory; 3. Probability and stochastic processes; 4. Introduction to financial economics; 5. Introduction to portfolio selection theory; 6. Scaling, pair correlations, and conditional densities; 7. Statistical ensembles: deducing dynamics from time series; 8. Martingale option pricing; 9. FX market globalization: evolution of the dollar to worldwide reserve currency; 10. Macroeconomics and econometrics: regression models vs. empirically based modeling; 11. Complexity; Index.

  12. Multiscale modeling and computation of optically manipulated nano devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Gang, E-mail: baog@zju.edu.cn; Liu, Di, E-mail: richardl@math.msu.edu; Luo, Songting, E-mail: luos@iastate.edu

    2016-07-01

    We present a multiscale modeling and computational scheme for optical-mechanical responses of nanostructures. The multi-physical nature of the problem is a result of the interaction between the electromagnetic (EM) field, the molecular motion, and the electronic excitation. To balance accuracy and complexity, we adopt the semi-classical approach that the EM field is described classically by the Maxwell equations, and the charged particles follow the Schrödinger equations quantum mechanically. To overcome the numerical challenge of solving the high dimensional multi-component many-body Schrödinger equations, we further simplify the model with the Ehrenfest molecular dynamics to determine the motion of the nuclei, andmore » use the Time-Dependent Current Density Functional Theory (TD-CDFT) to calculate the excitation of the electrons. This leads to a system of coupled equations that computes the electromagnetic field, the nuclear positions, and the electronic current and charge densities simultaneously. In the regime of linear responses, the resonant frequencies initiating the out-of-equilibrium optical-mechanical responses can be formulated as an eigenvalue problem. A self-consistent multiscale method is designed to deal with the well separated space scales. The isomerization of azobenzene is presented as a numerical example.« less

  13. The Leadership of Groups in Organizations

    DTIC Science & Technology

    1985-07-01

    Managemert • July, 1985 01 i J JAN14 19866 K) Abstract A theory of leadership that focusses specifically on task-performing , groups in organizations in...p:xoposed. The theory takes a functional approach to leadership , explcring how leaders fulfill functions that are required for group effectiveness...that there are no theories of leadership around. There are theories of managerial leadership , from the classic statements of organization theorists

  14. Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices

    DOE PAGES

    Hubertus J. J. van Dam

    2016-04-27

    Density functional theory is currently the most widely applied method in electronic structure theory. The Kohn-Sham method, based on a fictitious system of noninteracting particles, is the workhorse of the theory. The particular form of the Kohn-Sham wave function admits only idempotent one-electron density matrices whereas wave functions of correlated electrons in post-Hartree-Fock methods invariably have fractional occupation numbers. Here we show that by generalizing the orbital concept and introducing a suitable dot product as well as a probability density, a noninteracting system can be chosen that can represent the one-electron density matrix of any system, even one with fractionalmore » occupation numbers. This fictitious system ensures that the exact electron density is accessible within density functional theory. It can also serve as the basis for reduced density matrix functional theory. Moreover, to aid the analysis of the results the orbitals may be assigned energies from a mean-field Hamiltonian. This produces energy levels that are akin to Hartree-Fock orbital energies such that conventional analyses based on Koopmans' theorem are available. Lastly, this system is convenient in formalisms that depend on creation and annihilation operators as they are trivially applied to single-determinant wave functions.« less

  15. Exact density functional theory for ideal polymer fluids with nearest neighbor bonding constraints.

    PubMed

    Woodward, Clifford E; Forsman, Jan

    2008-08-07

    We present a new density functional theory of ideal polymer fluids, assuming nearest-neighbor bonding constraints. The free energy functional is expressed in terms of end site densities of chain segments and thus has a simpler mathematical structure than previously used expressions using multipoint distributions. This work is based on a formalism proposed by Tripathi and Chapman [Phys. Rev. Lett. 94, 087801 (2005)]. Those authors obtain an approximate free energy functional for ideal polymers in terms of monomer site densities. Calculations on both repulsive and attractive surfaces show that their theory is reasonably accurate in some cases, but does differ significantly from the exact result for longer polymers with attractive surfaces. We suggest that segment end site densities, rather than monomer site densities, are the preferred choice of "site functions" for expressing the free energy functional of polymer fluids. We illustrate the application of our theory to derive an expression for the free energy of an ideal fluid of infinitely long polymers.

  16. The Reliability and Precision of Total Scores and IRT Estimates as a Function of Polytomous IRT Parameters and Latent Trait Distribution

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew

    2013-01-01

    A classic topic in the fields of psychometrics and measurement has been the impact of the number of scale categories on test score reliability. This study builds on previous research by further articulating the relationship between item response theory (IRT) and classical test theory (CTT). Equations are presented for comparing the reliability and…

  17. The derivative discontinuity of the exchange-correlation functional.

    PubMed

    Mori-Sánchez, Paula; Cohen, Aron J

    2014-07-28

    The derivative discontinuity is a key concept in electronic structure theory in general and density functional theory in particular. The electronic energy of a quantum system exhibits derivative discontinuities with respect to different degrees of freedom that are a consequence of the integer nature of electrons. The classical understanding refers to the derivative discontinuity of the total energy as a function of the total number of electrons (N), but it can also manifest at constant N. Examples are shown in models including several hydrogen systems with varying numbers of electrons or nuclear charge (Z), as well as the 1-dimensional Hubbard model (1DHM). Two sides of the problem are investigated: first, the failure of currently used approximate exchange-correlation functionals in DFT and, second, the importance of the derivative discontinuity in the exact electronic structure of molecules, as revealed by full configuration interaction (FCI). Currently, all approximate functionals, including hybrids, miss the derivative discontinuity, leading to basic errors that can be seen in many ways: from the complete failure to give the total energy of H2 and H2(+), to the missing gap in Mott insulators such as stretched H2 and the thermodynamic limit of the 1DHM, or a qualitatively incorrect density in the HZ molecule with two electrons and incorrect electron transfer processes. Description of the exact particle behaviour of electrons is emphasised, which is key to many important physical processes in real systems, especially those involving electron transfer, and offers a challenge for the development of new exchange-correlation functionals.

  18. Quantum Matching Theory (with new complexity-theoretic, combinatorial and topical insights on the nature of the quantum entanglement)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurvits, L.

    2002-01-01

    Classical matching theory can be defined in terms of matrices with nonnegative entries. The notion of Positive operator, central in Quantum Theory, is a natural generalization of matrices with non-negative entries. Based on this point of view, we introduce a definition of perfect Quantum (operator) matching. We show that the new notion inherits many 'classical' properties, but not all of them. This new notion goes somewhere beyound matroids. For separable bipartite quantum states this new notion coinsides with the full rank property of the intersection of two corresponding geometric matroids. In the classical situation, permanents are naturally associated with perfectsmore » matchings. We introduce an analog of permanents for positive operators, called Quantum Permanent and show how this generalization of the permanent is related to the Quantum Entanglement. Besides many other things, Quantum Permanents provide new rational inequalities necessary for the separability of bipartite quantum states. Using Quantum Permanents, we give deterministic poly-time algorithm to solve Hidden Matroids Intersection Problem and indicate some 'classical' complexity difficulties associated with the Quantum Entanglement. Finally, we prove that the weak membership problem for the convex set of separable bipartite density matrices is NP-HARD.« less

  19. Basis convergence of range-separated density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franck, Odile, E-mail: odile.franck@etu.upmc.fr; Mussard, Bastien, E-mail: bastien.mussard@upmc.fr; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. Wemore » study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N{sub 2}, and H{sub 2}O) with cardinal number X of the Dunning basis sets cc − p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.« less

  20. Uniform magnetic fields in density-functional theory

    NASA Astrophysics Data System (ADS)

    Tellgren, Erik I.; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M.

    2018-01-01

    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  1. Uniform magnetic fields in density-functional theory.

    PubMed

    Tellgren, Erik I; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M

    2018-01-14

    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  2. Influences on and Limitations of Classical Test Theory Reliability Estimates.

    ERIC Educational Resources Information Center

    Arnold, Margery E.

    It is incorrect to say "the test is reliable" because reliability is a function not only of the test itself, but of many factors. The present paper explains how different factors affect classical reliability estimates such as test-retest, interrater, internal consistency, and equivalent forms coefficients. Furthermore, the limits of classical test…

  3. The role of a posteriori mathematics in physics

    NASA Astrophysics Data System (ADS)

    MacKinnon, Edward

    2018-05-01

    The calculus that co-evolved with classical mechanics relied on definitions of functions and differentials that accommodated physical intuitions. In the early nineteenth century mathematicians began the rigorous reformulation of calculus and eventually succeeded in putting almost all of mathematics on a set-theoretic foundation. Physicists traditionally ignore this rigorous mathematics. Physicists often rely on a posteriori math, a practice of using physical considerations to determine mathematical formulations. This is illustrated by examples from classical and quantum physics. A justification of such practice stems from a consideration of the role of phenomenological theories in classical physics and effective theories in contemporary physics. This relates to the larger question of how physical theories should be interpreted.

  4. Induced Angular Momentum

    ERIC Educational Resources Information Center

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  5. Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters using Density Functional Theory

    DTIC Science & Technology

    2017-05-05

    dependent density functional theory (TD-DFT). The size of the clusters considered is relatively large compared to those considered in previous studies...are characterized by many different geometries, which potentially can be optimized with respect to specific materials design criteria, i.e., molecular...SixOy molecular clusters using density functional theory (DFT). The size of the clusters considered, however, is relatively large compared to those

  6. A diagrammatic formulation of the kinetic theory of fluctuations in equilibrium classical fluids. VI. Binary collision approximations for the memory function for self-correlation functions

    NASA Astrophysics Data System (ADS)

    Noah-Vanhoucke, Joyce E.; Andersen, Hans C.

    2007-08-01

    We use computer simulation results for a dense Lennard-Jones fluid for a range of temperatures to test the accuracy of various binary collision approximations for the memory function for density fluctuations in liquids. The approximations tested include the moderate density approximation of the generalized Boltzmann-Enskog memory function (MGBE) of Mazenko and Yip [Statistical Mechanics. Part B. Time-Dependent Processes, edited by B. J. Berne (Plenum, New York, 1977)], the binary collision approximation (BCA) and the short time approximation (STA) of Ranganathan and Andersen [J. Chem. Phys. 121, 1243 (2004); J. Phys. Chem. 109, 21437 (2005)] and various other approximations we derived by using diagrammatic methods. The tests are of two types. The first is a comparison of the correlation functions predicted by each approximate memory function with the simulation results, especially for the self-longitudinal current correlation (SLCC) function. The second is a direct comparison of each approximate memory function with a memory function numerically extracted from the correlation function data. The MGBE memory function is accurate at short times but decays to zero too slowly and gives a poor description of the correlation function at intermediate times. The BCA is exact at zero time, but it predicts a correlation function that diverges at long times. The STA gives a reasonable description of the SLCC but does not predict the correct temperature dependence of the negative dip in the function that is associated with caging at low temperatures. None of the other binary collision approximations is a systematic improvement on the STA. The extracted memory functions have a rapidly decaying short time part, much like the STA, and a much smaller, more slowly decaying part of the type predicted by a mode coupling theory. Theories that use mode coupling commonly include a binary collision term in the memory function but do not discuss in detail the nature of that term. It is clear from the present work that the short time part of the memory function has a behavior associated with brief binary repulsive collisions, such as those described by the STA. Collisions that include attractive as well as repulsive interactions, such as those of the MGBE, have a much longer duration, and theories that include them have memory functions that decay to zero much too slowly to provide a good first approximation of the correlation function. This leads us to speculate that the memory function for density fluctuations can be usefully regarded as a sum of at least three parts: a contribution from repulsive binary collisions (the STA or something similar to it), another short time part that is related to all the other interactions (but whose nature is not understood), and a longer time slowly decaying part that describes caging (of the type predicted by the mode coupling theory).

  7. Path integral Monte Carlo simulations of H2 adsorbed to lithium-doped benzene: A model for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Lindoy, Lachlan P.; Kolmann, Stephen J.; D'Arcy, Jordan H.; Crittenden, Deborah L.; Jordan, Meredith J. T.

    2015-11-01

    Finite temperature quantum and anharmonic effects are studied in H2-Li+-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H2. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of the center-of-mass of the H2 molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔUads, and enthalpy, ΔHads, for H2 adsorption onto Li+-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling—coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H2-Li+-benzene are the "helicopter" and "ferris wheel" H2 rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔUads and ΔHads are -13.3 ± 0.1 and -14.5 ± 0.1 kJ mol-1, respectively.

  8. Statistical mechanics in the context of special relativity. II.

    PubMed

    Kaniadakis, G

    2005-09-01

    The special relativity laws emerge as one-parameter (light speed) generalizations of the corresponding laws of classical physics. These generalizations, imposed by the Lorentz transformations, affect both the definition of the various physical observables (e.g., momentum, energy, etc.), as well as the mathematical apparatus of the theory. Here, following the general lines of [Phys. Rev. E 66, 056125 (2002)], we show that the Lorentz transformations impose also a proper one-parameter generalization of the classical Boltzmann-Gibbs-Shannon entropy. The obtained relativistic entropy permits us to construct a coherent and self-consistent relativistic statistical theory, preserving the main features of the ordinary statistical theory, which is recovered in the classical limit. The predicted distribution function is a one-parameter continuous deformation of the classical Maxwell-Boltzmann distribution and has a simple analytic form, showing power law tails in accordance with the experimental evidence. Furthermore, this statistical mechanics can be obtained as the stationary case of a generalized kinetic theory governed by an evolution equation obeying the H theorem and reproducing the Boltzmann equation of the ordinary kinetics in the classical limit.

  9. Unbiased estimators for spatial distribution functions of classical fluids

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.; Jarzynski, Christopher

    2005-01-01

    We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density ρ(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions.

  10. Analytical gradients for subsystem density functional theory within the slater-function-based amsterdam density functional program.

    PubMed

    Schlüns, Danny; Franchini, Mirko; Götz, Andreas W; Neugebauer, Johannes; Jacob, Christoph R; Visscher, Lucas

    2017-02-05

    We present a new implementation of analytical gradients for subsystem density-functional theory (sDFT) and frozen-density embedding (FDE) into the Amsterdam Density Functional program (ADF). The underlying theory and necessary expressions for the implementation are derived and discussed in detail for various FDE and sDFT setups. The parallel implementation is numerically verified and geometry optimizations with different functional combinations (LDA/TF and PW91/PW91K) are conducted and compared to reference data. Our results confirm that sDFT-LDA/TF yields good equilibrium distances for the systems studied here (mean absolute deviation: 0.09 Å) compared to reference wave-function theory results. However, sDFT-PW91/PW91k quite consistently yields smaller equilibrium distances (mean absolute deviation: 0.23 Å). The flexibility of our new implementation is demonstrated for an HCN-trimer test system, for which several different setups are applied. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Functional thermo-dynamics: a generalization of dynamic density functional theory to non-isothermal situations.

    PubMed

    Anero, Jesús G; Español, Pep; Tarazona, Pedro

    2013-07-21

    We present a generalization of Density Functional Theory (DFT) to non-equilibrium non-isothermal situations. By using the original approach set forth by Gibbs in his consideration of Macroscopic Thermodynamics (MT), we consider a Functional Thermo-Dynamics (FTD) description based on the density field and the energy density field. A crucial ingredient of the theory is an entropy functional, which is a concave functional. Therefore, there is a one to one connection between the density and energy fields with the conjugate thermodynamic fields. The connection between the three levels of description (MT, DFT, FTD) is clarified through a bridge theorem that relates the entropy of different levels of description and that constitutes a generalization of Mermin's theorem to arbitrary levels of description whose relevant variables are connected linearly. Although the FTD level of description does not provide any new information about averages and correlations at equilibrium, it is a crucial ingredient for the dynamics in non-equilibrium states. We obtain with the technique of projection operators the set of dynamic equations that describe the evolution of the density and energy density fields from an initial non-equilibrium state towards equilibrium. These equations generalize time dependent density functional theory to non-isothermal situations. We also present an explicit model for the entropy functional for hard spheres.

  12. Generalized Lenard-Balescu calculations of electron-ion temperature relaxation in beryllium plasma.

    PubMed

    Fu, Zhen-Guo; Wang, Zhigang; Li, Da-Fang; Kang, Wei; Zhang, Ping

    2015-09-01

    The problem of electron-ion temperature relaxation in beryllium plasma at various densities (0.185-18.5g/cm^{3}) and temperatures [(1.0-8)×10^{3} eV] is investigated by using the generalized Lenard-Balescu theory. We consider the correlation effects between electrons and ions via classical and quantum static local field corrections. The numerical results show that the electron-ion pair distribution function at the origin approaches the maximum when the electron-electron coupling parameter equals unity. The classical result of the Coulomb logarithm is in agreement with the quantum result in both the weak (Γ_{ee}<10^{-2}) and strong (Γ_{ee}>1) electron-electron coupling ranges, whereas it deviates from the quantum result at intermediate values of the coupling parameter (10^{-2}<Γ_{ee}<1). We find that with increasing density of Be, the Coulomb logarithm will decrease and the corresponding relaxation rate ν_{ie} will increase. In addition, a simple fitting law ν_{ie}/ν_{ie}^{(0)}=a(ρ_{Be}/ρ_{0})^{b} is determined, where ν_{ie}^{(0)} is the relaxation rate corresponding to the normal metal density of Be and ρ_{0}, a, and b are the fitting parameters related to the temperature and the degree of ionization 〈Z〉 of the system. Our results are expected to be useful for future inertial confinement fusion experiments involving Be plasma.

  13. A Safari Through Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Dreizler, Reiner M.; Lüdde, Cora S.

    Density functional theory is widely used to treat quantum many body problems in many areas of physics and related fields. A brief survey of this method covering foundations, functionals and applications is presented here.

  14. Dual of the Janus solution: An interface conformal field theory

    NASA Astrophysics Data System (ADS)

    Clark, A. B.; Freedman, D. Z.; Karch, A.; Schnabl, M.

    2005-03-01

    We propose and study a specific gauge theory dual of the smooth, nonsupersymmetric (and apparently stable) Janus solution of Type IIB supergravity found in Bak et al. [J. High Energy Phys., JHEPFG, 1029-8479 05 (2003) 072]. The dual field theory is N=4 SYM theory on two half-spaces separated by a planar interface with different coupling constants in each half-space. We assume that the position dependent coupling multiplies the operator L' which is the fourth descendent of the primary TrX{IXJ} and closely related to the N=4 Lagrangian density. At the classical level supersymmetry is broken explicitly, but SO(3,2) conformal symmetry is preserved. We use conformal perturbation theory to study various correlation functions to first and second order in the discontinuity of g2YM, confirming quantum level conformal symmetry. Certain quantities such as the vacuum expectation value are protected to all orders in g2YMN, and we find perfect agreement between the weak coupling value in the gauge theory and the strong coupling gravity result. SO(3,2) symmetry requires vanishing vacuum energy, =0, and this is confirmed in first order in the discontinuity.

  15. Path integral approach to the Wigner representation of canonical density operators for discrete systems coupled to harmonic baths.

    PubMed

    Montoya-Castillo, Andrés; Reichman, David R

    2017-01-14

    We derive a semi-analytical form for the Wigner transform for the canonical density operator of a discrete system coupled to a harmonic bath based on the path integral expansion of the Boltzmann factor. The introduction of this simple and controllable approach allows for the exact rendering of the canonical distribution and permits systematic convergence of static properties with respect to the number of path integral steps. In addition, the expressions derived here provide an exact and facile interface with quasi- and semi-classical dynamical methods, which enables the direct calculation of equilibrium time correlation functions within a wide array of approaches. We demonstrate that the present method represents a practical path for the calculation of thermodynamic data for the spin-boson and related systems. We illustrate the power of the present approach by detailing the improvement of the quality of Ehrenfest theory for the correlation function C zz (t)=Re⟨σ z (0)σ z (t)⟩ for the spin-boson model with systematic convergence to the exact sampling function. Importantly, the numerically exact nature of the scheme presented here and its compatibility with semiclassical methods allows for the systematic testing of commonly used approximations for the Wigner-transformed canonical density.

  16. Continuous Time in Consistent Histories

    NASA Astrophysics Data System (ADS)

    Savvidou, Konstantina

    1999-12-01

    We discuss the case of histories labelled by a continuous time parameter in the History Projection Operator consistent-histories quantum theory. We describe how the appropriate representation of the history algebra may be chosen by requiring the existence of projection operators that represent propositions about time averages of the energy. We define the action operator for the consistent histories formalism, as the quantum analogue of the classical action functional, for the simple harmonic oscillator case. We show that the action operator is the generator of two types of time transformations that may be related to the two laws of time-evolution of the standard quantum theory: the `state-vector reduction' and the unitary time-evolution. We construct the corresponding classical histories and demonstrate the relevance with the quantum histories; we demonstrate how the requirement of the temporal logic structure of the theory is sufficient for the definition of classical histories. Furthermore, we show the relation of the action operator to the decoherence functional which describes the dynamics of the system. Finally, the discussion is extended to give a preliminary account of quantum field theory in this approach to the consistent histories formalism.

  17. Multiconfiguration Pair-Density Functional Theory Is Free From Delocalization Error.

    PubMed

    Bao, Junwei Lucas; Wang, Ying; He, Xiao; Gagliardi, Laura; Truhlar, Donald G

    2017-11-16

    Delocalization error has been singled out by Yang and co-workers as the dominant error in Kohn-Sham density functional theory (KS-DFT) with conventional approximate functionals. In this Letter, by computing the vertical first ionization energy for well separated He clusters, we show that multiconfiguration pair-density functional theory (MC-PDFT) is free from delocalization error. To put MC-PDFT in perspective, we also compare it with some Kohn-Sham density functionals, including both traditional and modern functionals. Whereas large delocalization errors are almost universal in KS-DFT (the only exception being the very recent corrected functionals of Yang and co-workers), delocalization error is removed by MC-PDFT, which bodes well for its future as a step forward from KS-DFT.

  18. Modeling study of rarefied gas effects on hypersonic reacting stagnation flows

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Bao, Lin

    2014-12-01

    Recent development of the near space hypersonic sharp leading vehicles has raised a necessity to fast and accurately predict the aeroheating in hypersonic rarefied flows, which challenges our understanding of the aerothermodynamics and aerothermochemistry. The present flow and heat transfer problem involves complex rarefied gas effects and nonequilibrium real gas effects which are beyond the scope of the traditional prediction theory based on the continuum hypothesis and equilibrium assumption. As a typical example, it has been found that the classical Fay-Riddell equation fails to predict the stagnation point heat flux, when the flow is either rarefied or chemical nonequilibrium. In order to design a more general theory covering the rarefied reacting flow cases, an intuitive model is proposed in this paper to describe the nonequilibrium dissociation-recombination flow along the stagnation streamline towards a slightly blunted nose in hypersonic rarefied flows. Some characteristic flow parameters are introduced, and based on these parameters, an explicitly analytical bridging function is established to correct the traditional theory to accurately predict the actual aeroheating performance. It is shown that for a small size nose in medium density flows, the flow at the outer edge of the stagnation point boundary layer could be highly nonequilibrium, and the aeroheating performance is distinguished from that of the big blunt body reentry flows at high altitudes. As a result, when the rarefied gas effects and the nonequilibrium real gas effects are both significant, the classical similarity law could be questionable, and it is inadequate to directly analogize results from the classical blunt body reentry problems to the present new generation sharp-leading vehicles. In addition, the direct simulation Monte Carlo method is also employed to validate the conclusion.

  19. Theory of point contact spectroscopy in correlated materials

    DOE PAGES

    Lee, Wei-Cheng; Park, Wan Kyu; Arham, Hamood Z.; ...

    2015-01-05

    Here, we developed a microscopic theory for the point-contact conductance between a metallic electrode and a strongly correlated material using the nonequilibrium Schwinger-Kadanoff-Baym-Keldysh formalism. We explicitly show that, in the classical limit, contact size shorter than the scattering length of the system, the microscopic model can be reduced to an effective model with transfer matrix elements that conserve in-plane momentum. We found that the conductance dI/dV is proportional to the effective density of states, that is, the integrated single-particle spectral function A(ω = eV) over the whole Brillouin zone. From this conclusion, we are able to establish the conditions undermore » which a non-Fermi liquid metal exhibits a zero-bias peak in the conductance. Lastly, this finding is discussed in the context of recent point-contact spectroscopy on the iron pnictides and chalcogenides, which has exhibited a zero-bias conductance peak.« less

  20. Role of the interlayer coupling for the thermoelectric properties of CuSbS2 and CuSbSe2

    NASA Astrophysics Data System (ADS)

    Alsaleh, Najebah; Singh, Nirpendra; Schwingenschlogl, Udo

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined using density functional theory and semi-classical Boltzmann transport theory, in order to investigate the role of the interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterised by lower power factors. Therefore, the interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2 even though it is of weak van der Waals type. The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).

  1. Synthesis, structure and DFT study of cymantrenyl Fischer carbene complexes of group VI and VII transition metals

    NASA Astrophysics Data System (ADS)

    Fraser, Roan; van Rooyen, Petrus H.; Landman, Marilé

    2016-02-01

    Bi- and trimetallic carbene complexes of group VI and VII transition metals (Cr, Mo, W, Mn and Re), with CpMn(CO)3 as the initial synthon, have been synthesised according to the classical Fischer methodology. Crystal structures of the novel carbene complexes with general formula [Mx(CO)y-1{C(OEt)(MnCp(CO)3)}], where x = 1 then y = 3 or 6; x = 2 then y = 10, of the complexes are reported. A density functional theory (DFT) study was undertaken to determine natural bonding orbitals (NBOs) and conformational as well as isomeric aspects of the polymetallic complexes. Application of the second-order perturbation theory (SOPT) of the natural bond orbital (NBO) method revealed stabilizing interactions between the methylene C-H bonds and the carbonyl ligands of the carbene metal moiety. These stabilization interactions show a linear decrease for the group VI metal carbene complexes down the group.

  2. A field theory approach to the evolution of canonical helicity and energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, S.

    A redefinition of the Lagrangian of a multi-particle system in fields reformulates the single-particle, kinetic, and fluid equations governing fluid and plasma dynamics as a single set of generalized Maxwell's equations and Ohm's law for canonical force-fields. The Lagrangian includes new terms representing the coupling between the motion of particle distributions, between distributions and electromagnetic fields, with relativistic contributions. The formulation shows that the concepts of self-organization and canonical helicity transport are applicable across single-particle, kinetic, and fluid regimes, at classical and relativistic scales. The theory gives the basis for comparing canonical helicity change to energy change in general systems.more » For example, in a fixed, isolated system subject to non-conservative forces, a species' canonical helicity changes less than total energy only if gradients in density or distribution function are shallow.« less

  3. A molecular theory for optimal blue energy extraction by electrical double layer expansion

    DOE PAGES

    Kong, Xian; Gallegos, Alejandro; Lu, Diannan; ...

    2015-08-19

    We proposed the electrical double layer expansion (CDLE) as a promising alternative to reverse electrodialysis (RED) and pressure retarded osmosis (PRO) processes for extracting osmotic power generated by the salinity difference between freshwater and seawater. The performance of the CDLE process is sensitive to the configuration of porous electrodes and operation parameters for ion extraction and release cycles. In our work, we use a classical density functional theory (CDFT) to examine how the electrode pore size and charging/discharging potentials influence the thermodynamic efficiency of the CDLE cycle. The existence of an optimal charging potential that maximizes the energy output formore » a given pore configuration is predicted, which varies substantially with the pore size, especially when it is smaller than 2 nm. Finally, the thermodynamic efficiency is maximized when the electrode has a pore size about twice the ion diameter.« less

  4. On the calculation of charge transfer transitions with standard density functionals using constrained variational density functional theory.

    PubMed

    Ziegler, Tom; Krykunov, Mykhaylo

    2010-08-21

    It is well known that time-dependent density functional theory (TD-DFT) based on standard gradient corrected functionals affords both a quantitative and qualitative incorrect picture of charge transfer transitions between two spatially separated regions. It is shown here that the well known failure can be traced back to the use of linear response theory. Further, it is demonstrated that the inclusion of higher order terms readily affords a qualitatively correct picture even for simple functionals based on the local density approximation. The inclusion of these terms is done within the framework of a newly developed variational approach to excitation energies called constrained variational density functional theory (CV-DFT). To second order [CV(2)-DFT] this theory is identical to adiabatic TD-DFT within the Tamm-Dancoff approximation. With inclusion of fourth order corrections [CV(4)-DFT] it affords a qualitative correct description of charge transfer transitions. It is finally demonstrated that the relaxation of the ground state Kohn-Sham orbitals to first order in response to the change in density on excitation together with CV(4)-DFT affords charge transfer excitations in good agreement with experiment. The new relaxed theory is termed R-CV(4)-DFT. The relaxed scheme represents an effective way in which to introduce double replacements into the description of single electron excitations, something that would otherwise require a frequency dependent kernel.

  5. Theoretical investigation of the electron capture and loss processes in the collisions of He2+ + Ne.

    PubMed

    Hong, Xuhai; Wang, Feng; Jiao, Yalong; Su, Wenyong; Wang, Jianguo; Gou, Bingcong

    2013-08-28

    Based on the time-dependent density functional theory, a method is developed to study ion-atom collision dynamics, which self-consistently couples the quantum mechanical description of electron dynamics with the classical treatment of the ion motion. Employing real-time and real-space method, the coordinate space translation technique is introduced to allow one to focus on the region of target or projectile depending on the actual concerned process. The benchmark calculations are performed for the collisions of He(2+) + Ne, and the time evolution of electron density distribution is monitored, which provides interesting details of the interaction dynamics between the electrons and ion cores. The cross sections of single and many electron capture and loss have been calculated in the energy range of 1-1000 keV/amu, and the results show a good agreement with the available experiments over a wide range of impact energies.

  6. Impurity Effects on Charging Mechanism and Energy Storage of Nanoporous Supercapacitors

    DOE PAGES

    Lian, Cheng; Liu, Kun; Liu, Honglai; ...

    2017-06-08

    Room-temperature ionic liquids (RTILs) have been widely used as electrolytes to enhance the capacitive performance of electrochemical capacitors also known as supercapacitors. Whereas impurities are ubiquitous in RTILs (e.g., water, alkali salts, and organic solvents), little is known about their influences on the electrochemical behavior of electrochemical devices. In this work, we investigate different impurities in RTILs within the micropores of carbon electrodes via the classical density functional theory (CDFT). We find that under certain conditions impurities can significantly change the charging behavior of electric double layers and the shape of differential capacitance curves even at very low concentrations. Moremore » interestingly, an impurity with a strong affinity to the nanopore can increase the energy density beyond a critical charging potential. As a result, our theoretical predictions provide further understanding of how impurity in RTILs affects the performance of supercapacitors.« less

  7. Influence of system size on the properties of a fluid adsorbed in a nanopore: Physical manifestations and methodological consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puibasset, Joël, E-mail: puibasset@cnrs-orleans.fr; Kierlik, Edouard, E-mail: edouard.kierlik@upmc.fr; Tarjus, Gilles, E-mail: tarjus@lptl.jussieu.fr

    Hysteresis and discontinuities in the isotherms of a fluid adsorbed in a nanopore in general hamper the determination of equilibrium thermodynamic properties, even in computer simulations. A way around this has been to consider both a reservoir of small size and a pore of small extent in order to restrict the fluctuations of density and approach a classical van der Waals loop. We assess this suggestion by thoroughly studying through Monte Carlo simulations and density functional theory the influence of system size on the equilibrium configurations of the adsorbed fluid and on the resulting isotherms. We stress the importance ofmore » pore-symmetry-breaking states that even for modest pore sizes lead to discontinuous isotherms and we discuss the physical relevance of these states and the methodological consequences for computing thermodynamic quantities.« less

  8. Ab Initio Investigations of High-Pressure Melting of Dense Lithium

    NASA Astrophysics Data System (ADS)

    Clay, Raymond; Morales, Miguel; Bonev, Stanimir

    Lithium at ambient conditions is the simplest alkali metal and exhibits textbook nearly-free electron behavior. As the density is increased, however, significant core/valence overlap leads to surprisingly complex chemistry. We have systematically investigated the phase diagram of lithium at pressures ranging between two and six million atmospheres. Through a combination of density functional theory based path-integral and classical molecular dynamics simulations, we have investigated the impact of both nuclear quantum effects and anharmonicity on the melting line and solid phase boundaries. We also investigate how the inclusion of nuclear quantum effects and approximations in the treatment of electronic exchange-correlation impact the robustness of previous predictions of tetrahedral clustering in dense liquid Li. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Simultaneous determination of effective carrier lifetime and resistivity of Si wafers using the nonlinear nature of photocarrier radiometric signals

    NASA Astrophysics Data System (ADS)

    Sun, Qiming; Melnikov, Alexander; Wang, Jing; Mandelis, Andreas

    2018-04-01

    A rigorous treatment of the nonlinear behavior of photocarrier radiometric (PCR) signals is presented theoretically and experimentally for the quantitative characterization of semiconductor photocarrier recombination and transport properties. A frequency-domain model based on the carrier rate equation and the classical carrier radiative recombination theory was developed. The derived concise expression reveals different functionalities of the PCR amplitude and phase channels: the phase bears direct quantitative correlation with the carrier effective lifetime, while the amplitude versus the estimated photocarrier density dependence can be used to extract the equilibrium majority carrier density and thus, resistivity. An experimental ‘ripple’ optical excitation mode (small modulation depth compared to the dc level) was introduced to bypass the complicated ‘modulated lifetime’ problem so as to simplify theoretical interpretation and guarantee measurement self-consistency and reliability. Two Si wafers with known resistivity values were tested to validate the method.

  10. Simplified DFT methods for consistent structures and energies of large systems

    NASA Astrophysics Data System (ADS)

    Caldeweyher, Eike; Gerit Brandenburg, Jan

    2018-05-01

    Kohn–Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.

  11. Theoretical investigation of cyromazine tautomerism using density functional theory and Møller–Plesset perturbation theory methods

    USDA-ARS?s Scientific Manuscript database

    A computational chemistry analysis of six unique tautomers of cyromazine, a pesticide used for fly control, was performed with density functional theory (DFT) and canonical second order Møller–Plesset perturbation theory (MP2) methods to gain insight into the contributions of molecular structure to ...

  12. Functional renormalization group and Kohn-Sham scheme in density functional theory

    NASA Astrophysics Data System (ADS)

    Liang, Haozhao; Niu, Yifei; Hatsuda, Tetsuo

    2018-04-01

    Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the φ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.

  13. Unveiling the nature of post-linear response Z-vector method for time-dependent density functional theory.

    PubMed

    Pastore, Mariachiara; Assfeld, Xavier; Mosconi, Edoardo; Monari, Antonio; Etienne, Thibaud

    2017-07-14

    We report a theoretical study on the analysis of the relaxed one-particle difference density matrix characterizing the passage from the ground to the excited state of a molecular system, as obtained from time-dependent density functional theory. In particular, this work aims at using the physics contained in the so-called Z-vector, which differentiates between unrelaxed and relaxed difference density matrices to analyze excited states' nature. For this purpose, we introduce novel quantum-mechanical quantities, based on the detachment/attachment methodology, for analysing the Z-vector transformation for different molecules and density functional theory functionals. A derivation pathway of these novel descriptors is reported, involving a numerical integration to be performed in the Euclidean space on the density functions. This topological analysis is then applied to two sets of chromophores, and the correlation between the level of theory and the behavior of our descriptors is properly rationalized. In particular, the effect of range-separation on the relaxation amplitude is discussed. The relaxation term is finally shown to be system-specific (for a given level of theory) and independent of the number of electrons (i.e., the relaxation amplitude is not simply the result of a collective phenomenon).

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Daniel P.; Tymińska, Nina; Zurek, Eva, E-mail: ezurek@buffalo.edu

    Dispersion corrected Density Functional Theory calculations were employed to study the adsorption of benzenes derivatized with functional groups encompassing a large region of the activated/deactivated spectrum to the Ag(111) surface. Benzenes substituted with weak activating or deactivating groups, such as methyl and fluoro, do not have a strong preference for adsorbing to a particular site on the substrate, with the corrugations in the potential energy surface being similar to those of benzene. Strong activating (N(CH{sub 3}){sub 2}) and deactivating (NO{sub 2}) groups, on the other hand, possess a distinct site preference. The nitrogen in the former prefers to lie abovemore » a silver atom (top site), but in the latter a hollow hexagonal-closed-packed (H{sub hcp}) site of the Ag(111) surface is favored instead. Benzenes derivatized with classic activating groups donate electron density from their highest occupied molecular orbital to the surface, and those functionalized with deactivating groups withdraw electron density from the surface into orbitals that are unoccupied in the gas phase. For benzenes functionalized with two substituents, the groups that are strongly activating or deactivating control the site preference and the other groups assume sites that are, to a large degree, dictated by their positions on the benzene ring. The relative stabilities of the ortho, meta, and para positional isomers of disubstituted benzenes can, in some cases, be modified by adsorption to the surface.« less

  15. Excited State Studies of Polyacenes Using the All-Order Constricted Variational Density Functional Theory with Orbital Relaxation.

    PubMed

    Senn, Florian; Krykunov, Mykhaylo

    2015-10-22

    For the polyacenes series from naphthalene to hexacene, we present the vertical singlet excitation energies 1 (1)La and 1 (1)Lb, as well as the first triplet excitation energies obtained by the all-order constricted variational density functional theory with orbital relaxation (R-CV(∞)-DFT). R-CV(∞)-DFT is a further development of variational density functional theory (CV(∞)-DFT), which has already been successfully applied for the calculation of the vertical singlet excitation energies (1)La and (1)Lb for polyacenes,15 and we show that one obtains consistent excitation energies using the local density approximation as a functional for singlet as well as for triplet excitations when going beyond the linear response theory. Furthermore, we apply self-consistent field density functional theory (ΔSCF-DFT) and compare the obtained excitation energies for the first triplet excitations T1, where, due to the character of the transition, ΔSCF-DFT and R-CV(∞)-DFT become numerically equivalent, and for the singlet excitations 1 (1)La and 1 (1)Lb, where the two methods differ.

  16. Molecular dynamics studies of electron-ion temperature equilibration in hydrogen plasmas within the coupled-mode regime

    DOE PAGES

    Benedict, Lorin X.; Surh, Michael P.; Stanton, Liam G.; ...

    2017-04-10

    Here, we use classical molecular dynamics (MD) to study electron-ion temperature equilibration in two-component plasmas in regimes for which the presence of coupled collective modes has been predicted to substantively reduce the equilibration rate. Guided by previous kinetic theory work, we examine hydrogen plasmas at a density of n = 10 26cm –3, T i = 10 5K, and 10 7 K < Te < 10 9K. The nonequilibrium classical MD simulations are performed with interparticle interactions modeled by quantum statistical potentials (QSPs). Our MD results indicate (i) a large effect from time-varying potential energy, which we quantify by appealingmore » to an adiabatic two-temperature equation of state, and (ii) a notable deviation in the energy equilibration rate when compared to calculations from classical Lenard-Balescu theory including the QSPs. In particular, it is shown that the energy equilibration rates from MD are more similar to those of the theory when coupled modes are neglected. We suggest possible reasons for this surprising result and propose directions of further research along these lines.« less

  17. Pathways to dewetting in hydrophobic confinement

    PubMed Central

    Remsing, Richard C.; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G.; Garde, Shekhar; Patel, Amish J.

    2015-01-01

    Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces—tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces—namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics—facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie–Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly. PMID:26100866

  18. Pathways to dewetting in hydrophobic confinement.

    PubMed

    Remsing, Richard C; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G; Garde, Shekhar; Patel, Amish J

    2015-07-07

    Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces--tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces--namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics--facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie-Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly.

  19. A comparison of integral equations and density functional theory versus Monte Carlo for hard dumbbells near a hard wall

    NASA Astrophysics Data System (ADS)

    Henderson, Douglas; Quintana, Jacqueline; Sokołowski, Stefan

    1995-03-01

    A comparison of Percus-Yevick-Pynn-Lado model theory and a density functional (DF) theory of nonuniform fluids of nonspherical particles is performed. The DF used is a new generalization of Tarazona's theory. The conclusion is that DF theory provides a preferable route to describe the system under consideration. Its accuracy can be improved with better approximation for the direct correlation function (DCF) for bulk system.

  20. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    PubMed

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  1. Higher-Order Interference in Extensions of Quantum Theory

    NASA Astrophysics Data System (ADS)

    Lee, Ciarán M.; Selby, John H.

    2017-01-01

    Quantum interference, manifest in the two slit experiment, lies at the heart of several quantum computational speed-ups and provides a striking example of a quantum phenomenon with no classical counterpart. An intriguing feature of quantum interference arises in a variant of the standard two slit experiment, in which there are three, rather than two, slits. The interference pattern in this set-up can be written in terms of the two and one slit patterns obtained by blocking one, or more, of the slits. This is in stark contrast with the standard two slit experiment, where the interference pattern cannot be written as a sum of the one slit patterns. This was first noted by Rafael Sorkin, who raised the question of why quantum theory only exhibits irreducible interference in the two slit experiment. One approach to this problem is to compare the predictions of quantum theory to those of operationally-defined `foil' theories, in the hope of determining whether theories that do exhibit higher-order interference suffer from pathological—or at least undesirable—features. In this paper two proposed extensions of quantum theory are considered: the theory of Density Cubes proposed by Dakić, Paterek and Brukner, which has been shown to exhibit irreducible interference in the three slit set-up, and the Quartic Quantum Theory of Życzkowski. The theory of Density Cubes will be shown to provide an advantage over quantum theory in a certain computational task and to posses a well-defined mechanism which leads to the emergence of quantum theory—analogous to the emergence of classical physics from quantum theory via decoherence. Despite this, the axioms used to define Density Cubes will be shown to be insufficient to uniquely characterise the theory. In comparison, Quartic Quantum Theory is a well-defined theory and we demonstrate that it exhibits irreducible interference to all orders. This feature of Życzkowski's theory is argued not to be a genuine phenomenon, but to arise from an ambiguity in the current definition of higher-order interference in operationally-defined theories. Thus, to begin to understand why quantum theory is limited to a certain kind of interference, a new definition of higher-order interference is needed that is applicable to, and makes good operational sense in, arbitrary operationally-defined theories.

  2. Single crystal, vibrational and computational studies of Theophylline (a bronchodilator drug) and its chloride salt

    NASA Astrophysics Data System (ADS)

    Mary Novena, L.; Suresh Kumar, S.; Athimoolam, S.; Saminathan, K.; Sridhar, B.

    2017-04-01

    The crystal structure of Theophylline (TH) and Theophyillinium chloride monohydrate (THC) and its complete molecular structure analysis on theoretical and experimental methods is reported here. The hydrogen bonding studies were carried out as a special note of the present work. The electron density analyses of the compounds were also analyzed in view of the intermolecular interactions. Moreover, it is an ever first quantum chemical report of this drug (TH) and its chloride salt. In TH crystal, the water molecule connects the Theophylline molecules through Osbnd H⋯N hydrogen bond forming discrete D22(7) motif and dimeric ring R22(10) motif through Nsbnd H⋯O hydrogen bond. In THC, the two classical (Nsbnd H⋯O, Nsbnd H⋯Cl) and one non-classical (Csbnd H⋯O) hydrogen bonds produce two pentameric chain C55 (16) and C55(17) motifs. These two chain motifs are interconnected by Osbnd H⋯O hydrogen bond and cross linked by Nsbnd H⋯Cl and Osbnd H⋯Cl hydrogen bonds to produce octametric ring R88(27) and R88(28) motifs. The solubility test is carried out to enhance the drug solubility and the therapeutic effectiveness of the drug. Experimentally obtained vibrational wavenumbers are compared with the spectra obtained theoretically for both the compound. The strong intensity bands and the shifting of bands due to intermolecular hydrogen bonds are also investigated. The Mulliken atomic charges, HOMO-LUMO and thermodynamic properties are calculated using Density Functional Theory (DFT) and Hartree-Fock Theory (HF) using 6-311++G(d,p) basis set.

  3. Spinning superfluid 4He nanodroplets

    NASA Astrophysics Data System (ADS)

    Ancilotto, Francesco; Barranco, Manuel; Pi, Martí

    2018-05-01

    We have studied spinning superfluid 4He nanodroplets at zero temperature using density functional theory. Due to the irrotational character of the superfluid flow, the shapes of the spinning nanodroplets are very different from those of a viscous normal fluid drop in steady rotation. We show that when vortices are nucleated inside the superfluid droplets, their morphology, which evolves from axisymmetric oblate to triaxial prolate to two-lobed shapes, is in good agreement with experiments. The presence of vortex arrays confers to the superfluid droplets the rigid-body behavior of a normal fluid in steady rotation, and this is the ultimate reason for the surprising good agreement between recent experiments and the classical models used for their description.

  4. Tuning the Curie temperature of FeCo compounds by tetragonal distortion

    NASA Astrophysics Data System (ADS)

    Jakobsson, A.; Şaşıoǧlu, E.; Mavropoulos, Ph.; Ležaić, M.; Sanyal, B.; Bihlmayer, G.; Blügel, S.

    2013-09-01

    Combining density-functional theory calculations with a classical Monte Carlo method, we show that for B2-type FeCo compounds, tetragonal distortion gives rise to a strong reduction of the Curie temperature TC. The TC monotonically decreases from 1575 K (for c /a=1) to 940 K (for c /a=√2 ). We find that the nearest neighbor Fe-Co exchange interaction is sufficient to explain the c/a behavior of the TC. Combination of high magnetocrystalline anisotropy energy with a moderate TC value suggests tetragonal FeCo grown on the Rh substrate with c /a=1.24 to be a promising material for heat-assisted magnetic recording applications.

  5. A Transferrable Belief Model Representation for Physical Security of Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Gerts

    This work analyzed various probabilistic methods such as classic statistics, Bayesian inference, possibilistic theory, and Dempster-Shafer theory of belief functions for the potential insight offered into the physical security of nuclear materials as well as more broad application to nuclear non-proliferation automated decision making theory. A review of the fundamental heuristic and basic limitations of each of these methods suggested that the Dempster-Shafer theory of belief functions may offer significant capability. Further examination of the various interpretations of Dempster-Shafer theory, such as random set, generalized Bayesian, and upper/lower probability demonstrate some limitations. Compared to the other heuristics, the transferrable beliefmore » model (TBM), one of the leading interpretations of Dempster-Shafer theory, can improve the automated detection of the violation of physical security using sensors and human judgment. The improvement is shown to give a significant heuristic advantage over other probabilistic options by demonstrating significant successes for several classic gedanken experiments.« less

  6. Adsorbate Diffusion on Transition Metal Nanoparticles

    DTIC Science & Technology

    2015-01-01

    different sizes and shapes using density functional theory calculations. We show that nanoparticles bind adsorbates more strongly than the...structure theoretical methods, a quantitative study with accurate density functional theory (DFT) calculations is still missing. Here, we perform a...functional theory . The projector augmented wave (PAW) potentials29,30 were used for electron- ion interactions and the generalized gradient approximation

  7. Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection.

    PubMed

    Reimann, Sarah; Borgoo, Alex; Tellgren, Erik I; Teale, Andrew M; Helgaker, Trygve

    2017-09-12

    We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.

  8. 4-Arylflavan-3-ols as Proanthocyanidin Models: Absolute Configuration via Density Functional Calculation of Electronic Circular Dichroism

    USDA-ARS?s Scientific Manuscript database

    Density functional theory/B3LYP has been employed to optimize the conformations of selected 4-arylflavan-3-ols and their phenolic methyl ether 3-O-acetates. The electronic circular dichroism spectra of the major conformers have been calculated using time-dependent density functional theory to valida...

  9. Coarse-grained density functional theories for metallic alloys: Generalized coherent-potential approximations and charge-excess functional theory

    NASA Astrophysics Data System (ADS)

    Bruno, Ezio; Mammano, Francesco; Fiorino, Antonino; Morabito, Emanuela V.

    2008-04-01

    The class of the generalized coherent-potential approximations (GCPAs) to the density functional theory (DFT) is introduced within the multiple scattering theory formalism with the aim of dealing with ordered or disordered metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. Most existing DFT implementations of CPA-based theories belong to the GCPA class. The analysis of the formal properties of the density functional defined by GCPA theories shows that it consists of marginally coupled local contributions. Furthermore, it is shown that the GCPA functional does not depend on the details of the charge density and that it can be exactly rewritten as a function of the appropriate charge multipole moments to be associated with each lattice site. A general procedure based on the integration of the qV laws is described that allows for the explicit construction of the same function. The coarse-grained nature of the GCPA density functional implies a great deal of computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the charge-excess functional (CEF) theory [E. Bruno , Phys. Rev. Lett. 91, 166401 (2003)], which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art linearized augmented plane wave (LAPW) full-potential density functional calculations for 62 bcc- and fcc-based ordered CuZn alloys, in all the range of concentrations. Two facts clearly emerge from these extensive tests. In the first place, the discrepancies between GCPA and CEF results are always within the numerical accuracy of the calculations, both for the site charges and the total energies. In the second place, the GCPA (or the CEF) is able to very carefully reproduce the LAPW site charges and a good agreement is obtained also about the total energies.

  10. Surface tension of droplets and Tolman lengths of real substances and mixtures from density functional theory

    NASA Astrophysics Data System (ADS)

    Rehner, Philipp; Gross, Joachim

    2018-04-01

    The curvature dependence of interfacial properties has been discussed extensively over the last decades. After Tolman published his work on the effect of droplet size on surface tension, where he introduced the interfacial property now known as Tolman length, several studies were performed with varying results. In recent years, however, some consensus has been reached about the sign and magnitude of the Tolman length of simple model fluids. In this work, we re-examine Tolman's equation and how it relates the Tolman length to the surface tension and we apply non-local classical density functional theory (DFT) based on the perturbed chain statistical associating fluid theory (PC-SAFT) to characterize the curvature dependence of the surface tension of real fluids as well as mixtures. In order to obtain a simple expression for the surface tension, we use a first-order expansion of the Tolman length as a function of droplet radius Rs, as δ(Rs) = δ0 + δ1/Rs, and subsequently expand Tolman's integral equation for the surface tension, whereby a second-order expansion is found to give excellent agreement with the DFT result. The radius-dependence of the surface tension of increasingly non-spherical substances is studied for n-alkanes, up to icosane. The infinite diameter Tolman length is approximately δ0 = -0.38 Å at low temperatures. For more strongly non-spherical substances and for temperatures approaching the critical point, however, the infinite diameter Tolman lengths δ0 turn positive. For mixtures, even if they contain similar molecules, the extrapolated Tolman length behaves strongly non-ideal, implying a qualitative change of the curvature behavior of the surface tension of the mixture.

  11. Surface tension of droplets and Tolman lengths of real substances and mixtures from density functional theory.

    PubMed

    Rehner, Philipp; Gross, Joachim

    2018-04-28

    The curvature dependence of interfacial properties has been discussed extensively over the last decades. After Tolman published his work on the effect of droplet size on surface tension, where he introduced the interfacial property now known as Tolman length, several studies were performed with varying results. In recent years, however, some consensus has been reached about the sign and magnitude of the Tolman length of simple model fluids. In this work, we re-examine Tolman's equation and how it relates the Tolman length to the surface tension and we apply non-local classical density functional theory (DFT) based on the perturbed chain statistical associating fluid theory (PC-SAFT) to characterize the curvature dependence of the surface tension of real fluids as well as mixtures. In order to obtain a simple expression for the surface tension, we use a first-order expansion of the Tolman length as a function of droplet radius R s , as δ(R s ) = δ 0 + δ 1 /R s , and subsequently expand Tolman's integral equation for the surface tension, whereby a second-order expansion is found to give excellent agreement with the DFT result. The radius-dependence of the surface tension of increasingly non-spherical substances is studied for n-alkanes, up to icosane. The infinite diameter Tolman length is approximately δ 0 = -0.38 Å at low temperatures. For more strongly non-spherical substances and for temperatures approaching the critical point, however, the infinite diameter Tolman lengths δ 0 turn positive. For mixtures, even if they contain similar molecules, the extrapolated Tolman length behaves strongly non-ideal, implying a qualitative change of the curvature behavior of the surface tension of the mixture.

  12. Momentum constraints as integrability conditions for the Hamiltonian constraint in general relativity.

    NASA Technical Reports Server (NTRS)

    Moncrief, V.; Teitelboim, C.

    1972-01-01

    It is shown that if the Hamiltonian constraint of general relativity is imposed as a restriction on the Hamilton principal functional in the classical theory, or on the state functional in the quantum theory, then the momentum constraints are automatically satisfied. This result holds both for closed and open spaces and it means that the full content of the theory is summarized by a single functional equation of the Tomonaga-Schwinger type.

  13. Niels Bohr as philosopher of experiment: Does decoherence theory challenge Bohr's doctrine of classical concepts?

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian; Schlosshauer, Maximilian

    2015-02-01

    Niels Bohr's doctrine of the primacy of "classical concepts" is arguably his most criticized and misunderstood view. We present a new, careful historical analysis that makes clear that Bohr's doctrine was primarily an epistemological thesis, derived from his understanding of the functional role of experiment. A hitherto largely overlooked disagreement between Bohr and Heisenberg about the movability of the "cut" between measuring apparatus and observed quantum system supports the view that, for Bohr, such a cut did not originate in dynamical (ontological) considerations, but rather in functional (epistemological) considerations. As such, both the motivation and the target of Bohr's doctrine of classical concepts are of a fundamentally different nature than what is understood as the dynamical problem of the quantum-to-classical transition. Our analysis suggests that, contrary to claims often found in the literature, Bohr's doctrine is not, and cannot be, at odds with proposed solutions to the dynamical problem of the quantum-classical transition that were pursued by several of Bohr's followers and culminated in the development of decoherence theory.

  14. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    PubMed

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  15. Density Functional Theory (DFT) study of β-Hairpins in Antiparallel β-Sheets, A New Classification Based upon H-bond Topology

    PubMed Central

    Roy, Dipankar; Pohl, Gabor; Ali-Torres, Jorge; Marianski, Mateusz; Dannenberg, J. J.

    2012-01-01

    We present a new classification of β-turns specific to antiparallel β-sheets based upon the topology of H-bond formation. This classification results from ONIOM calculations using B3LYP/D95** DFT and AM1 semiempirical calculations as the high and low levels respectively. We chose acetyl(Ala)6NH2 as a model system as it is the simplest all alanine system that can form all the H-bonds required for a β-turn in a sheet. Of the ten different conformation we have found, the most stable structures have C7 cyclic H-bonds in place of the C10 interactions specified in the classic definition. Also, the chiralities specified for the i+1st and i+2nd residues in the classic definition disappear when the structures are optimized using our techniques, as the energetic differences between the four diastereomers of each structure are not substantial for eight of the ten conformations. PMID:22731966

  16. Quantum and classical dynamics of water dissociation on Ni(111): A test of the site-averaging model in dissociative chemisorption of polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Bin; Department of Chemical Physics, University of Science and Technology of China, Hefei 230026; Guo, Hua, E-mail: hguo@unm.edu

    Recently, we reported the first highly accurate nine-dimensional global potential energy surface (PES) for water interacting with a rigid Ni(111) surface, built on a large number of density functional theory points [B. Jiang and H. Guo, Phys. Rev. Lett. 114, 166101 (2015)]. Here, we investigate site-specific reaction probabilities on this PES using a quasi-seven-dimensional quantum dynamical model. It is shown that the site-specific reactivity is largely controlled by the topography of the PES instead of the barrier height alone, underscoring the importance of multidimensional dynamics. In addition, the full-dimensional dissociation probability is estimated by averaging fixed-site reaction probabilities with appropriatemore » weights. To validate this model and gain insights into the dynamics, additional quasi-classical trajectory calculations in both full and reduced dimensions have also been performed and important dynamical factors such as the steering effect are discussed.« less

  17. Thermodynamics of technetium: Reconciling theory and experiment using density functional perturbation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Kim, Eunja

    The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The phonon density of states spectrum computed with density functional perturbation theory closely matches inelastic coherent neutron scattering measurements. The thermal properties of technetium were derived from phonon frequencies calculated within the quasi-harmonic approximation (QHA), which introduces a volume dependence of phonon frequencies as a part of the anharmonic effect. As a result, the predicted thermal expansion and isobaric heat capacity of technetium are in excellent agreement with available experimental data for temperatures up to ~1600 K.

  18. Thermodynamics of technetium: Reconciling theory and experiment using density functional perturbation analysis

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja

    2015-06-11

    The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The phonon density of states spectrum computed with density functional perturbation theory closely matches inelastic coherent neutron scattering measurements. The thermal properties of technetium were derived from phonon frequencies calculated within the quasi-harmonic approximation (QHA), which introduces a volume dependence of phonon frequencies as a part of the anharmonic effect. As a result, the predicted thermal expansion and isobaric heat capacity of technetium are in excellent agreement with available experimental data for temperatures up to ~1600 K.

  19. Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular Clusters using Density Functional Theory

    DTIC Science & Technology

    2017-05-04

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9723 Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular...Absorption Spectra for SixOy-nH2O Molecular Clusters using Density Functional Theory L. Huang, S.G. Lambrakos, and L. Massa1 Naval Research Laboratory, Code...and time-dependent density functional theory (TD-DFT). The size of the clusters considered is relatively large compared to those considered in

  20. Explicit polarization (X-Pol) potential using ab initio molecular orbital theory and density functional theory.

    PubMed

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2009-10-29

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.

  1. Phase space theory of evaporation in neon clusters: the role of quantum effects.

    PubMed

    Calvo, F; Parneix, P

    2009-12-31

    Unimolecular evaporation of neon clusters containing between 14 and 148 atoms is theoretically investigated in the framework of phase space theory. Quantum effects are incorporated in the vibrational densities of states, which include both zero-point and anharmonic contributions, and in the possible tunneling through the centrifugal barrier. The evaporation rates, kinetic energy released, and product angular momentum are calculated as a function of excess energy or temperature in the parent cluster and compared to the classical results. Quantum fluctuations are found to generally increase both the kinetic energy released and the angular momentum of the product, but the effects on the rate constants depend nontrivially on the excess energy. These results are interpreted as due to the very few vibrational states available in the product cluster when described quantum mechanically. Because delocalization also leads to much narrower thermal energy distributions, the variations of evaporation observables as a function of canonical temperature appear much less marked than in the microcanonical ensemble. While quantum effects tend to smooth the caloric curve in the product cluster, the melting phase change clearly keeps a signature on these observables. The microcanonical temperature extracted from fitting the kinetic energy released distribution using an improved Arrhenius form further suggests a backbending in the quantum Ne(13) cluster that is absent in the classical system. Finally, in contrast to delocalization effects, quantum tunneling through the centrifugal barrier does not play any appreciable role on the evaporation kinetics of these rather heavy clusters.

  2. High-order harmonic generation from highly excited states in acetylene

    NASA Astrophysics Data System (ADS)

    Mulholland, Peter; Dundas, Daniel

    2018-04-01

    High-order harmonic generation (HHG) from aligned acetylene molecules interacting with mid infra-red (IR), linearly polarized laser pulses is studied theoretically using a mixed quantum-classical approach in which the electrons are described using time-dependent density-functional theory while the ions are treated classically. We find that for molecules aligned perpendicular to the laser polarization axis, HHG arises from the highest-occupied molecular orbital (HOMO), while for molecules aligned along the laser polarization axis, HHG is dominated by the HOMO-1. In the parallel orientation we observe a double plateau with an inner plateau that is produced by ionization from and recombination back to an autoionizing state. Two pieces of evidence support this idea. First, by choosing a suitably tuned vacuum ultraviolet pump pulse that directly excites the autoionizing state we observe a dramatic enhancement of all harmonics in the inner plateau. Second, in certain circumstances, the position of the inner plateau cutoff does not agree with the classical three-step model. We show that this discrepancy can be understood in terms of a minimum in the dipole recombination matrix element from the continuum to the autoionizing state.

  3. Refined method for predicting electrochemical windows of ionic liquids and experimental validation studies.

    PubMed

    Zhang, Yong; Shi, Chaojun; Brennecke, Joan F; Maginn, Edward J

    2014-06-12

    A combined classical molecular dynamics (MD) and ab initio MD (AIMD) method was developed for the calculation of electrochemical windows (ECWs) of ionic liquids. In the method, the liquid phase of ionic liquid is explicitly sampled using classical MD. The electrochemical window, estimated by the energy difference between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), is calculated at the density functional theory (DFT) level based on snapshots obtained from classical MD trajectories. The snapshots were relaxed using AIMD and quenched to their local energy minima, which assures that the HOMO/LUMO calculations are based on stable configurations on the same potential energy surface. The new procedure was applied to a group of ionic liquids for which the ECWs were also experimentally measured in a self-consistent manner. It was found that the predicted ECWs not only agree with the experimental trend very well but also the values are quantitatively accurate. The proposed method provides an efficient way to compare ECWs of ionic liquids in the same context, which has been difficult in experiments or simulation due to the fact that ECW values sensitively depend on experimental setup and conditions.

  4. Insights into structural and dynamical features of water at halloysite interfaces probed by DFT and classical molecular dynamics simulations.

    PubMed

    Presti, Davide; Pedone, Alfonso; Mancini, Giordano; Duce, Celia; Tiné, Maria Rosaria; Barone, Vincenzo

    2016-01-21

    Density functional theory calculations and classical molecular dynamics simulations have been used to investigate the structure and dynamics of water molecules on kaolinite surfaces and confined in the interlayer of a halloysite model of nanometric dimension. The first technique allowed us to accurately describe the structure of the tetrahedral-octahedral slab of kaolinite in vacuum and in interaction with water molecules and to assess the performance of two widely employed empirical force fields to model water/clay interfaces. Classical molecular dynamics simulations were used to study the hydrogen bond network structure and dynamics of water adsorbed on kaolinite surfaces and confined in the halloysite interlayer. The results are in nice agreement with the few experimental data available in the literature, showing a pronounced ordering and reduced mobility of water molecules at the hydrophilic octahedral surfaces of kaolinite and confined in the halloysite interlayer, with respect to water interacting with the hydrophobic tetrahedral surfaces and in the bulk. Finally, this investigation provides new atomistic insights into the structural and dynamical properties of water-clay interfaces, which are of fundamental importance for both natural processes and industrial applications.

  5. EMOTIONS AND IMAGES IN LANGUAGE--A LEARNING ANALYSIS OF THEIR ACQUISITION AND FUNCTION.

    ERIC Educational Resources Information Center

    STAATS, ARTHUR W.

    THIS ARTICLE PRESENTED THEORETICAL AND EXPERIMENTAL ANALYSES CONCERNING IMPORTANT ASPECTS OF LANGUAGE. IT WAS SUGGESTED THAT A LEARNING THEORY WHICH INEGRATES INSTRUMENTAL AND CLASSICAL CONDITIONING, CUTTING ACROSS THEORETICAL LINES, COULD SERVE AS THE BASIS FOR A COMPREHENSIVE THEORY OF LANGUAGE ACQUISITION AND FUNCTION. THE PAPER ILLUSTRATED THE…

  6. On the temperature derivative of the surface tension at a critical end point

    NASA Astrophysics Data System (ADS)

    Robert, M.; Tavan, P.

    1983-03-01

    It is shown that, according to the van der Waals theory of fluid interfaces, the surface tension of the interface between a This result holds for any number of phases and independently varying densities and is not restricted to classical values of the critical exponents.

  7. Psychologic theories in functional neurologic disorders.

    PubMed

    Carson, A; Ludwig, L; Welch, K

    2016-01-01

    In this chapter we review key psychologic theories that have been mooted as possible explanations for the etiology of functional neurologic symptoms, conversion disorder, and hysteria. We cover Freudian psychoanalysis and later object relations and attachment theories, social theories, illness behavior, classic and operant conditioning, social learning theory, self-regulation theory, cognitive-behavioral theories, and mindfulness. Dissociation and modern cognitive neuroscience theories are covered in other chapters in this series and, although of central importance, are omitted from this chapter. Our aim is an overview with the emphasis on breadth of coverage rather than depth. © 2016 Elsevier B.V. All rights reserved.

  8. Reformulation of Density Functional Theory for N-Representable Densities and the Resolution of the v-Representability Problem

    DOE PAGES

    Gonis, A.; Zhang, X. G.; Stocks, G. M.; ...

    2015-10-23

    Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of themore » density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.« less

  9. Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.

    PubMed

    Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K

    2018-03-13

    Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.

  10. A computational study on choline benzoate and choline salicylate ionic liquids in the pure state and after CO2 adsorption.

    PubMed

    Aparicio, Santiago; Atilhan, Mert

    2012-08-02

    Choline-based ionic liquids show very adequate environmental, toxicological, and economical profiles for their application in many different technological areas. We report in this work a computational study on the properties of choline benzoate and choline salicylate ionic liquids, as representatives of this family of compounds, in the pure state and after CO(2) adsorption. Quantum chemistry calculations using the density functional theory approach for ionic pairs and ions, CO(2) pairs, were carried out, and the results analyzed using natural bond orbital and atoms in a molecule approaches. Classical molecular dynamics simulations of ionic liquids were done as a function of pressure, temperature, and CO(2) concentration. Microscopic structuring and intermolecular forces are analyzed together with the dynamic behavior of the studied fluids.

  11. Response of a semiconducting infinite medium under two temperature theory with photothermal excitation due to laser pulses

    NASA Astrophysics Data System (ADS)

    Lotfy, Kh.; Gabr, M. E.

    2017-12-01

    A novel model of two-dimensional deformations for two-temperature theory at the free surface under the excitation of thermoelastic wave by pulsed laser for a semi-infinite semiconducting medium is studied. The effect of mechanical force during a photothermal process is investigated. The mathematical methods of the Lord-Shulman (LS includes one relaxation time) and Green-Lindsay (GL with two relaxation times) theories as well as the classical dynamical coupled theory (CD) are used. An exact expression for displacement components, force stresses, carrier density and distribution of temperature are obtained using the harmonic wave analysis. Combinations of two-temperature and photothermal theories are obtained analytically. Comparisons of the results are made between the three theories also. The effects of thermoelectric coupling parameter, two-temperature parameter on the displacement component, force stress, carrier density, and distribution of temperature for silicon (Si) medium have been illustrated graphically. The variations of the considered variables with the horizontal distance have been discussed.

  12. Energy band alignment and electronic states of amorphous carbon surfaces in vacuo and in aqueous environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caro, Miguel A., E-mail: mcaroba@gmail.com; Department of Applied Physics, COMP Centre of Excellence in Computational Nanoscience, Aalto University, Espoo; Määttä, Jukka

    2015-01-21

    In this paper, we obtain the energy band positions of amorphous carbon (a–C) surfaces in vacuum and in aqueous environment. The calculations are performed using a combination of (i) classical molecular dynamics (MD), (ii) Kohn-Sham density functional theory with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, and (iii) the screened-exchange hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE). PBE allows an accurate generation of a-C and the evaluation of the local electrostatic potential in the a-C/water system, HSE yields an improved description of energetic positions which is critical in this case, and classical MD enables a computationally affordable description of water. Ourmore » explicit calculation shows that, both in vacuo and in aqueous environment, the a-C electronic states available in the region comprised between the H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O levels of water correspond to both occupied and unoccupied states within the a-C pseudogap region. These are localized states associated to sp{sup 2} sites in a-C. The band realignment induces a shift of approximately 300 meV of the a-C energy band positions with respect to the redox levels of water.« less

  13. Molecular density functional theory of water including density-polarization coupling.

    PubMed

    Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2016-06-22

    We present a three-dimensional molecular density functional theory of water derived from first-principles that relies on the particle's density and multipolar polarization density and includes the density-polarization coupling. This brings two main benefits: (i) scalar density and vectorial multipolar polarization density fields are much more tractable and give more physical insight than the full position and orientation densities, and (ii) it includes the full density-polarization coupling of water, that is known to be non-vanishing but has never been taken into account. Furthermore, the theory requires only the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the Fourier components of the longitudinal and transverse dielectric susceptibilities.

  14. Exact Path Integral for 3D Quantum Gravity.

    PubMed

    Iizuka, Norihiro; Tanaka, Akinori; Terashima, Seiji

    2015-10-16

    Three-dimensional Euclidean pure gravity with a negative cosmological constant can be formulated in terms of the Chern-Simons theory, classically. This theory can be written in a supersymmetric way by introducing auxiliary gauginos and scalars. We calculate the exact partition function of this Chern-Simons theory by using the localization technique. Thus, we obtain the quantum gravity partition function, assuming that it can be obtained nonperturbatively by summing over partition functions of the Chern-Simons theory on topologically different manifolds. The resultant partition function is modular invariant, and, in the case in which the central charge is expected to be 24, it is the J function, predicted by Witten.

  15. Density functional theory of freezing of a system of highly elongated ellipsoidal oligomer solutions

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shikha; Mishra, Pankaj

    2017-05-01

    We have used the density functional theory of freezing to study the liquid crystalline phase behavior of a system of highly elongated ellipsoidal conjugated oligomers dispersed in three different solvents namely chloroform, toluene and their equimolar mixture. The molecules are assumed to interact via solvent-implicit coarse-grained Gay-Berne potential. Pair correlation functions needed as input in the density functional theory have been calculated using the Percus-Yevick (PY) integral equation theory. Considering the isotropic and nematic phases, we have calculated the isotropic-nematic phase transition parameters and presented the temperature-density and pressure-temperature phase diagrams. Different solvent conditions are found not only to affect the transition parameters but also determine the capability of oligomers to form nematic phase in various thermodynamic conditions. In principle, our results are verifiable through computer simulations.

  16. Sum Rules, Classical and Quantum - A Pedagogical Approach

    NASA Astrophysics Data System (ADS)

    Karstens, William; Smith, David Y.

    2014-03-01

    Sum rules in the form of integrals over the response of a system to an external probe provide general analytical tools for both experiment and theory. For example, the celebrated f-sum rule gives a system's plasma frequency as an integral over the optical-dipole absorption spectrum regardless of the specific spectral distribution. Moreover, this rule underlies Smakula's equation for the number density of absorbers in a sample in terms of the area under their absorption bands. Commonly such rules are derived from quantum-mechanical commutation relations, but many are fundamentally classical (independent of ℏ) and so can be derived from more transparent mechanical models. We have exploited this to illustrate the fundamental role of inertia in the case of optical sum rules. Similar considerations apply to sum rules in many other branches of physics. Thus, the ``attenuation integral theorems'' of ac circuit theory reflect the ``inertial'' effect of Lenz's Law in inductors or the potential energy ``storage'' in capacitors. These considerations are closely related to the fact that the real and imaginary parts of a response function cannot be specified independently, a result that is encapsulated in the Kramers-Kronig relations. Supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357.

  17. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling.

    PubMed

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco

    2015-09-28

    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.

  18. A quantum relaxation-time approximation for finite fermion systems

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Suraud, E.

    2015-03-01

    We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.

  19. Postbuckling response of long thick plates loaded in compression including higher order transverse shearing effects

    NASA Technical Reports Server (NTRS)

    Stein, Manuel; Sydow, P. Daniel; Librescu, Liviu

    1990-01-01

    Buckling and postbuckling results are presented for compression-loaded simply-supported aluminum plates and composite plates with a symmetric lay-up of thin + or - 45 deg plies composed of many layers. Buckling results for aluminum plates of finite length are given for various length-to-width ratios. Asymptotes to the curves based on buckling results give N(sub xcr) for plates of infinite length. Postbuckling results for plates with transverse shearing flexibility are compared to results from classical theory for various width-to-thickness ratios. Characteristic curves indicating the average longitudinal direct stress resultant as a function of the applied displacements are calculated based on four different theories: Classical von Karman theory using the Kirchoff assumptions, first-order shear deformation theory, higher-order shear deformation theory, and 3-D flexibility theory. Present results indicate that the 3-D flexibility theory gives the lowest buckling loads. The higher-order shear deformation theory has fewer unknowns than the 3-D flexibility theory but does not take into account through-the-thickness effects. The figures presented show that small differences occur in the average longitudinal direct stress resultants from the four theories that are functions of applied end-shortening displacement.

  20. Revisiting Wiedemann-Franz law through Boltzmann transport equations and ab-initio density functional theory

    NASA Astrophysics Data System (ADS)

    Nag, Abhinav; Kumari, Anuja; Kumar, Jagdish

    2018-05-01

    We have investigated structural, electronic and transport properties of the alkali metals using ab-initio density functional theory. The electron energy dispersions are found parabolic free electron like which is expected for alkali metals. The lattice constants for all the studied metals are also in good agreement within 98% with experiments. We have further computed their transport properties using semi-classical Boltzmann transport equations with special focus on electrical and thermal conductivity. Our objective was to obtain Wiedemann-Franz law and hence Lorenz number. The motivation to do these calculations is to see that how the incorporation of different interactions such as electron-lattice, electron-electron interaction affect the Wiedeman-Franz law. By solving Boltzmann transport equations, we have obtained electrical conductivity (σ/τ) and thermal conductivity (κ0 /τ) at different temperatures and then calculated Lorenz number using L = κ0 /(σT). The obtained value of Lorenz number has been found to match with value derived for free electron Fermi gas 2.44× 10-8 WΩK-2. Our results prove that the Wiedemann-Franz law as derived for free electron gas does not change much for alkali metals, even when one incorporates interaction of electrons with atomic nuclei and other electrons. However, at lower temperatures, the Lorenz number, was found to be deviating from its theoretical value.

  1. Statistical mechanics study on wetting behaviors of Ne on Mg surface

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Zhang, M.

    2017-04-01

    Wetting behavior of Ne adsorbed on a Mg surface, first investigated by means of a grand canonical Monte Carlo method in a previous publication (M. J. Bojan, G. Stan, S. Curtarolo, W. A. Steele, and M. W. Cole, Phys. Rev. E, 1999, 59, 864), is again studied by means of classical density functional theory. The Ne-Ne interaction is taken to be of the Lennard-Jones form, while the Ne-surface interaction is derived from an electronic density functional theory. The wetting phase diagram is calculated, and the isotherm shapes, energy and structural properties of the adsorbed films are examined. The present calculations indicate that the system exhibits first-order pre-wetting transition at temperatures above a wetting temperature of Tw≈24 K, and below a critical pre-wetting temperature of Tpwc≈25.09 K. The present findings include (i) in the pre-wetting temperature region, the pre-wetting transition is mixed with many layering transitions; after pre-wetting, the film thickness discontinuously increases (due to frequent occurrences of the layering transitions) and eventually diverges as the chemical potential approaches and eventually equals the saturation value. (ii) Occurrence of the layering transition remains above Tpwc, and the increase of the film thickness with the chemical potential is discontinuous. (iii) Below the wetting temperature, the layering transitions frequently occur and tend to gather together more closely as the saturation is approached.

  2. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments

    PubMed Central

    Ovanesyan, Zaven; Fenley, Marcia O.; Guerrero-García, Guillermo Iván; Olvera de la Cruz, Mónica

    2014-01-01

    The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models. PMID:25494770

  3. Effective field theory of dissipative fluids

    DOE PAGES

    Crossley, Michael; Glorioso, Paolo; Liu, Hong

    2017-09-20

    We develop an effctive fi eld theory for dissipative fluids which governs the dynamics of long-lived gapless modes associated with conserved quantities. The resulting theory gives a path integral formulation of fluctuating hydrodynamics which systematically incorporates nonlinear interactions of noises. The dynamical variables are mappings between a "fluid spacetime" and the physical spacetime and an essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. The theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z2 symmetry, to which we refer as the local KMSmore » condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, and a higher derivative deformation of supersymmetry in the full quantum regime.« less

  4. Effective field theory of dissipative fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crossley, Michael; Glorioso, Paolo; Liu, Hong

    We develop an effctive fi eld theory for dissipative fluids which governs the dynamics of long-lived gapless modes associated with conserved quantities. The resulting theory gives a path integral formulation of fluctuating hydrodynamics which systematically incorporates nonlinear interactions of noises. The dynamical variables are mappings between a "fluid spacetime" and the physical spacetime and an essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. The theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z2 symmetry, to which we refer as the local KMSmore » condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, and a higher derivative deformation of supersymmetry in the full quantum regime.« less

  5. Effects of Extrinsic Mortality on the Evolution of Aging: A Stochastic Modeling Approach

    PubMed Central

    Shokhirev, Maxim Nikolaievich; Johnson, Adiv Adam

    2014-01-01

    The evolutionary theories of aging are useful for gaining insights into the complex mechanisms underlying senescence. Classical theories argue that high levels of extrinsic mortality should select for the evolution of shorter lifespans and earlier peak fertility. Non-classical theories, in contrast, posit that an increase in extrinsic mortality could select for the evolution of longer lifespans. Although numerous studies support the classical paradigm, recent data challenge classical predictions, finding that high extrinsic mortality can select for the evolution of longer lifespans. To further elucidate the role of extrinsic mortality in the evolution of aging, we implemented a stochastic, agent-based, computational model. We used a simulated annealing optimization approach to predict which model parameters predispose populations to evolve longer or shorter lifespans in response to increased levels of predation. We report that longer lifespans evolved in the presence of rising predation if the cost of mating is relatively high and if energy is available in excess. Conversely, we found that dramatically shorter lifespans evolved when mating costs were relatively low and food was relatively scarce. We also analyzed the effects of increased predation on various parameters related to density dependence and energy allocation. Longer and shorter lifespans were accompanied by increased and decreased investments of energy into somatic maintenance, respectively. Similarly, earlier and later maturation ages were accompanied by increased and decreased energetic investments into early fecundity, respectively. Higher predation significantly decreased the total population size, enlarged the shared resource pool, and redistributed energy reserves for mature individuals. These results both corroborate and refine classical predictions, demonstrating a population-level trade-off between longevity and fecundity and identifying conditions that produce both classical and non-classical lifespan effects. PMID:24466165

  6. Experimental and theoretical study of rotationally inelastic diffraction of H2(D2) from methyl-terminated Si(111)

    NASA Astrophysics Data System (ADS)

    Nihill, Kevin J.; Hund, Zachary M.; Muzas, Alberto; Díaz, Cristina; del Cueto, Marcos; Frankcombe, Terry; Plymale, Noah T.; Lewis, Nathan S.; Martín, Fernando; Sibener, S. J.

    2016-08-01

    Fundamental details concerning the interaction between H2 and CH3-Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H2 and D2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H2 compared to the strong RID features observed for D2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH3-Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H2 and D2 have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H2 (D2) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H2(D2)/CH3-Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H2 with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems.

  7. Double-hybrid density-functional theory with meta-generalized-gradient approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souvi, Sidi M. O., E-mail: sidi.souvi@irsn.fr; Sharkas, Kamal; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr

    2014-02-28

    We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Møller-Plesset calculations.

  8. Riemann-Liouville Fractional Calculus of Certain Finite Class of Classical Orthogonal Polynomials

    NASA Astrophysics Data System (ADS)

    Malik, Pradeep; Swaminathan, A.

    2010-11-01

    In this work we consider certain class of classical orthogonal polynomials defined on the positive real line. These polynomials have their weight function related to the probability density function of F distribution and are finite in number up to orthogonality. We generalize these polynomials for fractional order by considering the Riemann-Liouville type operator on these polynomials. Various properties like explicit representation in terms of hypergeometric functions, differential equations, recurrence relations are derived.

  9. First Test of Long-Range Collisional Drag via Plasma Wave Damping

    NASA Astrophysics Data System (ADS)

    Affolter, Matthew

    2017-10-01

    In magnetized plasmas, the rate of particle collisions is enhanced over classical predictions when the cyclotron radius rc is less than the Debye length λD. Classical theories describe local velocity scattering collisions with impact parameters ρ

  10. Dynamic density functional theory with hydrodynamic interactions: theoretical development and application in the study of phase separation in gas-liquid systems.

    PubMed

    Kikkinides, E S; Monson, P A

    2015-03-07

    Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.

  11. Dynamic density functional theory with hydrodynamic interactions: Theoretical development and application in the study of phase separation in gas-liquid systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikkinides, E. S.; Monson, P. A.

    Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van dermore » Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.« less

  12. Two-dimensional relativistic space charge limited current flow in the drift space

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.

    2014-04-01

    Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

  13. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less

  14. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew

    2009-03-01

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  15. Exchange-correlation approximations for reduced-density-matrix-functional theory at finite temperature: Capturing magnetic phase transitions in the homogeneous electron gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldsiefen, Tim; Cangi, Attila; Eich, F. G.

    Here, we derive an intrinsically temperature-dependent approximation to the correlation grand potential for many-electron systems in thermodynamical equilibrium in the context of finite-temperature reduced-density-matrix-functional theory (FT-RDMFT). We demonstrate its accuracy by calculating the magnetic phase diagram of the homogeneous electron gas. We compare it to known limits from highly accurate quantum Monte Carlo calculations as well as to phase diagrams obtained within existing exchange-correlation approximations from density functional theory and zero-temperature RDMFT.

  16. Connection formulas for thermal density functional theory

    DOE PAGES

    Pribram-Jones, A.; Burke, K.

    2016-05-23

    We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.

  17. Exchange-correlation approximations for reduced-density-matrix-functional theory at finite temperature: Capturing magnetic phase transitions in the homogeneous electron gas

    DOE PAGES

    Baldsiefen, Tim; Cangi, Attila; Eich, F. G.; ...

    2017-12-18

    Here, we derive an intrinsically temperature-dependent approximation to the correlation grand potential for many-electron systems in thermodynamical equilibrium in the context of finite-temperature reduced-density-matrix-functional theory (FT-RDMFT). We demonstrate its accuracy by calculating the magnetic phase diagram of the homogeneous electron gas. We compare it to known limits from highly accurate quantum Monte Carlo calculations as well as to phase diagrams obtained within existing exchange-correlation approximations from density functional theory and zero-temperature RDMFT.

  18. Generalized Maximum Entropy

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John

    2005-01-01

    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  19. Structure of spherical electric double layers with fully asymmetric electrolytes: a systematic study by Monte Carlo simulations and density functional theory.

    PubMed

    Patra, Chandra N

    2014-11-14

    A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.

  20. Kinetic theory of age-structured stochastic birth-death processes

    NASA Astrophysics Data System (ADS)

    Greenman, Chris D.; Chou, Tom

    2016-01-01

    Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but are unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Stochastic theories that treat semi-Markov age-dependent processes using, e.g., the Bellman-Harris equation do not resolve a population's age structure and are unable to quantify population-size dependencies. Conversely, current theories that include size-dependent population dynamics (e.g., mathematical models that include carrying capacity such as the logistic equation) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new, fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a Bogoliubov--Born--Green--Kirkwood--Yvon-like hierarchy. Explicit solutions are derived in three limits: no birth, no death, and steady state. These are then compared with their corresponding mean-field results. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution.

  1. The modification of generalized uncertainty principle applied in the detection technique of femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Ziyi

    2017-12-01

    Generalized uncertainty principle (GUP), also known as the generalized uncertainty relationship, is the modified form of the classical Heisenberg’s Uncertainty Principle in special cases. When we apply quantum gravity theories such as the string theory, the theoretical results suggested that there should be a “minimum length of observation”, which is about the size of the Planck-scale (10-35m). Taking into account the basic scale of existence, we need to fix a new common form of Heisenberg’s uncertainty principle in the thermodynamic system and make effective corrections to statistical physical questions concerning about the quantum density of states. Especially for the condition at high temperature and high energy levels, generalized uncertainty calculations have a disruptive impact on classical statistical physical theories but the present theory of Femtosecond laser is still established on the classical Heisenberg’s Uncertainty Principle. In order to improve the detective accuracy and temporal resolution of the Femtosecond laser, we applied the modified form of generalized uncertainty principle to the wavelength, energy and pulse time of Femtosecond laser in our work. And we designed three typical systems from micro to macro size to estimate the feasibility of our theoretical model and method, respectively in the chemical solution condition, crystal lattice condition and nuclear fission reactor condition.

  2. Assessment of Differential Item Functioning under Cognitive Diagnosis Models: The DINA Model Example

    ERIC Educational Resources Information Center

    Li, Xiaomin; Wang, Wen-Chung

    2015-01-01

    The assessment of differential item functioning (DIF) is routinely conducted to ensure test fairness and validity. Although many DIF assessment methods have been developed in the context of classical test theory and item response theory, they are not applicable for cognitive diagnosis models (CDMs), as the underlying latent attributes of CDMs are…

  3. Classical stability of sudden and big rip singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrow, John D.; Lip, Sean Z. W.

    2009-08-15

    We introduce a general characterization of sudden cosmological singularities and investigate the classical stability of homogeneous and isotropic cosmological solutions of all curvatures containing these singularities to small scalar, vector, and tensor perturbations using gauge-invariant perturbation theory. We establish that sudden singularities at which the scale factor, expansion rate, and density are finite are stable except for a set of special parameter values. We also apply our analysis to the stability of Big Rip singularities and find the conditions for their stability against small scalar, vector, and tensor perturbations.

  4. Dual of the Janus solution: An interface conformal field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, A.B.; Karch, A.; Freedman, D.Z.

    2005-03-15

    We propose and study a specific gauge theory dual of the smooth, nonsupersymmetric (and apparently stable) Janus solution of Type IIB supergravity found in Bak et al. [J. High Energy Phys. 05 (2003) 072]. The dual field theory is N=4 SYM theory on two half-spaces separated by a planar interface with different coupling constants in each half-space. We assume that the position dependent coupling multiplies the operator L{sup '} which is the fourth descendent of the primary TrX{sup {l_brace}}{sup I}X{sup J{r_brace}} and closely related to the N=4 Lagrangian density. At the classical level supersymmetry is broken explicitly, but SO(3,2) conformalmore » symmetry is preserved. We use conformal perturbation theory to study various correlation functions to first and second order in the discontinuity of g{sub YM}{sup 2}, confirming quantum level conformal symmetry. Certain quantities such as the vacuum expectation value are protected to all orders in g{sub YM}{sup 2}N, and we find perfect agreement between the weak coupling value in the gauge theory and the strong coupling gravity result. SO(3,2) symmetry requires vanishing vacuum energy, =0, and this is confirmed in first order in the discontinuity.« less

  5. Recent developments in LIBXC - A comprehensive library of functionals for density functional theory

    NASA Astrophysics Data System (ADS)

    Lehtola, Susi; Steigemann, Conrad; Oliveira, Micael J. T.; Marques, Miguel A. L.

    2018-01-01

    LIBXC is a library of exchange-correlation functionals for density-functional theory. We are concerned with semi-local functionals (or the semi-local part of hybrid functionals), namely local-density approximations, generalized-gradient approximations, and meta-generalized-gradient approximations. Currently we include around 400 functionals for the exchange, correlation, and the kinetic energy, spanning more than 50 years of research. Moreover, LIBXC is by now used by more than 20 codes, not only from the atomic, molecular, and solid-state physics, but also from the quantum chemistry communities.

  6. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R.

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy wasmore » modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.« less

  7. Efficient algorithm for multiconfiguration pair-density functional theory with application to the heterolytic dissociation energy of ferrocene

    NASA Astrophysics Data System (ADS)

    Sand, Andrew M.; Truhlar, Donald G.; Gagliardi, Laura

    2017-01-01

    The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.

  8. Efficient algorithm for multiconfiguration pair-density functional theory with application to the heterolytic dissociation energy of ferrocene.

    PubMed

    Sand, Andrew M; Truhlar, Donald G; Gagliardi, Laura

    2017-01-21

    The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H 2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.

  9. Ionic fluids with r-6 pair interactions have power-law electrostatic screening

    NASA Astrophysics Data System (ADS)

    Kjellander, Roland; Forsberg, Björn

    2005-06-01

    The decay behaviour of radial distribution functions for large distances r is investigated for classical Coulomb fluids where the ions interact with an r-6 potential (e.g. a dispersion interaction) in addition to the Coulombic and the short-range repulsive potentials (e.g. a hard core). The pair distributions and the density-density (NN), charge-density (QN) and charge-charge (QQ) correlation functions are investigated analytically and by Monte Carlo simulations. It is found that the NN correlation function ultimately decays like r-6 for large r, just as it does for fluids of electroneutral particles interacting with an r-6 potential. The prefactor is proportional to the squared compressibility in both cases. The QN correlations decay in general like r-8 and the QQ correlations like r-10 in the ionic fluid. The average charge density around an ion decays generally like r-8 and the average electrostatic potential like r-6. This behaviour is in stark contrast to the decay behaviour for classical Coulomb fluids in the absence of the r-6 potential, where all these functions decay exponentially for large r. The power-law decays are, however, the same as for quantum Coulomb fluids. This indicates that the inclusion of the dispersion interaction as an effective r-6 interaction potential in classical systems yields the same decay behaviour for the pair correlations as in quantum ionic systems. An exceptional case is the completely symmetric binary electrolyte for which only the NN correlation has a power-law decay but not the QQ correlations. These features are shown by an analysis of the bridge function.

  10. Quantum mechanics as classical statistical mechanics with an ontic extension and an epistemic restriction.

    PubMed

    Budiyono, Agung; Rohrlich, Daniel

    2017-11-03

    Where does quantum mechanics part ways with classical mechanics? How does quantum randomness differ fundamentally from classical randomness? We cannot fully explain how the theories differ until we can derive them within a single axiomatic framework, allowing an unambiguous account of how one theory is the limit of the other. Here we derive non-relativistic quantum mechanics and classical statistical mechanics within a common framework. The common axioms include conservation of average energy and conservation of probability current. But two axioms distinguish quantum mechanics from classical statistical mechanics: an "ontic extension" defines a nonseparable (global) random variable that generates physical correlations, and an "epistemic restriction" constrains allowed phase space distributions. The ontic extension and epistemic restriction, with strength on the order of Planck's constant, imply quantum entanglement and uncertainty relations. This framework suggests that the wave function is epistemic, yet it does not provide an ontic dynamics for individual systems.

  11. Splines and control theory

    NASA Technical Reports Server (NTRS)

    Zhang, Zhimin; Tomlinson, John; Martin, Clyde

    1994-01-01

    In this work, the relationship between splines and the control theory has been analyzed. We show that spline functions can be constructed naturally from the control theory. By establishing a framework based on control theory, we provide a simple and systematic way to construct splines. We have constructed the traditional spline functions including the polynomial splines and the classical exponential spline. We have also discovered some new spline functions such as trigonometric splines and the combination of polynomial, exponential and trigonometric splines. The method proposed in this paper is easy to implement. Some numerical experiments are performed to investigate properties of different spline approximations.

  12. Soft edges--organizational structure in dental education.

    PubMed

    Chambers, D W

    1995-03-01

    There is no one best organizational structure for dental schools or for their major subunits. The classical alternatives of functional and divisional organization are discussed in light of the rule that follows function, and the advantages and disadvantages of each are presented. Newer models--decentralization, matrix, and heterarchy--show how features of functional and divisional structure can be blended. Virtual organizations, systems theory, and networks are also considered as new expressions of classical structures. The principle of suboptimization (soft edges) is presented.

  13. Extending density functional embedding theory for covalently bonded systems.

    PubMed

    Yu, Kuang; Carter, Emily A

    2017-12-19

    Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix-based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.

  14. Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped

    NASA Astrophysics Data System (ADS)

    Subhoni, Mekhrdod; Kholmurodov, Kholmirzo; Doroshkevich, Aleksandr; Asgerov, Elmar; Yamamoto, Tomoyuki; Lyubchyk, Andrei; Almasan, Valer; Madadzada, Afag

    2018-03-01

    Development of a new electricity generation techniques is one of the most relevant tasks, especially nowadays under conditions of extreme growth in energy consumption. The exothermic heterogeneous electrochemical energy conversion to the electric energy through interaction of the ZrO2 based nanopowder system with atmospheric moisture is one of the ways of electric energy obtaining. The questions of conversion into the electric form of the energy of water molecules adsorption in 3 mol% Y2O3 doped ZrO2 nanopowder systems were investigated using the density functional theory calculations. The density functional theory calculations has been realized as in the Kohn-Sham formulation, where the exchange-correlation potential is approximated by a functional of the electronic density. The electronic density, total energy and band structure calculations are carried out using the all-electron, full potential, linear augmented plane wave method of the electronic density and related approximations, i.e. the local density, the generalized gradient and their hybrid approximations.

  15. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    NASA Astrophysics Data System (ADS)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  16. A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding.

    PubMed

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G

    2017-02-01

    In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.

  17. Phase diagram of two-dimensional hard rods from fundamental mixed measure density functional theory

    NASA Astrophysics Data System (ADS)

    Wittmann, René; Sitta, Christoph E.; Smallenburg, Frank; Löwen, Hartmut

    2017-10-01

    A density functional theory for the bulk phase diagram of two-dimensional orientable hard rods is proposed and tested against Monte Carlo computer simulation data. In detail, an explicit density functional is derived from fundamental mixed measure theory and freely minimized numerically for hard discorectangles. The phase diagram, which involves stable isotropic, nematic, smectic, and crystalline phases, is obtained and shows good agreement with the simulation data. Our functional is valid for a multicomponent mixture of hard particles with arbitrary convex shapes and provides a reliable starting point to explore various inhomogeneous situations of two-dimensional hard rods and their Brownian dynamics.

  18. Many-body perturbation theory using the density-functional concept: beyond the GW approximation.

    PubMed

    Bruneval, Fabien; Sottile, Francesco; Olevano, Valerio; Del Sole, Rodolfo; Reining, Lucia

    2005-05-13

    We propose an alternative formulation of many-body perturbation theory that uses the density-functional concept. Instead of the usual four-point integral equation for the polarizability, we obtain a two-point one, which leads to excellent optical absorption and energy-loss spectra. The corresponding three-point vertex function and self-energy are then simply calculated via an integration, for any level of approximation. Moreover, we show the direct impact of this formulation on the time-dependent density-functional theory. Numerical results for the band gap of bulk silicon and solid argon illustrate corrections beyond the GW approximation for the self-energy.

  19. Adsorption of Aqueous Crude Oil Components on the Basal Surfaces of Clay Minerals: Molecular Simulations Including Salinity and Temperature Effects

    DOE PAGES

    Greathouse, J. A.; Cygan, R. T.; Fredrich, J. T.; ...

    2017-09-28

    Molecular simulations of the adsorption of representative organic molecules onto the basal surfaces of various clay minerals were used to assess the mechanisms of enhanced oil recovery associated with salinity changes and water flooding. Simulations at the density functional theory (DFT) and classical levels provide insights into the molecular structure, binding energy, and interfacial behavior of saturate, aromatic, and resin molecules near clay mineral surfaces. Periodic DFT calculations reveal binding geometries and ion pairing mechanisms at mineral surfaces while also providing a basis for validating the classical force field approach. Through classical molecular dynamics simulations, the influence of aqueous cationsmore » at the interface and the role of water solvation are examined to better evaluate the dynamical nature of cation-organic complexes and their co-adsorption onto the clay surfaces. The extent of adsorption is controlled by the hydrophilic nature and layer charge of the clay mineral. All organic species studied showed preferential adsorption on hydrophobic mineral surfaces. However, the anionic form of the resin (decahydro-2-naphthoic acid)—expected to be prevalent at near-neutral pH conditions in petroleum reservoirs—readily adsorbs to the hydrophilic kaolinite surface through a combination of cation pairing and hydrogen bonding with surface hydroxyl groups. Analysis of cation-organic pairing in both the adsorbed and desorbed states reveals a strong preference for organic anions to coordinate with divalent calcium ions rather than monovalent sodium ions, lending support to current theories regarding low-salinity water flooding.« less

  20. Adsorption of Aqueous Crude Oil Components on the Basal Surfaces of Clay Minerals: Molecular Simulations Including Salinity and Temperature Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greathouse, J. A.; Cygan, R. T.; Fredrich, J. T.

    Molecular simulations of the adsorption of representative organic molecules onto the basal surfaces of various clay minerals were used to assess the mechanisms of enhanced oil recovery associated with salinity changes and water flooding. Simulations at the density functional theory (DFT) and classical levels provide insights into the molecular structure, binding energy, and interfacial behavior of saturate, aromatic, and resin molecules near clay mineral surfaces. Periodic DFT calculations reveal binding geometries and ion pairing mechanisms at mineral surfaces while also providing a basis for validating the classical force field approach. Through classical molecular dynamics simulations, the influence of aqueous cationsmore » at the interface and the role of water solvation are examined to better evaluate the dynamical nature of cation-organic complexes and their co-adsorption onto the clay surfaces. The extent of adsorption is controlled by the hydrophilic nature and layer charge of the clay mineral. All organic species studied showed preferential adsorption on hydrophobic mineral surfaces. However, the anionic form of the resin (decahydro-2-naphthoic acid)—expected to be prevalent at near-neutral pH conditions in petroleum reservoirs—readily adsorbs to the hydrophilic kaolinite surface through a combination of cation pairing and hydrogen bonding with surface hydroxyl groups. Analysis of cation-organic pairing in both the adsorbed and desorbed states reveals a strong preference for organic anions to coordinate with divalent calcium ions rather than monovalent sodium ions, lending support to current theories regarding low-salinity water flooding.« less

  1. Spectral function from Reduced Density Matrix Functional Theory

    NASA Astrophysics Data System (ADS)

    Romaniello, Pina; di Sabatino, Stefano; Berger, Jan A.; Reining, Lucia

    2015-03-01

    In this work we focus on the calculation of the spectral function, which determines, for example, photoemission spectra, from reduced density matrix functional theory. Starting from its definition in terms of the one-body Green's function we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the two-body as well as higher-order density matrices. Various approximations to this expression are explored by using the exactly solvable Hubbard chains.

  2. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4-

    NASA Astrophysics Data System (ADS)

    Sharma, Prachi; Truhlar, Donald G.; Gagliardi, Laura

    2018-03-01

    The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.

  3. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4.

    PubMed

    Sharma, Prachi; Truhlar, Donald G; Gagliardi, Laura

    2018-03-28

    The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.

  4. Nuclear quantum effects on structure and transport properties of dense liquid helium

    NASA Astrophysics Data System (ADS)

    Kang, Dongdong; Dai, Jiayu; Yuan, Jianmin

    2015-11-01

    Transport properties of dense liquid helium under the conditions of planet's core and cool atmosphere of white dwarfs are important for determining the structure and evolution of these astrophysical objects. We have investigated these properties of dense liquid helium by using the improved centroid path-integral simulations combined with density functional theory. The results show that with the inclusion of nuclear quantum effects (NQEs), the self-diffusion is largely higher while the shear viscosity is notably lower than the results of without the inclusion of NQEs due to the lower collision cross sections even when the NQEs have little effects on the static structures. The potential surface of helium atom along the simulation trajectory is quite different between MD and PIMD simulations. We have shown that the quantum nuclear character induces complex behaviors for ionic transport properties of dense liquid helium. NQEs bring more fluctuations of local electronic density of states than the classical treatment. Therefore, in order to construct more reasonable structure and evolution model for the planets and WDs, NQEs must be reconsidered when calculating the transport properties at certain temperature and density conditions.

  5. Vortex scaling ranges in two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Burgess, B. H.; Dritschel, D. G.; Scott, R. K.

    2017-11-01

    We survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.

  6. Exact differential equation for the density and ionization energy of a many-particle system

    NASA Technical Reports Server (NTRS)

    Levy, M.; Perdew, J. P.; Sahni, V.

    1984-01-01

    The present investigation is concerned with relations studied by Hohenberg and Kohn (1964) and Kohn and Sham (1965). The properties of a ground-state many-electron system are determined by the electron density. The correct differential equation for the density, as dictated by density-functional theory, is presented. It is found that the ground-state density n of a many-electron system obeys a Schroedinger-like differential equation which may be solved by standard Kohn-Sham programs. Results are connected to the traditional exact Kohn-Sham theory. It is pointed out that the results of the current investigations are readily extended to spin-density functional theory.

  7. Fundamental Flaws In The Derivation Of Stevens' Law For Taste Within Norwich's Entropy Theory of Perception

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nizami, Lance

    2010-03-01

    Norwich's Entropy Theory of Perception (1975-present) is a general theory of perception, based on Shannon's Information Theory. Among many bold claims, the Entropy Theory presents a truly astounding result: that Stevens' Law with an Index of 1, an empirical power relation of direct proportionality between perceived taste intensity and stimulus concentration, arises from theory alone. Norwich's theorizing starts with several extraordinary hypotheses. First, 'multiple, parallel receptor-neuron units' without collaterals 'carry essentially the same message to the brain', i.e. the rate-level curves are identical. Second, sensation is proportional to firing rate. Third, firing rate is proportional to the taste receptor's 'resolvablemore » uncertainty'. Fourth, the 'resolvable uncertainty' is obtained from Shannon's Information Theory. Finally, 'resolvable uncertainty' also depends upon the microscopic thermodynamic density fluctuation of the tasted solute. Norwich proves that density fluctuation is density variance, which is proportional to solute concentration, all based on the theory of fluctuations in fluid composition from Tolman's classic physics text, 'The Principles of Statistical Mechanics'. Altogether, according to Norwich, perceived taste intensity is theoretically proportional to solute concentration. Such a universal rule for taste, one that is independent of solute identity, personal physiological differences, and psychophysical task, is truly remarkable and is well-deserving of scrutiny. Norwich's crucial step was the derivation of density variance. That step was meticulously reconstructed here. It transpires that the appropriate fluctuation is Tolman's mean-square fractional density fluctuation, not density variance as used by Norwich. Tolman's algebra yields a 'Stevens Index' of -1 rather than 1. As 'Stevens Index' empirically always exceeds zero, the Index of -1 suggests that it is risky to infer psychophysical laws of sensory response from information theory and stimulus physics while ignoring empirical biological transformations, such as sensory transduction. Indeed, it raises doubts as to whether the Entropy Theory actually describes psychophysical laws at all.« less

  8. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation.

    PubMed

    Kühn, Michael; Weigend, Florian

    2015-01-21

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy)3 (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its "spin-forbidden" triplet-singlet transition.

  9. THE FIRST FERMI IN A HIGH ENERGY NUCLEAR COLLISION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRASNITZ,A.

    1999-08-09

    At very high energies, weak coupling, non-perturbative methods can be used to study classical gluon production in nuclear collisions. One observes in numerical simulations that after an initial formation time, the produced partons are on shell, and their subsequent evolution can be studied using transport theory. At the initial formation time, a simple non-perturbative relation exists between the energy and number densities of the produced partons, and a scale determined by the saturated parton density in the nucleus.

  10. Quantum formalism for classical statistics

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-06-01

    In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.

  11. Multiconfiguration Pair-Density Functional Theory Spectral Calculations Are Stable to Adding Diffuse Basis Functions.

    PubMed

    Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G

    2015-11-05

    Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively.

  12. Nonrelativistic Conformed Symmetry in 2 + 1 Dimensional Field Theory.

    NASA Astrophysics Data System (ADS)

    Bergman, Oren

    This thesis is devoted to the study of conformal invariance and its breaking in non-relativistic field theories. It is a well known feature of relativistic field theory that theories which are conformally invariant at the classical level can acquire a conformal anomaly upon quantization and renormalization. The anomaly appears through the introduction of an arbitrary, but dimensionful, renormalization scale. One does not usually associate the concepts of renormalization and anomaly with nonrelativistic quantum mechanics, but there are a few examples where these concepts are useful. The most well known case is the two-dimensional delta -function potential. In two dimensions the delta-function scales like the kinetic term of the Hamiltonian, and therefore the problem is classically conformally invariant. Another example of classical conformal invariance is the famous Aharonov-Bohm (AB) problem. In that case each partial wave sees a 1/r^2 potential. We use the second quantized formulation of these problems, namely the nonrelativistic field theories, to compute Green's functions and derive the conformal anomaly. In the case of the AB problem we also solve an old puzzle, namely how to reproduce the result of Aharonov and Bohm in perturbation theory. The thesis is organized in the following manner. Chapter 1 is an introduction to nonrelativistic field theory, nonrelativistic conformal invariance, contact interactions and the AB problem. In Chapter 2 we discuss nonrelativistic scalar field theory, and how its quantization produces the anomaly. Chapter 3 is devoted to the AB problem, and the resolution of the perturbation puzzle. In Chapter 4 we generalize the discussion of Chapter 3 to particles carrying nonabelian charges. The structure of the nonabelian theory is much richer, and deserves a separate discussion. We also comment on the issues of forward scattering and single -valuedness of wavefunctions, which are important for Chapter 3 as well. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  13. Examining Differential Item Functions of Different Item Ordered Test Forms According to Item Difficulty Levels

    ERIC Educational Resources Information Center

    Çokluk, Ömay; Gül, Emrah; Dogan-Gül, Çilem

    2016-01-01

    The study aims to examine whether differential item function is displayed in three different test forms that have item orders of random and sequential versions (easy-to-hard and hard-to-easy), based on Classical Test Theory (CTT) and Item Response Theory (IRT) methods and bearing item difficulty levels in mind. In the correlational research, the…

  14. Multiconfiguration Pair-Density Functional Theory Predicts Spin-State Ordering in Iron Complexes with the Same Accuracy as Complete Active Space Second-Order Perturbation Theory at a Significantly Reduced Computational Cost.

    PubMed

    Wilbraham, Liam; Verma, Pragya; Truhlar, Donald G; Gagliardi, Laura; Ciofini, Ilaria

    2017-05-04

    The spin-state orderings in nine Fe(II) and Fe(III) complexes with ligands of diverse ligand-field strength were investigated with multiconfiguration pair-density functional theory (MC-PDFT). The performance of this method was compared to that of complete active space second-order perturbation theory (CASPT2) and Kohn-Sham density functional theory. We also investigated the dependence of CASPT2 and MC-PDFT results on the size of the active-space. MC-PDFT reproduces the CASPT2 spin-state ordering, the dependence on the ligand field strength, and the dependence on active space at a computational cost that is significantly reduced as compared to CASPT2.

  15. NMR and NQR parameters of ethanol crystal

    NASA Astrophysics Data System (ADS)

    Milinković, M.; Bilalbegović, G.

    2012-04-01

    Electric field gradients and chemical shielding tensors of the stable monoclinic crystal phase of ethanol are computed. The projector-augmented wave (PAW) and gauge-including projector-augmented wave (GIPAW) models in the periodic plane-wave density functional theory are used. The crystal data from X-ray measurements, as well as the structures where either all atomic, or only hydrogen atom positions are optimized in the density functional theory are analyzed. These structural models are also studied by including the semi-empirical van der Waals correction to the density functional theory. Infrared spectra of these five crystal models are calculated.

  16. Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed.

    PubMed

    Perdew, John P; Ruzsinszky, Adrienn; Constantin, Lucian A; Sun, Jianwei; Csonka, Gábor I

    2009-04-14

    Some fundamental issues in ground-state density functional theory are discussed without equations: (1) The standard Hohenberg-Kohn and Kohn-Sham theorems were proven for a Hamiltonian that is not quite exact for real atoms, molecules, and solids. (2) The density functional for the exchange-correlation energy, which must be approximated, arises from the tendency of electrons to avoid one another as they move through the electron density. (3) In the absence of a magnetic field, either spin densities or total electron density can be used, although the former choice is better for approximations. (4) "Spin contamination" of the determinant of Kohn-Sham orbitals for an open-shell system is not wrong but right. (5) Only to the extent that symmetries of the interacting wave function are reflected in the spin densities should those symmetries be respected by the Kohn-Sham noninteracting or determinantal wave function. Functionals below the highest level of approximations should however sometimes break even those symmetries, for good physical reasons. (6) Simple and commonly used semilocal (lower-level) approximations for the exchange-correlation energy as a functional of the density can be accurate for closed systems near equilibrium and yet fail for open systems of fluctuating electron number. (7) The exact Kohn-Sham noninteracting state need not be a single determinant, but common approximations can fail when it is not. (8) Over an open system of fluctuating electron number, connected to another such system by stretched bonds, semilocal approximations make the exchange-correlation energy and hole-density sum rule too negative. (9) The gap in the exact Kohn-Sham band structure of a crystal underestimates the real fundamental gap but may approximate the first exciton energy in the large-gap limit. (10) Density functional theory is not really a mean-field theory, although it looks like one. The exact functional includes strong correlation, and semilocal approximations often overestimate the strength of static correlation through their semilocal exchange contributions. (11) Only under rare conditions can excited states arise directly from a ground-state theory.

  17. Tight-binding approximations to time-dependent density functional theory — A fast approach for the calculation of electronically excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rüger, Robert, E-mail: rueger@scm.com; Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam; Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig

    2016-05-14

    We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of twomore » compared to TD-DFTB.« less

  18. A classical density functional theory for the asymmetric restricted primitive model of ionic liquids

    NASA Astrophysics Data System (ADS)

    Lu, Hongduo; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan

    2018-05-01

    A new three-parameter (valency, ion size, and charge asymmetry) model, the asymmetric restricted primitive model (ARPM) of ionic liquids, has recently been proposed. Given that ionic liquids generally are composed of monovalent species, the ARPM effectively reduces to a two-parameter model. Monte Carlo (MC) simulations have demonstrated that the ARPM is able to reproduce key properties of room temperature ionic liquids (RTILs) in bulk and at charged surfaces. The relatively modest complexity of the model raises the possibility, which is explored here, that a classical density functional theory (DFT) could resolve its properties. This is relevant because it might generate great improvements in terms of both numerical efficiency and understanding in the continued research of RTILs and their applications. In this report, a DFT for rod-like molecules is proposed as an approximate theoretical tool for an ARPM fluid. Borrowing data on the ion pair fraction from a single bulk simulation, the ARPM is modelled as a mixture of dissociated ions and connected ion pairs. We have specifically studied an ARPM where the hard-sphere diameter is 5 Å, with the charge located 1 Å from the hard-sphere centre. We focus on fluid structure and electrochemical behaviour of this ARPM fluid, into which a model electrode is immersed. The latter is modelled as a perfect conductor, and surface polarization is handled by the method of image charges. Approximate methods, which were developed in an earlier study, to take image interactions into account, are also incorporated in the DFT. We make direct numerical comparisons between DFT predictions and corresponding simulation data. The DFT theory is implemented both in the normal mean field form with respect to the electrostatic interactions and in a correlated form based on hole formation by both steric repulsions and ion-ion Coulomb interactions. The results clearly show that ion-ion correlations play a very important role in the screening of the charged surfaces by our ARPM ionic liquid. We have studied electrostatic potentials and ion density profiles as well the differential capacitance. The mean-field DFT fails to reproduce these properties, but the inclusion of ion-ion correlation by a simple approximate treatment yields quite reasonable agreement with the corresponding simulation results. An interesting finding is that there appears to be a surface phase transition at relatively low surface charge which is readily explored by DFT, but seen also in the MC simulations at somewhat higher asymmetry.

  19. On the multiple zeros of a real analytic function with applications to the averaging theory of differential equations

    NASA Astrophysics Data System (ADS)

    García, Isaac A.; Llibre, Jaume; Maza, Susanna

    2018-06-01

    In this work we consider real analytic functions , where , Ω is a bounded open subset of , is an interval containing the origin, are parameters, and ε is a small parameter. We study the branching of the zero-set of at multiple points when the parameter ε varies. We apply the obtained results to improve the classical averaging theory for computing T-periodic solutions of λ-families of analytic T-periodic ordinary differential equations defined on , using the displacement functions defined by these equations. We call the coefficients in the Taylor expansion of in powers of ε the averaged functions. The main contribution consists in analyzing the role that have the multiple zeros of the first non-zero averaged function. The outcome is that these multiple zeros can be of two different classes depending on whether the zeros belong or not to the analytic set defined by the real variety associated to the ideal generated by the averaged functions in the Noetheriang ring of all the real analytic functions at . We bound the maximum number of branches of isolated zeros that can bifurcate from each multiple zero z 0. Sometimes these bounds depend on the cardinalities of minimal bases of the former ideal. Several examples illustrate our results and they are compared with the classical theory, branching theory and also under the light of singularity theory of smooth maps. The examples range from polynomial vector fields to Abel differential equations and perturbed linear centers.

  20. Universality classes of fluctuation dynamics in hierarchical complex systems

    NASA Astrophysics Data System (ADS)

    Macêdo, A. M. S.; González, Iván R. Roa; Salazar, D. S. P.; Vasconcelos, G. L.

    2017-03-01

    A unified approach is proposed to describe the statistics of the short-time dynamics of multiscale complex systems. The probability density function of the relevant time series (signal) is represented as a statistical superposition of a large time-scale distribution weighted by the distribution of certain internal variables that characterize the slowly changing background. The dynamics of the background is formulated as a hierarchical stochastic model whose form is derived from simple physical constraints, which in turn restrict the dynamics to only two possible classes. The probability distributions of both the signal and the background have simple representations in terms of Meijer G functions. The two universality classes for the background dynamics manifest themselves in the signal distribution as two types of tails: power law and stretched exponential, respectively. A detailed analysis of empirical data from classical turbulence and financial markets shows excellent agreement with the theory.

  1. Microscopic theory of nuclear fission: a review

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract spontaneous fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of completeness, other approaches to tunnelling based on functional integrals are also briefly discussed, although there are very few applications.) It is also an important component of some of the time-dependent methods that have been used in fission studies. Concerning the latter, both the semi-classical approaches to time-dependent nuclear dynamics and more microscopic theories involving explicit quantum-many-body methods are presented. One of the hallmarks of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. This aspect is often overlooked, and several sections are devoted to discussing the resolution of the HFB equations, especially in the context of very deformed nuclear shapes. In particular, the numerical precision and iterative methods employed to obtain the HFB solution are documented in detail. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented, with the goal of emphasizing the coherence of the microscopic approaches employed. Although impressive progress has been achieved over the last two decades to understand fission microscopically, much work remains to be done. Several possible lines of research are outlined in the conclusion.

  2. Microscopic Theory of Nuclear Fission: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunck, N.; Robledo, L. M.

    This paper reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections,more » are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula used to extract spontaneous fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of completeness, other approaches to tunnelling based on functional integrals are also briefly discussed, although there are very few applications.) It is also an important component of some of the time-dependent methods that have been used in fission studies. Concerning the latter, both the semi-classical approaches to time-dependent nuclear dynamics and more microscopic theories involving explicit quantum-many-body methods are presented. One of the hallmarks of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. This aspect is often overlooked, and several sections are devoted to discussing the resolution of the HFB equations, especially in the context of very deformed nuclear shapes. In particular, the numerical precision and iterative methods employed to obtain the HFB solution are documented in detail. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented, with the goal of emphasizing the coherence of the microscopic approaches employed. In conclusion, although impressive progress has been achieved over the last two decades to understand fission microscopically, much work remains to be done. Several possible lines of research are outlined in the conclusion.« less

  3. Microscopic Theory of Nuclear Fission: A Review

    DOE PAGES

    Schunck, N.; Robledo, L. M.

    2016-10-11

    This paper reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections,more » are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula used to extract spontaneous fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of completeness, other approaches to tunnelling based on functional integrals are also briefly discussed, although there are very few applications.) It is also an important component of some of the time-dependent methods that have been used in fission studies. Concerning the latter, both the semi-classical approaches to time-dependent nuclear dynamics and more microscopic theories involving explicit quantum-many-body methods are presented. One of the hallmarks of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. This aspect is often overlooked, and several sections are devoted to discussing the resolution of the HFB equations, especially in the context of very deformed nuclear shapes. In particular, the numerical precision and iterative methods employed to obtain the HFB solution are documented in detail. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented, with the goal of emphasizing the coherence of the microscopic approaches employed. In conclusion, although impressive progress has been achieved over the last two decades to understand fission microscopically, much work remains to be done. Several possible lines of research are outlined in the conclusion.« less

  4. Microscopic theory of nuclear fission: a review.

    PubMed

    Schunck, N; Robledo, L M

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract spontaneous fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of completeness, other approaches to tunnelling based on functional integrals are also briefly discussed, although there are very few applications.) It is also an important component of some of the time-dependent methods that have been used in fission studies. Concerning the latter, both the semi-classical approaches to time-dependent nuclear dynamics and more microscopic theories involving explicit quantum-many-body methods are presented. One of the hallmarks of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. This aspect is often overlooked, and several sections are devoted to discussing the resolution of the HFB equations, especially in the context of very deformed nuclear shapes. In particular, the numerical precision and iterative methods employed to obtain the HFB solution are documented in detail. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented, with the goal of emphasizing the coherence of the microscopic approaches employed. Although impressive progress has been achieved over the last two decades to understand fission microscopically, much work remains to be done. Several possible lines of research are outlined in the conclusion.

  5. Derivation of the density functional theory from the cluster expansion.

    PubMed

    Hsu, J Y

    2003-09-26

    The density functional theory is derived from a cluster expansion by truncating the higher-order correlations in one and only one term in the kinetic energy. The formulation allows self-consistent calculation of the exchange correlation effect without imposing additional assumptions to generalize the local density approximation. The pair correlation is described as a two-body collision of bound-state electrons, and modifies the electron- electron interaction energy as well as the kinetic energy. The theory admits excited states, and has no self-interaction energy.

  6. Effective scheme for partitioning covalent bonds in density-functional embedding theory: From molecules to extended covalent systems.

    PubMed

    Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele

    2016-12-28

    Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.

  7. Time-dependent observables in heavy ion collisions. Part II. In search of pressure isotropization in the φ 4 theory

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.; Wu, Bin

    2018-03-01

    To understand the dynamics of thermalization in heavy ion collisions in the perturbative framework it is essential to first find corrections to the free-streaming classical gluon fields of the McLerran-Venugopalan model. The corrections that lead to deviations from free streaming (and that dominate at late proper time) would provide evidence for the onset of isotropization (and, possibly, thermalization) of the produced medium. To find such corrections we calculate the late-time two-point Green function and the energy-momentum tensor due to a single 2 → 2 scattering process involving two classical fields. To make the calculation tractable we employ the scalar φ 4 theory instead of QCD. We compare our exact diagrammatic results for these quantities to those in kinetic theory and find disagreement between the two. The disagreement is in the dependence on the proper time τ and, for the case of the two-point function, is also in the dependence on the space-time rapidity η: the exact diagrammatic calculation is, in fact, consistent with the free streaming scenario. Kinetic theory predicts a build-up of longitudinal pressure, which, however, is not observed in the exact calculation. We conclude that we find no evidence for the beginning of the transition from the free-streaming classical fields to the kinetic theory description of the produced matter after a single 2 → 2 rescattering.

  8. Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom

    ERIC Educational Resources Information Center

    Baseden, Kyle A.; Tye, Jesse W.

    2014-01-01

    Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…

  9. Active Space Dependence in Multiconfiguration Pair-Density Functional Theory.

    PubMed

    Sharma, Prachi; Truhlar, Donald G; Gagliardi, Laura

    2018-02-13

    In multiconfiguration pair-density functional theory (MC-PDFT), multiconfiguration self-consistent-field calculations and on-top density functionals are combined to describe both static and dynamic correlation. Here, we investigate how the MC-PDFT total energy and its components depend on the active space choice in the case of the H 2 and N 2 molecules. The active space dependence of the on-top pair density, the total density, the ratio of on-top pair density to half the square of the electron density, and the satisfaction of the virial theorem are also explored. We find that the density and on-top pair density do not change significantly with changes in the active space. However, the on-top ratio does change significantly with respect to active space change, and this affects the on-top energy. This study provides a foundation for designing on-top density functionals and automatizing the active space choice in MC-PDFT.

  10. Freezing of soft spheres: A critical test for weighted-density-functional theories

    NASA Astrophysics Data System (ADS)

    Laird, Brian B.; Kroll, D. M.

    1990-10-01

    We study the freezing properties of systems with inverse-power and Yukawa interactions (soft spheres), using recently developed weighted-density-functional theories. We find that the modified weighted-density-functional approximation (MWDA) of Denton and Ashcroft yields results for the liquid to face-centered-cubic (fcc) structure transition that represent a significant improvement over those of earlier ``second-order'' density-functional freezing theories; however, this theory, like the earlier ones, fails to predict any liquid to body-centered-cubic (bcc) transition, even under conditions where the computer simulations indicate that this should be the equilibrium solid structure. In addition, we show that both the modified effective-liquid approximation (MELA) of Baus [J. Phys. Condens. Matter 2, 2111 (1990)] and the generalized effective-liquid approximation of Lutsko and Baus [Phys. Rev. Lett. 64, 761 (1990)], while giving excellent results for the freezing of hard spheres, fail completely to predict freezing into either fcc or bcc solid phases for soft inverse-power potentials. We also give an alternate derivation of the MWDA that makes clearer its connection to earlier theories.

  11. Performance of the density matrix functional theory in the quantum theory of atoms in molecules.

    PubMed

    García-Revilla, Marco; Francisco, E; Costales, A; Martín Pendás, A

    2012-02-02

    The generalization to arbitrary molecular geometries of the energetic partitioning provided by the atomic virial theorem of the quantum theory of atoms in molecules (QTAIM) leads to an exact and chemically intuitive energy partitioning scheme, the interacting quantum atoms (IQA) approach, that depends on the availability of second-order reduced density matrices (2-RDMs). This work explores the performance of this approach in particular and of the QTAIM in general with approximate 2-RDMs obtained from the density matrix functional theory (DMFT), which rests on the natural expansion (natural orbitals and their corresponding occupation numbers) of the first-order reduced density matrix (1-RDM). A number of these functionals have been implemented in the promolden code and used to perform QTAIM and IQA analyses on several representative molecules and model chemical reactions. Total energies, covalent intra- and interbasin exchange-correlation interactions, as well as localization and delocalization indices have been determined with these functionals from 1-RDMs obtained at different levels of theory. Results are compared to the values computed from the exact 2-RDMs, whenever possible.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindoy, Lachlan P.; Kolmann, Stephen J.; D’Arcy, Jordan H.

    Finite temperature quantum and anharmonic effects are studied in H{sub 2}–Li{sup +}-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H{sub 2}. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of themore » center-of-mass of the H{sub 2} molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔU{sub ads}, and enthalpy, ΔH{sub ads}, for H{sub 2} adsorption onto Li{sup +}-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling—coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H{sub 2}–Li{sup +}-benzene are the “helicopter” and “ferris wheel” H{sub 2} rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔU{sub ads} and ΔH{sub ads} are −13.3 ± 0.1 and −14.5 ± 0.1 kJ mol{sup −1}, respectively.« less

  13. Derivation of the cut-off length from the quantum quadratic enhancement of a mass in vacuum energy constant Lambda

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika; Sato, Hikaru

    2018-04-01

    Ultraviolet self-interaction energies in field theory sometimes contain meaningful physical quantities. The self-energies in such as classical electrodynamics are usually subtracted from the rest mass. For the consistent treatment of energies as sources of curvature in the Einstein field equations, this study includes these subtracted self-energies into vacuum energy expressed by the constant Lambda (used in such as Lambda-CDM). In this study, the self-energies in electrodynamics and macroscopic classical Einstein field equations are examined, using the formalisms with the ultraviolet cut-off scheme. One of the cut-off formalisms is the field theory in terms of the step-function-type basis functions, developed by the present authors. The other is a continuum theory of a fundamental particle with the same cut-off length. Based on the effectiveness of the continuum theory with the cut-off length shown in the examination, the dominant self-energy is the quadratic term of the Higgs field at a quantum level (classical self-energies are reduced to logarithmic forms by quantum corrections). The cut-off length is then determined to reproduce today's tiny value of Lambda for vacuum energy. Additionally, a field with nonperiodic vanishing boundary conditions is treated, showing that the field has no zero-point energy.

  14. W 4 toda example as hidden Liouville CFT

    NASA Astrophysics Data System (ADS)

    Furlan, P.; Petkova, V. B.

    2017-03-01

    We construct correlators in the W 4 Toda 2d conformal field theory for a particular class of representations and demonstrate a relation to a W 2 (Virasoro) theory with different central charge. The relevance of the classical limits of the constructed 3-point functions and braiding matrices to problems in 4d conformal theories is discussed.

  15. Excitation energies from range-separated time-dependent density and density matrix functional theory.

    PubMed

    Pernal, Katarzyna

    2012-05-14

    Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other excitations is in general much better than that offered by TD-DFT-LDA or TD-DMFT-BB approximations if the range-separation parameter is properly chosen. The latter remains an open problem.

  16. First-Principles Prediction of Densities of Amorphous Materials: The Case of Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoritaka; Matsushita, Yu-ichiro

    2018-02-01

    A novel approach to predict the atomic densities of amorphous materials is explored on the basis of Car-Parrinello molecular dynamics (CPMD) in density functional theory. Despite the determination of the atomic density of matter being crucial in understanding its physical properties, no first-principles method has ever been proposed for amorphous materials until now. We have extended the conventional method for crystalline materials in a natural manner and pointed out the importance of the canonical ensemble of the total energy in the determination of the atomic densities of amorphous materials. To take into account the canonical distribution of the total energy, we generate multiple amorphous structures with several different volumes by CPMD simulations and average the total energies at each volume. The density is then determined as the one that minimizes the averaged total energy. In this study, this approach is implemented for amorphous silicon (a-Si) to demonstrate its validity, and we have determined the density of a-Si to be 4.1% lower and its bulk modulus to be 28 GPa smaller than those of the crystal, which are in good agreement with experiments. We have also confirmed that generating samples through classical molecular dynamics simulations produces a comparable result. The findings suggest that the presented method is applicable to other amorphous systems, including those for which experimental knowledge is lacking.

  17. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  18. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE PAGES

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  19. Analysis of the photophysical properties of zearalenone using density functional theory

    USDA-ARS?s Scientific Manuscript database

    The intrinsic photophysical properties of the resorcylic acid moiety of zearalenone offer a convenient label free method to determine zearalenone levels in contaminated agricultural products. Density functional theory and steady-state fluorescence methods were applied to investigate the role of stru...

  20. NBO analysis and vibrational frequencies of tautomers of citrinin by density functional theory

    USDA-ARS?s Scientific Manuscript database

    Citrinin is a toxic polyketide contaminant of a number of agricultural commodities, notably Monascus-fermented red rice. Detailed structures and electronic properties of three tautomeric forms of citrinin were investigated using density functional theory calculations at various extended basis sets ...

  1. Water Lone Pair Delocalization in Classical and Quantum Descriptions of the Hydration of Model Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remsing, Richard C.; Duignan, Timothy T.; Baer, Marcel D.

    Understanding the nature of ionic hydration at a fundamental level has eluded scientists despite intense interest for nearly a century. In particular, the microscopic origins of the asymmetry of ion solvation thermodynamics with respect to the sign of the ionic charge remains a mystery. Here, we determine the response of accurate quantum mechanical water models to strong nanoscale solvation forces arising from excluded volumes and ionic electrostatic fields. This is compared to the predictions of two important limiting classes of classical models of water with fixed point changes, differing in their treatment of "lone-pair" electrons. Using the quantum water modelmore » as our standard of accuracy, we find that a single fixed classical treatment of lone pair electrons cannot accurately describe solvation of both apolar and cationic solutes, underlining the need for a more flexible description of local electronic effects in solvation processes. However, we explicitly show that all water models studied respond to weak long-ranged electrostatic perturbations in a manner that follows macroscopic dielectric continuum models, as would be expected. We emphasize the importance of these findings in the context of realistic ion models, using density functional theory and empirical models, and discuss the implications of our results for quantitatively accurate reduced descriptions of solvation in dielectric media.« less

  2. Magnetic exchange couplings from constrained density functional theory: an efficient approach utilizing analytic derivatives.

    PubMed

    Phillips, Jordan J; Peralta, Juan E

    2011-11-14

    We introduce a method for evaluating magnetic exchange couplings based on the constrained density functional theory (C-DFT) approach of Rudra, Wu, and Van Voorhis [J. Chem. Phys. 124, 024103 (2006)]. Our method shares the same physical principles as C-DFT but makes use of the fact that the electronic energy changes quadratically and bilinearly with respect to the constraints in the range of interest. This allows us to use coupled perturbed Kohn-Sham spin density functional theory to determine approximately the corrections to the energy of the different spin configurations and construct a priori the relevant energy-landscapes obtained by constrained spin density functional theory. We assess this methodology in a set of binuclear transition-metal complexes and show that it reproduces very closely the results of C-DFT. This demonstrates a proof-of-concept for this method as a potential tool for studying a number of other molecular phenomena. Additionally, routes to improving upon the limitations of this method are discussed. © 2011 American Institute of Physics

  3. Solubility prediction of naphthalene in carbon dioxide from crystal microstructure

    NASA Astrophysics Data System (ADS)

    Sang, Jiarong; Jin, Junsu; Mi, Jianguo

    2018-03-01

    Crystals dissolved in solvents are ubiquitous in both natural and artificial systems. Due to the complicated structures and asymmetric interactions between the crystal and solvent, it is difficult to interpret the dissolution mechanism and predict solubility using traditional theories and models. Here we use the classical density functional theory (DFT) to describe the crystal dissolution behavior. As an example, naphthalene dissolved in carbon dioxide (CO2) is considered within the DFT framework. The unit cell dimensions and microstructure of crystalline naphthalene are determined by minimizing the free-energy of the crystal. According to the microstructure, the solubilities of naphthalene in CO2 are predicted based on the equality of naphthalene's chemical potential in crystal and solution phases, and the interfacial structures and free-energies between different crystal planes and solution are determined to investigate the dissolution mechanism at the molecular level. The theoretical predictions are in general agreement with the available experimental data, implying that the present model is quantitatively reliable in describing crystal dissolution.

  4. Electronic and Thermoelectric Properties of SnSe1-x S x (x = 0, 0.25, 0.5, 0.75, and 1) Alloys: First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Hamad, Bothina

    2018-04-01

    Ab initio investigations of the electronic and thermoelectric (TE) properties of SnSe1-x S x (x = 0, 0.25, 0.5, 0.75, and 1) alloys are performed using density functional theory. The TE properties are calculated using the semi-classical Boltzmann transport theory within the constant relaxation time approximation. Band gap values are found to range between 0.94 eV and 1.02 eV in agreement with the experimental findings and previous calculations. All alloys tend to exhibit p-type TE properties, indicated by a sharp peak near the Fermi level that indicates a heavy carrier concentration. Electrical conductivity is found to decrease, whereas the Seebeck coefficient and the power factor increase for higher concentrations. The three alloys, SnS, SnSe and SnSe0.75S0.25 alloys exhibit the same power factor of 3.5 × 10-3 W/m K2, which is promising for thermoelectric applications.

  5. Hydrogen migration modeling in a symmetric tilt boundary of the Iron-Chromium system

    NASA Astrophysics Data System (ADS)

    Ramunni, V. P.

    2018-03-01

    Previous experimental studies of H permeation in 9%Cr-Fe alloys have found a permeation coefficient 10 times lower and a diffusion coefficient 200 times lower than in pure annealed Fe. In an effort to shed some light on the microscopic origin of these findings, we perform an extensive study of Fe, Cr, and H migration in a high-angle symmetric tilt grain boundary in bcc Fe, both via vacancy and interstitial mechanism. This is undertaken in the framework of transition state theory with the relevant energies obtained from classical interatomic potentials, and partially from Density Functional Theory calculations, in order to check the consistency of structures. Trapping sites for H and possible migration paths are explored. We find that the presence of Cr and its migration via vacancy and interstitials creates the conditions in produce stable preferential trapping sites for H in the grain boundary, that delay the H migration, thereby explaining the experimental results.

  6. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  7. Charge ordering in ionic fluids mediate repulsive surface interactions

    NASA Astrophysics Data System (ADS)

    Dasbiswas, Kinjal; Ludwig, Nicholas B.; Zhang, Hao; Talapin, Dmitri; Vaikuntanathan, Suri

    Recent experiments on ionic fluids, such as surface force measurements in organic ionic liquids and the observation of colloidal stability in inorganic molten salts, suggest the presence of long-ranged repulsive forces. These cannot be explained within the classical Debye-Hückel theory for dilute electrolytes. We argue that such repulsive interactions can arise from long-range (several nm) charge density oscillations induced by a surface that preferentially binds one of the ionic species in an ionic fluid. We present a continuum theory that accounts for such charge layering based on a frustrated Ising model that incorporates both long-range Coulombic and short-range steric interactions. The mean-field analytic treatment qualitatively matches results from molecular simulations. A careful analysis of the ionic correlation functions arising from such charge ordering may also explain the long electrostatic screening lengths observed in various ionic fluids and their non-monotonic dependence on the electrolyte concentration. We acknowledge the University of Chicago for support.

  8. Anisotropic surface physicochemical properties of spodumene and albite crystals: Implications for flotation separation

    NASA Astrophysics Data System (ADS)

    Xu, Longhua; Peng, Tiefeng; Tian, Jia; Lu, Zhongyuan; Hu, Yuehua; Sun, Wei

    2017-12-01

    Aluminosilicate minerals (e.g., spodumene, albite) have complex crystal structures and similar surface chemistries, but they have poor selectivity compared to traditional fatty acid collectors, making flotation separation difficult. Previous research has mainly considered the mineral crystal structure as a whole. In contrast, the surface characteristics at the atomic level and the effects of different crystal interfaces on the flotation behavior have rarely been investigated. This study focuses on investigating the surface anisotropy quantitatively, including the chemical bond characteristics, surface energies, and broken bond densities, using density functional theory and classical theoretical calculations. In addition, the anisotropy of the surface wettability and adsorption characteristics were examined using contact angle, zeta potential, and Fourier-transform infrared measurements. Finally, these surface anisotropies with different flotation behaviors were investigated and interpreted using molecular dynamics simulations, scanning electron microscopy, and X-ray photoelectron spectroscopy. This systematic research offers new ideas concerning the selective grinding and stage flotation of aluminosilicate minerals based on the crystal characteristics.

  9. Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.

    PubMed

    Bose, Amartya; Makri, Nancy

    2017-10-21

    The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.

  10. Simulation of Nonisothermal Consolidation of Saturated Soils Based on a Thermodynamic Model

    PubMed Central

    Cheng, Xiaohui

    2013-01-01

    Based on the nonequilibrium thermodynamics, a thermo-hydro-mechanical coupling model for saturated soils is established, including a constitutive model without such concepts as yield surface and flow rule. An elastic potential energy density function is defined to derive a hyperelastic relation among the effective stress, the elastic strain, and the dry density. The classical linear non-equilibrium thermodynamic theory is employed to quantitatively describe the unrecoverable energy processes like the nonelastic deformation development in materials by the concepts of dissipative force and dissipative flow. In particular the granular fluctuation, which represents the kinetic energy fluctuation and elastic potential energy fluctuation at particulate scale caused by the irregular mutual movement between particles, is introduced in the model and described by the concept of granular entropy. Using this model, the nonisothermal consolidation of saturated clays under cyclic thermal loadings is simulated in this paper to validate the model. The results show that the nonisothermal consolidation is heavily OCR dependent and unrecoverable. PMID:23983623

  11. Simulation of nonisothermal consolidation of saturated soils based on a thermodynamic model.

    PubMed

    Zhang, Zhichao; Cheng, Xiaohui

    2013-01-01

    Based on the nonequilibrium thermodynamics, a thermo-hydro-mechanical coupling model for saturated soils is established, including a constitutive model without such concepts as yield surface and flow rule. An elastic potential energy density function is defined to derive a hyperelastic relation among the effective stress, the elastic strain, and the dry density. The classical linear non-equilibrium thermodynamic theory is employed to quantitatively describe the unrecoverable energy processes like the nonelastic deformation development in materials by the concepts of dissipative force and dissipative flow. In particular the granular fluctuation, which represents the kinetic energy fluctuation and elastic potential energy fluctuation at particulate scale caused by the irregular mutual movement between particles, is introduced in the model and described by the concept of granular entropy. Using this model, the nonisothermal consolidation of saturated clays under cyclic thermal loadings is simulated in this paper to validate the model. The results show that the nonisothermal consolidation is heavily OCR dependent and unrecoverable.

  12. Dispersion correction derived from first principles for density functional theory and Hartree-Fock theory.

    PubMed

    Guidez, Emilie B; Gordon, Mark S

    2015-03-12

    The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.

  13. Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals.

    PubMed

    Śmiga, Szymon; Fabiano, Eduardo; Laricchia, Savio; Constantin, Lucian A; Della Sala, Fabio

    2015-04-21

    We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded molecular systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes this limitation and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method.

  14. Theoretical and numerical aspects of fluid-saturated elasto-plastic soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlers, W.

    1995-12-31

    The theoretical and numerical treatment of fluid-saturated porous solid materials generally falls into the category of porous media models, which are described within the framework of the classical theory of mixtures extended by the concept of volume fractions (porous media theories). In particular, this concept allows for the description of saturated, unsaturated and empty porous matrix materials, thus offering a well-founded theoretical background for a lot of engineering problems occurring, for instance, in the fields of geomechanics (soil and rock mechanics as well as glacier and rock ice mechanics), oil producing industries, sintering technologies, biomechanics, etc. In the present contribution,more » theoretical and numerical studies are outlined to describe a two-phase material composed of an incompressible elasto-plastic soil matrix saturated by an incompressible viscous pore fluid. In this context, the phenomenon of phase incompressibility is well known as a microscopic effect not implying bulk incompressibility in the macro regime. This is seen from the fact that even if the material density functions of the individual constituents are constant during deformation, the corresponding bulk densities can still change through changes in the volume fractions. Within the framework of a pure mechanical theory, constitutive equations are given for both the solid and the fluid partial stress tensors and for the interaction force acting between the two materials. Concerning the porous soil matrix, the elastic properties are described by an elasticity law of Hookean type, while the plastic range is governed by a {open_quote}single surface{close_quote} yield function exhibiting a smooth and closed shape in the principal stress space together with a non-associated flow rule. The viscosity effects of the pore fluid are included in the fluid stress tensor and in the drag force.« less

  15. Partially suppressed shot noise in hopping conduction: observation in SiGe quantum wells

    PubMed

    Kuznetsov; Mendez; Zuo; Snider; Croke

    2000-07-10

    We have observed shot noise in the hopping conduction of two-dimensional carriers confined in a p-type SiGe quantum well at a temperature of 4 K. Moreover, shot noise is suppressed relative to its "classical" value 2eI by an amount that depends on the length of the sample and the carrier density. We have found a suppression factor to the classical value of about one-half for a 2 &mgr;m long sample, and of one-fifth for a 5 &mgr;m sample. In each case, the factor decreased slightly as the density increased toward the insulator-metal transition. We explain these results in terms of the characteristic length ( approximately 1 &mgr;m in our case) of the inherent inhomogeneity of hopping transport, obtained from percolation theory.

  16. Space-time models based on random fields with local interactions

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios T.; Tsantili, Ivi C.

    2016-08-01

    The analysis of space-time data from complex, real-life phenomena requires the use of flexible and physically motivated covariance functions. In most cases, it is not possible to explicitly solve the equations of motion for the fields or the respective covariance functions. In the statistical literature, covariance functions are often based on mathematical constructions. In this paper, we propose deriving space-time covariance functions by solving “effective equations of motion”, which can be used as statistical representations of systems with diffusive behavior. In particular, we propose to formulate space-time covariance functions based on an equilibrium effective Hamiltonian using the linear response theory. The effective space-time dynamics is then generated by a stochastic perturbation around the equilibrium point of the classical field Hamiltonian leading to an associated Langevin equation. We employ a Hamiltonian which extends the classical Gaussian field theory by including a curvature term and leads to a diffusive Langevin equation. Finally, we derive new forms of space-time covariance functions.

  17. Melting slope of MgO from molecular dynamics and density functional theory

    NASA Astrophysics Data System (ADS)

    Tangney, Paul; Scandolo, Sandro

    2009-09-01

    We combine density functional theory (DFT) with molecular dynamics simulations based on an accurate atomistic force field to calculate the pressure derivative of the melting temperature of magnesium oxide at ambient pressure—a quantity for which a serious disagreement between theory and experiment has existed for almost 15 years. We find reasonable agreement with previous DFT results and with a very recent experimental determination of the slope. We pay particular attention to areas of possible weakness in theoretical calculations and conclude that the long-standing discrepancy with experiment could only be explained by a dramatic failure of existing density functionals or by flaws in the original experiment.

  18. Single-particle energies and density of states in density functional theory

    NASA Astrophysics Data System (ADS)

    van Aggelen, H.; Chan, G. K.-L.

    2015-07-01

    Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.

  19. Evaluation and comparison of classical interatomic potentials through a user-friendly interactive web-interface

    NASA Astrophysics Data System (ADS)

    Choudhary, Kamal; Congo, Faical Yannick P.; Liang, Tao; Becker, Chandler; Hennig, Richard G.; Tavazza, Francesca

    2017-01-01

    Classical empirical potentials/force-fields (FF) provide atomistic insights into material phenomena through molecular dynamics and Monte Carlo simulations. Despite their wide applicability, a systematic evaluation of materials properties using such potentials and, especially, an easy-to-use user-interface for their comparison is still lacking. To address this deficiency, we computed energetics and elastic properties of variety of materials such as metals and ceramics using a wide range of empirical potentials and compared them to density functional theory (DFT) as well as to experimental data, where available. The database currently consists of 3248 entries including energetics and elastic property calculations, and it is still increasing. We also include computational tools for convex-hull plots for DFT and FF calculations. The data covers 1471 materials and 116 force-fields. In addition, both the complete database and the software coding used in the process have been released for public use online (presently at http://www.ctcms.nist.gov/˜knc6/periodic.html) in a user-friendly way designed to enable further material design and discovery.

  20. Thermal conductance at atomically clean and disordered silicon/aluminum interfaces: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Ih Choi, Woon; Kim, Kwiseon; Narumanchi, Sreekant

    2012-09-01

    Thermal resistance between layers impedes effective heat dissipation in electronics packaging applications. Thermal conductance for clean and disordered interfaces between silicon (Si) and aluminum (Al) was computed using realistic Si/Al interfaces and classical molecular dynamics with the modified embedded atom method potential. These realistic interfaces, which include atomically clean as well as disordered interfaces, were obtained using density functional theory. At 300 K, the magnitude of interfacial conductance due to phonon-phonon scattering obtained from the classical molecular dynamics simulations was approximately five times higher than the conductance obtained using analytical elastic diffuse mismatch models. Interfacial disorder reduced the thermal conductance due to increased phonon scattering with respect to the atomically clean interface. Also, the interfacial conductance, due to electron-phonon scattering at the interface, was greater than the conductance due to phonon-phonon scattering. This indicates that phonon-phonon scattering is the bottleneck for interfacial transport at the semiconductor/metal interfaces. The molecular dynamics modeling predictions for interfacial thermal conductance for a 5-nm disordered interface between Si/Al were in-line with recent experimental data in the literature.

  1. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications.

    PubMed

    Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2018-04-05

    Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.

  2. Evaluation and comparison of classical interatomic potentials through a user-friendly interactive web-interface

    PubMed Central

    Choudhary, Kamal; Congo, Faical Yannick P.; Liang, Tao; Becker, Chandler; Hennig, Richard G.; Tavazza, Francesca

    2017-01-01

    Classical empirical potentials/force-fields (FF) provide atomistic insights into material phenomena through molecular dynamics and Monte Carlo simulations. Despite their wide applicability, a systematic evaluation of materials properties using such potentials and, especially, an easy-to-use user-interface for their comparison is still lacking. To address this deficiency, we computed energetics and elastic properties of variety of materials such as metals and ceramics using a wide range of empirical potentials and compared them to density functional theory (DFT) as well as to experimental data, where available. The database currently consists of 3248 entries including energetics and elastic property calculations, and it is still increasing. We also include computational tools for convex-hull plots for DFT and FF calculations. The data covers 1471 materials and 116 force-fields. In addition, both the complete database and the software coding used in the process have been released for public use online (presently at http://www.ctcms.nist.gov/∼knc6/periodic.html) in a user-friendly way designed to enable further material design and discovery. PMID:28140407

  3. Physical Concepts and Mathematical Symbols

    NASA Astrophysics Data System (ADS)

    Grelland, Hans Herlof

    2007-12-01

    According to traditional empiricist philosophy of science, concepts and meaning grow out of sense experience, and the mathematical structure of a physical theory is nothing but a formalisation of a given meaning-content. This view seems to work well in classical mechanics. But it breaks down in quantum physics, where we have a self-supported mathematical structure which resists any conceptual or pictorial interpretation in the traditional sense. Thus, traditional empiricism is flawed. Quantum physics teaches us that mathematics is a language in itself which extends beyond ordinary language. To understand the meaning of this extended language, we have to explore how new concepts and intuitions grow out of mathematics, not the other way around. The symbolic structure is prior to its meaning. This point of view is called linguistic empiricism, to stress that the connection with experience is still crucial. As cases, I compare the concept of stiffness in classical mechanics and the concept of electron density in quantum mechanics. The last case demonstrates that the wave function has a richer interpretation than the probabilistic one concerning measurement of position.

  4. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Carr, J. K.; Zabuga, A. V.; Roy, S.; Rizzo, T. R.; Skinner, J. L.

    2014-06-01

    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed "maps," which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala)5-Lys-H+ in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly 13C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and 13C18O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm-1 for both frequencies and couplings, having larger errors only for the frequencies of terminal amides.

  5. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations

    PubMed Central

    Carr, J. K.; Zabuga, A. V.; Roy, S.; Rizzo, T. R.; Skinner, J. L.

    2014-01-01

    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed “maps,” which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala)5-Lys-H+ in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly 13C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and 13C18O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm−1 for both frequencies and couplings, having larger errors only for the frequencies of terminal amides. PMID:24929378

  6. Solvation and Aggregation of Meta-Aminobenzoic Acid in Water: Density Functional Theory and Molecular Dynamics Study

    PubMed Central

    Gaines, Etienne

    2018-01-01

    Meta-aminobenzoic acid, an important model system in the study of polymorphism and crystallization of active pharmaceutical ingredients, exist in water in both the nonionic (mABA) and zwitterionic (mABA±) forms. However, the constituent molecules of the polymorph that crystallizes from aqueous solutions are zwitterionic. This study reports atomistic simulations of the events surrounding the early stage of crystal nucleation of meta-aminobenzoic acid from aqueous solutions. Ab initio molecular dynamics was used to simulate the hydration of mABA± and mABA and to quantify the interaction of these molecules with the surrounding water molecules. Density functional theory calculations were conducted to determine the low-lying energy conformers of meta-aminobenzoic acid dimers and to compute the Gibbs free energies in water of nonionic, (mABA)2, zwitterionic, (mABA±)2, and nonionic-zwitterionic, (mABA)(mABA±), species. Classical molecular dynamics simulations of mixed mABA–mABA± aqueous solutions were carried out to examine the aggregation of meta-aminobenzoic acid. According to these simulations, the selective crystallization of the polymorphs whose constituent molecules are zwitterionic is driven by the formation of zwitterionic dimers in solution, which are thermodynamically more stable than (mABA)2 and (mABA)(mABA±) pairs. This work represents a paradigm of the role of molecular processes during the early stages of crystal nucleation in affecting polymorph selection during crystallization from solution. PMID:29360788

  7. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  8. Site-occupation embedding theory using Bethe ansatz local density approximations

    NASA Astrophysics Data System (ADS)

    Senjean, Bruno; Nakatani, Naoki; Tsuchiizu, Masahisa; Fromager, Emmanuel

    2018-06-01

    Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT) for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-function (or Green function)-based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wave function has been performed with the density-matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.

  9. Excited-state absorption in tetrapyridyl porphyrins: comparing real-time and quadratic-response time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, David N.; Asher, Jason C.; Fischer, Sean A.

    2017-01-01

    Threemeso-substituted tetrapyridyl porphyrins (free base, Ni(ii), and Cu(ii)) were investigated for their optical limiting (OL) capabilities using real-time (RT-), linear-response (LR-), and quadratic-response (QR-) time-dependent density functional theory (TDDFT) methods.

  10. Calibrating ion density profile measurements in ion thruster beam plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Zun; Tang, Haibin; Ren, Junxue; Zhang, Zhe; Wang, Joseph

    2016-11-01

    The ion thruster beam plasma is characterized by high directed ion velocity (104 m/s) and low plasma density (1015 m-3). Interpretation of measurements of such a plasma based on classical Langmuir probe theory can yield a large experimental error. This paper presents an indirect method to calibrate ion density determination in an ion thruster beam plasma using a Faraday probe, a retarding potential analyzer, and a Langmuir probe. This new method is applied to determine the plasma emitted from a 20-cm-diameter Kaufman ion thruster. The results show that the ion density calibrated by the new method can be as much as 40% less than that without any ion current density and ion velocity calibration.

  11. Thermodynamics of an Attractive 2D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.

    2016-01-01

    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.

  12. Kinetic field theory: exact free evolution of Gaussian phase-space correlations

    NASA Astrophysics Data System (ADS)

    Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias

    2018-04-01

    In recent work we developed a description of cosmic large-scale structure formation in terms of non-equilibrium ensembles of classical particles, with time evolution obtained in the framework of a statistical field theory. In these works, the initial correlations between particles sampled from random Gaussian density and velocity fields have so far been treated perturbatively or restricted to pure momentum correlations. Here we treat the correlations between all phase-space coordinates exactly by adopting a diagrammatic language for the different forms of correlations, directly inspired by the Mayer cluster expansion. We will demonstrate that explicit expressions for phase-space density cumulants of arbitrary n-point order, which fully capture the non-linear coupling of free streaming kinematics due to initial correlations, can be obtained from a simple set of Feynman rules. These cumulants will be the foundation for future investigations of perturbation theory in particle interactions.

  13. Density functional description of size-dependent effects at nucleation on neutral and charged nanoparticles

    NASA Astrophysics Data System (ADS)

    Shchekin, Alexander K.; Lebedeva, Tatiana S.

    2017-03-01

    A numerical study of size-dependent effects in the thermodynamics of a small droplet formed around a solid nanoparticle has been performed within the square-gradient density functional theory. The Lennard-Jones fluid with the Carnahan-Starling model for the hard-sphere contribution to intermolecular interaction in liquid and vapor phases and interfaces has been used for description of the condensate. The intermolecular forces between the solid core and condensate molecules have been taken into account with the help of the Lennard-Jones part of the total molecular potential of the core. The influence of the electric charge of the particle has been considered under assumption of the central Coulomb potential in the medium with dielectric permittivity depending on local condensate density. The condensate density profiles and equimolecular radii for equilibrium droplets at different values of the condensate chemical potential have been computed in the cases of an uncharged solid core with the molecular potential, a charged core without molecular potential, and a core with joint action of the Coulomb and molecular potentials. The appearance of stable equilibrium droplets even in the absence of the electric charge has been commented. As a next step, the capillary, disjoining pressure, and electrostatic contributions to the condensate chemical potential have been considered and compared with the predictions of classical thermodynamics in a wide range of values of the droplet and the particle equimolecular radii. With the help of the found dependence of the condensate chemical potential in droplet on the droplet size, the activation barrier for nucleation on uncharged and charged particles has been computed as a function of the vapor supersaturation. Finally, the work of droplet formation and the work of wetting the particle have been found as functions of the droplet size.

  14. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme.

    PubMed

    Li, Shaohong L; Truhlar, Donald G

    2015-07-14

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations and atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.

  15. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaohong L.; Truhlar, Donald G.

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations andmore » atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.« less

  16. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme

    DOE PAGES

    Li, Shaohong L.; Truhlar, Donald G.

    2015-05-22

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations andmore » atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.« less

  17. Dynamic Structure Factor: An Introduction

    NASA Astrophysics Data System (ADS)

    Sturm, K.

    1993-02-01

    The doubly differential cross-section for weak inelastic scattering of waves or particles by manybody systems is derived in Born approximation and expressed in terms of the dynamic structure factor according to van Hove. The application of this very general scheme to scattering of neutrons, x-rays and high-energy electrons is discussed briefly. The dynamic structure factor, which is the space and time Fourier transform of the density-density correlation function, is a property of the many-body system independent of the external probe and carries information on the excitation spectrum of the system. The relation of the electronic structure factor to the density-density response function defined in linear-response theory is shown using the fluctuation-dissipation theorem. This is important for calculations, since the response function can be calculated approximately from the independent-particle response function in self-consistent field approximations, such as the random-phase approximation or the local-density approximation of the density functional theory. Since the density-density response function also determines the dielectric function, the dynamic structure can be expressed by the dielectric function.

  18. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less

  19. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  20. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE PAGES

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; ...

    2016-09-09

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

Top