Sample records for classical electrodynamics ced

  1. Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - Part I, second-order FVTD schemes

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Taflove, Allen; Garain, Sudip; Montecinos, Gino

    2017-11-01

    While classic finite-difference time-domain (FDTD) solutions of Maxwell's equations have served the computational electrodynamics (CED) community very well, formulations based on Godunov methodology have begun to show advantages. We argue that the formulations presented so far are such that FDTD schemes and Godunov-based schemes each have their own unique advantages. However, there is currently not a single formulation that systematically integrates the strengths of both these major strains of development. While an early glimpse of such a formulation was offered in Balsara et al. [16], that paper focused on electrodynamics in plasma. Here, we present a synthesis that integrates the strengths of both FDTD and Godunov-based schemes into a robust single formulation for CED in material media. Three advances make this synthesis possible. First, from the FDTD method, we retain (but somewhat modify) a spatial staggering strategy for the primal variables. This provides a beneficial constraint preservation for the electric displacement and magnetic induction vector fields via reconstruction methods that were initially developed in some of the first author's papers for numerical magnetohydrodynamics (MHD). Second, from the Godunov method, we retain the idea of upwinding, except that this idea, too, has to be significantly modified to use the multi-dimensionally upwinded Riemann solvers developed by the first author. Third, we draw upon recent advances in arbitrary derivatives in space and time (ADER) time-stepping by the first author and his colleagues. We use the ADER predictor step to endow our method with sub-cell resolving capabilities so that the method can be stiffly stable and resolve significant sub-cell variation in the material properties within a zone. Overall, in this paper, we report a new scheme for numerically solving Maxwell's equations in material media, with special attention paid to a second-order-accurate formulation. Several numerical examples are presented to show that the proposed technique works. Because of its sub-cell resolving ability, the new method retains second-order accuracy even when material permeability and permittivity vary by an order-of-magnitude over just one or two zones. Furthermore, because the new method is also unconditionally stable in the presence of stiff source terms (i.e., in problems involving giant conductivity variations), it can handle several orders-of-magnitude variation in material conductivity over just one or two zones without any reduction of the time-step. Consequently, the CFL depends only on the propagation speed of light in the medium being studied.

  2. Celiac disease and other autoimmune diseases in patients with collagenous colitis.

    PubMed

    Vigren, Lina; Tysk, Curt; Ström, Magnus; Kilander, Anders F; Hjortswang, Henrik; Bohr, Johan; Benoni, Cecilia; Larson, Lasse; Sjöberg, Klas

    2013-08-01

    Collagenous colitis (CC) is associated with autoimmune disorders. The aim of the present study was to investigate the relationship between CC and autoimmune disorders in a Swedish multicenter study. Patients with CC answered questionnaires about demographic data and disease activity. The patient's files were scrutinized for information about autoimmune diseases. A total number of 116 CC patients were included; 92 women, 24 men, median age 62 years (IQR 55-73). In total, 30.2% had one or more autoimmune disorder. Most common were celiac disease (CeD; 12.9%) and autoimmune thyroid disease (ATD, 10.3%), but they also had Sjögren's syndrome (3.4%), diabetes mellitus (1.7%) and conditions in skin and joints (6.0%). Patients with associated autoimmune disease had more often nocturnal stools. The majority of the patients with associated CeD or ATD got these diagnoses before the colitis diagnosis. Autoimmune disorders occurred in one-third of these patients, especially CeD. In classic inflammatory bowel disease (IBD), liver disease is described in contrast to CC where no cases occurred. Instead, CeD was prevalent, a condition not reported in classic IBD. Patients with an associated autoimmune disease had more symptoms. Patients with CC and CeD had an earlier onset of their colitis. The majority of the patients with both CC and CeD were smokers. Associated autoimmune disease should be contemplated in the follow-up of these patients.

  3. Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - Part II, higher order FVTD schemes

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Garain, Sudip; Taflove, Allen; Montecinos, Gino

    2018-02-01

    The Finite Difference Time Domain (FDTD) scheme has served the computational electrodynamics community very well and part of its success stems from its ability to satisfy the constraints in Maxwell's equations. Even so, in the previous paper of this series we were able to present a second order accurate Godunov scheme for computational electrodynamics (CED) which satisfied all the same constraints and simultaneously retained all the traditional advantages of Godunov schemes. In this paper we extend the Finite Volume Time Domain (FVTD) schemes for CED in material media to better than second order of accuracy. From the FDTD method, we retain a somewhat modified staggering strategy of primal variables which enables a very beneficial constraint-preservation for the electric displacement and magnetic induction vector fields. This is accomplished with constraint-preserving reconstruction methods which are extended in this paper to third and fourth orders of accuracy. The idea of one-dimensional upwinding from Godunov schemes has to be significantly modified to use the multidimensionally upwinded Riemann solvers developed by the first author. In this paper, we show how they can be used within the context of a higher order scheme for CED. We also report on advances in timestepping. We show how Runge-Kutta IMEX schemes can be adapted to CED even in the presence of stiff source terms brought on by large conductivities as well as strong spatial variations in permittivity and permeability. We also formulate very efficient ADER timestepping strategies to endow our method with sub-cell resolving capabilities. As a result, our method can be stiffly-stable and resolve significant sub-cell variation in the material properties within a zone. Moreover, we present ADER schemes that are applicable to all hyperbolic PDEs with stiff source terms and at all orders of accuracy. Our new ADER formulation offers a treatment of stiff source terms that is much more efficient than previous ADER schemes. The computer algebra system scripts for generating ADER time update schemes for any general PDE with stiff source terms are also given in the electronic supplements to this paper. Second, third and fourth order accurate schemes for numerically solving Maxwell's equations in material media are presented in this paper. Several stringent tests are also presented to show that the method works and meets its design goals even when material permittivity and permeability vary by an order of magnitude over just a few zones. Furthermore, since the method is unconditionally stable and sub-cell-resolving in the presence of stiff source terms (i.e. for problems involving giant variations in conductivity over just a few zones), it can accurately handle such problems without any reduction in timestep. We also show that increasing the order of accuracy offers distinct advantages for resolving sub-cell variations in material properties. Most importantly, we show that when the accuracy requirements are stringent the higher order schemes offer the shortest time to solution. This makes a compelling case for the use of higher order, sub-cell resolving schemes in CED.

  4. Classical Electrodynamics: Lecture notes

    NASA Astrophysics Data System (ADS)

    Likharev, Konstantin K.

    2018-06-01

    Essential Advanced Physics is a series comprising four parts: Classical Mechanics, Classical Electrodynamics, Quantum Mechanics and Statistical Mechanics. Each part consists of two volumes, Lecture notes and Problems with solutions, further supplemented by an additional collection of test problems and solutions available to qualifying university instructors. This volume, Classical Electrodynamics: Lecture notes is intended to be the basis for a two-semester graduate-level course on electricity and magnetism, including not only the interaction and dynamics charged point particles, but also properties of dielectric, conducting, and magnetic media. The course also covers special relativity, including its kinematics and particle-dynamics aspects, and electromagnetic radiation by relativistic particles.

  5. Classical Electrodynamics: Problems with solutions; Problems with solutions

    NASA Astrophysics Data System (ADS)

    Likharev, Konstantin K.

    2018-06-01

    l Advanced Physics is a series comprising four parts: Classical Mechanics, Classical Electrodynamics, Quantum Mechanics and Statistical Mechanics. Each part consists of two volumes, Lecture notes and Problems with solutions, further supplemented by an additional collection of test problems and solutions available to qualifying university instructors. This volume, Classical Electrodynamics: Lecture notes is intended to be the basis for a two-semester graduate-level course on electricity and magnetism, including not only the interaction and dynamics charged point particles, but also properties of dielectric, conducting, and magnetic media. The course also covers special relativity, including its kinematics and particle-dynamics aspects, and electromagnetic radiation by relativistic particles.

  6. The contrasting roles of Planck's constant in classical and quantum theories

    NASA Astrophysics Data System (ADS)

    Boyer, Timothy H.

    2018-04-01

    We trace the historical appearance of Planck's constant in physics, and we note that initially the constant did not appear in connection with quanta. Furthermore, we emphasize that Planck's constant can appear in both classical and quantum theories. In both theories, Planck's constant sets the scale of atomic phenomena. However, the roles played in the foundations of the theories are sharply different. In quantum theory, Planck's constant is crucial to the structure of the theory. On the other hand, in classical electrodynamics, Planck's constant is optional, since it appears only as the scale factor for the (homogeneous) source-free contribution to the general solution of Maxwell's equations. Since classical electrodynamics can be solved while taking the homogenous source-free contribution in the solution as zero or non-zero, there are naturally two different theories of classical electrodynamics, one in which Planck's constant is taken as zero and one where it is taken as non-zero. The textbooks of classical electromagnetism present only the version in which Planck's constant is taken to vanish.

  7. Apparent Paradoxes in Classical Electrodynamics: Relativistic Transformation of Force

    ERIC Educational Resources Information Center

    Kholmetskii, A. L.; Yarman, T.

    2007-01-01

    In this paper, we analyse a number of paradoxical teaching problems of classical electrodynamics, dealing with the relativistic transformation of force for complex macro systems, consisting of a number of subsystems with nonzero relative velocities such as electric circuits that change their shape in the course of time. (Contains 7 figures.)

  8. A Concise Introduction to Colombeau Generalized Functions and Their Applications in Classical Electrodynamics

    ERIC Educational Resources Information Center

    Gsponer, Andre

    2009-01-01

    The objective of this introduction to Colombeau algebras of generalized functions (in which distributions can be freely multiplied) is to explain in elementary terms the essential concepts necessary for their application to basic nonlinear problems in classical physics. Examples are given in hydrodynamics and electrodynamics. The problem of the…

  9. Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field

    ERIC Educational Resources Information Center

    Kholmetskii, A. L.; Yarman, T.

    2008-01-01

    In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…

  10. Clinical and molecular characterization of 40 patients with classic Ehlers–Danlos syndrome: identification of 18 COL5A1 and 2 COL5A2 novel mutations

    PubMed Central

    2013-01-01

    Background Classic Ehlers–Danlos syndrome (cEDS) is a rare autosomal dominant connective tissue disorder that is primarily characterized by skin hyperextensibility, abnormal wound healing/atrophic scars, and joint hypermobility. A recent study demonstrated that more than 90% of patients who satisfy all of these major criteria harbor a type V collagen (COLLV) defect. Methods This cohort included 40 patients with cEDS who were clinically diagnosed according to the Villefranche nosology. The flowchart that was adopted for mutation detection consisted of sequencing the COL5A1 gene and, if no mutation was detected, COL5A2 analysis. In the negative patients the presence of large genomic rearrangements in COL5A1 was investigated using MLPA, and positive results were confirmed via SNP-array analysis. Results We report the clinical and molecular characterization of 40 patients from 28 families, consisting of 14 pediatric patients and 26 adults. A family history of cEDS was present in 9 patients. The majority of the patients fulfilled all the major diagnostic criteria for cEDS; atrophic scars were absent in 2 females, skin hyperextensibility was not detected in a male and joint hypermobility was negative in 8 patients (20% of the entire cohort). Wide inter- and intra-familial phenotypic heterogeneity was observed. We identified causal mutations with a detection rate of approximately 93%. In 25/28 probands, COL5A1 or COL5A2 mutations were detected. Twenty-one mutations were in the COL5A1 gene, 18 of which were novel (2 recurrent). Of these, 16 mutations led to nonsense-mediated mRNA decay (NMD) and to COLLV haploinsufficiency and 5 mutations were structural. Two novel COL5A2 splice mutations were detected in patients with the most severe phenotypes. The known p. (Arg312Cys) mutation in the COL1A1 gene was identified in one patient with vascular-like cEDS. Conclusions Our findings highlight that the three major criteria for cEDS are useful and sufficient for cEDS clinical diagnosis in the large majority of the patients. The borderline patients for whom these criteria fail can be diagnosed when minor signs of connective tissue diseases and family history are present and when genetic testing reveals a defect in COLLV. Our data also confirm that COL5A1 and COL5A2 are the major, if not the only, genes involved in cEDS. PMID:23587214

  11. A concise introduction to Colombeau generalized functions and their applications in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Gsponer, Andre

    2009-01-01

    The objective of this introduction to Colombeau algebras of generalized functions (in which distributions can be freely multiplied) is to explain in elementary terms the essential concepts necessary for their application to basic nonlinear problems in classical physics. Examples are given in hydrodynamics and electrodynamics. The problem of the self-energy of a point electric charge is worked out in detail: the Coulomb potential and field are defined as Colombeau generalized functions, and integrals of nonlinear expressions corresponding to products of distributions (such as the square of the Coulomb field and the square of the delta function) are calculated. Finally, the methods introduced in Gsponer (2007 Eur. J. Phys. 28 267, 2007 Eur. J. Phys. 28 1021 and 2007 Eur. J. Phys. 28 1241), to deal with point-like singularities in classical electrodynamics are confirmed.

  12. Four wave mixing as a probe of the vacuum

    NASA Astrophysics Data System (ADS)

    Tennant, Daniel M.

    2016-06-01

    Much attention has been paid to the quantum structure of the vacuum. Higher order processes in quantum electrodynamics are strongly believed to cause polarization and even breakdown of the vacuum in the presence of strong fields soon to be accessible in high intensity laser experiments. Less explored consequences of strong field electrodynamics include effects from Born-Infeld type of electromagnetic theories, a nonlinear electrodynamics that follows from classical considerations as opposed to coupling to virtual fluctuations. In this article, I will demonstrate how vacuum four wave mixing has the possibility to differentiate between these two types of vacuum responses: quantum effects on one hand and nonlinear classical extensions on the other.

  13. Delineation of Ehlers-Danlos syndrome phenotype due to the c.934C>T, p.(Arg312Cys) mutation in COL1A1: Report on a three-generation family without cardiovascular events, and literature review.

    PubMed

    Colombi, Marina; Dordoni, Chiara; Venturini, Marina; Zanca, Arianna; Calzavara-Pinton, Piergiacomo; Ritelli, Marco

    2017-02-01

    Classical Ehlers-Danlos syndrome (cEDS) is a rare connective tissue disorder primarily characterized by hyperextensible skin, defective wound healing, abnormal scars, easy bruising, and generalized joint hypermobility; arterial dissections are rarely observed. Mutations in COL5A1 and COL5A2 encoding type V collagen account for more than 90% of the patients so far characterized. In addition, cEDS phenotype was reported in a small number of patients carrying the c.934C>T mutation in COL1A1 that results in an uncommon substitution of a non-glycine residue in one Gly-Xaa-Yaa repeat of the pro-α1(I)-chain p.(Arg312Cys), which leads to disturbed collagen fibrillogenesis due to delayed removal of the type I procollagen N-propeptide. This specific mutation has been associated with propensity to arterial rupture in early adulthood; indeed, in literature the individuals harboring this mutation are also referred to as "(classic) vascular-like" EDS patients. Herein, we describe a three-generation cEDS family with six adults carrying the p.(Arg312Cys) substitution, which show a variable and prevalent cutaneous involvement without any major vascular event. These data, together with those available in literature, suggest that vascular events are not a diagnostic handle to differentiate patients with the p.(Arg312Cys) COL1A1 mutation from those with COL5A1 and COL5A2 defects, and highlight that during the diagnostic process the presence of at least the p.(Arg312Cys) substitution in COL1A1 should be investigated in cEDS patients without type V collagen mutations. Nevertheless, for these patients, as well as for those affected with cEDS, a periodical vascular surveillance should be carried out together with cardiovascular risk factors monitoring. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Semi-classical Electrodynamics

    NASA Astrophysics Data System (ADS)

    Lestone, John

    2016-03-01

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. We describe semi-classical approaches that can be used to obtain a more intuitive physical feel for several QED processes including electro-statics, Compton scattering, pair annihilation, the anomalous magnetic moment, and the Lamb shift, that could be taught easily to undergraduate students. Any physicist who brings their laptop to the talk will be able to build spread sheets in less than 10 minutes to calculate g/2 =1.001160 and a Lamb shift of 1057 MHz.

  15. Reassessing the Ritz-Einstein debate on the radiation asymmetry in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Frisch, Mathias; Pietsch, Wolfgang

    2016-08-01

    We investigate the debate between Walter Ritz and Albert Einstein on the origin and nature of the radiation asymmetry. We argue that Ritz's views on the radiation asymmetry were far richer and nuanced than the oft-cited joint letter with Einstein (Ritz & Einstein, 1909) suggests, and that Einstein's views in 1909 on the asymmetry are far more ambiguous than is commonly recognized. Indeed, there is strong evidence that Einstein ultimately came to agree with Ritz that elementary radiation processes in classical electrodynamics are non-symmetric and fully retarded.

  16. Effective dynamics of a classical point charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polonyi, Janos, E-mail: polonyi@iphc.cnrs.fr

    2014-03-15

    The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham–Lorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-polemore » of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out. -- Highlights: •Extension of the classical action principle for dissipative systems. •New derivation of the Abraham–Lorentz force for a point charge. •Absence of a runaway solution of the Abraham–Lorentz force. •Acausality in classical electrodynamics. •Renormalization of classical electrodynamics of point charges.« less

  17. A Toy Model of Electrodynamics in (1 + 1) Dimensions

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2007-01-01

    A model is presented that describes a scalar field interacting with a point particle in (1+1) dimensions. The model exhibits many of the same phenomena that appear in classical electrodynamics, such as radiation and radiation damping, yet has a much simpler mathematical structure. By studying these phenomena in a highly simplified model, the…

  18. Linear Response Laws and Causality in Electrodynamics

    ERIC Educational Resources Information Center

    Yuffa, Alex J.; Scales, John A.

    2012-01-01

    Linear response laws and causality (the effect cannot precede the cause) are of fundamental importance in physics. In the context of classical electrodynamics, students often have a difficult time grasping these concepts because the physics is obscured by the intermingling of the time and frequency domains. In this paper, we analyse the linear…

  19. Causality in Classical Electrodynamics

    ERIC Educational Resources Information Center

    Savage, Craig

    2012-01-01

    Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…

  20. Magnetic torque on a rotating superconducting sphere

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.

    1975-01-01

    The London theory of superconductivity is used to calculate the torque on a superconducting sphere rotating in a uniform applied magnetic field. The London theory is combined with classical electrodynamics for a calculation of the direct effect of excess charge on a rotating superconducting sphere. Classical electrodynamics, with the assumption of a perfect Meissner effect, is used to calculate the torque on a superconducting sphere rotating in an arbitrary magnetic induction; this macroscopic approach yields results which are correct to first order. Using the same approach, the torque due to a current loop encircling the rotating sphere is calculated.

  1. Mass stability in classical Stueckelberg-Horwitz-Piron electrodynamics

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2017-05-01

    It is well-known that the 5D gauge structure of Stueckelberg-Horwitz-Piron (SHP) electrodynamics permits the exchange of mass between particles and the electromagnetic fields induced by their motion, even at the classical level. This phenomenon presents two closely related problems: (1) Under what circumstances can real particles evolve sufficiently off-shell to account for mass changing phenomena such as flavor-changing neutrino interactions and low energy nuclear reactions? (2) What accounts for the stability of the measured masses of the known particles? To approach these questions, we first propose a toy model in which a particle evolving through a complex charged environment can acquire a significant mass shift for a short time. We then consider a classical self-interaction that tends to restore on-shell propagation.

  2. On the emission of radiation by an isolated vibrating metallic mirror

    NASA Astrophysics Data System (ADS)

    Arkhipov, M. V.; Babushkin, I.; Pul'kin, N. S.; Arkhipov, R. M.; Rosanov, N. N.

    2017-04-01

    Quantum electrodynamics predicts the appearance of radiation in an empty cavity in which one of the mirrors is vibrating. It also predicts the appearance of radiation from an isolated vibrating mirror. Such effects can be described within the framework of classical electrodynamics. We present the qualitative explanation of the effect, along with the results of numerical simulation of the emission of radiation by an isolated vibrating metallic mirror, which can be induced by mirror illumination by an ultrashort pulse of light. The dynamics of conduction electrons in the metallic mirror is described by the classical Drude model. Simulation was performed for the cases of mirror illumination by either a bipolar or a unipolar pulse.

  3. A reformulation of mechanics and electrodynamics.

    PubMed

    Pinheiro, Mario J

    2017-07-01

    Classical mechanics, as commonly taught in engineering and science, are confined to the conventional Newtonian theory. But classical mechanics has not really changed in substance since Newton formulation, describing simultaneous rotation and translation of objects with somewhat complicate drawbacks, risking interpretation of forces in non-inertial frames. In this work we introduce a new variational principle for out-of-equilibrium, rotating systems, obtaining a set of two first order differential equations that introduces a thermodynamic-mechanistic time into Newton's dynamical equation, and revealing the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. The results is a more consistent formulation of dynamics and electrodynamics, explaining natural phenomena as the outcome from a balance between energy and entropy, embedding translational with rotational motion into a single equation, showing centrifugal and Coriolis force as derivatives from the transport of angular momentum, and offering a natural method to handle variational problems, as shown with the brachistochrone problem. In consequence, a new force term appears, the topological torsion current, important for spacecraft dynamics. We describe a set of solved problems showing the potential of a competing technique, with significant interest to electrodynamics as well. We expect this new approach to have impact in a large class of scientific and technological problems.

  4. Testing Relativity with Electrodynamics

    NASA Astrophysics Data System (ADS)

    Bailey, Quentin; Kostelecky, Alan

    2004-04-01

    Lorentz and CPT violation is a promising candidate signal for Planck-scale physics. Low-energy effects of Lorentz and CPT violation are described by the general theoretical framework called the Standard-Model Extension (SME). This talk focuses on Lorentz-violating effects arising in the classical electrodynamics limit of the SME. Analysis of the theory shows that suitable experiments could improve by several orders of magnitude certain sensitivities achieved in modern Michelson-Morley and Kennedy-Thorndike tests.

  5. Tests of Lorentz Symmetry with Electrodynamics

    NASA Astrophysics Data System (ADS)

    Bailey, Quentin; Kostelecky, Alan

    2004-05-01

    Lorentz and CPT violation is a promising candidate signal for Planck-scale physics. Low-energy effects of Lorentz and CPT violation are described by the general theoretical framework called the Standard-Model Extension (SME). This talk focuses on Lorentz-violating effects arising in the limit of classical electrodynamics. Analysis of the theory shows that suitable experiments could improve by several orders of magnitude on the sensitivities achieved in modern Michelson-Morley and Kennedy-Thorndike tests.

  6. Observers' measurements in premetric electrodynamics: Time and radar length

    NASA Astrophysics Data System (ADS)

    Gürlebeck, Norman; Pfeifer, Christian

    2018-04-01

    The description of an observer's measurement in general relativity and the standard model of particle physics is closely related to the spacetime metric. In order to understand and interpret measurements, which test the metric structure of the spacetime, like the classical Michelson-Morley, Ives-Stilwell, Kennedy-Thorndike experiments or frequency comparison experiments in general, it is necessary to describe them in theories, which go beyond the Lorentzian metric structure. However, this requires a description of an observer's measurement without relying on a metric. We provide such a description of an observer's measurement of the fundamental quantities time and length derived from a premetric perturbation of Maxwell's electrodynamics and a discussion on how these measurements influence classical relativistic observables like time dilation and length contraction. Most importantly, we find that the modification of electrodynamics influences the measurements at two instances: the propagation of light is altered as well as the observer's proper time normalization. When interpreting the results of a specific experiment, both effects cannot be disentangled, in general, and have to be taken into account.

  7. In Appreciation Julian Schwinger: From Nuclear Physics and Quantum Electrodynamics to Source Theory and Beyond

    NASA Astrophysics Data System (ADS)

    Milton, Kimball A.

    2007-01-01

    Julian Schwinger’s influence on twentieth-century science is profound and pervasive. He is most famous for his renormalization theory of quantum electrodynamics, for which he shared the Nobel Prize in Physics for 1965 with Richard Feynman and Sin-itiro Tomonaga. This triumph undoubtedly was his most heroic work, but his legacy lives on chiefly through subtle and elegant work in classical electrodynamics, quantum variational principles, proper-time methods, quantum anomalies, dynamical mass generation, partial symmetry, and much more. Starting as just a boy, he rapidly became one of the preeminent nuclear physicists in the world in the late 1930s, led the theoretical development of radar technology at the Massachusetts Institute of Technology during World War II, and soon after the war conquered quantum electrodynamics, becoming the leading quantum-field theorist for two decades, before taking a more iconoclastic route during the last quarter century of his life.

  8. Electrodynamics of relativistic electron beam x-ray sources

    NASA Astrophysics Data System (ADS)

    Niknejadi, Pardis

    Probing matter at atomic scales provides invaluable information about its structure; as a result interest in sources of x-rays and gamma-rays with high spectral resolution, low angular divergence and small source size has been on the rise. Explorations in this domain require x-ray or gamma-ray sources with high brightness. In the past decade, relativistic electron sources such as synchrotron rings and free electron lasers have proven to be the best technology available for the production of such beams. We1 start with an introduction to the physics of radiation and provide a summary of the theoretical grounds this work is based on. This dissertation is dedicated to different aspects of both fundamental processes of radiation in relativistic electron sources, and critical control and diagnostics that are required for the operation of these sources. Therefore this work is broken into two main parts. In the first part, the electron source that is currently set up at University of Hawai`i at Manoa will be introduced in detail. This source has unique capabilities as it is an inverse-Compton scattering (ICS) source that uses a free electron laser (FEL) with pulses of picosecond duration at ˜ 3 GHz rate for production of a coherent/semi-coherent x-ray beam by means of an optical cavity. After introducing the essential elements of the system and what was achieved prior to this work, we will focus on the requirements for achieving an optimum electron beam matched for the operation of the system which is the main focus of part I of this dissertation. The transport beam line of our system is unique and complex. For this reason, a simulation module has been developed for the study and delivery of an optimal beam. We will discuss the capabilities of this system and its compatibility with other elements that were already installed on the beam line. Finally, we will present results and experimental data as well as guidelines for future operation of the system when the microwave gun has been enhanced and/or the optical cavity (the final step of this proof-of-principle experiment) has been commissioned. Due to the complexity of this integrated system, one of the goals of this work is to serve the future members and staff of the UH FEL laboratory in configuring and operating this complex system. The final goal of the UH ICS project is to establish the principles on which producing a successful turn-key commercial inverse-Compton x-ray source will depend on. In the second part of this work we start with the discussion of coherent radiation at its most fundamental level, with emphasis on conservation of energy. We show that for coherently radiating particles the failure of conventional classical electrodynamics (CED) is far more serious than the well-known failure of CED at small scales. We will present a covariant picture of radiation in terms of the theory of action-at-a-distance and introduce a time-symmetric approach to electrodynamics. We demonstrate that this time symmetric approach provides a perfect match to the energy radiated by two coherently oscillating charged particles. This work is novel, as this was an unsolved problem in classical electrodynamics up until now. We also discuss how the conceptual implication of this work is demanding. For this purpose, we will propose two different experiments that can further our understanding of the presented problem. The first experiment involves a small (lambda/10) antenna, and the goal is to measure the advanced field of the absorber at distances of 5lambda or less. Calculation and precise measurement of the antenna field/potential at distances of order lambda is challenging, causing this experiment to be a difficult yet possible task. In the second experiment, we discuss in some detail the experimental setup that would verify and/or further our understanding of the underlying physics of Self Amplified Spontaneous Emission (SASE) FELs. We provide an analytical verification as a first step toward better understanding the process, and provide a list of required parameters for the SASE test. These parameters are at the edge of current technology of current light sources, making this experiment also a demanding and challenging task. We conclude that further detailed studies by means of simulation or analytical approaches can reduce the strain of SASE test. 1Even though this dissertation was completed by one person, as hardly any scientific work is ever completed by one, it is written in first person plural. Only in this way, it is possible to give credit to those who have contributed to this research by spending their time till the late hours of the night and sometimes even early morning in the control room. For the theoretical work, the hope is to also invite the reader to follow the work closely and check its validity as they read along, as well as to acknowledge the fruitful conversations that have led to the discussions and conclusions presented here.

  9. CED-10/Rac1 Regulates Endocytic Recycling through the RAB-5 GAP TBC-2

    PubMed Central

    Sun, Lin; Liu, Ou; Desai, Jigar; Karbassi, Farhad; Sylvain, Marc-André; Shi, Anbing; Zhou, Zheng; Rocheleau, Christian E.; Grant, Barth D.

    2012-01-01

    Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling. Furthermore, we show that CED-10 binds to the RAB-5 GTPase activating protein TBC-2, that CED-10 contributes to recruitment of TBC-2 to endosomes, and that recycling cargo is trapped in recycling endosomes in ced-12, ced-10, and tbc-2 mutants. Expression of GTPase defective RAB-5(Q78L) also traps recycling cargo. Our results indicate that down-regulation of early endosome regulator RAB-5/Rab5 by a CED-5, CED-12, CED-10, TBC-2 cascade is an important step in the transport of cargo through the basolateral recycling endosome for delivery to the plasma membrane. PMID:22807685

  10. Resonant electrodynamic heating of stellar coronal loops: An LRC circuit analogue

    NASA Technical Reports Server (NTRS)

    Ionson, J. A.

    1980-01-01

    The electrodynamic coupling of stellar coronal loops to underlying beta velocity fields. A rigorous analysis revealed that the physics can be represented by a simple yet equivalent LRC circuit analogue. This analogue points to the existence of global structure oscillations which resonantly excite internal field line oscillations at a spatial resonance within the coronal loop. Although the width of this spatial resonance, as well as the induced currents and coronal velocity field, explicitly depend upon viscosity and resistivity, the resonant form of the generalized electrodynamic heating function is virtually independent of irreversibilities. This is a classic feature of high quality resonators that are externally driven by a broad band source of spectral power. Applications to solar coronal loops result in remarkable agreement with observations.

  11. Geometric Algebra for Physicists

    NASA Astrophysics Data System (ADS)

    Doran, Chris; Lasenby, Anthony

    2007-11-01

    Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.

  12. Quantum-enabled temporal and spectral mode conversion of microwave signals

    PubMed Central

    Andrews, R. W.; Reed, A. P.; Cicak, K.; Teufel, J. D.; Lehnert, K. W.

    2015-01-01

    Electromagnetic waves are ideal candidates for transmitting information in a quantum network as they can be routed rapidly and efficiently between locations using optical fibres or microwave cables. Yet linking quantum-enabled devices with cables has proved difficult because most cavity or circuit quantum electrodynamics systems used in quantum information processing can only absorb and emit signals with a specific frequency and temporal envelope. Here we show that the temporal and spectral content of microwave-frequency electromagnetic signals can be arbitrarily manipulated with a flexible aluminium drumhead embedded in a microwave circuit. The aluminium drumhead simultaneously forms a mechanical oscillator and a tunable capacitor. This device offers a way to build quantum microwave networks using separate and otherwise mismatched components. Furthermore, it will enable the preparation of non-classical states of motion by capturing non-classical microwave signals prepared by the most coherent circuit quantum electrodynamics systems. PMID:26617386

  13. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.

    PubMed

    Lovelock, Kevin R J

    2017-12-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.

  14. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities

    PubMed Central

    2017-01-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254

  15. CED-9 and mitochondrial homeostasis in C. elegans muscle

    PubMed Central

    Tan, Frederick J.; Husain, Michelle; Manlandro, Cara Marie; Koppenol, Marijke; Fire, Andrew Z.; Hill, R. Blake

    2009-01-01

    Summary Mitochondrial homeostasis reflects a dynamic balance between membrane fission and fusion events thought essential for mitochondrial function. We report here that altered expression of the C. elegans BCL2 homolog CED-9 affects both mitochondrial fission and fusion. Although striated muscle cells lacking CED-9 have no alteration in mitochondrial size or ultrastructure, these cells appear more sensitive to mitochondrial fragmentation. By contrast, increased CED-9 expression in these cells produces highly interconnected mitochondria. This mitochondrial phenotype is partially suppressed by increased expression of the dynamin-related GTPase DRP-1, with suppression dependent on the BH3 binding pocket of CED-9. This suppression suggests that CED-9 directly regulates DRP-1, a model supported by our finding that CED-9 activates the GTPase activity of human DRP1. Thus, CED-9 is capable of regulating the mitochondrial fission-fusion cycle but is not essential for either fission or fusion. PMID:18827010

  16. Spectrum of mucocutaneous, ocular and facial features and delineation of novel presentations in 62 classical Ehlers-Danlos syndrome patients.

    PubMed

    Colombi, M; Dordoni, C; Venturini, M; Ciaccio, C; Morlino, S; Chiarelli, N; Zanca, A; Calzavara-Pinton, P; Zoppi, N; Castori, M; Ritelli, M

    2017-12-01

    Classical Ehlers-Danlos syndrome (cEDS) is characterized by marked cutaneous involvement, according to the Villefranche nosology and its 2017 revision. However, the diagnostic flow-chart that prompts molecular testing is still based on experts' opinion rather than systematic published data. Here we report on 62 molecularly characterized cEDS patients with focus on skin, mucosal, facial, and articular manifestations. The major and minor Villefranche criteria, additional 11 mucocutaneous signs and 15 facial dysmorphic traits were ascertained and feature rates compared by sex and age. In our cohort, we did not observe any mandatory clinical sign. Skin hyperextensibility plus atrophic scars was the most frequent combination, whereas generalized joint hypermobility according to the Beighton score decreased with age. Skin was more commonly hyperextensible on elbows, neck, and knees. The sites more frequently affected by abnormal atrophic scarring were knees, face (especially forehead), pretibial area, and elbows. Facial dysmorphism commonly affected midface/orbital areas with epicanthal folds and infraorbital creases more commonly observed in young patients. Our findings suggest that the combination of ≥1 eye dysmorphism and facial/forehead scars may support the diagnosis in children. Minor acquired traits, such as molluscoid pseudotumors, subcutaneous spheroids, and signs of premature skin aging are equally useful in adults. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Convection-enhanced Delivery of Therapeutics for Malignant Gliomas.

    PubMed

    Saito, Ryuta; Tominaga, Teiji

    2017-01-15

    Convection-enhanced delivery (CED) circumvents the blood-brain barrier by delivering agents directly into the tumor and surrounding parenchyma. CED can achieve large volumes of distribution by continuous positive-pressure infusion. Although promising as an effective drug delivery method in concept, the administration of therapeutic agents via CED is not without challenges. Limitations of distribution remain a problem in large brains, such as those of humans. Accurate and consistent delivery of an agent is another challenge associated with CED. Similar to the difficulties caused by immunosuppressive environments associated with gliomas, there are several mechanisms that make effective local drug distribution difficult in malignant gliomas. In this review, methods for local drug application targeting gliomas are discussed with special emphasis on CED. Although early clinical trials have failed to demonstrate the efficacy of CED against gliomas, CED potentially can be a platform for translating the molecular understanding of glioblastomas achieved in the laboratory into effective clinical treatments. Several clinical studies using CED of chemotherapeutic agents are ongoing. Successful delivery of effective agents should prove the efficacy of CED in the near future.

  18. Convection-enhanced Delivery of Therapeutics for Malignant Gliomas

    PubMed Central

    SAITO, Ryuta; TOMINAGA, Teiji

    2017-01-01

    Convection-enhanced delivery (CED) circumvents the blood–brain barrier by delivering agents directly into the tumor and surrounding parenchyma. CED can achieve large volumes of distribution by continuous positive-pressure infusion. Although promising as an effective drug delivery method in concept, the administration of therapeutic agents via CED is not without challenges. Limitations of distribution remain a problem in large brains, such as those of humans. Accurate and consistent delivery of an agent is another challenge associated with CED. Similar to the difficulties caused by immunosuppressive environments associated with gliomas, there are several mechanisms that make effective local drug distribution difficult in malignant gliomas. In this review, methods for local drug application targeting gliomas are discussed with special emphasis on CED. Although early clinical trials have failed to demonstrate the efficacy of CED against gliomas, CED potentially can be a platform for translating the molecular understanding of glioblastomas achieved in the laboratory into effective clinical treatments. Several clinical studies using CED of chemotherapeutic agents are ongoing. Successful delivery of effective agents should prove the efficacy of CED in the near future. PMID:27980285

  19. Electromagnetic fields with vanishing quantum corrections

    NASA Astrophysics Data System (ADS)

    Ortaggio, Marcello; Pravda, Vojtěch

    2018-04-01

    We show that a large class of null electromagnetic fields are immune to any modifications of Maxwell's equations in the form of arbitrary powers and derivatives of the field strength. These are thus exact solutions to virtually any generalized classical electrodynamics containing both non-linear terms and higher derivatives, including, e.g., non-linear electrodynamics as well as QED- and string-motivated effective theories. This result holds not only in a flat or (anti-)de Sitter background, but also in a larger subset of Kundt spacetimes, which allow for the presence of aligned gravitational waves and pure radiation.

  20. Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.

    PubMed

    Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M

    2015-06-05

    We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.

  1. Radiation exposure from diagnostic imaging in young patients with testicular cancer.

    PubMed

    Sullivan, C J; Murphy, K P; McLaughlin, P D; Twomey, M; O'Regan, K N; Power, D G; Maher, M M; O'Connor, O J

    2015-04-01

    Risks associated with high cumulative effective dose (CED) from radiation are greater when imaging is performed on younger patients. Testicular cancer affects young patients and has a good prognosis. Regular imaging is standard for follow-up. This study quantifies CED from diagnostic imaging in these patients. Radiological imaging of patients aged 18-39 years, diagnosed with testicular cancer between 2001 and 2011 in two tertiary care centres was examined. Age at diagnosis, cancer type, dose-length product (DLP), imaging type, and frequency were recorded. CED was calculated from DLP using conversion factors. Statistical analysis was performed with SPSS. In total, 120 patients with a mean age of 30.7 ± 5.2 years at diagnosis had 1,410 radiological investigations. Median (IQR) surveillance was 4.37 years (2.0-5.5). Median (IQR) CED was 125.1 mSv (81.3-177.5). Computed tomography accounted for 65.3 % of imaging studies and 98.3 % of CED. We found that 77.5 % (93/120) of patients received high CED (>75 mSv). Surveillance time was associated with high CED (OR 2.1, CI 1.5-2.8). Survivors of testicular cancer frequently receive high CED from diagnostic imaging, mainly CT. Dose management software for accurate real-time monitoring of CED and low-dose CT protocols with maintained image quality should be used by specialist centres for surveillance imaging. • CT accounted for 98.3 % of CED in patients with testicular cancer. • Median CED in patients with testicular cancer was 125.1 mSv • High CED (>75 mSv) was observed in 77.5 % (93/120) of patients. • Dose tracking and development of low-dose CT protocols are recommended.

  2. Self-reported dietary adherence, disease-specific symptoms, and quality of life are associated with healthcare provider follow-up in celiac disease.

    PubMed

    Hughey, Jacob J; Ray, Bonnie K; Lee, Anne R; Voorhees, Kristin N; Kelly, Ciaran P; Schuppan, Detlef

    2017-12-11

    The only treatment for celiac disease (CeD) is a lifelong gluten-free diet (GFD). The restrictive nature of the GFD makes adherence a challenge. As an integral part of CeD management, multiple professional organizations recommend regular follow-up with a healthcare provider (HCP). Many CeD patients also participate in patient advocacy groups (PAGs) for education and support. Previous work found that follow-up of CeD patients is highly variable. Here we investigated the self-reported factors associated with HCP follow-up among individuals diagnosed with CeD who participate in a PAG. We conducted a survey of members of Beyond Celiac (a PAG), collecting responses from 1832 U.S. adults ages 19-65 who reported having CeD. The survey queried HCP follow-up related to CeD and included validated instruments for dietary adherence (CDAT), disease-specific symptoms (CSI), and quality of life (CD-QOL). Overall, 27% of respondents diagnosed with CeD at least five years ago reported that they had not visited an HCP about CeD in the last five years. The most frequent reason for not visiting an HCP was "doing fine on my own" (47.6%). Using multiple logistic regression, we identified significant associations between whether a respondent reported visiting an HCP about CeD in the last five years and the scores for all three validated instruments. In particular, as disease-specific symptoms and quality of life worsened, the probability of having visited an HCP increased. Conversely, as dietary adherence worsened, the probability decreased. Our results suggest that many individuals with CeD manage their disease without ongoing support from an HCP. Our results thus emphasize the need for greater access to high quality CeD care, and highlight an opportunity for PAGs to bring together patients and HCPs to improve management of CeD.

  3. Memory and Coping with Stress: The Relationship Between Cognitive-Emotional Distinctiveness, Memory Valence, and Distress

    PubMed Central

    Boals, Adriel; Rubin, David C.; Klein, Kitty

    2011-01-01

    Cognitive-emotional distinctiveness (CED), the extent to which an individual separates emotions from an event in the cognitive representation of the event, was explored in four studies. CED was measured using a modified multidimensional scaling procedure. The first study found that lower levels of CED in memories of the September 11 terrorist attacks predicted greater frequency of intrusive thoughts about the attacks. The second study revealed CED levels are higher in negative events, in comparison to positive events and that low CED levels in emotionally intense negative events are associated with a pattern of greater event-related distress. The third study replicated the findings from the previous study when examining CED levels in participants’ memories of the 2004 Presidential election. The fourth study revealed that low CED in emotionally intense negative events is associated with worse mental health. We argue that CED is an adaptive and healthy coping feature of stressful memories. PMID:18569690

  4. Electrodynamics and Spacetime Geometry: Foundations

    NASA Astrophysics Data System (ADS)

    Cabral, Francisco; Lobo, Francisco S. N.

    2017-02-01

    We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.

  5. CEDS Addresses: Rubric Elements

    ERIC Educational Resources Information Center

    US Department of Education, 2015

    2015-01-01

    Common Education Data Standards (CEDS) Version 4 introduced a common data vocabulary for defining rubrics in a data system. The CEDS elements support digital representations of both holistic and analytic rubrics. This document shares examples of holistic and analytic project rubrics, available CEDS Connections, and a logical model showing the…

  6. Optimal Orbit Maneuvers with Electrodynamic Tethers

    DTIC Science & Technology

    2006-06-01

    orbital elements , which completely describe a unique orbit ; equinoctial elements are not employed but left for future iterations of the formulation...periods in the maneuver. Follow on work, uch as the transformation of this state vector from classical orbital elements to the quinoctial set of...

  7. Quantum dynamical simulations of local field enhancement in metal nanoparticles.

    PubMed

    Negre, Christian F A; Perassi, Eduardo M; Coronado, Eduardo A; Sánchez, Cristián G

    2013-03-27

    Field enhancements (Γ) around small Ag nanoparticles (NPs) are calculated using a quantum dynamical simulation formalism and the results are compared with electrodynamic simulations using the discrete dipole approximation (DDA) in order to address the important issue of the intrinsic atomistic structure of NPs. Quite remarkably, in both quantum and classical approaches the highest values of Γ are located in the same regions around single NPs. However, by introducing a complete atomistic description of the metallic NPs in optical simulations, a different pattern of the Γ distribution is obtained. Knowing the correct pattern of the Γ distribution around NPs is crucial for understanding the spectroscopic features of molecules inside hot spots. The enhancement produced by surface plasmon coupling is studied by using both approaches in NP dimers for different inter-particle distances. The results show that the trend of the variation of Γ versus inter-particle distance is different for classical and quantum simulations. This difference is explained in terms of a charge transfer mechanism that cannot be obtained with classical electrodynamics. Finally, time dependent distribution of the enhancement factor is simulated by introducing a time dependent field perturbation into the Hamiltonian, allowing an assessment of the localized surface plasmon resonance quantum dynamics.

  8. An elementary argument for the magnetic field outside a solenoid

    NASA Astrophysics Data System (ADS)

    Pathak, Aritro

    2017-01-01

    The evaluation of the magnetic field inside and outside a uniform current density infinite solenoid of uniform cross-section is an elementary problem in classical electrodynamics that all undergraduate Physics students study. Symmetry properties of the cylinder and the judicious use of Ampere’s circuital law leads to correct results; however it does not explain why the field is non zero for a finite length solenoid, and why it vanishes as the solenoid becomes infinitely long. An argument is provided in Farley and Price (2001 Am. J. Phys. 69 751), explaining how the magnetic field behaves outside the solenoid and not too far from it, as a function of the length of the solenoid. A calculation is also outlined for obtaining the field just outside the circular cross section solenoid, in the classic text Classical Electrodynamics by Jackson, 3rd edn (John Wiley and Sons, Inc.), problems 5.3-5.5. The purpose of this paper is to provide an elementary argument for why the field becomes negligible as the length of the solenoid is increased. A quantitative analysis is provided for the field outside the solenoid, at radial distances large compared to the linear dimension of the solenoid cross section.

  9. Small GTPase CDC-42 promotes apoptotic cell corpse clearance in response to PAT-2 and CED-1 in C. elegans

    PubMed Central

    Neukomm, L J; Zeng, S; Frei, A P; Huegli, P A; Hengartner, M O

    2014-01-01

    The rapid clearance of dying cells is important for the well-being of multicellular organisms. In C. elegans, cell corpse removal is mainly mediated by three parallel engulfment signaling cascades. These pathways include two small GTPases, MIG-2/RhoG and CED-10/Rac1. Here we present the identification and characterization of CDC-42 as a third GTPase involved in the regulation of cell corpse clearance. Genetic analyses performed by both loss of cdc-42 function and cdc-42 overexpression place cdc-42 in parallel to the ced-2/5/12 signaling module, in parallel to or upstream of the ced-10 module, and downstream of the ced-1/6/7 module. CDC-42 accumulates in engulfing cells at membranes surrounding apoptotic corpses. The formation of such halos depends on the integrins PAT-2/PAT-3, UNC-112 and the GEF protein UIG-1, but not on the canonical ced-1/6/7 or ced-2/5/12 signaling modules. Together, our results suggest that the small GTPase CDC-42 regulates apoptotic cell engulfment possibly upstream of the canonical Rac GTPase CED-10, by polarizing the engulfing cell toward the apoptotic corpse in response to integrin signaling and ced-1/6/7 signaling in C. elegans. PMID:24632947

  10. Small GTPase CDC-42 promotes apoptotic cell corpse clearance in response to PAT-2 and CED-1 in C. elegans.

    PubMed

    Neukomm, L J; Zeng, S; Frei, A P; Huegli, P A; Hengartner, M O

    2014-06-01

    The rapid clearance of dying cells is important for the well-being of multicellular organisms. In C. elegans, cell corpse removal is mainly mediated by three parallel engulfment signaling cascades. These pathways include two small GTPases, MIG-2/RhoG and CED-10/Rac1. Here we present the identification and characterization of CDC-42 as a third GTPase involved in the regulation of cell corpse clearance. Genetic analyses performed by both loss of cdc-42 function and cdc-42 overexpression place cdc-42 in parallel to the ced-2/5/12 signaling module, in parallel to or upstream of the ced-10 module, and downstream of the ced-1/6/7 module. CDC-42 accumulates in engulfing cells at membranes surrounding apoptotic corpses. The formation of such halos depends on the integrins PAT-2/PAT-3, UNC-112 and the GEF protein UIG-1, but not on the canonical ced-1/6/7 or ced-2/5/12 signaling modules. Together, our results suggest that the small GTPase CDC-42 regulates apoptotic cell engulfment possibly upstream of the canonical Rac GTPase CED-10, by polarizing the engulfing cell toward the apoptotic corpse in response to integrin signaling and ced-1/6/7 signaling in C. elegans.

  11. Interplay between CedA, rpoB and double stranded DNA: A step towards understanding CedA mediated cell division in E. coli.

    PubMed

    Sharma, Pankaj; Tomar, Anil Kumar; Kundu, Bishwajit

    2018-02-01

    Cell division is compromised in DnaAcos mutant E. coli cells due to chromosome over-replication. In these cells, CedA acts as a regulatory protein and initiates cell division by a hitherto unknown mechanism. CedA, a double stranded DNA binding protein, interacts with various subunits of RNA polymerase complex, including rpoB. To reveal how this concert between CedA, rpoB and DNA brings about cell division in E. coli, we performed biophysical and in silico analysis and obtained mechanistic insights. Interaction between CedA and rpoB was shown by circular dichroism spectrometry and in silico docking experiments. Further, CedA and rpoB were allowed to interact individually to a selected DNA and their binding was monitored by fluorescence spectroscopy. The binding constants of these interactions as determined by BioLayer Interferometry clearly show that rpoB binds to DNA with higher affinity (K D2 =<1.0E-12M) as compared to CedA (K D2 =9.58E-09M). These findings were supported by docking analysis where 12 intermolecular H-bonds were formed in rpoB-DNA complex as compared to 4 in CedA-DNA complex. Based on our data we propose that in E. coli cells chromosome over-replication signals CedA to recruit rpoB to specific DNA site(s), which initiates transcription of cell division regulatory elements. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. SIM(1)-VSR Maxwell-Chern-Simons electrodynamics

    NASA Astrophysics Data System (ADS)

    Bufalo, R.

    2016-06-01

    In this paper we propose a very special relativity (VSR)-inspired generalization of the Maxwell-Chern-Simons (MCS) electrodynamics. This proposal is based upon the construction of a proper study of the SIM (1)-VSR gauge-symmetry. It is shown that the VSR nonlocal effects present a significant and healthy departure from the usual MCS theory. The classical dynamics is analysed in full detail, by studying the solution for the electric field and static energy for this configuration. Afterwards, the interaction energy between opposite charges is derived and we show that the VSR effects play an important part in obtaining a (novel) finite expression for the static potential.

  13. Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Belyanin, A. A.; Derishev, E. V.; Kocharovsky, V. V.; Kocharovsky, Vl. V.

    2002-07-01

    We formulate the general requirements, set by classical electrodynamics, on the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic fields or by the difference in electric potentials (generalized Hillas criterion) but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of an accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard γ rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects-potential EHECR sources-and discuss their ability to accelerate protons to 1020 eV and beyond. The possibility of gain from ultrarelativistic bulk flows is addressed, with active galactic nuclei and gamma-ray bursts being the examples.

  14. Constraints on the extremely high-energy cosmic rays accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Belyanin, A.; Aharonian, F.; Derishev, E.; Kocharovsky, V.; Kocharovsky, V.

    We formulate the general requirements, set by classical electrodynamics, to the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion), but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard gamma-rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects - potential EHECR sources - and discuss their ability to accelerate protons to 1020 eV and beyond. A possibility to gain from ultrarelativistic bulk flows is addressed, with Active Galactic Nuclei and Gamma-Ray Bursts being the examples.

  15. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: Bridging classical electrodynamics and quantum dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zixuan; Ratner, Mark A.; Seideman, Tamar, E-mail: t-seideman@northwestern.edu

    2014-12-14

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify ourmore » approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.« less

  16. Identification of functional interactome of a key cell division regulatory protein CedA of E.coli.

    PubMed

    Sharma, Pankaj; Tomar, Anil Kumar; Kundu, Bishwajit

    2018-01-01

    Cell division is compromised in DnaAcos mutant Escherichia coli cells that results in filamentous cell morphology. This is countered by over-expression of CedA protein that induces cytokinesis and thus, regular cell morphology is regained; however via an unknown mechanism. To understand the process systematically, exact role of CedA should be deciphered. Protein interactions are crucial for functional organization of a cell and their identification helps in revealing exact function(s) of a protein and its binding partners. Thus, this study was intended to identify CedA binding proteins (CBPs) to gain more clues of CedA function. We isolated CBPs by pull down assay using purified recombinant CedA and identified nine CBPs by mass spectrometric analysis (MALDI-TOF MS and LC-MS/MS), viz. PDHA1, RL2, DNAK, LPP, RPOB, G6PD, GLMS, RL3 and YBCJ. Based on CBPs identified, we hypothesize that CedA plays a crucial and multifaceted role in cell cycle regulation and specific pathways in which CedA participates may include transcription and energy metabolism. However, further validation through in-vitro and in-vivo experiments is necessary. In conclusion, identification of CBPs may help us in deciphering mechanism of CedA mediated cell division during chromosomal DNA over-replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Energy and sports drinks in children and adolescents.

    PubMed

    Pound, Catherine M; Blair, Becky

    2017-10-01

    Sports drinks and caffeinated energy drinks (CEDs) are commonly consumed by youth. Both sports drinks and CEDs pose potential risks for the health of children and adolescents and may contribute to obesity. Sports drinks are generally unnecessary for children engaged in routine or play-based physical activity. CEDs may affect children and adolescents more than adults because they weigh less and thus experience greater exposure to stimulant ingredients per kilogram of body weight. Paediatricians need to recognize and educate patients and families on the differences between sport drinks and CEDs. Screening for the consumption of CEDs, especially when mixed with alcohol, should be done routinely. The combination of CEDs and alcohol may be a marker for higher risk of substance use or abuse and for other health-compromising behaviours.

  18. Conducted energy devices: pilot analysis of (non-)attributability of death using a modified Naranjo algorithm.

    PubMed

    Fox, Anthony W; Payne-James, J Jason

    2012-11-30

    Alleged fatalities associated with conductive-energy devices (CEDs) are similar to alleged serious adverse events (SAEs) after the use of pharmaceutical products: both types of case arise rarely, in complex (if not unique) combinations of circumstances, frequently when there are multiple concomitant putative aetiologies for the injury, and after the suspected product has been previously well-designed and tested. Attribution (or otherwise) of SAEs to pharmaceutical products is often assessed by use of the Naranjo algorithm. The purpose of this study was to investigate whether an adapted Naranjo algorithm could be used to assess alleged CED-associated fatalities. Unique cases had four independent identifiers. Prospectively, 7 (of the 10) Naranjo algorithm questions were chosen as being potentially applicable to CED use. These had maximum score 9, and the associated ordinal probability scale (doubtful, possible, probable, and definite) was retained by linear proportion to the integral scores. An arbitrary requirement was for database sufficiency≥50%=([n unique cases×7 questions answerable]×0.5); a pilot sample (n=29 unique cases) suggested feasibility (see below). One hundred and seventy-five unique cases were found, with a data sufficiency of 56.8%. Modified Naranjo algorithm scores had an unequally bimodal distribution. CED-attributability was suggested in 21 (12% of 175) cases. Substantial numbers of concomitant conditions existed among cases with low algorithm scores, all being potentially lethal under field conditions without CED exposure. The number of CED-administered shocks sustained was unrelated to CED-attributability of fatality. Two of the Naranjo questions (regarding dechallenge and the effects of challenge with a non-identical but similar agent) proved to be non-contributory. An algorithmic approach to assessment of CED-associated fatality seems feasible. By these pharmacovigilance standards, some published case fatality rates attributable to CED exposure seem exaggerated. CED-attributable deaths have close similarity to Type-B SAEs. The latter are rare, unpredictable, and usually due to a patient idiosyncrasy. In the person being restrained, such idiosyncratic factors may be unavoidable by law enforcement officers (LEO) in the field. These are unlike predictable (Type-A) SAEs, which have their corollary amongst secondary CED-associated deaths, e.g., head injury among cyclists or ignition of an inflammable atmosphere by the CED, and are identifiable risk factors for which LEO can train. Regardless, absolute CED tolerability is obviously greater than that for firearms. A prospective registry of CED deployments would measure this more precisely. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Convection-Enhanced Delivery (CED) in an Animal Model of Malignant Peripheral Nerve Sheath Tumors and Plexiform Neurofibromas

    DTIC Science & Technology

    2011-09-01

    with an accelerated schedule Convection-Enhanced Delivery ( CED ), Malignant Peripheral Nerve Sheath ( MPNST ), Plexiform Neurofibromas (PN...the distribution of macromolecules delivered to intraneural PNs and MPNST via CED . Design: Orthotopic xenograft models of sciatic intraneural NF1...determine the efficacy CED of the epidermal growth factor receptor (EGFR) inhibitor erlotinib in animal models of intraneural PNs and MPNST

  20. Concentration rather than dose defines the local brain toxicity of agents that are effectively distributed by convection-enhanced delivery.

    PubMed

    Zhang, Rong; Saito, Ryuta; Mano, Yui; Kanamori, Masayuki; Sonoda, Yukihiko; Kumabe, Toshihiro; Tominaga, Teiji

    2014-01-30

    Convection-enhanced delivery (CED) has been developed as a potentially effective drug-delivery strategy into the central nervous system. In contrast to systemic intravenous administration, local delivery achieves high concentration and prolonged retention in the local tissue, with increased chance of local toxicity, especially with toxic agents such as chemotherapeutic agents. Therefore, the factors that affect local toxicity should be extensively studied. With the assumption that concentration-oriented evaluation of toxicity is important for local CED, we evaluated the appearance of local toxicity among different agents after delivery with CED and studied if it is dose dependent or concentration dependent. Local toxicity profile of chemotherapeutic agents delivered via CED indicates BCNU was dose-dependent, whereas that of ACNU was concentration-dependent. On the other hand, local toxicity for doxorubicin, which is not distributed effectively by CED, was dose-dependent. Local toxicity for PLD, which is extensively distributed by CED, was concentration-dependent. Traditional evaluation of drug induced toxicity was dose-oriented. This is true for systemic intravascular delivery. However, with local CED, toxicity of several drugs exacerbated in concentration-dependent manner. From our study, local toxicity of drugs that are likely to distribute effectively tended to be concentration-dependent. Concentration rather than dose may be more important for the toxicity of agents that are effectively distributed by CED. Concentration-oriented evaluation of toxicity is more important for CED. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Convection-Enhanced Delivery (CED) in an Animal Model of Malignant Peripheral Nerve Sheath (MPNST) Tumors and Plexiform Neurofibromas (PN)

    DTIC Science & Technology

    2012-09-01

    TITLE: Convection-Enhanced Delivery ( CED ) in an Animal Model of Malignant Peripheral Nerve Sheath ( MPNST ) Tumors and Plexiform Neurofibromas (PN...within the sciatic nerve. 15. SUBJECT TERMS Convection-Enhanced Delivery ( CED ), Malignant Peripheral Nerve Sheath ( MPNST ), Plexiform Neurofibromas...determine the distribution of macromolecules delivered to intraneural PNs and MPNST via CED . Design: Orthotopic xenograft models of sciatic intraneural

  2. Perceptions and Knowledge of Caffeinated Energy Drinks: Results of Focus Groups With Canadian Youth.

    PubMed

    McCrory, Cassondra; White, Christine M; Bowman, Carolyn; Fenton, Nancy; Reid, Jessica L; Hammond, David

    2017-04-01

    To examine use, knowledge, and perceptions of caffeinated energy drinks (CEDs) among youth. Qualitative research using focus group discussions (n = 4). Two Canadian cities (Toronto and Montreal). Youth aged 12-18 years (n = 41). Perceived definitions of CEDs, reasons for use, knowledge of health effects, use with alcohol, marketing perceptions, and use and understanding of cautionary statements on packaging. Data were analyzed using a modified grounded-theory approach. Youth identified CEDs as products that provide energy and contain caffeine and sugar. Compared with mainstream CED brands and energy shots, youth were less likely to perceive Gatorade, Coca-Cola, and a Starbucks beverage as energy drinks, despite some ambiguity. The majority of participants believed that CEDs, including mixed with alcohol, were not necessarily harmful in moderation and that marketing was targeted toward older youth and young adults. Awareness of cautionary statements on CEDs was low; cautionary statements were perceived as difficult to find and read owing to the design and small font. Findings suggest a need to increase public education regarding the potential risks of CED consumption, including enhancements to the mandated cautionary statements, with greater attention to the impact of CED marketing on youth. Copyright © 2016 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  3. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    NASA Astrophysics Data System (ADS)

    Leader, Elliot

    2018-04-01

    The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.

  4. Energy density and energy flow of plasmonic waves in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2017-07-01

    The propagation of plasmonic waves in bilayer graphene is studied based on the classical electrodynamics. The interactions between conduction electrons confined to move on the surface of each layer are taken into account via the two-dimensional linearized hydrodynamic model. The energy theorem of electrodynamics is cast in a form which yields expressions for energy density and energy flow of p-polarized surface plasmon polariton waves in bilayer graphene. Numerical results show that the presence of two layers causes the appearance of two branches in the dispersion relation that introduce alterations in the physical behavior of the energy, power flow and the energy transport velocity, in comparison with the results of monolayer graphene.

  5. Derivation of the cut-off length from the quantum quadratic enhancement of a mass in vacuum energy constant Lambda

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika; Sato, Hikaru

    2018-04-01

    Ultraviolet self-interaction energies in field theory sometimes contain meaningful physical quantities. The self-energies in such as classical electrodynamics are usually subtracted from the rest mass. For the consistent treatment of energies as sources of curvature in the Einstein field equations, this study includes these subtracted self-energies into vacuum energy expressed by the constant Lambda (used in such as Lambda-CDM). In this study, the self-energies in electrodynamics and macroscopic classical Einstein field equations are examined, using the formalisms with the ultraviolet cut-off scheme. One of the cut-off formalisms is the field theory in terms of the step-function-type basis functions, developed by the present authors. The other is a continuum theory of a fundamental particle with the same cut-off length. Based on the effectiveness of the continuum theory with the cut-off length shown in the examination, the dominant self-energy is the quadratic term of the Higgs field at a quantum level (classical self-energies are reduced to logarithmic forms by quantum corrections). The cut-off length is then determined to reproduce today's tiny value of Lambda for vacuum energy. Additionally, a field with nonperiodic vanishing boundary conditions is treated, showing that the field has no zero-point energy.

  6. Does Bohm's Quantum Force Have a Classical Origin?

    NASA Astrophysics Data System (ADS)

    Lush, David C.

    2016-08-01

    In the de Broglie-Bohm formulation of quantum mechanics, the electron is stationary in the ground state of hydrogenic atoms, because the quantum force exactly cancels the Coulomb attraction of the electron to the nucleus. In this paper it is shown that classical electrodynamics similarly predicts the Coulomb force can be effectively canceled by part of the magnetic force that occurs between two similar particles each consisting of a point charge moving with circulatory motion at the speed of light. Supposition of such motion is the basis of the Zitterbewegung interpretation of quantum mechanics. The magnetic force between two luminally-circulating charges for separation large compared to their circulatory motions contains a radial inverse square law part with magnitude equal to the Coulomb force, sinusoidally modulated by the phase difference between the circulatory motions. When the particles have equal mass and their circulatory motions are aligned but out of phase, part of the magnetic force is equal but opposite the Coulomb force. This raises a possibility that the quantum force of Bohmian mechanics may be attributable to the magnetic force of classical electrodynamics. It is further shown that relative motion between the particles leads to modulation of the magnetic force with spatial period equal to the de Broglie wavelength.

  7. Convection-Enhanced Delivery (CED) in an Animal Model of Malignant Peripheral Nerve Sheath Tumors and Plexiform Neurofibromas

    DTIC Science & Technology

    2013-02-01

    successfully establish the xenograft within the sciatic nerve. Convection-Enhanced Delivery ( CED ), Malignant Peripheral Nerve Sheath ( MPNST ), Plexiform...intraneural PNs and MPNST via CED . Design: Orthotopic xenograft models of sciatic intraneural NF1 MPNST and PNs in scid mice as described by Perrin et...using convection-enhanced delivery ( CED ). Relative Growth of MPNST cells in vivo treated with rapamycin, imatinib or erlotinib: Elotinib

  8. Excess male chronic energy deficiency among adolescents: a cross-sectional study in the context of patrilineal and matrilineal societies in Northeast India.

    PubMed

    Khongsdier, R; Varte, R; Mukherjee, N

    2005-09-01

    To determine the sex differences in chronic energy deficiency (CED) among adolescents in the context of patrilineal and matrilineal societies in Northeast India. Cross-sectional, community-based study of the Hmar patrilineal society and the Khasi (War and Khynriam) matrilineal society. Mizoram and Meghalaya in Northeast India. In total, 1733 adolescent boys and girls aged 9-16 y: Khynriam Khasis (n = 1005), War Khasis (n = 305) and Hmars (n = 423). Weight, height, and socio-economic characteristics. Body mass index (weight in kg/height in m2) was used for assessing CED relative to the international reference values. The overall prevalence of CED was significantly greater in boys than in girls. The sex differences in the prevalence of CED were 5, 10 and 6% points in the Khynriam Khasis, War Khasis and Hmars, respectively. Allowing for age and socio-economic variables, the risks of CED were about 1.82 (95% CI 1.14-2.90), 1.83 (95% CI 1.19-3.33) and 1.78 (95% CI 1.10-3.25) times greater in boys than in girls among the Khynriam Khasis, War Khasis and Hmars, respectively. Using logistic regression analysis, the prevalence of CED was negatively associated with family income across study populations. No significant association was found between CED and religion. Patrilineal and matrilineal forms of society were not reflected in the prevalence of CED among adolescents. Subject to further studies of the research problems concerning the nutritional status of adolescents, girls fare better than boys with respect to the prevalence of CED.

  9. Convection enhanced delivery of carmustine to the murine brainstem: a feasibility study.

    PubMed

    Sewing, A Charlotte P; Caretti, Viola; Lagerweij, Tonny; Schellen, Pepijn; Jansen, Marc H A; van Vuurden, Dannis G; Idema, Sander; Molthoff, Carla F M; Vandertop, W Peter; Kaspers, Gertjan J L; Noske, David P; Hulleman, Esther

    2014-12-30

    Systemic delivery of therapeutic agents remains ineffective against diffuse intrinsic pontine glioma (DIPG), possibly due to an intact blood-brain-barrier (BBB) and to dose-limiting toxicity of systemic chemotherapeutic agents. Convection-enhanced delivery (CED) into the brainstem may provide an effective local delivery alternative for DIPG patients. The aim of this study is to develop a method to perform CED into the murine brainstem and to test this method using the chemotherapeutic agent carmustine (BiCNU). To this end, a newly designed murine CED catheter was tested in vitro and in vivo. After determination of safety and distribution, mice bearing VUMC-DIPG-3 and E98FM-DIPG brainstem tumors were treated with carmustine dissolved in DW 5% or carmustine dissolved in 10% ethanol. Our results show that CED into the murine brainstem is feasible and well tolerated by mice with and without brainstem tumors. CED of carmustine dissolved in 5% DW increased median survival of mice with VUMC-DIPG-3 and E98FM-DIPG tumors with 35% and 25% respectively. Dissolving carmustine in 10% ethanol further improved survival to 45% in mice with E98FM-DIPG tumors. Since genetically engineered and primary DIPG models are currently only available in mice, murine CED studies have clear advantages over CED studies in other animals. CED in the murine brainstem can be performed safely, is well tolerated and can be used to study efficacy of chemotherapeutic agents orthotopically. These results set the foundation for more CED studies in murine DIPG models. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Exploration of resistive targets within shallow marine environments using the circular electrical dipole and the differential electrical dipole methods: a time-domain modelling study

    NASA Astrophysics Data System (ADS)

    Haroon, Amir; Mogilatov, Vladimir; Goldman, Mark; Bergers, Rainer; Tezkan, Bülent

    2016-05-01

    Two novel transient controlled source electromagnetic methods called circular electrical dipole (CED) and differential electrical dipole (DED) are theoretically analysed for applications in shallow marine environments. 1-D and 3-D time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time-domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3-D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong effects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.

  11. Coverage with Evidence Development: applications and issues.

    PubMed

    Trueman, Paul; Grainger, David L; Downs, Kristen E

    2010-01-01

    The aim of this study was to describe the current issues surrounding Coverage with Evidence Development (CED). CED is characterized by restricted coverage for a new technology in parallel with targeted research when the stated goal of the research or data collection is to provide definitive evidence for the clinical or cost-effectiveness impact of the new technology. Presented here is information summarized and interpreted from presentations and discussions at the 2008 Health Technology Assessment International (HTAi) meeting and additional information from the medical literature. This study describes the differences between CED and other conditional coverage agreements, provides a brief history of CED, describes real-world examples of CED, describes the areas of consensus between the stakeholders, discusses the areas for future negotiation between stakeholders, and proposes criteria to assist stakeholders in determining when CED could be appropriate. Payers could interpret the evidence obtained from a CED program either positively or negatively, and a range of possible changes to the reimbursement status of the new technology may result. Striking an appropriate balance between the demands for prompt access to new technology and acknowledging that some degree of uncertainty will always exist is a critical challenge to the uptake of this innovative form of conditional coverage. When used selectively for innovative procedures, pharmaceuticals, or devices in the appropriate disease areas, CED may provide patients access to promising medicines or technologies while data to minimize uncertainty are collected.

  12. Functional analysis of CedA based on its structure: residues important in binding of DNA and RNA polymerase and in the cell division regulation

    PubMed Central

    Abe, Yoshito; Fujisaki, Naoki; Miyoshi, Takanori; Watanabe, Noriko; Katayama, Tsutomu; Ueda, Tadashi

    2016-01-01

    DnaAcos, a mutant of the initiator DnaA, causes overinitiation of chromosome replication in Escherichia coli, resulting in inhibition of cell division. CedA was found to be a multi-copy suppressor which represses the dnaAcos inhibition of cell division. However, functional mechanism of CedA remains elusive except for previously indicated possibilities in binding to DNA and RNA polymerase. In this study, we searched for the specific sites of CedA in binding of DNA and RNA polymerase and in repression of cell division inhibition. First, DNA sequence to which CedA preferentially binds was determined. Next, the several residues and β4 region in CedA C-terminal domain was suggested to specifically interact with the DNA. Moreover, we found that the flexible N-terminal region was required for tight binding to longer DNA as well as interaction with RNA polymerase. Based on these results, several cedA mutants were examined in ability for repressing dnaAcos cell division inhibition. We found that the N-terminal region was dispensable and that Glu32 in the C-terminal domain was required for the repression. These results suggest that CedA has multiple roles and residues with different functions are positioned in the two regions. PMID:26400504

  13. The Use of Surrogate and Patient-Relevant Endpoints in Outcomes-Based Market Access Agreements : Current Debate.

    PubMed

    Toumi, Mondher; Jarosławski, Szymon; Sawada, Toyohiro; Kornfeld, Åsa

    2017-02-01

    The high cost of novel treatments is the major driver of negative or restricted reimbursement decisions by healthcare payers in many countries. Costly drugs can be subject to Market Access Agreements (MAAs), which are financial (Commercial Agreements [CAs]) or outcomes-based (Payment for Performance Agreements [P4Ps] or Coverage with Evidence Development agreements [CEDs]). Outcomes in outcomes-based MAAs are assessed through changes in surrogate endpoints (SEPs) or patient-relevant endpoints (PEPs). In May 2015, we reviewed published and grey literature on MAAs between manufacturers and large, institutionalised payers from all geographical areas, and classified the schemes into CAs, P4Ps and CEDs, as well as by therapeutic area and country. Outcomes-based MAAs were further categorized by the endpoint used. Overall, we identified 143 MAAs, 56 (39.2 %) of which were pure CAs, 53 (37.1 %) were CEDs, and 34 (23.8 %) were P4Ps. Among the CEDs, 49 were PEP CEDs and four were SEP CEDs; of the 34 P4Ps, 29 were SEP P4Ps for 30 drugs, and five were PEP P4Ps for at least six drugs; and among 87 outcomes-based MAAs (CEDs + P4Ps), PEP CEDs were the most common (56.3 %), followed by SEP P4Ps (34.1 %). The high proportion of SEPs used in P4Ps contrasts with the high proportion of PEPs used in CEDs. CEDs employ PEPs and it appears that they are used to reduce uncertainty about a drug's clinical outcomes and/or real-life use, and thus allow payers to align a product's value with price. We argue that P4Ps do not reduce uncertainty about real-life effectiveness and can only constitute an outcome guarantee for payers if they are based on PEPs or validated SEPs.

  14. The distribution and mortality impact of chronic energy deficiency among adult Nigerian men and women.

    PubMed

    Rotimi, C; Okosun, I; Johnson, L; Owoaje, E; Lawoyin, T; Asuzu, M; Kaufman, J; Adeyemo, A; Cooper, R

    1999-09-01

    To determine the prevalence of chronic energy deficiency (CED) and associated mortality risk in a cohort of adult Nigerians followed from 1992 to 1997. The data for this investigation were derived from an international collaborative study on chronic diseases in populations of the African diaspora. Body mass index (BMI) was used to define three grades of CED in 4061 men and women aged 25 years and older: Grade I (mild CED) as BMI 17.5-18.4, Grade II (moderate CED) as BMI 16.0-17.4, and Grade III (severe CED) as BMI < 16.0 and BMI > or = 18.5 was considered normal. The odds of mortality associated with differing grades of CED was estimated with logistic regression analysis. The prevalence of CED (BMI < 18.5) increased from 14.3% in 1992 to 19.6% in 1997, both genders combined. The prevalence of CED was similar for both sexes in 1992 (14%) but increased to 22.4% in men and 17.4% in women by 1997. The prevalence of CED was 8.5%, 7.6 and 3.4 for Grades I, II and III, respectively. Two hundred and seven deaths occurred during the follow-up period. The mortality rate for the 5.5 y of follow-up was 5.1% (207/4061). The odds ratios (95% CIs) for all cause mortality were 1.4 (0.5, 3.8), 2.4 (1.2, 4.9) and 2.5 (1.0, 6.2), respectively, for CED grades I, II and III adjusting for age and sex. Under nutrition is an increasing problem in Nigerian men and women. The economic reforms (structural adjustment program (SAP)) introduced in 1986 in combination with the continued economic woes brought on by political instability, corruption and nepotism have been advanced by several investigators as the main factors in the growing problem of inadequate calorie intake. Intervention strategies both at the government and private sectors are urgently needed to increase food availability.

  15. Distributions in Spherical Coordinates with Applications to Classical Electrodynamics

    ERIC Educational Resources Information Center

    Gsponer, Andre

    2007-01-01

    A general and rigorous method to deal with singularities at the origin of a polar coordinate system is presented. Its power derives from a clear distinction between the radial distance and the radial coordinate variable, which makes that all delta functions and their derivatives are automatically generated, and ensures that the Gauss theorem is…

  16. Global solutions to the electrodynamic two-body problem on a straight line

    NASA Astrophysics Data System (ADS)

    Bauer, G.; Deckert, D.-A.; Dürr, D.; Hinrichs, G.

    2017-06-01

    The classical electrodynamic two-body problem has been a long standing open problem in mathematics. For motion constrained to the straight line, the interaction is similar to that of the two-body problem of classical gravitation. The additional complication is the presence of unbounded state-dependent delays in the Coulomb forces due to the finiteness of the speed of light. This circumstance renders the notion of local solutions meaningless, and therefore, straightforward ODE techniques cannot be applied. Here, we study the time-symmetric case, i.e., the Fokker-Schwarzschild-Tetrode (FST) equations, comprising both advanced and retarded delays. We extend the technique developed in Deckert and Hinrichs (J Differ Equ 260:6900-6929, 2016), where existence of FST solutions was proven on the half line, to ensure global existence—a result that had been obtained by Bauer (Ein Existenzsatz für die Wheeler-Feynman-Elektrodynamik, Herbert Utz Verlag, München, 1997). Due to the novel technique, the presented proof is shorter and more transparent but also relies on the idea to employ asymptotic data to characterize solutions.

  17. Convection-enhanced delivery of a hydrophilic nitrosourea ameliorates deficits and suppresses tumor growth in experimental spinal cord glioma models.

    PubMed

    Ogita, Shogo; Endo, Toshiki; Sugiyama, Shinichiro; Saito, Ryuta; Inoue, Tomoo; Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta; Sonoda, Yukihiko; Tominaga, Teiji

    2017-05-01

    Convection-enhanced delivery (CED) is a technique allowing local infusion of therapeutic agents into the central nervous system, circumventing the blood-brain or spinal cord barrier. To evaluate the utility of nimustine hydrochloride (ACNU) CED in controlling tumor progression in an experimental spinal cord glioma model. Toxicity studies were performed in 42 rats following the administration of 4 μl of ACNU CED into the mid-thoracic spinal cord at concentrations ranging from 0.1 to 10 mg/ml. Behavioral analyses and histological evaluations were performed to assess ACNU toxicity in the spinal cord. A survival study was performed in 32 rats following the implantation of 9 L cells into the T8 spinal cord. Seven days after the implantation, rats were assigned to four groups: ACNU CED (0.25 mg/ml; n = 8); ACNU intravenous (i.v.) (0.4 mg; n = 8); saline CED (n = 8); saline i.v. (n = 8). Hind limb movements were evaluated daily in all rats for 21 days. Tumor sizes were measured histologically. The maximum tolerated ACNU concentration was 0.25 mg/ml. Preservation of hind limb motor function and tumor growth suppression was observed in the ACNU CED (0.25 mg/ml) and ACNU i.v. groups. Antitumor effects were more prominent in the ACNU CED group especially in behavioral analyses (P < 0.05; log-rank test). ACNU CED had efficacy in controlling tumor growth and preserving neurological function in an experimental spinal cord tumor model. ACNU CED can be a viable treatment option for spinal cord high-grade glioma.

  18. Convection-enhanced delivery of SN-38-loaded polymeric micelles (NK012) enables consistent distribution of SN-38 and is effective against rodent intracranial brain tumor models.

    PubMed

    Zhang, Rong; Saito, Ryuta; Mano, Yui; Sumiyoshi, Akira; Kanamori, Masayuki; Sonoda, Yukihiko; Kawashima, Ryuta; Tominaga, Teiji

    2016-10-01

    Convection-enhanced delivery (CED) of therapeutic agents is a promising local delivery technique that has been extensively studied as a treatment for CNS diseases over the last two decades. One continuing challenge of CED is accurate and consistent delivery of the agents to the target. The present study focused on a new type of therapeutic agent, NK012, a novel SN-38-loaded polymeric micelle. Local delivery profiles of NK012 and SN-38 were studied using rodent brain and intracranial rodent brain tumor models. First, the cytotoxicity of NK012 against glioma cell lines was determined in vitro. Proliferations of glioma cells were significantly reduced after exposure to NK012. Then, the distribution and local toxicity after CED delivery of NK012 and SN-38 were evaluated in vivo. Volume of distribution of NK012 after CED was much larger than that of SN-38. Histological examination revealed minimum brain tissue damage in rat brains after delivery of 40 µg NK012 but severe damage with SN-38 at the same dose. Subsequently, the efficacy of NK012 delivered via CED was tested in 9L and U87MG rodent orthotopic brain tumor models. CED of NK012 displayed excellent efficacy in the 9L and U87MG orthotopic brain tumor models. Furthermore, NK012 and gadolinium diamide were co-delivered via CED to monitor the NK012 distribution using MRI. Volume of NK012 distribution evaluated by histology and MRI showed excellent agreement. CED of NK012 represents an effective treatment option for malignant gliomas. MRI-guided CED of NK012 has potential for clinical application.

  19. An integrated evaluation for the performance of clinical engineering department.

    PubMed

    Yousry, Ahmed M; Ouda, Bassem K; Eldeib, Ayman M

    2014-01-01

    Performance benchmarking have become a very important component in all successful organizations nowadays that must be used by Clinical Engineering Department (CED) in hospitals. Many researchers identified essential mainstream performance indicators needed to improve the CED's performance. These studies revealed mainstream performance indicators that use the database of a CED to evaluate its performance. In this work, we believe that those indicators are insufficient for hospitals. Additional important indicators should be included to improve the evaluation accuracy. Therefore, we added new indicators: technical/maintenance indicators, economic indicators, intrinsic criticality indicators, basic hospital indicators, equipment acquisition, and safety indicators. Data is collected from 10 hospitals that cover different types of healthcare organizations. We developed a software tool that analyses collected data to provide a score for each CED under evaluation. Our results indicate that there is an average gap of 67% between the CEDs' performance and the ideal target. The reasons for the noncompliance are discussed in order to improve performance of CEDs under evaluation.

  20. The Conservation Efforts Database: Improving our knowledge of landscape conservation actions

    USGS Publications Warehouse

    Heller, Matthew M.; Welty, Justin; Wiechman , Lief A.

    2017-01-01

    The Conservation Efforts Database (CED) is a secure, cloud-based tool that can be used to document and track conservation actions across landscapes. A recently released factsheet describes this tool ahead of the rollout of CED version 2.0. The CED was developed by the U.S. Fish and Wildlife Service, the USGS, and the Great Northern Landscape Conservation Cooperative to support the 2015 Endangered Species Act status review for greater sage-grouse. Currently, the CED accepts policy-level data, such as Land Use Plans, and treatment level data, such as conifer removals and post-fire recovery efforts, as custom spatial and non-spatial records. In addition to a species assessment tool, the CED can also be used to summarize the extent of restoration efforts within a specific area or to strategically site conservation actions based on the location of other implemented actions. The CED can be an important tool, along with post-conservation monitoring, for implementing landscape-scale adaptive management.

  1. Functional analysis of CedA based on its structure: residues important in binding of DNA and RNA polymerase and in the cell division regulation.

    PubMed

    Abe, Yoshito; Fujisaki, Naoki; Miyoshi, Takanori; Watanabe, Noriko; Katayama, Tsutomu; Ueda, Tadashi

    2016-02-01

    DnaAcos, a mutant of the initiator DnaA, causes overinitiation of chromosome replication in Escherichia coli, resulting in inhibition of cell division. CedA was found to be a multi-copy suppressor which represses the dnaAcos inhibition of cell division. However, functional mechanism of CedA remains elusive except for previously indicated possibilities in binding to DNA and RNA polymerase. In this study, we searched for the specific sites of CedA in binding of DNA and RNA polymerase and in repression of cell division inhibition. First, DNA sequence to which CedA preferentially binds was determined. Next, the several residues and β4 region in CedA C-terminal domain was suggested to specifically interact with the DNA. Moreover, we found that the flexible N-terminal region was required for tight binding to longer DNA as well as interaction with RNA polymerase. Based on these results, several cedA mutants were examined in ability for repressing dnaAcos cell division inhibition. We found that the N-terminal region was dispensable and that Glu32 in the C-terminal domain was required for the repression. These results suggest that CedA has multiple roles and residues with different functions are positioned in the two regions. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  2. Convection-Enhanced Delivery for Diffuse Intrinsic Pontine Glioma Treatment.

    PubMed

    Zhou, Zhiping; Singh, Ranjodh; Souweidane, Mark M

    2017-01-01

    Convection-enhanced delivery (CED) is a technique designed to deliver drugs directly into the brain or tumors. Its ability to bypass the blood-brain barrier (BBB), one of the major hurdles in delivering drugs to the brain, has made it a promising drug delivery method for the treatment of primary brain tumors. A number of clinical trials utilizing CED of various therapeutic agents have been conducted to treat patients with supratentorial high-grade gliomas. Significant responses have been observed in certain patients in all of these trials. However, the insufficient ability to monitor drug distribution and pharmacokinetics hampers CED from achieving its potentials on a larger scale. Brainstem CED for diffuse intrinsic pontine glioma (DIPG) treatment is appealing because this tumor is compact and has no definitive treatment. The safety of brainstem CED has been established in small and large animals, and recently in early stage clinical trials. There are a few current clinical trials of brainstem CED in treating DIPG patients using targeted macromolecules such as antibodies and immunotoxins. Future advances for CED in DIPG treatment will come from several directions including: choosing the right agents for infusion; developing better agents and regimen for DIPG infusion; improving instruments and technique for easier and accurate surgical targeting and for allowing multisession or prolonged infusion to implement optimal time sequence; and better understanding and control of drug distribution, clearance and time sequence. CED-based therapies for DIPG will continue to evolve with new understanding of the technique and the disease.

  3. Convection-Enhanced Delivery for Diffuse Intrinsic Pontine Glioma Treatment

    PubMed Central

    Zhou, Zhiping; Singh, Ranjodh; Souweidane, Mark M.

    2017-01-01

    Convection-enhanced delivery (CED) is a technique designed to deliver drugs directly into the brain or tumors. Its ability to bypass the blood-brain barrier (BBB), one of the major hurdles in delivering drugs to the brain, has made it a promising drug delivery method for the treatment of primary brain tumors. A number of clinical trials utilizing CED of various therapeutic agents have been conducted to treat patients with supratentorial high-grade gliomas. Significant responses have been observed in certain patients in all of these trials. However, the insufficient ability to monitor drug distribution and pharmacokinetics hampers CED from achieving its potentials on a larger scale. Brainstem CED for diffuse intrinsic pontine glioma (DIPG) treatment is appealing because this tumor is compact and has no definitive treatment. The safety of brainstem CED has been established in small and large animals, and recently in early stage clinical trials. There are a few current clinical trials of brainstem CED in treating DIPG patients using targeted macromolecules such as antibodies and immunotoxins. Future advances for CED in DIPG treatment will come from several directions including: choosing the right agents for infusion; developing better agents and regimen for DIPG infusion; improving instruments and technique for easier and accurate surgical targeting and for allowing multisession or prolonged infusion to implement optimal time sequence; and better understanding and control of drug distribution, clearance and time sequence. CED-based therapies for DIPG will continue to evolve with new understanding of the technique and the disease. PMID:27306036

  4. Is the Lorentz signature of the metric of spacetime electromagnetic in origin?

    NASA Astrophysics Data System (ADS)

    Itin, Yakov; Hehl, Friedrich W.

    2004-07-01

    We formulate a premetric version of classical electrodynamics in terms of the excitation H=( H, D) and the field strength F=( E, B). A local, linear, and symmetric spacetime relation between H and F is assumed. It yields, if electric/magnetic reciprocity is postulated, a Lorentzian metric of spacetime thereby excluding Euclidean signature (which is, nevertheless, discussed in some detail). Moreover, we determine the Dufay law (repulsion of like charges and attraction of opposite ones), the Lenz rule (the relative sign in Faraday's law), and the sign of the electromagnetic energy. In this way, we get a systematic understanding of the sign rules and the sign conventions in electrodynamics. The question in the title of the paper is answered affirmatively.

  5. 13 CFR 303.6 - EDA-funded CEDS process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PLANNING INVESTMENTS AND COMPREHENSIVE ECONOMIC DEVELOPMENT STRATEGIES § 303.6 EDA-funded CEDS process. If EDA awards Investment Assistance to a Planning Organization to develop, revise or replace a CEDS, the... must appoint a Strategy Committee. The Strategy Committee must represent the main economic interests of...

  6. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    ERIC Educational Resources Information Center

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  7. 12 CFR 28.15 - Capital equivalency deposits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... provided by the OCC, a foreign bank's capital equivalency deposits (CED) must consist of: (i) Investment... increase its CED above the minimum amount. For example, the OCC may require an increase if a Federal branch... arrangements. A foreign bank should require its depository bank to segregate its CED on the depository bank's...

  8. 12 CFR 28.15 - Capital equivalency deposits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... provided by the OCC, a foreign bank's capital equivalency deposits (CED) must consist of: (i) Investment... increase its CED above the minimum amount. For example, the OCC may require an increase if a Federal branch... arrangements. A foreign bank should require its depository bank to segregate its CED on the depository bank's...

  9. 12 CFR 28.15 - Capital equivalency deposits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... provided by the OCC, a foreign bank's capital equivalency deposits (CED) must consist of: (i) Investment... or agency in a state, it shall determine the CED and the amount of liabilities requiring capital... cases or otherwise, that a foreign bank increase its CED above the minimum amount. For example, the OCC...

  10. 12 CFR 28.15 - Capital equivalency deposits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... provided by the OCC, a foreign bank's capital equivalency deposits (CED) must consist of: (i) Investment... or agency in a state, it shall determine the CED and the amount of liabilities requiring capital... cases or otherwise, that a foreign bank increase its CED above the minimum amount. For example, the OCC...

  11. 12 CFR 28.15 - Capital equivalency deposits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... provided by the OCC, a foreign bank's capital equivalency deposits (CED) must consist of: (i) Investment... increase its CED above the minimum amount. For example, the OCC may require an increase if a Federal branch... arrangements. A foreign bank should require its depository bank to segregate its CED on the depository bank's...

  12. CEDS Addresses: Virtual and Blended Learning

    ERIC Educational Resources Information Center

    US Department of Education, 2015

    2015-01-01

    The Common Education Data Standards (CEDS) common data vocabulary supports the collection and use of information about virtual and blended learning. The data element "Virtual Indicator", introduced in version 3 of CEDS, supports a range of virtual learning-related use cases. The Virtual Indicator element may be related to a Course…

  13. Pair production in classical Stueckelberg-Horwitz-Piron electrodynamics

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2015-05-01

    We calculate pair production from bremsstrahlung as a classical effect in Stueckelberg-Horwitz electrodynamics. In this framework, worldlines are traced out dynamically through the evolution of events xμ(τ) parameterized by a chronological time τ that is independent of the spacetime coordinates. These events, defined in an unconstrained 8D phase space, interact through five τ-dependent gauge fields induced by the event evolution. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. In particular, the total mass-energy-momentum of particles and fields is conserved, but the mass-shell constraint is lifted from individual interacting events, so that the Feynman-Stueckelberg interpretation of pair creation/annihilation is implemented in classical mechanics. We consider a three-stage interaction which when parameterized by the laboratory clock x0 appears as (1) particle-1 scatters on a heavy nucleus to produce bremsstrahlung, (2) the radiation field produces a particle/antiparticle pair, (3) the antiparticle is annihilated with particle-2 in the presence of a second heavy nucleus. When parameterized in chronological time τ, the underlying process develops as (1) particle-2 scatters on the second nucleus and begins evolving backward in time with negative energy, (2) particle-1 scatters on the first nucleus and releases bremsstrahlung, (3) particle-2 absorbs radiation which returns it to forward time evolution with positive energy.

  14. Theorem: A Static Magnetic N-pole Becomes an Oscillating Electric N-pole in a Cosmic Axion Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Christopher T.

    We show for the classical Maxwell equations, including the axion electromagnetic anomaly source term, that a cosmic axion field induces an oscillating electric N-moment for any static magnetic N-moment. This is a straightforward result, accessible to anyone who has taken a first year graduate course in electrodynamics.

  15. Local U(2,2) symmetry in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    1998-12-01

    Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.

  16. Convection-enhanced delivery of maghemite nanoparticles: Increased efficacy and MRI monitoring

    PubMed Central

    Perlstein, Benny; Ram, Zvi; Daniels, Dianne; Ocherashvilli, Aharon; Roth, Yiftach; Margel, Shlomo; Mardor, Yael

    2008-01-01

    Convection-enhanced drug delivery (CED) is a novel approach to delivering drugs into brain tissue. Drugs are delivered continuously via a catheter, enabling large volume distributions of high drug concentrations with minimum systemic toxicity. Previously we demonstrated that CED formation/extent of small molecules may be significantly improved by increasing infusate viscosities. In this study we show that the same methodology can be applied to monodispersed maghemite nanoparticles (MNPs). For this purpose we used a normal rat brain model and performed CED of MNPs over short infusion times. By adding 3% sucrose or 3%–6% polyethylene glycol (PEG; molecular weight 400) to saline containing pristine MNPs, we increased infusate viscosity and obtained increased CED efficacy. Further, we show that CED of dextran-coated MNPs (dextran-MNPs) resulted in increased efficacy over pristine MNPs (p < 0.007). To establish the use of MRI for reliable depiction of MNP distribution, CED of fluorescent dextran-MNPs was performed, demonstrating a significant correlation between the distributions as depicted by MRI and spectroscopic images (r2 = 0.74, p < 0.0002). MRI follow-up showed that approximately 80%–90% of the dextran-MNPs were cleared from the rat brain within 40 days of CED; the rest remained in the brain for more than 4 months. MNPs have been tested for applications such as targeted drug delivery and controlled drug release and are clinically used as a contrast agent for MRI. Thus, combining the CED method with the advantages of MNPs may provide a powerful tool to treat and monitor brain tumors. PMID:18316474

  17. 7 CFR 1221.232 - Disposition of records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... summaries. Such records will be placed in a secure location under the custody of FSA CED for a period of not... FSA CED will place in sealed containers marked with the identification of the “Sorghum Checkoff... the Administrator, FSA, by the end of the 12 month period as described above, the CED or designee...

  18. 7 CFR 1221.232 - Disposition of records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... summaries. Such records will be placed in a secure location under the custody of FSA CED for a period of not... FSA CED will place in sealed containers marked with the identification of the “Sorghum Checkoff... the Administrator, FSA, by the end of the 12 month period as described above, the CED or designee...

  19. 7 CFR 1221.232 - Disposition of records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... summaries. Such records will be placed in a secure location under the custody of FSA CED for a period of not... FSA CED will place in sealed containers marked with the identification of the “Sorghum Checkoff... the Administrator, FSA, by the end of the 12 month period as described above, the CED or designee...

  20. 7 CFR 1221.232 - Disposition of records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... summaries. Such records will be placed in a secure location under the custody of FSA CED for a period of not... FSA CED will place in sealed containers marked with the identification of the “Sorghum Checkoff... the Administrator, FSA, by the end of the 12 month period as described above, the CED or designee...

  1. Fiscal Models as Reflections of Institutional Philosophies toward Continuing Education.

    ERIC Educational Resources Information Center

    Thompson, Gordon

    Throughout the existence of the Continuing Education Division (CED) at the University of Manitoba, three different fiscal models were applied by University Administration to the CED: the traditional model; the income-target model; and the subsidy model. (1) The traditional model paralleled that applied to faculties and schools. The CED was…

  2. Application of corona electrical discharge plasma on modifying the physicochemical properties of banana starch indigenous to Taiwan.

    PubMed

    Wu, Tsung-Yen; Sun, Nan-Nong; Chau, Chi-Fai

    2018-01-01

    Corona electrical discharge (CED) belongs to an atmospheric pressure cold plasma. In this study, raw banana starch (indigenous to Taiwan), which contained resistant starch and amylose at a level of 58.4 g/100 g and 14.5 g/100 g, respectively, was treated by CED at 30 kV/cm, 40 kV/cm, and 50 kV/cm for 3 minutes. After the CED treatment, starch analyses showed that there were no apparent changes in the resistant starch and amylose contents. Only surface and nonpenetrative damage caused by plasma etching at different voltage strengths were observed on the starch granules. The CED treatments reduced the total area of diffraction peak, gelatinization enthalpy (by -21% to -38%), and different pasting behaviors including peak viscosity, breakdown, final viscosity, and setback. The CED treatments were capable of increasing relative crystallinity and gelatinization temperature. This study revealed the potential of CED plasma technology as a tool to modify the characteristics of banana starch. Copyright © 2017. Published by Elsevier B.V.

  3. Convection-enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations.

    PubMed

    Barua, Neil U; Gill, Steven S; Love, Seth

    2014-03-01

    Convection-enhanced delivery (CED) describes a direct method of drug delivery to the brain through intraparenchymal microcatheters. By establishing a pressure gradient at the tip of the infusion catheter in order to exploit bulk flow through the interstitial spaces of the brain, CED offers a number of advantages over conventional drug delivery methods-bypass of the blood-brain barrier, targeted distribution through large brain volumes and minimization of systemic side effects. Despite showing early promise, CED is yet to fulfill its potential as a mainstream strategy for the treatment of neurological disease. Substantial research effort has been dedicated to optimize the technology for CED and identify the parameters, which govern successful drug distribution. It seems likely that successful clinical translation of CED will depend on suitable catheter technology being used in combination with drugs with optimal physicochemical characteristics, and on neuropathological analysis in appropriate preclinical models. In this review, we consider the factors most likely to influence the success or failure of CED, and review its application to the treatment of high-grade glioma, Parkinson's disease (PD) and Alzheimer's disease (AD). © 2013 International Society of Neuropathology.

  4. Born-Infeld magnetars: larger than classical toroidal magnetic fields and implications for gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Pereira, Jonas P.; Coelho, Jaziel G.; de Lima, Rafael C. R.

    2018-05-01

    Magnetars are neutron stars presenting bursts and outbursts of X- and soft-gamma rays that can be understood with the presence of very large magnetic fields. In this setting, nonlinear electrodynamics should be taken into account for a more accurate description of such compact systems. We study that in the context of ideal magnetohydrodynamics and make a realization of our analysis to the case of the well known Born-Infeld (BI) electromagnetism in order to come up with some of its astrophysical consequences. We focus here on toroidal magnetic fields as motivated by already known magnetars with low dipolar magnetic fields and their expected relevance in highly magnetized stars. We show that BI electrodynamics leads to larger toroidal magnetic fields when compared to Maxwell's electrodynamics. Hence, one should expect higher production of gravitational waves (GWs) and even more energetic giant flares from nonlinear stars. Given current constraints on BI's scale field, giant flare energetics and magnetic fields in magnetars, we also find that the maximum magnitude of magnetar ellipticities should be 10^{-6}-10^{-5}. Besides, BI electrodynamics may lead to a maximum increase of order 10-20% of the GW energy radiated from a magnetar when compared to Maxwell's, while much larger percentages may arise for other physically motivated scenarios. Thus, nonlinear theories of the electromagnetism might also be probed in the near future with the improvement of GW detectors.

  5. Programmed Cell Death During Caenorhabditis elegans Development

    PubMed Central

    Conradt, Barbara; Wu, Yi-Chun; Xue, Ding

    2016-01-01

    Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general. PMID:27516615

  6. 77 FR 45599 - CED Rock Springs, Inc.; Supplemental Notice That Revised Market-Based Rate Tariff Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. ER02-2546-000; ER02-2546-001] CED Rock Springs, Inc.; Supplemental Notice That Revised Market- Based Rate Tariff Filing...-referenced proceeding of CED Rock Springs, Inc.'s tariff revision filing, noting that such filing includes a...

  7. Undernutrition in the Kora Mudi tribal population, West Bengal, India: a comparison of body mass index and mid-upper-arm circumference.

    PubMed

    Bisai, Samiran; Bose, Kaushik

    2009-03-01

    Undernutrition among adult tribal women is a major health problem in India. To compare the utility of two different anthropometric indicators of chronic energy deficiency (CED) among tribal Kora Mudi women and to determine which of these two is a better indicator of undernutrition. A cross-sectional study of 123 individuals was conducted. The body mass index (BMI) and mid-upper-arm circumference (MUAC) were used to evaluate CED. The prevalence of CED based on BMI less than 18.5 was 55.3%, and the prevalence of CED based on MUAC less than 22.0 cm was 51.2%. Both of these prevalence rates are classified in the very high-prevalence category (> or = 40%) and indicate a critical situation according to World Health Organization recommendations. Mean BMI increased significantly with higher quartile of MUAC. There was a significant difference in the prevalence of CED between the MUAC quartiles. The risk ratio for CED for women in the lowest quartile of MUAC was 9.33 compared with those in the highest quartile. There was a significant positive association between MUAC and BMI. Regression analysis demonstrated that MUAC had a significant positive impact on BMI; the percentage of the variation in BMI explained by MUAC was 52%. Logistic regression analysis demonstrated that overall, 82.11% of cases of CED were correctly classified with the use of MUAC. The use of MUAC correctly diagnosed 82.35% of cases of CED and 81.82% of women with normal nutritional status. This population was facing severe nutritional stress. With limited resources and in the absence of skilled manpower, it may be more appropriate to use MUAC for human population surveys, particularly among tribal populations of developing countries.

  8. Convection-enhanced delivery of a synthetic retinoid Am80, loaded into polymeric micelles, prolongs the survival of rats bearing intracranial glioblastoma xenografts.

    PubMed

    Yokosawa, Michiko; Sonoda, Yukihiko; Sugiyama, Shin-ichiro; Saito, Ryuta; Yamashita, Yoji; Nishihara, Masamichi; Satoh, Taku; Kumabe, Toshihiro; Yokoyama, Masayuki; Tominaga, Teiji

    2010-08-01

    Prognosis for the patients with glioblastoma, the most common malignant brain tumor, remains dismal. A major barrier to progress in treatment of glioblastoma is the relative inaccessibility of tumors to chemotherapeutic agents. Convection-enhanced delivery (CED) is a direct intracranial drug infusion technique to deliver chemotherapeutic agents to the central nervous system, circumventing the blood-brain barrier and reducing systemic side effects. CED can provide wider distribution of infused agents compared to simple diffusion. We have reported that CED of a polymeric micelle carrier system could yield a clinically relevant distribution of encapsulated agents in the rat brain. Our aim was to evaluate the efficacy of CED of polymeric micellar Am80, a synthetic agonist with high affinity to nuclear retinoic acid receptor, in a rat model of glioblastoma xenografts. We also used systemic administration of temozolomide, a DNA-alkylating agent, which has been established as the standard of care for newly diagnosed malignant glioma. U87MG human glioma cells were injected into the cerebral hemisphere of nude rats. Rats bearing U87MG xenografts were treated with CED of micellar Am80 (2.4 mg/m(2)) on day 7 after tumor implantation. Temozolomide (200 mg/m(2)/day) was intraperitoneally administered daily for 5 days, starting on day 7 after tumor implantation. CED of micellar Am80 provided significantly longer survival than the control. The combination of CED of micellar Am80 and systemic administration of temozolomide provided significantly longer survival than single treatment. In conclusion, temozolomide combined with CED of micellar Am80 may be a promising method for the treatment of malignant gliomas.

  9. The radiation impedance of an electrodynamic tether with end connectors

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Wang, J.

    1987-01-01

    Electrodynamic tethers are wires deployed across the earth's geomagnetic field through which a current is flowing. The radiation impedance of a tether with end connectors carrying an ac current is computed from classical antenna theory. This simulates the use of a tether on a space structure. It is shown that the current flow pattern at the tether connector is critical to determining the overall radiation impedance. If the tether makes direct electrical contact with the ionosphere then radiation impedances of the order of several thousand Ohms can be expected. If the only electrical contact is through the end connectors then the impedance is only a few Ohms for a dc current rising to several tens of Ohms for an ac current with frequencies in the whistler range.

  10. Middle atmospheric electrodynamics

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    1983-01-01

    A review is presented of the advances made during the last few years with respect to the study of the electrodynamics in the earth's middle atmosphere. In a report of the experimental work conducted, attention is given to large middle atmospheric electric fields, the downward coupling of high altitude processes into the middle atmosphere, and upward coupling of tropospheric processes into the middle atmosphere. It is pointed out that new developments in tethered balloons and superpressure balloons should greatly increase the measurement duration of earth-ionospheric potential measurements and of stratospheric electric field measurements in the next few years. Theoretical work considered provides an excellent starting point for study of upward coupling of transient and dc electric fields. Hays and Roble (1979) were the first to construct a model which included orographic features as well as the classical thunderstorm generator.

  11. CORRIGENDUM: Editorial note

    NASA Astrophysics Data System (ADS)

    Rae, A. I. M.

    2002-07-01

    The first sentence of this comment should read as follows: It has been drawn to our attention that a comment published in our January issue [1] contains the statement that `the functions {1, sin2 α, cos 2α}...are clearly linearly independent...'. References [1]Figueroa-Navarro C 2002 A comment on Gluskin's note on J D Jackson's Classical Electrodynamics Eur. J. Phys. 23 L1-3

  12. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space.

    PubMed

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2015-12-15

    The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.

  13. Polarizabilities and van der Waals C{sub 6} coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saidi, Wissam A., E-mail: alsaidi@pitt.edu; Norman, Patrick

    2016-07-14

    The van der Waals C{sub 6} coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C{sub 6} ∝ N{sup 2.2} as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N{sup 2.75} as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes bymore » fitting against accurate ab initio calculations. This model shows that C{sub 6} ∝ N{sup 2.8}, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole–dipole term scales almost linearly with the number of carbon atoms.« less

  14. One-loop quantum gravity repulsion in the early Universe.

    PubMed

    Broda, Bogusław

    2011-03-11

    Perturbative quantum gravity formalism is applied to compute the lowest order corrections to the classical spatially flat cosmological Friedmann-Lemaître-Robertson-Walker solution (for the radiation). The presented approach is analogous to the approach applied to compute quantum corrections to the Coulomb potential in electrodynamics, or rather to the approach applied to compute quantum corrections to the Schwarzschild solution in gravity. In the framework of the standard perturbative quantum gravity, it is shown that the corrections to the classical deceleration, coming from the one-loop graviton vacuum polarization (self-energy), have (UV cutoff free) opposite to the classical repulsive properties which are not negligible in the very early Universe. The repulsive "quantum forces" resemble those known from loop quantum cosmology.

  15. Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma.

    PubMed

    Futamura, Gen; Kawabata, Shinji; Nonoguchi, Naosuke; Hiramatsu, Ryo; Toho, Taichiro; Tanaka, Hiroki; Masunaga, Shin-Ichiro; Hattori, Yoshihide; Kirihata, Mitsunori; Ono, Koji; Kuroiwa, Toshihiko; Miyatake, Shin-Ichi

    2017-01-23

    Boron neutron capture therapy (BNCT) is a unique particle radiation therapy based on the nuclear capture reactions in boron-10. We developed a novel boron-10 containing sodium borocaptate (BSH) derivative, 1-amino-3-fluorocyclobutane-1-carboxylic acid (ACBC)-BSH. ACBC is a tumor selective synthetic amino acid. The purpose of this study was to assess the biodistribution of ACBC-BSH and its therapeutic efficacy following Boron Neutron Capture Therapy (BNCT) of the F98 rat glioma. We evaluated the biodistribution of three boron-10 compounds, ACBC-BSH, BSH and boronophenylalanine (BPA), in vitro and in vivo, following intravenous (i.v.) administration and intratumoral (i.t.) convection-enhanced delivery (CED) in F98 rat glioma bearing rats. For BNCT studies, rats were stratified into five groups: untreated controls, neutron-irradiation controls, BNCT with BPA/i.v., BNCT with ACBC-BSH/CED, and BNCT concomitantly using BPA/i.v. and ACBC-BSH/CED. In vitro, ACBC-BSH attained higher cellular uptake F98 rat glioma cells compared with BSH. In vivo biodistribution studies following i.v. administration and i.t. CED of ACBC-BSH attained significantly higher boron concentrations than that of BSH, but much lower than that of BPA. However, following convection enhanced delivery (CED), ACBC-BSH attained significantly higher tumor concentrations than BPA. The i.t. boron-10 concentrations were almost equal between the ACBC-BSH/CED group and BPA/i.v. group of rats. The tumor/brain boron-10 concentration ratio was higher with ACBC-BSH/CED than that of BPA/i.v. group. Based on these data, BNCT studies were carried out in F98 glioma bearing rats using BPA/i.v. and ACBC-BSH/CED as the delivery agents. The corresponding mean survival times were 37.4 ± 2.6d and 44.3 ± 8.0d, respectively, and although modest, these differences were statistically significant. Our findings suggest that further studies are warranted to evaluate ACBC-BSH/CED as a boron delivery agent.

  16. Solution structure and interactions of the Escherichia coli cell division activator protein CedA.

    PubMed

    Chen, Ho An; Simpson, Peter; Huyton, Trevor; Roper, David; Matthews, Stephen

    2005-05-10

    CedA is a protein that is postulated to be involved in the regulation of cell division in Escherichia coli and related organisms; however, little biological data about its possible mode of action are available. Here we present a three-dimensional structure of this protein as determined by NMR spectroscopy. The protein is made up of four antiparallel beta-strands, an alpha-helix, and a large unstructured stretch of residues at the N-terminus. It shows structural similarity to a family of DNA-binding proteins which interact with dsDNA via a three-stranded beta-sheet, suggesting that CedA may be a DNA-binding protein. The putative binding surface of CedA is predominantly positively charged with a number of basic residues surrounding a groove largely dominated by aromatic residues. NMR chemical shift perturbations and gel-shift experiments performed with CedA confirm that the protein binds dsDNA, and its interaction is mediated primarily via the beta-sheet.

  17. Are we there yet? A Practitioner's View of DO-178C/ED-12C

    NASA Astrophysics Data System (ADS)

    Daniels, Dewi

    RTCA DO-178B/EUROCAE ED-12B is the industry-accepted guidance for determining that the software aspects of airborne systems and equipment comply with airworthiness requirements. DO-178B/ED-12B, published in 1992, is being updated to DO-178C/ED-12C. Nearly six years in the making, DO- 178C/ED-12C is expected to be completed in December 2010. It will be accompanied by a new set of supplements providing additional and much-needed guidance on tool qualification, model based development and verification, objectoriented technologies, and formal methods. Written by a member of the DO-178C/ED-12C editorial team who is also a practising software developer and verifier, this paper provides a practitioner's view of the new standard and its supplements. It explains how they will affect your organisation, focusing on the practical implications of the many changes between DO-178B/ED-12B and DO-178C/ED-12C.

  18. Hypothalamic amenorrhea in a Camurati-Engelmann disease--a case report.

    PubMed

    Meczekalski, Blazej; Czyzyk, Adam; Podfigurna-Stopa, Agnieszka; Rydzewski, Bogdan; Sroczynski, Jakub; Lipinska, Małgorzata; Sokalski, Jerzy; Krawczynski, Maciej; Jamsheer, Aleksander; Katulski, Krzysztof; Genazzani, Alessandro

    2013-05-01

    A case report of a patient diagnosed with Camurati-Engelmann Disease (CED) in association with the functional hypothalamic amenorrhea disturbances. CED is a very rare genetically determined disorder classified as a type of bone dysplasia. Case report. Department of Gynecological Endocrinology, 3rd grade Medical University Hospital. Twenty-one years old female patient with CED admitted to the hospital because of primary amenorrhea. Her history revealed skeletal deformities and hearing impairment. Clinical examination, ultrasound, laboratory evaluations (including serum gonadotropins (FSH, LH) at basal state and after stimulation with gonadotropin-releasing hormone, serum basal estradiol) radiological studies (X-ray of the head, the lumbar spine and lower extremities; a computed tomography of the head), G-banding karyotype, polymerase chain reaction and DNA sequencing. Hormonal serum evaluations were made using an enzyme-linked immunosorbent assay. The exon 4 of the transforming growth factor beta 1 gene was amplified by a polymerase chain reaction and the product was directly sequenced. The hormonal analysis was characteristic for the hypogonadotropic hypogonadism. Radiological and molecular analyses confirmed CED diagnosis. The hypothalamic amenorrhea in a patient with CED may be explained as a consequence of fat hypotrophy and very low body mass index. Therefore, impairment within hypothalamic-pituitary axis in patients with CED should be treated with special attention.

  19. Politics and its intersection with coverage with evidence development: a qualitative analysis from expert interviews.

    PubMed

    Bishop, Danielle; Lexchin, Joel

    2013-03-09

    Pressures on health care budgets have led policy makers to discuss how to balance the provision of costly technologies to populations in need and making coverage decisions under uncertainty. Coverage with evidence development (CED) is being employed to meet these challenges. Twenty-four interviews were carried out between June 2009 and December 2010 with researchers, decision makers and policy makers from Australia, Canada, United Kingdom and United States. Three phases of coding occurred, the first being manual coding where the interviews were read and notes were taken and nodes were extracted and imputed. NVIVO coding was applied to the interview transcripts, with both broad general searches for word usages and imputed nodes. Four overarching thematic areas emerged out of contextual analysis of the interviews - (1) what constitutes CED; (2) the lack of a systematic approach/governance structure; (3) the role of the pharmaceutical industry and overt political considerations in CED; and (4) alternatives and barriers to CED. We explore these themes and then use concrete examples of CED projects in each of the four countries to illustrate the political issues that our interviewees raised. Until the underlying political nature of CED is recognized then fundamental questions about its usefulness and operation will remain unresolved.

  20. Politics and its intersection with coverage with evidence development: a qualitative analysis from expert interviews

    PubMed Central

    2013-01-01

    Background Pressures on health care budgets have led policy makers to discuss how to balance the provision of costly technologies to populations in need and making coverage decisions under uncertainty. Coverage with evidence development (CED) is being employed to meet these challenges. Methods Twenty-four interviews were carried out between June 2009 and December 2010 with researchers, decision makers and policy makers from Australia, Canada, United Kingdom and United States. Three phases of coding occurred, the first being manual coding where the interviews were read and notes were taken and nodes were extracted and imputed. NVIVO coding was applied to the interview transcripts, with both broad general searches for word usages and imputed nodes. Results Four overarching thematic areas emerged out of contextual analysis of the interviews – (1) what constitutes CED; (2) the lack of a systematic approach/governance structure; (3) the role of the pharmaceutical industry and overt political considerations in CED; and (4) alternatives and barriers to CED. We explore these themes and then use concrete examples of CED projects in each of the four countries to illustrate the political issues that our interviewees raised. Conclusion Until the underlying political nature of CED is recognized then fundamental questions about its usefulness and operation will remain unresolved. PMID:23497271

  1. Speeds of light in Stueckelberg-Horwitz-Piron electrodynamics

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2017-05-01

    Stueckelberg-Horwitz-Piron (SHP) electrodynamics formalizes the distinction between coordinate time (measured by laboratory clocks) and chronology (temporal ordering) by defining 4D spacetime events x μ as functions of an external evolution parameter τ. As τ grows monotonically, the spacetime evolution of classical events x μ (τ) trace out particle worldlines dynamically and induce the five U(1) gauge potentials through which events interact. In analogy with the constant c that associates a unit of length x 0 with intervals of time t in standard relativity, we introduce a constant c 5 associated with the external time τ. Whereas the nonrelativistic limit of special relativity can be found by taking c → ∞, we show that 5D SHP goes over to an equilibrium state of Maxwell theory in the limit c 5 → 0. Thus, the dimensionless ratio c 5/c parameterizes the deviation of SHP from standard electrodynamics, in particular the coupling of events. Put another way, Maxwell theory can be understood as currents and fields relaxing to an equilibrium independent of chronological time as c 5 τ slows to zero. We find that taking 0 < c 5/c < 1 enables the resolution of several longstanding difficulties in SHP theory.

  2. Parametric resonance in quantum electrodynamics vacuum birefringence

    NASA Astrophysics Data System (ADS)

    Arza, Ariel; Elias, Ricardo Gabriel

    2018-05-01

    Vacuum magnetic birefringence is one of the most interesting nonlinear phenomena in quantum electrodynamics because it is a pure photon-photon result of the theory and it directly signalizes the violation of the classical superposition principle of electromagnetic fields in the full quantum theory. We perform analytical and numerical calculations when an electromagnetic wave interacts with an oscillating external magnetic field. We find that in an ideal cavity, when the external field frequency is around the electromagnetic wave frequency, the normal and parallel components of the wave suffer parametric resonance at different rates, producing a vacuum birefringence effect growing in time. We also study the case where there is no cavity and the oscillating magnetic field is spatially localized in a region of length L . In both cases we find also a rotation of the elliptical axis.

  3. Association between Farming and Chronic Energy Deficiency in Rural South India

    PubMed Central

    Subasinghe, Asvini K.; Walker, Karen Z.; Evans, Roger G.; Srikanth, Velandai; Arabshahi, Simin; Kartik, Kamakshi; Kalyanram, Kartik; Thrift, Amanda G.

    2014-01-01

    Objective To examine factors associated with chronic energy deficiency (CED) and anaemia in disadvantaged Indian adults who are mostly involved in subsistence farming. Design A cross-sectional study in which we collected information on socio-demographic factors, physical activity, anthropometry, blood haemoglobin concentration, and daily household food intake. These data were used to calculate body mass index (BMI), basal metabolic rate (BMR), daily energy expenditure, and energy and nutrient intake. Multivariable backward stepwise logistic regression was used to assess socioeconomic and lifestyle factors associated with CED (defined as BMI<18 kg/m2) and anaemia. Setting The study was conducted in 12 villages, in the Rishi Valley, Andhra Pradesh, India. Subjects Individuals aged 18 years and above, residing in the 12 villages, were eligible to participate. Results Data were available for 1178 individuals (45% male, median age 36 years (inter quartile range (IQR 27–50)). The prevalence of CED (38%) and anaemia (25%) was high. Farming was associated with CED in women (2.20, 95% CI: 1.39–3.49) and men (1.71, 95% CI: (1.06–2.74). Low income was also significantly associated with CED, while not completing high school was positively associated with anaemia. Median iron intake was high: 35.7 mg/day (IQR 26–46) in women and 43.4 mg/day (IQR 34–55) in men. Conclusions Farming is an important risk factor associated with CED in this rural Indian population and low dietary iron is not the main cause of anaemia. Better farming practice may help to reduce CED in this population. PMID:24475286

  4. Uric acid is associated with inflammation, coronary microvascular dysfunction, and adverse outcomes in postmenopausal women

    PubMed Central

    Prasad, Megha; Matteson, Eric L.; Herrmann, Joerg; Gulati, Rajiv; Rihal, Charanjit S.; Lerman, Lilach O.; Lerman, Amir

    2016-01-01

    Uric acid is a risk factor for coronary artery disease (CAD) in postmenopausal women but the association with inflammation and coronary microvascular endothelial dysfunction (CED) is not well-defined. The aim of this study was to determine the relationship of serum uric acid (SUA), inflammatory markers and CED. In this prospective cohort study, serum uric acid, hsCRP levels, and neutrophil count were measured in 229 postmenopausal women who underwent diagnostic catheterization, were found to have no obstructive CAD and underwent coronary microvascular function testing, to measure coronary blood flow (CBF) response to intracoronary acetylcholine. The average age was 58 years (IQR 52, 66) years. Hypertension was present in 48%, type 2 diabetes mellitus in 5.6%, and hyperlipidemia in 61.8%. CED was diagnosed in 59% of postmenopausal women. Mean uric acid level was 4.7 ± 1.3 mg/dL. Postmenopausal women with CED had significantly higher SUA compared to patients without CED (4.9 ± 1.3 vs. 4.4 ± 1.3 mg/dL; p=0.02). There was a significant correlation between SUA and % change in CBF to acetylcholine (p=0.009), and this correlation persisted in multivariable analysis. SUA levels were significantly associated with increased neutrophil count (p=0.02) and hsCRP levels (p=0.006) among patients with CED, but not those without CED. Serum uric acid is associated with coronary microvascular endothelial dysfunction in postmenopausal women and may be related to inflammation. These findings link serum uric acid levels to early coronary atherosclerosis in postmenopausal women. PMID:27993955

  5. Effects of Colored Enrichment Devices on Circadian Metabolism and Physiology in Male Sprague-Dawley Rats.

    PubMed

    Wren-Dail, Melissa A; Dauchy, Robert T; Ooms, Tara G; Baker, Kate C; Blask, David E; Hill, Steven M; Dupepe, Lynell M; Bohm, Rudolf P

    2016-01-01

    Environmental enrichment (EE) gives laboratory animals opportunities to engage in species-specific behaviors. However, the effects of EE devices on normal physiology and scientific outcomes must be evaluated. We hypothesized that the spectral transmittance (color) of light to which rats are exposed when inside colored enrichment devices (CED) affects the circadian rhythms of various plasma markers. Pair-housed male Crl:SD rats were maintained in ventilated racks under a 12:12-h light:dark environment (265.0 lx; lights on, 0600); room lighting intensity and schedule remained constant throughout the study. Treatment groups of 6 subjects were exposed for 25 d to a colored enrichment tunnel: amber, red, clear, or opaque. We measured the proportion of time rats spent inside their CED. Blood was collected at 0400, 0800, 1200, 1600, 2000, and 2400 and analyzed for plasma melatonin, total fatty acids, and corticosterone. Rats spent more time in amber, red, and opaque CED than in clear tunnels. All tubes were used significantly less after blood draws had started, except for the clear tunnel, which showed no change in use from before blood sampling began. Normal peak nighttime melatonin concentrations showed significant disruption in the opaque CED group. Food and water intakes and body weight change in rats with red-tinted CED and total fatty acid concentrations in the opaque CED group differed from those in other groups. These results demonstrate that the color of CED altered normal circadian rhythms of plasma measures of metabolism and physiology in rats and therefore might influence the outcomes of scientific investigations.

  6. The Use of Convection-Enhanced Delivery with Liposomal Toxins in Neurooncology

    PubMed Central

    Fiandaca, Massimo S.; Berger, Mitchel S.; Bankiewicz, Krystof S.

    2011-01-01

    Liposomes have long been effective delivery vehicles for transport of toxins to peripheral cancers. The combination of convection-enhanced delivery (CED) with liposomal toxins was originally proposed to circumvent the limited delivery of intravascular liposomes to the central nervous system (CNS) due to the blood-brain-barrier (BBB). CED offers markedly improved distribution of infused therapeutics within the CNS compared to direct injection or via drug eluting polymers, both of which depend on diffusion for parenchymal distribution. This review examines the basis for improved delivery of liposomal toxins via CED within the CNS, and discusses preclinical and clinical experience with these therapeutic techniques. How CED and liposomal technologies may influence future neurooncologic treatments are also considered. PMID:22069714

  7. Classical BV Theories on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Mnev, Pavel; Reshetikhin, Nicolai

    2014-12-01

    In this paper we extend the classical BV framework to gauge theories on spacetime manifolds with boundary. In particular, we connect the BV construction in the bulk with the BFV construction on the boundary and we develop its extension to strata of higher codimension in the case of manifolds with corners. We present several examples including electrodynamics, Yang-Mills theory and topological field theories coming from the AKSZ construction, in particular, the Chern-Simons theory, the BF theory, and the Poisson sigma model. This paper is the first step towards developing the perturbative quantization of such theories on manifolds with boundary in a way consistent with gluing.

  8. Quasinormal modes of scale dependent black holes in (1 +2 )-dimensional Einstein-power-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Rincón, Ángel; Panotopoulos, Grigoris

    2018-01-01

    We study for the first time the stability against scalar perturbations, and we compute the spectrum of quasinormal modes of three-dimensional charged black holes in Einstein-power-Maxwell nonlinear electrodynamics assuming running couplings. Adopting the sixth order Wentzel-Kramers-Brillouin (WKB) approximation we investigate how the running of the couplings change the spectrum of the classical theory. Our results show that all modes corresponding to nonvanishing angular momentum are unstable both in the classical theory and with the running of the couplings, while the fundamental mode can be stable or unstable depending on the running parameter and the electric charge.

  9. Preparation of two-qubit steady entanglement through driving a single qubit.

    PubMed

    Shen, Li-Tuo; Chen, Rong-Xin; Yang, Zhen-Biao; Wu, Huai-Zhi; Zheng, Shi-Biao

    2014-10-15

    Inspired by a recent paper [J. Phys. B 47, 055502 (2014)], we propose a simplified scheme to generate and stabilize a Bell state of two qubits coupled to a resonator. In the scheme only one qubit is needed to be driven by external classical fields, and the entanglement dynamics is independent of the phases of these fields and insensitive to their amplitude fluctuations. This is a distinct advantage as compared with the previous ones that require each qubit to be addressed by well-controlled classical fields. Numerical simulation shows that the steady singlet state with high fidelity can be obtained with currently available techniques in circuit quantum electrodynamics.

  10. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study.

    PubMed

    Green, Daniel M; Liu, Wei; Kutteh, William H; Ke, Raymond W; Shelton, Kyla C; Sklar, Charles A; Chemaitilly, Wassim; Pui, Ching-Hon; Klosky, James L; Spunt, Sheri L; Metzger, Monika L; Srivastava, DeoKumar; Ness, Kirsten K; Robison, Leslie L; Hudson, Melissa M

    2014-10-01

    Few data define the dose-specific relation between alkylating agent exposure and semen variables in adult survivors of childhood cancer. We undertook this study to test the hypothesis that increased exposure to alkylating agents would be associated with decreased sperm concentration in a cohort of adult male survivors of childhood cancer who were not exposed to radiation therapy for their childhood cancer. We did semen analysis on 214 adult male survivors of childhood cancer (median age 7·7 years [range 0·01-20·3] at diagnosis, 29·0 years [18·4-56·1] at assessment, and a median of 21·0 years [10·5-41·6] since diagnosis) who had received alkylating agent chemotherapy but no radiation therapy. Alkylating agent exposure was estimated using the cyclophosphamide equivalent dose (CED). Odds ratios (ORs) and 95% CIs for oligospermia (sperm concentration >0 and <15 million per mL) and azoospermia were calculated with logistic regression modelling. Azoospermia was noted in 53 (25%) of 214 participants, oligospermia in 59 (28%), and normospermia (sperm concentration ≥15 million per mL) in 102 (48%) participants. 31 (89%) of 35 participants who received CED less than 4000 mg/m(2) were normospermic. CED was negatively correlated with sperm concentration (correlation coefficient=-0·37, p<0·0001). Mean CED was 10 830 mg/m(2) (SD 7274) in patients with azoospermia, 8480 mg/m(2) (4264) in patients with oligospermia, and 6626 mg/m(2) (3576) in patients with normospermia. In multivariable analysis, CED was significantly associated with an increased risk per 1000 mg/m(2) CED for azoospermia (OR 1·22, 95% CI 1·11-1·34), and for oligospermia (1·14, 1·04-1·25), but age at diagnosis and age at assessment were not. Impaired spermatogenesis was unlikely when the CED was less than 4000 mg/m(2). Although sperm concentration decreases with increasing CED, there was substantial overlap of CED associated with normospermia, oligospermia, and azoospermia. These data can inform pretreatment patient counselling and use of fertility preservation services. US National Cancer Institute, American Lebanese Syrian Associated Charities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies.

    PubMed

    Kunwar, Sandeep; Chang, Susan M; Prados, Michael D; Berger, Mitchel S; Sampson, John H; Croteau, David; Sherman, Jeffrey W; Grahn, Amy Y; Shu, Vince S; Dul, Jeanne L; Husain, Syed R; Joshi, Bharat H; Pedain, Christoph; Puri, Raj K

    2006-04-15

    Convection-enhanced delivery (CED) is an increasingly used novel local/regional delivery method targeted directly to tissue. It relies on a continuous pressure gradient for distribution of therapeutic agents into the interstitial space, with administration of the infusate over a few days. Cintredekin besudotox (also known as IL13- PE38QQR) is a recombinant chimeric cytotoxin consisting of interleukin-13 and a truncated exotoxin produced by the Pseudomonas aeruginosa bacterium, which targets malignant glioma cells. Cintredekin besudotox was administered via intraparenchymal CED after resection of supratentorial recurrent malignant glioma. The safety and toxicity profile was reviewed for 53 patients in whom infusion catheters had been placed; 51 of them received CED of the study drug. Adverse events were categorized based on time of onset in relation to CED, and the causal relationship with catheter placement or delivery of cintredekin besudotox. Catheters were placed in 53 patients, although only 51 of them received cintredekin besudotox. Most adverse events related to catheter placement or the study drug originated from the central nervous system. Three symptomatic windows were defined: the first one was between surgical procedure and CED; the second was during CED and up to 1 week after its completion; and the third window was 2 to 10 weeks after treatment. Those windows generally reflected adverse events related to surgical procedures, mass effect from infusate, and drug effect on tumor-infiltrated and normal brain parenchyma, respectively. The symptomatic windows identified in this study apply to any CED clinical trials, particularly those in which chimeric cytotoxins are used, and will help to determine the most likely underlying pathophysiological process causing symptoms. This information, in turn, will help to prevent adverse events or minimize their severity. Those events also have implications for dose escalation and outcome measures.

  12. Factors associated with nutritional status among adult women in urban India, 1998-2006.

    PubMed

    Rai, Rajesh Kumar

    2015-03-01

    This study attempts to understand the factors associated with chronic energy deficiency (CED) and overweight/obesity together with change in CED and overweight/obesity among urban Indian women during 1998-2006. Both National Family Health Survey (NFHS) 1998-1999 and NFHS 2005-2006 data sets were used. The standard cutoff points for both CED (BMI < 18.5 kg/m(2)) and overweight/obesity (BMI ≥ 23 kg/m(2)) were considered. The Phi and Cramer's V tests and predicted probabilities were used to fulfill the study objective. Results indicate an almost 3% reduction in CED and a 6% increase in overweight/obesity during 1998-2006. The probability of CED has reduced among nonliterate women and women belonging to the poorest wealth quintile; on the other hand, the likelihood of being overweight/obese has increased among women with high school education and above and women belonging to the richest wealth quintile. Interventions to promote physical activities and nutritional awareness programs, which are effective in addressing nutritional problems, have been proposed. © 2012 APJPH.

  13. Safety of real-time convection-enhanced delivery of liposomes to primate brain: a long-term retrospective.

    PubMed

    Krauze, Michal T; Vandenberg, Scott R; Yamashita, Yoji; Saito, Ryuta; Forsayeth, John; Noble, Charles; Park, John; Bankiewicz, Krystof S

    2008-04-01

    Convection-enhanced delivery (CED) is gaining popularity in direct brain infusions. Our group has pioneered the use of liposomes loaded with the MRI contrast reagent as a means to track and quantitate CED in the primate brain through real-time MRI. When co-infused with therapeutic nanoparticles, these tracking liposomes provide us with unprecedented precision in the management of infusions into discrete brain regions. In order to translate real-time CED into clinical application, several important parameters must be defined. In this study, we have analyzed all our cumulative animal data to answer a number of questions as to whether real-time CED in primates depends on concentration of infusate, is reproducible, allows prediction of distribution in a given anatomic structure, and whether it has long term pathological consequences. Our retrospective analysis indicates that real-time CED is highly predictable; repeated procedures yielded identical results, and no long-term brain pathologies were found. We conclude that introduction of our technique to clinical application would enhance accuracy and patient safety when compared to current non-monitored delivery trials.

  14. Trouble with the Lorentz law of force: incompatibility with special relativity and momentum conservation.

    PubMed

    Mansuripur, Masud

    2012-05-11

    The Lorentz law of force is the fifth pillar of classical electrodynamics, the other four being Maxwell's macroscopic equations. The Lorentz law is the universal expression of the force exerted by electromagnetic fields on a volume containing a distribution of electrical charges and currents. If electric and magnetic dipoles also happen to be present in a material medium, they are traditionally treated by expressing the corresponding polarization and magnetization distributions in terms of bound-charge and bound-current densities, which are subsequently added to free-charge and free-current densities, respectively. In this way, Maxwell's macroscopic equations are reduced to his microscopic equations, and the Lorentz law is expected to provide a precise expression of the electromagnetic force density on material bodies at all points in space and time. This Letter presents incontrovertible theoretical evidence of the incompatibility of the Lorentz law with the fundamental tenets of special relativity. We argue that the Lorentz law must be abandoned in favor of a more general expression of the electromagnetic force density, such as the one discovered by Einstein and Laub in 1908. Not only is the Einstein-Laub formula consistent with special relativity, it also solves the long-standing problem of "hidden momentum" in classical electrodynamics.

  15. Complications associated with cervical endoscopic discectomy with the holmium laser.

    PubMed

    Haufe, Scott M W; Mork, Anthony R

    2004-02-01

    Our aim was to determine the rate of surgical complications associated with cervical endoscopic discectomy (CED). There are no studies that state the degree of complications after CED. Forty-one patients underwent CED with holmium laser. Two out of 41 patients incurred vascular compromise during the procedure. One patient developed recurrent laryngeal nerve damage. One patient developed discitis, and two patients complained of a "clicking" sensation postoperatively. Although CED has a relatively high success rate, there is a 15% rate of complications associated with the procedure. Most of the complications were minor (such as vascular compromise, recurrent laryngeal nerve injury, and postoperative "clicking" sensations), but there was one case of severe discitis, and there is the potential of serious complication from both vascular compromise and neural injury.

  16. Derivation of the Lorentz force law, the magnetic field concept and the Faraday Lenz and magnetic Gauss laws using an invariant formulation of the Lorentz transformation

    NASA Astrophysics Data System (ADS)

    Field, J. H.

    2006-06-01

    It is demonstrated how the right-hand sides of the Lorentz transformation equations may be written, in a Lorentz-invariant manner, as 4-vector scalar products. This implies the existence of invariant length intervals analogous to invariant proper time intervals. An important distinction between the physical meanings of the space time and energy momentum 4-vectors is pointed out. The formalism is shown to provide a short derivation of the Lorentz force law of classical electrodynamics, and the conventional definition of the magnetic field, in terms of spatial derivatives of the 4-vector potential, as well as the Faraday Lenz law and the Gauss law for magnetic fields. The connection between the Gauss law for the electric field and the electrodynamic Ampère law, due to the 4-vector character of the electromagnetic potential, is also pointed out.

  17. Black hole solution in the framework of arctan-electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    An arctan-electrodynamics coupled with the gravitational field is investigated. We obtain the regular black hole solution that at r →∞ gives corrections to the Reissner-Nordström solution. The corrections to Coulomb’s law at r →∞ are found. We evaluate the mass of the black hole that is a function of the dimensional parameter β introduced in the model. The magnetically charged black hole was investigated and we have obtained the magnetic mass of the black hole and the metric function at r →∞. The regular black hole solution is obtained at r → 0 with the de Sitter core. We show that there is no singularity of the Ricci scalar for electrically and magnetically charged black holes. Restrictions on the electric and magnetic fields are found that follow from the requirement of the absence of superluminal sound speed and the requirement of a classical stability.

  18. On the self-force in Bopp-Podolsky electrodynamics

    NASA Astrophysics Data System (ADS)

    Gratus, Jonathan; Perlick, Volker; Tucker, Robin W.

    2015-10-01

    In the classical vacuum Maxwell-Lorentz theory the self-force of a charged point particle is infinite. This makes classical mass renormalization necessary and, in the special relativistic domain, leads to the Abraham-Lorentz-Dirac equation of motion possessing unphysical run-away and pre-acceleration solutions. In this paper we investigate whether the higher-order modification of classical vacuum electrodynamics suggested by Bopp, Landé, Thomas and Podolsky in the 1940s, can provide a solution to this problem. Since the theory is linear, Green-function techniques enable one to write the field of a charged point particle on Minkowski spacetime as an integral over the particle’s history. By introducing the notion of timelike worldlines that are ‘bounded away from the backward light-cone’ we are able to prescribe criteria for the convergence of such integrals. We also exhibit a timelike worldline yielding singular fields on a lightlike hyperplane in spacetime. In this case the field is mildly singular at the event where the particle crosses the hyperplane. Even in the case when the Bopp-Podolsky field is bounded, it exhibits a directional discontinuity as one approaches the point particle. We describe a procedure for assigning a value to the field on the particle worldline which enables one to define a finite Lorentz self-force. This is explicitly derived leading to an integro-differential equation for the motion of the particle in an external electromagnetic field. We conclude that any worldline solutions to this equation belonging to the categories discussed in the paper have continuous four-velocities.

  19. 13 CFR 307.5 - Application requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ECONOMIC ADJUSTMENT ASSISTANCE INVESTMENTS General § 307.5 Application requirements. (a) Each application... EDA) a CEDS, except that a CEDS is not required when applying for a Strategy Grant; and (2) Explain...

  20. Classical and non-classical effective medium theories: New perspectives

    NASA Astrophysics Data System (ADS)

    Tsukerman, Igor

    2017-05-01

    Future research in electrodynamics of periodic electromagnetic composites (metamaterials) can be expected to produce sophisticated homogenization theories valid for any composition and size of the lattice cell. The paper outlines a promising path in that direction, leading to non-asymptotic and nonlocal homogenization models, and highlights aspects of homogenization that are often overlooked: the finite size of the sample and the role of interface boundaries. Classical theories (e.g. Clausius-Mossotti, Maxwell Garnett), while originally derived from a very different set of ideas, fit well into the proposed framework. Nonlocal effects can be included in the model, making an order-of-magnitude accuracy improvements possible. One future challenge is to determine what effective parameters can or cannot be obtained for a given set of constituents of a metamaterial lattice cell, thereby delineating the possible from the impossible in metamaterial design.

  1. Electrodynamic Tether Operations beyond the Ionosphere in the Low-Density Magnetosphere

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.

    2007-01-01

    In the classical concept for the operation of electrodynamic tethers in space, a voltage is generated across the tether, either by the tether's orbital motion through the earth's planetary magnetic field or by a power supply; electrons are then collected from the ionospheric plasma at the positive pole; actively emitted back into space at the negative pole; and the circuit is closed by currents driven through the ambient conducting ionosphere. This concept has been proven to work in space by the Tethered Satellite System TSS-1 and TSS-1R Space Shuttle missions; and the Plasma Motor-Generator (PMG) tether flight experiment. However, it limits electrodynamic tether operations to the F-region of the ionosphere where the plasma density is sufficient to conduct the required currents--in other words, between altitudes of approximately 200 to 1000 km in sunlight. In the earth's shadow, the ionospheric density drops precipitously and tether operations, using the above approach, are not effective--even within this altitude range. There are numerous missions that require in-space propulsion in the Earth's shadow and/or outside of the above altitude range. This paper will, therefore, present the fundamentals of a concept that would allow electrodynamic tethers to operate almost anywhere within the magnetosphere, the region of space containing the earth's planetary magnetic field. In other words, because operations would be virtually independent of any ambient plasma, the range of electrodynamic operations would be extended into the earth's shadow and out to synchronous orbit--forty times the present operational range. The key to this concept is the active generation of plasma at each pole of the tether so that current generation ,does not depend on the conductivity of the ambient ionosphere. Arguments will be presented, based on ,existing flight data, which shed light on the behavior of charge emissions in space and show the plausibility of the concept.

  2. CedA is a novel Escherichia coli protein that activates the cell division inhibited by chromosomal DNA over-replication.

    PubMed

    Katayama, T; Takata, M; Sekimizu, K

    1997-11-01

    We isolated and characterized a new gene related to the control of cell division regulation in Escherichia coli. At 30 degrees C, the dnaAcos mutant causes over-replication of the chromosome, and colony formation is inhibited. We found that, at this temperature, the dnaAcos cells form filaments; therefore, septum formation is inhibited. This inhibition was independent of SfiA, an inhibitor of the septum-forming protein, FtsZ. To identify factors involved in this pathway of inhibition, we isolated seven multicopy suppressors for the cold-sensitive phenotype of the dnaAcos mutant. One of these proved to be a previously unknown gene, which we named cedA. This gene encoded a 12 kDa protein and resided at 38.9min on the E. coli genome map. A multicopy supply of the cedA gene to the dnaAcos cells did not repress over-replication of the chromosome but did stimulate cell division of the host, the result being growth of cells with an abnormally elevated chromosomal copy number. Therefore, the expression level of the cedA gene seems to be important for inhibiting cell division of the dnaAcos mutant at 30 degrees C. We propose that over-replication of the chromosome activates a pathway for inhibiting cell division and that the cedA gene modulates this division control. In the dnaA+ background, cedA also seems to affect cell division.

  3. Electromagnetic scattering and emission by a fixed multi-particle object in local thermal equilibrium: General formalism.

    PubMed

    Mishchenko, Michael I

    2017-10-01

    The majority of previous studies of the interaction of individual particles and multi-particle groups with electromagnetic field have focused on either elastic scattering in the presence of an external field or self-emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromagnetic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in maximally rigorous mathematical terms the general scattering-emission problem for a fixed object, and derive such fundamental corollaries as the scattering-emission volume integral equation, the Lippmann-Schwinger equation for the dyadic transition operator, the multi-particle scattering-emission equations, and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computation of the self-emitted component of the total field is completely separated from that of the elastically scattered field. The same is true of the computation of the emitted and elastically scattered components of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical computation of relevant optical observables.

  4. Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics

    NASA Technical Reports Server (NTRS)

    Rueda, A.

    1985-01-01

    That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.

  5. Antenatal and Postnatal Psychopathology Among Women with Current and Past Eating Disorders: Longitudinal Patterns

    PubMed Central

    Easter, Abigail; Solmi, Francessca; Bye, Amanda; Taborelli, Emma; Corfield, Freya; Schmidt, Ulrike; Treasure, Janet; Micali, Nadia

    2015-01-01

    This study aims to investigate longitudinal patterns of psychopathology during the antenatal and postnatal periods among women with current (C-ED) and past (P-ED) eating disorders. Women were recruited to a prospective longitudinal study: C-ED (n = 31), P-ED (n = 29) and healthy control (HC; n = 57). Anxiety, depression and ED symptoms were measured at four time points: first/second trimester, third trimester, 8 weeks and 6 months postpartum. Linear mixed effects models were used to test for group differences. Women with C-ED and P-ED, in all diagnostic categories, had significantly higher levels of psychopathology at all time points. ED symptoms decreased in the C-ED group, compared with an overall increase in the other two groups but subsequently increased after pregnancy. Overall, depression and state and trait anxiety scores decreased in the C-ED group compared with the HC group throughout the antenatal and postnatal periods. High levels of psychopathology are common throughout the antenatal and postnatal periods among women with current and past ED, and despite some overall reductions, symptoms remain clinically significant. © 2014 The Authors. European Eating Disorders Review published by John Wiley & Sons, Ltd. PMID:25345371

  6. Convection-enhanced delivery for the treatment of glioblastoma

    PubMed Central

    Vogelbaum, Michael A.; Aghi, Manish K.

    2015-01-01

    Effective treatment of glioblastoma (GBM) remains a formidable challenge. Survival rates remain poor despite decades of clinical trials of conventional and novel, biologically targeted therapeutics. There is considerable evidence that most of these therapeutics do not reach their targets in the brain when administered via conventional routes (intravenous or oral). Hence, direct delivery of therapeutics to the brain and to brain tumors is an active area of investigation. One of these techniques, convection-enhanced delivery (CED), involves the implantation of catheters through which conventional and novel therapeutic formulations can be delivered using continuous, low–positive-pressure bulk flow. Investigation in preclinical and clinical settings has demonstrated that CED can produce effective delivery of therapeutics to substantial volumes of brain and brain tumor. However, limitations in catheter technology and imaging of delivery have prevented this technique from being reliable and reproducible, and the only completed phase III study in GBM did not show a survival benefit for patients treated with an investigational therapeutic delivered via CED. Further development of CED is ongoing, with novel catheter designs and imaging approaches that may allow CED to become a more effective therapeutic delivery technique. PMID:25746090

  7. New French Coverage with Evidence Development for Innovative Medical Devices: Improvements and Unresolved Issues.

    PubMed

    Martelli, Nicolas; van den Brink, Hélène; Borget, Isabelle

    2016-01-01

    We describe here recent modifications to the French Coverage with Evidence Development (CED) scheme for innovative medical devices. CED can be defined as temporary coverage for a novel health product during collection of the additional evidence required to determine whether definitive coverage is possible. The principle refinements to the scheme include a more precise definition of what may be considered an innovative product, the possibility for device manufacturers to request CED either independently or in partnership with hospitals, and the establishment of processing deadlines for health authorities. In the long term, these modifications may increase the number of applications to the CED scheme, which could lead to unsustainable funding for future projects. It will also be necessary to ensure that the study conditions required by national health authorities are suitable for medical devices and that processing deadlines are met for the scheme to be fully operational. Overall, the modifications recently applied to the French CED scheme for innovative medical devices should increase the transparency of the process, and therefore be more appealing to medical device manufacturers. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  8. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-12-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.

  9. Sequential testing with different tissue transglutaminase antibodies, a new approach for diagnosis of celiac disease.

    PubMed

    Venugopal, Giriprasad; Mechenro, John; Makharia, Govind; Singh, Alka; Pugazhendhi, Srinivasan; Balamurugan, Ramadass; Ramakrishna, Balakrishnan S

    2017-11-01

    The diagnosis of celiac disease (CeD) in clinical practice relies on serological testing for IgA antibodies to human tissue transglutaminase (anti-tTG) which diagnose CeD autoimmunity. We compared three kits for their performance in diagnosis of the disease and evaluated the point prevalence of CeD autoimmunity in a South Indian urban population. In the first part of the study, sera from 90 patients with documented CeD and 92 healthy controls were tested for anti-tTG using three different kits. One thousand nine hundred and seventeen healthy adults residing in urban areas of Vellore and Kancheepuram districts were tested for CeD autoimmunity using a sequential two-test strategy. The sensitivity, specificity, false positivity, false negativity, positive predictive value, and negative predictive value for the three assays respectively were as follows: 95.5%, 82.6%, 17.3%, 4.4%, 84.3%, and 95% for the Aeskulisa New Generation Assay; 85.5%, 100%, 0%, 14.4%, 100%, and 87.6% for Quanta Lite; and 71.1%, 100%, 0%, 28.8%, 100%, and 71% for Celiac Microlisa. The ROC curves showed good discrimination for all three ELISAs with an AUC of 0.947, 0.950, and 0.886 for the Aeskulisa, Quanta Lite, and Celiac Microlisa, respectively. Of 1917 (males 908, females 1009) healthy adults, 113 (5.89%) were seropositive for IgA anti-htTG in the Aeskulisa test. Two of the latter tested positive in the Quanta Lite assay and/or the Celiac Microlisa assay. The CeD autoimmunity prevalence in this urban population was 1.0 per thousand (95% confidence interval 0.3 to 3.7 per thousand). Sequential testing for anti-tTG using first a highly sensitive assay followed by a very specific assay is a new strategy for screening for CeD in clinical practice.

  10. Corneal endothelial cell loss and corneal biomechanical characteristics after two-step sequential or combined phaco-vitrectomy surgery for idiopathic epiretinal membrane.

    PubMed

    Hamoudi, Hassan; Christensen, Ulrik Correll; La Cour, Morten

    2017-08-01

    To assess the impact of sequential and combined surgery [cataract surgery and 23-gauge pars plana vitrectomy (PPV) with peeling] on corneal endothelium cell density (CED) and corneal biomechanical characteristics. Phakic eyes with epiretinal membrane (ERM) were prospectively allocated to (i) cataract surgery and subsequent PPV (CAT group), (ii) PPV and subsequent cataract surgery (VIT group) or (iii) phacovitrectomy (COMBI group). Eyes were examined at baseline, 1 month after each surgery, and at 3 and 12 months follow-up. Corneal endothelium cell density (CED) was assessed with non-contact specular microscopy. Pachymetry [central cornea thickness (CCT)], keratometry and cornea volume (CV) were measured with Pentacam Scheimpflug camera. Primary outcome was change in CED after 12 months; secondary outcomes were changes in CCT and CV after 12 months. Sixty-two eyes were enrolled and allocated to the three groups. The mean preoperative CED was 2776, 2794 and 2653 cells/mm 2, which decreased significantly at 12 months by 15.3, 20.0 and 19.3% in the CAT, VIT and COMBI group. There was no significant difference in percentage cell loss between the groups at final follow-up. The CED decreased significantly after cataract surgery, but was unaffected by PPV. Central cornea thickness (CCT) increased by 10 μm (p = 0.005) and CV by 1.38 mm 3 (2.3%, p < 0.001) in the COMBI group. There were no significant differences in CCT or CV between the groups at final follow-up. Combined and sequential surgery in ERM leads to a small decrease in CED. Performing cataract surgery before, after or in combination with vitrectomy did not make any significant difference with respect to final CED, CCT or CV. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Synthesis and structural characterization of CdS nanoparticles using nitrogen adducts of mixed diisopropylthiourea and dithiolate derivatives of Cd(II) complexes

    NASA Astrophysics Data System (ADS)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2015-07-01

    [Cd(diptu)2(ced)], [Cd(diptu)2(ced)(bpy)], [Cd(diptu)2(ced)(phen)], (where diptu = diisopropyl thiourea; ced = 1-cyano-1-carboethoxylethylene-2,2‧-dithiolate; bpy = 2,2‧-bipyridine and phen = 1,10-phenanthroline) have been prepared and used as single source precursors for the preparation of hexadecylamine capped CdS nanoparticles. The precursor complexes were characterized by elemental analysis, FTIR and TGA. The structural properties of the nanoparticles were investigated using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy techniques (SEM). The optical properties of the nanoparticles were studied using UV-Visible and photoluminescence spectroscopy. The XRD analysis showed that the nanoparticles were indexed to the hexagonal phase of CdS and the TEM results showed CdS nanoparticles with average crystallite sizes of 4.00-8.80 nm.

  12. Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain.

    PubMed

    Nash, Kevin R; Gordon, Marcia N

    2016-01-01

    Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.

  13. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis.

    PubMed

    Jones, Rhys Jon; Massanet-Nicolau, Jaime; Guwy, Alan; Premier, Giuliano C; Dinsdale, Richard M; Reilly, Matthew

    2015-08-01

    Hydrogen production during dark fermentation is inhibited by the co-production of volatile fatty acids (VFAs) such as acetic and n-butyric acid. In this study, the effectiveness of conventional electrodialysis (CED) in reducing VFA concentrations in model solutions and hydrogen fermentation broths is evaluated. This is the first time CED has been reported to remove VFAs from hydrogen fermentation broths. During 60 min of operation CED removed up to 99% of VFAs from model solutions, sucrose-fed and grass-fed hydrogen fermentation broths, containing up to 1200 mg l(-1) each of acetic acid, propionic acid, i-butyric acid, n-butyric acid, i-valeric acid, and n-valeric acid. CED's ability to remove VFAs from hydrogen fermentation broths suggests that this technology is capable of improving hydrogen yields from dark fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Undernutrition among adult Bengalees of Dearah, Hooghly District, West Bengal, India: relationship with educational status and food habit.

    PubMed

    Bose, Kaushik; Bisai, Samiran; Sadhukhan, Sanjay; Mukhopadhyay, Ashish; Bhadra, Mithu

    2009-06-01

    A cross-sectional study of 1203 adult (> 18 years of age) Bengalees of Dearah, Hooghly District, West Bengal, India, was undertaken to evaluate the prevalence of undernutrition and the relationship of educational level and food habit with undernutrition. Height and weight were measured and body mass index (BMI) computed following the standard equation. A BMI < 18.5 kg/m2 was classified as undernutrition or chronic energy deficiency (CED) as per World Health Organization (WHO) recommendations. The public health problem of low BMI in this population was classified according to the WHO criteria. Educational status was coded as: no formal education, 1-8 years of schooling and > 8 years of schooling. Food habit was recorded as vegetarian or non-vegetarian. The mean ages of males and females were (39.6 +/- 15.0 years) and (39.6 +/- 15.0 years), respectively. There were significant (p < 0.001) sex differences in mean height and weight; both sexes had a similar BMI. The overall (sex combined) prevalence of undernutrition was 27.7%. The frequency of undernutrition was significantly (p < 0.001) higher among females (31.7%) compared to males (23.6%). According to the WHO classification of low BMI, the prevalence of CED was high (20-39%) indicating a serious situation. There existed a significant (p < 0.001) relationship between the level of formal education and nutritional status. Overall, the frequencies of CED (43.5%) were much higher than overweight (7.0%) among subjects with no formal education. The frequencies of CED and overweight among subjects with 1-8 years of formal education were 25.7% and 9.7%, respectively. Similarly, significantly (p < 0.001) higher rates of CED were found among subjects with no formal education in both sexes (males = 39.5%; females = 45.6%) compared to the presence of overweight (males = 1.8%; females = 9.8%). Sex-combined frequency of undernutrition was significantly (p < 0.001) higher among vegetarians (48.3%) compared with non-vegetarians (25.5%). The respective frequencies of overweight were 1.7% and 12.8%. This significant (p < 0.001) trend existed in both sexes with 46.9% male and 49.3% female vegetarians having CED. The corresponding figures for overweight among vegetarians were 0.0% and 2.9%, respectively. The rates of CED were significantly (p < 0.001) lower among non-vegetarians (males = 21.5%; females = 29.6%). Non-vegetarians had significantly higher rates of overweight in both males (8.7%) and females (16.9%). Multiple regression analysis revealed that both educational status as well as food habit had significant effect on BMI in both sexes. In general, the educational status had a stronger impact (males: t = 6.356, females: t = 5.017) than food habit (males: t = 3.373; females: t = 2.763) on BMI. This significant impact remained even after controlling for the effect of age. In conclusion, this study demonstrated that adult Bengalees of Dearah were under serious nutritional stress indicating a public health problem. In addition, a strong inverse relationship existed between educational level and CED. Moreover, vegetarianism was significantly associated with CED. Urgent public health measures are required, particularly among females, to reduce the high prevalence of CED in this population. Similar studies should be conducted in other parts of West Bengal before any general conclusions can be inferred about the relationship between educational status, food habit and CED in the state.

  15. Detection of infusate leakage in the brain using real-time imaging of convection-enhanced delivery.

    PubMed

    Varenika, Vanja; Dickinson, Peter; Bringas, John; LeCouteur, Richard; Higgins, Robert; Park, John; Fiandaca, Massimo; Berger, Mitchel; Sampson, John; Bankiewicz, Krystof

    2008-11-01

    The authors have shown that convection-enhanced delivery (CED) of gadoteridol-loaded liposomes (GDLs) into different regions of normal monkey brain results in predictable, widespread distribution of this tracking agent as detected by real-time MR imaging. They also have found that this tracking technique allows monitoring of the distribution of similar nanosized agents such as therapeutic liposomes and viral vectors. A limitation of this procedure is the unexpected leakage of liposomes out of targeted parenchyma or malignancies into sulci and ventricles. The aim of the present study was to evaluate the efficacy of CED after the onset of these types of leakage. The authors documented this phenomenon in a study of 5 nonhuman primates and 7 canines, comprising 54 CED infusion sessions. Approximately 20% of these infusions resulted in leakage into cerebral ventricles or sulci. All of the infusions and leakage events were monitored with real-time MR imaging. The authors created volume-distributed versus volume-infused graphs for each infusion session. These graphs revealed the rate of distribution of GDL over the course of each infusion and allowed the authors to evaluate the progress of CED before and after leakage. The distribution of therapeutics within the target structure ceased to increase or resulted in significant attenuation after the onset of leakage. An analysis of the cases in this study revealed that leakage undermines the efficacy of CED. These findings reiterate the importance of real-time MR imaging visualization during CED to ensure an accurate, robust distribution of therapeutic agents.

  16. Convection-enhancement delivery of platinum-based drugs and Lipoplatin™ to optimize the concomitant effect with radiotherapy in F98 glioma rat model

    PubMed Central

    Shi, Minghan; Fortin, David; Sanche, Léon; Paquette, Benoit

    2015-01-01

    The prognosis for patients with glioblastoma remains poor with current treatments. Although platinum based drugs are sometimes offered at relapse, their efficacy in this setting is still disputed. In this study, we use convection-enhanced delivery (CED) to deliver the platinum-based drugs (cisplatin, carboplatin, and Lipoplatin™-liposomal formulation of cisplatin) directly into the tumor of F98 glioma-bearing rats that were subsequently treated with γ radiation (15 Gy). CED increased by factors varying between 17 and 111, the concentration of these platinum-based drugs in the brain tumor compared to intra-venous (i.v.) administration, and by 9- to 34-fold, when compared to intra-arterial (i.a.) administration. Furthermore, CED resulted in a better systemic tolerance to platinum drugs compared to their i.a. injection. Among the drugs tested, carboplatin showed the highest maximum tolerated dose (MTD). Treatment with carboplatin resulted in the best median survival time (MeST) (38.5 days), which was further increased by the addition of radiotherapy (54.0 days). Although the DNA-bound platinum adduct were higher at 4 h after CED than 24 h for carboplatin group, combination with radiotherapy led to similar improvement of median survival time. However, less toxicity was observed in animals irradiated 24 h after CED-based chemotherapy. In conclusion, CED increased the accumulation of platinum drugs in tumor, reduced the toxicity, and resulted in a higher median survival time. The best treatment was obtained in animals treated with carboplatin and irradiated 24 h later. PMID:25784204

  17. New configuration for efficient and durable copper coating on the outer surface of a tube

    DOE PAGES

    Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.; ...

    2017-03-27

    A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube ismore » challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. Furthermore, the Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.« less

  18. Convection-enhancement delivery of platinum-based drugs and Lipoplatin(TM) to optimize the concomitant effect with radiotherapy in F98 glioma rat model.

    PubMed

    Shi, Minghan; Fortin, David; Sanche, Léon; Paquette, Benoit

    2015-06-01

    The prognosis for patients with glioblastoma remains poor with current treatments. Although platinum-based drugs are sometimes offered at relapse, their efficacy in this setting is still disputed. In this study, we use convection-enhanced delivery (CED) to deliver the platinum-based drugs (cisplatin, carboplatin, and Lipoplatin(TM) - liposomal formulation of cisplatin) directly into the tumor of F98 glioma-bearing rats that were subsequently treated with γ radiation (15 Gy). CED increased by factors varying between 17 and 111, the concentration of these platinum-based drugs in the brain tumor compared to intra-venous (i.v.) administration, and by 9- to 34-fold, when compared to intra-arterial (i.a.) administration. Furthermore, CED resulted in a better systemic tolerance to platinum drugs compared to their i.a. injection. Among the drugs tested, carboplatin showed the highest maximum tolerated dose (MTD). Treatment with carboplatin resulted in the best median survival time (MeST) (38.5 days), which was further increased by the addition of radiotherapy (54.0 days). Although the DNA-bound platinum adduct were higher at 4 h after CED than 24 h for carboplatin group, combination with radiotherapy led to similar improvement of median survival time. However, less toxicity was observed in animals irradiated 24 h after CED-based chemotherapy. In conclusion, CED increased the accumulation of platinum drugs in tumor, reduced the toxicity, and resulted in a higher median survival time. The best treatment was obtained in animals treated with carboplatin and irradiated 24 h later.

  19. New configuration for efficient and durable copper coating on the outer surface of a tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.

    A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube ismore » challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. Furthermore, the Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.« less

  20. United States Air Force Summer Faculty Research Program. 1985 Technical Report. Volume 3.

    DTIC Science & Technology

    1985-12-01

    Canadian Journal of Microbiology 30:63-67. Jones, W.D. and J. Greenberg. Modification of methods used in bacteriophage typing of Mycobacterium tuberculosis ...Sands Missile Range, New Mexico . 7. Nicolaides, J.D., "Free Flight Missile Dynamics," Lecture Notes, Depurtnent of Aero-Space Engineering, University of...Univ. of New Mexico , Albuquerque, New Mexico , August 1967, pp. 123-138. 2. Jackson, J.D., Classical Electrodynamics, New York, New York, John Wiley

  1. Evanescent radiation, quantum mechanics and the Casimir effect

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  2. Exploring Ultrahigh-Intensity Laser-Plasma Interaction Physics with QED Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Luedtke, S. V.; Yin, L.; Labun, L. A.; Albright, B. J.; Stark, D. J.; Bird, R. F.; Nystrom, W. D.; Hegelich, B. M.

    2017-10-01

    Next generation high-intensity lasers are reaching intensity regimes where new physics-quantum electrodynamics (QED) corrections to otherwise classical plasma dynamics-becomes important. Modeling laser-plasma interactions in these extreme settings presents a challenge to traditional particle-in-cell (PIC) codes, which either do not have radiation reaction or include only classical radiation reaction. We discuss a semi-classical approach to adding quantum radiation reaction and photon production to the PIC code VPIC. We explore these intensity regimes with VPIC, compare with results from the PIC code PSC, and report on ongoing work to expand the capability of VPIC in these regimes. This work was supported by the U.S. DOE, Los Alamos National Laboratory Science program, LDRD program, NNSA (DE-NA0002008), and AFOSR (FA9550-14-1-0045). HPC resources provided by TACC, XSEDE, and LANL Institutional Computing.

  3. Exact solutions to the Mo-Papas and Landau-Lifshitz equations

    NASA Astrophysics Data System (ADS)

    Rivera, R.; Villarroel, D.

    2002-10-01

    Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics.

  4. Geometrical aspects in optical wave-packet dynamics.

    PubMed

    Onoda, Masaru; Murakami, Shuichi; Nagaosa, Naoto

    2006-12-01

    We construct a semiclassical theory for propagation of an optical wave packet in a nonconducting medium with a periodic structure of dielectric permittivity and magnetic permeability, i.e., a nonconducting photonic crystal. We employ a quantum-mechanical formalism in order to clarify its link to those of electronic systems. It involves the geometrical phase, i.e., Berry's phase, in a natural way, and describes an interplay between orbital motion and internal rotation. Based on the above theory, we discuss the geometrical aspects of the optical Hall effect. We also consider a reduction of the theory to a system without periodic structure and apply it to the transverse shift of an optical beam at an interface reflection or refraction. For a generic incident beam with an arbitrary polarization, an identical result for the transverse shift of each reflected or transmitted beam is given by the following different approaches: (i) analytic evaluation of wave-packet dynamics, (ii) total angular momentum (TAM) conservation for individual photons, and (iii) numerical simulation of wave-packet dynamics. It is consistent with a result by classical electrodynamics. This means that the TAM conservation for individual photons is already taken into account in wave optics, i.e., classical electrodynamics. Finally, we show an application of our theory to a two-dimensional photonic crystal, and propose an optimal design for the enhancement of the optical Hall effect in photonic crystals.

  5. 75 FR 52007 - Proposed Information Collection Activity; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ...) Community Economic Development (CED) and Job Opportunities for Low-Income Individuals (JOLI) Standard... key information about projects funded through the Community Economic Development (CED) and Job... previously approved questionnaire, Office of Management and Budget (OMB) Control Number: 0970-0317. Questions...

  6. Self field electromagnetism and quantum phenomena

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  7. Antenatal and postnatal psychopathology among women with current and past eating disorders: longitudinal patterns.

    PubMed

    Easter, Abigail; Solmi, Francessca; Bye, Amanda; Taborelli, Emma; Corfield, Freya; Schmidt, Ulrike; Treasure, Janet; Micali, Nadia

    2015-01-01

    This study aims to investigate longitudinal patterns of psychopathology during the antenatal and postnatal periods among women with current (C-ED) and past (P-ED) eating disorders. Women were recruited to a prospective longitudinal study: C-ED (n = 31), P-ED (n = 29) and healthy control (HC; n = 57). Anxiety, depression and ED symptoms were measured at four time points: first/second trimester, third trimester, 8 weeks and 6 months postpartum. Linear mixed effects models were used to test for group differences. Women with C-ED and P-ED, in all diagnostic categories, had significantly higher levels of psychopathology at all time points. ED symptoms decreased in the C-ED group, compared with an overall increase in the other two groups but subsequently increased after pregnancy. Overall, depression and state and trait anxiety scores decreased in the C-ED group compared with the HC group throughout the antenatal and postnatal periods. High levels of psychopathology are common throughout the antenatal and postnatal periods among women with current and past ED, and despite some overall reductions, symptoms remain clinically significant. © 2014 The Authors. European Eating Disorders Review published by John Wiley & Sons, Ltd. © 2014 The Authors. European Eating Disorders Review published by John Wiley & Sons, Ltd.

  8. Convection-enhanced delivery for the treatment of glioblastoma.

    PubMed

    Vogelbaum, Michael A; Aghi, Manish K

    2015-03-01

    Effective treatment of glioblastoma (GBM) remains a formidable challenge. Survival rates remain poor despite decades of clinical trials of conventional and novel, biologically targeted therapeutics. There is considerable evidence that most of these therapeutics do not reach their targets in the brain when administered via conventional routes (intravenous or oral). Hence, direct delivery of therapeutics to the brain and to brain tumors is an active area of investigation. One of these techniques, convection-enhanced delivery (CED), involves the implantation of catheters through which conventional and novel therapeutic formulations can be delivered using continuous, low-positive-pressure bulk flow. Investigation in preclinical and clinical settings has demonstrated that CED can produce effective delivery of therapeutics to substantial volumes of brain and brain tumor. However, limitations in catheter technology and imaging of delivery have prevented this technique from being reliable and reproducible, and the only completed phase III study in GBM did not show a survival benefit for patients treated with an investigational therapeutic delivered via CED. Further development of CED is ongoing, with novel catheter designs and imaging approaches that may allow CED to become a more effective therapeutic delivery technique. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Special funding schemes for innovative medical devices in French hospitals: the pros and cons of two different approaches.

    PubMed

    Martelli, Nicolas; van den Brink, Hélène

    2014-07-01

    Financing innovative medical devices is an important challenge for national health policy makers, and a crucial issue for hospitals. However, when innovative medical devices are launched on the European market there is generally little clinical evidence regarding both efficacy and safety, both because of the flaws in the European system for regulating such devices, and because they are at an early stage of development. To manage the uncertainty surrounding the reimbursement of innovation, several European countries have set up temporary funding schemes to generate evidence about the effectiveness of devices. This article explores two different French approaches to funding innovative in-hospital devices and collecting supplementary data: the coverage with evidence development (CED) scheme introduced under Article L. 165-1-1 of the French Social Security Code; and national programs for hospital-based research. We discuss pros and cons of both approaches in the light of CED policies in Germany and the UK. The CED policies for devices share common limitations. Thus, transparency of CED processes should be enhanced and decisions need to be made in a timely way. Finally, we think that closer collaboration between manufacturers, health authorities and hospitals is essential to make CED policies more operational. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. 77 FR 38580 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... CEDS planning process and resulting CEDS is designed to guide the economic growth of an area and...: Economic Development Administration (EDA). Title: Comprehensive Economic Development Strategies. OMB... and Economic Adjustment programs, applicants must undertake a planning process that results in a...

  11. The Core Molecular Machinery Used for Engulfment of Apoptotic Cells Regulates the JNK Pathway Mediating Axon Regeneration in Caenorhabditis elegans.

    PubMed

    Pastuhov, Strahil Iv; Fujiki, Kota; Tsuge, Anna; Asai, Kazuma; Ishikawa, Sho; Hirose, Kazuya; Matsumoto, Kunihiro; Hisamoto, Naoki

    2016-09-14

    The mechanisms that govern the ability of specific neurons to regenerate their axons after injury are not well understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we identify two components functioning upstream of the JNK pathway: the Ste20-related protein kinase MAX-2 and the Rac-type GTPase CED-10. CED-10, when bound by GTP, interacts with MAX-2 and functions as its upstream regulator in axon regeneration. CED-10, in turn, is activated by axon injury via signals initiated from the integrin α-subunit INA-1 and the nonreceptor tyrosine kinase SRC-1 and transmitted via the signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO. This module is also known to regulate the engulfment of apoptotic cells during development. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. The molecular mechanisms of axon regeneration after injury remain poorly understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we show that integrin, Rac-GTPase, and several other molecules, all of which are known to regulate engulfment of apoptotic cells during development, also regulate axon regeneration. This signaling module activates the JNK-MAPK cascade via MAX-2, a PAK-like protein kinase that binds Rac. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. Copyright © 2016 the authors 0270-6474/16/369710-12$15.00/0.

  12. Convection enhanced delivery of panobinostat (LBH589)-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model.

    PubMed

    Singleton, W G; Collins, A M; Bienemann, A S; Killick-Cole, C L; Haynes, H R; Asby, D J; Butts, C P; Wyatt, M J; Barua, N U; Gill, S S

    2017-01-01

    The pan-histone deacetylase inhibitor panobinostat is a potential therapy for malignant glioma, but it is water insoluble and does not cross the blood-brain barrier when administered systemically. In this article, we describe the in vitro and in vivo efficacy of a novel water-soluble nano-micellar formulation of panobinostat designed for administration by convection enhanced delivery (CED). The in vitro efficacy of panobinostat-loaded nano-micelles against rat F98, human U87-MG and M059K glioma cells and against patient-derived glioma stem cells was measured using a cell viability assay. Nano-micelle distribution in rat brain was analyzed following acute CED using rhodamine-labeled nano-micelles, and toxicity was assayed using immunofluorescent microscopy and synaptophysin enzyme-linked immunosorbent assay. We compared the survival of the bioluminescent syngenic F98/Fischer344 rat glioblastoma model treated by acute CED of panobinostat-loaded nano-micelles with that of untreated and vehicle-only-treated controls. Nano-micellar panobinostat is cytotoxic to rat and human glioma cells in vitro in a dose-dependent manner following short-time exposure to drug. Fluorescent rhodamine-labelled nano-micelles distribute with a volume of infusion/volume of distribution (Vi/Vd) ratio of four and five respectively after administration by CED. Administration was not associated with any toxicity when compared to controls. CED of panobinostat-loaded nano-micelles was associated with significantly improved survival when compared to controls (n=8 per group; log-rank test, P <0.001). One hundred percent of treated animals survived the 60-day experimental period and had tumour response on post-mortem histological examination. CED of nano-micellar panobinostat represents a potential novel therapeutic option for malignant glioma and warrants translation into the clinic.

  13. A novel implantable catheter system with transcutaneous port for intermittent convection-enhanced delivery of carboplatin for recurrent glioblastoma.

    PubMed

    Barua, Neil U; Hopkins, Kirsten; Woolley, Max; O'Sullivan, Stephen; Harrison, Rob; Edwards, Richard J; Bienemann, Alison S; Wyatt, Marcella J; Arshad, Azeem; Gill, Steven S

    2016-01-01

    Inadequate penetration of the blood-brain barrier (BBB) by systemically administered chemotherapies including carboplatin is implicated in their failure to improve prognosis for patients with glioblastoma. Convection-enhanced delivery (CED) of carboplatin has the potential to improve outcomes by facilitating bypass of the BBB. We report the first use of an implantable CED system incorporating a novel transcutaneous bone-anchored port (TBAP) for intermittent CED of carboplatin in a patient with recurrent glioblastoma. The CED catheter system was implanted using a robot-assisted surgical method. Catheter targeting accuracy was verified by performing intra-operative O-arm imaging. The TBAP was implanted using a skin-flap dermatome technique modeled on bone-anchored hearing aid surgery. Repeated infusions were performed by attaching a needle administration set to the TBAP. Drug distribution was monitored with serial real-time T2-weighted magnetic resonance imaging (MRI). All catheters were implanted to within 1.5 mm of their planned target. Intermittent infusions of carboplatin were performed on three consecutive days and repeated after one month without the need for further surgical intervention. Infused volumes of 27.9 ml per day were well tolerated, with the exception of a single seizure episode. Follow-up MRI at eight weeks demonstrated a significant reduction in the volume of tumor enhancement from 42.6 ml to 24.6 ml, and was associated with stability of the patient's clinical condition. Reduction in the volume of tumor enhancement indicates that intermittent CED of carboplatin has the potential to improve outcomes in glioblastoma. The novel technology described in this report make intermittent CED infusion regimes an achievable treatment strategy.

  14. Application of Factor Analysis to Identify Dietary Patterns and Use of Factor Scores to Study Their Relationship with Nutritional Status of Adult Rural Populations

    PubMed Central

    Brahmam, G.N.V.; Vijayaraghavan, K.

    2011-01-01

    The prevalence of chronic energy deficiency (CED) among one-third of the Indian population is attributed to inadequacy of consumption of nutrients. However, considering the complexity of diets among Indians, the relationship between a particular dietary pattern and the nutritional status of the population has not been established so far. A community-based cross-sectional study was undertaken to assess estimates, at district level, of diet and nutritional status in Orissa State, India. Factor analysis was used for exploring the existence of consumption pattern of food and nutrients and their relationship with the nutritional status of rural adult population. Data on 2,864 adult men and 3,525 adult women in Orissa state revealed that there exists six patterns among food-groups explaining 59% of the total variation and three patterns among nutrients that explain 73% of the total variation among both adult men and women. The discriminant function analysis revealed that, overall, 53% of the men were correctly classified as either with chronic energy deficiency (CED) or without CED. Similarly, overall, 54% of the women were correctly classified as either with CED or without CED. The sensitivity of the model was 65% for both men and women, and the specificity was 46% and 41% respectively for men and women. In the case of classification of overweight/obesity, the prediction of the model was about 75% among both men and women, along with high sensitivity. Using factor analysis, the dietary patterns were identified from the food and nutrient intake data. There exists a strong relationship between the dietary patterns and the nutritional status of rural adults. These results will help identify the community people with CED and help planners formulate nutritional interventions accordingly. PMID:21957671

  15. Isatis indigotica induces hepatocellular cancer cell death via caspase-independent apoptosis-inducing factor translocation apoptotic pathway in vitro and in vivo.

    PubMed

    Chung, Ying-Cheng; Tang, Feng-Yao; Liao, Jiunn-Wang; Chung, Chia-Hua; Jong, Ting-Ting; Chen, Shih-Shiung; Tsai, Ching-Hsiu; Chiang, En-Pei

    2011-06-01

    Isatis indigotica is a biennial herbaceous cruciferous medical herb with antipyretic, antiviral, anti-inflammatory, and anti-endotoxin activity. This study explored the chemotherapeutic potential of I indigotica on human hepatoma cells and investigated the mechanism by which metabolites from I indigotica inhibit hepatoma cell growth. Antitumor activity was discovered in dried I indigotica leaf chloroform extracts (CEDLI). In nude mice xenotransplanted with human hepatoma cells, CEDLI supplementation inhibited tumor growth by ~40% compared with nonsupplemented animals without affecting body weight/food intake. CEDLI induced sub-G1 cell cycle arrest and apoptosis in hepatoma cells. Furthermore, CEDLI activates p53 and Bax, reduces Bcl-2 expression, and causes mitochondrial stress and the release of apoptosis-inducing factor into the cytosol followed by its translocation into the nucleus, resulting in hepatoma cell apoptosis. This study provides novel in vivo evidence of I indigotica's antitumor activity. The chemotherapeutic activity against human hepatoma tumorigenesis was because of a distinguished caspase-independent apoptotic pathway.

  16. The effect of less-lethal weapons on injuries in police use-of-force events.

    PubMed

    MacDonald, John M; Kaminski, Robert J; Smith, Michael R

    2009-12-01

    We investigated the effect of the use of less-lethal weapons, conductive energy devices (CEDs), and oleoresin capsicum (OC) spray on the prevalence and incidence of injuries to police officers and civilians in encounters involving the use of force. We analyzed data from 12 police departments that documented injuries to officers and civilians in 24,380 cases. We examined monthly injury rates for 2 police departments before and after their adoption of CEDs. Odds of injury to civilians and officers were significantly lower when police used CED weapons, after control for differences in case attributes and departmental policies restricting use of these weapons. Monthly incidence of injury in 2 police departments declined significantly, by 25% to 62%, after adoption of CED devices. Injuries sustained during police use-of-force events affect thousands of police officers and civilians in the United States each year. Incidence of these injuries can be reduced dramatically when law enforcement agencies responsibly employ less-lethal weapons in lieu of physical force.

  17. The Integration of Emotions in Memories: Cognitive-Emotional Distinctiveness and Posttraumatic Stress Disorder

    PubMed Central

    Boals, Adriel; Rubin, David C.

    2013-01-01

    The current study examined cognitive-emotional distinctiveness (CED), the extent to which emotions are linked with event information, in memories associated with PTSD. Participants either with PTSD (n=68) or without PTSD (n=40) completed a modified multidimensional scaling technique to measure CED for their most negative and most positive events. The results revealed that participants in the PTSD group evidenced significantly lower levels of CED. This group difference remained significant when we limited the analysis to traumatic events that led to a PTSD diagnosis (n=33) in comparison to control participants who nominated a traumatic event that did not result in PTSD (n=32). Replicating previous findings, CED levels were higher in memories of negative events, in comparison to positive events. These results provide empirical evidence that memories associated with PTSD do contain special organizational features with respect to the links between emotions and memory. Implications for understanding and treating PTSD are discussed. PMID:23436960

  18. Convection-Enhanced Delivery.

    PubMed

    Mehta, A M; Sonabend, A M; Bruce, J N

    2017-04-01

    Convection-enhanced delivery (CED) is a promising technique that generates a pressure gradient at the tip of an infusion catheter to deliver therapeutics directly through the interstitial spaces of the central nervous system. It addresses and offers solutions to many limitations of conventional techniques, allowing for delivery past the blood-brain barrier in a targeted and safe manner that can achieve therapeutic drug concentrations. CED is a broadly applicable technique that can be used to deliver a variety of therapeutic compounds for a diversity of diseases, including malignant gliomas, Parkinson's disease, and Alzheimer's disease. While a number of technological advances have been made since its development in the early 1990s, clinical trials with CED have been largely unsuccessful, and have illuminated a number of parameters that still need to be addressed for successful clinical application. This review addresses the physical principles behind CED, limitations in the technique, as well as means to overcome these limitations, clinical trials that have been performed, and future developments.

  19. Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.; Gibbon, P.; Sheng, Z.-M.; Li, Y.-T.; Zhang, J.

    2017-07-01

    We investigate how next-generation laser pulses at 10 -200 PW interact with a solid target in the presence of a relativistically underdense preplasma produced by amplified spontaneous emission (ASE). Laser hole boring and relativistic transparency are strongly restrained due to the generation of electron-positron pairs and γ -ray photons via quantum electrodynamics (QED) processes. A pair plasma with a density above the initial preplasma density is formed, counteracting the electron-free channel produced by hole boring. This pair-dominated plasma can block laser transport and trigger an avalanchelike QED cascade, efficiently transferring the laser energy to the photons. This renders a 1 -μ m scale-length, underdense preplasma completely opaque to laser pulses at this power level. The QED-induced opacity therefore sets much higher contrast requirements for such a pulse in solid-target experiments than expected by classical plasma physics. Our simulations show, for example, that proton acceleration from the rear of a solid with a preplasma would be strongly impaired.

  20. John Wheeler, 1933 - 1959: Particles and Weapons

    NASA Astrophysics Data System (ADS)

    Ford, Kenneth

    2009-05-01

    During the early part of his career, John Archibald Wheeler made an astonishing number of contributions to nuclear and particle physics, as well as to classical electrodynamics, often in collaboration with another physicist. He was also a major contributor to the Manhattan Project (in Chicago and Hanford rather than Los Alamos), and, following World War II, became an influential scientific cold warrior. His early achievements in physics include the calculated scattering of light by light (with Gregory Breit), the prediction of nuclear rotational states (with Edward Teller), the theory of fission (with Niels Bohr), action-at-a-distance electrodynamics (with Richard Feynman), the theory of positronium, the universal weak interaction (with Jayme Tiomno), and the proposed use of the muon as a nuclear probe particle. He gained modest fame as the person who identified xenon 135 as a reactor poison. His Project Matterhorn contributed significantly to the design of the H bomb, and his Project 137, which he had hoped would flower into a major defense lab, served as the precursor to the Jason group.

  1. Absorbing Boundary Conditions in Quantum Relativistic Mechanics for Spinless Particles Subject to a Classical Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Sater, Julien

    The theory of Artificial Boundary Conditions described by Antoine et al. [2,4-6] for the Schrodinger equation is applied to the Klein-Gordon (KG) in two-dimensions (2-D) for spinless particles subject to electromagnetic fields. We begin by providing definitions for a basic understanding of the theory of operators, differential geometry and wave front sets needed to discuss the factorization theorem thanks to Nirenberg and Hormander [14, 16]. The laser-free Klein-Gordon equation in 1-D is then discussed, followed by the case including electrodynamics potentials, concluding with the KG equation in 2-D space with electrodynamics potentials. We then consider numerical simulations of the laser-particle KG equation, which includes a brief analysis of a finite difference scheme. The conclusion integrates a discussion of the numerical results, the successful completion of the objective set forth, a declaration of the unanswered encountered questions and a suggestion of subjects for further research.

  2. Convection enhanced delivery of carboplatin in combination with radiotherapy for the treatment of brain tumors.

    PubMed

    Yang, Weilian; Huo, Tianyao; Barth, Rolf F; Gupta, Nilendu; Weldon, Michael; Grecula, John C; Ross, Brian D; Hoff, Benjamin A; Chou, Ting-Chao; Rousseau, Julia; Elleaume, Hélène

    2011-02-01

    The purpose of this study was to further evaluate the therapeutic efficacy of convection enhanced delivery (CED) of carboplatin in combination with radiotherapy for treatment of the F98 rat glioma. Tumor cells were implanted stereotactically into the brains of syngeneic Fischer rats, and 13 or 17 d. later carboplatin (20 μg/10 μl) was administered by either CED over 30 min or by Alzet osmotic pumps (0.5 μg/μl/h for 168 h.) beginning at 7 d after tumor implantation. Rats were irradiated with a 15 Gy fractionated dose (5 Gy × 3) of 6 MV photons to the whole brain beginning on the day after drug administration. Other groups of rats received either carboplatin or X-irradiation alone. The tumor carboplatin concentration following CED of 20 μg in 10 μl was 10.4 μg/g, which was equal to that observed following i.v. administration of 100 mg/kg b.w. Rats bearing small tumors, treated with carboplatin and X-irradiation, had a mean survival time (MST) of 83.4 d following CED and 111.8 d following pump delivery with 40% of the latter surviving >180 d (i.e. cured) compared to 55.2 d for CED and 77.2 d. for pump delivery of carboplatin alone and 31.8 d and 24.2 d, respectively, for X-irradiated and untreated controls. There was no microscopic evidence of residual tumor in the brains of all long-term survivors. Not surprisingly, rats with large tumors had much shorter MSTs. Only modest increases in MSTs were observed in animals that received either oral administration or CED of temozolomide plus X-irradiation (23.2 d and 29.3 d) compared to X-irradiation alone. The present survival data, and those previously reported by us, are among the best ever obtained with the F98 glioma model. Initially, they could provide a platform for a Phase I clinical trial to evaluate the safety and potential therapeutic efficacy of CED of carboplatin in patients with recurrent glioblastomas, and ultimately a Phase II trial of carboplatin in combination with radiation therapy.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzatov, D. V., E-mail: dm-guzatov@mail.ru

    Analytic expressions for the radiative and nonradiative decay rates for an electric quadrupole source (atom, molecule) in the vicinity of a spherical particle (dielectric, metal) have been derived and analyzed within the classical electrodynamics. It has been shown that the highest increase in the decay rates appears in the quasi-static case, when the wavelength of the transition in question is much larger than the characteristic size of the system formed by the particle and the quadrupole. Asymptotic expressions for the decay rates have been derived for this case.

  4. A theoretical investigation of single-molecule fluorescence detection on thin metallic layers.

    PubMed

    Enderlein, J

    2000-04-01

    In the present paper, the excitation and detection of single-molecule fluorescence over thin metallic films is studied theoretically within the framework of classical electrodynamics. The model takes into account the specific conditions of surface plasmon-assisted optical excitation, fluorescence quenching by the metal film, and detection geometry. Extensive numerical results are presented for gold, silver, and aluminum films, showing the detectable fluorescence intensities and their dependence on film thickness and the fluorescent molecule's position under optimal excitation conditions.

  5. Few-electron Qubits in Silicon Quantum Electronic Devices

    DTIC Science & Technology

    2014-09-01

    Jackson. Classical electrodynamics. Wiley, 1999. [60] C. Fasth, A. Fuhrer, L. Samuelson, Vitaly N . Golovach, and Daniel Loss. Phys. Rev. Lett., 98...quantum dots. Among these systems, Si is very promising since it can be isotopically purified to eliminate -1 n ...-tno:>tinn J...,~~~+;..,., f1.,JrJ...1.2]. Taking t he AlGaAs/ GaAs system as an example, the most crucial part of t he heterostructure is t he interface between t he n -type AlGaAs and

  6. The Importance of Being a Complement: CED Effects Revisited

    ERIC Educational Resources Information Center

    Jurka, Johannes

    2010-01-01

    This dissertation revisits subject island effects (Ross 1967, Chomsky 1973) cross-linguistically. Controlled acceptability judgment studies in German, English, Japanese and Serbian show that extraction out of specifiers is consistently degraded compared to extraction out of complements, indicating that the Condition on Extraction domains (CED,…

  7. 7 CFR 1220.623 - Canvassing requests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designate the County Executive Director (CED) and a county or State FSA office employee to canvass the... CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.623 Canvassing requests. (a... for this function is impractical, and designate the CED and/or another county or State FSA office...

  8. 7 CFR 1220.623 - Canvassing requests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... designate the County Executive Director (CED) and a county or State FSA office employee to canvass the... CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.623 Canvassing requests. (a... for this function is impractical, and designate the CED and/or another county or State FSA office...

  9. 7 CFR 1220.623 - Canvassing requests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... designate the County Executive Director (CED) and a county or State FSA office employee to canvass the... CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.623 Canvassing requests. (a... for this function is impractical, and designate the CED and/or another county or State FSA office...

  10. 7 CFR 1220.623 - Canvassing requests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designate the County Executive Director (CED) and a county or State FSA office employee to canvass the... CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.623 Canvassing requests. (a... for this function is impractical, and designate the CED and/or another county or State FSA office...

  11. 75 FR 81614 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... (CED) and Job Opportunities for Low-Income Individuals (JOLI) Standard Reporting Format. OMB No.: New... funded through the Community Economic Development (CED) and Job Opportunities for Low-Income Individuals... Report (PPR) is a new proposed reporting format that will collect information concerning the outcomes and...

  12. 7 CFR 1220.623 - Canvassing requests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designate the County Executive Director (CED) and a county or State FSA office employee to canvass the... CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.623 Canvassing requests. (a... for this function is impractical, and designate the CED and/or another county or State FSA office...

  13. Convection-enhanced delivery of a topoisomerase I inhibitor (nanoliposomal topotecan) and a topoisomerase II inhibitor (pegylated liposomal doxorubicin) in intracranial brain tumor xenografts1

    PubMed Central

    Yamashita, Yoji; Krauze, Michal T.; Kawaguchi, Tomohiro; Noble, Charles O.; Drummond, Daryl C.; Park, John W.; Bankiewicz, Krystof S.

    2007-01-01

    Despite multimodal treatment options, the response and survival rates for patients with malignant gliomas remain dismal. Clinical trials with convection-enhanced delivery (CED) have recently opened a new window in neuro-oncology to the direct delivery of chemotherapeutics to the CNS, circumventing the blood-brain barrier and reducing systemic side effects. Our previous CED studies with liposomal chemotherapeutics have shown promising antitumor activity in rodent brain tumor models. In this study, we evaluated a combination of nanoliposomal topotecan (nLs-TPT) and pegylated liposomal doxorubicin (PLD) to enhance efficacy in our brain tumor models, and to establish a CED treatment capable of improving survival from malignant brain tumors. Both liposomal drugs decreased key enzymes involved in tumor cell replication in vitro. Synergistic effects of nLs-TPT and PLD on U87MG cell death were found. The combination displayed excellent efficacy in a CED-based survival study 10 days after tumor cell implantation. Animals in the control group and those in single-agent groups had a median survival of less than 30 days, whereas the combination group experienced a median survival of more than 90 days. We conclude that CED of two liposomal chemotherapeutics (nLs-TPT and PLD) may be an effective treatment option for malignant gliomas. PMID:17018695

  14. 7 CFR 1221.227 - Canvassing voting ballots.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Director (CED) and a county or State FSA office employee to canvass the ballots and report the results... INFORMATION ORDER Procedures for the Conduct of Referenda Procedures § 1221.227 Canvassing voting ballots. (a..., and designate the CED and/or another county or State FSA office employee to canvass requests in any...

  15. 7 CFR 1221.227 - Canvassing voting ballots.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Director (CED) and a county or State FSA office employee to canvass the ballots and report the results... INFORMATION ORDER Procedures for the Conduct of Referenda Procedures § 1221.227 Canvassing voting ballots. (a..., and designate the CED and/or another county or State FSA office employee to canvass requests in any...

  16. 7 CFR 1221.227 - Canvassing voting ballots.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Director (CED) and a county or State FSA office employee to canvass the ballots and report the results... INFORMATION ORDER Procedures for the Conduct of Referenda Procedures § 1221.227 Canvassing voting ballots. (a..., and designate the CED and/or another county or State FSA office employee to canvass requests in any...

  17. 7 CFR 1280.627 - Canvassing voting ballots.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Executive Director (CED) and a county or State FSA office employee to canvass the ballots and report the... INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280.627 Canvassing voting ballots. (a... impractical, and designate the CED and/or another county or State FSA office employee to canvass requests in...

  18. 7 CFR 1280.627 - Canvassing voting ballots.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Executive Director (CED) and a county or State FSA office employee to canvass the ballots and report the... INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280.627 Canvassing voting ballots. (a... impractical, and designate the CED and/or another county or State FSA office employee to canvass requests in...

  19. 7 CFR 1280.627 - Canvassing voting ballots.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Executive Director (CED) and a county or State FSA office employee to canvass the ballots and report the... INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280.627 Canvassing voting ballots. (a... impractical, and designate the CED and/or another county or State FSA office employee to canvass requests in...

  20. 7 CFR 1221.227 - Canvassing voting ballots.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Director (CED) and a county or State FSA office employee to canvass the ballots and report the results... INFORMATION ORDER Procedures for the Conduct of Referenda Procedures § 1221.227 Canvassing voting ballots. (a..., and designate the CED and/or another county or State FSA office employee to canvass requests in any...

  1. 7 CFR 1280.627 - Canvassing voting ballots.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Executive Director (CED) and a county or State FSA office employee to canvass the ballots and report the... INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280.627 Canvassing voting ballots. (a... impractical, and designate the CED and/or another county or State FSA office employee to canvass requests in...

  2. 7 CFR 1280.627 - Canvassing voting ballots.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Executive Director (CED) and a county or State FSA office employee to canvass the ballots and report the... INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280.627 Canvassing voting ballots. (a... impractical, and designate the CED and/or another county or State FSA office employee to canvass requests in...

  3. Analogy between electromagnetic potentials and wave-like dynamic variables with connections to quantum theory

    NASA Astrophysics Data System (ADS)

    Yang, Chen

    2018-05-01

    The transitions from classical theories to quantum theories have attracted many interests. This paper demonstrates the analogy between the electromagnetic potentials and wave-like dynamic variables with their connections to quantum theory for audiences at advanced undergraduate level and above. In the first part, the counterpart relations in the classical electrodynamics (e.g. gauge transform and Lorenz condition) and classical mechanics (e.g. Legendre transform and free particle condition) are presented. These relations lead to similar governing equations of the field variables and dynamic variables. The Lorenz gauge, scalar potential and vector potential manifest a one-to-one similarity to the action, Hamiltonian and momentum, respectively. In the second part, the connections between the classical pictures of electromagnetic field and particle to quantum picture are presented. By characterising the states of electromagnetic field and particle via their (corresponding) variables, their evolution pictures manifest the same algebraic structure (isomorphic). Subsequently, pictures of the electromagnetic field and particle are compared to the quantum picture and their interconnections are given. A brief summary of the obtained results are presented at the end of the paper.

  4. From Waves to Particle Tracks and Quantum Probabilities

    NASA Astrophysics Data System (ADS)

    Falkenburg, Brigitte

    Here, the measurement methods for identifying massive charged particles are investigated. They have been used from early cosmic ray studies up to the present day. Laws such as the classical Lorentz force and Einstein's relativistic kinematics were established before the rise of quantum mechanics. Later, it became crucial to measure the energy loss of charged particles in matter. In 1930, Bethe developed a semi-classical model based on the quantum mechanics of scattering. In the early 1930s, he and others calculated the passage of charged particles through matter including pair creation and bremsstrahlung. Due to missing trust in quantum electrodynamics, however, only semi-empirical methods were employed in order to estimate the mass and charge from the features of particle tracks. In 1932, Anderson inserted a lead plate into the cloud chamber in order to determine the flight direction and charge of the `positive electron'. In the 1940s, nuclear emulsions helped to resolve puzzles about particle identification and quantum electrodynamics. Later, the measurement theory was extended in a cumulative process by adding conservation laws for dynamic properties, probabilistic quantum formulas for resonances, scattering cross sections, etc. The measurement method was taken over from cosmic ray studies to the era of particle accelerators, and finally taken back from there to astroparticle physics. The measurement methods remained the same, but in the transition from particle to astroparticle physics the focus of interest shifted. Indeed, the experimental methods of both fields explore the grounds of `new physics' in complementary ways.

  5. 7 CFR 1220.629 - Disposition of records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... records will be placed in a secure location under the custody of the FSA CED for a period of not less than... CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.629 Disposition of records. Each FSA CED will place in sealed containers marked with the identification of the “Request for Soybean...

  6. 7 CFR 1230.637 - Disposition of ballots and records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Disposition of ballots and records. (a) Producer ballots and records. Each FSA CED will place in sealed... summaries. Such records will be placed under lock in a safe place under the custody of the FSA CED for a..., South Agriculture Building, 1400 Independence Avenue, SW., Washington, DC. A Marketing Programs Branch...

  7. 7 CFR 1230.637 - Disposition of ballots and records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Disposition of ballots and records. (a) Producer ballots and records. Each FSA CED will place in sealed... summaries. Such records will be placed under lock in a safe place under the custody of the FSA CED for a..., South Agriculture Building, 1400 Independence Avenue, SW., Washington, DC. A Marketing Programs Branch...

  8. 7 CFR 1230.637 - Disposition of ballots and records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Disposition of ballots and records. (a) Producer ballots and records. Each FSA CED will place in sealed... summaries. Such records will be placed under lock in a safe place under the custody of the FSA CED for a..., South Agriculture Building, 1400 Independence Avenue, SW., Washington, DC. A Marketing Programs Branch...

  9. 7 CFR 1220.629 - Disposition of records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... records will be placed in a secure location under the custody of the FSA CED for a period of not less than... CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.629 Disposition of records. Each FSA CED will place in sealed containers marked with the identification of the “Request for Soybean...

  10. 7 CFR 1220.629 - Disposition of records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... records will be placed in a secure location under the custody of the FSA CED for a period of not less than... CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.629 Disposition of records. Each FSA CED will place in sealed containers marked with the identification of the “Request for Soybean...

  11. 7 CFR 1230.637 - Disposition of ballots and records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Disposition of ballots and records. (a) Producer ballots and records. Each FSA CED will place in sealed... summaries. Such records will be placed under lock in a safe place under the custody of the FSA CED for a..., South Agriculture Building, 1400 Independence Avenue, SW., Washington, DC. A Marketing Programs Branch...

  12. 7 CFR 1230.637 - Disposition of ballots and records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Disposition of ballots and records. (a) Producer ballots and records. Each FSA CED will place in sealed... summaries. Such records will be placed under lock in a safe place under the custody of the FSA CED for a..., South Agriculture Building, 1400 Independence Avenue, SW., Washington, DC. A Marketing Programs Branch...

  13. 7 CFR 1220.629 - Disposition of records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... records will be placed in a secure location under the custody of the FSA CED for a period of not less than... CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.629 Disposition of records. Each FSA CED will place in sealed containers marked with the identification of the “Request for Soybean...

  14. 7 CFR 1280.632 - Disposition of records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... records will be placed in a secure location under the custody of FSA CED for a period of not less than 12... INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280.632 Disposition of records. Each FSA CED will place in sealed containers marked with the identification of the “Lamb Checkoff Program...

  15. 7 CFR 1280.632 - Disposition of records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... records will be placed in a secure location under the custody of FSA CED for a period of not less than 12... INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280.632 Disposition of records. Each FSA CED will place in sealed containers marked with the identification of the “Lamb Checkoff Program...

  16. 7 CFR 1220.629 - Disposition of records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... records will be placed in a secure location under the custody of the FSA CED for a period of not less than... CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.629 Disposition of records. Each FSA CED will place in sealed containers marked with the identification of the “Request for Soybean...

  17. 7 CFR 1280.632 - Disposition of records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... records will be placed in a secure location under the custody of FSA CED for a period of not less than 12... INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280.632 Disposition of records. Each FSA CED will place in sealed containers marked with the identification of the “Lamb Checkoff Program...

  18. 7 CFR 1280.632 - Disposition of records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... records will be placed in a secure location under the custody of FSA CED for a period of not less than 12... INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280.632 Disposition of records. Each FSA CED will place in sealed containers marked with the identification of the “Lamb Checkoff Program...

  19. 7 CFR 1280.632 - Disposition of records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... records will be placed in a secure location under the custody of FSA CED for a period of not less than 12... INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280.632 Disposition of records. Each FSA CED will place in sealed containers marked with the identification of the “Lamb Checkoff Program...

  20. 78 FR 5176 - CED White River Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-764-000] CED White River Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... River Solar, LLC's application for market-based rate authority, with an accompanying rate schedule...

  1. Humility pills: building an ethics of cognitive enhancement.

    PubMed

    Goodman, Rob

    2014-06-01

    The use of cognition-enhancing drugs (CEDs) appears to be increasingly common in both academic and workplace settings. But many universities and businesses have not yet engaged with the ethical challenges raised by CED use. This paper considers criticisms of CED use with a particular focus on the Accomplishment Argument: an influential set of claims holding that enhanced work is less dignified, valuable, or authentic, and that cognitive enhancement damages our characters. While the Accomplishment Argument assumes a view of authorship based on individual credit-taking, an impersonal or collaborative view is just as possible. This paper considers the benefits of this view-including humility, a value often claimed by critics of enhancement-and argues that such a view is consistent with open CED use. It proposes an ethics of cognitive enhancement based on toleration, transparency, and humility, and it discusses how institutions and individuals can build a culture of open cognitive enhancement. © The Author 2014. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The Effect of Less-Lethal Weapons on Injuries in Police Use-of-Force Events

    PubMed Central

    Kaminski, Robert J.; Smith, Michael R.

    2009-01-01

    Objectives. We investigated the effect of the use of less-lethal weapons, conductive energy devices (CEDs), and oleoresin capsicum (OC) spray on the prevalence and incidence of injuries to police officers and civilians in encounters involving the use of force. Methods. We analyzed data from 12 police departments that documented injuries to officers and civilians in 24 380 cases. We examined monthly injury rates for 2 police departments before and after their adoption of CEDs. Results. Odds of injury to civilians and officers were significantly lower when police used CED weapons, after control for differences in case attributes and departmental policies restricting use of these weapons. Monthly incidence of injury in 2 police departments declined significantly, by 25% to 62%, after adoption of CED devices. Conclusions. Injuries sustained during police use-of-force events affect thousands of police officers and civilians in the United States each year. Incidence of these injuries can be reduced dramatically when law enforcement agencies responsibly employ less-lethal weapons in lieu of physical force. PMID:19846686

  3. Liposomal temozolomide drug delivery using convection enhanced delivery.

    PubMed

    Nordling-David, Mirjam M; Yaffe, Roni; Guez, David; Meirow, Hadar; Last, David; Grad, Etty; Salomon, Sharona; Sharabi, Shirley; Levi-Kalisman, Yael; Golomb, Gershon; Mardor, Yael

    2017-09-10

    Even though some progress in diagnosis and treatment has been made over the years, there is still no definitive treatment available for Glioblastoma multiforme (GBM). Convection-enhanced delivery (CED), a continuous infusion-mediated pressure gradient via intracranial catheters, studied in clinical trials, enables in situ drug concentrations several orders of magnitude greater than those achieved by systemic administration. We hypothesized that the currently limited efficacy of CED could be enhanced by a liposomal formulation, thus achieving enhanced drug localization to the tumor site with minimal toxicity. We hereby describe a novel approach for treating GBM by CED of liposomes containing the known chemotherapeutic agent, temozolomide (TMZ). A new technique for encapsulating TMZ in hydrophilic (PEGylated) liposomes, characterized by nano-size (121nm), low polydispersity index (<0.13) and with near-neutral charge (-ʒ,0.2mV), has been developed. Co-infusion of PEGylated Gd-DTPA liposomes and TMZ-liposomes by CED in GBM bearing rats, resulted in enhanced tumor detection with longer residence time than free Gd-DTPA. Treatment of GBM-bearing rats with either TMZ solution or TMZ-liposomes resulted in greater tumor inhibition and significantly higher survival. However, the longer survival and smaller tumor volumes exhibited by TMZ liposomal treatment in comparison to TMZ in solution were insignificant (p<0.053); and only significantly lower edema volumes were observed. Thus, there are no clear-cut advantages to use a liposomal delivery system of TMZ via CED over a drug solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Consumption of Probiotic Lactobacillus fermentum MTCC: 5898-Fermented Milk Attenuates Dyslipidemia, Oxidative Stress, and Inflammation in Male Rats Fed on Cholesterol-Enriched Diet.

    PubMed

    Yadav, Radha; Khan, Suhail Hakeem; Mada, Sanusi Bello; Meena, Sunita; Kapila, Rajeev; Kapila, Suman

    2018-05-13

    There is a growing and alarming prevalence that increased serum cholesterol is closely related to increased cardiovascular disease risk. Probiotic consumption could be a safe and natural strategy to combat. Therefore, we sought to examine the cholesterol-lowering potential of co-supplementation of probiotic bacteria Lactobacillus fermentum MTCC: 5898-fermented buffalo milk (2.5% fat) in rats fed cholesterol-enriched diet. Male Wistar rats were divided into three groups on the basis of feed, viz. group 1, fed standard diet (SD); group 2, fed cholesterol-enriched diet (CED); and group 3, fed cholesterol-enriched diet along with L. fermentum MTCC: 5898-fermented milk (CED+LF) for 90 days. At the endpoint, significantly higher levels of serum total cholesterol, low-density lipoprotein cholesterol, triacylglycerols, very low density lipoprotein cholesterol, atherogenic index, coronary artery risk index, hepatic lipids, lipid peroxidation, and mRNA expression of inflammatory cytokines (TNF-α and IL-6) in the liver while significantly lower levels of serum high-density lipoprotein cholesterol and anti-oxidative enzyme activities, catalase, superoxide dismutase, and glutathione peroxidase in the liver and kidney were observed in the CED group compared to the SD group. Compared to the CED group, these adverse physiological alterations were found significantly improved in the CED+LF group. Hence, this study proposes that L. fermentum MTCC: 5898 is a potential probiotic bacteria that can be consumed to tackle hypercholesterolemia. Graphical Abstract ᅟ.

  5. Traditional food consumption and nutritional status of Dalit mothers in rural Andhra Pradesh, South India.

    PubMed

    Schmid, M A; Egeland, G M; Salomeyesudas, B; Satheesh, P V; Kuhnlein, H V

    2006-11-01

    To describe prevalence of malnutrition and their correlates of nutrient and traditional food consumption in rural Dalit mothers. In a cross-sectional study, we used socio-cultural questionnaires, anthropometric measurements and clinical eye examinations during the rainy season in 2003. Food frequency questionnaires and 24-h recalls were conducted during both summer and rainy seasons. Dalit mothers with young children were recruited from 37 villages in the Medak District of rural Andhra Pradesh, India. Dalit mothers (n = 220) participated. The prevalence of chronic energy-deficient (CED) mothers (body mass index <18.5 kg/m2) was 58%. Illiterate women and active women were more likely to have CED than those literate and non-active (relative risks (RR) = 1.6 and 1.4, respectively, P < or = 0.05), but literacy and activity level were not significant in multivariable analyses including sanitation and number of children < or =5 years of age. Increasing levels of fat intake, as a percent of total energy, was significantly associated with lower risk of CED (RR of the lowest 25th percentile compared to those in the 75th percentile or above was 1.6, P < or = 0.05), findings that remained significant in multivariable analyses. Consumption of pulses (g/day) was also inversely related to CED in univariate and multivariable analyses. Carbohydrate intake, as a percent of total energy, was inversely related to percent energy from fat (r = -0.96, P < or = 0.01), and, although positively related to CED in univariate analyses, carbohydrate consumption was not significant in multivariable analyses. Mothers' age in years and income was positively related to vitamin A deficiency. These results confirm that CED and vitamin A malnutrition among Dalit women are predominant problems in this area. Increased consumption of local traditional Dalit food (particularly sorghum, pulses, vegetables and animal source food) should be incorporated as an important component of intervention strategies to improve nutritional status.

  6. Poor drug distribution as a possible explanation for the results of the PRECISE trial.

    PubMed

    Sampson, John H; Archer, Gary; Pedain, Christoph; Wembacher-Schröder, Eva; Westphal, Manfred; Kunwar, Sandeep; Vogelbaum, Michael A; Coan, April; Herndon, James E; Raghavan, Raghu; Brady, Martin L; Reardon, David A; Friedman, Allan H; Friedman, Henry S; Rodríguez-Ponce, M Inmaculada; Chang, Susan M; Mittermeyer, Stephan; Croteau, David; Puri, Raj K

    2010-08-01

    Convection-enhanced delivery (CED) is a novel intracerebral drug delivery technique with considerable promise for delivering therapeutic agents throughout the CNS. Despite this promise, Phase III clinical trials employing CED have failed to meet clinical end points. Although this may be due to inactive agents or a failure to rigorously validate drug targets, the authors have previously demonstrated that catheter positioning plays a major role in drug distribution using this technique. The purpose of the present work was to retrospectively analyze the expected drug distribution based on catheter positioning data available from the CED arm of the PRECISE trial. Data on catheter positioning from all patients randomized to the CED arm of the PRECISE trial were available for analyses. BrainLAB iPlan Flow software was used to estimate the expected drug distribution. Only 49.8% of catheters met all positioning criteria. Still, catheter positioning score (hazard ratio 0.93, p = 0.043) and the number of optimally positioned catheters (hazard ratio 0.72, p = 0.038) had a significant effect on progression-free survival. Estimated coverage of relevant target volumes was low, however, with only 20.1% of the 2-cm penumbra surrounding the resection cavity covered on average. Although tumor location and resection cavity volume had no effect on coverage volume, estimations of drug delivery to relevant target volumes did correlate well with catheter score (p < 0.003), and optimally positioned catheters had larger coverage volumes (p < 0.002). Only overall survival (p = 0.006) was higher for investigators considered experienced after adjusting for patient age and Karnofsky Performance Scale score. The potential efficacy of drugs delivered by CED may be severely constrained by ineffective delivery in many patients. Routine use of software algorithms and alternative catheter designs and infusion parameters may improve the efficacy of drugs delivered by CED.

  7. Convection enhanced delivery of panobinostat (LBH589)-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model

    PubMed Central

    Singleton, WG; Collins, AM; Bienemann, AS; Killick-Cole, CL; Haynes, HR; Asby, DJ; Butts, CP; Wyatt, MJ; Barua, NU; Gill, SS

    2017-01-01

    Background The pan-histone deacetylase inhibitor panobinostat is a potential therapy for malignant glioma, but it is water insoluble and does not cross the blood–brain barrier when administered systemically. In this article, we describe the in vitro and in vivo efficacy of a novel water-soluble nano-micellar formulation of panobinostat designed for administration by convection enhanced delivery (CED). Materials and methods The in vitro efficacy of panobinostat-loaded nano-micelles against rat F98, human U87-MG and M059K glioma cells and against patient-derived glioma stem cells was measured using a cell viability assay. Nano-micelle distribution in rat brain was analyzed following acute CED using rhodamine-labeled nano-micelles, and toxicity was assayed using immunofluorescent microscopy and synaptophysin enzyme-linked immunosorbent assay. We compared the survival of the bioluminescent syngenic F98/Fischer344 rat glioblastoma model treated by acute CED of panobinostat-loaded nano-micelles with that of untreated and vehicle-only-treated controls. Results Nano-micellar panobinostat is cytotoxic to rat and human glioma cells in vitro in a dose-dependent manner following short-time exposure to drug. Fluorescent rhodamine-labelled nano-micelles distribute with a volume of infusion/volume of distribution (Vi/Vd) ratio of four and five respectively after administration by CED. Administration was not associated with any toxicity when compared to controls. CED of panobinostat-loaded nano-micelles was associated with significantly improved survival when compared to controls (n=8 per group; log-rank test, P<0.001). One hundred percent of treated animals survived the 60-day experimental period and had tumour response on post-mortem histological examination. Conclusion CED of nano-micellar panobinostat represents a potential novel therapeutic option for malignant glioma and warrants translation into the clinic. PMID:28260886

  8. Determination of glycated nucleobases in human urine by a new monoclonal antibody specific for N2-carboxyethyl-2'-deoxyguanosine.

    PubMed

    Schneider, Marc; Thoss, Gerlinde; Hübner-Parajsz, Christa; Kientsch-Engel, Rose; Stahl, Peter; Pischetsrieder, Monika

    2004-10-01

    Sugars and sugar degradation products react in vivo readily with proteins (glycation) resulting in the formation of a heterogeneous group of reaction products, which are called advanced glycation end products (AGEs). AGEs notably change the structure and function of proteins so that extended protein-AGE formation is linked to complications such as nephropathy, atherosclerosis, and cataract. DNA can be glycated in vitro in a similar way as proteins, and the two diastereomers of N(2)-carboxyethyl-2'-deoxyguanosine (CEdG(A,B)) were identified as major DNA AGEs. It was postulated that DNA AGEs play an important role in aging, diabetes, and uremia. However, at the moment, sensitive methods to measure the extent and impact of DNA AGEs in vivo do not exist. In this study, we developed a monoclonal antibody, which recognized CEdG(A,B) with high affinity and specificity (MAb M-5.1.6). The I(50) value for CEdG(A,B) was 2.1 ng/mL, whereas other modified nuclueobases and AGE proteins showed negligible cross-reactivity. Unmodified 2'-deoxyguanosine was only weakly recognized with an I(50) value > 600,000 ng/mL, which is the limit of solubility. MAb M-5.1.6 was then used to measure the urinary excretion of AGE-modified nucleobases in a competitive enzyme-linked immunosorbent assay. The recovery of CEdG(A,B) from human urine was between 87.4 and 99.7% with coefficients of variations between 8.0 and 22.2%. The detection limit was 0.06 ng/mL, and the determination limit was 0.15 ng/mL with a linear range between 0.3 and 100 ng/mL. CEdG equivalents were analyzed in urine samples from 121 healthy volunteers, and concentrations between 1.2 and 117 ng CEdG equiv/mg creatinine were detected.

  9. Repeat Intracranial Expansion After Skull Regrowth in Hyperostotic Disease: Technical Note.

    PubMed

    Wong, Timothy; Herschman, Yehuda; Patel, Nitesh V; Patel, Tushar; Hanft, Simon

    2017-06-01

    Camurati-Engelmann disease (CED) is a rare, autosomal-dominant genetic disorder resulting in hyperostosis of the long bones and skull. Patients often develop cranial nerve dysfunction and increased intracranial pressure secondary to stenosis of nerve foramina and hyperostosis. Surgical decompression may provide symptomatic relief in select patients; however, a small number of reports document the recurrence of symptoms due to bony regrowth. We present a patient who had been treated previously with bilateral frontal and parietal craniotomy who experienced recurrence of symptoms due to reossification of her cranial bones. This report underscores the progressive nature of CED and its influence on surgical management. Furthermore, we propose a novel surgical approach with multiple craniectomies and titanium mesh cranioplasties that could potentially offer long-term symptomatic relief. A 46-year-old female patient with CED who was treated with ventriculoperitoneal shunting, posterior fossa decompression, and multiple craniotomies 2 decades prior presented with signs and symptoms of increased intracranial pressure. Studies of the skull at presentation demonstrated rethickening of cranial bones that resulted in severely decreased intracranial volume. A radical craniectomy, requiring 4 separate bone flaps made up of bilateral frontal and parietal bones, was performed. The remaining coronal and sagittal bony struts were drilled to approximately 1 cm thick. Cranioplasties with 4 separate titanium meshes were performed to preserve the natural contour of the patient's skull. Although surgical decompression could provide some patients with CED symptomatic relief, clinicians should consider managing CED as a chronic condition. To the authors' knowledge, this is one of few case reports documenting the recurrence of symptoms in a patient with CED treated by surgical intervention. Furthermore, we propose that multiple craniectomies with titanium mesh cranioplasties confer more permanent symptomatic control, and, more importantly, lower the risk of recurrence secondary to cranial hyperostosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Necrotic Cells Actively Attract Phagocytes through the Collaborative Action of Two Distinct PS-Exposure Mechanisms

    PubMed Central

    Li, Zao; Venegas, Victor; Nagaoka, Yuji; Morino, Eri; Raghavan, Prashant; Audhya, Anjon; Nakanishi, Yoshinobu; Zhou, Zheng

    2015-01-01

    Necrosis, a kind of cell death closely associated with pathogenesis and genetic programs, is distinct from apoptosis in both morphology and mechanism. Like apoptotic cells, necrotic cells are swiftly removed from animal bodies to prevent harmful inflammatory and autoimmune responses. In the nematode Caenorhabditis elegans, gain-of-function mutations in certain ion channel subunits result in the excitotoxic necrosis of six touch neurons and their subsequent engulfment and degradation inside engulfing cells. How necrotic cells are recognized by engulfing cells is unclear. Phosphatidylserine (PS) is an important apoptotic-cell surface signal that attracts engulfing cells. Here we observed PS exposure on the surface of necrotic touch neurons. In addition, the phagocytic receptor CED-1 clusters around necrotic cells and promotes their engulfment. The extracellular domain of CED-1 associates with PS in vitro. We further identified a necrotic cell-specific function of CED-7, a member of the ATP-binding cassette (ABC) transporter family, in promoting PS exposure. In addition to CED-7, anoctamin homolog-1 (ANOH-1), the C. elegans homolog of the mammalian Ca2+-dependent phospholipid scramblase TMEM16F, plays an independent role in promoting PS exposure on necrotic cells. The combined activities from CED-7 and ANOH-1 ensure efficient exposure of PS on necrotic cells to attract their phagocytes. In addition, CED-8, the C. elegans homolog of mammalian Xk-related protein 8 also makes a contribution to necrotic cell-removal at the first larval stage. Our work indicates that cells killed by different mechanisms (necrosis or apoptosis) expose a common “eat me” signal to attract their phagocytic receptor(s); furthermore, unlike what was previously believed, necrotic cells actively present PS on their outer surfaces through at least two distinct molecular mechanisms rather than leaking out PS passively. PMID:26061275

  11. Analysis of environmental and general science efficacy among instructors with contrasting class ethnicity distributions: A four-dimensional assessment

    NASA Astrophysics Data System (ADS)

    Taylor, Bryan Keith

    Scope and method of study. The context and nature of self-efficacy beliefs provides a vector upon which to explore science instructors' perceptions of their own competence, self beliefs, and beliefs concerning their students as a function of ethnicity (Pajares, 1996). Currently, available cross-sectional data that concomitantly compares efficacy for environmental and general science curricula among instructors with contrasting class ethnicity distributions (CED) (minority vs. non-minority) is diminutive. Here, a modified research instrument that incorporates the Environmental Education Efficacy Belief Instrument (Sia, 1992), the Science Teaching Efficacy Beliefs Instrument (Riggs & Enochs, 1990), and factors 2 & 3 from the Ohio State Teacher Efficacy Scale (Tschannen-Moran & Hoy, 2001) is employed to create a bi-disciplinary four dimensional assessment that measures personal teacher efficacy (PTE), outcome expectancy (OE), classroom management (CM), and student engagement (SE). Instructors' willingness to, and utilization of, practical instruction to reinforce science learning is also assessed. Findings and conclusions. Overall, efficacy levels for environmental and general science curriculum among instructors with high minority CED (n=22) were consistently lower than that of instructors with high non-minority CED (n = 18); consistently diminished efficacy levels were evidenced upon analysis of CED and all independent variables analyzed. While all four dimensions of efficacy were consistently low for instructors with high minority CED, markedly low mean CM and SE responses were evidenced. A link exists between teacher self-efficacy and the conditions present that impinge on the successful completion of work goals (Metz, 1978). Many studies have examined the lowered-level of minority involvement in environmental careers, issues, and concerns (Taylor, 1989). While all science instructors were willing to utilize outdoor classrooms, markedly lower outdoor classroom utilization was evidenced among instructors with high minority CED. The consistently low efficacy scores referenced herein for science instructors with high minority CED can be utilized to highlight science teacher efficacy as a critical point of concern as well as a crucial factor in tracing the genesis of the minority achievement gap in science. This research provides for the determination of efficacy as a contributive factor within the pathway for substantive rationale underlying the lack of minority representation and achievement within the many disciplines of science.

  12. A New Partnership: Reshaping the Federal and State Commitment to Need-Based Aid

    ERIC Educational Resources Information Center

    Doyle, William R.

    2013-01-01

    The Committee for Economic Development (CED) is pleased to present these research findings regarding ways to reform student financial aid. In 2012, CED released "Boosting Postsecondary Education Performance"--calling on business to become active advocates at the state level for broad-access institutions that are so vital to the nation's…

  13. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies

    PubMed Central

    Jahangiri, Arman; Chin, Aaron T.; Flanigan, Patrick M.; Chen, Rebecca; Bankiewicz, Krystof; Aghi, Manish K.

    2017-01-01

    Glioblastoma is the most common malignant brain tumor, and it carries an extremely poor prognosis. Attempts to develop targeted therapies have been hindered because the blood-brain barrier prevents many drugs from reaching tumors cells. Furthermore, systemic toxicity of drugs often limits their therapeutic potential. A number of alternative methods of delivery have been developed, one of which is convection-enhanced delivery (CED), the focus of this review. The authors describe CED as a therapeutic measure and review preclinical studies and the most prominent clinical trials of CED in the treatment of glioblastoma. The utilization of this technique for the delivery of a variety of agents is covered, and its shortcomings and challenges are discussed in detail. PMID:27035164

  14. Medical regulation of cognitive enhancement devices: some concerns

    PubMed Central

    King, Mike; Gavaghan, Colin; McMillan, John

    2014-01-01

    The authors present a cogent and detailed case for altering the Medical Devices Directive to allow regulation of cognitive enhancement devices (CEDs). Protection against significant risk of harm, especially for the vulnerable, and promotion of benefit through informed use of CEDs are all good features of the proposal. However, the pre-market approval process has limitations, which we explore. We raise the possibility of ‘risk compensation’ in response to the introduction of safety measures, which could alter its effectiveness. The proposal alludes to use of ‘formally trained practitioners,’ which provide a further tier of regulation for CEDs within the proposal. We consider some positive and negative implications of this aspect of the proposal that might warrant further consideration. PMID:27774173

  15. Biomedical study on combined effects of simulated weightlessness and emergent depressurization of spacecraft

    NASA Astrophysics Data System (ADS)

    Yang, T. D.; Zhang, R. G.; Wang, C. M.; Fu, H. W.; Zhang, B. L.; Zhang, J. X.

    1999-01-01

    Cabin emergent depressurization (CED) may occur in spacecraft during manned space flight. The purpose of this paper was to study the combined effects of simulated weightlessness (SW) and CED factors on humans and animals. It was found that the amplitude of T wave of human electrocardiograms (ECG) significantly decreased in bed rest and hypoxia compared with the control condition (P<0.05), and that suspension with pure O2 induced severer edema in the lungs of rats than that in only a pure O2 environment. SW and pure O2 caused middle ear congestion and decreased the barofunction during pressure changes. These results indicate that human response to CED factors become more serious under SW because of the blood redistribution.

  16. [Pay attention to the corneal epithelial cell dysfunction after cataract surgery].

    PubMed

    Sun, Xuguang; Wang, Sen

    2015-03-01

    Corneal epithelial dysfunction ( CED ) is the abnormality of the regeneration, conjunction, adhesion and immigration of the corneal epithelium cells without the decompensation of the corneal limbal cells. Due to the affection resulting from the systemic problems of patients and the management in the preoperative period, some of the patients at one to two weeks after cataract surgery will present the edema and fluorescein staining of the corneal epithelium. Without correct therapy, the defect of the epithelium, or even persisting ulceration of the cornea will occur. The key points of the management for CED are the early diagnosis and reasonable therapy. We suggest paying special attention to CED in the patients with metabolism diseases, abnormality of the tear film and long-term blepharitis.

  17. Inflation and acceleration of the universe by nonlinear magnetic monopole fields

    NASA Astrophysics Data System (ADS)

    Övgün, A.

    2017-02-01

    Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.

  18. Dark matter and weak signals of quantum spacetime

    NASA Astrophysics Data System (ADS)

    Doplicher, Sergio; Fredenhagen, Klaus; Morsella, Gerardo; Pinamonti, Nicola

    2017-03-01

    In physically motivated models of quantum spacetime, a U (1 ) gauge theory turns into a U (∞ ) gauge theory; hence, free classical electrodynamics is no longer free and neutral fields may have electromagnetic interactions. We discuss the last point for scalar fields, as a way to possibly describe dark matter; we have in mind the gravitational collapse of binary systems or future applications to self-gravitating Bose-Einstein condensates as possible sources of evidence of quantum gravitational phenomena. The effects considered so far, however, seem too faint to be detectable at present.

  19. The perspective of celiac disease patients on emerging treatment options and non-celiac gluten sensitivity.

    PubMed

    Greuter, Thomas; Schmidlin, Sandra; Lattmann, Jaqueline; Stotz, Matthias; Lehmann, Romina; Zeitz, Jonas; Scharl, Michael; Misselwitz, Benjamin; Pohl, Daniel; Fried, Michael; Tutuian, Radu; Fasano, Alessio; Schoepfer, Alain M; Rogler, Gerhard; Biedermann, Luc; Vavricka, Stephan R

    2017-03-01

    Non-celiac gluten sensitivity (NCGS) and emerging treatment options are hot topics in the celiac disease (CeD) scientific literature. However, very little is known about the perspective on these issues of CeD patients. We performed a large patient survey among unselected CeD patients in Switzerland. A total of 1689 patients were analyzed. 57.5% have previously heard of NCGS. 64.5% believe in the existence of this entity. Regarding a potential influence of NCGS on CeD awareness, 31.7% show a positive and 27.5% a negative perception. Patients with prior use of alternative medicine and women more often have heard of and believe in the existence of NCGS vs. those never having used alternative methods and men, respectively (66.9 vs. 56.9%, p=0.001 and 78.5 vs. 69.0%, p=0.001; 60.7 vs. 44.2%, p<0.001 and 71.0 vs. 60.8%, p=0.002). Women and patients ≥30 years more often show a negative attitude towards NCGS (32.2% vs. 24.8%, p=0.024 and 32.2% vs. 24.2%, p=0.018). With regard to emerging treatment options for CeD, 43.3% have previously heard of novel agents, more women than men (46.0 vs. 38.0%, p=0.019). Perception of and attitude towards NCGS differ depending on sex, age and prior use of alternative medicine. Knowledge of the progress towards emerging treatment options is currently limited. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  20. New insights into apoptosome structure and function.

    PubMed

    Dorstyn, Loretta; Akey, Christopher W; Kumar, Sharad

    2018-05-15

    The apoptosome is a platform that activates apical procaspases in response to intrinsic cell death signals. Biochemical and structural studies in the past two decades have extended our understanding of apoptosome composition and structure, while illuminating the requirements for initiator procaspase activation. A number of studies have now provided high-resolution structures for apoptosomes from C. elegans (CED-4), D. melanogaster (Dark), and H. sapiens (Apaf-1), which define critical protein interfaces, including intra and interdomain interactions. This work also reveals interactions of apoptosomes with their respective initiator caspases, CED-3, Dronc and procaspase-9. Structures of the human apoptosome have defined the requirements for cytochrome c binding, which triggers the conversion of inactive Apaf-1 molecules to an extended, assembly competent state. While recent data have provided a detailed understanding of apoptosome formation and procaspase activation, they also highlight important evolutionary differences with functional implications for caspase activation. CARD/CARD interactions in the CED-4, Dark and Apaf-1 apoptosomes. Type I, II and III interfaces that stabilize CARD-CARD interactions are indicated (left column). Note that the Type I interface appears to be unique to Apaf-1/pc-9 CARD interactions. Middle column shows cartoons of the active states of the CARD-CARD disks, illustrating the two CED-4 tetrameric ring layers (top) and the recruitment of 8 Dronc CARDs and between 3-4 pc-9 CARDs, to the Dark and Apaf-1 apoptosomes respectively (middle and lower panels). Ribbon diagrams of the CED-4, Dark and Apaf-1 apoptosomes are shown (right column).

  1. Synthesis and photocatalytic studies of ZnS nanoparticles from heteroleptic complex of Zn(II) 1-cyano-1-carboethoxy-2,-2-ethylenedithiolato diisopropylthiourea and its adducts with N-donor ligands

    NASA Astrophysics Data System (ADS)

    Osuntokun, Jejenija; Ajibade, Peter A.; Onwudiwe, Damian C.

    2016-12-01

    Zinc complexes of the type [Zn(diptu)2(ced)] (1), [Zn(diptu)2(ced)py] (2), [Zn(diptu)2(ced)bpy] (3), and [Zn(diptu)2(ced)phen] (4), (where (diptu)2(ced) = 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S‧-bis(N,N-diisopropyllthiourea), py = pyridine, bpy = 2, 2‧ bipyridine and phen = 1, 10 phenanthroline have been synthesized and characterized by elemental analyses, Fourier transform infra-red (FTIR) and Nuclear magnetic resonance (NMR) spectroscopies. The parent complex (1) was formulated as four coordinate species, which gave rise to 5 coordinate complex in (2) and six coordinate compounds in (3) and (4), with the dithiolate acting as bidentate chelating ligand. The complexes were used as single-source precursors for the synthesis of HDA-capped ZnS nanoparticles. The nanoparticles gave different morphologies with sizes in the range of 1.92-4.72 nm as observed from the TEM analysis and supported by XRD. The UV-vis spectroscopy showed that all the ZnS nanoparticles are blue shifted, with respect to the bulk, which confirmed quantum confinement. The photoluminescence spectra showed narrow and broad emission peaks around 290 and 360 nm which are ascribed to spontaneous emission peaks from band to band transition and surface states respectively. Photocatalytic activities of all the nanoparticles were investigated with methylene blue (MB) acting as the organic dye, and the UV-vis spectral revealed a gradual decrease in absorption peak that confirmed the degradation of the MB.

  2. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  3. Multiscale Electrodynamics/Time-Dependent Density Functional Theory Modeling of Coupled Plasmon/Molecule Excitations

    NASA Astrophysics Data System (ADS)

    Lopata, Kenneth; Smith, Holden

    The coupled dynamics of molecular chromophores and plasmons at surface of metal nanostructures are important for a range of processes such as molecular sensing, light harvesting, and near-field photochemistry. Modeling these dynamics from first principles, however, is challenging, as the large system sizes precludes a purely quantum mechanical treatment. In this talk I will present an approach based on propagating the plasmonic currents and fields using electrodynamics (finite-difference time-domain) with each chromophore described using an isolated quantum sub-region embedded in the overall classical background. This approach can be readily parallelized over these quantum regions, which enables large multiscale simulations of tens or hundreds of dyes, each of which is described individually by real-time time-dependent density functional theory. Application to gold nanoparticles coated with malachite green and rhodamine 6G monolayers shows good agreement with experimentally measured coupling spectra, including the polariton peaks, as well as the plasmon and molecular depletions. This research was supported by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  4. X-ray phase-contrast imaging: the quantum perspective

    NASA Astrophysics Data System (ADS)

    Slowik, J. M.; Santra, R.

    2013-08-01

    Time-resolved phase-contrast imaging using ultrafast x-ray sources is an emerging method to investigate ultrafast dynamical processes in matter. Schemes to generate attosecond x-ray pulses have been proposed, bringing electronic timescales into reach and emphasizing the demand for a quantum description. In this paper, we present a method to describe propagation-based x-ray phase-contrast imaging in nonrelativistic quantum electrodynamics. We explain why the standard scattering treatment via Fermi’s golden rule cannot be applied. Instead, the quantum electrodynamical treatment of phase-contrast imaging must be based on a different approach. It turns out that it is essential to select a suitable observable. Here, we choose the quantum-mechanical Poynting operator. We determine the expectation value of our observable and demonstrate that the leading order term describes phase-contrast imaging. It recovers the classical expression of phase-contrast imaging. Thus, it makes the instantaneous electron density of non-stationary electronic states accessible to time-resolved imaging. Interestingly, inelastic (Compton) scattering does automatically not contribute in leading order, explaining the success of the semiclassical description.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zadora, A. S., E-mail: as.zadora@physics.msu.ru

    The objective of the present study is to consider in more detail the exotic color-charge-glow effect discovered recently and to analyze its possible physical manifestations associated with the treatment of ensembles of color-charged particles at a classical level. The ways in which this effect may appear in arbitrary systems consisting of pointlike massive particles and admitting the partition into elementary configurations like color charges and color dipoles are studied. The possible influence of this effect on particle dynamics (in particular, on gluon distributions) is also examined. Particle collisions at a given impact parameters are considered for a natural regularization ofmore » emerging expressions. It is shown that, in the case of reasonable impact-parameter values, collisions may proceed in the electrodynamic mode, in which case the charge-glow contribution to field strengths is suppressed in relation to what we have in the electrodynamic picture. From an analysis of the color-echo situation, it follows that the above conclusion remains valid for more complicated particle configurations as well, since hard gluon fields may arise only owing to a direct collision rather than owing to any echo-like effects.« less

  6. Perspectives on a Policy That Never Was: Trying To Enhance Multiculturalism in a University Setting.

    ERIC Educational Resources Information Center

    Greenwald, Beatrice

    This paper discusses the failure of the University of Washington to formulate a policy regarding the establishment of a Cultural and Ethnic Diversity (CED) course requirement for undergraduates despite nine years of efforts to do so, tracing the efforts to establish a CED requirement, along with the arguments for and against such a requirement. It…

  7. Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser

    PubMed Central

    Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria

    2017-01-01

    Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas. PMID:28098175

  8. Convection-enhanced delivery for the treatment of brain tumors

    PubMed Central

    Debinski, Waldemar; Tatter, Stephen B

    2013-01-01

    The brain is highly accessible for nutrients and oxygen, however delivery of drugs to malignant brain tumors is a very challenging task. Convection-enhanced delivery (CED) has been designed to overcome some of the difficulties so that pharmacological agents that would not normally cross the BBB can be used for treatment. Drugs are delivered through one to several catheters placed stereotactically directly within the tumor mass or around the tumor or the resection cavity. Several classes of drugs are amenable to this technology including standard chemotherapeutics or novel experimental targeted drugs. The first Phase III trial for CED-delivered, molecularly targeted cytotoxin in the treatment of recurrent glioblastoma multiforme has been accomplished and demonstrated objective clinical efficacy. The lessons learned from more than a decade of attempts at exploiting CED for brain cancer treatment weigh critically for its future clinical applications. The main issues center around the type of catheters used, number of catheters and their exact placement; pharmacological formulation of drugs, prescreening patients undergoing treatment and monitoring the distribution of drugs in tumors and the tumor-infiltrated brain. It is expected that optimizing CED will make this technology a permanent addition to clinical management of brain malignancies. PMID:19831841

  9. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts

    PubMed Central

    Krauze, Michal T.; Noble, Charles O.; Kawaguchi, Tomohiro; Drummond, Daryl; Kirpotin, Dmitri B.; Yamashita, Yoji; Kullberg, Erika; Forsayeth, John; Park, John W.; Bankiewicz, Krystof S.

    2007-01-01

    We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors. PMID:17652269

  10. Drug-carrying microbubbles as a theranostic tool in convection-enhanced delivery for brain tumor therapy.

    PubMed

    Chen, Pin-Yuan; Yeh, Chih-Kuang; Hsu, Po-Hung; Lin, Chung-Yin; Huang, Chiung-Yin; Wei, Kuo-Chen; Liu, Hao-Li

    2017-06-27

    Convection-enhanced delivery (CED) is a promising technique for infusing a therapeutic agent through a catheter with a pressure gradient to create bulk flow for improving drug spread into the brain. So far, gadopentetate dimeglumine (Gd-DTPA) is the most commonly applied surrogate agent for predicting drug distribution through magnetic resonance imaging (MRI). However, Gd-DTPA provides only a short observation duration, and concurrent infusion provides an indirect measure of the exact drug distribution. In this study, we propose using microbubbles as a contrast agent for MRI monitoring, and evaluate their use as a drug-carrying vehicle to directly monitor the infused drug. Results show that microbubbles can provide excellent detectability through MRI relaxometry and accurately represent drug distribution during CED infusion. Compared with the short half-life of Gd-DTPA (1-2 hours), microbubbles allow an extended observation period of up to 12 hours. Moreover, microbubbles provide a sufficiently high drug payload, and glioma mice that underwent a CED infusion of microbubbles carrying doxorubicin presented considerable tumor growth suppression and a significantly improved survival rate. This study recommends microbubbles as a new theranostic tool for CED procedures.

  11. The CEBAF Element Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theodore Larrieu, Christopher Slominski, Michele Joyce

    2011-03-01

    With the inauguration of the CEBAF Element Database (CED) in Fall 2010, Jefferson Lab computer scientists have taken a step toward the eventual goal of a model-driven accelerator. Once fully populated, the database will be the primary repository of information used for everything from generating lattice decks to booting control computers to building controls screens. A requirement influencing the CED design is that it provide access to not only present, but also future and past configurations of the accelerator. To accomplish this, an introspective database schema was designed that allows new elements, types, and properties to be defined on-the-fly withmore » no changes to table structure. Used in conjunction with Oracle Workspace Manager, it allows users to query data from any time in the database history with the same tools used to query the present configuration. Users can also check-out workspaces to use as staging areas for upcoming machine configurations. All Access to the CED is through a well-documented Application Programming Interface (API) that is translated automatically from original C++ source code into native libraries for scripting languages such as perl, php, and TCL making access to the CED easy and ubiquitous.« less

  12. Experimental Quantum Randomness Processing Using Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R.; Sun, Luyan; Ma, Xiongfeng

    2016-07-01

    Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.

  13. Periodic Application of Concurrent Error Detection in Processor Array Architectures. PhD. Thesis -

    NASA Technical Reports Server (NTRS)

    Chen, Paul Peichuan

    1993-01-01

    Processor arrays can provide an attractive architecture for some applications. Featuring modularity, regular interconnection and high parallelism, such arrays are well-suited for VLSI/WSI implementations, and applications with high computational requirements, such as real-time signal processing. Preserving the integrity of results can be of paramount importance for certain applications. In these cases, fault tolerance should be used to ensure reliable delivery of a system's service. One aspect of fault tolerance is the detection of errors caused by faults. Concurrent error detection (CED) techniques offer the advantage that transient and intermittent faults may be detected with greater probability than with off-line diagnostic tests. Applying time-redundant CED techniques can reduce hardware redundancy costs. However, most time-redundant CED techniques degrade a system's performance.

  14. Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles

    NASA Astrophysics Data System (ADS)

    Wang, Weihua; Christensen, Thomas; Jauho, Antti-Pekka; Thygesen, Kristian S.; Wubs, Martijn; Mortensen, N. Asger

    2015-04-01

    In classical electrodynamics, nanostructured graphene is commonly modeled by the computationally demanding problem of a three-dimensional conducting film of atomic-scale thickness. Here, we propose an efficient alternative two-dimensional electrostatic approach where all calculation procedures are restricted to the graphene sheet. Furthermore, to explore possible quantum effects, we perform tight-binding calculations, adopting a random-phase approximation. We investigate multiple plasmon modes in 20 nm equilateral triangles of graphene, treating the optical response classically as well as quantum mechanically. Compared to the classical plasmonic spectrum which is ``blind'' to the edge termination, we find that the quantum plasmon frequencies exhibit blueshifts in the case of armchair edge termination of the underlying atomic lattice, while redshifts are found for zigzag edges. Furthermore, we find spectral features in the zigzag case which are associated with electronic edge states not present for armchair termination. Merging pairs of triangles into dimers, plasmon hybridization leads to energy splitting that appears strongest in classical calculations while splitting is lower for armchair edges and even more reduced for zigzag edges. Our various results illustrate a surprising phenomenon: Even 20 nm large graphene structures clearly exhibit quantum plasmonic features due to atomic-scale details in the edge termination.

  15. Relating renormalizability of D-dimensional higher-order electromagnetic and gravitational models to the classical potential at the origin

    NASA Astrophysics Data System (ADS)

    Accioly, Antonio; Correia, Gilson; de Brito, Gustavo P.; de Almeida, José; Herdy, Wallace

    2017-03-01

    Simple prescriptions for computing the D-dimensional classical potential related to electromagnetic and gravitational models, based on the functional generator, are built out. These recipes are employed afterward as a support for probing the premise that renormalizable higher-order systems have a finite classical potential at the origin. It is also shown that the opposite of the conjecture above is not true. In other words, if a higher-order model is renormalizable, it is necessarily endowed with a finite classical potential at the origin, but the reverse of this statement is untrue. The systems used to check the conjecture were D-dimensional fourth-order Lee-Wick electrodynamics, and the D-dimensional fourth- and sixth-order gravity models. A special attention is devoted to New Massive Gravity (NMG) since it was the analysis of this model that inspired our surmise. In particular, we made use of our premise to resolve trivially the issue of the renormalizability of NMG, which was initially considered to be renormalizable, but it was shown some years later to be non-renormalizable. We remark that our analysis is restricted to local models in which the propagator has simple and real poles.

  16. Unfinished Business: Continued Investment in Child Care and Early Education is Critical to Business and America's Future

    ERIC Educational Resources Information Center

    Committee for Economic Development, 2012

    2012-01-01

    The Committee for Economic Development (CED) has a decades-old commitment to quality early childhood education. CED Trustees have always been in the forefront of the effort to promote early learning and development for all children. Over recent years, the case for investment in the early years of childhood has become stronger and more urgent.…

  17. The anticholinergic and antiglutamatergic drug caramiphen reduces seizure duration in soman-exposed rats: Synergism with the benzodiazepine diazepam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, M.K.; Wright, L.K.M.; Stone, M.F.

    2012-03-15

    Therapy of seizure activity following exposure to the nerve agent soman (GD) includes treatment with the anticonvulsant diazepam (DZP), an allosteric modulator of γ-aminobutyric acid A (GABA{sub A}) receptors. However, seizure activity itself causes the endocytosis of GABA{sub A} receptors and diminishes the inhibitory effects of GABA, thereby reducing the efficacy of DZP. Treatment with an N-methyl-D-aspartic acid (NMDA) receptor antagonist prevents this reduction in GABAergic inhibition. We examined the efficacy of the NMDA receptor antagonist caramiphen edisylate (CED; 20 mg/kg, im) and DZP (10 mg/kg, sc), administered both separately and in combination, at 10, 20 or 30 min followingmore » seizure onset for attenuation of the deleterious effects associated with GD exposure (1.2 LD{sub 50}; 132 μg/kg, sc) in rats. Outcomes evaluated were seizure duration, neuropathology, acetylcholinesterase (AChE) activity, body weight, and temperature. We also examined the use of the reversible AChE inhibitor physostigmine (PHY; 0.2 mg/kg, im) as a therapy for GD exposure. We found that the combination of CED and DZP yielded a synergistic effect, shortening seizure durations and reducing neuropathology compared to DZP alone, when treatment was delayed 20–30 min after seizure onset. PHY reduced the number of animals that developed seizures, protected a fraction of AChE from GD inhibition, and attenuated post-exposure body weight and temperature loss independent of CED and/or DZP treatment. We conclude that: 1) CED and DZP treatment offers considerable protection against the effects of GD and 2) PHY is a potential therapeutic option following GD exposure, albeit with a limited window of opportunity. -- Highlights: ► Soman (GD) produced seizure activity resulting in neuropathology in rats. ► Tx: caramiphen (CED) and/or diazepam (DZP) @ 10, 20 or 30 min after seizure onset. ► CED/DZP showed superior anticonvulsant and neuroprotective capacity. ► Physostigmine (PHY) was examined as an adjunct post-exposure therapy. ► PHY attenuated GD-induced seizure development, but not seizure duration.« less

  18. Cumulative radiation dose caused by radiologic studies in critically ill trauma patients.

    PubMed

    Kim, Patrick K; Gracias, Vicente H; Maidment, Andrew D A; O'Shea, Michael; Reilly, Patrick M; Schwab, C William

    2004-09-01

    Critically ill trauma patients undergo many radiologic studies, but the cumulative radiation dose is unknown. The purpose of this study was to estimate the cumulative effective dose (CED) of radiation resulting from radiologic studies in critically ill trauma patients. The study group was composed of trauma patients at an urban Level I trauma center with surgical intensive care unit length of stay (LOS) greater than 30 days. The radiology records were reviewed. A typical effective dose per study for each type of plain film radiograph, computed tomographic scan, fluoroscopic study, and nuclear medicine study was used to calculate CED. Forty-six patients met criteria. The mean surgical intensive care unit and hospital LOS were 42.7 +/- 14.0 and 59.5 +/- 28.5 days, respectively. The mean Injury Severity Score was 32.2 +/- 15.0. The mean number of studies per patient was 70.1 +/- 29.0 plain film radiographs, 7.8 +/- 4.1 computed tomographic scans, 2.5 +/- 2.6 fluoroscopic studies, and 0.065 +/- 0.33 nuclear medicine study. The mean CED was 106 +/- 59 mSv per patient (range, 11-289 mSv; median, 104 mSv). Among age, mechanism, Injury Severity Score, and LOS, there was no statistically significant predictor of high CED. The mean CED in the study group was 30 times higher than the average yearly radiation dose from all sources for individuals in the United States. The theoretical additional morbidity attributable to radiologic studies was 0.78%. From a radiobiologic perspective, risk-to-benefit ratios of radiologic studies are favorable, given the importance of medical information obtained. Current practice patterns regarding use of radiologic studies appear to be acceptable.

  19. Health technology assessment in Switzerland: a descriptive analysis of “Coverage with Evidence Development” decisions from 1996 to 2013

    PubMed Central

    Brügger, Urs; Horisberger, Bruno; Ruckstuhl, Alexander; Plessow, Rafael; Eichler, Klaus; Gratwohl, Alois

    2015-01-01

    Objectives To identify factors associated with the decisions of the Federal Department of Home Affairs concerning coverage with evidence development (CED) for contested novel medical technologies in Switzerland. Design Quantitative, retrospective, descriptive analysis of publicly available material and prospective, structured, qualitative interviews with key stakeholders. Setting All 152 controversial medical services decided on by the Federal Commission on Health Insurance Benefits within the framework of the new federal law on health insurance in Switzerland from 1997 to 2013, with focus on 33 technologies assigned initially to CED and 33 to evidence development without coverage. Main outcome measures Factors associated with numbers and type of contested services assigned to CED per year, the duration and final outcome of the evaluations and perceptions of key stakeholders. Results The rate of CED decisions (82 total; median 1.5/year; range 0–9/year), the time to final decision (4.5 years median; 0.75 to +11 years) and the probability of a final ‘yes’ varied over time. In logistic regression models, the change of office of the commission provided the best explanation for the observed outcomes. Good intentions but absence of scientific criteria for decisions were reported as major comments by the stakeholders. Conclusions The introduction of CED enabled access to some promising technologies early in their life cycle, and might have triggered establishment of registries and research. Impact on patients’ outcome and costs remain unknown. The primary association of institutional changes with measured end points illustrates the need for evaluation of the current health technology assessment (HTA) system. PMID:25818273

  20. Infusion-line pressure as a real-time monitor of convection-enhanced delivery in pre-clinical models.

    PubMed

    Lam, Miu Fei; Foo, Stacy W L; Thomas, Meghan G; Lind, Christopher R P

    2014-01-15

    Acute convection-enhanced delivery (CED) is a neurosurgical delivery technique that allows for precise and uniform distribution of an infusate to a brain structure. It remains experimental due to difficulties in ensuring successful delivery. Real-time monitoring is able to provide immediate feedback on cannula placement, infusate distribution, and if the infusion is proceeding as planned or is failing due to reflux or catheter obstruction. Pressure gradient is the driving force behind CED, with the infusion pressure being directly proportional to the flow-rate. The aim of this study was to assess the feasibility of using infusion-line pressure profiling to distinguish in real-time between succeeding and failing CED infusions. To do so we delivered cresyl violet dye at 0.5, 1.0 and 2.0 μl/min via CED in vitro using 0.6% agarose gel and in vivo to the rat striatum. Infusions that failed in agarose gel models could only be differentiated late during the procedures. In the rat in vivo model, the infusion-line profiles of obstructed infusions were not distinctive from those of successful infusions. Intraoperative magnetic resonance imaging (MRI) is used for real-time visualisation of cannula placement and infusate distribution. Particularly for animal pre-clinical work, it would be advantageous to supplement MRI with a cheap, accessible technique to monitor infusions and provide a real-time measure of infusion success or failure. Infusion-line pressure monitoring was of limited value in identifying successful CED with small volume infusions, whilst its utility for large volume infusion remains unknown. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Convection-enhanced delivery of sorafenib and suppression of tumor progression in a murine model of brain melanoma through the inhibition of signal transducer and activator of transcription 3.

    PubMed

    Zou, Zhaoxia; Yin, Yufang; Lin, Jenny; Hsu, Li-Chen J; Brandon, Vanessa L; Yang, Fan; Jove, Richard; Jandial, Rahul; Li, Gang; Chen, Mike Y

    2016-05-01

    OBJECT Despite recent advances, metastatic melanoma remains a terminal disease, in which life-threatening brain metastasis occurs in approximately half of patients. Sorafenib is a multikinase inhibitor that induces apoptosis of melanoma cells in vitro. However, systemic administration has been ineffective because adequate tissue concentrations cannot be achieved. This study investigated if convection-enhanced delivery (CED) of sorafenib would enhance tumor control and survival via inhibition of the signal transducer and activator of transcription 3 (Stat3) pathway in a murine model of metastatic brain melanoma. METHODS Melanoma cells treated with sorafenib in vitro were examined for signaling and survival changes. The effect of sorafenib given by CED was assessed by bioluminescent imaging and animal survival. RESULTS The results showed that sorafenib induced cell death in the 4 established melanoma cell lines and in 1 primary cultured melanoma cell line. Sorafenib inhibited Stat3 phosphorylation in HTB65, WYC1, and B16 cells. Accordingly, sorafenib treatment also decreased expression of Mcl-1 mRNA in melanoma cell lines. Because sorafenib targets multiple pathways, the present study demonstrated the contribution of the Stat3 pathway by showing that mouse embryonic fibroblast (MEF) Stat3 +/+ cells were significantly more sensitive to sorafenib than MEF Stat3 -/- cells. In the murine model of melanoma brain metastasis used in this study, CED of sorafenib increased survival by 150% in the treatment group compared with animals receiving the vehicle control (p < 0.01). CED of sorafenib also significantly abrogated tumor growth. CONCLUSIONS The data from this study indicate that local delivery of sorafenib effectively controls brain melanoma. These findings validate further investigation of the use of CED to distribute molecularly targeted agents.

  2. A locus at 7p14.3 predisposes to refractory celiac disease progression from celiac disease.

    PubMed

    Hrdlickova, Barbara; Mulder, Chris J; Malamut, Georgia; Meresse, Bertrand; Platteel, Mathieu; Kamatani, Yoichiro; Ricaño-Ponce, Isis; van Wanrooij, Roy L J; Zorro, Maria M; Jan Bonder, Marc; Gutierrez-Achury, Javier; Cellier, Christophe; Zhernakova, Alexandra; Nijeboer, Petula; Galan, Pilar; Withoff, Sebo; Lathrop, Mark; Bouma, Gerd; Xavier, Ramnik J; Jabri, Bana; Bensussan, Nadine C; Wijmenga, Cisca; Kumar, Vinod

    2018-05-21

    Approximately 5% of patients with celiac disease (CeD) do not respond to a gluten-free diet and progress to refractory celiac disease (RCD), a severe progression that is characterized by infiltration of intraepithelial T lymphocytes. Patients with RCD type II (RCDII) show clonal expansions of intraepithelial T lymphocytes that result in a poor prognosis and a high mortality rate through development of aggressive enteropathy-associated T-cell lymphoma. It is not known whether genetic variations play a role in severe progression of CeD to RCDII. We performed the first genome-wide association study to identify the causal genes for RCDII and the molecular pathways perturbed in RCDII. The genome-wide association study was performed in 38 Dutch patients with RCDII, and the 15 independent top-associated single nucleotide polymorphism (SNP) variants (P<5×10) were replicated in 56 independent French and Dutch patients with RCDII. After replication, SNP rs2041570 on chromosome 7 was significantly associated with progression to RCDII (P=2.37×10, odds ratio=2.36) but not with CeD susceptibility. SNP rs2041570 risk allele A was associated with lower levels of FAM188B expression in blood and small intestinal biopsies. Stratification of RCDII biopsies based on rs2041570 genotype showed differential expression of innate immune and antibacterial genes that are expressed in Paneth cells. We have identified a novel SNP associated with the severe progression of CeD to RCDII. Our data suggest that genetic susceptibility to CeD might be distinct from the progression to RCDII and suggest a role for Paneth cells in RCDII progression.

  3. Mutagenesis and repair induced by the DNA advanced glycation end product N2-1-(carboxyethyl)-2'-deoxyguanosine in human cells.

    PubMed

    Tamae, Daniel; Lim, Punnajit; Wuenschell, Gerald E; Termini, John

    2011-03-29

    Glycation of biopolymers by glucose-derived α-oxo-aldehydes such as methylglyoxal (MG) is believed to play a major role in the complex pathologies associated with diabetes and metabolic disease. In contrast to the extensive literature detailing the formation and physiological consequences of protein glycation, there is little information about the corresponding phenomenon for DNA. To assess the potential contribution of DNA glycation to genetic instability, we prepared shuttle vectors containing defined levels of the DNA glycation adduct N(2)-(1-carboxyethyl)-2'-deoxyguanosine (CEdG) and transfected them into isogenic human fibroblasts that differed solely in the capacity to conduct nucleotide excision repair (NER). In the NER-compromised fibroblasts, the induced mutation frequencies increased up to 18-fold relative to background over a range of ∼10-1400 CEdG adducts/10(5) dG, whereas the same substrates transfected into NER-competent cells induced a response that was 5-fold over background at the highest adduct density. The positive linear correlation (R(2) = 0.998) of mutation frequency with increasing CEdG level in NER-defective cells suggested that NER was the primary if not exclusive mechanism for repair of this adduct in human fibroblasts. Consistent with predictions from biochemical studies using CEdG-substituted oligonucleotides, guanine transversions were the predominant mutation resulting from replication of MG-modified plasmids. At high CEdG levels, significant increases in the number of AT → GC transitions were observed exclusively in NER-competent cells (P < 0.0001). This suggested the involvement of an NER-dependent mutagenic process in response to critical levels of DNA damage, possibly mediated by error-prone Y-family polymerases.

  4. The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans.

    PubMed

    Wang, Yun; Wang, Shunchang; Luo, Xun; Yang, Yanan; Jian, Fenglei; Wang, Xuemin; Xie, Lucheng

    2014-08-01

    The induction of apoptosis is recognized to be a major mechanism of tributyltin (TBT) toxicity. However, the underlying signaling pathways for TBT-induced apoptosis remain unclear. In this study, using the nematode Caenorhabditis elegans, we examined whether DNA damage response (DDR) pathway and mitogen-activated protein kinase (MAPK) signaling cascades are involved in TBT-induced germline apoptosis and cell cycle arrest. Our results demonstrated that exposing worms to TBT at the dose of 10nM for 6h significantly increased germline apoptosis in N2 strain. Germline apoptosis was absent in strains that carried ced-3 or ced-4 loss-of-function alleles, indicating that both caspase protein CED-3 and Apaf-1 protein CED-4 were required for TBT-induced apoptosis. TBT-induced apoptosis was blocked in the Bcl-2 gain-of-function strain ced-9(n1950), whereas TBT induced a minor increase in the BH3-only protein EGL-1 mutated strain egl-1(n1084n3082). Checkpoint proteins HUS-1 and CLK-2 exerted proapoptotic effects, and the null mutation of cep-1, the homologue of tumor suppressor gene p53, significantly inhibited TBT-induced apoptosis. Apoptosis in the loss-of-function strains of ERK, JNK and p38 MAPK signaling pathways were completely or mildly suppressed under TBT stress. These results were supported by the results of mRNA expression levels of corresponding genes. The present study indicated that TBT-induced apoptosis required the core apoptotic machinery, and that DDR genes and MAPK pathways played essential roles in signaling the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Benchmarking the ERG valve tip and MRI Interventions Smart Flow neurocatheter convection-enhanced delivery system's performance in a gel model of the brain: employing infusion protocols proposed for gene therapy for Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Sillay, Karl; Schomberg, Dominic; Hinchman, Angelica; Kumbier, Lauren; Ross, Chris; Kubota, Ken; Brodsky, Ethan; Miranpuri, Gurwattan

    2012-04-01

    Convection-enhanced delivery (CED) is an advanced infusion technique used to deliver therapeutic agents into the brain. CED has shown promise in recent clinical trials. Independent verification of published parameters is warranted with benchmark testing of published parameters in applicable models such as gel phantoms, ex vivo tissue and in vivo non-human animal models to effectively inform planned and future clinical therapies. In the current study, specific performance characteristics of two CED infusion catheter systems, such as backflow, infusion cloud morphology, volume of distribution (mm3) versus the infused volume (mm3) (Vd/Vi) ratios, rate of infusion (µl min-1) and pressure (mmHg), were examined to ensure published performance standards for the ERG valve-tip (VT) catheter. We tested the hypothesis that the ERG VT catheter with an infusion protocol of a steady 1 µl min-1 functionality is comparable to the newly FDA approved MRI Interventions Smart Flow (SF) catheter with the UCSF infusion protocol in an agarose gel model. In the gel phantom models, no significant difference was found in performance parameters between the VT and SF catheter. We report, for the first time, such benchmark characteristics in CED between these two otherwise similar single-end port VT with stylet and end-port non-stylet infusion systems. Results of the current study in agarose gel models suggest that the performance of the VT catheter is comparable to the SF catheter and warrants further investigation as a tool in the armamentarium of CED techniques for eventual clinical use and application.

  6. A classical Ehlers-Danlos syndrome family with incomplete presentation diagnosed by molecular testing.

    PubMed

    Colombi, Marina; Dordoni, Chiara; Cinquina, Valeria; Venturini, Marina; Ritelli, Marco

    2018-01-01

    The 2017 EDS revised nosology indicates that minimal criteria suggestive for classical Ehlers-Danlos syndrome (cEDS) are skin hyperextensibility plus atrophic scarring together with either generalized joint hypermobility (gJHM) and/or at least three minor criteria that include cutaneous features and gJHM complications. Confirmatory molecular testing is obligatory to reach a final diagnosis. Although the large majority of the patients presents with these clinical features, some do not and might remain undiagnosed or misdiagnosed. Here we describe a family with 2 affected members, a 23-year-old proposita and her 51-year-old mother, who presented subtle cutaneous signs, including a variable degree of skin hyperextensibility without extensive widened atrophic scars that apparently better fitted with the overlapping hypermobile EDS. The proposita also presented gastrointestinal symptoms secondary to aberrant mast cells mediators release, making the clinical picture even more puzzling. Both patients were diagnosed by molecular testing that revealed a COL5A1 splice mutation. This report highlights the relevance of molecular analysis in patients presenting rather mild signs of EDS, especially in familial cases, and the importance of clinical expertise to make such a diagnosis. Copyright © 2017. Published by Elsevier Masson SAS.

  7. Development and application of air quality models at the US ...

    EPA Pesticide Factsheets

    Overview of the development and application of air quality models at the U.S. EPA, particularly focused on the development and application of the Community Multiscale Air Quality (CMAQ) model developed within the Computation Exposure Division (CED) of the National Exposure Research Laboratory (NERL). This presentation will provide a simple overview of air quality model development and application geared toward a non-technical student audience. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  8. Voxelized Computational Model for Convection-Enhanced Delivery in the Rat Ventral Hippocampus: Comparison with In Vivo MR Experimental Studies

    PubMed Central

    Kim, Jung Hwan; Astary, Garrett W.; Kantorovich, Svetlana; Mareci, Thomas H.; Carney, Paul R.; Sarntinoranont, Malisa

    2012-01-01

    Convection-enhanced delivery (CED) is a promising local delivery technique for overcoming the blood–brain barrier (BBB) and treating diseases of the central nervous system (CNS). For CED, therapeutics are infused directly into brain tissue and the drug agent is spread through the extracellular space, considered to be highly tortuous porous media. In this study, 3D computational models developed using magnetic resonance (MR) diffusion tensor imaging data sets were used to predict CED transport in the rat ventral hippocampus using a voxelized modeling previously developed by our group. Predicted albumin tracer distributions were compared with MR-measured distributions from in vivo CED in the ventral hippocampus up to 10 μL of Gd-DTPA albumin tracer infusion. Predicted and measured tissue distribution volumes and distribution patterns after 5 and 10 μL infusions were found to be comparable. Tracers were found to occupy the underlying landmark structures with preferential transport found in regions with less fluid resistance such as the molecular layer of the dentate gyrus. Also, tracer spread was bounded by high fluid resistance layers such as the granular cell layer and pyramidal cell layer of dentate gyrus. Leakage of tracers into adjacent CSF spaces was observed towards the end of infusions. PMID:22532321

  9. Caspase-8 Deficiency Presenting as Late-Onset Multi-Organ Lymphocytic Infiltration with Granulomas in two Adult Siblings.

    PubMed

    Niemela, Julie; Kuehn, Hye Sun; Kelly, Corin; Zhang, Mingchang; Davies, Joie; Melendez, Jose; Dreiling, Jennifer; Kleiner, David; Calvo, Katherine; Oliveira, João B; Rosenzweig, Sergio D

    2015-05-01

    Caspase-8 deficiency (CED) was originally described in 2002 in two pediatric patients presenting with clinical manifestations resembling autoimmune lymphoproliferative syndrome (ALPS) accompanied by infections, and T, B and NK cell defects. Since then, no new CED patients were published. Here we report two adult siblings (Pt1 and Pt2) presenting in their late thirties with pulmonary hypertension leading to lung transplant (Pt1), and a complex neurological disease leading to multiple cranial nerves palsies (Pt2) as their main manifestations. A thorough clinical and immunological evaluation was performed at the Primary Immunodeficiency Clinic at NIH, followed by whole exome sequencing. The patients had multiorgan lymphocytic infiltration and granulomas, as well as clinical signs of immune deficiency/ immune dysregulation. Both siblings carried homozygous mutations in CASP8, c.1096C > T, p.248R > W. This was the same mutation described on the previously published CED patients, to whom these new patients were likely distantly related. We report two new CED patients presenting during adulthood with life-threatening end-organ lymphocyte infiltrates affecting the lungs, liver, spleen, bone marrow and central nervous system. This phenotype broadens the clinical spectrum of manifestations associated with this disease and warrants the search of CASP8 mutations in other cohorts of patients.

  10. Determinants of Cancer Early Detection Behaviors:Application of Protection Motivation Theory.

    PubMed

    Rahaei, Zohreh; Ghofranipour, Fazlollah; Morowatisharifabad, Mohammad Ali; Mohammadi, Eesa

    2015-01-01

    Cancer is account for 13% of all deaths around the world and is the third cause of mortality in Iran. More than one third of these cases are pre-ventable and about 33% are curable with early detection. The aim of this study was to determine the predictors of cancer early detection (CED) behaviors applying Protection Motivation Theory (PMT). In this cross-sectional study, cluster sampling method was employed to recruit 260 individuals of above 20 years old in Yazd, Iran and a researcher designed questionnaire was completed through interviews for each of the respondents. PMT theoretical variables and CED behaviors were the basis of data collection procedure. Participants acquired 64.47% of the protection motivation, 30.97% of the passive and 45.64% of the active behaviors‟ possible scores. Theory constructs predicted 19.8%, 15.6% and 9.6% of the variations for protection motivation, passive and active behavior respectively. Protection motivation was responsible for 3.6% of passive and 8% of active behaviors‟ variations. Considering the scarceness of CED behaviors and the applicability of PMT in predicting these behaviors, utilization of the PMT‟s constructs in any interventional programs to accelerate CED behaviors could be an alternate methodological choice in the cancer control initiatives.

  11. Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors.

    PubMed

    Saucier-Sawyer, Jennifer K; Seo, Young-Eun; Gaudin, Alice; Quijano, Elias; Song, Eric; Sawyer, Andrew J; Deng, Yang; Huttner, Anita; Saltzman, W Mark

    2016-06-28

    Glioblastoma multiforme (GBM) is a fatal brain tumor characterized by infiltration beyond the margins of the main tumor mass and local recurrence after surgery. The blood-brain barrier (BBB) poses the most significant hurdle to brain tumor treatment. Convection-enhanced delivery (CED) allows for local administration of agents, overcoming the restrictions of the BBB. Recently, polymer nanoparticles have been demonstrated to penetrate readily through the healthy brain when delivered by CED, and size has been shown to be a critical factor for nanoparticle penetration. Because these brain-penetrating nanoparticles (BPNPs) have high potential for treatment of intracranial tumors since they offer the potential for cell targeting and controlled drug release after administration, here we investigated the intratumoral CED infusions of PLGA BPNPs in animals bearing either U87 or RG2 intracranial tumors. We demonstrate that the overall volume of distribution of these BPNPs was similar to that observed in healthy brains; however, the presence of tumors resulted in asymmetric and heterogeneous distribution patterns, with substantial leakage into the peritumoral tissue. Together, our results suggest that CED of BPNPs should be optimized by accounting for tumor geometry, in terms of location, size and presence of necrotic regions, to determine the ideal infusion site and parameters for individual tumors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. ISO observations of the reflection nebula Ced 201: evolution of carbonaceous dust

    NASA Astrophysics Data System (ADS)

    Cesarsky, D.; Lequeux, J.; Ryter, C.; Gérin, M.

    2000-02-01

    We present spectrophotometric imaging mid-IR observations of the reflection nebula Ced 201. Ced 201 is a part of a molecular cloud illuminated by a B9.5V star moving through it at more than 12 km s-1. The spectra of Ced 201 give evidence for transformation of very small carbonaceous grains into the carriers of the Aromatic Infrared Bands (AIBs), due to the radiation field of the illuminating star and/or to shock waves created by its motion. These very small grains emit mainly very broad bands and a continuum. We suggest that they are present everywhere in the interstellar medium but can only be detected in the mid-IR under special circumstances such as those prevailing in this reflection nebula. The efficiency of energy conversion of stellar light into mid-infrared emission is 7.5% for both the very small grains and the AIB carriers, and the fraction of interstellar carbon locked in these emitters is approximately 15%. Based on observations at the Cal Tech submillimeter observatory (CSO) and with ISO, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  13. Time-reversal Techniques in Ultrasound-assisted Convection-enhanced Drug Delivery to the Brain: Technology Development and In Vivo Evaluation

    PubMed Central

    Lewis, George K.; Guarino, Sabrina; Gandhi, Gaurav; Filinger, Laurent; Lewis, George K.; Olbricht, Willam L.; Sarvazyan, Armen

    2011-01-01

    We describe a drug delivery method that combines Time-Reversal Acoustics (TRA) with Convection-Enhanced Delivery (CED) to improve the delivery of therapeutics to the interstitium of the brain. The Ultrasound-assisted CED approach (UCED) circumvents the blood-brain barrier by infusing compounds through a cannula that is inserted into the brain while simultaneously delivering ultrasound to improve the penetration of pharmaceuticals. CED without ultrasound-assistance has been used to treat a variety of neural disorders, including glioblastoma multiforme, a malignancy that presents a very poor prognosis for patients. We describe a novel system that is used to infuse fluids into the brain parenchyma while simultaneously exposing the tissue to safe levels of 1-MHz, low intensity, ultrasound energy. The system includes a combined infusion needle-hydrophone, a 10-channel ultralow-output impedance amplifier, a broad-band ultrasound resonator, and MatLab®-based TRA control and user-interface. TRA allows easy coupling of ultrasound therapy through the skull without complex phase-correction and array design. The smart targeting UCED system has been tested in vivo and results show it provides 1.5-mm spatial resolution for UCED and improves tracer distribution in the brain over CED alone. PMID:21881622

  14. Real-time imaging of perivascular transport of nanoparticles during convection-enhanced delivery in the rat cortex.

    PubMed

    Foley, Conor P; Nishimura, Nozomi; Neeves, Keith B; Schaffer, Chris B; Olbricht, William L

    2012-02-01

    Convection-enhanced delivery (CED) is a promising technique for administering large therapeutics that do not readily cross the blood brain barrier to neural tissue. It is of vital importance to understand how large drug constructs move through neural tissue during CED to optimize construct and delivery parameters so that drugs are concentrated in the targeted tissue, with minimal leakage outside the targeted zone. Experiments have shown that liposomes, viral vectors, high molecular weight tracers, and nanoparticles infused into neural tissue localize in the perivascular spaces of blood vessels within the brain parenchyma. In this work, we used two-photon excited fluorescence microscopy to monitor the real-time distribution of nanoparticles infused in the cortex of live, anesthetized rats via CED. Fluorescent nanoparticles of 24 and 100 nm nominal diameters were infused into rat cortex through microfluidic probes. We found that perivascular spaces provide a high permeability path for rapid convective transport of large nanoparticles through tissue, and that the effects of perivascular spaces on transport are more significant for larger particles that undergo hindered transport through the extracellular matrix. This suggests that the vascular topology of the target tissue volume must be considered when delivering large therapeutic constructs via CED.

  15. On the Lienard-Wiechert potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, C.K.

    1988-09-01

    Very recently, questions have started to surface concerning the well-known Lienard-Wiechert potentials describing relativistically moving point sources in classical electrodynamics. The existence of questions prompts a review of the original derivations by Lienard and Wiechert. These were done at the turn of the present century, and so predate the development of relevant modern techniques from special relativity theory and generalized function theory. Only purely geometric reasoning was used. That reasoning is reviewed here, and a previously unrecognized flaw is noted. When this flaw is remedied, the potentials are slightly altered and become consistent with other new results reported elsewhere.

  16. Dark energy simulacrum in nonlinear electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labun, Lance; Rafelski, Johann

    2010-03-15

    Quasiconstant external fields in nonlinear electromagnetism generate a global contribution proportional to g{sup {mu}{nu}}in the energy-momentum tensor, thus a simulacrum of dark energy. To provide a thorough understanding of the origin and strength of its effects, we undertake a complete theoretical and numerical study of the energy-momentum tensor T{sup {mu}{nu}}for nonlinear electromagnetism. The Euler-Heisenberg nonlinearity due to quantum fluctuations of spinor and scalar matter fields is considered and contrasted with the properties of classical nonlinear Born-Infeld electromagnetism. We address modifications of charged particle kinematics by strong background fields.

  17. Nature of the electromagnetic force between classical magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2017-09-01

    The Lorentz force law of classical electrodynamics states that the force 𝑭𝑭 exerted by the magnetic induction 𝑩𝑩 on a particle of charge 𝑞𝑞 moving with velocity 𝑽𝑽 is given by 𝑭𝑭 = 𝑞𝑞𝑽𝑽 × 𝑩𝑩. Since this force is orthogonal to the direction of motion, the magnetic field is said to be incapable of performing mechanical work. Yet there is no denying that a permanent magnet can readily perform mechanical work by pushing/pulling on another permanent magnet or by attracting pieces of magnetizable material such as scrap iron or iron filings. We explain this apparent contradiction by examining the magnetic Lorentz force acting on an Amperian current loop, which is the model for a magnetic dipole. We then extend the discussion by analyzing the Einstein-Laub model of magnetic dipoles in the presence of external magnetic fields.

  18. Optical properties of medium size noble and transition metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan C.; Pantelides, Sokrates T.

    2009-03-01

    Using first-principles methods within time dependent density functional theory and the local density approximation (TDLDA) the absorption spectra of medium size (˜20-80 atoms) silver, gold and copper nanoparticles have been calculated. The nanoparticles are fcc fragments with different aspect ratios. We find that in the case of Ag nanoparticles is well reproduced by classical electrodynamics theory based in Mie's formalism, using the dielectric function of bulk Ag and taking into account the nanoparticle shape. For the case of Cu and Au, there is a similarity in the overall features of the quantum mechanical and classical spectra, but no detailed agreement. We will discuss the role that the d-electrons among all the different elements and the surface states play in controlling the optical properties of the nanoparticles. This work was supported by GOALI NSF grant (DMR-0513048), DOE, the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and Alcoa Inc.

  19. Lorentz-invariant three-vectors and alternative formulation of relativistic dynamics

    NASA Astrophysics Data System (ADS)

    Rȩbilas, Krzysztof

    2010-03-01

    Besides the well-known scalar invariants, there also exist vectorial invariants in special relativity. It is shown that the three-vector (dp⃗/dt)∥+γv(dp⃗/dt)⊥ is invariant under the Lorentz transformation. The subscripts ∥ and ⊥ denote the respective components with respect to the direction of the velocity of the body v⃗, and p⃗ is the relativistic momentum. We show that this vector is equal to a force F⃗R, which satisfies the classical Newtonian law F⃗R=ma⃗R in the instantaneous inertial rest frame of an accelerating body. Therefore, the relation F⃗R=(dp⃗/dt)∥+γv(dp⃗/dt)⊥, based on the Lorentz-invariant vectors, may be used as an invariant (not merely a covariant) relativistic equation of motion in any inertial system of reference. An alternative approach to classical electrodynamics based on the invariant three-vectors is proposed.

  20. Superradiant Quantum Heat Engine.

    PubMed

    Hardal, Ali Ü C; Müstecaplıoğlu, Özgür E

    2015-08-11

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  1. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    PubMed

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  2. Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim

    The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. Here, we consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent “spontaneous” emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using themore » SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978)] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.« less

  3. Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy

    NASA Astrophysics Data System (ADS)

    Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim; Martinez, Todd; Chen, Hsing-Ta; Subotnik, Joseph E.

    2018-03-01

    The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. We consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent "spontaneous" emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using the SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978), 10.1063/1.436793] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.

  4. Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy

    DOE PAGES

    Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim; ...

    2018-03-12

    The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. Here, we consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent “spontaneous” emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using themore » SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978)] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.« less

  5. Hearing loss: terminology and classification. Joint Committee of the American Speech-Language-Hearing Association and the Council on Education of the Deaf.

    PubMed

    1998-01-01

    The following position statement and technical report were developed by the Joint Committee of the American Speech-Language-Hearing Association (ASHA) and the Council on Education of the Deaf (CED) and approved as Association policy by the ASHA Legislative Council in November 1997 (LC 6-97). CED member organizations are reviewing the document for approval in 1998. Joint Committee members responsible for the development of this document include (from ASHA) Joan Marttila, chair 1996-97; Linda Seestedt-Stanford, chair 1994-95; Evelyn Cherow, ex official; Donald Goldberg; Dawna Lewis; Leslie Ann McMillian; Jane Seaton; Alicia Stewart; and Larry Higdon, vice president for professional practices in audiology and monitoring vice president; and (from CED) Kathee Christensen; Steve Nover; Marilyn Sass-Lehrer; and Patrick Stone. This document supersedes ASHA policy: Definitions of Communication Disorders and Variations: Hearing Disorders section.

  6. The regulation of cognitive enhancement devices: extending the medical model

    PubMed Central

    Maslen, Hannah; Douglas, Thomas; Cohen Kadosh, Roi; Levy, Neil; Savulescu, Julian

    2014-01-01

    This article presents a model for regulating cognitive enhancement devices (CEDs). Recently, it has become very easy for individuals to purchase devices which directly modulate brain function. For example, transcranial direct current stimulators are increasingly being produced and marketed online as devices for cognitive enhancement. Despite posing risks in a similar way to medical devices, devices that do not make any therapeutic claims do not have to meet anything more than basic product safety standards. We present the case for extending existing medical device legislation to cover CEDs. Medical devices and CEDs operate by the same or similar mechanisms and pose the same or similar risks. This fact coupled with the arbitrariness of the line between treatment and enhancement count in favour of regulating these devices in the same way. In arguing for this regulatory model, the paper highlights potential challenges to its implementation, and suggests solutions. PMID:25243073

  7. Prequantum classical statistical field theory: background field as a source of everything?

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2011-07-01

    Prequantum classical statistical field theory (PCSFT) is a new attempt to consider quantum mechanics (QM) as an emergent phenomenon, cf. with De Broglie's "double solution" approach, Bohmian mechanics, stochastic electrodynamics (SED), Nelson's stochastic QM and its generalization by Davidson, 't Hooft's models and their development by Elze. PCSFT is a comeback to a purely wave viewpoint on QM, cf. with early Schrodinger. There is no quantum particles at all, only waves. In particular, photons are simply wave-pulses of the classical electromagnetic field, cf. SED. Moreover, even massive particles are special "prequantum fields": the electron field, the neutron field, and so on. PCSFT claims that (sooner or later) people will be able to measure components of these fields: components of the "photonic field" (the classical electromagnetic field of low intensity), electronic field, neutronic field, and so on. At the moment we are able to produce quantum correlations as correlations of classical Gaussian random fields. In this paper we are interested in mathematical and physical reasons of usage of Gaussian fields. We consider prequantum signals (corresponding to quantum systems) as composed of a huge number of wave-pulses (on very fine prequantum time scale). We speculate that the prequantum background field (the field of "vacuum fluctuations") might play the role of a source of such pulses, i.e., the source of everything.

  8. An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Chan, C. T.

    2018-02-01

    Plasmonics has attracted much attention not only because it has useful properties such as strong field enhancement, but also because it reveals the quantum nature of matter. To handle quantum plasmonics effects, ab initio packages or empirical Feibelman d-parameters have been used to explore the quantum correction of plasmonic resonances. However, most of these methods are formulated within the quasi-static framework. The self-consistent hydrodynamics model offers a reliable approach to study quantum plasmonics because it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent manner. Instead of the standard scattering method, we formulate the self-consistent hydrodynamics method as an eigenvalue problem to study quantum plasmonics with electrons and photons treated on the same footing. We find that the eigenvalue approach must involve a global operator, which originates from the energy functional of the electron gas. This manifests the intrinsic nonlocality of the response of quantum plasmonic resonances. Our model gives the analytical forms of quantum corrections to plasmonic modes, incorporating quantum electron spill-out effects and electrodynamical retardation. We apply our method to study the quantum surface plasmon polariton for a single flat interface.

  9. Convection enhanced delivery of boronated EGF as a molecular targeting agent for neutron capture therapy of brain tumors

    PubMed Central

    Yang, Weilian; Wu, Gong; Huo, Tianyao; Tjarks, Werner; Ciesielski, Michael; Fenstermaker, Robert A.; Ross, Brain D.; Wikstrand, Carol J.; Riley, Kent J.; Binns, Peter J.

    2010-01-01

    In the present study, we have evaluated a boronated dendrimer-epidermal growth factor (BD-EGF) bioconjugate as a molecular targeting agent for boron neutron capture therapy (BNCT) of the human EGFR gene-transfected F98 rat glioma, designated F98EGFR. EGF was chemically linked to a heavily boronated polyamidoamine dendrimer (BD) by means of the heterobifunctional reagent, mMBS. Biodistribution studies were carried out at 6 h and 24 h following intratumoral (i.t.) injection or intracerebral (i.c.) convection enhanced delivery (CED) of 125I-labeled or unlabeled BD-EGF (40 μg 10B/10 μg EGF) to F98 glioma bearing rats. At 24 h. there was 43% more radioactivity in EGFR(+) tumors following CED compared to i.t. injection, and a doubling of the tumor boron concentration (22.3 μg/g vs. 11.7 μg/g). CED of BD-EGF resulted in a 7.2× increase in the volume of distribution within the infused cerebral hemisphere and a 1.9× increase in tumor uptake of BD-EGF compared with i.t. injection. Based on these favorable bio-distribution data, BNCT was carried out at the Massachusetts Institute of Technology nuclear reactor 14 days following i.c. tumor implantation and 24 h. after CED of BD-EGF. These animals had a MST of 54.1 ± 4.7 days compared to 43.0 ± 2.8 days following i.t. injection. Rats that received BD-EGF by CED in combination with i.v. boronophenylalanine (BPA), which has been used in both experimental and clinical studies, had a MST of 86.0 ± 28.1 days compared to 39.8 ± 1.6 days for i.v. BPA alone (P < 0.01), 30.9 ± 1.4 days for irradiated controls and 25.1 ± 1.0 days for untreated controls (overall P < 0.0001). These data have demonstrated that the efficacy of BNCT was significantly increased (P < 0.006), following i.c CED of BD-EGF compared to i.t injection, and that the survival data were equivalent to those previously reported by us using the boronated anti-human-EGF mAb, C225 (cetuximab). PMID:19588228

  10. Preclinical evaluation of convection-enhanced delivery of liposomal doxorubicin to treat pediatric diffuse intrinsic pontine glioma and thalamic high-grade glioma.

    PubMed

    Sewing, A Charlotte P; Lagerweij, Tonny; van Vuurden, Dannis G; Meel, Michaël H; Veringa, Susanna J E; Carcaboso, Angel M; Gaillard, Pieter J; Peter Vandertop, W; Wesseling, Pieter; Noske, David; Kaspers, Gertjan J L; Hulleman, Esther

    2017-05-01

    OBJECTIVE Pediatric high-grade gliomas (pHGGs) including diffuse intrinsic pontine gliomas (DIPGs) are primary brain tumors with high mortality and morbidity. Because of their poor brain penetrance, systemic chemotherapy regimens have failed to deliver satisfactory results; however, convection-enhanced delivery (CED) may be an alternative mode of drug delivery. Anthracyclines are potent chemotherapeutics that have been successfully delivered via CED in preclinical supratentorial glioma models. This study aims to assess the potency of anthracyclines against DIPG and pHGG cell lines in vitro and to evaluate the efficacy of CED with anthracyclines in orthotopic pontine and thalamic tumor models. METHODS The sensitivity of primary pHGG cell lines to a range of anthracyclines was tested in vitro. Preclinical CED of free doxorubicin and pegylated liposomal doxorubicin (PLD) to the brainstem and thalamus of naïve nude mice was performed. The maximum tolerated dose (MTD) was determined based on the observation of clinical symptoms, and brains were analyzed after H & E staining. Efficacy of the MTD was tested in adult glioma E98-FM-DIPG and E98-FM-thalamus models and in the HSJD-DIPG-007-Fluc primary DIPG model. RESULTS Both pHGG and DIPG cells were sensitive to anthracyclines in vitro. Doxorubicin was selected for further preclinical evaluation. Convection-enhanced delivery of the MTD of free doxorubicin and PLD in the pons was 0.02 mg/ml, and the dose tolerated in the thalamus was 10 times higher (0.2 mg/ml). Free doxorubicin or PLD via CED was ineffective against E98-FM-DIPG or HSJD-DIPG-007-Fluc in the brainstem; however, when applied in the thalamus, 0.2 mg/ml of PLD slowed down tumor growth and increased survival in a subset of animals with small tumors. CONCLUSIONS Local delivery of doxorubicin to the brainstem causes severe toxicity, even at doxorubicin concentrations that are safe in the thalamus. As a consequence, the authors could not establish a therapeutic window for treating orthotopic brainstem tumors in mice. For tumors in the thalamus, therapeutic concentrations to slow down tumor growth could be reached. These data suggest that anatomical location determines the severity of toxicity after local delivery of therapeutic agents and that caution should be used when translating data from supratentorial CED studies to treat infratentorial tumors.

  11. Development of a portable quality control application using a tablet-type electronic device.

    PubMed

    Ono, Tomohiro; Miyabe, Yuki; Akimoto, Mami; Mukumoto, Nobutaka; Ishihara, Yoshitomo; Nakamura, Mitsuhiro; Mizowaki, Takashi

    2018-03-01

    Our aim was to develop a portable quality control (QC) application using a thermometer, a barometer, an angle gauge, and a range finder implemented in a tablet-type consumer electronic device (CED) and to assess the accuracies of the measurements made. The QC application was programmed using Java and OpenCV libraries. First, temperature and atmospheric pressure were measured over 30 days using the temperature and pressure sensors of the CED and compared with those measured by a double-tube thermometer and a digital barometer. Second, the angle gauge was developed using the accelerometer of the CED. The roll and pitch angles of the CED were measured from 0 to 90° at intervals of 10° in the clockwise (CW) and counterclockwise (CCW) directions. The values were compared with those measured by a digital angle gauge. Third, a range finder was developed using the tablet's built-in camera and image-processing capacities. Surrogate markers were detected by the camera and their positions converted to actual positions using a homographic transformation method. Fiducial markers were placed on a treatment couch and moved 100 mm in 10-mm steps in both the lateral and longitudinal directions. The values were compared with those measured by the digital output of the treatment couch. The differences between CED values and those of other devices were compared by calculating means ± standard deviations (SDs). The means ± SDs of differences in temperature and atmospheric pressure were -0.07 ± 0.25°C and 0.05 ± 0.10 hPa, respectively. The means ± SDs of the difference in angle was -0.17 ± 0.87° (0.15 ± 0.23° degrees excluding the 90° angle). The means ± SDs of distances were 0.01 ± 0.07 mm in both the lateral and longitudinal directions. Our portable QC application was accurate and may be used instead of standard measuring devices. Our portable CED is efficient and simple when used in the field of medical physics. © 2018 American Association of Physicists in Medicine.

  12. Market Access Agreements for pharmaceuticals in Europe: diversity of approaches and underlying concepts.

    PubMed

    Jarosławski, Szymon; Toumi, Mondher

    2011-10-08

    Market Access Agreements (MAA) between pharmaceutical industry and health care payers have been proliferating in Europe in the last years. MAA can be simple discounts from the list price or very sophisticated schemes with inarguably high administrative burden. We distinguished and defined from the health care payer perspective three kinds of MAA: Commercial Agreements (CA), Payment for Performance Agreements (P4P) and Coverage with Evidence Development (CED). Apart from CA, the agreements assumed collection and analysis of real-life health outcomes data, either from a cohort of patients (CED) or on per patient basis (P4P). We argue that while P4P aim at reducing drug cost to payers without a systematic approach to addressing uncertainty about drugs' value, CED were implemented provisionally to reduce payer's uncertainty about value of a medicine within a defined time period. We are of opinion that while CA and P4P have a potential to reduce payers' expenditure on costly drugs while maintaining a high list price, CED address initial uncertainty related to assessing the real-life value of new drugs and enable a final HTA recommendation or reimbursement and pricing decisions. Further, we suggest that real cost to health care payers of drugs in CA and P4P should be made publicly available in a systematic manner, to avoid a perverse impact of these MAA types on the international reference pricing system.

  13. Expression of animal anti-apoptotic gene Ced-9 enhances tolerance during Glycine max L.-Bradyrhizobium japonicum interaction under saline stress but reduces nodule formation.

    PubMed

    Robert, Germán; Muñoz, Nacira; Melchiorre, Mariana; Sánchez, Federico; Lascano, Ramiro

    2014-01-01

    The mechanisms by which the expression of animal cell death suppressors in economically important plants conferred enhanced stress tolerance are not fully understood. In the present work, the effect of expression of animal antiapoptotic gene Ced-9 in soybean hairy roots was evaluated under root hairs and hairy roots death-inducing stress conditions given by i) Bradyrhizobium japonicum inoculation in presence of 50 mM NaCl, and ii) severe salt stress (150 mM NaCl), for 30 min and 3 h, respectively. We have determined that root hairs death induced by inoculation in presence of 50 mM NaCl showed characteristics of ordered process, with increased ROS generation, MDA and ATP levels, whereas the cell death induced by 150 mM NaCl treatment showed non-ordered or necrotic-like characteristics. The expression of Ced-9 inhibited or at least delayed root hairs death under these treatments. Hairy roots expressing Ced-9 had better homeostasis maintenance, preventing potassium release; increasing the ATP levels and controlling the oxidative damage avoiding the increase of reactive oxygen species production. Even when our results demonstrate a positive effect of animal cell death suppressors in plant cell ionic and redox homeostasis under cell death-inducing conditions, its expression, contrary to expectations, drastically inhibited nodule formation even under control conditions.

  14. The Plant Cuticle Is Required for Osmotic Stress Regulation of Abscisic Acid Biosynthesis and Osmotic Stress Tolerance in Arabidopsis[W

    PubMed Central

    Wang, Zhen-Yu; Xiong, Liming; Li, Wenbo; Zhu, Jian-Kang; Zhu, Jianhua

    2011-01-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 gene expression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxygenase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol) treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly that CED1 encodes a putative α/β hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cutin biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. PMID:21610183

  15. The mammalian Ced-1 ortholog MEGF10/KIAA1780 displays a novel adhesion pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Emiko; Nakayama, Manabu

    2007-07-01

    Ced-1 protein is a Caenorhabditis elegans cell surface receptor involved in phagocytosis of dead cells. The gene encoding the mammalian ortholog of Ced-1 is yet to be identified. Here, we describe a potential candidate: human MEGF10. MEGF10 has the overall domain organization of Ced-1, containing a signal peptide, a EMI domain, 17 atypical EGF-like repeats, a transmembrane domain, and a cytoplasmic domain with NPXY and YXXL motifs. MEGF10-EGFP fusion protein expressed in HEK293 cells produced an irregular, mosaic-like pattern on the surface of coated glass. Protruded MEGF10 bound tightly to the glass, in effect 'pinning' the cytoplasmic membrane firmly ontomore » the glass, thereby restricting cell motility. These cells also took on a flat appearance. Although MEGF10-EGFP localized throughout the cytoplasmic membrane, no MEGF10-EGFP was found in lamellipodia. The MEGF10-EGFP signal was surrounded by a 1-2-{mu}m-wide dark strip lacking EGFP. Expression analyses of various MEGF10 deletion mutants revealed that the irregular, mosaic-like adhesion pattern characteristic of MEGF10 family members is due to concerted interactions between the EMI and 17 atypical EGF-like domains. Co-culturing of MEGF10-EGFP-expressing cells with apoptotic cells revealed that MEGF10 protein accumulated around the contact region during engulfment of apoptotic cells.« less

  16. Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease.

    PubMed

    Croese, John; Giacomin, Paul; Navarro, Severine; Clouston, Andrew; McCann, Leisa; Dougall, Annette; Ferreira, Ivana; Susianto, Atik; O'Rourke, Peter; Howlett, Mariko; McCarthy, James; Engwerda, Christian; Jones, Dianne; Loukas, Alex

    2015-02-01

    Celiac disease (CeD) is a common gluten-sensitive autoimmune enteropathy. A gluten-free diet is an effective treatment, but compliance is demanding; hence, new treatment strategies for CeD are required. Parasitic helminths hold promise for treating inflammatory disorders, so we examined the influence of experimental hookworm infection on the predicted outcomes of escalating gluten challenges in CeD subjects. A 52-week study was conducted involving 12 adults with diet-managed CeD. Subjects were inoculated with 20 Necator americanus larvae, and escalating gluten challenges consumed as pasta were subsequently administered: (1) 10 to 50 mg for 12 weeks (microchallenge); (2) 25 mg daily + 1 g twice weekly for 12 weeks (GC-1g); and (3) 3 g daily (60-75 straws of spaghetti) for 2 weeks (GC-3g). Symptomatic, serologic, and histological outcomes evaluated gluten toxicity. Regulatory and inflammatory T cell populations in blood and mucosa were examined. Two gluten-intolerant subjects were withdrawn after microchallenge. Ten completed GC-1g, 8 of whom enrolled in and completed GC-3g. median villous height-to-crypt depth ratios (2.60-2.63; P = .98) did not decrease as predicted after GC-1g, and the mean IgA-tissue transglutaminase titers declined, contrary to the predicted rise after GC-3g. quality of life scores improved (46.3-40.6; P = .05); celiac symptom indices (24.3-24.3; P = .53), intra-epithelial lymphocyte percentages (32.5-35.0; P = .47), and Marsh scores were unchanged by gluten challenge. Intestinal T cells expressing IFNγ were reduced following hookworm infection (23.9%-11.5%; P = .04), with corresponding increases in CD4(+) Foxp3(+) regulatory T cells (0.19%-1.12%; P = .001). Necator americanus and gluten microchallenge promoted tolerance and stabilized or improved all tested indices of gluten toxicity in CeD subjects. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Intrinsic and scattering attenuation of high-frequency S-waves in the central part of the External Dinarides

    NASA Astrophysics Data System (ADS)

    Majstorović, Josipa; Belinić, Tena; Namjesnik, Dalija; Dasović, Iva; Herak, Davorka; Herak, Marijan

    2017-09-01

    The central part of the External Dinarides (CED) is a geologically and tectonically complex region formed in the collision between the Adriatic microplate and the European plate. In this study, the contributions of intrinsic and scattering attenuation ( Q i - 1 and Q sc - 1 , respectively) to the total S-wave attenuation were calculated for the first time. The multiple lapse-time window analysis (MLTWA method), based on the assumptions of multiple isotropic scattering in a homogeneous medium with uniformly distributed scatterers, was applied to seismograms of 450 earthquakes recorded at six seismic stations. Selected events have hypocentral distances between 40 and 90 km with local magnitudes between 1.5 and 4.7. The analysis was performed over 11 frequency bands with central frequencies between 1.5 and 16 Hz. Results show that the seismic albedo of the studied area is less than 0.5 and Q i - 1 > Q sc - 1 at all central frequencies and for all stations. These imply that the intrinsic attenuation dominates over scattering attenuation in the whole study area. Calculated total S-wave and expected coda wave attenuation for CED are in a very good agreement with the ones measured in previous studies using the coda normalization and the coda-Q methods. All estimated attenuation factors decrease with increasing frequency. The intrinsic attenuation for CED is among the highest observed elsewhere, which could be due to the highly fractured and fluid-filled carbonates in the upper crust. The scattering and the total S-wave attenuation for CED are close to the average values obtained in other studies performed worldwide. In particular, good agreement of frequency dependence of total attenuation in CED and in the regions that contributed most strong-motion records for ground motion prediction equations used in PSHA in Croatia indicates that those were well chosen and applicable to this area as far as their attenuation properties are concerned.

  18. Prolonged Attenuation of Amygdala-Kindled Seizure Measures in Rats by Convection-Enhanced Delivery of the N-Type Calcium Channel Antagonists ω-Conotoxin GVIA and ω-Conotoxin MVIIA

    PubMed Central

    Gasior, Maciej; White, Natalie A.; Rogawski, Michael A.

    2008-01-01

    Convection-enhanced delivery (CED) permits the homogeneous distribution of therapeutic agents throughout localized regions of the brain parenchyma without causing tissue damage as occurs with bolus injection. Here, we examined whether CED infusion of the N-type calcium channel antagonists ω-conotoxin GVIA (ω-CTX-G) and ω-conotoxin MVIIA (ω-CTX-M) can attenuate kindling measures in fully amygdala-kindled rats. Rats were implanted with a combination infusion cannula-stimulating electrode assembly into the right basolateral amygdala. Fully kindled animals received infusions of vehicle, ω-CTX-G (0.005, 0.05, and 0.5 nmol), ω-CTX-M (0.05, 0.15, and 0.5 nmol), proteolytically inactivated ω-CTX-M (0.5 nmol), or carbamazepine (500 nmol) into the stimulation site. CED of ω-CTX-G and ω-CTX-M over a 20-min period resulted in a dose-dependent increase in the afterdischarge threshold and a decrease in the afterdischarge duration and behavioral seizure score and duration during a period of 20 min to 1 week after the infusion, indicating an inhibitory effect on the triggering and expression of kindled seizures. The protective effects of ω-conotoxins reached a maximum at 48 h postinfusion, and then they gradually resolved over the next 5 days. In contrast, carbamazepine was active at 20 min but not at 24 h after the infusion, whereas CED of vehicle or inactivated ω-CTX-M had no effect. Except for transient tremor in some rats receiving the highest toxin doses, no adverse effects were observed. These results indicate that local CED of high-molecular-weight presynaptic N-type calcium channel blockers can produce long-lasting inhibition of brain excitability and that they may provide prolonged seizure protection in focal seizure disorders. PMID:17717191

  19. Convection-enhanced delivery of etoposide is effective against murine proneural glioblastoma.

    PubMed

    Sonabend, Adam M; Carminucci, Arthur S; Amendolara, Benjamin; Bansal, Mukesh; Leung, Richard; Lei, Liang; Realubit, Ronald; Li, Hai; Karan, Charles; Yun, Jonathan; Showers, Christopher; Rothcock, Robert; O, Jane; Califano, Andrea; Canoll, Peter; Bruce, Jeffrey N

    2014-09-01

    Glioblastoma subtypes have been defined based on transcriptional profiling, yet personalized care based on molecular classification remains unexploited. Topoisomerase II (TOP2) contributes to the transcriptional signature of the proneural glioma subtype. Thus, we targeted TOP2 pharmacologically with etoposide in proneural glioma models. TOP2 gene expression was evaluated in mouse platelet derived growth factor (PDGF)(+)phosphatase and tensin homolog (PTEN)(-/-)p53(-/-) and PDGF(+)PTEN(-/-) proneural gliomas and cell lines, as well as human glioblastoma from The Cancer Genome Atlas. Correlation between TOP2 transcript levels and etoposide susceptibility was investigated in 139 human cancer cell lines from the Cancer Cell Line Encyclopedia public dataset and in mouse proneural glioma cell lines. Convection-enhanced delivery (CED) of etoposide was tested on cell-based PDGF(+)PTEN(-/-)p53(-/-) and retroviral-based PDGF(+)PTEN(-/-) mouse proneural glioma models. TOP2 expression was significantly higher in human proneural glioblastoma and in mouse proneural tumors at early as well as late stages of development compared with normal brain. TOP2B transcript correlated with susceptibility to etoposide in mouse proneural cell lines and in 139 human cancer cell lines from the Cancer Cell Line Encyclopedia. Intracranial etoposide CED treatment (680 μM) was well tolerated by mice and led to a significant survival benefit in the PDGF(+)PTEN(-/-)p53(-/-) glioma model. Moreover, etoposide CED treatment at 80 μM but not 4 μM led to a significant survival advantage in the PDGF(+)PTEN(-/-) glioma model. TOP2 is highly expressed in proneural gliomas, rendering its pharmacological targeting by intratumoral administration of etoposide by CED effective on murine proneural gliomas. We provide evidence supporting clinical testing of CED of etoposide with a molecular-based patient selection approach. Published by Oxford University Press on behalf of the Society for Neuro-Oncology 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Convection-enhanced delivery of an anti-miR is well-tolerated, preserves anti-miR stability and causes efficient target de-repression: a proof of concept.

    PubMed

    Halle, Bo; Marcusson, Eric G; Aaberg-Jessen, Charlotte; Jensen, Stine S; Meyer, Morten; Schulz, Mette K; Andersen, Claus; Kristensen, Bjarne W

    2016-01-01

    Over-expressed microRNAs (miRs) are promising new targets in glioblastoma (GBM) therapy. Inhibition of over-expressed miRs has been shown to diminish GBM proliferation, invasion and angiogenesis, indicating a significant therapeutic potential. However, the methods utilized for miR inhibition have had low translational potential. In clinical trials convection-enhanced delivery (CED) has been applied for local delivery of compounds in the brain. The aim of this study was to determine if safe and efficient miR inhibition was possible by CED of an anti-miR. We used a highly invasive GBM orthotopic xenograft model and targeted a well-validated miR, let-7a, with a 2'-O-methoxyethyl anti-miR with a combined phosphodiester/phosphorothioate backbone to establish an initial proof of concept. In vitro, anti-let-7a was delivered unassisted to the patient-derived T87 glioblastoma spheroid culture. In vivo, anti-let-7a or saline were administered by CED into orthotopic T87-derived tumors. After 1 month of infusion, tumors were removed and tumor mRNA levels of the target-gene High-mobility group AT-hook 2 (HMGA2) were determined. In vitro, 5 days inhibition was superior to 1 day at de-repressing the let-7a target HMGA2 and the inhibition was stable for 24 h. In vivo, anti-miR integrity was preserved in the pumps and no animals showed signs of severe adverse effects attributable to the anti-miR treatment. HMGA2 tumor level was significantly de-repressed in the anti-miR treated animals. The results showed-as an initial proof of concept-that miRs can be efficiently inhibited using CED delivery of anti-miR. The next step is to apply CED for anti-miR delivery focusing on key oncogenic miRs.

  1. Renormalizable Electrodynamics of Scalar and Vector Mesons. Part II

    DOE R&D Accomplishments Database

    Salam, Abdus; Delbourgo, Robert

    1964-01-01

    The "gauge" technique" for solving theories introduced in an earlier paper is applied to scalar and vector electrodynamics. It is shown that for scalar electrodynamics, there is no {lambda}φ*2φ2 infinity in the theory, while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the gauge technique are explained in section 3, and a preliminary set of rules for finite computation in vector electrodynamics is set out in Eqs. (7.28) - (7.34).

  2. BOOK REVIEW: Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity and Fractals

    NASA Astrophysics Data System (ADS)

    Heusler, Stefan

    2006-12-01

    The main focus of the second, enlarged edition of the book Mathematica for Theoretical Physics is on computational examples using the computer program Mathematica in various areas in physics. It is a notebook rather than a textbook. Indeed, the book is just a printout of the Mathematica notebooks included on the CD. The second edition is divided into two volumes, the first covering classical mechanics and nonlinear dynamics, the second dealing with examples in electrodynamics, quantum mechanics, general relativity and fractal geometry. The second volume is not suited for newcomers because basic and simple physical ideas which lead to complex formulas are not explained in detail. Instead, the computer technology makes it possible to write down and manipulate formulas of practically any length. For researchers with experience in computing, the book contains a lot of interesting and non-trivial examples. Most of the examples discussed are standard textbook problems, but the power of Mathematica opens the path to more sophisticated solutions. For example, the exact solution for the perihelion shift of Mercury within general relativity is worked out in detail using elliptic functions. The virial equation of state for molecules' interaction with Lennard-Jones-like potentials is discussed, including both classical and quantum corrections to the second virial coefficient. Interestingly, closed solutions become available using sophisticated computing methods within Mathematica. In my opinion, the textbook should not show formulas in detail which cover three or more pages—these technical data should just be contained on the CD. Instead, the textbook should focus on more detailed explanation of the physical concepts behind the technicalities. The discussion of the virial equation would benefit much from replacing 15 pages of Mathematica output with 15 pages of further explanation and motivation. In this combination, the power of computing merged with physical intuition would be of benefit even for newcomers. In summary, this book shows in a convincing manner how classical problems in physics can be attacked with modern computing technology. The second volume is interesting for experienced users of Mathematica. For students, the textbook can be very useful in combination with a seminar.

  3. Quantum-classical transition of photon-Carnot engine induced by quantum decoherence

    NASA Astrophysics Data System (ADS)

    Quan, H. T.; Zhang, P.; Sun, C. P.

    2006-03-01

    We study the physical implementation of the photon-Carnot engine (PCE) based on the cavity quantum electrodynamics system [M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther, Science 299, 862 (2003)]. Here we analyze two decoherence mechanisms for the more practical systems of PCE, the dissipation of photon field, and the pure dephasing of the input atoms. As a result we find that (i) the PCE can work well to some extent even in the existence of the cavity loss (photon dissipation) and (ii) the short-time atomic dephasing, which can destroy the PCE, is a fatal problem to be overcome.

  4. Classical field configurations and infrared slavery

    NASA Astrophysics Data System (ADS)

    Swanson, Mark S.

    1987-09-01

    The problem of determining the energy of two spinor particles interacting through massless-particle exchange is analyzed using the path-integral method. A form for the long-range interaction energy is obtained by analyzing an abridged vertex derived from the parent theory. This abridged vertex describes the radiation of zero-momentum particles by pointlike sources. A path-integral formalism for calculating the energy of the radiation field associated with this abridged vertex is developed and applications are made to determine the energy necessary for adiabatic separation of two sources in quantum electrodynamics and for an SU(2) Yang-Mills theory. The latter theory is shown to be consistent with confinement via infrared slavery.

  5. G. E. M. Jauncey and the Compton Effect

    NASA Astrophysics Data System (ADS)

    Jenkin, John

    In late 1922 Arthur Holly Compton (1892-1962) discovered that an X-ray quantum of radiation undergoes a discrete change in wavelength when it experiences a billiard-ball collision with a single atomic electron, a phenomenon that became known as the Compton effect and for which he shared the Nobel Prize in Physics for 1927. But for more than five years before he made his discovery, Compton had analyzed X-ray scattering in terms of classical electrodynamics. I suggest that his colleague at Washington University in St. Louis, G. E. M. Jauncey (1888-1947), helped materially to persuade him to embrace the quantum interpretation of his X-ray scattering experiments.

  6. Hybrid plasmonic systems: from optical transparencies to strong coupling and entanglement

    NASA Astrophysics Data System (ADS)

    Gray, Stephen K.

    2018-02-01

    Classical electrodynamics and quantum mechanical models of quantum dots and molecules interacting with plasmonic systems are discussed. Calculations show that just one quantum dot interacting with a plasmonic system can lead to interesting optical effects, including optical transparencies and more general Fano resonance features that can be tailored with ultrafast laser pulses. Such effects can occur in the limit of moderate coupling between quantum dot and plasmonic system. The approach to the strong coupling regime is also discussed. In cases with two or more quantum dots within a plasmonic system, the possibility of quantum entanglement mediated through the dissipative plasmonic structure arises.

  7. Combined prevalence of inherited skeletal disorders in dog breeds in Belgium.

    PubMed

    Coopman, F; Broeckx, B; Verelst, E; Deforce, D; Saunders, J; Duchateau, L; Verhoeven, G

    2014-01-01

    Canine hip dysplasia (CHD), canine elbow dysplasia (CED), and humeral head osteochondrosis (HHOC) are inherited traits with uneven incidence in dog breeds. Knowledge of the combined prevalence of these three disorders is necessary to estimate the effect of the currently applied breeding strategies, in order to improve the genetic health of the population. Official screening results of the Belgian National Committee for Inherited Skeletal Disorders (NCSID) revealed that an average of 31.8% (CHD, CED, or both; n = 1273 dogs) and 47.2% (CHD, CED, HHOC, or a combination of these three diseases; n = 250 dogs) of dogs are mildly to severely affected by at least one skeletal disorder. According to the current breeding recommendations in some dog breeds in Belgium, these animals should be restricted (mild signs) or excluded (moderate to severe signs) from breeding. The introduction of genetic parameters, such as estimated breeding values, might create a better approach to gradually reduce the incidence of these complex inherited joint disorders, without compromising genetic population health.

  8. IER-297 CED-2: Final Design for Thermal/Epithermal eXperiments with Jemima Plates with Polyethylene and Hafnium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, A. J.; Percher, C. M.; Zywiec, W. J.

    This report presents the final design (CED-2) for IER-297, and focuses on 15 critical configurations using highly enriched uranium (HEU) Jemima plates moderated by polyethylene with and without hafnium diluent. The goal of the U.S. Nuclear Criticality Safety Program’s Thermal/Epithermal eXperiments (TEX) is to design and conduct new critical experiments to address high priority nuclear data needs from the nuclear criticality safety and nuclear data communities, with special emphasis on intermediate energy (0.625 eV – 100 keV) assemblies that can be easily modified to include various high priority diluent materials. The TEX (IER 184) CED-1 Report [1], completed in 2012,more » demonstrated the feasibility of meeting the TEX goals with two existing NCSP fissile assets, plutonium Zero Power Physics Reactor (ZPPR) plates and highly enriched uranium (HEU) Jemima plates. The first set of TEX experiments will focus on using the plutonium ZPPR plates with polyethylene moderator and tantalum diluents.« less

  9. Mapping Urban Risk: Flood Hazards, Race, & Environmental Justice In New York”

    PubMed Central

    Maantay, Juliana; Maroko, Andrew

    2009-01-01

    This paper demonstrates the importance of disaggregating population data aggregated by census tracts or other units, for more realistic population distribution/location. A newly-developed mapping method, the Cadastral-based Expert Dasymetric System (CEDS), calculates population in hyper-heterogeneous urban areas better than traditional mapping techniques. A case study estimating population potentially impacted by flood hazard in New York City compares the impacted population determined by CEDS with that derived by centroid-containment method and filtered areal weighting interpolation. Compared to CEDS, 37 percent and 72 percent fewer people are estimated to be at risk from floods city-wide, using conventional areal weighting of census data, and centroid-containment selection, respectively. Undercounting of impacted population could have serious implications for emergency management and disaster planning. Ethnic/racial populations are also spatially disaggregated to determine any environmental justice impacts with flood risk. Minorities are disproportionately undercounted using traditional methods. Underestimating more vulnerable sub-populations impairs preparedness and relief efforts. PMID:20047020

  10. Design and Implementation of the CEBAF Element Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theodore Larrieu, Christopher Slominski, Michele Joyce

    2011-10-01

    With inauguration of the CEBAF Element Database (CED) in Fall 2010, Jefferson Lab computer scientists have taken a first step toward the eventual goal of a model-driven accelerator. Once fully populated, the database will be the primary repository of information used for everything from generating lattice decks to booting front-end computers to building controls screens. A particular requirement influencing the CED design is that it must provide consistent access to not only present, but also future, and eventually past, configurations of the CEBAF accelerator. To accomplish this, an introspective database schema was designed that allows new elements, element types, andmore » element properties to be defined on-the-fly without changing table structure. When used in conjunction with the Oracle Workspace Manager, it allows users to seamlessly query data from any time in the database history with the exact same tools as they use for querying the present configuration. Users can also check-out workspaces and use them as staging areas for upcoming machine configurations. All Access to the CED is through a well-documented API that is translated automatically from original C++ into native libraries for script languages such as perl, php, and TCL making access to the CED easy and ubiquitous. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.« less

  11. Induction of cap-independent BiP (hsp-3) and Bcl-2 (ced-9) translation in response to eIF4G (IFG-1) depletion in C. elegans

    PubMed Central

    Morrison, J Kaitlin; Friday, Andrew J; Henderson, Melissa A; Hao, Enhui; Keiper, Brett D

    2014-01-01

    During apoptosis, activated caspases cleave the translation initiation factor eIF4G. This cleavage disrupts cap-dependent mRNA translation initiation within the cell. However, a specific subset of mRNAs can still be recruited for protein synthesis in a cap-independent manner by the residual initiation machinery. Many of these mRNAs, including cell death related mRNAs, contain internal ribosome entry sites (IRESes) that promote their enhanced translation during apoptosis. Still other mRNAs have little dependence on the cap recognition mechanism. The expression of the encoded proteins, both anti- and pro-apoptotic, allows for an initial period of attempted cell survival, then commitment to cell death when damage is extensive. In this study we address the translational regulation of the stress and apoptosis-related mRNAs in C. elegans: BiP (hsp-3) (hsp-4), Hif-1 (hif-1), p53 (cep-1), Bcl-2 (ced-9) and Apaf-1 (ced-4). Altered translational efficiency of these messages was observed upon depletion of cap-dependent translation and induction of apoptosis within the C. elegans gonad. Our findings suggest a physiological link between the cap-independent mechanism and the enhanced translation of hsp-3 and ced-9. This increase in the efficiency of translation may be integral to the stress response during the induction of physiological apoptosis. PMID:26779406

  12. Regular black holes from semi-classical down to Planckian size

    NASA Astrophysics Data System (ADS)

    Spallucci, Euro; Smailagic, Anais

    In this paper, we review various models of curvature singularity free black holes (BHs). In the first part of the review, we describe semi-classical solutions of the Einstein equations which, however, contains a “quantum” input through the matter source. We start by reviewing the early model by Bardeen where the metric is regularized by-hand through a short-distance cutoff, which is justified in terms of nonlinear electro-dynamical effects. This toy-model is useful to point-out the common features shared by all regular semi-classical black holes. Then, we solve Einstein equations with a Gaussian source encoding the quantum spread of an elementary particle. We identify, the a priori arbitrary, Gaussian width with the Compton wavelength of the quantum particle. This Compton-Gauss model leads to the estimate of a terminal density that a gravitationally collapsed object can achieve. We identify this density to be the Planck density, and reformulate the Gaussian model assuming this as its peak density. All these models, are physically reliable as long as the BH mass is big enough with respect to the Planck mass. In the truly Planckian regime, the semi-classical approximation breaks down. In this case, a fully quantum BH description is needed. In the last part of this paper, we propose a nongeometrical quantum model of Planckian BHs implementing the Holographic Principle and realizing the “classicalization” scenario recently introduced by Dvali and collaborators. The classical relation between the mass and radius of the BH emerges only in the classical limit, far away from the Planck scale.

  13. Hamiltonian structure of classical N-body systems of finite-size particles subject to EM interactions

    NASA Astrophysics Data System (ADS)

    Cremaschini, C.; Tessarotto, M.

    2012-01-01

    An open issue in classical relativistic mechanics is the consistent treatment of the dynamics of classical N-body systems of mutually interacting particles. This refers, in particular, to charged particles subject to EM interactions, including both binary interactions and self-interactions ( EM-interacting N- body systems). The correct solution to the question represents an overriding prerequisite for the consistency between classical and quantum mechanics. In this paper it is shown that such a description can be consistently obtained in the context of classical electrodynamics, for the case of a N-body system of classical finite-size charged particles. A variational formulation of the problem is presented, based on the N -body hybrid synchronous Hamilton variational principle. Covariant Lagrangian and Hamiltonian equations of motion for the dynamics of the interacting N-body system are derived, which are proved to be delay-type ODEs. Then, a representation in both standard Lagrangian and Hamiltonian forms is proved to hold, the latter expressed by means of classical Poisson Brackets. The theory developed retains both the covariance with respect to the Lorentz group and the exact Hamiltonian structure of the problem, which is shown to be intrinsically non-local. Different applications of the theory are investigated. The first one concerns the development of a suitable Hamiltonian approximation of the exact equations that retains finite delay-time effects characteristic of the binary interactions and self-EM-interactions. Second, basic consequences concerning the validity of Dirac generator formalism are pointed out, with particular reference to the instant-form representation of Poincaré generators. Finally, a discussion is presented both on the validity and possible extension of the Dirac generator formalism as well as the failure of the so-called Currie "no-interaction" theorem for the non-local Hamiltonian system considered here.

  14. Tunneling decay of false vortices

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, M. B.; Yajnik, U. A.; Yeom, Dong-han

    2013-10-01

    We consider the decay of vortices trapped in the false vacuum of a theory of scalar electrodynamics in 2+1 dimensions. The potential is inspired by models with intermediate symmetry breaking to a metastable vacuum that completely breaks a U(1) symmetry, while in the true vacuum, the symmetry is unbroken. The false vacuum is unstable through the formation of true vacuum bubbles; however, the rate of decay can be extremely long. On the other hand, the false vacuum can contain metastable vortex solutions. These vortices contain the true vacuum inside in addition to a unit of magnetic flux and the appropriate topologically nontrivial false vacuum outside. We numerically establish the existence of vortex solutions which are classically stable; however, they can decay via tunneling. In general terms, they tunnel to a configuration which is a large, thin-walled vortex configuration that is now classically unstable to the expansion of its radius. We compute an estimate for the tunneling amplitude in the semiclassical approximation. We believe our analysis would be relevant to superconducting thin films or superfluids.

  15. Quantum optical effective-medium theory and transformation quantum optics for metamaterials

    NASA Astrophysics Data System (ADS)

    Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing; Mortensen, N. Asger

    2016-09-01

    While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions trans- form under coordinate transformations. Spontaneous-emission rates can be either enhanced or suppressed using invisibility cloaks or gradient index lenses. Furthermore, the anisotropic material profile of the cloak enables the directional control of spontaneous emission.

  16. Understanding the Magnetosphere: The Counter-intuitive Simplicity of Cosmic Electrodynamics

    NASA Astrophysics Data System (ADS)

    Vasyliūnas, V. M.

    2008-12-01

    Planetary magnetospheres exhibit an amazing variety of phenomena, unlimited in complexity if followed into endlessly fine detail. The challenge of theory is to understand this variety and complexity, ultimately by seeing how the observed effects follow from the basic equations of physics (a point emphasized by Eugene Parker). The basic equations themselves are remarkably simple, only their consequences being exceedingly complex (a point emphasized by Fred Hoyle). In this lecture I trace the development of electrodynamics as an essential ingredient of magnetospheric physics, through the three stages it has undergone to date. Stage I is the initial application of MHD concepts and constraints (sometimes phrased in equivalent single-particle terms). Stage II is the classical formulation of self-consistent coupling between magnetosphere and ionosphere. Stage III is the more recent recognition that properly elucidating time sequence and cause-effect relations requires Maxwell's equations combined with the unique constraints of large-scale plasma. Problems and controversies underlie the transition from each stage to the following. For each stage, there are specific observed aspects of the magnetosphere that can be understood at its level; also, each stage implies a specific way to formulate unresolved questions (particularly important in this age of extensive multi-point observations and ever-more-detailed numerical simulations).

  17. Middle atmosphere electrodynamics: Report of the workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar Terrestrial Coupling

    NASA Technical Reports Server (NTRS)

    Maynard, N. C. (Editor)

    1979-01-01

    Significant deficiencies exist in the present understanding of the basic physical processes taking place within the middle atmosphere (the region between the tropopause and the mesopause), and in the knowledge of the variability of many of the primary parameters that regulate Middle Atmosphere Electrodynamics (MAE). Knowledge of the electrical properties, i.e., electric fields, plasma characteristics, conductivity and currents, and the physical processes that govern them is of fundamental importance to the physics of the region. Middle atmosphere electrodynamics may play a critical role in the electrodynamical aspects of solar-terrestrial relations. As a first step, the Workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar-Terrestrial Coupling was held to review the present status and define recommendations for future MAE research.

  18. 188Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas

    PubMed Central

    Allard, Emilie; Hindré, François; Passirani, Catherine; Lemaire, Laurent; Lepareur, Nicolas; Noiret, Nicolas; Menei, Philippe; Benoit, Jean-Pierre

    2008-01-01

    Purpose Lipid nanocapsules (LNC) entrapping lipophilic complexes of 188Re (188Re(S3CPh)2(S2CPh) [188Re-SSS]) were investigated as a novel radiopharmaceutical carrier for internal radiation therapy of malignant gliomas. The present study was designed to evaluate the efficacy of intracerebral administration of 188Re-SSS LNC by means of convection-enhanced delivery (CED) on a 9L rat brain tumour model. Methods Female Fischer rats with 9L glioma were treated with a single injection of 188Re-SSS LNC by CED 6 days after cell implantation. Rats were put into random groups according to the dose infused: 12, 10, 8, and 3 Gy in comparison with blank LNC, perrhenate solution (4Gy) and non-treated animals. The radionuclide brain retention level was evaluated by measuring 188Re elimination in faeces and urine over 72h after the CED injection. The therapeutic effect of 188Re-SSS LNC was assessed based on animal survival. Results CED of 188Re perrhenate solution resulted in rapid drug clearance with a brain T1/2 of 7h. In contrast, when administered in LNC, 188Re tissue retention was greatly prolonged, with only 10% of the injected dose being eliminated at 72h. Rat median survival was significantly improved for the group treated with 8Gy 188Re-SSS LNC compared to the control group and blank-LNC treated animals. The increase in the median survival time (ISTmedian) was about 80% compared to the control group; 33% of the animals were long-term survivors. The dose of 8Gy proved to be a very effective dose, between toxic (10–12Gy) and ineffective (3–4Gy) doses. Conclusions These findings show that CED of Rhenium-188-loaded lipid nanocapsules is a safe and potent antitumour system for treating malignant gliomas. Our data are the first to show the in vivo efficacy of Rhenium-188 internal radiotherapy for the treatment of brain malignancy. PMID:18465130

  19. Effective Drug Delivery in Diffuse Intrinsic Pontine Glioma: A Theoretical Model to Identify Potential Candidates

    PubMed Central

    El-Khouly, Fatma E.; van Vuurden, Dannis G.; Stroink, Thom; Hulleman, Esther; Kaspers, Gertjan J. L.; Hendrikse, N. Harry; Veldhuijzen van Zanten, Sophie E. M.

    2017-01-01

    Despite decades of clinical trials for diffuse intrinsic pontine glioma (DIPG), patient survival does not exceed 10% at two years post-diagnosis. Lack of benefit from systemic chemotherapy may be attributed to an intact bloodbrain barrier (BBB). We aim to develop a theoretical model including relevant physicochemical properties in order to review whether applied chemotherapeutics are suitable for passive diffusion through an intact BBB or whether local administration via convection-enhanced delivery (CED) may increase their therapeutic potential. Physicochemical properties (lipophilicity, molecular weight, and charge in physiological environment) of anticancer drugs historically and currently administered to DIPG patients, that affect passive diffusion over the BBB, were included in the model. Subsequently, the likelihood of BBB passage of these drugs was ascertained, as well as their potential for intratumoral administration via CED. As only non-molecularly charged, lipophilic, and relatively small sized drugs are likely to passively diffuse through the BBB, out of 51 drugs modeled, only 8 (15%)—carmustine, lomustine, erlotinib, vismodegib, lenalomide, thalidomide, vorinostat, and mebendazole—are theoretically qualified for systemic administration in DIPG. Local administration via CED might create more therapeutic options, excluding only positively charged drugs and drugs that are either prodrugs and/or only available as oral formulation. A wide variety of drugs have been administered systemically to DIPG patients. Our model shows that only few are likely to penetrate the BBB via passive diffusion, which may partly explain the lack of efficacy. Drug distribution via CED is less dependent on physicochemical properties and may increase the therapeutic options for DIPG. PMID:29164054

  20. DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans.

    PubMed

    Reddien, Peter W; Andersen, Erik C; Huang, Michael C; Horvitz, H Robert

    2007-04-01

    The genes egl-1, ced-9, ced-4, and ced-3 play major roles in programmed cell death in Caenorhabditis elegans. To identify genes that have more subtle activities, we sought mutations that confer strong cell-death defects in a genetically sensitized mutant background. Specifically, we screened for mutations that enhance the cell-death defects caused by a partial loss-of-function allele of the ced-3 caspase gene. We identified mutations in two genes not previously known to affect cell death, dpl-1 and mcd-1 (modifier of cell death). dpl-1 encodes the C. elegans homolog of DP, the human E2F-heterodimerization partner. By testing genes known to interact with dpl-1, we identified roles in cell death for four additional genes: efl-1 E2F, lin-35 Rb, lin-37 Mip40, and lin-52 dLin52. mcd-1 encodes a novel protein that contains one zinc finger and that is synthetically required with lin-35 Rb for animal viability. dpl-1 and mcd-1 act with efl-1 E2F and lin-35 Rb to promote programmed cell death and do so by regulating the killing process rather than by affecting the decision between survival and death. We propose that the DPL-1 DP, MCD-1 zinc finger, EFL-1 E2F, LIN-35 Rb, LIN-37 Mip40, and LIN-52 dLin52 proteins act together in transcriptional regulation to promote programmed cell death.

  1. Feasibility of liquid nitrogen cryotherapy after failed radiofrequency ablation for Barrett's esophagus.

    PubMed

    Trindade, Arvind J; Inamdar, Sumant; Kothari, Shivangi; Berkowitz, Joshua; McKinley, Matthew; Kaul, Vivek

    2017-09-01

    Radiofrequency ablation (RFA) for dysplastic Barrett's esophagus (BE) is highly effective. RFA failures are infrequent but can be a challenging cohort to manage. There are limited data on the feasibility of liquid nitrogen cryospray ablation for complete eradication of dysplasia (CE-D) and/or intestinal metaplasia (CE-IM) after RFA has failed to achieve CE-IM in patients with dysplastic BE. This is a retrospective review from two medical centers of prospectively maintained databases looking at patients that underwent liquid nitrogen cryospray ablation for refractory intestinal metaplasia post failed RFA. Eighteen patients were identified that met inclusion criteria. Eleven patients had persistent dysplasia and IM following RFA and seven had persistent non-dysplastic IM. More than 80% of patients were male with long-segment BE (median length 8 cm). Seventy two percent of patients with dysplasia achieved CE-D after cryotherapy. Fifty percent (9/18) of all RFA failures achieved CE-IM with cryotherapy. In comparison, RFA has a CE-IM of 78% in a less challenging treatment naïve cohort from a large-scale meta-analysis of 3802 patients. No adverse events occurred in our cohort. Cryospray ablation is feasible and safe for achieving CE-D and CE-IM after RFA failure. The CE-D rates are high with cryotherapy in this population. CE-IM with cryotherapy is acceptable in this difficult-to-treat cohort when compared to CE-IM rates with RFA in dysplastic BE treatment naïve patients (50% vs 78%). © 2017 Japan Gastroenterological Endoscopy Society.

  2. Backflow-free catheters for efficient and safe convection-enhanced delivery of therapeutics.

    PubMed

    Lueshen, Eric; Tangen, Kevin; Mehta, Ankit I; Linninger, Andreas

    2017-07-01

    Convection-enhanced delivery (CED) is an invasive drug delivery technique used to target specific regions of the brain for the treatment of cancer and neurodegenerative diseases while bypassing the blood-brain barrier. In order to prevent the possibility of backflow, low volumetric flow rates are applied which limit the achievable drug distribution volumes from CED. This can render CED treatment ineffective since a small convective flow produces narrow drug distribution inside the treatment region. Novel catheter designs and CED protocols are needed to improve the drug distribution inside the treatment region. This is especially important when administering toxic chemotherapeutics which could adversely affect other organs if backflow occurred and these drugs entered the circulating blood stream. In order to help elucidate the causes of backflow and to design backflow-free catheters, we have studied the impact that microfluid flow has on deformable brain phantom gels experimentally as well as numerically. We found that fluid injections into porous media have considerable effects on local transport properties such as porosity and hydraulic conductivity. These phenomena not only alter the bulk flow velocity distribution of the microfluid flow due to the changing porosity, but significantly modify flow direction and even volumetric flow distribution due to induced local hydraulic conductivity anisotropy. These studies led us to the development of novel backflow-free catheters with safe volumetric flow rates up to 10 µL/min. The catheter designs, numerical simulations and experimental results are described throughout this article. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Intraneural convection enhanced delivery of AAVrh20 for targeting primary sensory neurons.

    PubMed

    Pleticha, Josef; Jeng-Singh, Christian; Rezek, Rahaf; Zaibak, Manal; Beutler, Andreas S

    2014-05-01

    Gene therapy using adeno-associated virus (AAV) is an attractive strategy to treat disorders of the peripheral nervous system (PNS), such as chronic pain or peripheral neuropathies. Although intrathecal (IT) administration of AAV has been the standard in the field for targeting the PNS, it lacks anatomical specificity and results in wide rostro-caudal distribution of the vector. An alternative approach is to deliver AAV directly to the peripheral nerve axon. The present study employed convection-enhanced delivery (CED) of a novel AAV serotype, AAVrh20, expressing enhanced green fluorescent protein (EGFP) into rat sciatic nerve investigating its efficacy, anatomical selectivity, and safety, compared to the IT route. Intraneural CED resulted in transduction confined to the ipsilateral L4 and L5 DRG while IT administration led to promiscuous DRG transduction encompassing the entire lumbar region bilaterally. The transduction rate for intraneural AAV administration was similar to IT delivery (24% for L4 and 31.5% for L5 DRG versus 50% for L4 and 19.5% for L5 DRG). The use of hyperosmotic diluent did not further improve the transduction efficiency. AAVrh20 was superior to reference serotypes previously described to be most active for each route. Intraneural CED of AAV was associated with transient allodynia that resolved spontaneously. These findings establish intraneural CED as an alternative to IT administration for AAV mediated gene transfer to the PNS and, based on a reference rodent model, suggest AAVrh20 as a superior serotype for targeting the PNS. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the Childhood Cancer Survivor Study.

    PubMed

    Green, Daniel M; Nolan, Vikki G; Goodman, Pamela J; Whitton, John A; Srivastava, DeoKumar; Leisenring, Wendy M; Neglia, Joseph P; Sklar, Charles A; Kaste, Sue C; Hudson, Melissa M; Diller, Lisa R; Stovall, Marilyn; Donaldson, Sarah S; Robison, Leslie L

    2014-01-01

    Estimation of the risk of adverse long-term outcomes such as second malignant neoplasms and infertility often requires reproducible quantification of exposures. The method for quantification should be easily utilized and valid across different study populations. The widely used Alkylating Agent Dose (AAD) score is derived from the drug dose distribution of the study population and thus cannot be used for comparisons across populations as each will have a unique distribution of drug doses. We compared the performance of the Cyclophosphamide Equivalent Dose (CED), a unit for quantifying alkylating agent exposure independent of study population, to the AAD. Comparisons included associations from three Childhood Cancer Survivor Study (CCSS) outcome analyses, receiver operator characteristic (ROC) curves and goodness of fit based on the Akaike's Information Criterion (AIC). The CED and AAD performed essentially identically in analyses of risk for pregnancy among the partners of male CCSS participants, risk for adverse dental outcomes among all CCSS participants and risk for premature menopause among female CCSS participants, based on similar associations, lack of statistically significant differences between the areas under the ROC curves and similar model fit values for the AIC between models including the two measures of exposure. The CED is easily calculated, facilitating its use for patient counseling. It is independent of the drug dose distribution of a particular patient population, a characteristic that will allow direct comparisons of outcomes among epidemiological cohorts. We recommend the use of the CED in future research assessing cumulative alkylating agent exposure. © 2013 Wiley Periodicals, Inc.

  5. A Pilot Study: Cardiac Parameters in Children Receiving New-Generation Antidepressants.

    PubMed

    Uchida, Mai; Spencer, Andrea E; Kenworthy, Tara; Chan, James; Fitzgerald, Maura; Rosales, Ana Maria; Kagan, Elana; Saunders, Alexandra; Biederman, Joseph

    2017-06-01

    Because of concerns about potential associations between high doses of citalopram and QTc prolongation in adults, this study examined whether such associations are operant in children. We hypothesized that therapeutic doses of nontricyclic antidepressant medications (non-TCAs) prescribed to children would be cardiovascularly safe. The sample consisted of 49 psychiatrically referred children and adolescents 6 to 17 years old of both sexes treated with a non-TCA (citalopram, escitalopram, fluoxetine, paroxetine, sertraline, bupropion, duloxetine, venlafaxine, mirtazapine). To standardize the doses of different antidepressants, we converted doses of individual medicines into "citalopram equivalent doses" (CEDs) based on dosing recommendation for individual antidepressants. Correlation analysis was carried out to compare the continuous and weight-based CED to variables of interest. A QTc grouping was defined as normal, borderline, or abnormal, and CED was compared across QTc groupings using linear regression. An antidepressant dosage group was defined as low or high dose, and a t test compared variables of interest across dosage groups. No significant associations were found between total or weight-corrected CEDs of any antidepressant examined and QTc or any other electrocardiogram or blood pressure parameters. In patients taking citalopram or escitalopram, a significant correlation was found between PR interval and total daily dose, which disappeared when weight-based doses were used or when corrected by age. Although limited by a relatively small sample size, these results suggest that therapeutic doses of non-TCA antidepressants when used in children do not seem to be associated with prolonged QTc interval or other adverse cardiovascular effects.

  6. Double-Slit Interference Pattern for a Macroscopic Quantum System

    NASA Astrophysics Data System (ADS)

    Naeij, Hamid Reza; Shafiee, Afshin

    2016-12-01

    In this study, we solve analytically the Schrödinger equation for a macroscopic quantum oscillator as a central system coupled to two environmental micro-oscillating particles. Then, the double-slit interference patterns are investigated in two limiting cases, considering the limits of uncertainty in the position probability distribution. Moreover, we analyze the interference patterns based on a recent proposal called stochastic electrodynamics with spin. Our results show that when the quantum character of the macro-system is decreased, the diffraction pattern becomes more similar to a classical one. We also show that, depending on the size of the slits, the predictions of quantum approach could be apparently different with those of the aforementioned stochastic description.

  7. Gamma Rays at Very High Energies

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.

  8. The first dozen years of the history of ITEP Theoretical Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Ioffe, B. L.

    2013-01-01

    The theoretical investigations at ITEP in the years 1945 - 1958 are reviewed. There are exposed the most important theoretical results, obtained in the following branches of physics: (1) the theory of nuclear reactors on thermal neutrons; (2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in USA); (3) radiation theory; (4) low temperature physics; (5) quantum electrodynamics and quantum field theories; (6) parity violation in weak interactions, the theory of β-decay and other weak processes; (7) strong interaction and nuclear physics. To the review are added the English translations of a few papers, originally published in Russian, but unknown (or almost unknown) to Western readers.

  9. Convection-enhanced delivery of cetuximab conjugated iron-oxide nanoparticles for treatment of spontaneous canine intracranial gliomas.

    PubMed

    Freeman, A Courtenay; Platt, Simon R; Holmes, Shannon; Kent, M; Robinson, Kelsey; Howerth, Elizabeth; Eagleson, Joe; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Constantinos G

    2018-05-01

    Cetuximab conjugated iron-oxide nanoparticles (cetuximab-IONPs) have shown both in-vitro and in-vivo anti-tumor efficacy against gliomas. The purpose of this pilot study was to evaluate the safety and potential efficacy of cetuximab-IONPs for treatment of spontaneously occurring intracranial gliomas in canines after convection-enhanced delivery (CED). The use of CED allowed for direct infusion of the cetuximab-IONPs both intratumorally and peritumorally avoiding the blood brain barrier (BBB) and limiting systemic effects. A total of eight dogs participated in the study and only two developed mild post-operative complications, which resolved with medical therapy. All canines underwent a single CED treatment of the cetuximab-IONPs over 3 days and did not receive any further adjuvant treatments. Volumetric analysis showed a median reduction in tumor size of 54.9% by MRI at 1-month (4-6 weeks) follow-up. Five dogs were euthanized due to recurrence of neurological signs other than seizures, two due to recurrent seizures, and one dog died in his sleep. Median survival time after surgery was 248 days (mean 367 days).

  10. Guidance for Using Formal Methods in a Certification Context

    NASA Technical Reports Server (NTRS)

    Brown, Duncan; Delseny, Herve; Hayhurst, Kelly; Wiels, Virginie

    2010-01-01

    This paper discusses some of the challenges to using formal methods in a certification context and describes the effort by the Formal Methods Subgroup of RTCA SC-205/EUROCAE WG-71 to propose guidance to make the use of formal methods a recognized approach. This guidance, expected to take the form of a Formal Methods Technical Supplement to DO-178C/ED-12C, is described, including the activities that are needed when using formal methods, new or modified objectives with respect to the core DO-178C/ED-12C document, and evidence needed for meeting those objectives.

  11. A simulation study to quantify the impacts of exposure ...

    EPA Pesticide Factsheets

    A simulation study to quantify the impacts of exposure measurement error on air pollution health risk estimates in copollutant time-series models The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  12. Next-generation concurrent engineering: developing models to complement point designs

    NASA Technical Reports Server (NTRS)

    Morse, Elizabeth; Leavens, Tracy; Cohanim, Babak; Harmon, Corey; Mahr, Eric; Lewis, Brian

    2006-01-01

    Concurrent Engineering Design (CED) teams have made routine the rapid development of point designs for space missions. The Jet Propulsion Laboratory's Team X is now evolving into a 'next-generation CED; in addition to a point design, the Team develops a model of the local trade space. The process is a balance between the power of a model developing tools and the creativity of humal experts, enabling the development of a variety of trade models for any space mission. This paper reviews the modeling method and its practical implementation in the ED environment. Example results illustrate the benefit of this approach.

  13. Notes on Born-Infeld-type electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-11-01

    We propose a new model of nonlinear electrodynamics (NLED) with three parameters. Born-Infeld (BI) electrodynamics and exponential electrodynamics are particular cases of this model. The phenomenon of vacuum birefringence in the external magnetic field is studied. We show that there is no singularity of the electric field at the origin of point-like charged particles. The corrections to Coulomb’s law at r →∞ are obtained. We calculate the total electrostatic energy of charges, for different parameters of the model, which is finite.

  14. Remarks on Heisenberg-Euler-type electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-05-01

    We consider Heisenberg-Euler-type model of nonlinear electrodynamics with two parameters. Heisenberg-Euler electrodynamics is a particular case of this model. Corrections to Coulomb’s law at r →∞ are obtained and energy conditions are studied. The total electrostatic energy of charged particles is finite. The charged black hole solution in the framework of nonlinear electrodynamics is investigated. We find the asymptotic of the metric and mass functions at r →∞. Corrections to the Reissner-Nordström solution are obtained.

  15. The PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  16. Regional convection-enhanced delivery of gadolinium-labeled albumin in the rat hippocampus in vivo.

    PubMed

    Astary, Garrett W; Kantorovich, Svetlana; Carney, Paul R; Mareci, Thomas H; Sarntinoranont, Malisa

    2010-03-15

    Convection-enhanced delivery (CED) has emerged as a promising method of targeted drug delivery for treating central nervous system (CNS) disorders, but the influence of brain structure on infusate distribution is unclear. We have utilized this approach to study extracellular transport and distribution of a contrast agent in the hippocampus, a complex structure susceptible to CNS disorders. The magnetic resonance (MR) contrast agent diethylene triamene penta-acetic acid chelated gadolinium-labeled albumin (Gd-albumin), tagged with Evans blue dye, was directly infused (V(i)=5 microl) into the dorsal and ventral hippocampus of seven male Sprague-Dawley rats. The final distribution profile of the contrast agent, a product of CED and limited diffusion, was observed in vivo using high-resolution T1-weighted MR imaging at 11.1T. Dense cell layers, such as the granule cell layer of the dentate gyrus and the pyramidal cell layer of CA1, appeared to be barriers to transport of the tracer. Three-dimensional distribution shape and volume (V(d)) differences, between the dorsal and ventral hippocampus infusions, were determined from the MR images using a semi-automatic segmentation routine (dorsal V(d)=23.4+/-1.8 microl, ventral V(d)=36.4+/-5.1 microl). Finer structural detail of the hippocampus was obtained using a combination of histological analysis and fluorescence imaging. This study demonstrates that CED has the potential to target all regions of the hippocampus and that tracer distribution is influenced by infusion site, underlying structure and circuitry, and extent of backflow. Therefore, CED, combined with high-resolution MR imaging, may be a useful strategy for delivering therapeutics for the treatment of CNS disorders affecting the hippocampus. Published by Elsevier B.V.

  17. Cumulative effective dose associated with computed tomography examinations in adolescent trauma patients.

    PubMed

    Choi, Seung Joon; Kim, Eun Young; Kim, Hyung Sik; Choi, Hye-Young; Cho, Jinseong; Yang, Hyuk Jun; Chung, Yong Eun

    2014-07-01

    The aims of this study were to analyze cumulative effective dose (cED) and to assess lifetime attributable risk (LAR) of cancer due to radiation exposure during computed tomography (CT) examinations in adolescent trauma patients. Between January 2010 and May 2011, the adolescent patients with trauma were enrolled in this study. Numbers of CT examinations and body regions examined were collated, and cEDs were calculated using dose-length product values and conversion factors. Lifetime attributable risk for cancer incidence and cancer-associated mortality were quantified based on the studies of survivors of the atomic bombs on Japan. Data were stratified according to severity of trauma: minor trauma, injury severity score of less than 16; and major trauma, injury severity score of 16 or greater. A total of 698 CT scans were obtained on the following regions of 484 adolescent patients: head CT, n = 647; rest of the body, n = 41; and thorax, n = 10. Mean cED per patient was 3.4 mSv, and mean LARs for cancer incidence and mortality were 0.05% and 0.02%, respectively. The majority of patients (98.4%) experienced minor trauma, and their mean cED and LARs for cancer incidence and mortality (3.0 mSv and 0.04% and 0.02%, respectively) were significantly lower than those of patients with major trauma (24.3 mSv and 0.31% and 0.15%, respectively, all P values < 0.001). The overall radiation-induced cancer risk due to CT examinations performed for the initial assessment of minor trauma was found to be relatively low in adolescent patients. However, adolescent patients with major trauma were exposed to a substantial amount of radiation during multiple CT examinations.

  18. Frameless multimodal image guidance of localized convection-enhanced delivery of therapeutics in the brain

    PubMed Central

    van der Bom, Imramsjah M J; Moser, Richard P; Gao, Guanping; Sena-Esteves, Miguel; Aronin, Neil

    2013-01-01

    Introduction Convection-enhanced delivery (CED) has been shown to be an effective method of administering macromolecular compounds into the brain that are unable to cross the blood-brain barrier. Because the administration is highly localized, accurate cannula placement by minimally invasive surgery is an important requisite. This paper reports on the use of an angiographic c-arm system which enables truly frameless multimodal image guidance during CED surgery. Methods A microcannula was placed into the striatum of five sheep under real-time fluoroscopic guidance using imaging data previously acquired by cone beam computed tomography (CBCT) and MRI, enabling three-dimensional navigation. After introduction of the cannula, high resolution CBCT was performed and registered with MRI to confirm the position of the cannula tip and to make adjustments as necessary. Adeno-associated viral vector-10, designed to deliver small-hairpin micro RNA (shRNAmir), was mixed with 2.0 mM gadolinium (Gd) and infused at a rate of 3 μl/min for a total of 100 μl. Upon completion, the animals were transferred to an MR scanner to assess the approximate distribution by measuring the volume of spread of Gd. Results The cannula was successfully introduced under multimodal image guidance. High resolution CBCT enabled validation of the cannula position and Gd-enhanced MRI after CED confirmed localized administration of the therapy. Conclusion A microcannula for CED was introduced into the striatum of five sheep under multimodal image guidance. The non-alloy 300 μm diameter cannula tip was well visualized using CBCT, enabling confirmation of the position of the end of the tip in the area of interest. PMID:22193239

  19. Development of coverage with evidence development for medical technologies in Switzerland from 1996 to 2012.

    PubMed

    Brügger, Urs; Ruckstuhl, Andreas; Horisberger, Bruno; Gratwohl, Alois

    2014-07-01

    The aim of this study was to assess incidence, time frame, and outcome of "Coverage with Evidence Development" (CED) decisions in the Swiss Basic Health Insurance scheme. Analysis of all controversial medical technologies submitted to review by the Swiss Federal Office of Public Health (FOPH) from 1996 to 2012 with focus on decisions with constraints. Description of types of technology, type of initial decision, duration of evaluation period, final decision, and search for potential factors associated with changes over time. Forty-five (37.5 percent) of 120 controversial health technologies were classified as "yes, in evaluation, reimbursed" for a certain period of time and thirty-five (29.2 percent) as "no, in evaluation, not reimbursed" by the Federal Department of Home Affairs from 1996 to 2012. The rate of CED decisions ranged between zero and nine per year and was influenced by type of technology and calendar year. Forty-four of forty-five decisions were subject to further restrictions, to a "center or a specialist" (76 percent), "indications" (49 percent), "registry" (31 percent), or "other" (49 percent). The time to a final decision ranged from 1.5 to 11 years (median, 6 years). No factors associated with initial decision and final outcome could be identified. CED as a reality in Switzerland might have enabled patients to obtain access to promising technologies early in their life cycle. CED might have acted as a trigger to a successful implementation of a comprehensive national registry. The lack of qualitative data stresses the urgent need for evaluation of the HTA decisions and their impact on patient outcome and costs.

  20. Additive Neuroprotective Effects of the Multifunctional Iron Chelator M30 with Enriched Diet in a Mouse Model of Amyotrophic Lateral Sclerosis.

    PubMed

    Golko-Perez, Sagit; Mandel, Silvia; Amit, Tamar; Kupershmidt, Lana; Youdim, Moussa B H; Weinreb, Orly

    2016-02-01

    Amyotrophic lateral sclerosis (ALS) is the most common degenerative disease of the motoneuron system, involving various abnormalities, such as mitochondrial dysfunction, oxidative stress, transitional metal accumulation, neuroinflammation, glutamate excitotoxicity, apoptosis, decreased supply of trophic factors, cytoskeletal abnormalities, and extracellular superoxide dismutase (SOD)-1 toxicity. These multiple disease etiologies implicated in ALS gave rise to the perception that future therapeutic approaches for the disease should be aimed at targeting multiple pathological pathways. In line with this view, we have evaluated in the current study the therapeutic effects of low doses of the novel multifunctional monoamine oxidase (MAO) inhibitor/iron-chelating compound, M30 in combination with high Calorie Energy supplemented Diet (CED) in the SOD1-G93A transgenic mouse model of ALS. Our results demonstrated that the combined administration of M30 with CED produced additive neuroprotective effects on motor performance and increased survival of SOD1-G93A mice. We also found that both M30 and M30/CED regimens caused a significant inhibition of MAO-A and -B activities and decreased the turnover of dopamine in the brain of SOD1-G93A mice. In addition, M30/CED combined treatment resulted in a significant increase in mRNA expression levels of various mitochondrial biogenesis and metabolism regulators, such as peroxisome proliferator-activated receptor-γ (PPARγ)-co activator 1 alpha (PGC-1α), PPARγ, uncoupling protein 1, and insulin receptor in the gastrocnemius muscle of SOD1-G93A mice. These results suggest that a combination of drug/agents with different, but complementary mechanisms may be beneficial in the treatment of ALS.

  1. Poor diagnostic accuracy of a single fasting plasma citrulline concentration to assess intestinal energy absorption capacity.

    PubMed

    Peters, Job H C; Wierdsma, Nicolette J; Teerlink, Tom; van Leeuwen, Paul A M; Mulder, Chris J J; van Bodegraven, Ad A

    2007-12-01

    Our aim was to explore the diagnostic value of fasting citrulline concentrations to detect decreased intestinal energy absorption in patients with recently diagnosed celiac disease (CeD), refractory celiac disease (RCeD), and short bowel syndrome (SBS). Decreased intestinal energy absorption is regarded a marker of intestinal failure. Fasting plasma citrulline concentrations were determined by high performance liquid chromatography (HPLC) in a prospective study of 30 consecutive adult patients (15 CeD, 9 RCeD, and 16 SBS) and 21 healthy subjects. Intestinal energy absorption capacity using bomb calorimetry was determined in all patients and healthy subjects and was regarded as the gold standard for intestinal energy absorption function. The mean fasting plasma citrulline concentration was lower in RCeD patients than in healthy subjects (28.5+/-9.9 vs 38.1+/-8.0 micromol/L, P<0.05) and CeD patients (28.5+/-9.9 vs 38.1+/-6.4 micromol/L, P<0.05), however, clearly within reference values. The mean intestinal energy absorption capacity was lower in SBS patients than in healthy subjects (64.3+/-18.2 vs 90.3+/-3.5%, P<0.001), CeD patients (64.3+/-18.2 vs 89.2+/-3.4%, P<0.001), and the RCeD group (64.3+/-18.2 vs 82.3+/-11.7%, P<0.01). No relation was observed between fasting plasma citrulline concentration and intestinal energy absorption capacity (Pearson r=0.09, P=0.56). The area under the ROC curve for fasting plasma citrulline to detect decreased intestinal energy absorption capacity (i.e., <85%) was 0.50. Fasting plasma citrulline concentrations have poor test characteristics for detection of decreased intestinal energy absorption capacity in patients with enterocyte damage.

  2. Multifaced Roles of the αvβ3 Integrin in Ehlers–Danlos and Arterial Tortuosity Syndromes’ Dermal Fibroblasts

    PubMed Central

    Zoppi, Nicoletta; Chiarelli, Nicola; Ritelli, Marco; Colombi, Marina

    2018-01-01

    The αvβ3 integrin, an endothelial cells’ receptor-binding fibronectin (FN) in the extracellular matrix (ECM) of blood vessels, regulates ECM remodeling during migration, invasion, angiogenesis, wound healing and inflammation, and is also involved in the epithelial mesenchymal transition. In vitro-grown human control fibroblasts organize a fibrillar network of FN, which is preferentially bound on the entire cell surface to its canonical α5β1 integrin receptor, whereas the αvβ3 integrin is present only in rare patches in focal contacts. We report on the preferential recruitment of the αvβ3 integrin, due to the lack of FN–ECM and its canonical integrin receptor, in dermal fibroblasts from Ehlers–Danlos syndromes (EDS) and arterial tortuosity syndrome (ATS), which are rare multisystem connective tissue disorders. We review our previous findings that unraveled different biological mechanisms elicited by the αvβ3 integrin in fibroblasts derived from patients affected with classical (cEDS), vascular (vEDS), hypermobile EDS (hEDS), hypermobility spectrum disorders (HSD), and ATS. In cEDS and vEDS, respectively, due to defective type V and type III collagens, αvβ3 rescues patients’ fibroblasts from anoikis through a paxillin-p60Src-mediated cross-talk with the EGF receptor. In hEDS and HSD, without a defined molecular basis, the αvβ3 integrin transduces to the ILK-Snail1-axis inducing a fibroblast-to-myofibroblast-transition. In ATS cells, the deficiency of the dehydroascorbic acid transporter GLUT10 leads to redox imbalance, ECM disarray together with the activation of a non-canonical αvβ3 integrin-TGFBRII signaling, involving p125FAK/p60Src/p38MAPK. The characterization of these different biological functions triggered by αvβ3 provides insights into the multifaced nature of this integrin, at least in cultured dermal fibroblasts, offering future perspectives for research in this field. PMID:29587413

  3. Introduction to Electrodynamics

    NASA Astrophysics Data System (ADS)

    Griffiths, David J.

    2017-06-01

    1. Vector analysis; 2. Electrostatics; 3. Potentials; 4. Electric fields in matter; 5. Magnetostatics; 6. Magnetic fields in matter; 7. Electrodynamics; 8. Conservation laws; 9. Electromagnetic waves; 10. Potentials and fields; 11. Radiation; 12. Electrodynamics and relativity; Appendix A. Vector calculus in curvilinear coordinates; Appendix B. The Helmholtz theorem; Appendix C. Units; Index.

  4. Conceptual Assessment Tool for Advanced Undergraduate Electrodynamics

    ERIC Educational Resources Information Center

    Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.

    2017-01-01

    As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question…

  5. AmeriFlux US-Ced Cedar Bridge

    DOE Data Explorer

    Clark, Ken [USDA Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ced Cedar Bridge. Site Description - Wildfires and prescribed fires are a common occurrence in the NJ Pinelands. Prior to a 1995 nonstand replacing wildfire, the stand was last burned in the very large wildfire in 1963. Plow lines were installed for fire control in December of 2007, followed by a prescribed burns in 2008 and 2013, conducted by the New Jersey Forest Fire Service. Pine looper defoliated the stand in 1998, and Gypsy moth defoliated the understory and deciduos oaks in 2007. Pitch Pines are largely unaffected by defoliation by Gypsy moth.

  6. Supporting clinical engineering in Italy: results of a survey conducted by the AIIC.

    PubMed

    Faggiano, Francesco; Ritrovato, Matteo; Freda, Paola; Vivo, Liliana; D'Alessandro, Luigi; Derrico, Pietro

    2012-01-01

    This article presents the outcomes of a survey developed and conducted by the Italian Association of Clinical Engineers (AIIC) in 2010 [1]. The AIIC, affiliated with the International Federation for Medical and Biological Engineering (IFMBE) since 2003, conducted this in-depth survey to investigate the educational profile of clinical engineers (CEs) as well as the activities and organization of clinical engineering departments (CEDs) in Italy. The survey consisted of a six-section questionnaire designed by the AIIC Board, which was based on other previous international surveys of CEDs. The questionnaire was sent to the AIIC members and to the most important Italian health-care organizations.

  7. Reaction of. beta. -propiolactone with derivatives of adenine and with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, R.; Mieyal, J.J.; Goldthwait, D.A.

    1982-01-01

    The reaction of deoxyadenosine with ..beta..-propiolactone produces two derivatives. One is 1-(2-carboxyethyl)-2-deoxyadenosine (CEdA). The proposed structure for the other is 3-(..beta..-D-2-deoxyribosyl)-7,8-dihydropyrimido-(2,l-i)purine-9-one (dDPP). Spectral characteristics of both compounds are presented. These include u.v. spectra of each in acidic, neutral and alkaline solutions, i.r. spectra, fluorescence spectra, and n.m.r. spectra. The dDPP can be converted to CEdA by mild acid hydrolysis, and the CEdA can be converted to dDPP by reaction with a carbodiimide derivative. When poly A was reacted with ..beta..-propiolactone, the yield of dDPP in the polymer was 7-9%. When double-stranded DNA was alkylated by (/sup 3/H)..beta..-propiolactone at relatively highmore » concentrations and then acid hydrolyzed to separate 1-(2-carboxyethyl)adenine (CEA) and 7-(2-carboxyethyl)guanine (CEG), and CEA to CEG ratio of up to 0.62 was obtained. With relatively low concentrations of (/sup 3/H)..beta..-propiolactone, the yield of CEA was low with double-stranded DNA but was 5-6 fold greater with single-stranded DNA.« less

  8. Toxicity evaluation of convection-enhanced delivery of small-molecule kinase inhibitors in naïve mouse brainstem.

    PubMed

    Zhou, Zhiping; Ho, Sharon L; Singh, Ranjodh; Pisapia, David J; Souweidane, Mark M

    2015-04-01

    Diffuse intrinsic pontine gliomas (DIPGs) are inoperable and lethal high-grade gliomas lacking definitive therapy. Platelet-derived growth factor receptor (PDGFR) and its downstream signaling molecules are the most commonly overexpressed oncogenes in DIPG. This study tested the effective concentration of PDGFR pathway inhibitors in cell culture and then toxicity of these small-molecule kinase inhibitors delivered to the mouse brainstem via convection-enhanced delivery (CED) for potential clinical application. Effective concentrations of small-molecule kinase inhibitors were first established in cell culture from a mouse brainstem glioma model. Sixteen mice underwent CED, a local drug delivery technique, of saline or of single and multidrug combinations of dasatinib (2 M), everolimus (20 M), and perifosine (0.63 mM) in the pons. Animals were kept alive for 3 days following the completion of infusion. No animals displayed any immediate or delayed neurological deficits postoperatively. Histological analysis revealed edema, microgliosis, acute inflammation, and/or axonal injury in the experimental animals consistent with mild acute drug toxicity. Brainstem CED of small-molecule kinase inhibitors in the mouse did not cause serious acute toxicities. Future studies will be necessary to evaluate longer-term safety to prepare for potential clinical application.

  9. Using additional external inputs to forecast water quality with an artificial neural network for contamination event detection in source water

    NASA Astrophysics Data System (ADS)

    Schmidt, F.; Liu, S.

    2016-12-01

    Source water quality plays an important role for the safety of drinking water and early detection of its contamination is vital to taking appropriate countermeasures. However, compared to drinking water, it is more difficult to detect contamination events because its environment is less controlled and numerous natural causes contribute to a high variability of the background values. In this project, Artificial Neural Networks (ANNs) and a Contamination Event Detection Process (CED Process) were used to identify events in river water. The ANN models the response of basic water quality sensors obtained in laboratory experiments in an off-line learning stage and continuously forecasts future values of the time line in an on-line forecasting step. During this second stage, the CED Process compares the forecast to the measured value and classifies it as regular background or event value, which modifies the ANN's continuous learning and influences its forecasts. In addition to this basic setup, external information is fed to the CED Process: A so-called Operator Input (OI) is provided to inform about unusual water quality levels that are unrelated to the presence of contamination, for example due to cooling water discharge from a nearby power plant. This study's primary goal is to evaluate how well the OI fits into the design of the combined forecasting ANN and CED Process and to understand its effects on the online forecasting stage. To test this, data from laboratory experiments conducted previously at the School of Environment, Tsinghua University, have been used to perform simulations highlighting features and drawbacks of this method. Applying the OI has been shown to have a positive influence on the ANN's ability to handle a sudden change in background values, which is unrelated to contamination. However, it might also mask the presence of an event, an issue that underlines the necessity to have several instances of the algorithm run in parallel. Other difficulties addressed in this study include the source and the format of the OI. This project tries to add to the ongoing research into algorithms for CED. It provides ideas for how results from the binary classification of time series could be evaluated in a more realistic fashion and shows what the advantages and limitations of such a method would be.

  10. Classical electromagnetic radiation of the Dirac electron

    NASA Technical Reports Server (NTRS)

    Lanyi, G.

    1973-01-01

    A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.

  11. Non-linear non-local molecular electrodynamics with nano-optical fields.

    PubMed

    Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul

    2015-10-28

    The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.

  12. Variational tricomplex of a local gauge system, Lagrange structure and weak Poisson bracket

    NASA Astrophysics Data System (ADS)

    Sharapov, A. A.

    2015-09-01

    We introduce the concept of a variational tricomplex, which is applicable both to variational and nonvariational gauge systems. Assigning this tricomplex with an appropriate symplectic structure and a Cauchy foliation, we establish a general correspondence between the Lagrangian and Hamiltonian pictures of one and the same (not necessarily variational) dynamics. In practical terms, this correspondence allows one to construct the generating functional of a weak Poisson structure starting from that of a Lagrange structure. As a byproduct, a covariant procedure is proposed for deriving the classical BRST charge of the BFV formalism by a given BV master action. The general approach is illustrated by the examples of Maxwell’s electrodynamics and chiral bosons in two dimensions.

  13. Long-distance Lienard-Wiechert potentials and qq-bar spin dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, R.W.

    1987-12-15

    The long-range spin dependence of the qq interaction is considered in a model in which the confining potential is required to be the static limit of retarded scalar and vector potentials analogous to the Lienard-Wiechert potentials of classical electrodynamics. A generalization of Darwin's method is used to obtain the corresponding Hamiltonian. The long-distance spin-dependent interaction is found to be determined completely by only two potentials: namely, the static scalar and vector potentials. This is to be compared with the four potentials required in Eichten and Feinberg's general formulation. Two different solutions are allowed by Gromes's theorem. In one, the scalarmore » potential can be linear; in the other, it must be logarithmic.« less

  14. Hotspot-mediated non-dissipative and ultrafast plasmon passage

    NASA Astrophysics Data System (ADS)

    Roller, Eva-Maria; Besteiro, Lucas V.; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O.; Liedl, Tim

    2017-08-01

    Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices. Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles. Here, we show the assembly and optical analysis of a triple-particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles, mediated by the connecting silver particle, with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modelling and qualitative quantum-mechanical calculations. We identify the formation of strong hotspots between all particles as the main mechanism for the lossless coupling and thus coherent ultrafast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, as well as for classical charge and information transfer processes.

  15. Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Gorney, D. J.; Kishi, A. M.; Newman, A. L.; Schulz, M.; Walterscheid, R. L.; CORNWALL; Prasad, S. S.

    1982-01-01

    Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector; morning and dayside auroras; auroral plasma formation; electrodynamic coupling with the thermosphere; and auroral electron interaction with the atmosphere.

  16. The propagator of stochastic electrodynamics

    NASA Astrophysics Data System (ADS)

    Cavalleri, G.

    1981-01-01

    The "elementary propagator" for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density ~ω3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to ψψ* where ψ is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics.

  17. Bekenstein inequalities and nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Peñafiel, M. L.; Falciano, F. T.

    2017-12-01

    Bekenstein and Mayo proposed a generalized bound for the entropy, which implies some inequalities between the charge, energy, angular momentum, and size of the macroscopic system. Dain has shown that Maxwell's electrodynamics satisfies all three inequalities. We investigate the validity of these relations in the context of nonlinear electrodynamics and show that Born-Infeld electrodynamics satisfies all of them. However, contrary to the linear theory, there is no rigidity statement in Born-Infeld. We study the physical meaning and the relationship between these inequalities, and in particular, we analyze the connection between the energy-angular momentum inequality and causality.

  18. Research Technology

    NASA Image and Video Library

    2004-04-15

    This is an artist's concept of an orbiting space vehicle in the Jovian system using an electrodynamic tether propellantless propulsion system. Electrodynamic tethers offer the potential to greatly extend and enhance future scientific missions to Jupiter and the Jovian system. Like Earth, Jupiter posses a strong magnetic field and a significant magnetosphere. This may make it feasible to operate electrodynamic tethers for propulsion and power generation.

  19. Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael P.; Stone, Nobie H.

    2014-01-01

    The PROPEL flight mission concept will demonstrate the safe use of an electrodynamic tether for generating thrust. PROPEL is being designed to be a versatile electrodynamic-tether system for multiple end users and to be flexible with respect to platform. As such, several implementation options are being explored, including a comprehensive mission design for PROPEL with a mission duration of six months; a space demonstration mission concept design with configuration of a pair of tethered satellites, one of which is the Japanese H-II Transfer Vehicle; and an ESPA-based system. We report here on these possible implementation options for PROPEL. electrodynamic tether; PROPEL demonstration mission; propellantless propulsion

  20. Electrodynamic Bare Tether Systems as a Thruster for the Momentum-Exchange/Electrodynamic Reboost(MXER)Project

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Gallagher, D. L.

    2006-01-01

    The concept of electrodynamic tether propulsion has a number of attractive features and has been widely discussed for different applications. Different system designs have been proposed and compared during the last 10 years. In spite of this, the choice of proper design for any particular mission is a unique problem. Such characteristics of tether performance as system acceleration, efficiency, etc., should be calculated and compared on the basis of the known capability of a tether to collect electrical current. We discuss the choice of parameters for circular and tape tethers with regard to the Momentum-Exchange/Electrodynamic Reboost (MXER) tether project.

  1. Structure of Aristotelian electrodynamics

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted

    2015-07-01

    Aristotelian electrodynamics (AE) describes the regime of a plasma with a very strong electric field that is not shorted out, with the charge current determined completely by pair production and the balance of the Lorentz 4-force against the curvature radiation reaction. Here it is shown how the principal null directions and associated eigenvalues of the field tensor govern AE, and how force-free electrodynamics arises smoothly from AE when the eigenvalues (and therefore the electric field in some frame) vanish. A criterion for validity of AE and force-free electrodynamics is proposed in terms of a pair of "field curvature scalars" formed from the first derivative of the principal null directions.

  2. Convection-enhanced delivery to the central nervous system.

    PubMed

    Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H

    2015-03-01

    Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.

  3. A community-based event delivery protocol in publish/subscribe systems for delay tolerant sensor networks.

    PubMed

    Liu, Nianbo; Liu, Ming; Zhu, Jinqi; Gong, Haigang

    2009-01-01

    The basic operation of a Delay Tolerant Sensor Network (DTSN) is to finish pervasive data gathering in networks with intermittent connectivity, while the publish/subscribe (Pub/Sub for short) paradigm is used to deliver events from a source to interested clients in an asynchronous way. Recently, extension of Pub/Sub systems in DTSNs has become a promising research topic. However, due to the unique frequent partitioning characteristic of DTSNs, extension of a Pub/Sub system in a DTSN is a considerably difficult and challenging problem, and there are no good solutions to this problem in published works. To ad apt Pub/Sub systems to DTSNs, we propose CED, a community-based event delivery protocol. In our design, event delivery is based on several unchanged communities, which are formed by sensor nodes in the network according to their connectivity. CED consists of two components: event delivery and queue management. In event delivery, events in a community are delivered to mobile subscribers once a subscriber comes into the community, for improving the data delivery ratio. The queue management employs both the event successful delivery time and the event survival time to decide whether an event should be delivered or dropped for minimizing the transmission overhead. The effectiveness of CED is demonstrated through comprehensive simulation studies.

  4. Immunocontraceptive efficacy of synthetic peptides corresponding to major antigenic determinants of chicken riboflavin carrier protein in the female rats.

    PubMed

    Subramanian, S; Karande, A A; Adiga, P R

    2000-09-01

    Earlier studies have demonstrated that antibodies directed towards the N-terminal (residues 10-17) and C-terminal (residues 200-207) regions on chicken riboflavin carrier protein (RCP; 219 AA) are effective in pregnancy termination in rodents and sub-human primates. In the present study, the immunocontraceptive potential of three additional immunodominant sequences comprising of residues 33-49, 64 83 and 130-147 (CYA, CED and CGE peptides, respectively) of chicken RCP was investigated. The three antigenic peptides were synthesized by using Fmoc chemistry. Oligoclonal antibodies were generated in rabbits. Bioneutralizing capacity of these peptides was assessed by passive and active immunoneutralization studies. All the three peptides-specific antisera recognized their cognate epitopes on native RCP. When the affinity purified peptide IgG were administered on three consecutive days to pregnant rats (on days 10, 11 and 12), it was observed that the rats injected with CED and CGE-IgG failed to deliver any pups whereas the animals which received CYA IgG delivered normal pups. Active immunization of fertile female rats with CED or CGE peptide conferred protection from pregnancy. These results demonstrate the presence of two additional stretches in chicken RCP which can serve as mini-vaccines.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klumpp, John Allan; Bertelli, Luiz; Waters, Tom L.

    For radionuclides such as plutonium and americium, detection of removable activity in the nose (i.e., nasal swab measurements) are frequently used to determine whether follow-up bioassay measurements are warranted following a potential intake. For this paper, the authors analyzed 429 nasal swab measurements taken following incidents or suspicious circumstances (such as an air monitor alarming) at Los Alamos National Laboratory (LANL) for which the dose was later evaluated using in vitro bioassay. Nasal swab measurements were found to be very poor predictors of dose and should not be used as such in the field. However, nasal swab measurements can bemore » indicative of whether a reliably detectable committed effective dose (CED) occurred. About 14% of nasal swab measurements between 1.25 and 16.7 Bq corresponded to CEDs greater than 1 mSv, so in general, positive nasal swabs always indicate that follow-up bioassay should be performed (positive nasal swabs less than 1.25 Bq are considered separately). This probability increased significantly for nasal swabs greater than 16.7 Bq. Only about 3% of nasal swabs with no detectable activity (NDA) corresponded to reliably detectable CEDs. As a result, a nasal swab with NDA is therefore necessary, but not sufficient, to negate the need for a follow-up bioassay if it was collected following other workplace indicators of a potential intake.« less

  6. IER 203 CED-2 Report: LLNL Final Design for BERP Ball With a Composite Reflector of Thin Polyethylene Backed by Nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percher, C. M.; Heinrichs, D. P.; Kim, S. K.

    2016-07-18

    This report documents the results of final design (CED-2) for IER 203, BERP Ball Composite Reflection, and focuses on critical configurations with a 4.5 kg α-phase plutonium sphere reflected by a combination of thin high-density polyethylene (HDPE) backed by a thick nickel reflector. The Lawrence Livermore National Laboratory’s (LLNL’s) Nuclear Criticality Safety Division, in support of fissile material operations, calculated surprisingly reactive configurations when a fissile core was surrounded by a thin, moderating reflector backed by a thick metal reflector. These composite reflector configurations were much more reactive than either of the single reflector materials separately. The calculated findings havemore » resulted in a stricter-than-anticipated criticality control set, impacting programmatic work. IER 203 was requested in response to these seemingly anomalous calculations to see if the composite reflection effect could be shown experimentally. This report focuses on the Beryllium Reflected Plutonium (BERP) ball as a fissile material core reflected by polyethylene and nickel. A total of four critical configurations were designed as part of CED-2. Fabrication costs are estimated to be $98,500, largely due to the cost of the large nickel reflectors. The IER 203 experiments could reasonably be expected to begin in early FY2017.« less

  7. Electrodynamic Arrays Having Nanomaterial Electrodes

    NASA Technical Reports Server (NTRS)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  8. An Experiment on the Limits of Quantum Electro-dynamics

    DOE R&D Accomplishments Database

    Barber, W. C.; Richter, B.; Panofsky, W. K. H.; O'Neill, G. K.; Gittelman, B.

    1959-06-01

    The limitations of previously performed or suggested electrodynamic cutoff experiments are reviewed, and an electron-electron scattering experiment to be performed with storage rings to investigate further the limits of the validity of quantum electrodynamics is described. The foreseen experimental problems are discussed, and the results of the associated calculations are given. The parameters and status of the equipment are summarized. (D.C.W.)

  9. Cumulative effective radiation dose received by blunt trauma patients arriving to a military level I trauma center from point of injury and interhospital transfers.

    PubMed

    Van Arnem, Kerri A; Supinski, David P; Tucker, Jonathan E; Varney, Shawn

    2016-12-01

    Trauma patients sustaining blunt injuries are exposed to multiple radiologic studies. Evidence indicates that the risk of cancer from exposure to ionizing radiation rises in direct proportion to the cumulative effective dose (CED) received. The purpose of this study is to quantify the amount of ionizing radiation accumulated when arriving directly from point of injury to San Antonio Military Medical Center (SAMMC), a level I trauma center, compared with those transferred from other facilities. A retrospective record review was conducted from 1st January 2010 through 31st December 2012. The SAMMC trauma registry, electronic medical records, and the digital radiology imaging system were searched for possible candidates. The medical records were then analyzed for sex, age, mechanism of injury, received directly from point of injury (direct group), transfer from another medical facility (transfer group), computed tomographic scans received, dose-length product, CED of radiation, and injury severity score. A diagnostic imaging physicist then calculated the estimated CED each subject received based on the dose-length product of each computed tomographic scan. A total of 300 patients were analyzed, with 150 patients in the direct group and 150 patients in the transfer group. Both groups were similar in age and sex. Patients in the transfer group received a significantly greater CED of radiation compared with the direct group (mean, 37.6 mSv vs 28 mSv; P=.001). The radiation received in the direct group correlates with a lifetime attributable risk (LAR) of 1 in 357 compared with the transfer group with an increase in LAR to 1 in 266. Patients transferred to our facility received a 34% increase in ionizing radiation compared with patients brought directly from the injury scene. This increased dose of ionizing radiation contributes to the LAR of cancer and needs to be considered before repeating imaging studies. III. Published by Elsevier Inc.

  10. Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial.

    PubMed

    Leffler, Daniel A; Kelly, Ciaran P; Green, Peter H R; Fedorak, Richard N; DiMarino, Anthony; Perrow, Wendy; Rasmussen, Henrik; Wang, Chao; Bercik, Premysl; Bachir, Natalie M; Murray, Joseph A

    2015-06-01

    Celiac disease (CeD) is a prevalent autoimmune condition. Recurrent signs and symptoms are common despite treatment with a gluten-free diet (GFD), yet no approved or proven nondietary treatment is available. In this multicenter, randomized, double-blind, placebo-controlled study, we assessed larazotide acetate 0.5, 1, or 2 mg 3 times daily to relieve ongoing symptoms in 342 adults with CeD who had been on a GFD for 12 months or longer and maintained their current GFD during the study. The study included a 4-week placebo run-in, 12 weeks of treatment, and a 4-week placebo run-out phase. The primary end point was the difference in average on-treatment Celiac Disease Gastrointestinal Symptom Rating Scale score. The primary end point was met with the 0.5-mg dose of larazotide acetate, with fewer symptoms compared with placebo by modified intention to treat (n = 340) (analysis of covariance, P = .022; mixed model for repeated measures, P = .005). The 0.5-mg dose showed an effect on exploratory end points including a 26% decrease in celiac disease patient-reported outcome symptomatic days (P = .017), a 31% increase in improved symptom days (P = .034), a 50% or more reduction from baseline of the weekly average abdominal pain score for 6 or more of 12 weeks of treatment (P = .022), and a decrease in the nongastrointestinal symptoms of headache and tiredness (P = .010). The 1- and 2-mg doses were no different than placebo for any end point. Safety was comparable with placebo. Larazotide acetate 0.5 mg reduced signs and symptoms in CeD patients on a GFD better than a GFD alone. Although results were mixed, this study was a successful trial of a novel therapeutic agent targeting tight junction regulation in patients with CeD who are symptomatic despite a GFD. Clinicaltrials.gov: NCT01396213. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Determination of Chromium(III), Chromium(VI), and Chromium(III) acetylacetonate in water by ion-exchange disk extraction/metal furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Kamakura, Nao; Inui, Tetsuo; Kitano, Masaru; Nakamura, Toshihiro

    A new method for the separate determination of Chromium(III) (Cr(III)), Chromium(VI) (Cr(VI)), and Cr(III) acetylacetonate (Cr(acac)3) in water was developed using a cation-exchange extraction disk (CED) and an anion-exchange extraction disk (AED) combined with metal furnace atomic absorption spectrometry (MFAAS). A 100-mL water sample was adjusted to pH 5.6 and passed through the CED placed on the AED. Cr(acac)3 and Cr(III) were adsorbed on the CED, and Cr(VI) was adsorbed on the AED. The adsorbed Cr(acac)3 was eluted with 50 mL of carbon tetrachloride, followed by the elution of Cr(III) with 50 mL of 3 mol L- 1 nitric acid. Cr(VI) was eluted with 50 mL of 3 mol L- 1 nitric acid. The chemical species of Cr eluted from the CED with carbon tetrachloride was identified as Cr(acac)3 using infrared spectroscopy. The eluate of Cr(acac)3 was diluted to 100 mL with carbon tetrachloride, and those of Cr(III) and Cr(VI) were diluted to 100 mL with deionized water. All of the solutions were subsequently analyzed by MFAAS. The calibration curve for the Cr(acac)3 aqueous solutions exhibited good linearity in the range of 0.1 to 1 ng. The detection limit of Cr, which corresponded to three times the standard deviation (n = 10) of the blank values, was 20 pg. The recovery test for Cr(III), Cr(VI), and Cr(acac)3 exhibited desirable results (96.0%-107%) when 5 μg of each species (50 μg L- 1) was added to 100 mL water samples (i.e., tap water, rainwater, and bottled drinking water). In a humic acid solution, Cr(acac)3 was quantitatively recovered (103%), but Cr(III) and Cr(VI) exhibited poor recoveries (i.e., 84.8% and 78.4%, respectively).

  12. Minimally invasive convection-enhanced delivery of biologics into dorsal root ganglia: validation in the pig model and prospective modeling in humans. Technical note.

    PubMed

    Pleticha, Josef; Maus, Timothy P; Christner, Jodie A; Marsh, Michael P; Lee, Kendall H; Hooten, W Michael; Beutler, Andreas S

    2014-10-01

    Dorsal root ganglia (DRG) are critical anatomical structures involved in nociception. Intraganglionic (IG) drug delivery is therefore an important route of administration for novel analgesic therapies. Although IG injection in large animal models is highly desirable for preclinical biodistribution and toxicology studies of new drugs, no method to deliver pharmaceutical agents into the DRG has been reported in any large species. The present study describes a minimally invasive technique of IG agent delivery in domestic swine, one of the most common large animal models. The technique utilizes CT guidance for DRG targeting and a custom-made injection assembly for convection enhanced delivery (CED) of therapeutic agents directly into DRG parenchyma. The DRG were initially visualized by CT myelography to determine the optimal access route to the DRG. The subsequent IG injection consisted of 3 steps. First, a commercially available guide needle was advanced to a position dorsolateral to the DRG, and the dural root sleeve was punctured, leaving the guide needle contiguous with, but not penetrating, the DRG. Second, the custom-made stepped stylet was inserted through the guide needle into the DRG parenchyma. Third, the stepped stylet was replaced by the custom-made stepped needle, which was used for the IG CED. Initial dye injections performed in pig cadavers confirmed the accuracy of DRG targeting under CT guidance. Intraganglionic administration of adeno-associated virus in vivo resulted in a unilateral transduction of the injected DRG, with 33.5% DRG neurons transduced. Transgene expression was also found in the dorsal root entry zones at the corresponding spinal levels. The results thereby confirm the efficacy of CED by the stepped needle and a selectivity of DRG targeting. Imaging-based modeling of the procedure in humans suggests that IG CED may be translatable to the clinical setting.

  13. Convection-enhanced drug delivery of interleukin-4 Pseudomonas exotoxin (PRX321): increased distribution and magnetic resonance monitoring.

    PubMed

    Mardor, Y; Last, D; Daniels, D; Shneor, R; Maier, S E; Nass, D; Ram, Z

    2009-08-01

    Convection-enhanced drug delivery (CED) enables achieving a drug concentration within brain tissue and brain tumors that is orders of magnitude higher than by systemic administration. Previous phase I/II clinical trials using intratumoral convection of interleukin-4 Pseudomonas exotoxin (PRX321) have demonstrated an acceptable safety and toxicity profile with promising signs of therapeutic activity. The present study was designed to assess the distribution efficiency and toxicity of this PRX321 using magnetic resonance imaging (MRI) and to test whether reformulation with increased viscosity could enhance drug distribution. Convection of low- [0.02% human serum albumin (HSA)] and high-viscosity (3% HSA) infusates mixed with gadolinium-diethylenetriamine pentaacetic acid and PRX321 were compared with low- and high-viscosity infusates without the drug, in normal rat brains. MRI was used for assessment of drug distribution and detection of early and late toxicity. Representative brain samples were subjected to histological examination. Distribution volumes calculated from the magnetic resonance images showed that the average distribution of 0.02% HSA was larger than that of 0.02% HSA with PRX321 by a factor of 1.98 (p < 0.02). CED of 3.0% HSA, with or without PRX321, tripled the volume of distribution compared with 0.02% HSA with PRX321 (p < 0.015). No drug-related toxicity was detected. These results suggest that the impeded convection of the PRX321 infusate used in previous clinical trials can be reversed by increasing infusate viscosity and lead to tripling of the volume of distribution. This effect was not associated with any detectable toxicity. A similar capability to reverse impeded convection was also demonstrated in a CED model using acetic acid. These results will be implemented in an upcoming phase IIb PRX321 CED trial with a high-viscosity infusate.

  14. Earthquake Energy Dissipation in Light of High-Velocity, Slip-Pulse Shear Experiments

    NASA Astrophysics Data System (ADS)

    Reches, Z.; Liao, Z.; Chang, J. C.

    2014-12-01

    We investigated the energy dissipation during earthquakes by analysis of high-velocity shear experiments conducted on room-dry, solid samples of granite, tonalite, and dolomite sheared at slip-velocity of 0.0006-1m/s, and normal stress of 1-11.5MPa. The experimental fault were loaded in one of three modes: (1) Slip-pulse of abrupt, intense acceleration followed by moderate deceleration; (2) Impact by a spinning, heavy flywheel (225 kg); and (3) Constant velocity loading. We refer to energy dissipation in terms of power-density (PD=shear stress*slip-velocity; units of MW/m^2), and Coulomb-energy-density (CED= mechanical energy/normal stress; units of m). We present two aspects: Relative energy dissipation of the above loading modes, and relative energy dissipation between impact experiments and moderate earthquakes. For the first aspect, we used: (i) the lowest friction coefficient of the dynamic weakening; (ii) the work dissipated before reaching the lowest friction; and (iii) the cumulative mechanical work during the complete run. The results show that the slip-pulse/impact modes are energy efficient relatively to the constant-velocity mode as manifested by faster, more intense weakening and 50-90% lower energy dissipation. Thus, for a finite amount of pre-seismic crustal energy, the efficiency of slip-pulse would amplify earthquake instability. For the second aspect, we compare the experimental CED of the impact experiments to the reported breakdown energy (EG) of moderate earthquakes, Mw = 5.6 to 7.2 (Chang et al., 2012). In is commonly assumed that the seismic EG is a small fraction of the total earthquake energy, and as expected in 9 out of 11 examined earthquakes, EG was 0.005 to 0.07 of the experimental CED. We thus speculate that the experimental relation of Coulomb-energy-density to total slip distance, D, CED = 0.605 × D^0.933, is a reasonable estimate of total earthquake energy, a quantity that cannot be determined from seismic data.

  15. Reduced Order Podolsky Model

    NASA Astrophysics Data System (ADS)

    Thibes, Ronaldo

    2017-02-01

    We perform the canonical and path integral quantizations of a lower-order derivatives model describing Podolsky's generalized electrodynamics. The physical content of the model shows an auxiliary massive vector field coupled to the usual electromagnetic field. The equivalence with Podolsky's original model is studied at classical and quantum levels. Concerning the dynamical time evolution, we obtain a theory with two first-class and two second-class constraints in phase space. We calculate explicitly the corresponding Dirac brackets involving both vector fields. We use the Senjanovic procedure to implement the second-class constraints and the Batalin-Fradkin-Vilkovisky path integral quantization scheme to deal with the symmetries generated by the first-class constraints. The physical interpretation of the results turns out to be simpler due to the reduced derivatives order permeating the equations of motion, Dirac brackets and effective action.

  16. Free electron laser and fundamental physics

    NASA Astrophysics Data System (ADS)

    Dattoli, Giuseppe; Nguyen, Federico

    2018-03-01

    This review paper is devoted to the understanding of free-electron lasers (FEL) as devices for fundamental physics (FP) studies. After clarifying what FP stands for, we select some aspects of the FEL physics which can be viewed as fundamental. Furthermore, we discuss the perspective uses of the FEL in FP experiments. Regarding the FP aspects of the FEL, we analyze the quantum electrodynamics (QED) nature of the underlying laser mechanism. We look for the truly quantum signature in a process whose phenomenology is dominated by classical effects. As to the use of FEL as a tool for FP experiments we discuss the realization of a device dedicated to the study of non-linear effects in QED such as photon-photon scattering and shining-through-the-wall experiments planned to search for dark matter candidates like axions.

  17. A case study of the cusp electrodynamics by the Aureol-3 satellite - Evidence for FTE signatures?

    NASA Technical Reports Server (NTRS)

    Bosqued, Jean M.; Berthelier, Annick; Berthelier, Jean J.; Escoubet, Christophe P.

    1991-01-01

    Particle and field data from a pass of the Aureol-3 satellite through the polar cusp, several minutes after the southward turning of the IMF, are analyzed in detail. Superposed on the classical cusp, characterized by the typical ion and electron precipitations, several very narrow arcs are detected where large fluxes of electrons and ions, accelerated to 2-4 keV, precipitate simultaneously. These localized arcs correspond to the upward current sheets of a succession in latitude of narrow, alternatively upward and downward field-aligned current sheets. The data suggest that the satellite has crossed the ionospheric footprints of 2 adjacent flux transfer events separated by 100-150 km in latitude. Electric spikes and electromagnetic turbulence are typically associated with the region of downward currents.

  18. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. Copyright © 2016, American Association for the Advancement of Science.

  19. Camurati-Engelmann disease: unique variant featuring a novel mutation in TGFβ1 encoding transforming growth factor beta 1 and a missense change in TNFSF11 encoding RANK ligand.

    PubMed

    Whyte, Michael P; Totty, William G; Novack, Deborah V; Zhang, Xiafang; Wenkert, Deborah; Mumm, Steven

    2011-05-01

    We report a 32-year-old man and his 59-year-old mother with a unique and extensive variant of Camurati-Engelmann disease (CED) featuring histopathological changes of osteomalacia and alterations within TGFβ1 and TNFSF11 encoding TGFβ1 and RANKL, respectively. He suffered leg pain and weakness since childhood and reportedly grew until his late 20s, reaching 7 feet in height. He had deafness, perforated nasal septum, torus palatinus, disproportionately long limbs with knock-knees, low muscle mass, and pseudoclubbing. Radiographs revealed generalized skeletal abnormalities, including wide bones and cortical and trabecular bone thickening in keeping with CED, except that long bone ends were also affected. Lumbar spine and hip BMD Z-scores were + 7.7 and + 4.4, respectively. Biochemical markers of bone turnover were elevated. Hypocalciuria accompanied low serum 25-hydroxyvitamin D (25[OH]D) levels. Pituitary hypogonadism and low serum insulin-like growth factor (IGF)-1 were present. Karyotype was normal. Despite vitamin D repletion, iliac crest histology revealed severe osteomalacia. Exon 1 of TNFRSF11A (RANK), exons 2, 3, and 4 of LRP5, and all coding exons and adjacent mRNA splice junctions of TNFRSF11B (OPG), SQSTM1 (sequestosome 1), and TNSALP (tissue nonspecific alkaline phosphatase) were intact. His asymptomatic and less dysmorphic 5'11″ mother, also with low serum 25(OH)D, had milder clinical, radiological, biochemical, and histopathological findings. Both individuals were heterozygous for a novel 12-bp duplication (c.27_38dup, p.L10_L13dup) in exon 1 of TGFβ1, predicting four additional leucine residues in the latency-associated-peptide segment of TGFβ1, consistent with CED. The son was also homozygous for a single base transversion in TNFSF11, predicting a nonconservative amino acid change (c.107C > G, p.Pro36Arg) in the intracellular domain of RANKL that was heterozygous in his nonconsanguineous parents. This TNFSF11 variant was not found in the SNP Database, nor in published TNFSF11 association studies, but it occurred in four of the 134 TNFSF11 alleles (3.0%) we tested randomly among individuals without CED. Perhaps the unique phenotype of this CED family is conditioned by altered RANKL activity. Copyright © 2011 American Society for Bone and Mineral Research.

  20. Ramped-rate vs continuous-rate infusions: An in vitro comparison of convection enhanced delivery protocols.

    PubMed

    Schomberg, Dominic; Wang, Anyi; Marshall, Hope; Miranpuri, Gurwattan; Sillay, Karl

    2013-04-01

    Convection enhanced delivery (CED) is a technique using infusion convection currents to deliver therapeutic agents into targeted regions of the brain. Recently, CED is gaining significant acceptance for use in gene therapy of Parkinson's disease (PD) employing direct infusion into the brain. CED offers advantages in that it targets local areas of the brain, bypasses the blood-brain barrier (BBB), minimizes systemic toxicity of the therapeutics, and allows for delivery of larger molecules that diffusion driven methods cannot achieve. Investigating infusion characteristics such as backflow and morphology is important in developing standard and effective protocols in order to successfully deliver treatments into the brain. Optimizing clinical infusion protocols may reduce backflow, improve final infusion cloud morphology, and maximize infusate penetrance into targeted tissue. The purpose of the current study was to compare metrics during ramped-rate and continuous-rate infusions using two different catheters in order to optimize current infusion protocols. Occasionally, the infusate refluxes proximally up the catheter tip, known as backflow, and minimizing this can potentially reduce undesirable effects in the clinical setting. Traditionally, infusions are performed at a constant rate throughout the entire duration, and backflow is minimized only by slow infusion rates, which increases the time required to deliver the desired amount of infusate. In this study, we investigate the effects of ramping and various infusion rates on backflow and infusion cloud morphology. The independent parameters in the study are: ramping, maximum infusion rate, time between rate changes, and increments of rate changes. Backflow was measured using two methods: i) at the point of pressure stabilization within the catheter, and ii) maximum backflow as shown by video data. Infusion cloud morphology was evaluated based on the height-to-width ratio of each infusion cloud at the end of each experiment. Results were tabulated and statistically analyzed to identify any significant differences between protocols. The experimental results show that CED rampedrate infusion protocols result in smaller backflow distances and more spherical cloud morphologies compared to continuous-rate infusion protocols ending at the same maximum infusion rate. Our results also suggest internal-line pressure measurements can approximate the time-point at which backflow ceases. Our findings indicate that ramping CED infusion protocols can potentially minimize backflow and produce more spherical infusion clouds. However, further research is required to determine the strength of this correlation, especially in relation to maximum infusion rates.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Monroy, J.A., E-mail: antosan@gmail.com; Quimbay, C.J., E-mail: cjquimbayh@unal.edu.co; Centro Internacional de Fisica, Bogota D.C.

    In the context of a semiclassical approach where vectorial gauge fields can be considered as classical fields, we obtain exact static solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time, for the cases n=1,2,3. As an application of the results obtained for the case n=3, we consider the solutions for the anti-de Sitter and Schwarzschild metrics. We show that these solutions have a confining behavior and can be considered as a first step in the study of the corrections of the spectra of quarkonia in a curved background. Since the solutions that we find in this work aremore » valid also for the group U(1), the case n=2 is a description of the (2+1) electrodynamics in the presence of a point charge. For this case, the solution has a confining behavior and can be considered as an application of the planar electrodynamics in a curved space-time. Finally we find that the solution for the case n=1 is invariant under a parity transformation and has the form of a linear confining solution. - Highlights: Black-Right-Pointing-Pointer We study exact static confining solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time. Black-Right-Pointing-Pointer The solutions found are a first step in the study of the corrections on the spectra of quarkonia in a curved background. Black-Right-Pointing-Pointer A expression for the confinement potential in low dimensionality is found.« less

  2. Pieces of the Puzzle: Tracking the Chemical Component of the ...

    EPA Pesticide Factsheets

    This presentation provides an overview of the risk assessment conducted at the U.S. EPA, as well as some research examples related to the exposome concept. This presentation also provides the recommendation of using two organizational and predictive frameworks for tracking chemical components in the exposome. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  3. Therapeutic Ultrasound Enhancement of Drug Delivery to Soft Tissues

    NASA Astrophysics Data System (ADS)

    Lewis, George; Wang, Peng; Lewis, George; Olbricht, William

    2009-04-01

    Effects of exposure to 1.58 MHz focused ultrasound on transport of Evans Blue Dye (EBD) in soft tissues are investigated when an external pressure gradient is applied to induce convective flow through the tissue. The magnitude of the external pressure gradient is chosen to simulate conditions in brain parenchyma during convection-enhanced drug delivery (CED) to the brain. EBD uptake and transport are measured in equine brain, avian muscle and agarose brain-mimicking phantoms. Results show that ultrasound enhances EBD uptake and transport, and the greatest enhancement occurs when the external pressure gradient is applied. The results suggest that exposure of the brain parenchyma to ultrasound could enhance penetration of material infused into the brain during CED therapy.

  4. The Air Quality Model Evaluation International Initiative ...

    EPA Pesticide Factsheets

    This presentation provides an overview of the Air Quality Model Evaluation International Initiative (AQMEII). It contains a synopsis of the three phases of AQMEII, including objectives, logistics, and timelines. It also provides a number of examples of analyses conducted through AQMEII with a particular focus on past and future analyses of deposition. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  5. Hybrid Circuit Quantum Electrodynamics: Coupling a Single Silicon Spin Qubit to a Photon

    DTIC Science & Technology

    2015-01-01

    HYBRID CIRCUIT QUANTUM ELECTRODYNAMICS: COUPLING A SINGLE SILICON SPIN QUBIT TO A PHOTON PRINCETON UNIVERSITY JANUARY 2015 FINAL...SILICON SPIN QUBIT TO A PHOTON 5a. CONTRACT NUMBER FA8750-12-2-0296 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jason R. Petta...architectures. 15. SUBJECT TERMS Quantum Computing, Quantum Hybrid Circuits, Quantum Electrodynamics, Coupling a Single Silicon Spin Qubit to a Photon

  6. Non-existence of rest-frame spin-eigenstate spinors in their own electrodynamics

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca; da Rocha, Roldão

    2018-05-01

    We assume a physical situation where gravity with torsion is neglected for an electrodynamically self-interacting spinor that will be taken in its rest-frame and spin-eigenstate: we demonstrate that under this circumstance no solution exists for the system of field equations. Despite such a situation might look artificial nevertheless it represents the instance that is commonly taken as the basis for all computations of quantum electrodynamics.

  7. [Analysis of efficacy of radiofrequency obliteration with due regard for the target vein's diameter].

    PubMed

    Shaĭdakov, E V; Grigorian, A G; Iliukhin, E A; Bulatov, V L; Gal'chenko, M I

    2014-01-01

    Data concerning the effect of the target vein's diameter on efficacy of radiofrequency obliteration (RFO) in the current literature are limited. To assess efficacy of RFO and stripping, peculiarities of the postoperative period course with due regard for the diameter of the target veins, to compare the outcomes of RFO and classical phlebectomy in treatment of varicose disease during 1-year follow up by a composite end point. A multicenter prospective non-randomized study based on analysing therapeutic outcomes in a total of 218 patients presenting with varicose disease (C2-C3 according to the CEAP). RFO was performed in 108 patients and phlebectomy in 110 subjects. The results were assessed by means of a composite end point including four components: technical outcome at 1-year follow-up, pain, subcutaneous haemorrhage, and paresthesias. The groups of patients who endured RFO and phlebectomy were subdivided into two subgroups according to the target vein's diameter with a border of 14 mm. Statistical analysis. We used the methods of non-parametric statistics (contingency tables, chi squared test), calculating the odds ratio (OR) for a favourable outcome with a 95% confidential interval. Pain dynamics was assessed by means of intellectual data analysis (cluster analysis). «Phelbectomy ≥ 14 mm» and «RFO ≥ 14 mm». The incidence rate of a good outcome in the subgroups amounted to 20 (30.8%) and 61 (95.3%), respectively. The odds ratio for favourable outcome between the subgroups of RFA and phlebectomy amounted to 45.8; 95% CI (44.5-47.0). "RFA ≥ 14 mm" and "RFA < 14 mm". Favourable outcome rate in the subgroups amounted to 25 (39.1%) and 17 (38.6%), respectively. The differences were not statistically significant, p=0.24. The odds ratio for a good outcome between the RFO subgroups amounted to: OR=0.98; 95% CI (0.18-1.77). Comparative analysis of RFO outcomes between the clinics. Favourable outcome rate in the first clinic was 50 (92.6%), in the second 34 (87.2%), and in the third 13 (86.6%), with the difference being statistically insignificant, p=0.7. The cluster analysis of the pain dynamics after the intervention. The clusters with moderate pain were composed of the patients after phlebectomy. These clusters showed association of pain intensity with increased BMI and greater vein diameter. 1) RFA of great-diameter veins by a favourable outcome by the composite end point (CED) turned out to be superior to the classic phlebectomy. 2) For RFA the incidence rate of a favourable outcome by the CED does not depend on the target vein's diameter. 3) A pronounced pain syndrome after phlebectomy was associated with excessive body weight or obesity and greater diameter of the vein.

  8. Nanostructures Exploit Hybrid-Polariton Resonances

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2008-01-01

    Nanostructured devices that exploit the hybrid-polariton resonances arising from coupling among photons, phonons, and plasmons are subjects of research directed toward the development of infrared-spectroscopic sensors for measuring extremely small quantities of molecules of interest. The spectroscopic techniques in question are surface enhanced Raman scattering (SERS) and surface enhanced infrared absorption (SEIRA). An important intermediate goal of this research is to increase the sensitivity achievable by these techniques. The basic idea of the approach being followed in this research is to engineer nanostructured devices and thereby engineer their hybrid-polariton resonances to concentrate infrared radiation incident upon their surfaces in such a manner as to increase the absorption of the radiation for SEIRA and measure the frequency shifts of surface vibrational modes. The underlying hybrid-polariton-resonance concept is best described by reference to experimental devices that have been built and tested to demonstrate the concept. The nanostructure of each such device includes a matrix of silicon carbide particles of approximately 1 micron in diameter that are supported on a potassium bromide (KBr) or poly(tetrafluoroethylene) [PTFE] window. These grains are sputter-coated with gold grains of 40-nm size (see figure). From the perspective of classical electrodynamics, in this nanostructure, that includes a particulate or otherwise rough surface, the electric-field portion of an incident electromagnetic field becomes concentrated on the particles when optical resonance conditions are met. Going beyond the perspective of classical electrodynamics, it can be seen that when the resonance frequencies of surface phonons and surface plasmons overlap, the coupling of the resonances gives rise to an enhanced radiation-absorption or -scattering mechanism. The sizes, shapes, and aggregation of the particles determine the frequencies of the resonances. Hence, the task of designing a nanostructure to exhibit the desired radiation-absorption properties translates, in large part, to selecting particle sizes and shapes to obtain the desired enhanced coupling of energy from photons to plasmons and phonons. To broaden the spectral region(s) of enhanced absorption, one would select a distribution of particle sizes and shapes.

  9. Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth

    A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  10. Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth

    A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two-level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  11. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    NASA Astrophysics Data System (ADS)

    Taillefumier, Mathieu; Benton, Owen; Yan, Han; Jaubert, L. D. C.; Shannon, Nic

    2017-10-01

    Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2 Ti2 O7 and Dy2 Ti2 O7 exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related "quantum spin-ice" materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  12. Hot spot-mediated non-dissipative and ultrafast plasmon passage.

    PubMed

    Roller, Eva-Maria; Besteiro, Lucas V; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O; Liedl, Tim

    2017-08-01

    Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices.1-5 Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles.6-10 Here, we show the assembly and optical analysis of a triple particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles mediated by the connecting silver particle with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modeling and qualitative quantum-mechanical calculations. We identify the formation of strong hot spots between all particles as the main mechanism for the loss-less coupling and thus coherent ultra-fast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, but also for classical charge and information transfer processes.

  13. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems.

    PubMed

    Kluczyk, Katarzyna; Jacak, Lucjan; Jacak, Witold; David, Christin

    2018-06-25

    Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA) and semi-classical (hydrodynamic) theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.

  14. High-Performance Ion Mobility Spectrometry Using Hourglass Electrodynamic Funnel And Internal Ion Funnel

    DOEpatents

    Smith, Richard D.; Tang, Keqi; Shvartsburg, Alexandre A.

    2004-11-16

    A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.

  15. An Overview of Electrodynamic Tether Performance in the Jovian System

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Johnson, Les; Bagenal, Fran; Moore, James

    1998-01-01

    The Jovian magnetosphere with its strong magnetic field and rapid planetary rotation present new opportunities and challenges for the use of electrodynamic tethers. An overview of the basic plasma physics properties of an electrodynamic tether moving through the Jovian magnetosphere is examined. Tether use for both propulsion and power generation are considered. Close to the planet, tether propulsive forces are found to be as high as 50 Newtons and power levels as high as 1 million Watts.

  16. Propulsion and Levitation with a Large Electrodynamic Wheel

    NASA Astrophysics Data System (ADS)

    Gaul, Nathan; Lane, Hannah

    We constructed an electrodynamic wheel using a motorized bicycle wheel with a radius of 12 inches and 36 one-inch cube magnets attached to the rim of the wheel. The radial magnetic field on the outside of the wheel was maximized by arranging the magnets into a series of Halbach arrays which amplify the field on one side of the array and reduce it on the other side. Rotating the wheel produces a rapidly oscillating magnetic field. When a conductive metal ``track'' is placed in this area of strong magnetic flux, eddy currents are produced in the track. These eddy currents create magnetic fields that interact with the magnetic fields from the electrodynamic wheel. The interaction of the magnetic fields produces lift and drag forces on the track which were measured with force gauges. Measurements were taken at a variety of wheel speeds, and the results were compared to the theoretical prediction that there should be a linear relationship between the lift and drag forces with increasing wheel speed. Partial levitation was achieved with the current electrodynamic wheel. In the future, the wheel will be upgraded to include 72 magnets rather than 36 magnets. This will double the frequency at which the magnetic field oscillates, increasing the magnetic flux. Electrodynamic wheels have applications to the transportation industry, since multiple electrodynamic wheels could be used on a vehicle to produce a lift and propulsion force over a conductive track.

  17. Start-up and control method and apparatus for resonant free piston Stirling engine

    DOEpatents

    Walsh, Michael M.

    1984-01-01

    A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

  18. Interpretation of nasal swab measurements following suspected releases of actinide aerosols

    DOE PAGES

    Klumpp, John Allan; Bertelli, Luiz; Waters, Tom L.

    2017-05-01

    For radionuclides such as plutonium and americium, detection of removable activity in the nose (i.e., nasal swab measurements) are frequently used to determine whether follow-up bioassay measurements are warranted following a potential intake. For this paper, the authors analyzed 429 nasal swab measurements taken following incidents or suspicious circumstances (such as an air monitor alarming) at Los Alamos National Laboratory (LANL) for which the dose was later evaluated using in vitro bioassay. Nasal swab measurements were found to be very poor predictors of dose and should not be used as such in the field. However, nasal swab measurements can bemore » indicative of whether a reliably detectable committed effective dose (CED) occurred. About 14% of nasal swab measurements between 1.25 and 16.7 Bq corresponded to CEDs greater than 1 mSv, so in general, positive nasal swabs always indicate that follow-up bioassay should be performed (positive nasal swabs less than 1.25 Bq are considered separately). This probability increased significantly for nasal swabs greater than 16.7 Bq. Only about 3% of nasal swabs with no detectable activity (NDA) corresponded to reliably detectable CEDs. As a result, a nasal swab with NDA is therefore necessary, but not sufficient, to negate the need for a follow-up bioassay if it was collected following other workplace indicators of a potential intake.« less

  19. Evaluation of the Community Multi-scale Air Quality (CMAQ) ...

    EPA Pesticide Factsheets

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Protection Agency develops the CMAQ model and periodically releases new versions of the model that include bug fixes and various other improvements to the modeling system. In the fall of 2015, CMAQ version 5.1 was released. This new version of CMAQ will contain important bug fixes to several issues that were identified in CMAQv5.0.2 and additionally include updates to other portions of the code. Several annual, and numerous episodic, CMAQv5.1 simulations were performed to assess the impact of these improvements on the model results. These results will be presented, along with a base evaluation of the performance of the CMAQv5.1 modeling system against available surface and upper-air measurements available during the time period simulated. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, proces

  20. Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach.

    PubMed

    Kang, Yunqing; Mochizuki, Naoto; Khademhosseini, Ali; Fukuda, Junji; Yang, Yunzhi

    2015-01-01

    Vascularization of three-dimensional large synthetic grafts for tissue regeneration remains a significant challenge. Here we demonstrate an electrochemical approach, named the cell electrochemical detachment (CED) technique, to form an integral endothelium and use it to prevascularize a collagen-β-tricalcium phosphate (β-TCP) graft. The CED technique electrochemically detached an integral endothelium from a gold-coated glass rod to a collagen-infiltrated, channeled, macroporous β-TCP scaffold, forming an endothelium-lined microchannel containing graft upon removal of the rod. The in vitro results from static and perfusion culture showed that the endothelium robustly emanated microvascular sprouting and prevascularized the entire collagen/β-TCP integrated graft. The in vivo subcutaneous implantation studies showed that the prevascularized collagen/β-TCP grafts established blood flow originating from the endothelium-lined microchannel within a week, and the blood flow covered more areas in the graft over time. In addition, many blood vessels invaded the prevascularized collagen/β-TCP graft and the in vitro preformed microvascular networks anastomosed with the host vasculature, while collagen alone without the support of rigid ceramic scaffold showed less blood vessel invasion and anastomosis. These results suggest a promising strategy for effectively vascularizing large tissue-engineered grafts by integrating multiple hydrogel-based CED-engineered endothelium-lined microchannels into a rigid channeled macroporous scaffold. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Life cycle assessment of a power tower concentrating solar plant and the impacts of key design alternatives.

    PubMed

    Whitaker, Michael B; Heath, Garvin A; Burkhardt, John J; Turchi, Craig S

    2013-06-04

    A hybrid life cycle assessment (LCA) is used to evaluate four sustainability metrics over the life cycle of a power tower concentrating solar power (CSP) facility: greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). The reference design is for a dry-cooled, 106 MW(net) power tower facility located near Tucson, AZ that uses a mixture of mined nitrate salts as the heat transfer fluid and storage medium, a two-tank thermal energy storage system designed for six hours of full load-equivalent storage, and receives auxiliary power from the local electric grid. A thermocline-based storage system, synthetically derived salts, and natural gas auxiliary power are evaluated as design alternatives. Over its life cycle, the reference plant is estimated to have GHG emissions of 37 g CO2eq/kWh, consume 1.4 L/kWh of water and 0.49 MJ/kWh of energy, and have an EPBT of 15 months. Using synthetic salts is estimated to increase GHG emissions by 12%, CED by 7%, and water consumption by 4% compared to mined salts. Natural gas auxiliary power results in greater than 10% decreases in GHG emissions, water consumption, and CED. The thermocline design is most advantageous when coupled with the use of synthetic salts.

  2. Galectins in Intestinal Inflammation: Galectin-1 Expression Delineates Response to Treatment in Celiac Disease Patients

    PubMed Central

    Sundblad, Victoria; Quintar, Amado A.; Morosi, Luciano G.; Niveloni, Sonia I.; Cabanne, Ana; Smecuol, Edgardo; Mauriño, Eduardo; Mariño, Karina V.; Bai, Julio C.; Maldonado, Cristina A.; Rabinovich, Gabriel A.

    2018-01-01

    Galectins, a family of animal lectins characterized by their affinity for N-acetyllactosamine-enriched glycoconjugates, modulate several immune cell processes shaping the course of innate and adaptive immune responses. Through interaction with a wide range of glycosylated receptors bearing complex branched N-glycans and core 2-O-glycans, these endogenous lectins trigger distinct signaling programs thereby controling immune cell activation, differentiation, recruitment and survival. Given the unique features of mucosal inflammation and the differential expression of galectins throughout the gastrointestinal tract, we discuss here key findings on the role of galectins in intestinal inflammation, particularly Crohn’s disease, ulcerative colitis, and celiac disease (CeD) patients, as well as in murine models resembling these inflammatory conditions. In addition, we present new data highlighting the regulated expression of galectin-1 (Gal-1), a proto-type member of the galectin family, during intestinal inflammation in untreated and treated CeD patients. Our results unveil a substantial upregulation of Gal-1 accompanying the anti-inflammatory and tolerogenic response associated with gluten-free diet in CeD patients, suggesting a major role of this lectin in favoring resolution of inflammation and restoration of mucosal homeostasis. Thus, a coordinated network of galectins and their glycosylated ligands, exerting either anti-inflammatory or proinflammatory responses, may influence the interplay between intestinal epithelial cells and the highly specialized gut immune system in physiologic and pathologic settings. PMID:29545799

  3. Galectins in Intestinal Inflammation: Galectin-1 Expression Delineates Response to Treatment in Celiac Disease Patients.

    PubMed

    Sundblad, Victoria; Quintar, Amado A; Morosi, Luciano G; Niveloni, Sonia I; Cabanne, Ana; Smecuol, Edgardo; Mauriño, Eduardo; Mariño, Karina V; Bai, Julio C; Maldonado, Cristina A; Rabinovich, Gabriel A

    2018-01-01

    Galectins, a family of animal lectins characterized by their affinity for N-acetyllactosamine-enriched glycoconjugates, modulate several immune cell processes shaping the course of innate and adaptive immune responses. Through interaction with a wide range of glycosylated receptors bearing complex branched N-glycans and core 2-O-glycans, these endogenous lectins trigger distinct signaling programs thereby controling immune cell activation, differentiation, recruitment and survival. Given the unique features of mucosal inflammation and the differential expression of galectins throughout the gastrointestinal tract, we discuss here key findings on the role of galectins in intestinal inflammation, particularly Crohn's disease, ulcerative colitis, and celiac disease (CeD) patients, as well as in murine models resembling these inflammatory conditions. In addition, we present new data highlighting the regulated expression of galectin-1 (Gal-1), a proto-type member of the galectin family, during intestinal inflammation in untreated and treated CeD patients. Our results unveil a substantial upregulation of Gal-1 accompanying the anti-inflammatory and tolerogenic response associated with gluten-free diet in CeD patients, suggesting a major role of this lectin in favoring resolution of inflammation and restoration of mucosal homeostasis. Thus, a coordinated network of galectins and their glycosylated ligands, exerting either anti-inflammatory or proinflammatory responses, may influence the interplay between intestinal epithelial cells and the highly specialized gut immune system in physiologic and pathologic settings.

  4. Convection-enhanced delivery of AAV2 in white matter--a novel method for gene delivery to cerebral cortex.

    PubMed

    Barua, N U; Woolley, M; Bienemann, A S; Johnson, D; Wyatt, M J; Irving, C; Lewis, O; Castrique, E; Gill, S S

    2013-10-30

    Convection-enhanced delivery (CED) is currently under investigation for delivering therapeutic agents to subcortical targets in the brain. Direct delivery of therapies to the cerebral cortex, however, remains a significant challenge. We describe a novel method of targeting adeno-associated viral vector (AAV) mediated gene therapies to specific cerebral cortical regions by performing high volume, high flow rate infusions into underlying white matter in a large animal (porcine) model. Infusion volumes of up to 700 μl at flow rates as high as 10 μl/min were successfully performed in white matter without adverse neurological sequelae. Co-infusion of AAV2/5-GFP with 0.2% Gadolinium in artificial CSF confirmed transgene expression in the deep layers of cerebral cortex overlying the infused areas of white matter. AAV-mediated gene therapies have been previously targeted to the cerebral cortex by performing intrathalamic CED and exploiting axonal transport. The novel method described in this study facilitates delivery of gene therapies to specific regions of the cerebral cortex without targeting deep brain structures. AAV-mediated gene therapies can be targeted to specific cortical regions by performing CED into underlying white matter. This technique could be applied to the treatment of neurological disorders characterised by cerebral cortical degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Convection-enhanced delivery of MANF--volume of distribution analysis in porcine putamen and substantia nigra.

    PubMed

    Barua, N U; Bienemann, A S; Woolley, M; Wyatt, M J; Johnson, D; Lewis, O; Irving, C; Pritchard, G; Gill, S

    2015-10-15

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a 20kDa human protein which has both neuroprotective and neurorestorative activity on dopaminergic neurons and therefore may have application for the treatment of Parkinson's Disease. The aims of this study were to determine the translational potential of convection-enhanced delivery (CED) of MANF for the treatment of PD by studying its distribution in porcine putamen and substantia nigra and to correlate histological distribution with co-infused gadolinium-DTPA using real-time magnetic resonance imaging. We describe the distribution of MANF in porcine putamen and substantia nigra using an implantable CED catheter system using co-infused gadolinium-DTPA to allow real-time MRI tracking of infusate distribution. The distribution of gadolinium-DTPA on MRI correlated well with immunohistochemical analysis of MANF distribution. Volumetric analysis of MANF IHC staining indicated a volume of infusion (Vi) to volume of distribution (Vd) ratio of 3 in putamen and 2 in substantia nigra. This study confirms the translational potential of CED of MANF as a novel treatment strategy in PD and also supports the co-infusion of gadolinium as a proxy measure of MANF distribution in future clinical studies. Further study is required to determine the optimum infusion regime, flow rate and frequency of infusions in human trials. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Distribution of AAV-TK following intracranial convection-enhanced delivery into rats.

    PubMed

    Cunningham, J; Oiwa, Y; Nagy, D; Podsakoff, G; Colosi, P; Bankiewicz, K S

    2000-01-01

    Adeno-associated virus (AAV)-based vectors are being tested in animal models as viable treatments for glioma and neurodegenerative disease and could potentially be employed to target a variety of central nervous system disorders. The relationship between dose of injected vector and its resulting distribution in brain tissue has not been previously reported nor has the most efficient method of delivery been determined. Here we report that convection-enhanced delivery (CED) of 2.5 x 10(8), 2.5 x 10(9), or 2.5 x 10(10) particles of AAV-thymidine kinase (AAV-TK) into rat brain revealed a clear dose response. In the high-dose group, a volume of 300 mm3 of brain tissue was partially transduced. Results showed that infusion pump and subcutaneous osmotic pumps were both capable of delivering vector via CED and that total particle number was the most important determining factor in obtaining efficient expression. Results further showed differences in histopathology between the delivery groups. While administration of vector using infusion pump had relatively benign effects, the use of osmotic pumps resulted in notable toxicity to the surrounding brain tissue. To determine tissue distribution of vector following intracranial delivery, PCR analysis was performed on tissues from rats that received high doses of AAV-TK. Three weeks following CED, vector could be detected in both hemispheres of the brain, spinal cord, spleen, and kidney.

  7. 15 CFR 995.14 - Auditing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.14 Auditing. NOAA reserves the right to audit CED or...

  8. 15 CFR 995.14 - Auditing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.14 Auditing. NOAA reserves the right to audit CED or...

  9. 15 CFR 995.14 - Auditing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.14 Auditing. NOAA reserves the right to audit CED or...

  10. 15 CFR 995.14 - Auditing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.14 Auditing. NOAA reserves the right to audit CED or...

  11. Interventional MRI-guided catheter placement and real time drug delivery to the central nervous system.

    PubMed

    Han, Seunggu J; Bankiewicz, Krystof; Butowski, Nicholas A; Larson, Paul S; Aghi, Manish K

    2016-06-01

    Local delivery of therapeutic agents into the brain has many advantages; however, the inability to predict, visualize and confirm the infusion into the intended target has been a major hurdle in its clinical development. Here, we describe the current workflow and application of the interventional MRI (iMRI) system for catheter placement and real time visualization of infusion. We have applied real time convection-enhanced delivery (CED) of therapeutic agents with iMRI across a number of different clinical trials settings in neuro-oncology and movement disorders. Ongoing developments and accumulating experience with the technique and technology of drug formulations, CED platforms, and iMRI systems will continue to make local therapeutic delivery into the brain more accurate, efficient, effective and safer.

  12. Imaging of convection enhanced delivery of toxins in humans.

    PubMed

    Mehta, Ankit I; Choi, Bryan D; Raghavan, Raghu; Brady, Martin; Friedman, Allan H; Bigner, Darell D; Pastan, Ira; Sampson, John H

    2011-03-01

    Drug delivery of immunotoxins to brain tumors circumventing the blood brain barrier is a significant challenge. Convection-enhanced delivery (CED) circumvents the blood brain barrier through direct intracerebral application using a hydrostatic pressure gradient to percolate therapeutic compounds throughout the interstitial spaces of infiltrated brain and tumors. The efficacy of CED is determined through the distribution of the therapeutic agent to the targeted region. The vast majority of patients fail to receive a significant amount of coverage of the area at risk for tumor recurrence. Understanding this challenge, it is surprising that so little work has been done to monitor the delivery of therapeutic agents using this novel approach. Here we present a review of imaging in convection enhanced delivery monitoring of toxins in humans, and discuss future challenges in the field.

  13. Imaging of Convection Enhanced Delivery of Toxins in Humans

    PubMed Central

    Mehta, Ankit I.; Choi, Bryan D.; Raghavan, Raghu; Brady, Martin; Friedman, Allan H.; Bigner, Darell D.; Pastan, Ira; Sampson, John H.

    2011-01-01

    Drug delivery of immunotoxins to brain tumors circumventing the blood brain barrier is a significant challenge. Convection-enhanced delivery (CED) circumvents the blood brain barrier through direct intracerebral application using a hydrostatic pressure gradient to percolate therapeutic compounds throughout the interstitial spaces of infiltrated brain and tumors. The efficacy of CED is determined through the distribution of the therapeutic agent to the targeted region. The vast majority of patients fail to receive a significant amount of coverage of the area at risk for tumor recurrence. Understanding this challenge, it is surprising that so little work has been done to monitor the delivery of therapeutic agents using this novel approach. Here we present a review of imaging in convection enhanced delivery monitoring of toxins in humans, and discuss future challenges in the field. PMID:22069706

  14. Probabilistic evaluation of on-line checks in fault-tolerant multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Nair, V. S. S.; Hoskote, Yatin V.; Abraham, Jacob A.

    1992-01-01

    The analysis of fault-tolerant multiprocessor systems that use concurrent error detection (CED) schemes is much more difficult than the analysis of conventional fault-tolerant architectures. Various analytical techniques have been proposed to evaluate CED schemes deterministically. However, these approaches are based on worst-case assumptions related to the failure of system components. Often, the evaluation results do not reflect the actual fault tolerance capabilities of the system. A probabilistic approach to evaluate the fault detecting and locating capabilities of on-line checks in a system is developed. The various probabilities associated with the checking schemes are identified and used in the framework of the matrix-based model. Based on these probabilistic matrices, estimates for the fault tolerance capabilities of various systems are derived analytically.

  15. Impacts of Lateral Boundary Conditions on US Ozone ...

    EPA Pesticide Factsheets

    Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, we perform annual simulations over North America with chemical boundary conditions prepared from two global models (GEOS-CHEM and Hemispheric CMAQ). Results indicate that the impacts of different boundary conditions on ozone can be significant throughout the year. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  16. Microscopic description of exciton polaritons in direct two-band semiconductors

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Trong; Mahler, Günter

    1999-07-01

    Based on a quantum electrodynamical formulation, a microscopic description of exciton polaritons in a two-band semiconductor is presented. We show that the interband exchange Coulomb interaction, responsible for the coupling of the exciton with the longitudinal part of the induced field, should be treated on equal footing together with the coupling to the transverse part of the induced field (the photon field). The constitutive relation is established to connect the current density with the total electric field of polaritons. The classical Maxwell equations are derived from the quantum representation of photons to get a closed system of equations. The temporal evolution for an initial excited exciton state is studied in detail and an anisotropic polariton vacuum Rabi splitting is shown to occur. A number of up-to-now unresolved discrepancies in the literature are clarified.

  17. The Fourth Law of Motion in Classical Mechanics and Electrodynamics

    NASA Astrophysics Data System (ADS)

    Pinheiro, Mario J.

    2010-01-01

    Newton's second law has limited scope of application when transient phenomena are at stake. We endeavor here to consider a modification of Newton's second law in order to take into account sudden change (surge) of angular momentum or linear momentum. It is shown that space react back according to a kind of induction law that is related to inertia, but also appears to give evidence of a "fluidic" nature of space itself. The back-reaction is quantified by the time rate of the angular momentum flux threading a surface, mass dependent, and bearing similarity to the quantum mechanics phase shift, present in the Aharonov-Bohm and Aharonov-Casher effects, thus giving evidence of the property of vacuum polarization, a phenomena which is relative to local space. It is formulated a kind of (qualitative) Lenz law that gives an explanation to precession.

  18. Convection Enhanced Delivery: A Comparison of infusion characteristics in ex vivo and in vivo non-human primate brain tissue.

    PubMed

    Miranpuri, Gurwattan; Hinchman, Angelica; Wang, Anyi; Schomberg, Dominic; Kubota, Ken; Brady, Martin; Raghavan, Raghu; Bruner, Kevin; Brodsky, Ethan; Block, Walter; Grabow, Ben; Raschke, Jim; Alexander, Andrew; Ross, Chris; Simmons, Heather; Sillay, Karl

    2013-07-01

    Convection enhanced delivery (CED) is emerging as a promising infusion toolto facilitate delivery of therapeutic agents into the brain via mechanically controlled pumps. Infusion protocols and catheter design have an important impact on delivery. CED is a valid alternative for systemic administration of agents in clinical trials for cell and gene therapies. Where gel and ex vivo models are not sufficient in modeling the disease, in vivo models allow researchers to better understand the underlying mechanisms of neuron degeneration, which is helpful in finding novel approaches to control the process or reverse the progression. Determining the risks, benefits, and efficacy of new gene therapies introduced via CED will pave a way to enter human clinical trial. The objective of this study is to compare volume distribution (Vd)/ volume infused (Vi) ratios and backflow measurements following CED infusions in ex vivo versus in vivo non-human primate brain tissue, based on infusion protocols developed in vitro. In ex vivo infusions, the first brain received 2 infusions using a balloon catheter at rates of 1 μL/min and 2 μL/min for 30 minutes. The second and third brains received infusions using a valve-tip (VT) catheter at 1 μL/min for 30 minutes. The fourth brain received a total of 45 μL infused at a rate of 1 μL/min for 15 minutes followed by 2 μL/min for 15 minutes. Imaging was performed (SPGR FA34) every 3 minutes. In the in vivo group, 4 subjects received a total of 8 infusions of 50 μL. Subjects 1 and 2 received infusions at 1.0 μL/min using a VT catheter in the left hemisphere and a smart-flow (SF) catheter in the right hemisphere. Subjects 3 and 4 each received 1 infusion in the left and right hemisphere at 1.0 μL/min. MRI calculations of Vd/Vi did not significantly differ from those obtained on post-mortem pathology. The mean measured Vd/Vi of in vivo (5.23 + /-1.67) compared to ex vivo (2.17 + /-1.39) demonstrated a significantly larger Vd/Vi for in vivo by 2.4 times (p = 0.0017). We detected higher ratios in the in vivo subjects than in ex vivo. This difference could be explained by the extra cellular space volume fraction. Studies evaluating backflow and morphology use in vivo tissue as a medium are recommended. Further investigation is warranted to evaluate the role blood pressure and heart rate may play in human CED clinical trials.

  19. Reexamination of Induction Heating of Primitive Bodies in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Menzel, Raymond L.; Roberge, Wayne G.

    2013-10-01

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the "motional electric field" that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows "electrodynamic heating," calculate its upper limits, and compare them to heating produced by short-lived radionuclides.

  20. Introduction of a Classical Level in Quantum Theory

    NASA Astrophysics Data System (ADS)

    Prosperi, G. M.

    2016-11-01

    In an old paper of our group in Milano a formalism was introduced for the continuous monitoring of a system during a certain interval of time in the framework of a somewhat generalized approach to quantum mechanics (QM). The outcome was a distribution of probability on the space of all the possible continuous histories of a set of quantities to be considered as a kind of coarse grained approximation to some ordinary quantum observables commuting or not. In fact the main aim was the introduction of a classical level in the context of QM, treating formally a set of basic quantities, to be considered as beables in the sense of Bell, as continuously taken under observation. However the effect of such assumption was a permanent modification of the Liouville-von Neumann equation for the statistical operator by the introduction of a dissipative term which is in conflict with basic conservation rules in all reasonable models we had considered. Difficulties were even encountered for a relativistic extension of the formalism. In this paper I propose a modified version of the original formalism which seems to overcome both difficulties. First I study the simple models of an harmonic oscillator and a free scalar field in which a coarse grain position and a coarse grained field respectively are treated as beables. Then I consider the more realistic case of spinor electrodynamics in which only certain coarse grained electric and magnetic fields are introduced as classical variables and no matter related quantities.

  1. Pathfinder

    NASA Image and Video Library

    2004-04-15

    This picture is an artist's concept of an orbiting vehicle using the Electrodynamic Tethers Propulsion System. Relatively short electrodynamic tethers can use solar power to push against a planetary magnetic field to achieve propulsion without the expenditure of propellant.

  2. Quantifying and tracing sediment mobilized during the 20th century in the South River watershed, western Massachusetts

    NASA Astrophysics Data System (ADS)

    Dow, S.; Snyder, N. P.; Ouimet, W. B.; Martini, A. M.; Yellen, B.; Woodruff, J. D.; Newton, R. M.

    2016-12-01

    New England has a long history of anthropogenic activity affecting the landscape, including deforestation, land use changes, and the construction of dams. Dams in particular have the ability to impound vast quantities of sediment eroded off the landscape. The South River in western Massachusetts is an example of a watershed where mill dam construction coincided with deforestation during the 17th-19th centuries, leading to the impoundment of legacy sediment. Along the river, these deposits act as a source of sediment being released back into the river. The Conway Electric Dam (CED), a 17 m tall dam built in 1906, is located downstream of the mill dams (most of which are no longer intact), and provides a 20th century depositional record for the watershed. The purpose of this study is to quantify sedimentation behind the CED and link this to erosion of upstream mill pond and glacial sediment sources using aerial photography, sediment cores, grainsize, and geochemical analyses. We used aerial photographs to map areal changes of the reservoir from 1940-1980, and topographic profiles generated from LiDAR to estimate a volume of 244,000 m3 of sediment stored behind the CED. We dated layers in cores collected at the site with Hg and 137Cs analyses. Overall, the reservoir exhibits a decreasing rate of sediment infilling occurring from 1940-1980, except for a potentially anomalous increase from 1940-1952. Discharge data containing large storm events were compared to sediment infilling rates to identify if a frequency of large storms could account for high rates of erosion and sediment transport; however, sedimentation at the site does not appear to be solely dependent on these large storm events. Preliminary Hg analyses of deposits from the watershed upstream of the CED indicate higher concentrations in mill pond sediment than glacial sediment. Ongoing work with geochemical tracers can potentially provide a robust understanding of sources and 20th century sediment mobilization in the South River watershed, allowing us to quantify the influence of two cycles of dam construction on watershed sediment transport rates.

  3. The DNA damage response of C. elegans affected by gravity sensing and radiosensitivity during the Shenzhou-8 spaceflight.

    PubMed

    Gao, Ying; Xu, Dan; Zhao, Lei; Sun, Yeqing

    2017-01-01

    Space radiation and microgravity are recognized as primary and inevitable risk factors for humans traveling in space, but the reports regarding their synergistic effects remain inconclusive and vary across studies due to differences in the environmental conditions and intrinsic biological sensitivity. Thus, we studied the synergistic effects on transcriptional changes in the global genome and DNA damage response (DDR) by using dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity when exposure to spaceflight condition (SF) and space radiation (SR). The dys-1 mutation induced similar transcriptional changes under both conditions, including the transcriptional distribution and function of altered genes. The majority of alterations were related to metabolic shift under both conditions, including transmembrane transport, lipid metabolic processes and proteolysis. Under SF and SR conditions, 12/14 and 10/13 altered pathways, respectively, were both grouped in the metabolism category. Out of the 778 genes involved in DDR, except eya-1 and ceh-34, 28 altered genes in dys-1 mutant showed no predicted protein interactions, or anti-correlated miRNAs during spaceflight. The ced-1 mutation induced similar changes under SF and SR; however, these effects were stronger than those of the dys-1 mutant. The additional genes identified were related to phosphorous/phosphate metabolic processes and growth rather than, metabolism, especially for environmental information processing under SR. Although the DDR profiles were significantly changed under both conditions, the ced-1 mutation favored DNA repair under SF and apoptosis under SR. Notably, 37 miRNAs were predicted to be involved in the DDR. Our study indicates that, the dys-1 mutation reduced the transcriptional response to SF, and the ced-1 mutation increased the response to SR, when compared with the wild type C. elegans. Although some effects were due to radiosensitivity, microgravity, depending on the dystrophin, exerts predominant effects on transcription in C. elegans during short-duration spaceflight. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    PubMed Central

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers neuroprotection of brain tissue through anti-inflammatory and anti-apoptotic effects in a mouse model of SWI. These results suggest a new strategy for promoting neuronal survival and function after CED to improve long-term patient outcome. PMID:27445818

  5. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    NASA Astrophysics Data System (ADS)

    Mišković, Olivera; Olea, Rodrigo

    2011-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  6. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo; Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso

    2011-01-15

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, itmore » extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.« less

  7. Timelike Momenta In Quantum Electrodynamics

    DOE R&D Accomplishments Database

    Brodsky, S. J.; Ting, S. C. C.

    1965-12-01

    In this note we discuss the possibility of studying the quantum electrodynamics of timelike photon propagators in muon or electron pair production by incident high energy muon or electron beams from presently available proton or electron accelerators.

  8. 13 CFR 303.3 - Application requirements and evaluation criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF COMMERCE PLANNING INVESTMENTS AND COMPREHENSIVE ECONOMIC DEVELOPMENT STRATEGIES § 303.3... involvement of the Region's business leadership at each stage of the preparation of the CEDS, short-term...

  9. Electrodynamics panel presentation

    NASA Technical Reports Server (NTRS)

    Mccoy, J.

    1986-01-01

    The Plasma Motor Generator (PMG) concept is explained in detail. The PMG tether systems being used to calculate the estimated performance data is described. The voltage drops and current contact geometries involved in the operation of an electrodynamic tether are displayed illustrating the comparative behavior of hollow cathodes, electron guns, and passive collectors for current coupling into the ionosphere. The basic PMG design involving the massive tether cable with little or no satellite mass at the far end(s) are also described. The Jupiter mission and its use of electrodynamic tethers are given. The need for demonstration experiments is stressed.

  10. Towards a Unified Field Theory for Classical Electrodynamics

    NASA Astrophysics Data System (ADS)

    Benci, Vieri; Fortunato, Donato

    2004-09-01

    In this paper we introduce a model which describes the relation of matter and the electromagnetic field from a unitarian standpoint in the spirit of ideas of Born and Infeld. In this model, based on a semilinear perturbation of Maxwell equations, the particles are finite-energy solitary waves due to the presence of the nonlinearity. In this respect the matter and the electromagnetic field have the same nature. Finite energy means that particles have finite mass and this makes electrodynamics consistent with the special relativity. We analyze the invariants of the motion of the semilinear Maxwell equations (SME) and their static solutions. In the magnetostatic case (i.e., when the electric field E = 0 and the magnetic field H does not depend on time) SME are reduced to the semilinear equation where ∇× denotes the curloperator, f‧ is the gradient of a strictly convex smooth function f:R3→R and A:R3→R3 is the gauge potential related to the magnetic field H (H = ∇× A). Due to the presence of the curl operator, (1) is a strongly degenerate elliptic equation. Moreover, physical considerations impel f to be flat at zero (f‧‧(0)=0) and this fact leads us to study the problem in a functional setting related to the Orlicz space Lp+Lq. The existence of a nontrivial finite- energy solution of (1) is proved under suitable growth conditions on f. The proof is carried out by using a suitable variational framework related to the Hodge splitting of the vector field A.

  11. High Performance Ion Mobility Spectrometry Using Hourglass Electrodynamic Funnel And Internal Ion Funnel

    DOEpatents

    Smith, Richard D.; Tang, Keqi; Shvartsburg, Alexandre A.

    2005-11-22

    A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing a device for transmitting ions from an ion source which allows the transmission of ions without significant delay to an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.

  12. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the American sector and weaker in the African sector - why are the occurrence and amplitude of equatorial irregularities stronger in the African sector?

  13. Lorentz-violating electrodynamics and the cosmic microwave background.

    PubMed

    Kostelecký, V Alan; Mewes, Matthew

    2007-07-06

    Possible Lorentz-violating effects in the cosmic microwave background are studied. We provide a systematic classification of renormalizable and nonrenormalizable operators for Lorentz violation in electrodynamics and use polarimetric observations to search for the associated violations.

  14. 7 CFR 1220.605 - Farm Service Agency County Executive Director.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures To Request a Referendum Definitions..., also referred to as “CED,” means the person employed by the FSA County Committee to execute the...

  15. 7 CFR 1220.605 - Farm Service Agency County Executive Director.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures To Request a Referendum Definitions..., also referred to as “CED,” means the person employed by the FSA County Committee to execute the...

  16. 7 CFR 1220.605 - Farm Service Agency County Executive Director.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures To Request a Referendum Definitions..., also referred to as “CED,” means the person employed by the FSA County Committee to execute the...

  17. 7 CFR 1220.605 - Farm Service Agency County Executive Director.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures To Request a Referendum Definitions..., also referred to as “CED,” means the person employed by the FSA County Committee to execute the...

  18. 7 CFR 1220.605 - Farm Service Agency County Executive Director.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures To Request a Referendum Definitions..., also referred to as “CED,” means the person employed by the FSA County Committee to execute the...

  19. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolitionmore » (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.« less

  20. Cell Death in C. elegans Development.

    PubMed

    Malin, Jennifer Zuckerman; Shaham, Shai

    2015-01-01

    Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity. © 2015 Elsevier Inc. All rights reserved.

  1. Electrodynamic pressure modulation of protein stability in cosolvents.

    PubMed

    Damodaran, Srinivasan

    2013-11-19

    Cosolvents affect structural stability of proteins in aqueous solutions. A clear understanding of the mechanism by which cosolvents impact protein stability is critical to understanding protein folding in a biological milieu. In this study, we investigated the Lifshitz-van der Waals dispersion interaction of seven different solutes with nine globular proteins and report that in an aqueous medium the structure-stabilizing solutes exert a positive electrodynamic pressure, whereas the structure-destabilizing solutes exert a negative electrodynamic pressure on the proteins. The net increase in the thermal denaturation temperature (ΔTd) of a protein in 1 M solution of various solutes was linearly related to the electrodynamic pressure (PvdW) between the solutes and the protein. The slope of the PvdW versus ΔTd plots was protein-dependent. However, we find a positive linear relationship (r(2) = 0.79) between the slope (i.e., d(ΔTd)/dPvdW) and the adiabatic compressibility (βs) of the proteins. Together, these results clearly indicate that the Lifshitz's dispersion forces are inextricably involved in solute-induced stabilization/destabilization of globular proteins. The positive and/or negative electrodynamic pressure generated by the solute-protein interaction across the water medium seems to be the fundamental mechanism by which solutes affect protein stability. This is at variance with the existing preferential hydration concept. The implication of these results is significant in the sense that, in addition to the hydrophobic effect that drives protein folding, the electrodynamic forces between the proteins and solutes in the biological milieu also might play a role in the folding process as well as in the stability of the folded state.

  2. Applying TM-polarization geoelectric exploration for study of low-contrast three-dimensional targets

    NASA Astrophysics Data System (ADS)

    Zlobinskiy, Arkadiy; Mogilatov, Vladimir; Shishmarev, Roman

    2018-03-01

    With using new field and theoretical data, it has been shown that applying the electromagnetic field of transverse magnetic (TM) polarization will give new opportunities for electrical prospecting by the method of transient processes. Only applying a pure field of the TM polarization permits poor three-dimensional objects (required metalliferous deposits) to be revealed in a host horizontally-layered medium. This position has good theoretical grounds. There is given the description of the transient electromagnetic method, that uses only the TM polarization field. The pure TM mode is excited by a special source, which is termed as a circular electric dipole (CED). The results of three-dimensional simulation (by the method of finite elements) are discussed for three real geological situations for which applying electromagnetic fields of transverse electric (TE) and transverse magnetic (TM) polarizations are compared. It has been shown that applying the TE mode gives no positive results, while applying the TM polarization field permits the problem to be tackled. Finally, the results of field works are offered, which showed inefficiency of application of the classical TEM method, whereas in contrast, applying the field of TM polarization makes it easy to identify the target.

  3. Feedback between neutral winds and auroral arc electrodynamics

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Walterscheid, R. L.

    1986-01-01

    The feedback between neutral atmospheric winds and the electrodynamics of a stable, discrete auroral arc is analyzed. The ionospheric current continuity equation and the equation for neutral gas acceleration by ion drag are solved simultaneously, as a function of time. The results show that, in general, the electric field in the ionosphere adjusts to neutral wind acceleration so as to keep auroral field-aligned currents and electron acceleration approximately independent of time. It is thus concluded that the neutral winds that develop as a result of the electrodynamical forcing associated with an arc do not significantly affect the intensity of the arc.

  4. Flying relativistic mirrors for nonlinear QED studies.

    NASA Astrophysics Data System (ADS)

    Bulanov, Stepan; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2017-10-01

    Recent progress in laser technology has led to a dramatic increase of laser power and intensity. As a result, the laser-matter interaction will happen in the radiation dominated regimes. In a strong electromagnetic field, electrons can be accelerated to such high velocities that the radiation reaction starts to play an important role. The radiation effects change drastically the laser-plasma interaction leading to fast energy losses. Moreover, previously unexplored regimes of the interaction will be entered into, in which quantum electrodynamics (QED) can occur. Depending on the laser intensity and wavelength, either classical or quantum mode of radiation reaction prevail. In order to study different regimes of interaction as well as the transition from one into another the utilization of flying relativistic mirrors, which can generate electromagnetic pulses with varying frequency and intensity, is proposed. The scheme is demonstrated for multiphoton Compton scattering. Work supported by U.S. DOE under Contract No. DE-AC02-05CH11231.

  5. Why Don't They Understand Us?

    NASA Astrophysics Data System (ADS)

    Kvasz, Ladislav

    The aim of the article is to provide teachers some ideas about the development of physical knowledge and to make them more receptive to the differences between their and the students thinking. I want to show, that these differences lie not only in the richness of experience, but also in the structure of this experience. I try to point to some of these differences lying in the content, form and meaningfulness. The article is based on an adapted version of Piaget's model of the growth of physical knowledge. The model represents the changes of semantic understanding, formal language and logical structure of a theory during its historical development. I illustrate the model on the development of classical mechanics, but similar changes can be found also in the history of electrodynamics or quantum mechanics. The central idea of the paper is to use this model of the historical development of physical knowledge in analysis of the cognitive processes in physics education.

  6. Homogeneous quantum electrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.

  7. Passion at a Distance

    NASA Astrophysics Data System (ADS)

    Howard, Don

    In 1984, Abner Shimony invented the expression, "passion at a distance," to characterize the distinctive relationship of two entangled quantum mechanical systems [1]. It is neither the local causality of pushes, pulls, and central forces familiar from classical mechanics and electrodynamics, nor the non-local causality of instantaneous or just superluminal action at a distance that would spell trouble for relativity theory. This mode of connection of entangled systems has them feeling one another's presence and properties enough to ensure the strong correlations revealed in the Bell experiments, correlations that undergird everything from superfluidity and superconductivity to quantum computing and quantum teleportation, but not in a way that permits direct control of one by manipulation of the other. Intended to echo Aristotle's distinguishing of "potentiality" from "actuality" as different senses of "being," Shimony's "passion at a distance" is all about tendency and propensity, not the concreteness whose misplacement in realm of the physical was lamented by Alfred North Whitehead.

  8. Does Light from Steady Sources Bear Any Observable Imprint of the Dispersive Intergalactic Medium?

    NASA Astrophysics Data System (ADS)

    Lieu, Richard; Duan, Lingze

    2018-02-01

    There has recently been some interest in the prospect of detecting ionized intergalactic baryons by examining the properties of incoherent light from background cosmological sources, namely quasars. Although the paper by Lieu et al. proposed a way forward, it was refuted by the later theoretical work of Hirata & McQuinn and the observational study of Hales et al. In this paper we investigate in detail the manner in which incoherent radiation passes through a dispersive medium both from the frameworks of classical and quantum electrodynamics, leading us to conclude that the premise of Lieu et al. would only work if the pulses involved are genuinely classical ones containing many photons per pulse; unfortunately, each photon must not be treated as a pulse that is susceptible to dispersive broadening. We are nevertheless able to change the tone of the paper at this juncture by pointing out that because current technology allows one to measure the phase of individual modes of radio waves from a distant source, the most reliable way of obtaining irrefutable evidence of dispersion, namely via the detection of its unique signature of a quadratic spectral phase, may well be already accessible. We demonstrate how this technique is only applied to measure the column density of the ionized intergalactic medium.

  9. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  10. Experimental Results of Schlicher's Thrusting Antenna

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Niedra, Janis M.

    2001-01-01

    Experiments were conducted to test the claims by Rex L. Schlicher, et al., (Patent 5,142,86 1) that a certain antenna geometry produces thrust greatly exceeding radiation reaction, when driven by repetitive, fast rise, and relatively slower decay current pulses. In order to test this hypothesis, the antenna was suspended by strings as a 3 in pendulum. Current pulses were fed to the antenna along the suspension path by a very flexible coaxial line constructed from loudspeaker cable and copper braid sheath. When driving the antenna via this cabling, our pulser was capable of sustaining 1200 A pulses at a rate of 30 per second up to a minute. In this way, bursts of pulses could be delivered in synch with the pendulum period in order to build up any motion. However, when using a laser beam passing through a lens attached to the antenna to amplify linear displacement by a factor of at least 25, no correlated motion of the beam spot could be detected on a distant wall. We conclude, in agreement with the momentum theorem of classical electromagnetic theory, that any thrust produced is far below practically useful levels. Hence, within classical electrodynamics, there is little hope of detecting any low level motion that cannot be explained by interactions with surrounding structural steel and the Earth's magnetic field.

  11. Testing Born-Infeld electrodynamics in waveguides.

    PubMed

    Ferraro, Rafael

    2007-12-07

    Waveguides can be employed to test nonlinear effects in electrodynamics. We solve Born-Infeld equations for TE waves in a rectangular waveguide. We show that the energy velocity acquires a dependence on the amplitude, and harmonic components appear as a consequence of the nonlinear behavior.

  12. 7 CFR 1280.607 - Farm Service Agency County Executive Director.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... LAMB PROMOTION, RESEARCH, AND INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280... referred to as “CED,” means the person employed by the FSA County Committee to execute the policies of the...

  13. 7 CFR 1280.607 - Farm Service Agency County Executive Director.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... LAMB PROMOTION, RESEARCH, AND INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280... referred to as “CED,” means the person employed by the FSA County Committee to execute the policies of the...

  14. 7 CFR 1280.607 - Farm Service Agency County Executive Director.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... LAMB PROMOTION, RESEARCH, AND INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280... referred to as “CED,” means the person employed by the FSA County Committee to execute the policies of the...

  15. 7 CFR 1280.607 - Farm Service Agency County Executive Director.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... LAMB PROMOTION, RESEARCH, AND INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280... referred to as “CED,” means the person employed by the FSA County Committee to execute the policies of the...

  16. 7 CFR 1280.607 - Farm Service Agency County Executive Director.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... LAMB PROMOTION, RESEARCH, AND INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280... referred to as “CED,” means the person employed by the FSA County Committee to execute the policies of the...

  17. Models, Measurements, and Local Decisions: Assessing and ...

    EPA Pesticide Factsheets

    This presentation includes a combination of modeling and measurement results to characterize near-source air quality in Newark, New Jersey with consideration of how this information could be used to inform decision making to reduce risk of health impacts. Decisions could include either exposure or emissions reduction, and a host of stakeholders, including residents, academics, NGOs, local and federal agencies. This presentation includes results from the C-PORT modeling system, and from a citizen science project from the local area. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  18. Convection-Enhanced Delivery of Carboplatin PLGA Nanoparticles for the Treatment of Glioblastoma.

    PubMed

    Arshad, Azeem; Yang, Bin; Bienemann, Alison S; Barua, Neil U; Wyatt, Marcella J; Woolley, Max; Johnson, Dave E; Edler, Karen J; Gill, Steven S

    2015-01-01

    We currently use Convection-Enhanced Delivery (CED) of the platinum-based drug, carboplatin as a novel treatment strategy for high grade glioblastoma in adults and children. Although initial results show promise, carboplatin is not specifically toxic to tumour cells and has been associated with neurotoxicity at high infused concentrations in pre-clinical studies. Our treatment strategy requires intermittent infusions due to rapid clearance of carboplatin from the brain. In this study, carboplatin was encapsulated in lactic acid-glycolic acid copolymer (PLGA) to develop a novel drug delivery system. Neuronal and tumour cytotoxicity were assessed in primary neuronal and glioblastoma cell cultures. Distribution, tissue clearance and toxicity of carboplatin nanoparticles following CED was assessed in rat and porcine models. Carboplatin nanoparticles conferred greater tumour cytotoxicity, reduced neuronal toxicity and prolonged tissue half-life. In conclusion, this drug delivery system has the potential to improve the prognosis for patients with glioblastomas.

  19. Convection-Enhanced Delivery of Carboplatin PLGA Nanoparticles for the Treatment of Glioblastoma

    PubMed Central

    Arshad, Azeem; Yang, Bin; Bienemann, Alison S.; Barua, Neil U.; Wyatt, Marcella J.; Woolley, Max; Johnson, Dave E.; Edler, Karen J.; Gill, Steven S.

    2015-01-01

    We currently use Convection-Enhanced Delivery (CED) of the platinum-based drug, carboplatin as a novel treatment strategy for high grade glioblastoma in adults and children. Although initial results show promise, carboplatin is not specifically toxic to tumour cells and has been associated with neurotoxicity at high infused concentrations in pre-clinical studies. Our treatment strategy requires intermittent infusions due to rapid clearance of carboplatin from the brain. In this study, carboplatin was encapsulated in lactic acid-glycolic acid copolymer (PLGA) to develop a novel drug delivery system. Neuronal and tumour cytotoxicity were assessed in primary neuronal and glioblastoma cell cultures. Distribution, tissue clearance and toxicity of carboplatin nanoparticles following CED was assessed in rat and porcine models. Carboplatin nanoparticles conferred greater tumour cytotoxicity, reduced neuronal toxicity and prolonged tissue half-life. In conclusion, this drug delivery system has the potential to improve the prognosis for patients with glioblastomas. PMID:26186224

  20. WRF/CMAQ AQMEII3 Simulations of US Regional-Scale ...

    EPA Pesticide Factsheets

    Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, performed during the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), we perform annual simulations over North America with chemical boundary conditions prepared from four different global models. Results indicate that the impacts of different boundary conditions are significant for ozone throughout the year and most pronounced outside the summer season. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  1. Current status of intratumoral therapy for glioblastoma.

    PubMed

    Mehta, Ankit I; Linninger, Andreas; Lesniak, Maciej S; Engelhard, Herbert H

    2015-10-01

    With emerging drug delivery technologies becoming accessible, more options are expected to become available to patients with glioblastoma (GBM) in the near future. It is important for clinicians to be familiar with the underlying mechanisms and limitations of intratumoral drug delivery, and direction of recent research efforts. Tumor-adjacent brain is an extremely complex living matrix that creates challenges with normal tissue intertwining with tumor cells. For convection-enhanced delivery (CED), the role of tissue anisotropy for better predicting the biodistribution of the infusate has recently been studied. Computational predictive methods are now available to better plan CED therapy. Catheter design and placement—in addition to the agent being used—are critical components of any protocol. This paper overviews intratumoral therapies for GBM, highlighting key anatomic and physiologic perspectives, selected agents (especially immunotoxins), and some new developments such as the description of the glymphatic system.

  2. REEXAMINATION OF INDUCTION HEATING OF PRIMITIVE BODIES IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Raymond L.; Roberge, Wayne G., E-mail: menzer@rpi.edu, E-mail: roberw@rpi.edu

    2013-10-20

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the 'motional electric field' that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in themore » freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows 'electrodynamic heating', calculate its upper limits, and compare them to heating produced by short-lived radionuclides.« less

  3. A letter of intent for an experiment to study strong electromagnetic fields at RHIC via multiple electromagnetic processes

    NASA Technical Reports Server (NTRS)

    Fatyga, M.; Norbury, John W.

    1992-01-01

    An experimental program at the Relativistic Heavy Ion Collider (RHIC) which is designed to study nonperturbative aspects of electrodynamics is outlined. Additional possibilities for new studies of electrodynamics via multiple electromagnetic processes are also described.

  4. Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars

    NASA Astrophysics Data System (ADS)

    Denisov, V. I.; Sokolov, V. A.; Svertilov, S. I.

    2017-09-01

    The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and the rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.

  5. Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers

    NASA Astrophysics Data System (ADS)

    Li, Gangqiang; Zhu, Zheng H.; Ruel, Stephane; Meguid, S. A.

    2017-08-01

    This paper developed a new multiphysics finite element method for the elastodynamic analysis of space debris deorbit by a bare flexible electrodynamic tether. Orbital motion limited theory and dynamics of flexible electrodynamic tethers are discretized by the finite element method, where the motional electric field is variant along the tether and coupled with tether deflection and motion. Accordingly, the electrical current and potential bias profiles of tether are solved together with the tether dynamics by the nodal position finite element method. The newly proposed multiphysics finite element method is applied to analyze the deorbit dynamics of space debris by electrodynamic tethers with a two-stage energy control strategy to ensure an efficient and stable deorbit process. Numerical simulations are conducted to study the coupled effect between the motional electric field and the tether dynamics. The results reveal that the coupling effect has a significant influence on the tether stability and the deorbit performance. It cannot be ignored when the libration and deflection of the tether are significant.

  6. Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, V.I.; Sokolov, V.A.; Svertilov, S.I., E-mail: vid.msu@yandex.ru, E-mail: sokolov.sev@inbox.ru, E-mail: sis@coronas.ru

    The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and themore » rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.« less

  7. Gonadal and Sexual Dysfunction in Childhood Cancer Survivors.

    PubMed

    Yoon, Ju Young; Park, Hyeon Jin; Ju, Hee Young; Yoon, Jong Hyung; Chung, Jin Soo; Hwang, Sang Hyun; Lee, Dong Ock; Shim, Hye Young; Park, Byung-Kiu

    2017-10-01

    Few studies have addressed gonadal and sexual dysfunctions in childhood cancer survivors. We evaluated the prevalence rates and risk factors for gonadal failure among adolescent/young adult childhood cancer survivors and their sexual function. Subjects were childhood cancer survivors aged 15-29 years who had completed therapy more than 2 years ago. Demographic and medical characteristics were obtained from the patients' medical records. In addition, hormonal evaluation and semen analysis were performed and sexual function was evaluated via questionnaire. The study included 105 survivors (57 males, 48 females), of which 61 were adults (age > 19 years) and 44 were adolescents. In both males and females, the proportion of survivors with low sex hormone levels did not differ among age groups or follow-up period. Thirteen female subjects (27.1%) needed sex hormone replacement, while five males subjects (8.8%) were suspected of having hypogonadism, but none were receiving sex hormone replacement. Of 27 semen samples, 14 showed azospermia or oligospermia. The proportion of normospermia was lower in the high cyclophosphamide equivalent dose (CED) group (CED ≥ 8,000 mg/m2) than the low CED group (27.3% vs. 62.5%, p=0.047). Among adults, none were married and only 10 men (35.7%) and eight women (34.3%) were in a romantic relationship. Though a significant proportion (12.0% of males and 5.3% of females) of adolescent survivors had experienced sexual activity, 13.6% had not experienced sex education. The childhood cancer survivors in this study showed a high prevalence of gonadal/sexual dysfunction; accordingly, proper strategies are needed to manage these complications.

  8. Dynamic Contrast-Enhanced MRI of Gd-albumin Delivery to the Rat Hippocampus In Vivo by Convection-Enhanced Delivery

    PubMed Central

    Kim, Jung Hwan; Astary, Garrett W.; Nobrega, Tatiana L.; Kantorovich, Svetlana; Carney, Paul R.; Mareci, Thomas H.; Sarntinoranont, Malisa

    2013-01-01

    Convection enhanced delivery (CED) shows promise in treating neurological diseases due to its ability to circumvent the blood-brain barrier (BBB) and deliver therapeutics directly to the parenchyma of the central nervous system (CNS). Such a drug delivery method may be useful in treating CNS disorders involving the hippocampus such temporal lobe epilepsy and gliomas; however, the influence of anatomical structures on infusate distribution is not fully understood. As a surrogate for therapeutic agents, we used gadolinium-labeled-albumin (Gd-albumin) tagged with Evans blue dye to observe the time dependence of CED infusate distributions into the rat dorsal and ventral hippocampus in vivo with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). For finer anatomical detail, final distribution volumes (Vd) of the infusate were observed with high-resolution T1-weighted MR imaging and light microscopy of fixed brain sections. Dynamic images demonstrated that Gd-albumin preferentially distributed within the hippocampus along neuroanatomical structures with less fluid resistance and less penetration was observed in dense cell layers. Furthermore, significant leakage into adjacent cerebrospinal fluid (CSF) spaces such as the hippocampal fissure, velum interpositum and midbrain cistern occurred toward the end of infusion. Vd increased linearly with infusion volume (Vi) at a mean Vd/Vi ratio of 5.51 ± 0.55 for the dorsal hippocampus infusion and 5.30 ± 0.83 for the ventral hippocampus infusion. This study demonstrated the significant effects of tissue structure and CSF space boundaries on infusate distribution during CED. PMID:22687936

  9. Widespread suppression of huntingtin with convection-enhanced delivery of siRNA.

    PubMed

    Stiles, David K; Zhang, Zhiming; Ge, Pei; Nelson, Brian; Grondin, Richard; Ai, Yi; Hardy, Peter; Nelson, Peter T; Guzaev, Andrei P; Butt, Mark T; Charisse, Klaus; Kosovrasti, Verbena; Tchangov, Lubomir; Meys, Michael; Maier, Martin; Nechev, Lubomir; Manoharan, Muthiah; Kaemmerer, William F; Gwost, Douglas; Stewart, Gregory R; Gash, Don M; Sah, Dinah W Y

    2012-01-01

    Huntington's disease is an autosomal dominant neurodegenerative disease caused by a toxic gain of function mutation in the huntingtin gene (Htt). Silencing of Htt with RNA interference using direct CNS delivery in rodent models of Huntington's disease has been shown to reduce pathology and promote neuronal recovery. A key translational step for this approach is extension to the larger non-human primate brain, achieving sufficient distribution of small interfering RNA targeting Htt (siHtt) and levels of Htt suppression that may have therapeutic benefit. We evaluated the potential for convection enhanced delivery (CED) of siHtt to provide widespread and robust suppression of Htt in nonhuman primates. siHtt was infused continuously for 7 or 28 days into the nonhuman primate putamen to analyze effects of infusion rate and drug concentration on the volume of effective suppression. Distribution of radiolabeled siHtt and Htt suppression were quantified by autoradiography and PCR, respectively, in tissue punches. Histopathology was evaluated and Htt suppression was also visualized in animals treated for 28 days. Seven days of CED led to widespread distribution of siHtt and significant Htt silencing throughout the nonhuman primate striatum in an infusion rate and dose dependent manner. Htt suppression at therapeutic dose levels was well tolerated by the brain. A model developed from these results predicts that continuous CED of siHtt can achieve significant coverage of the striatum of Huntington's disease patients. These findings suggest that this approach may provide an important therapeutic strategy for treating Huntington's disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Assessment of Committed Effective Dose due to consumption of Red Sea coral reef fishes collected from the local market (Sudan).

    PubMed

    Hassona, Rifaat K; Sam, A K; Osman, O I; Sirelkhatim, D A; LaRosa, J

    2008-04-15

    An assessment of Committed Effective Dose (CED) due to consumption of Red Sea fish containing (210)Po and (137)Cs was performed for 23 different marine fish samples collected from the local market at Port Sudan. The fish were classified according to their feeding habits into three categories: carnivores, herbivores, and omnivores. Measured activity concentrations of (210)Po were found in the ranges 0.25-6.42 (carnivores), 0.7-5 (omnivores) and 1.5-3.8 (herbivores) Bq/kg fresh weight. In the same study, activity concentrations of Cs-137 were determined to be in the ranges 0.1-0.46 (carnivores), 0.09-0.35 (omnivores) and 0.09-0.32 (herbivores) Bq/kg fresh weight, which were several times lower than those of (210)Po. Appropriate conversion factors were used to derive the CED, which was found to be 0.012, 0.01 and 0.01 (microSv/yr) in carnivores, omnivores and herbivores, respectively, for (137)Cs. This contributes about 0.4% of the total dose exclusively by ingestion of fish. For (210)Po, it was found to be 3.47, 4.81 and 4.14 (microSv/yr) in carnivores, omnivores and herbivores, respectively, which represents 99.6% of the total dose (exclusively by ingestion of fish). The results of CED calculations suggest that the dose received by the Sudanese population from the consumption of marine fish is rather small and that the contribution of (137)Cs is negligible compared to (210)Po.

  11. Consumption of Caffeinated Energy Drinks Among Youth and Young Adults in Canada.

    PubMed

    Reid, Jessica L; McCrory, Cassondra; White, Christine M; Martineau, Chantal; Vanderkooy, Pat; Fenton, Nancy; Hammond, David

    2017-03-01

    The growing market for caffeinated energy drinks (CEDs) has caused concern about excessive caffeine intake and potential adverse effects, particularly among young people. The current study examined patterns of CED consumption among youth and young adults in Canada, using data from a national online survey conducted in October 2014. Data from a non-probability sample of 2040 respondents aged 12-24 from a consumer panel was weighted to national proportions; measures of CED consumption were estimated, including prevalence, excessive daily consumption, and context for use (locations and reasons). Separate logistic regression models for two outcomes, past-week consumption and "ever" exceeding two energy drinks in a day (as per common guidance), were conducted to examine associations with demographic variables (sex, age, geographic region, race/ethnicity, and language). Overall, 73.6% of respondents reported "ever" consuming energy drinks; 15.6% had done so in the past week. Any consumption of energy drinks in the past week was more prevalent among males, Aboriginal respondents (vs. white only or mixed/other), and residents of British Columbia. Among "ever-consumers," 16.0% reported ever consuming more than two energy drinks in a day. Exceeding two in a day was more prevalent among older respondents (young adults aged 18-24), aboriginal respondents (vs. white only), and British Columbia residents. While the majority of youth and young adults had consumed energy drinks, about half were "experimental" consumers (i.e., consumed ≤ 5 drinks in their lifetime). Approximately one in six consumers had exceeded the usual guidance for maximum daily consumption, potentially increasing their risk of experiencing adverse effects.

  12. TESSX: A Mission for Space Exploration with Tethers

    NASA Technical Reports Server (NTRS)

    Cosmo, Mario L.; Lorenzini, Enrico C.; Gramer, Daniel J.; Hoffman, John H.; Mazzoleni, Andre P.

    2005-01-01

    Tethers offer significant potential for substantially increasing payload mass fraction, increasing spacecraft lifetime, enhancing long-term space travel, and enabling the understanding and development of gravity-dependent technologies required for Moon and Mars exploration. The development of the Tether Electrodynamic Spin-up and Survivability Experiment (TESSX) will support applications relevant to NASA's new exploration initiative, including: artificial gravity generation, formation flying, electrodynamic propulsion, momentum exchange, and multi-amp current collection and emission. Under the broad term TESSX, we are currently evaluating several different tether system configurations and operational modes. The initial results of this work are presented, including hardware development, orbital dynamics simulations, and electrodynamics design and analysis.

  13. Space station operations enhancement using tethers

    NASA Astrophysics Data System (ADS)

    Bekey, I.

    1984-10-01

    Space tethers represent a tool of unusual versatility for applications to operations involving space stations. The present investigation is concerned with a number of applications which exploit the dynamic, static, and electrodynamic properties of tethers. One of the simplest applications of a tethered system on the Space Station might be that of a remote docking port, allowing the Shuttle to dock with no contamination or disturbance effects. Attention is also given to tethered platforms, a tethered microgravity facility, a tethered space station propellant facility, electrodynamic tether principles, a tether power generator, a tether thrust generator (motor), and an electrodynamic tether for drag makeup and energy storage.

  14. A comment on the paper by R.I. Khrapko 'On the possibility of an experiment on 'nonlocality' of electrodynamics'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venediktov, V Yu

    2015-04-30

    This methodological note is dedicated to the analysis of the imaginary experiment proposed in the paper by R.I. Khrapko 'On the possibility of an experiment on 'nonlocality' of electrodynamics' [Quantum Electronics, 42, 1133 (2012)]. (discussion)

  15. Students' Difficulties with Vector Calculus in Electrodynamics

    ERIC Educational Resources Information Center

    Bollen, Laurens; van Kampen, Paul; De Cock, Mieke

    2015-01-01

    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven…

  16. 13 CFR 300.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL... meanings: Assistant Secretary means the Assistant Secretary for Economic Development within the Department. Comprehensive Economic Development Strategy or CEDS means a strategy that meets the requirements of § 303.7 of...

  17. Electrostatics in Stueckelberg-Horwitz electrodynamics

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2013-04-01

    In this paper, we study fundamental aspects of electrostatics as a special case in Stueckelberg-Horwitz electromagnetic theory. In this theory, spacetime events xμ(τ) evolve in an unconstrained 8-dimensional phase space, interacting through five τ-dependent gauge fields induced by the current densities associated with their evolutions. The chronological time τ was introduced as an independent evolution parameter in order to free the laboratory clock x0 to evolve alternately 'forward' and 'backward' in time according to the sign of the energy, thus providing a classical implementation of the Feynman-Stueckelberg interpretation of pair creation/annihilation. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. After a brief review of Stueckelberg-Horwitz electrodynamics, we obtain the field produced by an event in uniform motion and verify that it satisfies the field equations. We study this field in the rest frame of the event, where it depends explicitly on coordinate time x0 and the parameter τ, as well as spatial distance R. Calculating with this generalized Coulomb field, we demonstrate how Gauss's theorem and Stoke's theorem apply in 4D spacetime, and obtain the fields associated with a charged line and a charged sheet. Finally, we use the field of the charged sheet to study a static event in the vicinity of a potential barrier. In all of these cases, we observe a small transfer of mass from the field to the particle. It is seen that for an event in the field of an oppositely charged sheet of sufficient density, the event can reverse time direction, providing a specific model for pair phenomena.

  18. Lamb Shift in Nonrelativistic Quantum Electrodynamics.

    ERIC Educational Resources Information Center

    Grotch, Howard

    1981-01-01

    The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)

  19. Electrodynamics in One Dimension: Radiation and Reflection

    ERIC Educational Resources Information Center

    Asti, G.; Coisson, R.

    2011-01-01

    Problems involving polarized plane waves and currents on sheets perpendicular to the wavevector involve only one component of the fields, so it is possible to discuss electrodynamics in one dimension. Taking for simplicity linearly polarized sinusoidal waves, we can derive the field emitted by currents (analogous to dipole radiation in three…

  20. 15 CFR 995.20 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...

  1. 15 CFR 995.20 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...

  2. 15 CFR 995.20 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...

  3. 15 CFR 995.20 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...

  4. 13 CFR 303.7 - Requirements for Comprehensive Economic Development Strategies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Economic Development Strategies. 303.7 Section 303.7 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE PLANNING INVESTMENTS AND COMPREHENSIVE ECONOMIC DEVELOPMENT STRATEGIES § 303.7 Requirements for Comprehensive Economic Development Strategies. (a) General. CEDS are designed...

  5. 13 CFR 303.7 - Requirements for Comprehensive Economic Development Strategies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Economic Development Strategies. 303.7 Section 303.7 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE PLANNING INVESTMENTS AND COMPREHENSIVE ECONOMIC DEVELOPMENT STRATEGIES § 303.7 Requirements for Comprehensive Economic Development Strategies. (a) General. CEDS are designed...

  6. 13 CFR 303.7 - Requirements for Comprehensive Economic Development Strategies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Economic Development Strategies. 303.7 Section 303.7 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE PLANNING INVESTMENTS AND COMPREHENSIVE ECONOMIC DEVELOPMENT STRATEGIES § 303.7 Requirements for Comprehensive Economic Development Strategies. (a) General. CEDS are designed...

  7. 13 CFR 303.7 - Requirements for Comprehensive Economic Development Strategies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Economic Development Strategies. 303.7 Section 303.7 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE PLANNING INVESTMENTS AND COMPREHENSIVE ECONOMIC DEVELOPMENT STRATEGIES § 303.7 Requirements for Comprehensive Economic Development Strategies. (a) General. CEDS are designed...

  8. 13 CFR 303.7 - Requirements for Comprehensive Economic Development Strategies.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Economic Development Strategies. 303.7 Section 303.7 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE PLANNING INVESTMENTS AND COMPREHENSIVE ECONOMIC DEVELOPMENT STRATEGIES § 303.7 Requirements for Comprehensive Economic Development Strategies. (a) General. CEDS are designed...

  9. 15 CFR 995.20 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...

  10. Conceptual assessment tool for advanced undergraduate electrodynamics

    NASA Astrophysics Data System (ADS)

    Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.

    2017-12-01

    As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument's development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.

  11. Middle Atmosphere Electrodynamics During a Thunderstorm

    NASA Technical Reports Server (NTRS)

    Croskey, Charles L.

    1996-01-01

    Rocket-based instrumentation investigations of middle atmospheric electrodynamics during thunderstorms were conducted in coordination with balloon-measurements at Wallops Island, Virginia. Middle atmosphere electrodynamics and energy coupling are of particular importance to associated electrical processes at lower and higher altitudes. Objectives of this research effort included: (1) investigation of thunderstorm effects on middle atmosphere electrical structure, including spatial and temporal dependence; (2) characterization of electric field transients and the associated energy deposited at various altitudes; (3) evaluation of the vertical Maxwell current density over a thunderstorm to study the coupling of energy to higher altitudes; and (4) investigation of the coupling of energy to the ionosphere and the current supplied to the 'global circuit.'

  12. Students' difficulties with vector calculus in electrodynamics

    NASA Astrophysics Data System (ADS)

    Bollen, Laurens; van Kampen, Paul; De Cock, Mieke

    2015-12-01

    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.

  13. Discrete-time quantum walk with nitrogen-vacancy centers in diamond coupled to a superconducting flux qubit

    NASA Astrophysics Data System (ADS)

    Hardal, Ali Ü. C.; Xue, Peng; Shikano, Yutaka; Müstecaplıoğlu, Özgür E.; Sanders, Barry C.

    2013-08-01

    We propose a quantum-electrodynamics scheme for implementing the discrete-time, coined quantum walk with the walker corresponding to the phase degree of freedom for a quasimagnon field realized in an ensemble of nitrogen-vacancy centers in diamond. The coin is realized as a superconducting flux qubit. Our scheme improves on an existing proposal for implementing quantum walks in cavity quantum electrodynamics by removing the cumbersome requirement of varying drive-pulse durations according to mean quasiparticle number. Our improvement is relevant to all indirect-coin-flip cavity quantum-electrodynamics realizations of quantum walks. Our numerical analysis shows that this scheme can realize a discrete quantum walk under realistic conditions.

  14. Electrodynamic Tether Propulsion and Power Generation at Jupiter

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Johnson, L.; Moore, J.; Bagenal, F.

    1998-01-01

    The results of a study performed to evaluate the feasibility and merits of using an electrodynamic tether for propulsion and power generation for a spacecraft in the Jovian system are presented. The environment of the Jovian system has properties which are particularly favorable for utilization of an electrodynamic tether. Specifically, the planet has a strong magnetic field and the mass of the planet dictates high orbital velocities which, when combined with the planet's rapid rotation rate, can produce very large relative velocities between the magnetic field and the spacecraft. In a circular orbit close to the planet, tether propulsive forces are found to be as high as 50 N and power levels as high as 1 MW.

  15. Fractal electrodynamics via non-integer dimensional space approach

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  16. Quantum Electrodynamics: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    The Standard Model of particle physics is composed of several theories that are added together. The most precise component theory is the theory of quantum electrodynamics or QED. In this video, Fermilab’s Dr. Don Lincoln explains how theoretical QED calculations can be done. This video links to other videos, giving the viewer a deep understanding of the process.

  17. BIonic system: Extraction of Lovelock gravity from a Born-Infeld-type theory

    NASA Astrophysics Data System (ADS)

    Naimi, Yaghoob; Sepehri, Alireza; Ghaffary, Tooraj; Ghaforyan, Hossein; Ebrahimzadeh, Majid

    It was shown that both Lovelock gravity and Born-Infeld (BI) electrodynamics can be obtained from low effective limit of string theory. Motivated by the mentioned unique origin of the gauge-gravity theories, we are going to find a close relation between them. In this research, we start from the Lagrangian of a BI-type nonlinear electrodynamics with an exponential form to extract the action of Lovelock gravity. We investigate the origin of Lovelock gravity in a system of branes which are connected with each other by different wormholes through a BIonic system. These wormholes are produced as due to the nonlinear electrodynamics which are emerged on the interacting branes. By approaching branes, wormholes dissolve into branes and Lovelock gravity is generated. Also, throats of some wormholes become smaller than their horizons and they transit to black holes. Generalizing calculations to M-theory, it is found that by compacting Mp-branes, Lovelock gravity changes to nonlinear electrodynamics and thus both of them have the same origin. This result is consistent with the prediction of BIonic model in string theory.

  18. 78 FR 42082 - Proposed Information Collection Activity; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Proposed Information Collection Activity; Comment Request Proposed Projects: Title: Renewal of Office of Community... through the CED program. Since grantees are already familiar with the current format and elements, and all...

  19. 13 CFR 303.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INVESTMENTS AND COMPREHENSIVE ECONOMIC DEVELOPMENT STRATEGIES § 303.2 Definitions. In addition to the defined... following meanings: Planning Investment means the award of EDA Investment Assistance under section 203 of... CEDS for a specific EDA-approved Region under section 203 of PWEDA. Strategy Committee means the...

  20. 13 CFR 303.9 - Requirements for short-term Planning Investments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Planning Investments. 303.9 Section 303.9 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE PLANNING INVESTMENTS AND COMPREHENSIVE ECONOMIC DEVELOPMENT STRATEGIES § 303.9 Requirements for short-term Planning Investments. (a) In addition to providing support for CEDS...

Top