Sample records for classical electrodynamics charge

  1. Effective dynamics of a classical point charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polonyi, Janos, E-mail: polonyi@iphc.cnrs.fr

    2014-03-15

    The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham–Lorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-polemore » of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out. -- Highlights: •Extension of the classical action principle for dissipative systems. •New derivation of the Abraham–Lorentz force for a point charge. •Absence of a runaway solution of the Abraham–Lorentz force. •Acausality in classical electrodynamics. •Renormalization of classical electrodynamics of point charges.« less

  2. Classical Electrodynamics: Lecture notes

    NASA Astrophysics Data System (ADS)

    Likharev, Konstantin K.

    2018-06-01

    Essential Advanced Physics is a series comprising four parts: Classical Mechanics, Classical Electrodynamics, Quantum Mechanics and Statistical Mechanics. Each part consists of two volumes, Lecture notes and Problems with solutions, further supplemented by an additional collection of test problems and solutions available to qualifying university instructors. This volume, Classical Electrodynamics: Lecture notes is intended to be the basis for a two-semester graduate-level course on electricity and magnetism, including not only the interaction and dynamics charged point particles, but also properties of dielectric, conducting, and magnetic media. The course also covers special relativity, including its kinematics and particle-dynamics aspects, and electromagnetic radiation by relativistic particles.

  3. Classical Electrodynamics: Problems with solutions; Problems with solutions

    NASA Astrophysics Data System (ADS)

    Likharev, Konstantin K.

    2018-06-01

    l Advanced Physics is a series comprising four parts: Classical Mechanics, Classical Electrodynamics, Quantum Mechanics and Statistical Mechanics. Each part consists of two volumes, Lecture notes and Problems with solutions, further supplemented by an additional collection of test problems and solutions available to qualifying university instructors. This volume, Classical Electrodynamics: Lecture notes is intended to be the basis for a two-semester graduate-level course on electricity and magnetism, including not only the interaction and dynamics charged point particles, but also properties of dielectric, conducting, and magnetic media. The course also covers special relativity, including its kinematics and particle-dynamics aspects, and electromagnetic radiation by relativistic particles.

  4. Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field

    ERIC Educational Resources Information Center

    Kholmetskii, A. L.; Yarman, T.

    2008-01-01

    In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…

  5. Causality in Classical Electrodynamics

    ERIC Educational Resources Information Center

    Savage, Craig

    2012-01-01

    Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…

  6. A concise introduction to Colombeau generalized functions and their applications in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Gsponer, Andre

    2009-01-01

    The objective of this introduction to Colombeau algebras of generalized functions (in which distributions can be freely multiplied) is to explain in elementary terms the essential concepts necessary for their application to basic nonlinear problems in classical physics. Examples are given in hydrodynamics and electrodynamics. The problem of the self-energy of a point electric charge is worked out in detail: the Coulomb potential and field are defined as Colombeau generalized functions, and integrals of nonlinear expressions corresponding to products of distributions (such as the square of the Coulomb field and the square of the delta function) are calculated. Finally, the methods introduced in Gsponer (2007 Eur. J. Phys. 28 267, 2007 Eur. J. Phys. 28 1021 and 2007 Eur. J. Phys. 28 1241), to deal with point-like singularities in classical electrodynamics are confirmed.

  7. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: Bridging classical electrodynamics and quantum dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zixuan; Ratner, Mark A.; Seideman, Tamar, E-mail: t-seideman@northwestern.edu

    2014-12-14

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify ourmore » approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.« less

  8. Magnetic torque on a rotating superconducting sphere

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.

    1975-01-01

    The London theory of superconductivity is used to calculate the torque on a superconducting sphere rotating in a uniform applied magnetic field. The London theory is combined with classical electrodynamics for a calculation of the direct effect of excess charge on a rotating superconducting sphere. Classical electrodynamics, with the assumption of a perfect Meissner effect, is used to calculate the torque on a superconducting sphere rotating in an arbitrary magnetic induction; this macroscopic approach yields results which are correct to first order. Using the same approach, the torque due to a current loop encircling the rotating sphere is calculated.

  9. Mass stability in classical Stueckelberg-Horwitz-Piron electrodynamics

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2017-05-01

    It is well-known that the 5D gauge structure of Stueckelberg-Horwitz-Piron (SHP) electrodynamics permits the exchange of mass between particles and the electromagnetic fields induced by their motion, even at the classical level. This phenomenon presents two closely related problems: (1) Under what circumstances can real particles evolve sufficiently off-shell to account for mass changing phenomena such as flavor-changing neutrino interactions and low energy nuclear reactions? (2) What accounts for the stability of the measured masses of the known particles? To approach these questions, we first propose a toy model in which a particle evolving through a complex charged environment can acquire a significant mass shift for a short time. We then consider a classical self-interaction that tends to restore on-shell propagation.

  10. Exact solutions to the Mo-Papas and Landau-Lifshitz equations

    NASA Astrophysics Data System (ADS)

    Rivera, R.; Villarroel, D.

    2002-10-01

    Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics.

  11. Quasinormal modes of scale dependent black holes in (1 +2 )-dimensional Einstein-power-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Rincón, Ángel; Panotopoulos, Grigoris

    2018-01-01

    We study for the first time the stability against scalar perturbations, and we compute the spectrum of quasinormal modes of three-dimensional charged black holes in Einstein-power-Maxwell nonlinear electrodynamics assuming running couplings. Adopting the sixth order Wentzel-Kramers-Brillouin (WKB) approximation we investigate how the running of the couplings change the spectrum of the classical theory. Our results show that all modes corresponding to nonvanishing angular momentum are unstable both in the classical theory and with the running of the couplings, while the fundamental mode can be stable or unstable depending on the running parameter and the electric charge.

  12. Does Bohm's Quantum Force Have a Classical Origin?

    NASA Astrophysics Data System (ADS)

    Lush, David C.

    2016-08-01

    In the de Broglie-Bohm formulation of quantum mechanics, the electron is stationary in the ground state of hydrogenic atoms, because the quantum force exactly cancels the Coulomb attraction of the electron to the nucleus. In this paper it is shown that classical electrodynamics similarly predicts the Coulomb force can be effectively canceled by part of the magnetic force that occurs between two similar particles each consisting of a point charge moving with circulatory motion at the speed of light. Supposition of such motion is the basis of the Zitterbewegung interpretation of quantum mechanics. The magnetic force between two luminally-circulating charges for separation large compared to their circulatory motions contains a radial inverse square law part with magnitude equal to the Coulomb force, sinusoidally modulated by the phase difference between the circulatory motions. When the particles have equal mass and their circulatory motions are aligned but out of phase, part of the magnetic force is equal but opposite the Coulomb force. This raises a possibility that the quantum force of Bohmian mechanics may be attributable to the magnetic force of classical electrodynamics. It is further shown that relative motion between the particles leads to modulation of the magnetic force with spatial period equal to the de Broglie wavelength.

  13. From Waves to Particle Tracks and Quantum Probabilities

    NASA Astrophysics Data System (ADS)

    Falkenburg, Brigitte

    Here, the measurement methods for identifying massive charged particles are investigated. They have been used from early cosmic ray studies up to the present day. Laws such as the classical Lorentz force and Einstein's relativistic kinematics were established before the rise of quantum mechanics. Later, it became crucial to measure the energy loss of charged particles in matter. In 1930, Bethe developed a semi-classical model based on the quantum mechanics of scattering. In the early 1930s, he and others calculated the passage of charged particles through matter including pair creation and bremsstrahlung. Due to missing trust in quantum electrodynamics, however, only semi-empirical methods were employed in order to estimate the mass and charge from the features of particle tracks. In 1932, Anderson inserted a lead plate into the cloud chamber in order to determine the flight direction and charge of the `positive electron'. In the 1940s, nuclear emulsions helped to resolve puzzles about particle identification and quantum electrodynamics. Later, the measurement theory was extended in a cumulative process by adding conservation laws for dynamic properties, probabilistic quantum formulas for resonances, scattering cross sections, etc. The measurement method was taken over from cosmic ray studies to the era of particle accelerators, and finally taken back from there to astroparticle physics. The measurement methods remained the same, but in the transition from particle to astroparticle physics the focus of interest shifted. Indeed, the experimental methods of both fields explore the grounds of `new physics' in complementary ways.

  14. Trouble with the Lorentz law of force: incompatibility with special relativity and momentum conservation.

    PubMed

    Mansuripur, Masud

    2012-05-11

    The Lorentz law of force is the fifth pillar of classical electrodynamics, the other four being Maxwell's macroscopic equations. The Lorentz law is the universal expression of the force exerted by electromagnetic fields on a volume containing a distribution of electrical charges and currents. If electric and magnetic dipoles also happen to be present in a material medium, they are traditionally treated by expressing the corresponding polarization and magnetization distributions in terms of bound-charge and bound-current densities, which are subsequently added to free-charge and free-current densities, respectively. In this way, Maxwell's macroscopic equations are reduced to his microscopic equations, and the Lorentz law is expected to provide a precise expression of the electromagnetic force density on material bodies at all points in space and time. This Letter presents incontrovertible theoretical evidence of the incompatibility of the Lorentz law with the fundamental tenets of special relativity. We argue that the Lorentz law must be abandoned in favor of a more general expression of the electromagnetic force density, such as the one discovered by Einstein and Laub in 1908. Not only is the Einstein-Laub formula consistent with special relativity, it also solves the long-standing problem of "hidden momentum" in classical electrodynamics.

  15. SIM(1)-VSR Maxwell-Chern-Simons electrodynamics

    NASA Astrophysics Data System (ADS)

    Bufalo, R.

    2016-06-01

    In this paper we propose a very special relativity (VSR)-inspired generalization of the Maxwell-Chern-Simons (MCS) electrodynamics. This proposal is based upon the construction of a proper study of the SIM (1)-VSR gauge-symmetry. It is shown that the VSR nonlocal effects present a significant and healthy departure from the usual MCS theory. The classical dynamics is analysed in full detail, by studying the solution for the electric field and static energy for this configuration. Afterwards, the interaction energy between opposite charges is derived and we show that the VSR effects play an important part in obtaining a (novel) finite expression for the static potential.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zadora, A. S., E-mail: as.zadora@physics.msu.ru

    The objective of the present study is to consider in more detail the exotic color-charge-glow effect discovered recently and to analyze its possible physical manifestations associated with the treatment of ensembles of color-charged particles at a classical level. The ways in which this effect may appear in arbitrary systems consisting of pointlike massive particles and admitting the partition into elementary configurations like color charges and color dipoles are studied. The possible influence of this effect on particle dynamics (in particular, on gluon distributions) is also examined. Particle collisions at a given impact parameters are considered for a natural regularization ofmore » emerging expressions. It is shown that, in the case of reasonable impact-parameter values, collisions may proceed in the electrodynamic mode, in which case the charge-glow contribution to field strengths is suppressed in relation to what we have in the electrodynamic picture. From an analysis of the color-echo situation, it follows that the above conclusion remains valid for more complicated particle configurations as well, since hard gluon fields may arise only owing to a direct collision rather than owing to any echo-like effects.« less

  17. Black hole solution in the framework of arctan-electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    An arctan-electrodynamics coupled with the gravitational field is investigated. We obtain the regular black hole solution that at r →∞ gives corrections to the Reissner-Nordström solution. The corrections to Coulomb’s law at r →∞ are found. We evaluate the mass of the black hole that is a function of the dimensional parameter β introduced in the model. The magnetically charged black hole was investigated and we have obtained the magnetic mass of the black hole and the metric function at r →∞. The regular black hole solution is obtained at r → 0 with the de Sitter core. We show that there is no singularity of the Ricci scalar for electrically and magnetically charged black holes. Restrictions on the electric and magnetic fields are found that follow from the requirement of the absence of superluminal sound speed and the requirement of a classical stability.

  18. Electrodynamics and Spacetime Geometry: Foundations

    NASA Astrophysics Data System (ADS)

    Cabral, Francisco; Lobo, Francisco S. N.

    2017-02-01

    We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.

  19. Is the Lorentz signature of the metric of spacetime electromagnetic in origin?

    NASA Astrophysics Data System (ADS)

    Itin, Yakov; Hehl, Friedrich W.

    2004-07-01

    We formulate a premetric version of classical electrodynamics in terms of the excitation H=( H, D) and the field strength F=( E, B). A local, linear, and symmetric spacetime relation between H and F is assumed. It yields, if electric/magnetic reciprocity is postulated, a Lorentzian metric of spacetime thereby excluding Euclidean signature (which is, nevertheless, discussed in some detail). Moreover, we determine the Dufay law (repulsion of like charges and attraction of opposite ones), the Lenz rule (the relative sign in Faraday's law), and the sign of the electromagnetic energy. In this way, we get a systematic understanding of the sign rules and the sign conventions in electrodynamics. The question in the title of the paper is answered affirmatively.

  20. Quantum dynamical simulations of local field enhancement in metal nanoparticles.

    PubMed

    Negre, Christian F A; Perassi, Eduardo M; Coronado, Eduardo A; Sánchez, Cristián G

    2013-03-27

    Field enhancements (Γ) around small Ag nanoparticles (NPs) are calculated using a quantum dynamical simulation formalism and the results are compared with electrodynamic simulations using the discrete dipole approximation (DDA) in order to address the important issue of the intrinsic atomistic structure of NPs. Quite remarkably, in both quantum and classical approaches the highest values of Γ are located in the same regions around single NPs. However, by introducing a complete atomistic description of the metallic NPs in optical simulations, a different pattern of the Γ distribution is obtained. Knowing the correct pattern of the Γ distribution around NPs is crucial for understanding the spectroscopic features of molecules inside hot spots. The enhancement produced by surface plasmon coupling is studied by using both approaches in NP dimers for different inter-particle distances. The results show that the trend of the variation of Γ versus inter-particle distance is different for classical and quantum simulations. This difference is explained in terms of a charge transfer mechanism that cannot be obtained with classical electrodynamics. Finally, time dependent distribution of the enhancement factor is simulated by introducing a time dependent field perturbation into the Hamiltonian, allowing an assessment of the localized surface plasmon resonance quantum dynamics.

  1. On the self-force in Bopp-Podolsky electrodynamics

    NASA Astrophysics Data System (ADS)

    Gratus, Jonathan; Perlick, Volker; Tucker, Robin W.

    2015-10-01

    In the classical vacuum Maxwell-Lorentz theory the self-force of a charged point particle is infinite. This makes classical mass renormalization necessary and, in the special relativistic domain, leads to the Abraham-Lorentz-Dirac equation of motion possessing unphysical run-away and pre-acceleration solutions. In this paper we investigate whether the higher-order modification of classical vacuum electrodynamics suggested by Bopp, Landé, Thomas and Podolsky in the 1940s, can provide a solution to this problem. Since the theory is linear, Green-function techniques enable one to write the field of a charged point particle on Minkowski spacetime as an integral over the particle’s history. By introducing the notion of timelike worldlines that are ‘bounded away from the backward light-cone’ we are able to prescribe criteria for the convergence of such integrals. We also exhibit a timelike worldline yielding singular fields on a lightlike hyperplane in spacetime. In this case the field is mildly singular at the event where the particle crosses the hyperplane. Even in the case when the Bopp-Podolsky field is bounded, it exhibits a directional discontinuity as one approaches the point particle. We describe a procedure for assigning a value to the field on the particle worldline which enables one to define a finite Lorentz self-force. This is explicitly derived leading to an integro-differential equation for the motion of the particle in an external electromagnetic field. We conclude that any worldline solutions to this equation belonging to the categories discussed in the paper have continuous four-velocities.

  2. Charge instabilities due to local charge conjugation symmetry in /2+1 dimensions

    NASA Astrophysics Data System (ADS)

    Bais, F. A.; Striet, J.

    2003-08-01

    Alice electrodynamics (AED) is a theory of electrodynamics in which charge conjugation is a local gauge symmetry. In this paper we investigate a charge instability in alice electrodynamics in 2+1 dimensions due to this local charge conjugation. The instability manifests itself through the creation of a pair of alice fluxes. The final state is one in which the charge is completely delocalized, i.e., it is carried as cheshire charge by the flux pair that gets infinitely separated. We determine the decay rate in terms of the parameters of the model. The relation of this phenomenon with other salient features of 2-dimensional compact QED, such as linear confinement due to instantons/monopoles, is discussed.

  3. Notes on Born-Infeld-type electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-11-01

    We propose a new model of nonlinear electrodynamics (NLED) with three parameters. Born-Infeld (BI) electrodynamics and exponential electrodynamics are particular cases of this model. The phenomenon of vacuum birefringence in the external magnetic field is studied. We show that there is no singularity of the electric field at the origin of point-like charged particles. The corrections to Coulomb’s law at r →∞ are obtained. We calculate the total electrostatic energy of charges, for different parameters of the model, which is finite.

  4. Remarks on Heisenberg-Euler-type electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-05-01

    We consider Heisenberg-Euler-type model of nonlinear electrodynamics with two parameters. Heisenberg-Euler electrodynamics is a particular case of this model. Corrections to Coulomb’s law at r →∞ are obtained and energy conditions are studied. The total electrostatic energy of charged particles is finite. The charged black hole solution in the framework of nonlinear electrodynamics is investigated. We find the asymptotic of the metric and mass functions at r →∞. Corrections to the Reissner-Nordström solution are obtained.

  5. Self field electromagnetism and quantum phenomena

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  6. The contrasting roles of Planck's constant in classical and quantum theories

    NASA Astrophysics Data System (ADS)

    Boyer, Timothy H.

    2018-04-01

    We trace the historical appearance of Planck's constant in physics, and we note that initially the constant did not appear in connection with quanta. Furthermore, we emphasize that Planck's constant can appear in both classical and quantum theories. In both theories, Planck's constant sets the scale of atomic phenomena. However, the roles played in the foundations of the theories are sharply different. In quantum theory, Planck's constant is crucial to the structure of the theory. On the other hand, in classical electrodynamics, Planck's constant is optional, since it appears only as the scale factor for the (homogeneous) source-free contribution to the general solution of Maxwell's equations. Since classical electrodynamics can be solved while taking the homogenous source-free contribution in the solution as zero or non-zero, there are naturally two different theories of classical electrodynamics, one in which Planck's constant is taken as zero and one where it is taken as non-zero. The textbooks of classical electromagnetism present only the version in which Planck's constant is taken to vanish.

  7. Apparent Paradoxes in Classical Electrodynamics: Relativistic Transformation of Force

    ERIC Educational Resources Information Center

    Kholmetskii, A. L.; Yarman, T.

    2007-01-01

    In this paper, we analyse a number of paradoxical teaching problems of classical electrodynamics, dealing with the relativistic transformation of force for complex macro systems, consisting of a number of subsystems with nonzero relative velocities such as electric circuits that change their shape in the course of time. (Contains 7 figures.)

  8. A Concise Introduction to Colombeau Generalized Functions and Their Applications in Classical Electrodynamics

    ERIC Educational Resources Information Center

    Gsponer, Andre

    2009-01-01

    The objective of this introduction to Colombeau algebras of generalized functions (in which distributions can be freely multiplied) is to explain in elementary terms the essential concepts necessary for their application to basic nonlinear problems in classical physics. Examples are given in hydrodynamics and electrodynamics. The problem of the…

  9. Polarizabilities and van der Waals C{sub 6} coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saidi, Wissam A., E-mail: alsaidi@pitt.edu; Norman, Patrick

    2016-07-14

    The van der Waals C{sub 6} coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C{sub 6} ∝ N{sup 2.2} as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N{sup 2.75} as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes bymore » fitting against accurate ab initio calculations. This model shows that C{sub 6} ∝ N{sup 2.8}, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole–dipole term scales almost linearly with the number of carbon atoms.« less

  10. Evanescent radiation, quantum mechanics and the Casimir effect

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  11. Dark energy simulacrum in nonlinear electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labun, Lance; Rafelski, Johann

    2010-03-15

    Quasiconstant external fields in nonlinear electromagnetism generate a global contribution proportional to g{sup {mu}{nu}}in the energy-momentum tensor, thus a simulacrum of dark energy. To provide a thorough understanding of the origin and strength of its effects, we undertake a complete theoretical and numerical study of the energy-momentum tensor T{sup {mu}{nu}}for nonlinear electromagnetism. The Euler-Heisenberg nonlinearity due to quantum fluctuations of spinor and scalar matter fields is considered and contrasted with the properties of classical nonlinear Born-Infeld electromagnetism. We address modifications of charged particle kinematics by strong background fields.

  12. Four wave mixing as a probe of the vacuum

    NASA Astrophysics Data System (ADS)

    Tennant, Daniel M.

    2016-06-01

    Much attention has been paid to the quantum structure of the vacuum. Higher order processes in quantum electrodynamics are strongly believed to cause polarization and even breakdown of the vacuum in the presence of strong fields soon to be accessible in high intensity laser experiments. Less explored consequences of strong field electrodynamics include effects from Born-Infeld type of electromagnetic theories, a nonlinear electrodynamics that follows from classical considerations as opposed to coupling to virtual fluctuations. In this article, I will demonstrate how vacuum four wave mixing has the possibility to differentiate between these two types of vacuum responses: quantum effects on one hand and nonlinear classical extensions on the other.

  13. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    NASA Astrophysics Data System (ADS)

    Mišković, Olivera; Olea, Rodrigo

    2011-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  14. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo; Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso

    2011-01-15

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, itmore » extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.« less

  15. Magnetically charged regular black hole in a model of nonlinear electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Meng-Sen, E-mail: mengsenma@gmail.com

    2015-11-15

    We obtain a magnetically charged regular black hole in general relativity. The source to the Einstein field equations is nonlinear electrodynamic field in a physically reasonable model of nonlinear electrodynamics (NED). “Physically” here means the NED model is constructed on the basis of three conditions: the Maxwell asymptotic in the weak electromagnetic field limit; the presence of vacuum birefringence phenomenon; and satisfying the weak energy condition (WEC). In addition, we analyze the thermodynamic properties of the regular black hole in two ways. According to the usual black hole thermodynamics, we calculate the heat capacity at constant charge, from which wemore » know the smaller black hole is more stable. We also employ the horizon thermodynamics to discuss the thermodynamic quantities, especially the heat capacity at constant pressure.« less

  16. Electrostatics in Stueckelberg-Horwitz electrodynamics

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2013-04-01

    In this paper, we study fundamental aspects of electrostatics as a special case in Stueckelberg-Horwitz electromagnetic theory. In this theory, spacetime events xμ(τ) evolve in an unconstrained 8-dimensional phase space, interacting through five τ-dependent gauge fields induced by the current densities associated with their evolutions. The chronological time τ was introduced as an independent evolution parameter in order to free the laboratory clock x0 to evolve alternately 'forward' and 'backward' in time according to the sign of the energy, thus providing a classical implementation of the Feynman-Stueckelberg interpretation of pair creation/annihilation. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. After a brief review of Stueckelberg-Horwitz electrodynamics, we obtain the field produced by an event in uniform motion and verify that it satisfies the field equations. We study this field in the rest frame of the event, where it depends explicitly on coordinate time x0 and the parameter τ, as well as spatial distance R. Calculating with this generalized Coulomb field, we demonstrate how Gauss's theorem and Stoke's theorem apply in 4D spacetime, and obtain the fields associated with a charged line and a charged sheet. Finally, we use the field of the charged sheet to study a static event in the vicinity of a potential barrier. In all of these cases, we observe a small transfer of mass from the field to the particle. It is seen that for an event in the field of an oppositely charged sheet of sufficient density, the event can reverse time direction, providing a specific model for pair phenomena.

  17. Hamiltonian structure of classical N-body systems of finite-size particles subject to EM interactions

    NASA Astrophysics Data System (ADS)

    Cremaschini, C.; Tessarotto, M.

    2012-01-01

    An open issue in classical relativistic mechanics is the consistent treatment of the dynamics of classical N-body systems of mutually interacting particles. This refers, in particular, to charged particles subject to EM interactions, including both binary interactions and self-interactions ( EM-interacting N- body systems). The correct solution to the question represents an overriding prerequisite for the consistency between classical and quantum mechanics. In this paper it is shown that such a description can be consistently obtained in the context of classical electrodynamics, for the case of a N-body system of classical finite-size charged particles. A variational formulation of the problem is presented, based on the N -body hybrid synchronous Hamilton variational principle. Covariant Lagrangian and Hamiltonian equations of motion for the dynamics of the interacting N-body system are derived, which are proved to be delay-type ODEs. Then, a representation in both standard Lagrangian and Hamiltonian forms is proved to hold, the latter expressed by means of classical Poisson Brackets. The theory developed retains both the covariance with respect to the Lorentz group and the exact Hamiltonian structure of the problem, which is shown to be intrinsically non-local. Different applications of the theory are investigated. The first one concerns the development of a suitable Hamiltonian approximation of the exact equations that retains finite delay-time effects characteristic of the binary interactions and self-EM-interactions. Second, basic consequences concerning the validity of Dirac generator formalism are pointed out, with particular reference to the instant-form representation of Poincaré generators. Finally, a discussion is presented both on the validity and possible extension of the Dirac generator formalism as well as the failure of the so-called Currie "no-interaction" theorem for the non-local Hamiltonian system considered here.

  18. Semi-classical Electrodynamics

    NASA Astrophysics Data System (ADS)

    Lestone, John

    2016-03-01

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. We describe semi-classical approaches that can be used to obtain a more intuitive physical feel for several QED processes including electro-statics, Compton scattering, pair annihilation, the anomalous magnetic moment, and the Lamb shift, that could be taught easily to undergraduate students. Any physicist who brings their laptop to the talk will be able to build spread sheets in less than 10 minutes to calculate g/2 =1.001160 and a Lamb shift of 1057 MHz.

  19. Reassessing the Ritz-Einstein debate on the radiation asymmetry in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Frisch, Mathias; Pietsch, Wolfgang

    2016-08-01

    We investigate the debate between Walter Ritz and Albert Einstein on the origin and nature of the radiation asymmetry. We argue that Ritz's views on the radiation asymmetry were far richer and nuanced than the oft-cited joint letter with Einstein (Ritz & Einstein, 1909) suggests, and that Einstein's views in 1909 on the asymmetry are far more ambiguous than is commonly recognized. Indeed, there is strong evidence that Einstein ultimately came to agree with Ritz that elementary radiation processes in classical electrodynamics are non-symmetric and fully retarded.

  20. Nature of the electromagnetic force between classical magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2017-09-01

    The Lorentz force law of classical electrodynamics states that the force 𝑭𝑭 exerted by the magnetic induction 𝑩𝑩 on a particle of charge 𝑞𝑞 moving with velocity 𝑽𝑽 is given by 𝑭𝑭 = 𝑞𝑞𝑽𝑽 × 𝑩𝑩. Since this force is orthogonal to the direction of motion, the magnetic field is said to be incapable of performing mechanical work. Yet there is no denying that a permanent magnet can readily perform mechanical work by pushing/pulling on another permanent magnet or by attracting pieces of magnetizable material such as scrap iron or iron filings. We explain this apparent contradiction by examining the magnetic Lorentz force acting on an Amperian current loop, which is the model for a magnetic dipole. We then extend the discussion by analyzing the Einstein-Laub model of magnetic dipoles in the presence of external magnetic fields.

  1. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  2. Radiation-reaction force on a small charged body to second order

    NASA Astrophysics Data System (ADS)

    Moxon, Jordan; Flanagan, Éanna

    2018-05-01

    In classical electrodynamics, an accelerating charged body emits radiation and experiences a corresponding radiation-reaction force, or self-force. We extend to higher order in the total charge a previous rigorous derivation of the electromagnetic self-force in flat spacetime by Gralla, Harte, and Wald. The method introduced by Gralla, Harte, and Wald computes the self-force from the Maxwell field equations and conservation of stress-energy in a limit where the charge, size, and mass of the body go to zero, and it does not require regularization of a singular self-field. For our higher-order computation, an adjustment of the definition of the mass of the body is necessary to avoid including self-energy from the electromagnetic field sourced by the body in the distant past. We derive the evolution equations for the mass, spin, and center-of-mass position of the body through second order. We derive, for the first time, the second-order acceleration dependence of the evolution of the spin (self-torque), as well as a mixing between the extended body effects and the acceleration-dependent effects on the overall body motion.

  3. Fractal electrodynamics via non-integer dimensional space approach

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  4. A Toy Model of Electrodynamics in (1 + 1) Dimensions

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2007-01-01

    A model is presented that describes a scalar field interacting with a point particle in (1+1) dimensions. The model exhibits many of the same phenomena that appear in classical electrodynamics, such as radiation and radiation damping, yet has a much simpler mathematical structure. By studying these phenomena in a highly simplified model, the…

  5. Linear Response Laws and Causality in Electrodynamics

    ERIC Educational Resources Information Center

    Yuffa, Alex J.; Scales, John A.

    2012-01-01

    Linear response laws and causality (the effect cannot precede the cause) are of fundamental importance in physics. In the context of classical electrodynamics, students often have a difficult time grasping these concepts because the physics is obscured by the intermingling of the time and frequency domains. In this paper, we analyse the linear…

  6. Scalar quantum electrodynamics via Duffin-Kemmer-Petiau gauge theory in the Heisenberg picture: Vacuum polarization

    NASA Astrophysics Data System (ADS)

    Beltran, J.; Maia, N. T.; Pimentel, B. M.

    2018-04-01

    Scalar Quantum Electrodynamics is investigated in the Heisenberg picture via the Duffin-Kemmer-Petiau gauge theory. On this framework, a perturbative method is used to compute the vacuum polarization tensor and its corresponding induced current for the case of a charged scalar field in the presence of an external electromagnetic field. Charge renormalization is brought into discussion for the interpretation of the results for the vacuum polarization.

  7. Electrodynamic Tether Operations beyond the Ionosphere in the Low-Density Magnetosphere

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.

    2007-01-01

    In the classical concept for the operation of electrodynamic tethers in space, a voltage is generated across the tether, either by the tether's orbital motion through the earth's planetary magnetic field or by a power supply; electrons are then collected from the ionospheric plasma at the positive pole; actively emitted back into space at the negative pole; and the circuit is closed by currents driven through the ambient conducting ionosphere. This concept has been proven to work in space by the Tethered Satellite System TSS-1 and TSS-1R Space Shuttle missions; and the Plasma Motor-Generator (PMG) tether flight experiment. However, it limits electrodynamic tether operations to the F-region of the ionosphere where the plasma density is sufficient to conduct the required currents--in other words, between altitudes of approximately 200 to 1000 km in sunlight. In the earth's shadow, the ionospheric density drops precipitously and tether operations, using the above approach, are not effective--even within this altitude range. There are numerous missions that require in-space propulsion in the Earth's shadow and/or outside of the above altitude range. This paper will, therefore, present the fundamentals of a concept that would allow electrodynamic tethers to operate almost anywhere within the magnetosphere, the region of space containing the earth's planetary magnetic field. In other words, because operations would be virtually independent of any ambient plasma, the range of electrodynamic operations would be extended into the earth's shadow and out to synchronous orbit--forty times the present operational range. The key to this concept is the active generation of plasma at each pole of the tether so that current generation ,does not depend on the conductivity of the ambient ionosphere. Arguments will be presented, based on ,existing flight data, which shed light on the behavior of charge emissions in space and show the plausibility of the concept.

  8. Bekenstein inequalities and nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Peñafiel, M. L.; Falciano, F. T.

    2017-12-01

    Bekenstein and Mayo proposed a generalized bound for the entropy, which implies some inequalities between the charge, energy, angular momentum, and size of the macroscopic system. Dain has shown that Maxwell's electrodynamics satisfies all three inequalities. We investigate the validity of these relations in the context of nonlinear electrodynamics and show that Born-Infeld electrodynamics satisfies all of them. However, contrary to the linear theory, there is no rigidity statement in Born-Infeld. We study the physical meaning and the relationship between these inequalities, and in particular, we analyze the connection between the energy-angular momentum inequality and causality.

  9. Compact Q-balls and Q-shells in a scalar electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arodz, H.; Lis, J.

    2009-02-15

    We investigate spherically symmetric nontopological solitons in electrodynamics with a scalar field self-interaction U{approx}|{psi}| taken from the complex signum-Gordon model. We find Q-balls for small absolute values of the total electric charge Q, and Q-shells when |Q| is large enough. In both cases the charge density exactly vanishes outside certain compact regions in the three-dimensional space. The dependence of the total energy E of small Q-balls on the total electric charge has the form E{approx}|Q|{sup 5/6}, while in the case of very large Q-shells, E{approx}|Q|{sup 7/6}.

  10. Structure of Aristotelian electrodynamics

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted

    2015-07-01

    Aristotelian electrodynamics (AE) describes the regime of a plasma with a very strong electric field that is not shorted out, with the charge current determined completely by pair production and the balance of the Lorentz 4-force against the curvature radiation reaction. Here it is shown how the principal null directions and associated eigenvalues of the field tensor govern AE, and how force-free electrodynamics arises smoothly from AE when the eigenvalues (and therefore the electric field in some frame) vanish. A criterion for validity of AE and force-free electrodynamics is proposed in terms of a pair of "field curvature scalars" formed from the first derivative of the principal null directions.

  11. Non-linear non-local molecular electrodynamics with nano-optical fields.

    PubMed

    Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul

    2015-10-28

    The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.

  12. Variational tricomplex of a local gauge system, Lagrange structure and weak Poisson bracket

    NASA Astrophysics Data System (ADS)

    Sharapov, A. A.

    2015-09-01

    We introduce the concept of a variational tricomplex, which is applicable both to variational and nonvariational gauge systems. Assigning this tricomplex with an appropriate symplectic structure and a Cauchy foliation, we establish a general correspondence between the Lagrangian and Hamiltonian pictures of one and the same (not necessarily variational) dynamics. In practical terms, this correspondence allows one to construct the generating functional of a weak Poisson structure starting from that of a Lagrange structure. As a byproduct, a covariant procedure is proposed for deriving the classical BRST charge of the BFV formalism by a given BV master action. The general approach is illustrated by the examples of Maxwell’s electrodynamics and chiral bosons in two dimensions.

  13. On the emission of radiation by an isolated vibrating metallic mirror

    NASA Astrophysics Data System (ADS)

    Arkhipov, M. V.; Babushkin, I.; Pul'kin, N. S.; Arkhipov, R. M.; Rosanov, N. N.

    2017-04-01

    Quantum electrodynamics predicts the appearance of radiation in an empty cavity in which one of the mirrors is vibrating. It also predicts the appearance of radiation from an isolated vibrating mirror. Such effects can be described within the framework of classical electrodynamics. We present the qualitative explanation of the effect, along with the results of numerical simulation of the emission of radiation by an isolated vibrating metallic mirror, which can be induced by mirror illumination by an ultrashort pulse of light. The dynamics of conduction electrons in the metallic mirror is described by the classical Drude model. Simulation was performed for the cases of mirror illumination by either a bipolar or a unipolar pulse.

  14. A reformulation of mechanics and electrodynamics.

    PubMed

    Pinheiro, Mario J

    2017-07-01

    Classical mechanics, as commonly taught in engineering and science, are confined to the conventional Newtonian theory. But classical mechanics has not really changed in substance since Newton formulation, describing simultaneous rotation and translation of objects with somewhat complicate drawbacks, risking interpretation of forces in non-inertial frames. In this work we introduce a new variational principle for out-of-equilibrium, rotating systems, obtaining a set of two first order differential equations that introduces a thermodynamic-mechanistic time into Newton's dynamical equation, and revealing the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. The results is a more consistent formulation of dynamics and electrodynamics, explaining natural phenomena as the outcome from a balance between energy and entropy, embedding translational with rotational motion into a single equation, showing centrifugal and Coriolis force as derivatives from the transport of angular momentum, and offering a natural method to handle variational problems, as shown with the brachistochrone problem. In consequence, a new force term appears, the topological torsion current, important for spacecraft dynamics. We describe a set of solved problems showing the potential of a competing technique, with significant interest to electrodynamics as well. We expect this new approach to have impact in a large class of scientific and technological problems.

  15. The propagator of stochastic electrodynamics

    NASA Astrophysics Data System (ADS)

    Cavalleri, G.

    1981-01-01

    The "elementary propagator" for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density ~ω3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to ψψ* where ψ is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics.

  16. Electromagnetic perturbations of black holes in general relativity coupled to nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Toshmatov, Bobir; Stuchlík, Zdeněk; Schee, Jan; Ahmedov, Bobomurat

    2018-04-01

    The electromagnetic (EM) perturbations of the black hole solutions in general relativity coupled to nonlinear electrodynamics (NED) are studied for both electrically and magnetically charged black holes, assuming that the EM perturbations do not alter the spacetime geometry. It is shown that the effective potentials of the electrically and magnetically charged black holes related to test perturbative NED EM fields are related to the effective metric governing the photon motion, contrary to the effective potential of the linear electrodynamic (Maxwell) field that is related to the spacetime metric. Consequently, corresponding quasinormal (QN) frequencies differ as well. As a special case, we study new family of the NED black hole solutions which tend in the weak field limit to the Maxwell field, giving the Reissner-Nordström (RN) black hole solution. We compare the NED Maxwellian black hole QN spectra with the RN black hole QN spectra.

  17. Testing Relativity with Electrodynamics

    NASA Astrophysics Data System (ADS)

    Bailey, Quentin; Kostelecky, Alan

    2004-04-01

    Lorentz and CPT violation is a promising candidate signal for Planck-scale physics. Low-energy effects of Lorentz and CPT violation are described by the general theoretical framework called the Standard-Model Extension (SME). This talk focuses on Lorentz-violating effects arising in the classical electrodynamics limit of the SME. Analysis of the theory shows that suitable experiments could improve by several orders of magnitude certain sensitivities achieved in modern Michelson-Morley and Kennedy-Thorndike tests.

  18. Tests of Lorentz Symmetry with Electrodynamics

    NASA Astrophysics Data System (ADS)

    Bailey, Quentin; Kostelecky, Alan

    2004-05-01

    Lorentz and CPT violation is a promising candidate signal for Planck-scale physics. Low-energy effects of Lorentz and CPT violation are described by the general theoretical framework called the Standard-Model Extension (SME). This talk focuses on Lorentz-violating effects arising in the limit of classical electrodynamics. Analysis of the theory shows that suitable experiments could improve by several orders of magnitude on the sensitivities achieved in modern Michelson-Morley and Kennedy-Thorndike tests.

  19. Observers' measurements in premetric electrodynamics: Time and radar length

    NASA Astrophysics Data System (ADS)

    Gürlebeck, Norman; Pfeifer, Christian

    2018-04-01

    The description of an observer's measurement in general relativity and the standard model of particle physics is closely related to the spacetime metric. In order to understand and interpret measurements, which test the metric structure of the spacetime, like the classical Michelson-Morley, Ives-Stilwell, Kennedy-Thorndike experiments or frequency comparison experiments in general, it is necessary to describe them in theories, which go beyond the Lorentzian metric structure. However, this requires a description of an observer's measurement without relying on a metric. We provide such a description of an observer's measurement of the fundamental quantities time and length derived from a premetric perturbation of Maxwell's electrodynamics and a discussion on how these measurements influence classical relativistic observables like time dilation and length contraction. Most importantly, we find that the modification of electrodynamics influences the measurements at two instances: the propagation of light is altered as well as the observer's proper time normalization. When interpreting the results of a specific experiment, both effects cannot be disentangled, in general, and have to be taken into account.

  20. Radiation and matter: Electrodynamics postulates and Lorenz gauge

    NASA Astrophysics Data System (ADS)

    Bobrov, V. B.; Trigger, S. A.; van Heijst, G. J.; Schram, P. P.

    2016-11-01

    In general terms, we have considered matter as the system of charged particles and quantized electromagnetic field. For consistent description of the thermodynamic properties of matter, especially in an extreme state, the problem of quantization of the longitudinal and scalar potentials should be solved. In this connection, we pay attention that the traditional postulates of electrodynamics, which claim that only electric and magnetic fields are observable, is resolved by denial of the statement about validity of the Maxwell equations for microscopic fields. The Maxwell equations, as the generalization of experimental data, are valid only for averaged values. We show that microscopic electrodynamics may be based on postulation of the d'Alembert equations for four-vector of the electromagnetic field potential. The Lorenz gauge is valid for the averages potentials (and provides the implementation of the Maxwell equations for averages). The suggested concept overcomes difficulties under the electromagnetic field quantization procedure being in accordance with the results of quantum electrodynamics. As a result, longitudinal and scalar photons become real rather than virtual and may be observed in principle. The longitudinal and scalar photons provide not only the Coulomb interaction of charged particles, but also allow the electrical Aharonov-Bohm effect.

  1. In Appreciation Julian Schwinger: From Nuclear Physics and Quantum Electrodynamics to Source Theory and Beyond

    NASA Astrophysics Data System (ADS)

    Milton, Kimball A.

    2007-01-01

    Julian Schwinger’s influence on twentieth-century science is profound and pervasive. He is most famous for his renormalization theory of quantum electrodynamics, for which he shared the Nobel Prize in Physics for 1965 with Richard Feynman and Sin-itiro Tomonaga. This triumph undoubtedly was his most heroic work, but his legacy lives on chiefly through subtle and elegant work in classical electrodynamics, quantum variational principles, proper-time methods, quantum anomalies, dynamical mass generation, partial symmetry, and much more. Starting as just a boy, he rapidly became one of the preeminent nuclear physicists in the world in the late 1930s, led the theoretical development of radar technology at the Massachusetts Institute of Technology during World War II, and soon after the war conquered quantum electrodynamics, becoming the leading quantum-field theorist for two decades, before taking a more iconoclastic route during the last quarter century of his life.

  2. EFFECT OF LOADING DUST TYPE ON THE FILTRATION EFFICIENCY OF ELECTROSTATICALLY CHARGED FILTERS

    EPA Science Inventory

    The paper gives results of an evaluation of the effect of loading dust type on the filtration efficiency of electrostatically charged filters. Three types of filters were evaluated: a rigid-cell filter charged using an electrodynamic spinning process, a pleated-panel filter cha...

  3. Application of the NASCAP Spacecraft Simulation Tool to Investigate Electrodynamic Tether Current Collection in LEO

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi; HabashKrause, Linda

    2012-01-01

    Recent interest in using electrodynamic tethers (EDTs) for orbital maneuvering in Low Earth Orbit (LEO) has prompted the development of the Marshall ElectroDynamic Tether Orbit Propagator (MEDTOP) model. The model is comprised of several modules which address various aspects of EDT propulsion, including calculation of state vectors using a standard orbit propagator (e.g., J2), an atmospheric drag model, realistic ionospheric and magnetic field models, space weather effects, and tether librations. The natural electromotive force (EMF) attained during a radially-aligned conductive tether results in electrons flowing down the tether and accumulating on the lower-altitude spacecraft. The energy that drives this EMF is sourced from the orbital energy of the system; thus, EDTs are often proposed as de-orbiting systems. However, when the current is reversed using satellite charged particle sources, then propulsion is possible. One of the most difficult challenges of the modeling effort is to ascertain the equivalent circuit between the spacecraft and the ionospheric plasma. The present study investigates the use of the NASA Charging Analyzer Program (NASCAP) to calculate currents to and from the tethered satellites and the ionospheric plasma. NASCAP is a sophisticated set of computational tools to model the surface charging of three-dimensional (3D) spacecraft surfaces in a time-varying space environment. The model's surface is tessellated into a collection of facets, and NASCAP calculates currents and potentials for each one. Additionally, NASCAP provides for the construction of one or more nested grids to calculate space potential and time-varying electric fields. This provides for the capability to track individual particles orbits, to model charged particle wakes, and to incorporate external charged particle sources. With this study, we have developed a model of calculating currents incident onto an electrodynamic tethered satellite system, and first results are shown here.

  4. Topological solitons in 8-spinor mie electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybakov, Yu. P., E-mail: soliton4@mail.ru

    2013-10-15

    We investigate the effective 8-spinor field model suggested earlier as the generalization of nonlinear Mie electrodynamics. We first study in pure spinorial model the existence of topological solitons endowed with the nontrivial Hopf invariant Q{sub H}, which can be interpreted as the lepton number. Electromagnetic field being included as the perturbation, we estimate the energy and the spin of the localized charged configuration.

  5. Hotspot-mediated non-dissipative and ultrafast plasmon passage

    NASA Astrophysics Data System (ADS)

    Roller, Eva-Maria; Besteiro, Lucas V.; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O.; Liedl, Tim

    2017-08-01

    Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices. Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles. Here, we show the assembly and optical analysis of a triple-particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles, mediated by the connecting silver particle, with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modelling and qualitative quantum-mechanical calculations. We identify the formation of strong hotspots between all particles as the main mechanism for the lossless coupling and thus coherent ultrafast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, as well as for classical charge and information transfer processes.

  6. Resonant electrodynamic heating of stellar coronal loops: An LRC circuit analogue

    NASA Technical Reports Server (NTRS)

    Ionson, J. A.

    1980-01-01

    The electrodynamic coupling of stellar coronal loops to underlying beta velocity fields. A rigorous analysis revealed that the physics can be represented by a simple yet equivalent LRC circuit analogue. This analogue points to the existence of global structure oscillations which resonantly excite internal field line oscillations at a spatial resonance within the coronal loop. Although the width of this spatial resonance, as well as the induced currents and coronal velocity field, explicitly depend upon viscosity and resistivity, the resonant form of the generalized electrodynamic heating function is virtually independent of irreversibilities. This is a classic feature of high quality resonators that are externally driven by a broad band source of spectral power. Applications to solar coronal loops result in remarkable agreement with observations.

  7. Particle merging algorithm for PIC codes

    NASA Astrophysics Data System (ADS)

    Vranic, M.; Grismayer, T.; Martins, J. L.; Fonseca, R. A.; Silva, L. O.

    2015-06-01

    Particle-in-cell merging algorithms aim to resample dynamically the six-dimensional phase space occupied by particles without distorting substantially the physical description of the system. Whereas various approaches have been proposed in previous works, none of them seemed to be able to conserve fully charge, momentum, energy and their associated distributions. We describe here an alternative algorithm based on the coalescence of N massive or massless particles, considered to be close enough in phase space, into two new macro-particles. The local conservation of charge, momentum and energy are ensured by the resolution of a system of scalar equations. Various simulation comparisons have been carried out with and without the merging algorithm, from classical plasma physics problems to extreme scenarios where quantum electrodynamics is taken into account, showing in addition to the conservation of local quantities, the good reproducibility of the particle distributions. In case where the number of particles ought to increase exponentially in the simulation box, the dynamical merging permits a considerable speedup, and significant memory savings that otherwise would make the simulations impossible to perform.

  8. Physical Interpretation of the Schott Energy of An Accelerating Point Charge and the Question of Whether a Uniformly Accelerating Charge Radiates

    ERIC Educational Resources Information Center

    Rowland, David R.

    2010-01-01

    A core topic in graduate courses in electrodynamics is the description of radiation from an accelerated charge and the associated radiation reaction. However, contemporary papers still express a diversity of views on the question of whether or not a uniformly accelerating charge radiates suggesting that a complete "physical" understanding of the…

  9. From quantum to classical interactions between a free electron and a surface

    NASA Astrophysics Data System (ADS)

    Beierle, Peter James

    Quantum theory is often cited as being one of the most empirically validated theories in terms of its predictive power and precision. These attributes have led to numerous scientific discoveries and technological advancements. However, the precise relationship between quantum and classical physics remains obscure. The prevailing description is known as decoherence theory, where classical physics emerges from a more general quantum theory through environmental interaction. Sometimes referred to as the decoherence program, it does not solve the quantum measurement problem. We believe experiments performed between the microscopic and macroscopic world may help finish the program. The following considers a free electron that interacts with a surface (the environment), providing a controlled decoherence mechanism. There are non-decohering interactions to be examined and quantified before the weaker decohering effects are filtered out. In the first experiment, an electron beam passes over a surface that's illuminated by low-power laser light. This induces a surface charge redistribution causing the electron deflection. This phenomenon's parameters are investigated. This system can be well understood in terms of classical electrodynamics, and the technological applications of this electron beam switch are considered. Such phenomena may mask decoherence effects. A second experiment tests decoherence theory by introducing a nanofabricated diffraction grating before the surface. The electron undergoes diffraction through the grating, but as the electron passes over the surface it's predicted by various physical models that the electron will lose its wave interference property. Image charge based models, which predict a larger loss of contrast than what is observed, are falsified (despite experiencing an image charge force). A theoretical study demonstrates how a loss of contrast may not be due to the irreversible process decoherence, but dephasing (a reversible process due to randomization of the wavefunction's phase). To resolve this ambiguity, a correlation function on an ensemble of diffraction patterns is analyzed after an electron undergoes either process in a path integral calculation. The diffraction pattern is successfully recovered for dephasing, but not for decoherence, thus verifying it as a potential tool in experimental studies to determine the nature of the observed process.

  10. Geometric Algebra for Physicists

    NASA Astrophysics Data System (ADS)

    Doran, Chris; Lasenby, Anthony

    2007-11-01

    Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.

  11. Electric and magnetic dipoles in the Lorentz and Einstein-Laub formulations of classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2015-01-01

    The classical theory of electrodynamics cannot explain the existence and structure of electric and magnetic dipoles, yet it incorporates such dipoles into its fundamental equations, simply by postulating their existence and properties, just as it postulates the existence and properties of electric charges and currents. Maxwell's macroscopic equations are mathematically exact and self-consistent differential equations that relate the electromagnetic (EM) field to its sources, namely, electric charge-density 𝜌𝜌free, electric current-density 𝑱𝑱free, polarization 𝑷𝑷, and magnetization 𝑴𝑴. At the level of Maxwell's macroscopic equations, there is no need for models of electric and magnetic dipoles. For example, whether a magnetic dipole is an Amperian current-loop or a Gilbertian pair of north and south magnetic monopoles has no effect on the solution of Maxwell's equations. Electromagnetic fields carry energy as well as linear and angular momenta, which they can exchange with material media—the seat of the sources of the EM field—thereby exerting force and torque on these media. In the Lorentz formulation of classical electrodynamics, the electric and magnetic fields, 𝑬𝑬 and 𝑩𝑩, exert forces and torques on electric charge and current distributions. An electric dipole is then modeled as a pair of electric charges on a stick (or spring), and a magnetic dipole is modeled as an Amperian current loop, so that the Lorentz force law can be applied to the corresponding (bound) charges and (bound) currents of these dipoles. In contrast, the Einstein-Laub formulation circumvents the need for specific models of the dipoles by simply providing a recipe for calculating the force- and torque-densities exerted by the 𝑬𝑬 and 𝑯𝑯 fields on charge, current, polarization and magnetization. The two formulations, while similar in many respects, have significant differences. For example, in the Lorentz approach, the Poynting vector is 𝑺𝑺𝐿𝐿 = 𝜇𝜇0 -1𝑬𝑬 × 𝑩𝑩, and the linear and angular momentum densities of the EM field are 𝓹𝓹𝐿𝐿 = 𝜀𝜀0𝑬𝑬 × 𝑩𝑩 and 𝓛𝓛𝐿𝐿 = 𝒓𝒓 × 𝓹𝓹𝐿𝐿, whereas in the Einstein-Laub formulation the corresponding entities are 𝑺𝑺𝐸𝐸𝐸𝐸= 𝑬𝑬 × 𝑯𝑯, 𝓹𝓹𝐸𝐸𝐸𝐸= 𝑬𝑬 × 𝑯𝑯⁄𝑐𝑐2, and 𝓛𝓛𝐸𝐸𝐸𝐸= 𝒓𝒓 × 𝓹𝓹𝐸𝐸𝐸𝐸. (Here 𝜇𝜇0 and 𝜀𝜀0 are the permeability and permittivity of free space, 𝑐𝑐 is the speed of light in vacuum, 𝑩𝑩 = 𝜇𝜇0𝑯𝑯 + 𝑴𝑴, and 𝒓𝒓 is the position vector.) Such differences can be reconciled by recognizing the need for the so-called hidden energy and hidden momentum associated with Amperian current loops of the Lorentz formalism. (Hidden entities of the sort do not arise in the Einstein-Laub treatment of magnetic dipoles.) Other differences arise from over-simplistic assumptions concerning the equivalence between free charges and currents on the one hand, and their bound counterparts on the other. A more nuanced treatment of EM force and torque densities exerted on polarization and magnetization in the Lorentz approach would help bridge the gap that superficially separates the two formulations. Atoms and molecules may collide with each other and, in general, material constituents can exchange energy, momentum, and angular momentum via direct mechanical interactions. In the case of continuous media, elastic and hydrodynamic stresses, phenomenological forces such as those related to exchange coupling in ferromagnets, etc., subject small volumes of materials to external forces and torques. Such matter-matter interactions, although fundamentally EM in nature, are distinct from field-matter interactions in classical physics. Beyond the classical regime, however, the dichotomy that distinguishes the EM field from EM sources gets blurred. An electron's wavefunction may overlap that of an atomic nucleus, thereby initiating a contact interaction between the magnetic dipole moments of the two particles. Or a neutron passing through a ferromagnetic material may give rise to scattering events involving overlaps between the wave-functions of the neutron and magnetic electrons. Such matter-matter interactions exert equal and opposite forces and/or torques on the colliding particles, and their observable effects often shed light on the nature of the particles involved. It is through such observations that the Amperian model of a magnetic dipole has come to gain prominence over the Gilbertian model. In situations involving overlapping particle wave-functions, it is imperative to take account of the particle-particle interaction energy when computing the scattering amplitudes. As far as total force and total torque on a given volume of material are concerned, such particle-particle interactions do not affect the outcome of calculations, since the mutual actions of the two (overlapping) particles cancel each other out. Both Lorentz and Einstein-Laub formalisms thus yield the same total force and total torque on a given volume—provided that hidden entities are properly removed. The Lorentz formalism, with its roots in the Amperian current-loop model, correctly predicts the interaction energy between two overlapping magnetic dipoles 𝒎𝒎1 and 𝒎𝒎2 as being proportional to -𝒎𝒎1 • 𝒎𝒎2. In contrast, the Einstein-Laub formalism, which is ignorant of such particle-particle interactions, needs to account for them separately.

  12. Mode analysis for energetics of a moving charge in Lorentz- and C P T -violating electrodynamics

    NASA Astrophysics Data System (ADS)

    DeCosta, Richard; Altschul, Brett

    2018-03-01

    In isotropic but Lorentz- and C P T -violating electrodynamics, it is known that a charge in uniform motion does not lose any energy to Cerenkov radiation. This presents a puzzle, since the radiation appears to be kinematically allowed for many modes. Studying the Fourier transforms of the most important terms in the modified magnetic field and Poynting vector, we confirm the vanishing of the radiation rate. Moreover, we show that the Fourier transform of the field changes sign between small and large wave numbers. This enables modes with very long wavelengths to carry negative energies, which cancel out the positive energies carried away by modes with shorter wavelengths. This cancelation had previously been inferred but never explicitly demonstrated.

  13. Homogeneous quantum electrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.

  14. Quantum-enabled temporal and spectral mode conversion of microwave signals

    PubMed Central

    Andrews, R. W.; Reed, A. P.; Cicak, K.; Teufel, J. D.; Lehnert, K. W.

    2015-01-01

    Electromagnetic waves are ideal candidates for transmitting information in a quantum network as they can be routed rapidly and efficiently between locations using optical fibres or microwave cables. Yet linking quantum-enabled devices with cables has proved difficult because most cavity or circuit quantum electrodynamics systems used in quantum information processing can only absorb and emit signals with a specific frequency and temporal envelope. Here we show that the temporal and spectral content of microwave-frequency electromagnetic signals can be arbitrarily manipulated with a flexible aluminium drumhead embedded in a microwave circuit. The aluminium drumhead simultaneously forms a mechanical oscillator and a tunable capacitor. This device offers a way to build quantum microwave networks using separate and otherwise mismatched components. Furthermore, it will enable the preparation of non-classical states of motion by capturing non-classical microwave signals prepared by the most coherent circuit quantum electrodynamics systems. PMID:26617386

  15. Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica

    2007-01-01

    It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.

  16. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    NASA Astrophysics Data System (ADS)

    Taillefumier, Mathieu; Benton, Owen; Yan, Han; Jaubert, L. D. C.; Shannon, Nic

    2017-10-01

    Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2 Ti2 O7 and Dy2 Ti2 O7 exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related "quantum spin-ice" materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  17. Hot spot-mediated non-dissipative and ultrafast plasmon passage.

    PubMed

    Roller, Eva-Maria; Besteiro, Lucas V; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O; Liedl, Tim

    2017-08-01

    Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices.1-5 Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles.6-10 Here, we show the assembly and optical analysis of a triple particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles mediated by the connecting silver particle with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modeling and qualitative quantum-mechanical calculations. We identify the formation of strong hot spots between all particles as the main mechanism for the loss-less coupling and thus coherent ultra-fast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, but also for classical charge and information transfer processes.

  18. Soliton configurations in generalized Mie electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybakov, Yu. P., E-mail: soliton4@mail.ru

    2011-07-15

    The generalization of the Mie electrodynamics within the scope of the effective 8-spinor field model is suggested, with the Lagrangian including Higgs-like potential and higher degrees of the invariant A{sub Micro-Sign }A{sup Micro-Sign }. Using special Brioschi 8-spinor identity, we show that the model includes the Skyrme and the Faddeev models as particular cases. We investigate the large-distance asymptotic of static solutions and estimate the electromagnetic contribution to the energy of the localized charged configuration.

  19. (2 + 1)-dimensional dynamical black holes in Einstein-nonlinear Maxwell theory

    NASA Astrophysics Data System (ADS)

    Gurtug, O.; Mazharimousavi, S. Habib; Halilsoy, M.

    2018-02-01

    Radiative extensions of BTZ metric in 2 + 1 dimensions are found which are sourced by nonlinear Maxwell fields and a null current. This may be considered as generalization of the problem formulated long go by Vaidya and Bonnor. The mass and charge are functions of retarded/advanced null coordinate apt for decay/inflation. The new solutions are constructed through a Theorem that works remarkably well for any nonlinear electrodynamic model. Hawking temperature is analyzed for the case of the Born-Infeld electrodynamics.

  20. Electromagnetic fields with vanishing quantum corrections

    NASA Astrophysics Data System (ADS)

    Ortaggio, Marcello; Pravda, Vojtěch

    2018-04-01

    We show that a large class of null electromagnetic fields are immune to any modifications of Maxwell's equations in the form of arbitrary powers and derivatives of the field strength. These are thus exact solutions to virtually any generalized classical electrodynamics containing both non-linear terms and higher derivatives, including, e.g., non-linear electrodynamics as well as QED- and string-motivated effective theories. This result holds not only in a flat or (anti-)de Sitter background, but also in a larger subset of Kundt spacetimes, which allow for the presence of aligned gravitational waves and pure radiation.

  1. Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.

    PubMed

    Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M

    2015-06-05

    We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.

  2. Thermodynamics of charged black holes with a nonlinear electrodynamics source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Hernan A.; Hassaiene, Mokhtar; Martinez, Cristian

    2009-11-15

    We study the thermodynamical properties of electrically charged black hole solutions of a nonlinear electrodynamics theory defined by a power p of the Maxwell invariant, which is coupled to Einstein gravity in four and higher spacetime dimensions. Depending on the range of the parameter p, these solutions present different asymptotic behaviors. We compute the Euclidean action with the appropriate boundary term in the grand canonical ensemble. The thermodynamical quantities are identified and, in particular, the mass and the charge are shown to be finite for all classes of solutions. Interestingly, a generalized Smarr formula is derived and it is shownmore » that this latter encodes perfectly the different asymptotic behaviors of the black hole solutions. The local stability is analyzed by computing the heat capacity and the electrical permittivity and we find that a set of small black holes is locally stable. In contrast to the standard Reissner-Nordstroem solution, there is a first-order phase transition between a class of these nonlinear charged black holes and the Minkowski spacetime.« less

  3. Experimental Investigation of Charging Properties of Interstellar Type Silica Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies. These measurements conducted on silica microspheres are qualitatively similar in nature to our previous SEE measurements on lunar Apollo missions dust samples.

  4. Optimal Orbit Maneuvers with Electrodynamic Tethers

    DTIC Science & Technology

    2006-06-01

    orbital elements , which completely describe a unique orbit ; equinoctial elements are not employed but left for future iterations of the formulation...periods in the maneuver. Follow on work, uch as the transformation of this state vector from classical orbital elements to the quinoctial set of...

  5. An elementary argument for the magnetic field outside a solenoid

    NASA Astrophysics Data System (ADS)

    Pathak, Aritro

    2017-01-01

    The evaluation of the magnetic field inside and outside a uniform current density infinite solenoid of uniform cross-section is an elementary problem in classical electrodynamics that all undergraduate Physics students study. Symmetry properties of the cylinder and the judicious use of Ampere’s circuital law leads to correct results; however it does not explain why the field is non zero for a finite length solenoid, and why it vanishes as the solenoid becomes infinitely long. An argument is provided in Farley and Price (2001 Am. J. Phys. 69 751), explaining how the magnetic field behaves outside the solenoid and not too far from it, as a function of the length of the solenoid. A calculation is also outlined for obtaining the field just outside the circular cross section solenoid, in the classic text Classical Electrodynamics by Jackson, 3rd edn (John Wiley and Sons, Inc.), problems 5.3-5.5. The purpose of this paper is to provide an elementary argument for why the field becomes negligible as the length of the solenoid is increased. A quantitative analysis is provided for the field outside the solenoid, at radial distances large compared to the linear dimension of the solenoid cross section.

  6. Maxwell-Faraday Stresses in Electromagnetic Fields and the Self-Force on a Uniformly Accelerating Point Charge

    ERIC Educational Resources Information Center

    Rowland, D. R.

    2007-01-01

    The physical analysis of a uniformly accelerating point charge provides a rich problem to explore in advanced courses in electrodynamics and relativity since it brings together fundamental concepts in relation to electromagnetic radiation, Einstein's equivalence principle and the inertial mass of field energy in ways that reveal subtleties in each…

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Monroy, J.A., E-mail: antosan@gmail.com; Quimbay, C.J., E-mail: cjquimbayh@unal.edu.co; Centro Internacional de Fisica, Bogota D.C.

    In the context of a semiclassical approach where vectorial gauge fields can be considered as classical fields, we obtain exact static solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time, for the cases n=1,2,3. As an application of the results obtained for the case n=3, we consider the solutions for the anti-de Sitter and Schwarzschild metrics. We show that these solutions have a confining behavior and can be considered as a first step in the study of the corrections of the spectra of quarkonia in a curved background. Since the solutions that we find in this work aremore » valid also for the group U(1), the case n=2 is a description of the (2+1) electrodynamics in the presence of a point charge. For this case, the solution has a confining behavior and can be considered as an application of the planar electrodynamics in a curved space-time. Finally we find that the solution for the case n=1 is invariant under a parity transformation and has the form of a linear confining solution. - Highlights: Black-Right-Pointing-Pointer We study exact static confining solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time. Black-Right-Pointing-Pointer The solutions found are a first step in the study of the corrections on the spectra of quarkonia in a curved background. Black-Right-Pointing-Pointer A expression for the confinement potential in low dimensionality is found.« less

  8. Rigorous derivation of electromagnetic self-force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gralla, Samuel E.; Harte, Abraham I.; Wald, Robert M.

    2009-07-15

    During the past century, there has been considerable discussion and analysis of the motion of a point charge in an external electromagnetic field in special relativity, taking into account 'self-force' effects due to the particle's own electromagnetic field. We analyze the issue of 'particle motion' in classical electromagnetism in a rigorous and systematic way by considering a one-parameter family of solutions to the coupled Maxwell and matter equations corresponding to having a body whose charge-current density J{sup a}({lambda}) and stress-energy tensor T{sub ab}({lambda}) scale to zero size in an asymptotically self-similar manner about a worldline {gamma} as {lambda}{yields}0. In thismore » limit, the charge, q, and total mass, m, of the body go to zero, and q/m goes to a well-defined limit. The Maxwell field F{sub ab}({lambda}) is assumed to be the retarded solution associated with J{sup a}({lambda}) plus a homogeneous solution (the 'external field') that varies smoothly with {lambda}. We prove that the worldline {gamma} must be a solution to the Lorentz force equations of motion in the external field F{sub ab}({lambda}=0). We then obtain self-force, dipole forces, and spin force as first-order perturbative corrections to the center-of-mass motion of the body. We believe that this is the first rigorous derivation of the complete first-order correction to Lorentz force motion. We also address the issue of obtaining a self-consistent perturbative equation of motion associated with our perturbative result, and argue that the self-force equations of motion that have previously been written down in conjunction with the 'reduction of order' procedure should provide accurate equations of motion for a sufficiently small charged body with negligible dipole moments and spin. (There is no corresponding justification for the non-reduced-order equations.) We restrict consideration in this paper to classical electrodynamics in flat spacetime, but there should be no difficulty in extending our results to the motion of a charged body in an arbitrary globally hyperbolic curved spacetime.« less

  9. Strong lensing of a regular black hole with an electrodynamics source

    NASA Astrophysics Data System (ADS)

    Manna, Tuhina; Rahaman, Farook; Molla, Sabiruddin; Bhadra, Jhumpa; Shah, Hasrat Hussain

    2018-05-01

    In this paper we have investigated the gravitational lensing phenomenon in the strong field regime for a regular, charged, static black holes with non-linear electrodynamics source. We have obtained the angle of deflection and compared it to a Schwarzschild black hole and Reissner Nordström black hole with similar properties. We have also done a graphical study of the relativistic image positions and magnifications. We hope that this method may be useful in the detection of non-luminous bodies like this current black hole.

  10. Magnetized black holes and nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-08-01

    A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.

  11. Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Belyanin, A. A.; Derishev, E. V.; Kocharovsky, V. V.; Kocharovsky, Vl. V.

    2002-07-01

    We formulate the general requirements, set by classical electrodynamics, on the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic fields or by the difference in electric potentials (generalized Hillas criterion) but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of an accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard γ rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects-potential EHECR sources-and discuss their ability to accelerate protons to 1020 eV and beyond. The possibility of gain from ultrarelativistic bulk flows is addressed, with active galactic nuclei and gamma-ray bursts being the examples.

  12. Constraints on the extremely high-energy cosmic rays accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Belyanin, A.; Aharonian, F.; Derishev, E.; Kocharovsky, V.; Kocharovsky, V.

    We formulate the general requirements, set by classical electrodynamics, to the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion), but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard gamma-rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects - potential EHECR sources - and discuss their ability to accelerate protons to 1020 eV and beyond. A possibility to gain from ultrarelativistic bulk flows is addressed, with Active Galactic Nuclei and Gamma-Ray Bursts being the examples.

  13. Book Review:

    NASA Astrophysics Data System (ADS)

    Poisson, E.

    2006-09-01

    The motion of a charged particle interacting with its own electromagnetic field is an area of research that has a long history; this problem has never ceased to fascinate its investigators. On the one hand the theory ought to be straightforward to formulate: one has Maxwell's equations that tell the field how to behave (given the motion of the particle), and one has the Lorentz-force law that tells the particle how to move (given the field). On the other hand the theory is fundamentally ambiguous because of the field singularities that necessarily come with a point particle. While each separate sub-problem can easily be solved, to couple the field to the particle in a self-consistent treatment turns out to be tricky. I believe it is this dilemma (the theory is straightforward but tricky) that has been the main source of the endless fascination. For readers of Classical and Quantum Gravity, the fascination does not end there. For them it is also rooted in the fact that the electromagnetic self-force problem is deeply analogous to the gravitational self-force problem, which is of direct relevance to future gravitational wave observations. The motion of point particles in curved spacetime has been the topic of a recent Topical Review [1], and it was the focus of a recent Special Issue [2]. It is surprising to me that radiation reaction is a subject that continues to be poorly covered in the standard textbooks, including Jackson's bible [3]. Exceptions are Rohrlich's excellent text [4], which makes a very useful introduction to radiation reaction, and the Landau and Lifshitz classic [5], which contains what is probably the most perfect summary of the foundational ideas (presented in characteristic terseness). It is therefore with some trepidation that I received Herbert Spohn's book, which covers both the classical and quantum theories of a charged particle coupled to its own field (the presentation is limited to flat spacetime). Is this the text that graduate students and researchers should turn to in order to get a complete and accessible education in radiation reaction? My answer is that while the book does indeed contain a lot of useful material, it is not a very accessible source of information, and it is certainly not a student-friendly textbook. Instead, the book presents a technical account of the author's personal take on the theory, and represents a culminating summary of the author's research contributions over more than a decade. The book is written in a fairly mathematical style (the author is Professor of Mathematical Physics at the Technische Universitat in Munich), and it very much emphasises mathematical rigour. This makes the book less accessible than I would wish it to be, but this is perhaps less a criticism than a statement about my taste, expectation, and attitude. The presentation of the classical theory begins with a point particle, but Spohn immediately smears the charge distribution to eliminate the vexing singularities of the retarded field. He considers both the nonrelativistic Abraham model (in which the extended particle is spherically symmetric in the laboratory frame) and the relativistic Lorentz model (in which the particle is spherical in its rest frame). In Spohn's work, the smearing of the charge distribution is entirely a mathematical procedure, and I would have wished for a more physical discussion. A physically extended body, held together against electrostatic repulsion by cohesive forces (sometimes called Poincaré stresses) would make a sound starting point for a classical theory of charged particles, and would have nicely (and physically) motivated the smearing operation adopted in the book. Spohn goes on to derive energy momentum relations for the extended objects, and to obtain their equations of motion. A compelling aspect of his presentation is that he formally introduces the 'adiabatic limit', the idea that the external fields acting on the charged body should have length and time scales that are long compared with the particle's internal scales (respectively the electrostatic classical radius and its associated time scale). As a consequence, the equations of motion do not involve a differentiated acceleration vector (as is the case for the Abraham Lorentz Dirac equations) but are proper second-order differential equations for the position vector. In effect, the correct equations of motion are obtained from the Abraham Lorentz Dirac equations by a reduction-of-order procedure that was first proposed (as far as I know) by Landau and Lifshitz [5]. In Spohn's work this procedure is not {\\it ad hoc}, but a natural consequence of the adiabatic approximation. An aspect of the classical portion of the book that got me particularly excited is Spohn's proposal for an experimental test of the predictions of the Landau Lifshitz equations. His proposed experiment involves a Penning trap, a device that uses a uniform magnetic field and a quadrupole electric field to trap an electron for very long times. Without radiation reaction, the motion of an electron in the trap is an epicycle that consists of a rapid (and small) cyclotron orbit superposed onto a slow (and large) magnetron orbit. Spohn shows that according to the Landau Lifshitz equations, the radiation reaction produces a damping of the cyclotron motion. For reasonable laboratory situations this damping occurs over a time scale of the order of 0.1 second. This experiment might well be within technological reach. The presentation of the quantum theory is based on the nonrelativistic Abraham model, which upon quantization leads to the well-known Pauli-Fierz Hamiltonian of nonrelativistic quantum electrodynamics. This theory, an approximation to the fully relativistic version of QED, has a wide domain of validity that includes many aspects of quantum optics and laser-matter interactions. As I am not an expert in this field, my ability to review this portion of Spohn's book is limited, and I will indeed restrict myself to a few remarks. I first admit that I found Spohn's presentation to be tough going. Unlike the pair of delightful books by Cohen-Tannoudji, Dupont-Roc, and Grynberg [6, 7], this is not a gentle introduction to the quantum theory of a charged particle coupled to its own electromagnetic field. Instead, Spohn proceeds rather quickly through the formulation of the theory (defining the Hamiltonian and the Hilbert space) and then presents some applications (for example, he constructs the ground states of the theory, he examines radiation processes, and he explores finite-temperature aspects). There is a lot of material in the eight chapters devoted to the quantum theory, but my insufficient preparation and the advanced nature of Spohn's presentation were significant obstacles; I was not able to draw much appreciation for this material. One of the most useful resources in Spohn's book are the historical notes and literature reviews that are inserted at the end of each chapter. I discovered a wealth of interesting articles by reading these, and I am grateful that the author made the effort to collect this information for the benefit of his readers. References [1] Poisson E 2004 Radiation reaction of point particles in curved spacetime Class. Quantum Grav 21 R153 R232 [2] Lousto C O 2005 Special issue: Gravitational Radiation from Binary Black Holes: Advances in the Perturbative Approach, Class. Quantum Grav22 S543 S868 [3] Jackson J D 1999 Classical Electrodynamics Third Edition (New York: Wiley) [4] Rohrlich F 1990 Classical Charged Particles (Redwood City, CA: Addison Wesley) [5] Landau L D and Lifshitz E M 2000 The Classical Theory of Fields Fourth Edition (Oxford: Butterworth Heinemann) [6] Cohen-Tannoudji C Dupont-Roc J and Grynberg G 1997 Photons and Atoms - Introduction to Quantum Electrodynamics (New York: Wiley-Interscience) [7] Cohen-Tannoudji C, Dupont-Roc J and G Grynberg G 1998 Atom Photon Interactions: Basic Processes and Applications (New York: Wiley-Interscience)

  14. A SIX-DIMENSIONAL RIEMANNIAN MANIFOLD, ITS APPLICATIONS TO MESO- ELECTRODYNAMICS, AND A SYSTEMATIZATION OF STRONGLY INTERACTING PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rayski, J.

    1959-01-01

    A conception of a six-dimensional world enables a geometrical interpretation of the electric charge, charge c onjugation, gauge transformations, and of the electromagnetic field. The same conception explains satisfactorily the isospin, its cornection with the electric charge, and the ps- scalar character of nuclear forces. Several qualitative and some quantitative properties of strongly interacting particles (strangeness, rest masses, etc.) find an intuitive explanation within this geometrical framework. (auth)

  15. Electrodynamic Tethers and E-Sails as Active Experiment Testbeds and Technologies in Space

    NASA Astrophysics Data System (ADS)

    Gilchrist, B. E.; Wiegmann, B.; Johnson, L.; Bilen, S. G.; Habash Krause, L.; Miars, G.; Leon, O.

    2017-12-01

    The use of small-to-large flexible structures in space such as tethers continues to be studied for scientific and technology applications. Here we will consider tether electrodynamic and electrostatic interactions with magneto-plasmas in ionospheres, magnetospheres, and interplanetary space. These systems are enabling fundamental studies of basic plasma physics phenomena, allowing direct studies of the space environment, and generating technological applications beneficial for science missions. Electrodynamic tethers can drive current through the tether based on the Lorenz force adding or extracting energy from its orbit allowing for the study of charged bodies or plasma plumes moving through meso-sonic magnetoplasmas [1]. Technologically, this also generates propulsive forces requiring no propellant and little or no consumables in any planetary system with a magnetic field and ionosphere, e.g., Jupiter [2]. Further, so called electric sails (E-sails) are being studied to provide thrust through momentum exchange with the hypersonic solar wind. The E-sail uses multiple, very long (10s of km) charged, mostly bare rotating conducting tethers to deflect solar wind protons. It is estimated that a spacecraft could achieve a velocity over 100 km/s with time [3,4]. 1. Banks, P.M., "Review of electrodynamic tethers for space plasma science," J. Spacecraft and Rockets, vol. 26, no. 4, pp. 234-239, 1989. 2. Talley, C., J. Moore, D. Gallagher, and L. Johnson, "Propulsion and power from a rotating electrodynamic tether at Jupiter," 38th AIAA Aerospace Sciences Meeting and Exhibit, January 2000. 3. Janhunen, P., "The electric sail—A new propulsion method which may enable fast missions to the outer solar system," J. British Interpl. Soc., vol. 61, no. 8, pp. 322-325, 2008. 4. Wiegman, B., T. Scheider, A. Heaton, J. Vaughn, N. Stone, and K. Wright, "The Heliopause Electrostatic Rapid Transit System (HERTS)—Design, trades, and analyses performed in a two-year NASA investigation of electric sail propulsion systems," 53rd AIAA/SAE/ASEE Joint Propulsion Conf., 10-12 July 2017, Atlanta, GA.

  16. Coupled electrostatic and material surface stresses yield anomalous particle interactions and deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, B. A., E-mail: bkemp@astate.edu; Nikolayev, I.; Sheppard, C. J.

    2016-04-14

    Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.

  17. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; West, E.; Pratico, J.; Tankosic, D.; Venturini, C. C.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 2-10 gm diameter are levitated in a vacuum chamber at pressures approximately 10(exp-5) torr and exposed to a collimated beam of UV radiation in the 120-200 nm spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV wavelength with a spectral resolution of 8 nm. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on test particles of silica and polystyrene to determine the photoelectric yields and surface equilibrium potentials when exposed to UV radiation. A brief description of an experimental procedure for photoemission studies is given and some preliminary laboratory measurements of the photoelectric yields of individual dust particles are presented.

  18. Experimental Study of Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.

    1999-01-01

    The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.

  19. Quantum Electrodynamical Shifts in Multivalent Heavy Ions.

    PubMed

    Tupitsyn, I I; Kozlov, M G; Safronova, M S; Shabaev, V M; Dzuba, V A

    2016-12-16

    The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of fundamental physics. We compared the performance of four different QED potentials for various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion properties urgently needed for planning future experiments. We find that all four potentials give consistent and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more accurate than the local potential.

  20. 8-Spinors and structure of solitons in generalized Mie electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybakov, Yu. P., E-mail: soliton4@mail.ru

    2013-02-15

    A generalization of Mie electrodynamics is considered. It includes a 8-spinor field and higher powers of the Mie invariant A{sub {mu}}A{sup {mu}}. Particular topological properties of 8-spinors are indicated and are associated with the existence of the remarkable Brioschi identity of eight squares, which permits deriving a natural 8-spinor unification of the Skyrme model of baryons and the Faddeev model of leptons, these particles being treated as topological solitons. Two types of soliton configurations admitted by the model are constructed. These are charged static and neutral lightlike (luxons) ones.

  1. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    NASA Astrophysics Data System (ADS)

    Leader, Elliot

    2018-04-01

    The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.

  2. Energy density and energy flow of plasmonic waves in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2017-07-01

    The propagation of plasmonic waves in bilayer graphene is studied based on the classical electrodynamics. The interactions between conduction electrons confined to move on the surface of each layer are taken into account via the two-dimensional linearized hydrodynamic model. The energy theorem of electrodynamics is cast in a form which yields expressions for energy density and energy flow of p-polarized surface plasmon polariton waves in bilayer graphene. Numerical results show that the presence of two layers causes the appearance of two branches in the dispersion relation that introduce alterations in the physical behavior of the energy, power flow and the energy transport velocity, in comparison with the results of monolayer graphene.

  3. Derivation of the cut-off length from the quantum quadratic enhancement of a mass in vacuum energy constant Lambda

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika; Sato, Hikaru

    2018-04-01

    Ultraviolet self-interaction energies in field theory sometimes contain meaningful physical quantities. The self-energies in such as classical electrodynamics are usually subtracted from the rest mass. For the consistent treatment of energies as sources of curvature in the Einstein field equations, this study includes these subtracted self-energies into vacuum energy expressed by the constant Lambda (used in such as Lambda-CDM). In this study, the self-energies in electrodynamics and macroscopic classical Einstein field equations are examined, using the formalisms with the ultraviolet cut-off scheme. One of the cut-off formalisms is the field theory in terms of the step-function-type basis functions, developed by the present authors. The other is a continuum theory of a fundamental particle with the same cut-off length. Based on the effectiveness of the continuum theory with the cut-off length shown in the examination, the dominant self-energy is the quadratic term of the Higgs field at a quantum level (classical self-energies are reduced to logarithmic forms by quantum corrections). The cut-off length is then determined to reproduce today's tiny value of Lambda for vacuum energy. Additionally, a field with nonperiodic vanishing boundary conditions is treated, showing that the field has no zero-point energy.

  4. Terahertz-infrared electrodynamics of single-wall carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Zhukova, E. S.; Grebenko, A. K.; Bubis, A. V.; Prokhorov, A. S.; Belyanchikov, M. A.; Tsapenko, A. P.; Gilshteyn, E. P.; Kopylova, D. S.; Gladush, Yu G.; Anisimov, A. S.; Anzin, V. B.; Nasibulin, A. G.; Gorshunov, B. P.

    2017-11-01

    Broad-band (4-20 000 cm-1) spectra of real and imaginary conductance of a set of high-quality pristine and AuCl3-doped single-walled carbon nanotube (SWCNT) films with different transparency are systematically measured. It is shown that while the high-energy (≥1 eV) response is determined by well-known interband transitions, the lower-energy electrodynamic properties of the films are fully dominated by unbound charge carriers. Their main spectral effect is seen as the free-carrier Drude-type contribution. Partial localization of these carriers leads to a weak plasmon resonance around 100 cm-1. At the lowest frequencies, below 10 cm-1, a gap-like feature is detected whose origin is associated with the energy barrier experienced by the carriers at the intersections between SWCNTs. It is assumed that these three mechanisms are universal and determine the low-frequency terahertz-infrared electrodynamics of SWCNT wafer-scale films.

  5. Charging of Single Micron Sized Dust Grains by Secondary Electron Emission: A Laboratory Study

    NASA Technical Reports Server (NTRS)

    Spann, James F., Jr.; Venturini, Catherine C.; Comfort, R. H.

    1998-01-01

    We present the details of a new laboratory study whose objective is to experimentally study the interaction of micron sized particles with plasmas and electromagnetic radiation. Specifically, to investigate under what conditions and to what extent do particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and ultraviolet radiation environment The emphasis is the study of the two charging mechanisms, secondary emission of electrons and photoelectric effect. The experiment uses a technique known as electrodynamic suspension of particles. With this technique, a single charged particle is electrodynamically levitated and then exposed to a controlled environment. Its charge to mass ratio is directly measured. Viscous drag measurements and the light scattering measurements characterize its size and optical characteristics. The environment to which the particle is expose may consist of room temperature and pressure or a rarefied atmosphere where only one major gaseous constituent is present, or, as in this case, a vacuum environment under electron bombardment or UV radiation . In addition, the environment can be cycled as part of the experiment. Therefore, using this technique, a single particle can be repeatedly exposed to a controlled environment and its response measured, or a single particle can be exposed to similar environments with minor differences and its response measured as a function of only the changed environmental conditions.

  6. Distributions in Spherical Coordinates with Applications to Classical Electrodynamics

    ERIC Educational Resources Information Center

    Gsponer, Andre

    2007-01-01

    A general and rigorous method to deal with singularities at the origin of a polar coordinate system is presented. Its power derives from a clear distinction between the radial distance and the radial coordinate variable, which makes that all delta functions and their derivatives are automatically generated, and ensures that the Gauss theorem is…

  7. Global solutions to the electrodynamic two-body problem on a straight line

    NASA Astrophysics Data System (ADS)

    Bauer, G.; Deckert, D.-A.; Dürr, D.; Hinrichs, G.

    2017-06-01

    The classical electrodynamic two-body problem has been a long standing open problem in mathematics. For motion constrained to the straight line, the interaction is similar to that of the two-body problem of classical gravitation. The additional complication is the presence of unbounded state-dependent delays in the Coulomb forces due to the finiteness of the speed of light. This circumstance renders the notion of local solutions meaningless, and therefore, straightforward ODE techniques cannot be applied. Here, we study the time-symmetric case, i.e., the Fokker-Schwarzschild-Tetrode (FST) equations, comprising both advanced and retarded delays. We extend the technique developed in Deckert and Hinrichs (J Differ Equ 260:6900-6929, 2016), where existence of FST solutions was proven on the half line, to ensure global existence—a result that had been obtained by Bauer (Ein Existenzsatz für die Wheeler-Feynman-Elektrodynamik, Herbert Utz Verlag, München, 1997). Due to the novel technique, the presented proof is shorter and more transparent but also relies on the idea to employ asymptotic data to characterize solutions.

  8. The gj factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Beier, Thomas

    2000-12-01

    The comparison between theory and experiment of the hyperfine structure splitting and the electronic gj factor in heavy highly charged ions provides a unique testing ground for quantum electrodynamics in the presence of strong electric and magnetic fields. A theoretical evaluation is presented of all quantum electrodynamical contributions to the ground-state hfs splitting in hydrogenlike and lithiumlike atoms as well as to the gj factor. Binding and nuclear effects are discussed as well. A comparison with the available experimental data is performed, and a detailed discussion of theoretical sources of uncertainty is included which is mainly due to insufficiently known nuclear properties.

  9. Coulomb's Law in a Moving Medium--A Review Exercise in Advanced Undergraduate Electromagnetism

    ERIC Educational Resources Information Center

    Sastry, G. P.

    1978-01-01

    The electromagnetic field of a static charge in a moving medium is evaluated using elements of special relativity, residue calculus, and Fourier integration. Some of the concepts in electrodynamics that are of current research value are discussed. (BB)

  10. Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation

    NASA Astrophysics Data System (ADS)

    Feranchuk, Ilya D.; Feranchuk, Sergey I.

    2007-12-01

    The self-localized quasi-particle excitation of the electron-positron field (EPF) is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ''physical'' electron (positron) and it allows one to solve the following problems: i) to express the ''primary'' charge e0 and the mass m0 of the ''bare'' electron in terms of the observed values of e and m of the ''physical'' electron without any infinite parameters and by essentially nonperturbative way; ii) to consider μ-meson as another self-localized EPF state and to estimate the ratio mμ/m; iii) to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass m; iv) to show that the expansion in a power of the observed charge e << 1 corresponds to the strong coupling e! xpansion in a power of the ''primary'' charge e-10 ~ e when the interaction between the ``physical'' electron and the transverse electromagnetic field is considered by means of the perturbation theory and all terms of this series are free from the ultraviolet divergence.

  11. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Spann, James F., Jr.; Craven, Paul D.; West, E.; Pratico, Jared; Scheianu, D.; Tankosic, D.; Venturini, C. C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 1 - 100 micrometer diameter are levitated in a vacuum chamber at pressures approx. 10(exp -5) torr and exposed to a collimated beam of UV radiation in the 120-300 nanometers spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV radiation wavelength with a spectral resolution of 8 nanometers. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on Al2O3 and silicate particles, and in particular on JSC-1 Mars regolith simulants, to determine the photoelectron yields and surface equilibrium potentials of dust particles when exposed to UV radiation in the 120-250 micrometers spectral range. A brief discussion of the experimental procedure, the results of photoemission experiments, and comparisons with theoretical models will be presented.

  12. Pair production in classical Stueckelberg-Horwitz-Piron electrodynamics

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2015-05-01

    We calculate pair production from bremsstrahlung as a classical effect in Stueckelberg-Horwitz electrodynamics. In this framework, worldlines are traced out dynamically through the evolution of events xμ(τ) parameterized by a chronological time τ that is independent of the spacetime coordinates. These events, defined in an unconstrained 8D phase space, interact through five τ-dependent gauge fields induced by the event evolution. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. In particular, the total mass-energy-momentum of particles and fields is conserved, but the mass-shell constraint is lifted from individual interacting events, so that the Feynman-Stueckelberg interpretation of pair creation/annihilation is implemented in classical mechanics. We consider a three-stage interaction which when parameterized by the laboratory clock x0 appears as (1) particle-1 scatters on a heavy nucleus to produce bremsstrahlung, (2) the radiation field produces a particle/antiparticle pair, (3) the antiparticle is annihilated with particle-2 in the presence of a second heavy nucleus. When parameterized in chronological time τ, the underlying process develops as (1) particle-2 scatters on the second nucleus and begins evolving backward in time with negative energy, (2) particle-1 scatters on the first nucleus and releases bremsstrahlung, (3) particle-2 absorbs radiation which returns it to forward time evolution with positive energy.

  13. Theorem: A Static Magnetic N-pole Becomes an Oscillating Electric N-pole in a Cosmic Axion Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Christopher T.

    We show for the classical Maxwell equations, including the axion electromagnetic anomaly source term, that a cosmic axion field induces an oscillating electric N-moment for any static magnetic N-moment. This is a straightforward result, accessible to anyone who has taken a first year graduate course in electrodynamics.

  14. Local U(2,2) symmetry in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    1998-12-01

    Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.

  15. Simulations of relativistic quantum plasmas using real-time lattice scalar QED

    NASA Astrophysics Data System (ADS)

    Shi, Yuan; Xiao, Jianyuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, and the ensemble may be computed using quantum parallelism in the future.

  16. Born-Infeld magnetars: larger than classical toroidal magnetic fields and implications for gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Pereira, Jonas P.; Coelho, Jaziel G.; de Lima, Rafael C. R.

    2018-05-01

    Magnetars are neutron stars presenting bursts and outbursts of X- and soft-gamma rays that can be understood with the presence of very large magnetic fields. In this setting, nonlinear electrodynamics should be taken into account for a more accurate description of such compact systems. We study that in the context of ideal magnetohydrodynamics and make a realization of our analysis to the case of the well known Born-Infeld (BI) electromagnetism in order to come up with some of its astrophysical consequences. We focus here on toroidal magnetic fields as motivated by already known magnetars with low dipolar magnetic fields and their expected relevance in highly magnetized stars. We show that BI electrodynamics leads to larger toroidal magnetic fields when compared to Maxwell's electrodynamics. Hence, one should expect higher production of gravitational waves (GWs) and even more energetic giant flares from nonlinear stars. Given current constraints on BI's scale field, giant flare energetics and magnetic fields in magnetars, we also find that the maximum magnitude of magnetar ellipticities should be 10^{-6}-10^{-5}. Besides, BI electrodynamics may lead to a maximum increase of order 10-20% of the GW energy radiated from a magnetar when compared to Maxwell's, while much larger percentages may arise for other physically motivated scenarios. Thus, nonlinear theories of the electromagnetism might also be probed in the near future with the improvement of GW detectors.

  17. SL(2,R) duality-symmetric action for electromagnetic theory with electric and magnetic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonkyu, E-mail: cklee@phya.snu.ac.kr; School of Physics, Korea Institute for Advanced Study, Seoul 130-722; Min, Hyunsoo, E-mail: hsmin@dirac.uos.ac.kr

    2013-12-15

    For the SL(2,R) duality-invariant generalization of Maxwell electrodynamics in the presence of both electric and magnetic sources, we formulate a local, manifestly duality-symmetric, Zwanziger-type action by introducing a pair of four-potentials A{sup μ} and B{sup μ} in a judicious way. On the two potentials A{sup μ} and B{sup μ} the SL(2,R) duality transformation acts in a simple linear manner. In quantum theory including charged source fields, this action can be recast as a SL(2,Z)-invariant action. Also given is a Zwanziger-type action for SL(2,R) duality-invariant Born–Infeld electrodynamics which can be important for D-brane dynamics in string theory. -- Highlights: •We formulatemore » a local, manifestly duality-symmetric, Zwanziger-type action. •Maxwell electrodynamics is generalized to include dilaton and axion fields. •SL(2,R) symmetry is manifest. •We formulate a local, manifestly duality-symmetric, nonlinear Born–Infeld action with SL(2,R) symmetry.« less

  18. The radiation impedance of an electrodynamic tether with end connectors

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Wang, J.

    1987-01-01

    Electrodynamic tethers are wires deployed across the earth's geomagnetic field through which a current is flowing. The radiation impedance of a tether with end connectors carrying an ac current is computed from classical antenna theory. This simulates the use of a tether on a space structure. It is shown that the current flow pattern at the tether connector is critical to determining the overall radiation impedance. If the tether makes direct electrical contact with the ionosphere then radiation impedances of the order of several thousand Ohms can be expected. If the only electrical contact is through the end connectors then the impedance is only a few Ohms for a dc current rising to several tens of Ohms for an ac current with frequencies in the whistler range.

  19. Middle atmospheric electrodynamics

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    1983-01-01

    A review is presented of the advances made during the last few years with respect to the study of the electrodynamics in the earth's middle atmosphere. In a report of the experimental work conducted, attention is given to large middle atmospheric electric fields, the downward coupling of high altitude processes into the middle atmosphere, and upward coupling of tropospheric processes into the middle atmosphere. It is pointed out that new developments in tethered balloons and superpressure balloons should greatly increase the measurement duration of earth-ionospheric potential measurements and of stratospheric electric field measurements in the next few years. Theoretical work considered provides an excellent starting point for study of upward coupling of transient and dc electric fields. Hays and Roble (1979) were the first to construct a model which included orographic features as well as the classical thunderstorm generator.

  20. QED Based Calculation of the Fine Structure Constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestone, John Paul

    2016-10-13

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ 2. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. Thismore » exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.« less

  1. Micro- to macroscale perspectives on space plasmas

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1993-01-01

    The Earth's magnetosphere is the most accessible of natural collisionless plasma environments; an astrophysical plasma 'laboratory'. Magnetospheric physics has been in an exploration phase since its origin 35 years ago but new coordinated, multipoint observations, theory, modeling, and simulations are moving this highly interdisciplinary field of plasma science into a new phase of synthesis and understanding. Plasma systems are ones in which binary collisions are relatively negligible and collective behavior beyond the microscale emerges. Most readily accessible natural plasma systems are collisional and nearest-neighbor classical interactions compete with longer-range plasma effects. Except for stars, most space plasmas are collisionless, however, and the effects of electrodynamic coupling dominate. Basic physical processes in such collisionless plasmas occur at micro-, meso-, and macroscales that are not merely reducible to each other in certain crucial ways as illustrated for the global coupling of the Earth's magnetosphere and for the nonlinear dynamics of charged particle motion in the magnetotail. Such global coupling and coherence makes the geospace environment, the domain of solar-terrestrial science, the most highly coupled of all physical geospheres.

  2. Electrodynamic Dust Shield for Surface Exploration Activities on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Immer, C. D.; Clements, J. S.; Chen, A.; Buhler, C. R.; Lundeen, P.; Mantovani, J. G.; Starnes, J. W.; Michalenko, M.; Mazumder, M. K.

    2006-01-01

    The Apollo missions to the moon showed that lunar dust can hamper astronaut surface activities due to its ability to cling to most surfaces. NASA's Mars exploration landers and rovers have also shown that the problem is equally hard if not harder on Mars. In this paper, we report on our efforts to develop and electrodynamic dust shield to prevent the accumulation of dust on surfaces and to remove dust already adhering to those surfaces. The parent technology for the electrodynamic dust shield, developed in the 1970s, has been shown to lift and transport charged and uncharged particles using electrostatic and dielectrophoretic forces. This technology has never been applied for space applications on Mars or the moon due to electrostatic breakdown concerns. In this paper, we show that an appropriate design can prevent the electrostatic breakdown at the low Martian atmospheric pressures. We are also able to show that uncharged dust can be lifted and removed from surfaces under simulated Martian environmental conditions. This technology has many potential benefits for removing dust from visors, viewports and many other surfaces as well as from solar arrays. We have also been able to develop a version of the electrodynamic dust shield working under. hard vacuum conditions. This version should work well on the moon.

  3. CORRIGENDUM: Editorial note

    NASA Astrophysics Data System (ADS)

    Rae, A. I. M.

    2002-07-01

    The first sentence of this comment should read as follows: It has been drawn to our attention that a comment published in our January issue [1] contains the statement that `the functions {1, sin2 α, cos 2α}...are clearly linearly independent...'. References [1]Figueroa-Navarro C 2002 A comment on Gluskin's note on J D Jackson's Classical Electrodynamics Eur. J. Phys. 23 L1-3

  4. The 3 + 1 decomposition of conformal Yano-Killing tensors and ‘momentary’ charges for the spin-2 field

    NASA Astrophysics Data System (ADS)

    Jezierski, Jacek; Migacz, Szymon

    2015-02-01

    The ‘fully charged’ spin-2 field solution is presented. This is an analog of the Coulomb solution in electrodynamics and represents the ‘non-waving’ part of the spin-2 field theory. Basic facts and definitions of the spin-2 field and conformal Yano-Killing tensors are introduced. Application of those two objects provides a precise definition of quasi-local gravitational charge. Next, the 3 + 1 decomposition leads to the construction of the momentary gravitational charges on the initial surface, which is applicable for Schwarzschild-like spacetimes.

  5. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space.

    PubMed

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2015-12-15

    The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.

  6. One-loop quantum gravity repulsion in the early Universe.

    PubMed

    Broda, Bogusław

    2011-03-11

    Perturbative quantum gravity formalism is applied to compute the lowest order corrections to the classical spatially flat cosmological Friedmann-Lemaître-Robertson-Walker solution (for the radiation). The presented approach is analogous to the approach applied to compute quantum corrections to the Coulomb potential in electrodynamics, or rather to the approach applied to compute quantum corrections to the Schwarzschild solution in gravity. In the framework of the standard perturbative quantum gravity, it is shown that the corrections to the classical deceleration, coming from the one-loop graviton vacuum polarization (self-energy), have (UV cutoff free) opposite to the classical repulsive properties which are not negligible in the very early Universe. The repulsive "quantum forces" resemble those known from loop quantum cosmology.

  7. Electrodynamics of Lipid Membrane Interactions in the Presence of Zwitterionic Buffers

    PubMed Central

    Koerner, Megan M.; Palacio, Luis A.; Wright, Johnnie W.; Schweitzer, Kelly S.; Ray, Bruce D.; Petrache, Horia I.

    2011-01-01

    Due to thermal motion and molecular polarizability, electrical interactions in biological systems have a dynamic character. Zwitterions are dipolar molecules that typically are highly polarizable and exhibit both a positive and a negative charge depending on the pH of the solution. We use multilamellar structures of common lipids to identify and quantify the effects of zwitterionic buffers that go beyond the control of pH. We use the fact that the repeat spacing of multilamellar lipid bilayers is a sensitive and accurate indicator of the force balance between membranes. We show that common buffers can in fact charge up neutral membranes. However, this electrostatic effect is not immediately recognized because of the concomitant modification of dispersion (van der Waals) forces. We show that although surface charging can be weak, electrostatic forces are significant even at large distances because of reduced ionic screening and reduced van der Waals attraction. The zwitterionic interactions that we identify are expected to be relevant for interfacial biological processes involving lipid bilayers, and for a wide range of biomaterials, including amino acids, detergents, and pharmaceutical drugs. An appreciation of zwitterionic electrodynamic character can lead to a better understanding of molecular interactions in biological systems and in soft materials in general. PMID:21767488

  8. Impact of the charge density wave state in the electrodynamic response of ZrTe3 -xSex : Optical evidence for a pseudogap phase

    NASA Astrophysics Data System (ADS)

    Chinotti, M.; Ethiraj, J.; Mirri, C.; Zhu, Xiangde; Li, Lijun; Petrovic, C.; Degiorgi, L.

    2018-01-01

    The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe3 -xSex at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, which images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.

  9. Speeds of light in Stueckelberg-Horwitz-Piron electrodynamics

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2017-05-01

    Stueckelberg-Horwitz-Piron (SHP) electrodynamics formalizes the distinction between coordinate time (measured by laboratory clocks) and chronology (temporal ordering) by defining 4D spacetime events x μ as functions of an external evolution parameter τ. As τ grows monotonically, the spacetime evolution of classical events x μ (τ) trace out particle worldlines dynamically and induce the five U(1) gauge potentials through which events interact. In analogy with the constant c that associates a unit of length x 0 with intervals of time t in standard relativity, we introduce a constant c 5 associated with the external time τ. Whereas the nonrelativistic limit of special relativity can be found by taking c → ∞, we show that 5D SHP goes over to an equilibrium state of Maxwell theory in the limit c 5 → 0. Thus, the dimensionless ratio c 5/c parameterizes the deviation of SHP from standard electrodynamics, in particular the coupling of events. Put another way, Maxwell theory can be understood as currents and fields relaxing to an equilibrium independent of chronological time as c 5 τ slows to zero. We find that taking 0 < c 5/c < 1 enables the resolution of several longstanding difficulties in SHP theory.

  10. Parametric resonance in quantum electrodynamics vacuum birefringence

    NASA Astrophysics Data System (ADS)

    Arza, Ariel; Elias, Ricardo Gabriel

    2018-05-01

    Vacuum magnetic birefringence is one of the most interesting nonlinear phenomena in quantum electrodynamics because it is a pure photon-photon result of the theory and it directly signalizes the violation of the classical superposition principle of electromagnetic fields in the full quantum theory. We perform analytical and numerical calculations when an electromagnetic wave interacts with an oscillating external magnetic field. We find that in an ideal cavity, when the external field frequency is around the electromagnetic wave frequency, the normal and parallel components of the wave suffer parametric resonance at different rates, producing a vacuum birefringence effect growing in time. We also study the case where there is no cavity and the oscillating magnetic field is spatially localized in a region of length L . In both cases we find also a rotation of the elliptical axis.

  11. Internally electrodynamic particle model: Its experimental basis and its predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or

    2010-03-15

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less

  12. Internally electrodynamic particle model: Its experimental basis and its predictions

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J. X.

    2010-03-01

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.

  13. Varying electric charge in multiscale spacetimes

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Magueijo, João; Fernández, David Rodríguez

    2014-01-01

    We derive the covariant equations of motion for Maxwell field theory and electrodynamics in multiscale spacetimes with weighted Laplacian. An effective spacetime-dependent electric charge of geometric origin naturally emerges from the theory, thus giving rise to a varying fine-structure constant. The theory is compared with other varying-coupling models, such as those with a varying electric charge or varying speed of light. The theory is also confronted with cosmological observations, which can place constraints on the characteristic scales in the multifractional measure. We note that the model considered here is fundamentally different from those previously proposed in the literature, either of the varying-e or varying-c persuasion.

  14. Classical BV Theories on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Mnev, Pavel; Reshetikhin, Nicolai

    2014-12-01

    In this paper we extend the classical BV framework to gauge theories on spacetime manifolds with boundary. In particular, we connect the BV construction in the bulk with the BFV construction on the boundary and we develop its extension to strata of higher codimension in the case of manifolds with corners. We present several examples including electrodynamics, Yang-Mills theory and topological field theories coming from the AKSZ construction, in particular, the Chern-Simons theory, the BF theory, and the Poisson sigma model. This paper is the first step towards developing the perturbative quantization of such theories on manifolds with boundary in a way consistent with gluing.

  15. Preparation of two-qubit steady entanglement through driving a single qubit.

    PubMed

    Shen, Li-Tuo; Chen, Rong-Xin; Yang, Zhen-Biao; Wu, Huai-Zhi; Zheng, Shi-Biao

    2014-10-15

    Inspired by a recent paper [J. Phys. B 47, 055502 (2014)], we propose a simplified scheme to generate and stabilize a Bell state of two qubits coupled to a resonator. In the scheme only one qubit is needed to be driven by external classical fields, and the entanglement dynamics is independent of the phases of these fields and insensitive to their amplitude fluctuations. This is a distinct advantage as compared with the previous ones that require each qubit to be addressed by well-controlled classical fields. Numerical simulation shows that the steady singlet state with high fidelity can be obtained with currently available techniques in circuit quantum electrodynamics.

  16. The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach

    ERIC Educational Resources Information Center

    Likar, A.; Razpet, N.

    2009-01-01

    The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…

  17. Derivation of the Lorentz force law, the magnetic field concept and the Faraday Lenz and magnetic Gauss laws using an invariant formulation of the Lorentz transformation

    NASA Astrophysics Data System (ADS)

    Field, J. H.

    2006-06-01

    It is demonstrated how the right-hand sides of the Lorentz transformation equations may be written, in a Lorentz-invariant manner, as 4-vector scalar products. This implies the existence of invariant length intervals analogous to invariant proper time intervals. An important distinction between the physical meanings of the space time and energy momentum 4-vectors is pointed out. The formalism is shown to provide a short derivation of the Lorentz force law of classical electrodynamics, and the conventional definition of the magnetic field, in terms of spatial derivatives of the 4-vector potential, as well as the Faraday Lenz law and the Gauss law for magnetic fields. The connection between the Gauss law for the electric field and the electrodynamic Ampère law, due to the 4-vector character of the electromagnetic potential, is also pointed out.

  18. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    DOE PAGES

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; ...

    2015-06-24

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ionmore » injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. Lastly, the sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.« less

  19. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    PubMed Central

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-01

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher-pressure regions (e.g., ion source interfaces) of mass spectrometers, thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to-charge ratios. In this study, a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadrupole mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at a pressure of 9–10 Torr. Key factors for the HPIF performance characterized included the effects of RF amplitude, the DC gradient, and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. The sensitivity enhancement in liquid chromatography selected reaction monitoring (LC-SRM) analyses of low-abundance peptides spiked into a highly complex mixture was also compared with that obtained using both a commercial S-lens interface and an in-line dual-ion funnel interface. PMID:26107611

  20. Impact of the charge density wave state in the electrodynamic response of ZrTe 3 - x Se x : Optical evidence for a pseudogap phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinotti, M.; Ethiraj, J.; Mirri, C.

    The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe 3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe 3-xSe x at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, whichmore » images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Thus, our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.« less

  1. Impact of the charge density wave state in the electrodynamic response of ZrTe 3 - x Se x : Optical evidence for a pseudogap phase

    DOE PAGES

    Chinotti, M.; Ethiraj, J.; Mirri, C.; ...

    2018-01-12

    The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe 3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe 3-xSe x at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, whichmore » images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Thus, our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.« less

  2. Asymptotic symmetries in p-form theories

    NASA Astrophysics Data System (ADS)

    Afshar, Hamid; Esmaeili, Erfan; Sheikh-Jabbari, M. M.

    2018-05-01

    We consider ( p + 1)-form gauge fields in flat (2 p + 4)-dimensions for which radiation and Coulomb solutions have the same asymptotic fall-off behavior. Imposing appropriate fall-off behavior on fields and adopting a Maxwell-type action, we construct the boundary term which renders the action principle well-defined in the Lorenz gauge. We then compute conserved surface charges and the corresponding asymptotic charge algebra associated with nontrivial gauge transformations. We show that for p ≥ 1, there are three sets of conserved asymptotic charges associated with exact, coexact and zero-mode parts of the corresponding p-form gauge transformations on the asymptotic S 2 p+2. The coexact and zero-mode charges are higher form extensions of the four dimensional electrodynamics ( p = 0), and are commuting. Charges associated with exact gauge transformations have no counterparts in four dimensions and form infinite copies of Heisenberg algebras. We briefly discuss physical implications of these charges and their algebra.

  3. Charge Effects on the Efflorescence in Single Levitated Droplets.

    PubMed

    Hermann, Gunter; Zhang, Yan; Wassermann, Bernhard; Fischer, Henry; Quennet, Marcel; Rühl, Eckart

    2017-09-14

    The influence of electrical excess charges on the crystallization from supersaturated aqueous sodium chloride solutions is reported. This is accomplished by efflorescence studies on single levitated microdroplets using optical and electrodynamic levitation. Specifically, a strong increase in efflorescence humidity is observed as a function of the droplet's negative excess charge, ranging up to -2.1 pC, with a distinct threshold behavior, increasing the relative efflorescence humidity, at which spontaneous nucleation occurs, from 44% for the neutral microparticle to 60%. These findings are interpreted by using molecular dynamics simulations for determining plausible structural patterns located near the particle surface that could serve as suitable precursors for the formation of critical clusters overcoming the nucleation barrier. These results, facilitating heterogeneous nucleation in the case of negatively charged microparticles, are compared to recent work on charge-induced nucleation of neat supercooled water, where a distinctly different nucleation behavior as a function of droplet charge has been observed.

  4. Classical and non-classical effective medium theories: New perspectives

    NASA Astrophysics Data System (ADS)

    Tsukerman, Igor

    2017-05-01

    Future research in electrodynamics of periodic electromagnetic composites (metamaterials) can be expected to produce sophisticated homogenization theories valid for any composition and size of the lattice cell. The paper outlines a promising path in that direction, leading to non-asymptotic and nonlocal homogenization models, and highlights aspects of homogenization that are often overlooked: the finite size of the sample and the role of interface boundaries. Classical theories (e.g. Clausius-Mossotti, Maxwell Garnett), while originally derived from a very different set of ideas, fit well into the proposed framework. Nonlocal effects can be included in the model, making an order-of-magnitude accuracy improvements possible. One future challenge is to determine what effective parameters can or cannot be obtained for a given set of constituents of a metamaterial lattice cell, thereby delineating the possible from the impossible in metamaterial design.

  5. Charged dust in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Mendis, D. A.; Hill, J. R.; Houpis, H. L. F.

    1983-01-01

    The overall distribution of fine dust in the Saturnian magnetosphere, its behavior, the cosmogony of the Saturnian ring system, and observations of the magnetosphere and ring system are synthesized and explained using gravito-electrodynamics. Among the phenomena discussed are the formation of waves in the F-ring, the cause of eccentricities of certain isolated ringlets, and the origin and morphology of the broad diffuse E-ring. Magnetogravitational resonance of charged dust with nearby satellites, gyro-orbital resonances, and magnetogravitational capture of exogenic dust by the magnetosphere are used to explain individual observations. The effect of a ring current associated with the charged dust is evaluated. Finally, the cosmogonic implications of the magnetogravitational theory are discussed.

  6. Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon

    NASA Astrophysics Data System (ADS)

    Mi, X.; Cady, J. V.; Zajac, D. M.; Stehlik, J.; Edge, L. F.; Petta, J. R.

    2017-01-01

    We demonstrate a hybrid device architecture where the charge states in a double quantum dot (DQD) formed in a Si/SiGe heterostructure are read out using an on-chip superconducting microwave cavity. A quality factor Q = 5400 is achieved by selectively etching away regions of the quantum well and by reducing photon losses through low-pass filtering of the gate bias lines. Homodyne measurements of the cavity transmission reveal DQD charge stability diagrams and a charge-cavity coupling rate g c / 2 π = 23 MHz. These measurements indicate that electrons trapped in a Si DQD can be effectively coupled to microwave photons, potentially enabling coherent electron-photon interactions in silicon.

  7. Electromagnetic scattering and emission by a fixed multi-particle object in local thermal equilibrium: General formalism.

    PubMed

    Mishchenko, Michael I

    2017-10-01

    The majority of previous studies of the interaction of individual particles and multi-particle groups with electromagnetic field have focused on either elastic scattering in the presence of an external field or self-emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromagnetic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in maximally rigorous mathematical terms the general scattering-emission problem for a fixed object, and derive such fundamental corollaries as the scattering-emission volume integral equation, the Lippmann-Schwinger equation for the dyadic transition operator, the multi-particle scattering-emission equations, and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computation of the self-emitted component of the total field is completely separated from that of the elastically scattered field. The same is true of the computation of the emitted and elastically scattered components of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical computation of relevant optical observables.

  8. Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unver, O.; Gurtug, O.

    2010-10-15

    Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence,more » the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.« less

  9. Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics

    NASA Technical Reports Server (NTRS)

    Rueda, A.

    1985-01-01

    That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.

  10. Universal Binding and Recoil Corrections to Bound State g Factors in Hydrogenlike Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eides, Michael I.; Martin, Timothy J. S.

    2010-09-03

    The leading relativistic and recoil corrections to bound state g factors of particles with arbitrary spin are calculated. It is shown that these corrections are universal for any spin and depend only on the free particle gyromagnetic ratios. To prove this universality we develop nonrelativistic quantum electrodynamics (NRQED) for charged particles with an arbitrary spin. The coefficients in the NRQED Hamiltonian for higher spin particles are determined only by the requirements of Lorentz invariance and local charge conservation in the respective relativistic theory. For spin one charged particles, the NRQED Hamiltonian follows from the renormalizable QED of the charged vectormore » bosons. We show that universality of the leading relativistic and recoil corrections can be explained with the help of the Bargmann-Michael-Telegdi equation.« less

  11. Hidden in Plain View: The Material Invariance of Maxwell-Hertz-Lorentz Electrodynamics

    NASA Astrophysics Data System (ADS)

    Christov, C. I.

    2006-04-01

    Maxwell accounted for the apparent elastic behavior of the electromagnetic field through augmenting Ampere's law by the so-called displacement current much in the same way that he treated the viscoelasticity of gases. Original Maxwell constitutive relations for both electrodynamics and fluid dynamics were not material invariant, while combin- ing Faraday's law and the Lorentz force makes the first of Maxwell's equation material invariant. Later on, Oldroyd showed how to make a viscoelastic constitutive law mate- rial invariant. The main assumption was that the proper description of a constitutive law must be material invariant. Assuming that the electromagnetic field is a material field, we show here that if the upper convected Oldroyd derivative (related to Lie derivative) is used, the displacement current becomes material invariant. The new formulation ensures that the equation for conser- vation of charge is also material invariant which vindicates the choice of Oldroyd derivative over the standard convec- tive derivative. A material invariant field model is by ne- cessity Galilean invariant. We call the material field (the manifestation of which are the equations of electrodynam- ics the metacontinuum), in order to distinguish it form the standard material continua.

  12. Analytical solutions for the motion of a charged particle in electric and magnetic fields via non-singular fractional derivatives

    NASA Astrophysics Data System (ADS)

    Morales-Delgado, V. F.; Gómez-Aguilar, J. F.; Taneco-Hernandez, M. A.

    2017-12-01

    In this work we propose fractional differential equations for the motion of a charged particle in electric, magnetic and electromagnetic fields. Exact solutions are obtained for the fractional differential equations by employing the Laplace transform method. The temporal fractional differential equations are considered in the Caputo-Fabrizio-Caputo and Atangana-Baleanu-Caputo sense. Application examples consider constant, ramp and harmonic fields. In addition, we present numerical results for different values of the fractional order. In all cases, when α = 1, we recover the standard electrodynamics.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyao, Tadahiro; Spohn, Herbert

    The retarded van der Waals potential, as first obtained by Casimir and Polder, is usually computed on the basis of nonrelativistic quantum electrodynamics . The Hamiltonian describes two infinitely heavy nuclei, charge e, separated by a distance R and two spinless electrons, charge -e, nonrelativistically coupled to the quantized radiation field. Casimir and Polder used the dipole approximation and small coupling to the Maxwell field. We employ here the full Hamiltonian and determine the asymptotic strength of the leading -R{sup -7} potential, which is valid for all e. Our computation is based on a path integral representation and expands inmore » 1/R, rather than in e.« less

  14. Microparticle accelerator of unique design. [for micrometeoroid impact and cratering simulation

    NASA Technical Reports Server (NTRS)

    Vedder, J. F.

    1978-01-01

    A microparticle accelerator has been devised for micrometeoroid impact and cratering simulation; the device produces high-velocity (0.5-15 km/sec), micrometer-sized projectiles of any cohesive material. In the source, an electrodynamic levitator, single particles are charged by ion bombardment in high vacuum. The vertical accelerator has four drift tubes, each initially at a high negative voltage. After injection of the projectile, each tube is grounded in turn at a time determined by the voltage and charge/mass ratio to give four acceleration stages with a total voltage equivalent to about 1.7 MV.

  15. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  16. United States Air Force Summer Faculty Research Program. 1985 Technical Report. Volume 3.

    DTIC Science & Technology

    1985-12-01

    Canadian Journal of Microbiology 30:63-67. Jones, W.D. and J. Greenberg. Modification of methods used in bacteriophage typing of Mycobacterium tuberculosis ...Sands Missile Range, New Mexico . 7. Nicolaides, J.D., "Free Flight Missile Dynamics," Lecture Notes, Depurtnent of Aero-Space Engineering, University of...Univ. of New Mexico , Albuquerque, New Mexico , August 1967, pp. 123-138. 2. Jackson, J.D., Classical Electrodynamics, New York, New York, John Wiley

  17. Exploring Ultrahigh-Intensity Laser-Plasma Interaction Physics with QED Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Luedtke, S. V.; Yin, L.; Labun, L. A.; Albright, B. J.; Stark, D. J.; Bird, R. F.; Nystrom, W. D.; Hegelich, B. M.

    2017-10-01

    Next generation high-intensity lasers are reaching intensity regimes where new physics-quantum electrodynamics (QED) corrections to otherwise classical plasma dynamics-becomes important. Modeling laser-plasma interactions in these extreme settings presents a challenge to traditional particle-in-cell (PIC) codes, which either do not have radiation reaction or include only classical radiation reaction. We discuss a semi-classical approach to adding quantum radiation reaction and photon production to the PIC code VPIC. We explore these intensity regimes with VPIC, compare with results from the PIC code PSC, and report on ongoing work to expand the capability of VPIC in these regimes. This work was supported by the U.S. DOE, Los Alamos National Laboratory Science program, LDRD program, NNSA (DE-NA0002008), and AFOSR (FA9550-14-1-0045). HPC resources provided by TACC, XSEDE, and LANL Institutional Computing.

  18. Geometrical aspects in optical wave-packet dynamics.

    PubMed

    Onoda, Masaru; Murakami, Shuichi; Nagaosa, Naoto

    2006-12-01

    We construct a semiclassical theory for propagation of an optical wave packet in a nonconducting medium with a periodic structure of dielectric permittivity and magnetic permeability, i.e., a nonconducting photonic crystal. We employ a quantum-mechanical formalism in order to clarify its link to those of electronic systems. It involves the geometrical phase, i.e., Berry's phase, in a natural way, and describes an interplay between orbital motion and internal rotation. Based on the above theory, we discuss the geometrical aspects of the optical Hall effect. We also consider a reduction of the theory to a system without periodic structure and apply it to the transverse shift of an optical beam at an interface reflection or refraction. For a generic incident beam with an arbitrary polarization, an identical result for the transverse shift of each reflected or transmitted beam is given by the following different approaches: (i) analytic evaluation of wave-packet dynamics, (ii) total angular momentum (TAM) conservation for individual photons, and (iii) numerical simulation of wave-packet dynamics. It is consistent with a result by classical electrodynamics. This means that the TAM conservation for individual photons is already taken into account in wave optics, i.e., classical electrodynamics. Finally, we show an application of our theory to a two-dimensional photonic crystal, and propose an optimal design for the enhancement of the optical Hall effect in photonic crystals.

  19. QED: Experimental Evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    The theory of quantum electrodynamics (QED) is perhaps the most precisely tested physics theory ever conceived. It describes the interaction of charged particles by emitting photons. The most precise prediction of this very precise theory is the magnetic strength of the electron, what physicists call the magnetic moment. Prediction and measurement agree to 12 digits of precision. In this video, Fermilab’s Dr. Don Lincoln talks about this amazing measurement.

  20. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Cheung, Wang K.; Norbury, John W.

    1994-01-01

    The effects of electromagnetic-production processes due to two-photon exchange in nucleus-nucleus collisions are discussed. Feynman diagrams for two-photon exchange are evaluated using quantum electrodynamics. The total cross section and stopping power for projectile and target nuclei of identical charge are found to be significant for heavy nuclei above a few GeV per nucleon-incident energy.

  1. Lightning Channel Corona Formation Treated as a Large System of Streamers

    NASA Astrophysics Data System (ADS)

    Carlson, B.; Lehtinen, N. G.; Kochkin, P.

    2017-12-01

    Transfer of charge along a lightning channel leads to strong electric fields that drive such charge outward. This charge flow is nonuniform, breaking up into millimeter-scale discharge structures called streamers. The motion of such streamers can carry charge many meters outward from the channel, but each individual streamer only carries a small amount of charge. Transfer of macroscopic charge outward thus requires a large population of streamers that are expected to interact and exhibit interesting collective behaviors. We attempt to simulate such collective behaviors by approximating the behavior of each streamer but retaining streamer interactions and overall electrodynamic effects and apply this simulation to a few key scenarios. For the case of flow of charge off a lightning channel, we simulate a continually growing population of streamers injected near a charged conducting channel. Further, motivated by lightning initiation, we simulate the growth of a population of streamers from a single seed streamer as might initiate from a hydrometeor. For all cases considered, we characterize the charges and currents involved, compare to observations where possible, and characterize the collective effects including spatial and temporal non-uniformity.

  2. A Laboratory Study of the Charging/Discharging Mechanisms of a Dust Particle Exposed to an Electron Beam

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F.; Comfort, R. H.

    1999-01-01

    The interaction of micron sized particles or "dust particles" with different space and planetary environments has become an important area of research. One particular area of interest is how dust particles interact with plasmas. Studies have shown that charged dust particles immersed in plasmas can alter plasma characteristics, while ions and electrons in plasmas can affect a particle's potential and thereby, its interaction with other particles. The basis for understanding these phenomena is the charging mechanisms of the dust particle, specifically, how the particle's charge and characteristics are affected when exposed to ions and electrons. At NASA Marshall Space Flight Center, a laboratory experiment has been developed to study the interaction of dust particles with electrons. Using a unique laboratory technique known as electrodynamic suspension, a single charged particle is suspended in a modified quadrupole trap. Once suspended, the particle is then exposed to an electron beam to study the charging/discharging mechanisms due to collisions of energetic electrons. The change in the particle's charge, approximations of the charging/discharging currents, and the charging/discharging yield are calculated.

  3. Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.; Gibbon, P.; Sheng, Z.-M.; Li, Y.-T.; Zhang, J.

    2017-07-01

    We investigate how next-generation laser pulses at 10 -200 PW interact with a solid target in the presence of a relativistically underdense preplasma produced by amplified spontaneous emission (ASE). Laser hole boring and relativistic transparency are strongly restrained due to the generation of electron-positron pairs and γ -ray photons via quantum electrodynamics (QED) processes. A pair plasma with a density above the initial preplasma density is formed, counteracting the electron-free channel produced by hole boring. This pair-dominated plasma can block laser transport and trigger an avalanchelike QED cascade, efficiently transferring the laser energy to the photons. This renders a 1 -μ m scale-length, underdense preplasma completely opaque to laser pulses at this power level. The QED-induced opacity therefore sets much higher contrast requirements for such a pulse in solid-target experiments than expected by classical plasma physics. Our simulations show, for example, that proton acceleration from the rear of a solid with a preplasma would be strongly impaired.

  4. John Wheeler, 1933 - 1959: Particles and Weapons

    NASA Astrophysics Data System (ADS)

    Ford, Kenneth

    2009-05-01

    During the early part of his career, John Archibald Wheeler made an astonishing number of contributions to nuclear and particle physics, as well as to classical electrodynamics, often in collaboration with another physicist. He was also a major contributor to the Manhattan Project (in Chicago and Hanford rather than Los Alamos), and, following World War II, became an influential scientific cold warrior. His early achievements in physics include the calculated scattering of light by light (with Gregory Breit), the prediction of nuclear rotational states (with Edward Teller), the theory of fission (with Niels Bohr), action-at-a-distance electrodynamics (with Richard Feynman), the theory of positronium, the universal weak interaction (with Jayme Tiomno), and the proposed use of the muon as a nuclear probe particle. He gained modest fame as the person who identified xenon 135 as a reactor poison. His Project Matterhorn contributed significantly to the design of the H bomb, and his Project 137, which he had hoped would flower into a major defense lab, served as the precursor to the Jason group.

  5. Absorbing Boundary Conditions in Quantum Relativistic Mechanics for Spinless Particles Subject to a Classical Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Sater, Julien

    The theory of Artificial Boundary Conditions described by Antoine et al. [2,4-6] for the Schrodinger equation is applied to the Klein-Gordon (KG) in two-dimensions (2-D) for spinless particles subject to electromagnetic fields. We begin by providing definitions for a basic understanding of the theory of operators, differential geometry and wave front sets needed to discuss the factorization theorem thanks to Nirenberg and Hormander [14, 16]. The laser-free Klein-Gordon equation in 1-D is then discussed, followed by the case including electrodynamics potentials, concluding with the KG equation in 2-D space with electrodynamics potentials. We then consider numerical simulations of the laser-particle KG equation, which includes a brief analysis of a finite difference scheme. The conclusion integrates a discussion of the numerical results, the successful completion of the objective set forth, a declaration of the unanswered encountered questions and a suggestion of subjects for further research.

  6. Quantum and classical dissipation of charged particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzatov, D. V., E-mail: dm-guzatov@mail.ru

    Analytic expressions for the radiative and nonradiative decay rates for an electric quadrupole source (atom, molecule) in the vicinity of a spherical particle (dielectric, metal) have been derived and analyzed within the classical electrodynamics. It has been shown that the highest increase in the decay rates appears in the quasi-static case, when the wavelength of the transition in question is much larger than the characteristic size of the system formed by the particle and the quadrupole. Asymptotic expressions for the decay rates have been derived for this case.

  8. A theoretical investigation of single-molecule fluorescence detection on thin metallic layers.

    PubMed

    Enderlein, J

    2000-04-01

    In the present paper, the excitation and detection of single-molecule fluorescence over thin metallic films is studied theoretically within the framework of classical electrodynamics. The model takes into account the specific conditions of surface plasmon-assisted optical excitation, fluorescence quenching by the metal film, and detection geometry. Extensive numerical results are presented for gold, silver, and aluminum films, showing the detectable fluorescence intensities and their dependence on film thickness and the fluorescent molecule's position under optimal excitation conditions.

  9. Few-electron Qubits in Silicon Quantum Electronic Devices

    DTIC Science & Technology

    2014-09-01

    Jackson. Classical electrodynamics. Wiley, 1999. [60] C. Fasth, A. Fuhrer, L. Samuelson, Vitaly N . Golovach, and Daniel Loss. Phys. Rev. Lett., 98...quantum dots. Among these systems, Si is very promising since it can be isotopically purified to eliminate -1 n ...-tno:>tinn J...,~~~+;..,., f1.,JrJ...1.2]. Taking t he AlGaAs/ GaAs system as an example, the most crucial part of t he heterostructure is t he interface between t he n -type AlGaAs and

  10. Weber electrodynamics, part I. general theory, steady current effects

    NASA Astrophysics Data System (ADS)

    Wesley, J. P.

    1990-10-01

    The original Weber action at a distance theory, valid for slowly varying effects, is extended to time-retarded fields, valid for rapidly varying effects including radiation. A new law for the force on a charge moving in this field is derived (replacing the Lorentz force which violates Newton's third law). The limitations of the Maxwell theory are discussed. The Weber theory, in addition to predicting all of the usual electrodynamic results, predicts the following crucial results for slowly varying effects (where Maxwell theory fails): 1) the force on Ampere's bridge in agreement with the measurements of Moyssides and Pappas, 2) the tension required to rupture current carrying wires as observed by Graneau, 3) the force to drive the Graneau-Hering submarine, 4) the force to drive the mercury in Hering's pump, and 5) the force to drive the oscillations in a current carrying mercury wedge as observed by Phipps.

  11. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, Bogdan M., E-mail: bogdan.mihalcea@inflpr.ro; Vişan, Gina T.; Ganciu, Mihai

    2016-03-21

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method.more » Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.« less

  12. Effect of Electrodynamic Forces on the Attitude Stabilization of a Satellite in Ecliptic orbits

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Yehia

    This work is based on the previous paper of the author [1]. The present paper is devoted to the investigation of the attitude dynamics of an ecliptic satellite moving in the magnetic field of the Earth. Eelectrodynamic forces result from the motion of a charged satelite relative to the magnetic field of the Earth. The torque due to electrodynamic effect of the Lorentz forces on the attitude stabilization of the satellite is studied with the detailed model of the Earth's magnetic field. A method for estimating the stable and unstable regions of the equilibrium positions based on Euler's equation is also discussed. The results show that Lorentz forces can affect the stablization of the satellite, in particular for highly eccentric orbits and also for large satellte. [1] Abdel-Aziz, Y. A. Attitude Stabilization of a Rigid Spacecraft in the Geomagnetic Field. AdSpR 40, 18-24, 2007.

  13. Nonequilibrium electromagnetics: Local and macroscopic fields and constitutive relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker-Jarvis, James; Kabos, Pavel; Holloway, Christopher L.

    We study the electrodynamics of materials using a Liouville-Hamiltonian-based statistical-mechanical theory. Our goal is to develop electrodynamics from an ensemble-average viewpoint that is valid for microscopic and nonequilibrium systems at molecular to submolecular scales. This approach is not based on a Taylor series expansion of the charge density to obtain the multipoles. Instead, expressions of the molecular multipoles are used in an inverse problem to obtain the averaging statistical-density function that is used to obtain the macroscopic fields. The advantages of this method are that the averaging function is constructed in a self-consistent manner and the molecules can either bemore » treated as point multipoles or contain more microstructure. Expressions for the local and macroscopic fields are obtained, and evolution equations for the constitutive parameters are developed. We derive equations for the local field as functions of the applied, polarization, magnetization, strain density, and macroscopic fields.« less

  14. Scale magnetic effect in quantum electrodynamics and the Wigner-Weyl formalism

    NASA Astrophysics Data System (ADS)

    Chernodub, M. N.; Zubkov, M. A.

    2017-09-01

    The scale magnetic effect (SME) is the generation of electric current due to a conformal anomaly in an external magnetic field in curved spacetime. The effect appears in a vacuum with electrically charged massless particles. Similarly to the Hall effect, the direction of the induced anomalous current is perpendicular to the direction of the external magnetic field B and to the gradient of the conformal factor τ , while the strength of the current is proportional to the beta function of the theory. In massive electrodynamics the SME remains valid, but the value of the induced current differs from the current generated in the system of massless fermions. In the present paper we use the Wigner-Weyl formalism to demonstrate that in accordance with the decoupling property of heavy fermions the corresponding anomalous conductivity vanishes in the large-mass limit with m2≫|e B | and m ≫|∇τ | .

  15. Finite element simulation of thunderstorm electrodynamics in the proximity of the storm

    NASA Technical Reports Server (NTRS)

    Baginski, Michael Edward

    1988-01-01

    Observations of electric fields, Maxwell current density, and air conductivity over thunderstorms were presented. The measurements were obtained using electric field mils and conductivity probes installed on a U2 aircraft as the aircraft passed approximately directly over an active thunderstorm at an altitude of 18 to 20 km. Accurate electrical observations of this type are rare and provide important information to those involved in numerically modeling a thunderstorm. A preliminary set of computer simulations based on this data were conducted and are described. The simulations show good agreement with measurements and are used to infer the thundercloud's charging current and amount of charge exchanged per flash.

  16. The Construction of Compton Tensors in Scalar QED

    DOE PAGES

    Bakker, Bernard L. G.; Ji, Chueng-Ryong

    2016-12-09

    Current conservation is a vital condition in electrodynamics. For this paper, we review the literature concerning the ways to ensure that the formalism used in calculating amplitudes for the scattering of charged particles is in compliance with current conservation. For the case of electron scattering off a scalar and a spin-1/2 target as well as Compton scattering on a scalar target, we present some novelties besides reviewing the literature.

  17. QED: Experimental Evidence

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The theory of quantum electrodynamics (QED) is perhaps the most precisely tested physics theory ever conceived. It describes the interaction of charged particles by emitting photons. The most precise prediction of this very precise theory is the magnetic strength of the electron, what physicists call the magnetic moment. Prediction and measurement agree to 12 digits of precision. In this video, Fermilab’s Dr. Don Lincoln talks about this amazing measurement.

  18. Electrodynamics of Moving Conductors in Magnetic Fields: Off the Beaten Track with Paul Lorrain

    ERIC Educational Resources Information Center

    Bringuier, E.

    2012-01-01

    The paper is about the appearance of space charge in an ohmic conductor moving in a magnetic field, as pointed out in this journal by Lorrain (1990 "Eur. J. Phys." 11 94-8) and earlier by van Bladel (1973 "Proc. IEEE" 61 260-8). The phenomenon is reinvestigated here in the light of energy balance considerations, in the particular case of a…

  19. Circuit quantum electrodynamics with a spin qubit.

    PubMed

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  20. Quantum statistical relation for black holes in nonlinear electrodynamics coupled to Einstein-Gauss-Bonnet AdS gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo

    2011-03-15

    We consider curvature-squared corrections to Einstein-Hilbert gravity action in the form of a Gauss-Bonnet term in D>4 dimensions. In this theory, we study the thermodynamics of charged static black holes with anti-de Sitter (AdS) asymptotics, and whose electric field is described by nonlinear electrodynamics. These objects have received considerable attention in recent literature on gravity/gauge dualities. It is well-known that, within the framework of anti-de Sitter/conformal field theory (AdS/CFT) correspondence, there exists a nonvanishing Casimir contribution to the internal energy of the system, manifested as the vacuum energy for global AdS spacetime in odd dimensions. Because of this reason, wemore » derive a quantum statistical relation directly from the Euclidean action and not from the integration of the first law of thermodynamics. To this end, we employ a background-independent regularization scheme which consists, in addition to the bulk action, of counterterms that depend on both extrinsic and intrinsic curvatures of the boundary (Kounterterm series). This procedure results in a consistent inclusion of the vacuum energy and chemical potential in the thermodynamic description for Einstein-Gauss-Bonnet AdS gravity regardless of the explicit form of the nonlinear electrodynamics Lagrangian.« less

  1. Gravitational anti-screening as an alternative to dark matter

    NASA Astrophysics Data System (ADS)

    Penner, A. Raymond

    2016-04-01

    A semiclassical model of the screening of electric charge by virtual electric dipoles, as found in electrodynamic theory, will be presented. This model is then applied to the hypothetical case of an electric force where like charges attract. The resulting anti-screening of the electric charge is found to have the same functional dependence on the field source and observation distance that is found with the Baryonic Tully-Fisher Relationship. This leads to an anti-screening model for the gravitational force which is then used to determine the theoretical rotational curve of the Galaxy and the theoretical velocity dispersions and shear values for the Coma cluster. These theoretical results are found to be in good agreement with the corresponding astronomical observations. The screening of electric charge as found in QED and the larger apparent masses of galaxies and galactic clusters therefore appears to be two sides of the same coin.

  2. Redundant information encoding in QED during decoherence

    NASA Astrophysics Data System (ADS)

    Tuziemski, J.; Witas, P.; Korbicz, J. K.

    2018-01-01

    Broadly understood decoherence processes in quantum electrodynamics, induced by neglecting either the radiation [L. Landau, Z. Phys. 45, 430 (1927), 10.1007/BF01343064] or the charged matter [N. Bohr and L. Rosenfeld, K. Danske Vidensk. Selsk, Math.-Fys. Medd. XII, 8 (1933)], have been studied from the dawn of the theory. However, what happens in between, when a part of the radiation may be observed, as is the case in many real-life situations, has not been analyzed yet. We present such an analysis for a nonrelativistic, pointlike charge and thermal radiation. In the dipole approximation, we solve the dynamics and show that there is a regime where, despite the noise, the observed field carries away almost perfect and hugely redundant information about the charge momentum. We analyze a partial charge-field state and show that it approaches a so-called spectrum broadcast structure.

  3. Experimental evidence of quantum radiation reaction in aligned crystals.

    PubMed

    Wistisen, Tobias N; Di Piazza, Antonino; Knudsen, Helge V; Uggerhøj, Ulrik I

    2018-02-23

    Quantum radiation reaction is the influence of multiple photon emissions from a charged particle on the particle's dynamics, characterized by a significant energy-momentum loss per emission. Here we report experimental radiation emission spectra from ultrarelativistic positrons in silicon in a regime where quantum radiation reaction effects dominate the positron's dynamics. Our analysis shows that while the widely used quantum approach is overall the best model, it does not completely describe all the data in this regime. Thus, these experimental findings may prompt seeking more generally valid methods to describe quantum radiation reaction. This experiment is a fundamental test of quantum electrodynamics in a regime where the dynamics of charged particles is strongly influenced not only by the external electromagnetic fields but also by the radiation field generated by the charges themselves and where each photon emission may significantly reduce the energy of the charge.

  4. Process-independent strong running coupling

    DOE PAGES

    Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis; ...

    2017-09-25

    Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less

  5. Process-independent strong running coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis

    Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less

  6. Analogy between electromagnetic potentials and wave-like dynamic variables with connections to quantum theory

    NASA Astrophysics Data System (ADS)

    Yang, Chen

    2018-05-01

    The transitions from classical theories to quantum theories have attracted many interests. This paper demonstrates the analogy between the electromagnetic potentials and wave-like dynamic variables with their connections to quantum theory for audiences at advanced undergraduate level and above. In the first part, the counterpart relations in the classical electrodynamics (e.g. gauge transform and Lorenz condition) and classical mechanics (e.g. Legendre transform and free particle condition) are presented. These relations lead to similar governing equations of the field variables and dynamic variables. The Lorenz gauge, scalar potential and vector potential manifest a one-to-one similarity to the action, Hamiltonian and momentum, respectively. In the second part, the connections between the classical pictures of electromagnetic field and particle to quantum picture are presented. By characterising the states of electromagnetic field and particle via their (corresponding) variables, their evolution pictures manifest the same algebraic structure (isomorphic). Subsequently, pictures of the electromagnetic field and particle are compared to the quantum picture and their interconnections are given. A brief summary of the obtained results are presented at the end of the paper.

  7. Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs

    NASA Astrophysics Data System (ADS)

    Reis, Tiago C.; Correia, Ilídio J.; Aguiar-Ricardo, Ana

    2013-07-01

    The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design.The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01668d

  8. Dissipationless Hall current in dense quark matter in a magnetic field

    DOE PAGES

    Ferrer, Efrain J.; de la Incera, V.

    2017-03-29

    Here, we show the realization of axion electrodynamics within the Dual Chiral Density Wave phase of dense quark matter in the presence of a magnetic field. This system exhibits an anomalous dissipationless Hall current perpendicular to the magnetic field and an anomalous electric charge density. This connection to topological insulators and 3D optical lattices, as well as possible implications for heavy-ion collisions and neutron stars are outlined.

  9. The USRA workshop report: Electrostatic fog dispersal

    NASA Technical Reports Server (NTRS)

    Davis, M. H. (Editor)

    1983-01-01

    The Workshop was held at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, on February 1-2, 1983. The Workshop was attended by seventeen experts in the scientific fields of fog and cloud physics, charged-particle electrodynamics, atmospheric turbulence, atmospheric electricity, and electro-gasdynamics. The major objective of the Workshop was to assess the scientific merits and scientific basis of the proposed system and to assess its potential for operational application.

  10. Force law in material media, hidden momentum and quantum phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholmetskii, Alexander L., E-mail: alkholmetskii@gmail.com; Missevitch, Oleg V.; Yarman, T.

    We address to the force law in classical electrodynamics of material media, paying attention on the force term due to time variation of hidden momentum of magnetic dipoles. We highlight that the emergence of this force component is required by the general theorem, deriving zero total momentum for any static configuration of charges/currents. At the same time, we disclose the impossibility to add this force term covariantly to the Lorentz force law in material media. We further show that the adoption of the Einstein–Laub force law does not resolve the issue, because for a small electric/magnetic dipole, the density ofmore » Einstein–Laub force integrates exactly to the same equation, like the Lorentz force with the inclusion of hidden momentum contribution. Thus, none of the available expressions for the force on a moving dipole is compatible with the relativistic transformation of force, and we support this statement with a number of particular examples. In this respect, we suggest applying the Lagrangian approach to the derivation of the force law in a magnetized/polarized medium. In the framework of this approach we obtain the novel expression for the force on a small electric/magnetic dipole, with the novel expression for its generalized momentum. The latter expression implies two novel quantum effects with non-topological phases, when an electric dipole is moving in an electric field, and when a magnetic dipole is moving in a magnetic field. These phases, in general, are not related to dynamical effects, because they are not equal to zero, when the classical force on a dipole is vanishing. The implications of the obtained results are discussed.« less

  11. A Concise Introduction to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Swanson, Mark S.

    2018-02-01

    Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confined to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic field. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum.

  12. Evaluating charge noise acting on semiconductor quantum dots in the circuit quantum electrodynamics architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basset, J.; Stockklauser, A.; Jarausch, D.-D.

    2014-08-11

    We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase (I) and the quadrature (Q) components of the microwave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of 8.5×10{sup −5} e/√(Hz). A low frequency 1/f type noise spectrum combined with a white noise level of 6.6×10{sup −6} e{sup 2}/Hz above 1 Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope ofmore » the 1/f noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system.« less

  13. Ionization source utilizing a multi-capillary inlet and method of operation

    DOEpatents

    Smith, Richard D.; Kim, Taeman; Udseth, Harold R.

    2004-10-12

    A multi-capillary inlet to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, which allows increased conductance of ions and other charged particles. The multi-capillary inlet is juxtaposed between an ion source and the interior of an instrument maintained at near atmospheric pressure, it finds particular advantages when deployed to improve the ion transmission between an electrospray ionization source and the first vacuum stage of a mass spectrometer, and finds its greatest advantages when deployed in conjunction with an electrodynamic (RF) ion funnel deployed within the interior of the mass spectrometer, particularly an ion funnel equipped with a jet disturber.

  14. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.

  15. Exact solutions in 3D gravity with torsion

    NASA Astrophysics Data System (ADS)

    González, P. A.; Vásquez, Yerko

    2011-08-01

    We study the three-dimensional gravity with torsion given by the Mielke-Baekler (MB) model coupled to gravitational Chern-Simons term, and that possess electric charge described by Maxwell-Chern-Simons electrodynamics. We find and discuss this theory's charged black holes solutions and uncharged solutions. We find that for vanishing torsion our solutions by means of a coordinate transformation can be written as three-dimensional Chern-Simons black holes. We also discuss a special case of this theory, Topologically Massive Gravity (TMG) at chiral point, and we show that the logarithmic solution of TMG is also a solution of the MB model at a fixed point in the space of parameters. Furthermore, we show that our solutions generalize Gödel type solutions in a particular case. Also, we recover BTZ black hole in Riemann-Cartan spacetime for vanishing charge.

  16. Inflation and acceleration of the universe by nonlinear magnetic monopole fields

    NASA Astrophysics Data System (ADS)

    Övgün, A.

    2017-02-01

    Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.

  17. Dark matter and weak signals of quantum spacetime

    NASA Astrophysics Data System (ADS)

    Doplicher, Sergio; Fredenhagen, Klaus; Morsella, Gerardo; Pinamonti, Nicola

    2017-03-01

    In physically motivated models of quantum spacetime, a U (1 ) gauge theory turns into a U (∞ ) gauge theory; hence, free classical electrodynamics is no longer free and neutral fields may have electromagnetic interactions. We discuss the last point for scalar fields, as a way to possibly describe dark matter; we have in mind the gravitational collapse of binary systems or future applications to self-gravitating Bose-Einstein condensates as possible sources of evidence of quantum gravitational phenomena. The effects considered so far, however, seem too faint to be detectable at present.

  18. The invariance of classical electromagnetism under Charge-conjugation, Parity and Time-reversal (CPT) transformations

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    The invariance of classical electromagnetism under charge-conjugation, parity, and time-reversal (CPT) is studied by considering the motion of a charged particle in electric and magnetic fields. Upon applying CPT transformations to various physical quantities and noting that the motion still behaves physically demonstrates invariance.

  19. Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS)

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Butala, M.; Wilson, B. D.; Komjathy, A.; Wang, C.; Rosen, G.

    2016-07-01

    The goal of the Multimodel Ensemble Prediction System (MEPS) program is to improve space weather specification and forecasting with ensemble modeling. Space weather can have detrimental effects on a variety of civilian and military systems and operations, and many of the applications pertain to the ionosphere and upper atmosphere. Space weather can affect over-the-horizon radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the Federal Aviation Administration (FAA's) Wide Area Augmentation System (WAAS). Because of its importance, numerous space weather forecasting approaches are being pursued, including those involving empirical, physics-based, and data assimilation models. Clearly, if there are sufficient data, the data assimilation modeling approach is expected to be the most reliable, but different data assimilation models can produce different results. Therefore, like the meteorology community, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics (ITE) system that is based on different data assimilation models. The MEPS ensemble is composed of seven physics-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and middle to low latitude ionosphere-electrodynamics. Hence, multiple data assimilation models can be used to describe each region. A selected storm event that was reconstructed with four different data assimilation models covering the middle and low latitude ionosphere is presented and discussed. In addition, the effect of different data types on the reconstructions is shown.

  20. Lamb Shift of n = 1 and n = 2 States of Hydrogen-like Atoms, 1 ≤ Z ≤ 110

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yerokhin, V. A.; Shabaev, V. M.

    2015-09-15

    Theoretical energy levels of the n = 1 and n = 2 states of hydrogen-like atoms with the nuclear charge numbers 1 ≤ Z ≤ 110 are tabulated. The tabulation is based on ab initio quantum electrodynamics calculations performed to all orders in the nuclear binding strength parameter Zα, where α is the fine structure constant. Theoretical errors due to various effects are critically examined and estimated.

  1. Large gauge transformations and little group for soft photons

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Seo, Min-Seok; Shiu, Gary

    2017-11-01

    Recently, large gauge transformation (LGT), the residual gauge symmetry after gauge fixing that survives at null infinity, has drawn much attention concerning soft theorems and the memory effect. We point out that LGT charges in quantum electrodynamics are in fact one of noncompact generators of the two dimensional Euclidean group. Moreover, by comparing two equivalent descriptions of gauge transformation, we suggest that LGT is simply another way of describing the gauged little group for massless soft photons.

  2. Multiscale Electrodynamics/Time-Dependent Density Functional Theory Modeling of Coupled Plasmon/Molecule Excitations

    NASA Astrophysics Data System (ADS)

    Lopata, Kenneth; Smith, Holden

    The coupled dynamics of molecular chromophores and plasmons at surface of metal nanostructures are important for a range of processes such as molecular sensing, light harvesting, and near-field photochemistry. Modeling these dynamics from first principles, however, is challenging, as the large system sizes precludes a purely quantum mechanical treatment. In this talk I will present an approach based on propagating the plasmonic currents and fields using electrodynamics (finite-difference time-domain) with each chromophore described using an isolated quantum sub-region embedded in the overall classical background. This approach can be readily parallelized over these quantum regions, which enables large multiscale simulations of tens or hundreds of dyes, each of which is described individually by real-time time-dependent density functional theory. Application to gold nanoparticles coated with malachite green and rhodamine 6G monolayers shows good agreement with experimentally measured coupling spectra, including the polariton peaks, as well as the plasmon and molecular depletions. This research was supported by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  3. X-ray phase-contrast imaging: the quantum perspective

    NASA Astrophysics Data System (ADS)

    Slowik, J. M.; Santra, R.

    2013-08-01

    Time-resolved phase-contrast imaging using ultrafast x-ray sources is an emerging method to investigate ultrafast dynamical processes in matter. Schemes to generate attosecond x-ray pulses have been proposed, bringing electronic timescales into reach and emphasizing the demand for a quantum description. In this paper, we present a method to describe propagation-based x-ray phase-contrast imaging in nonrelativistic quantum electrodynamics. We explain why the standard scattering treatment via Fermi’s golden rule cannot be applied. Instead, the quantum electrodynamical treatment of phase-contrast imaging must be based on a different approach. It turns out that it is essential to select a suitable observable. Here, we choose the quantum-mechanical Poynting operator. We determine the expectation value of our observable and demonstrate that the leading order term describes phase-contrast imaging. It recovers the classical expression of phase-contrast imaging. Thus, it makes the instantaneous electron density of non-stationary electronic states accessible to time-resolved imaging. Interestingly, inelastic (Compton) scattering does automatically not contribute in leading order, explaining the success of the semiclassical description.

  4. Experimental Quantum Randomness Processing Using Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R.; Sun, Luyan; Ma, Xiongfeng

    2016-07-01

    Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.

  5. Interacting charges and the classical electron radius

    NASA Astrophysics Data System (ADS)

    De Luca, Roberto; Di Mauro, Marco; Faella, Orazio; Naddeo, Adele

    2018-03-01

    The equation of the motion of a point charge q repelled by a fixed point-like charge Q is derived and studied. In solving this problem useful concepts in classical and relativistic kinematics, in Newtonian mechanics and in non-linear ordinary differential equations are revised. The validity of the approximations is discussed from the physical point of view. In particular the classical electron radius emerges naturally from the requirement that the initial distance is large enough for the non-relativistic approximation to be valid. The relevance of this topic for undergraduate physics teaching is pointed out.

  6. First results from the new PVLAS apparatus: A new limit on vacuum magnetic birefringence

    NASA Astrophysics Data System (ADS)

    Della Valle, F.; Milotti, E.; Ejlli, A.; Messineo, G.; Piemontese, L.; Zavattini, G.; Gastaldi, U.; Pengo, R.; Ruoso, G.

    2014-11-01

    Several groups are carrying out experiments to observe and measure vacuum magnetic birefringence, predicted by quantum electrodynamics (QED). We have started running the new PVLAS apparatus installed in Ferrara, Italy, and have measured a noise floor value for the unitary field magnetic birefringence of vacuum Δ nu(vac )=(4 ±20 )×1 0-23 T-2 (the error represents a 1 σ deviation). This measurement is compatible with zero and hence represents a new limit on vacuum magnetic birefringence deriving from nonlinear electrodynamics. This result reduces to a factor of 50 the gap to be overcome to measure for the first time the value of Δ nu(vac ,QED ) predicted by QED: Δ nu(vac ,QED )=4 ×10-24 T-2 . These birefringence measurements also yield improved model-independent bounds on the coupling constant of axion-like particles to two photons, for masses greater than 1 meV, along with a factor-2 improvement of the fractional charge limit on millicharged particles (fermions and scalars), including neutrinos.

  7. Entanglement entropy between virtual and real excitations in quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Ardenghi, Juan Sebastián

    2018-05-01

    The aim of this work is to introduce the entanglement entropy of real and virtual excitations of fermion and photon fields. By rewriting the generating functional of quantum electrodynamics theory as an inner product between quantum operators, it is possible to obtain quantum density operators representing the propagation of real and virtual particles. These operators are partial traces, where the degrees of freedom traced out are unobserved excitations. Then the von Neumann definition of entropy can be applied to these quantum operators and in particular, for the partial traces taken over by the internal or external degrees of freedom. A universal behavior is obtained for the entanglement entropy for different quantum fields at zeroth order in the coupling constant. In order to obtain numerical results at different orders in the perturbation expansion, the Bloch-Nordsieck model is considered, where it is shown that for some particular values of the electric charge, the von Neumann entropy increases or decreases with respect to the noninteracting case.

  8. A SECOND-ORDER DIVERGENCE-CONSTRAINED MULTIDIMENSIONAL NUMERICAL SCHEME FOR RELATIVISTIC TWO-FLUID ELECTRODYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp

    A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron–positron or an electron–proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten–Lax–Van Leer) Riemann solver is proposed that exactlymore » preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.« less

  9. Currents between tethered electrodes in a magnetized laboratory plasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Urrutia, J. M.

    1989-01-01

    Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.

  10. Computing by physical interaction in neurons.

    PubMed

    Aur, Dorian; Jog, Mandar; Poznanski, Roman R

    2011-12-01

    The electrodynamics of action potentials represents the fundamental level where information is integrated and processed in neurons. The Hodgkin-Huxley model cannot explain the non-stereotyped spatial charge density dynamics that occur during action potential propagation. Revealed in experiments as spike directivity, the non-uniform charge density dynamics within neurons carry meaningful information and suggest that fragments of information regarding our memories are endogenously stored in structural patterns at a molecular level and are revealed only during spiking activity. The main conceptual idea is that under the influence of electric fields, efficient computation by interaction occurs between charge densities embedded within molecular structures and the transient developed flow of electrical charges. This process of computation underlying electrical interactions and molecular mechanisms at the subcellular level is dissimilar from spiking neuron models that are completely devoid of physical interactions. Computation by interaction describes a more powerful continuous model of computation than the one that consists of discrete steps as represented in Turing machines.

  11. Sources and components of ball lightning theory

    NASA Astrophysics Data System (ADS)

    Nikitin, A. I.; Bychkov, V. L.; Nikitina, T. F.; Velichko, A. M.; Abakumov, V. I.

    2018-03-01

    The article describes the cases when ball lightning (BL) exhibited an extremely high specific energy store (up to 1010 J/m3), a presence of uncompensated electric charge (up to 10‑3 C) and an ability to generate high frequency pulses (up to 10 MW). It is shown that the realization of a combination of these properties of BL is possible if to consider it as a heterogeneous system consisting of a unipolarly charged core and a dielectric shell. In the electric field of the core charge, arises a force owing to the polarization of the shell that opposes the Coulomb repulsion force of the charges. BL models constructed according to the indicated principle are described: the electrodynamic model and the chemical-thermal model, which treats BL as a hollow sphere filled with steam. The requirement to take into account the main three properties of BL makes it possible to reduce the number of models of this natural phenomenon. Detailed cases of observations of high-energy lightning are analyzed.

  12. Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles

    NASA Astrophysics Data System (ADS)

    Wang, Weihua; Christensen, Thomas; Jauho, Antti-Pekka; Thygesen, Kristian S.; Wubs, Martijn; Mortensen, N. Asger

    2015-04-01

    In classical electrodynamics, nanostructured graphene is commonly modeled by the computationally demanding problem of a three-dimensional conducting film of atomic-scale thickness. Here, we propose an efficient alternative two-dimensional electrostatic approach where all calculation procedures are restricted to the graphene sheet. Furthermore, to explore possible quantum effects, we perform tight-binding calculations, adopting a random-phase approximation. We investigate multiple plasmon modes in 20 nm equilateral triangles of graphene, treating the optical response classically as well as quantum mechanically. Compared to the classical plasmonic spectrum which is ``blind'' to the edge termination, we find that the quantum plasmon frequencies exhibit blueshifts in the case of armchair edge termination of the underlying atomic lattice, while redshifts are found for zigzag edges. Furthermore, we find spectral features in the zigzag case which are associated with electronic edge states not present for armchair termination. Merging pairs of triangles into dimers, plasmon hybridization leads to energy splitting that appears strongest in classical calculations while splitting is lower for armchair edges and even more reduced for zigzag edges. Our various results illustrate a surprising phenomenon: Even 20 nm large graphene structures clearly exhibit quantum plasmonic features due to atomic-scale details in the edge termination.

  13. Relating renormalizability of D-dimensional higher-order electromagnetic and gravitational models to the classical potential at the origin

    NASA Astrophysics Data System (ADS)

    Accioly, Antonio; Correia, Gilson; de Brito, Gustavo P.; de Almeida, José; Herdy, Wallace

    2017-03-01

    Simple prescriptions for computing the D-dimensional classical potential related to electromagnetic and gravitational models, based on the functional generator, are built out. These recipes are employed afterward as a support for probing the premise that renormalizable higher-order systems have a finite classical potential at the origin. It is also shown that the opposite of the conjecture above is not true. In other words, if a higher-order model is renormalizable, it is necessarily endowed with a finite classical potential at the origin, but the reverse of this statement is untrue. The systems used to check the conjecture were D-dimensional fourth-order Lee-Wick electrodynamics, and the D-dimensional fourth- and sixth-order gravity models. A special attention is devoted to New Massive Gravity (NMG) since it was the analysis of this model that inspired our surmise. In particular, we made use of our premise to resolve trivially the issue of the renormalizability of NMG, which was initially considered to be renormalizable, but it was shown some years later to be non-renormalizable. We remark that our analysis is restricted to local models in which the propagator has simple and real poles.

  14. New knotted solutions of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Hoyos, Carlos; Sircar, Nilanjan; Sonnenschein, Jacob

    2015-06-01

    In this paper we have further developed the study of topologically non-trivial solutions of vacuum electrodynamics. We have discovered a novel method of generating such solutions by applying conformal transformations with complex parameters on known solutions expressed in terms of Bateman's variables. This has enabled us to obtain a wide class of solutions from the basic configuration, such as constant electromagnetic fields and plane-waves. We have introduced a covariant formulation of Bateman's construction and discussed the conserved charges associated with the conformal group as well as a set of four types of conserved helicities. We have also given a formulation in terms of quaternions. This led to a simple map between the electromagnetic knotted and linked solutions into flat connections of SU(2) gauge theory. We have computed the corresponding Chern-Simons charge in a class of solutions and the charge takes integer values.

  15. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Hughes, Joseph; Schaub, Hanspeter

    2018-06-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  16. Conserved charges of black holes in Weyl and Einstein-Gauss-Bonnet gravities

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin

    2014-11-01

    An off-shell generalization of the Abbott-Deser-Tekin (ADT) conserved charge was recently proposed by Kim et al. They achieved this by introducing off-shell Noether currents and potentials. In this paper, we construct the crucial off-shell Noether current by the variation of the Bianchi identity for the expression of EOM, with the help of the property of Killing vector. Our Noether current, which contains an additional term that is just one half of the Lie derivative of a surface term with respect to the Killing vector, takes a different form in comparison with the one in their work. Then we employ the generalized formulation to calculate the quasi-local conserved charges for the most general charged spherically symmetric and the dyonic rotating black holes with AdS asymptotics in four-dimensional conformal Weyl gravity, as well as the charged spherically symmetric black holes in arbitrary dimensional Einstein-Gauss-Bonnet gravity coupled to Maxwell or nonlinear electrodynamics in AdS spacetime. Our results confirm those obtained through other methods in the literature.

  17. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Hughes, Joseph; Schaub, Hanspeter

    2018-04-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  18. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared

    NASA Astrophysics Data System (ADS)

    Fischer, Marco P.; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J.; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-01

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  19. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared.

    PubMed

    Fischer, Marco P; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-22

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  20. Fine structure of heliumlike ions and determination of the fine structure constant.

    PubMed

    Pachucki, Krzysztof; Yerokhin, Vladimir A

    2010-02-19

    We report a calculation of the fine-structure splitting in light heliumlike atoms, which accounts for all quantum electrodynamical effects up to order alpha{5} Ry. For the helium atom, we resolve the previously reported disagreement between theory and experiment and determine the fine-structure constant with an accuracy of 31 ppb. The calculational results are extensively checked by comparison with the experimental data for different nuclear charges and by evaluation of the hydrogenic limit of individual corrections.

  1. Real-space mapping of the strongly coupled plasmons of nanoparticle dimers.

    PubMed

    Kim, Deok-Soo; Heo, Jinhwa; Ahn, Sung-Hyun; Han, Sang Woo; Yun, Wan Soo; Kim, Zee Hwan

    2009-10-01

    We carried out the near-field optical imaging of isolated and dimerized gold nanocubes to directly investigate the strong coupling between two adjacent nanoparticles. The high-resolution (approximately 10 nm) local field maps (intensities and phases) of self-assembled nanocube dimers reveal antisymmetric plasmon modes that are starkly different from a simple superposition of two monomeric dipole plasmons, which is fully reproduced by the electrodynamics simulations. The result decisively proves that, for the closely spaced pair of nanoparticles (interparticle distance/particle size approximately 0.04), the strong Coulombic attraction between the charges at the interparticle gap dominates over the intraparticle charge oscillations, resulting in a hybridized dimer plasmon mode that is qualitatively different from those expected from a simple dipole-dipole coupling model.

  2. On the Lienard-Wiechert potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, C.K.

    1988-09-01

    Very recently, questions have started to surface concerning the well-known Lienard-Wiechert potentials describing relativistically moving point sources in classical electrodynamics. The existence of questions prompts a review of the original derivations by Lienard and Wiechert. These were done at the turn of the present century, and so predate the development of relevant modern techniques from special relativity theory and generalized function theory. Only purely geometric reasoning was used. That reasoning is reviewed here, and a previously unrecognized flaw is noted. When this flaw is remedied, the potentials are slightly altered and become consistent with other new results reported elsewhere.

  3. Optical properties of medium size noble and transition metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan C.; Pantelides, Sokrates T.

    2009-03-01

    Using first-principles methods within time dependent density functional theory and the local density approximation (TDLDA) the absorption spectra of medium size (˜20-80 atoms) silver, gold and copper nanoparticles have been calculated. The nanoparticles are fcc fragments with different aspect ratios. We find that in the case of Ag nanoparticles is well reproduced by classical electrodynamics theory based in Mie's formalism, using the dielectric function of bulk Ag and taking into account the nanoparticle shape. For the case of Cu and Au, there is a similarity in the overall features of the quantum mechanical and classical spectra, but no detailed agreement. We will discuss the role that the d-electrons among all the different elements and the surface states play in controlling the optical properties of the nanoparticles. This work was supported by GOALI NSF grant (DMR-0513048), DOE, the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and Alcoa Inc.

  4. Lorentz-invariant three-vectors and alternative formulation of relativistic dynamics

    NASA Astrophysics Data System (ADS)

    Rȩbilas, Krzysztof

    2010-03-01

    Besides the well-known scalar invariants, there also exist vectorial invariants in special relativity. It is shown that the three-vector (dp⃗/dt)∥+γv(dp⃗/dt)⊥ is invariant under the Lorentz transformation. The subscripts ∥ and ⊥ denote the respective components with respect to the direction of the velocity of the body v⃗, and p⃗ is the relativistic momentum. We show that this vector is equal to a force F⃗R, which satisfies the classical Newtonian law F⃗R=ma⃗R in the instantaneous inertial rest frame of an accelerating body. Therefore, the relation F⃗R=(dp⃗/dt)∥+γv(dp⃗/dt)⊥, based on the Lorentz-invariant vectors, may be used as an invariant (not merely a covariant) relativistic equation of motion in any inertial system of reference. An alternative approach to classical electrodynamics based on the invariant three-vectors is proposed.

  5. Superradiant Quantum Heat Engine.

    PubMed

    Hardal, Ali Ü C; Müstecaplıoğlu, Özgür E

    2015-08-11

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  6. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    PubMed

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  7. Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim

    The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. Here, we consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent “spontaneous” emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using themore » SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978)] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.« less

  8. Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy

    NASA Astrophysics Data System (ADS)

    Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim; Martinez, Todd; Chen, Hsing-Ta; Subotnik, Joseph E.

    2018-03-01

    The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. We consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent "spontaneous" emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using the SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978), 10.1063/1.436793] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.

  9. Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy

    DOE PAGES

    Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim; ...

    2018-03-12

    The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. Here, we consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent “spontaneous” emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using themore » SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978)] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.« less

  10. A classical instability of Reissner-Nordstrom solutions and the fate of magnetically charged black holes

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.

    1991-01-01

    Working in the context of spontaneously broken gauge theories, we show that the magnetically charged Reissner-Nordstrom solution develops a classical instability if the horizon is sufficiently small. This instability has significant implications for the evolution of a magnetically charged black hole. In particular, it leads to the possibility that such a hole could evaporate completely, leaving in its place a nonsingular magnetic monopole.

  11. Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.

    2008-01-01

    It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.

  12. Prequantum classical statistical field theory: background field as a source of everything?

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2011-07-01

    Prequantum classical statistical field theory (PCSFT) is a new attempt to consider quantum mechanics (QM) as an emergent phenomenon, cf. with De Broglie's "double solution" approach, Bohmian mechanics, stochastic electrodynamics (SED), Nelson's stochastic QM and its generalization by Davidson, 't Hooft's models and their development by Elze. PCSFT is a comeback to a purely wave viewpoint on QM, cf. with early Schrodinger. There is no quantum particles at all, only waves. In particular, photons are simply wave-pulses of the classical electromagnetic field, cf. SED. Moreover, even massive particles are special "prequantum fields": the electron field, the neutron field, and so on. PCSFT claims that (sooner or later) people will be able to measure components of these fields: components of the "photonic field" (the classical electromagnetic field of low intensity), electronic field, neutronic field, and so on. At the moment we are able to produce quantum correlations as correlations of classical Gaussian random fields. In this paper we are interested in mathematical and physical reasons of usage of Gaussian fields. We consider prequantum signals (corresponding to quantum systems) as composed of a huge number of wave-pulses (on very fine prequantum time scale). We speculate that the prequantum background field (the field of "vacuum fluctuations") might play the role of a source of such pulses, i.e., the source of everything.

  13. An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Chan, C. T.

    2018-02-01

    Plasmonics has attracted much attention not only because it has useful properties such as strong field enhancement, but also because it reveals the quantum nature of matter. To handle quantum plasmonics effects, ab initio packages or empirical Feibelman d-parameters have been used to explore the quantum correction of plasmonic resonances. However, most of these methods are formulated within the quasi-static framework. The self-consistent hydrodynamics model offers a reliable approach to study quantum plasmonics because it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent manner. Instead of the standard scattering method, we formulate the self-consistent hydrodynamics method as an eigenvalue problem to study quantum plasmonics with electrons and photons treated on the same footing. We find that the eigenvalue approach must involve a global operator, which originates from the energy functional of the electron gas. This manifests the intrinsic nonlocality of the response of quantum plasmonic resonances. Our model gives the analytical forms of quantum corrections to plasmonic modes, incorporating quantum electron spill-out effects and electrodynamical retardation. We apply our method to study the quantum surface plasmon polariton for a single flat interface.

  14. Design and analysis of a high power moderate band radiator using a switched oscillator

    NASA Astrophysics Data System (ADS)

    Armanious, Miena Magdi Hakeem

    Quarter-wave switched oscillators (SWOs) are an important technology for the generation of high-power, moderate bandwidth (mesoband) wave forms. The use of SWOs in high power microwave sources has been discussed for the past 10 years [1--6], but a detailed discussion of the design of this type of oscillators for particular waveforms has been lacking. In this dissertation I develop a design methodology for a realization of SWOs, also known as MATRIX oscillators in the scientific community. A key element in the design of SWOs is the self-breakdown switch, which is created by a large electric field. In order for the switch to close as expected from the design, it is essential to manage the electrostatic field distribution inside the oscillator during the charging time. This enforces geometric constraints on the shape of the conductors inside MATRIX. At the same time, the electrodynamic operation of MATRIX is dependent on the geometry of the structure. In order to generate a geometry that satisfies both the electrostatic and electrodynamic constraints, a new approach is developed to generate this geometry using the 2-D static solution of the Laplace equation, subject to a particular set of boundary conditions. These boundary conditions are manipulated to generate equipotential lines with specific dimensions that satisfy the electrodynamic constraints. Meanwhile, these equipotential lines naturally support an electrostatic field distribution that meets the requirements for the switch operation. To study the electrodynamic aspects of MATRIX, three different (but interrelated) numerical models are built. Depending on the assumptions made in each model, different information about the electrodynamic properties of the designed SWO are obtained. In addition, the agreement and consistency between the different models, validate and give confidence in the calculated results. Another important aspect of the design process is understanding the relationship between the geometric parameters of MATRIX and the output waveforms. Using the numerical models, the relationship between the dimensions of MATRIX and its calculated resonant parameters are studied. For a given set of geometric constraints, this provides more flexibility to the output specifications. Finally, I present a comprehensive design methodology that generates the geometry of a MATRIX system from the desired specification then calculates the radiated waveform.

  15. A classical instability of Reissner-Nordstrom solutions and the fate of magnetically charged black holes

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.

    1992-01-01

    Working in the context of spontaneously broken gauge theories, it is shown that the magnetically charged Reissner-Nordstrom solution develops a classical instability if the horizon is sufficiently small. This instability has significant implications for the evolution of a magnetically charged black hole. In particular, it leads to the possibility that such a hole could evaporate completely, leaving in its place a nonsingular magnetic monopole.

  16. Correlation, Breit and Quantum Electrodynamics effects on energy level and transition properties of W54+ ion

    NASA Astrophysics Data System (ADS)

    Ding, Xiaobin; Sun, Rui; Koike, Fumihiro; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Dong, Chenzhong

    2017-03-01

    The electron correlation effects and Breit interaction as well as Quantum Electro-Dynamics (QED) effects were expected to have important contribution to the energy level and transition properties of heavy highly charged ions. The ground states [Ne]3s23p63d2 and first excited states [Ne]3s23p53d3 of W54+ ion have been studied by using Multi-Configuration Dirac-Fock method with the implementation of Grasp2K package. A restricted active space method was employed to investigate the correlation contribution from different models. The Breit interaction and QED effects were taken into account in the relativistic configuration interaction calculation with the converged wavefunction. It is found that the correlation contribution from 3s and 3p orbital have important contribution to the energy level, transition wavelength and probability of the ground and the first excited state of W54+ ion. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  17. Relativistically strong electromagnetic radiation in a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V., E-mail: svbulanov@gmail.com, E-mail: bulanov.sergei@jaea.go.jp; Esirkepov, T. Zh.; Kando, M.

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated inmore » the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron–positron pairs, which is described within quantum electrodynamics theory.« less

  18. QED theory of multiphoton transitions in atoms and ions

    NASA Astrophysics Data System (ADS)

    Zalialiutdinov, Timur A.; Solovyev, Dmitry A.; Labzowsky, Leonti N.; Plunien, Günter

    2018-03-01

    This review surveys the quantum theory of electromagnetic radiation for atomic systems. In particular, a review of current theoretical studies of multiphoton processes in one and two-electron atoms and highly charged ions is provided. Grounded on the quantum electrodynamics description the multiphoton transitions in presence of cascades, spin-statistic behaviour of equivalent photons and influence of external electric fields on multiphoton in atoms and anti-atoms are discussed. Finally, the nonresonant corrections which define the validity of the concept of the excited state energy levels are introduced.

  19. Radiation Electrodynamics of the Photo-Electron Cloud Produced By an Arbitrary Photon Pulse Incident on a Planar Emitting Surface in Vacuum

    DTIC Science & Technology

    1994-06-01

    charge clouds. These finitely-remote fields are then used to compute asymptotic radiation fields in the limit of the field point going to infinity in a 0...like to thank Doug Beason for providing an environment conducive to performing the research reported on here and Michelle Tafoya for her excellent...radiation quantities, however, are obtained only in the limit of the field point going to infinity ; we thus demonstrate the existence of this limit and

  20. Dynamics of thin-shell wormholes with different cosmological models

    NASA Astrophysics Data System (ADS)

    Sharif, Muhammad; Mumtaz, Saadia

    This work is devoted to investigate the stability of thin-shell wormholes in Einstein-Hoffmann-Born-Infeld electrodynamics. We also study the attractive and repulsive characteristics of these configurations. A general equation-of-state is considered in the form of linear perturbation which explores the stability of the respective wormhole solutions. We assume Chaplygin, linear and logarithmic gas models to study exotic matter at thin-shell and evaluate stability regions for different values of the involved parameters. It is concluded that the Hoffmann-Born-Infeld parameter and electric charge enhance the stability regions.

  1. Hidden momentum and the Abraham-Minkowski debate

    NASA Astrophysics Data System (ADS)

    Saldanha, Pablo L.; Filho, J. S. Oliveira

    2017-04-01

    We use an extended version of electrodynamics, which admits the existence of magnetic charges and currents, to discuss how different models for electric and magnetic dipoles do or do not carry hidden momentum under the influence of external electromagnetic fields. Based on that, we discuss how the models adopted for the electric and magnetic dipoles from the particles that compose a material medium influence the expression for the electromagnetic part of the light momentum in the medium. We show that Abraham expression is compatible with electric dipoles formed by electric charges and magnetic dipoles formed by magnetic charges, while Minkowski expression is compatible with electric dipoles formed by magnetic currents and magnetic dipoles formed by electric currents. The expression ɛ0E ×B , on the other hand, is shown to be compatible with electric dipoles formed by electric charges and magnetic dipoles formed by electric currents, which are much more natural models. So this expression has an interesting interpretation in the Abraham-Minkowski debate about the momentum of light in a medium: It is the expression compatible with the nonexistence of magnetic charges. We also provide a simple justification of why Abraham and Minkowski momenta can be associated with the kinetic and canonical momentum of light, respectively.

  2. Renormalizable Electrodynamics of Scalar and Vector Mesons. Part II

    DOE R&D Accomplishments Database

    Salam, Abdus; Delbourgo, Robert

    1964-01-01

    The "gauge" technique" for solving theories introduced in an earlier paper is applied to scalar and vector electrodynamics. It is shown that for scalar electrodynamics, there is no {lambda}φ*2φ2 infinity in the theory, while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the gauge technique are explained in section 3, and a preliminary set of rules for finite computation in vector electrodynamics is set out in Eqs. (7.28) - (7.34).

  3. Classical molecular dynamics simulations for non-equilibrium correlated plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Talin, B.

    2017-03-01

    A classical molecular dynamics model was recently extended to simulate neutral multi-component plasmas where various charge states of the same atom and electrons coexist. It is used to investigate the plasma effects on the ion charge and on the ionization potential in dense plasmas. Different simulated statistical properties will show that the concept of isolated particles is lost in such correlated plasmas. The charge equilibration is discussed for a carbon plasma at solid density and investigation on the charge distribution and on the ionization potential depression (IPD) for aluminum plasmas is discussed with reference to existing experiments.

  4. BOOK REVIEW: Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity and Fractals

    NASA Astrophysics Data System (ADS)

    Heusler, Stefan

    2006-12-01

    The main focus of the second, enlarged edition of the book Mathematica for Theoretical Physics is on computational examples using the computer program Mathematica in various areas in physics. It is a notebook rather than a textbook. Indeed, the book is just a printout of the Mathematica notebooks included on the CD. The second edition is divided into two volumes, the first covering classical mechanics and nonlinear dynamics, the second dealing with examples in electrodynamics, quantum mechanics, general relativity and fractal geometry. The second volume is not suited for newcomers because basic and simple physical ideas which lead to complex formulas are not explained in detail. Instead, the computer technology makes it possible to write down and manipulate formulas of practically any length. For researchers with experience in computing, the book contains a lot of interesting and non-trivial examples. Most of the examples discussed are standard textbook problems, but the power of Mathematica opens the path to more sophisticated solutions. For example, the exact solution for the perihelion shift of Mercury within general relativity is worked out in detail using elliptic functions. The virial equation of state for molecules' interaction with Lennard-Jones-like potentials is discussed, including both classical and quantum corrections to the second virial coefficient. Interestingly, closed solutions become available using sophisticated computing methods within Mathematica. In my opinion, the textbook should not show formulas in detail which cover three or more pages—these technical data should just be contained on the CD. Instead, the textbook should focus on more detailed explanation of the physical concepts behind the technicalities. The discussion of the virial equation would benefit much from replacing 15 pages of Mathematica output with 15 pages of further explanation and motivation. In this combination, the power of computing merged with physical intuition would be of benefit even for newcomers. In summary, this book shows in a convincing manner how classical problems in physics can be attacked with modern computing technology. The second volume is interesting for experienced users of Mathematica. For students, the textbook can be very useful in combination with a seminar.

  5. Quantum-classical transition of photon-Carnot engine induced by quantum decoherence

    NASA Astrophysics Data System (ADS)

    Quan, H. T.; Zhang, P.; Sun, C. P.

    2006-03-01

    We study the physical implementation of the photon-Carnot engine (PCE) based on the cavity quantum electrodynamics system [M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther, Science 299, 862 (2003)]. Here we analyze two decoherence mechanisms for the more practical systems of PCE, the dissipation of photon field, and the pure dephasing of the input atoms. As a result we find that (i) the PCE can work well to some extent even in the existence of the cavity loss (photon dissipation) and (ii) the short-time atomic dephasing, which can destroy the PCE, is a fatal problem to be overcome.

  6. Classical field configurations and infrared slavery

    NASA Astrophysics Data System (ADS)

    Swanson, Mark S.

    1987-09-01

    The problem of determining the energy of two spinor particles interacting through massless-particle exchange is analyzed using the path-integral method. A form for the long-range interaction energy is obtained by analyzing an abridged vertex derived from the parent theory. This abridged vertex describes the radiation of zero-momentum particles by pointlike sources. A path-integral formalism for calculating the energy of the radiation field associated with this abridged vertex is developed and applications are made to determine the energy necessary for adiabatic separation of two sources in quantum electrodynamics and for an SU(2) Yang-Mills theory. The latter theory is shown to be consistent with confinement via infrared slavery.

  7. G. E. M. Jauncey and the Compton Effect

    NASA Astrophysics Data System (ADS)

    Jenkin, John

    In late 1922 Arthur Holly Compton (1892-1962) discovered that an X-ray quantum of radiation undergoes a discrete change in wavelength when it experiences a billiard-ball collision with a single atomic electron, a phenomenon that became known as the Compton effect and for which he shared the Nobel Prize in Physics for 1927. But for more than five years before he made his discovery, Compton had analyzed X-ray scattering in terms of classical electrodynamics. I suggest that his colleague at Washington University in St. Louis, G. E. M. Jauncey (1888-1947), helped materially to persuade him to embrace the quantum interpretation of his X-ray scattering experiments.

  8. Hybrid plasmonic systems: from optical transparencies to strong coupling and entanglement

    NASA Astrophysics Data System (ADS)

    Gray, Stephen K.

    2018-02-01

    Classical electrodynamics and quantum mechanical models of quantum dots and molecules interacting with plasmonic systems are discussed. Calculations show that just one quantum dot interacting with a plasmonic system can lead to interesting optical effects, including optical transparencies and more general Fano resonance features that can be tailored with ultrafast laser pulses. Such effects can occur in the limit of moderate coupling between quantum dot and plasmonic system. The approach to the strong coupling regime is also discussed. In cases with two or more quantum dots within a plasmonic system, the possibility of quantum entanglement mediated through the dissipative plasmonic structure arises.

  9. Superrotation charge and supertranslation hair on black holes

    DOE PAGES

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2017-05-31

    It is shown that black hole spacetimes in classical Einstein gravity are characterized by, in addition to their ADM mass M, momentummore » $$\\vec{P}$$, angular momentum $$\\vec{J}$$ and boost charge $$\\vec{/k}$$ , an infinite head of supertranslation hair. Furthermore, the distinct black holes are distinguished by classical superrotation charges measured at infinity. Solutions with supertranslation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown that a black hole can be supertranslated by throwing in an asymmetric shock wave. We derive a leading-order Bondi-gauge expression for the linearized horizon supertranslation charge and shown to generate, via the Dirac bracket, supertranslations on the linearized phase space of gravitational excitations of the horizon. The considerations of this paper are largely classical augmented by comments on their implications for the quantum theory.« less

  10. Superrotation charge and supertranslation hair on black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    It is shown that black hole spacetimes in classical Einstein gravity are characterized by, in addition to their ADM mass M, momentummore » $$\\vec{P}$$, angular momentum $$\\vec{J}$$ and boost charge $$\\vec{/k}$$ , an infinite head of supertranslation hair. Furthermore, the distinct black holes are distinguished by classical superrotation charges measured at infinity. Solutions with supertranslation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown that a black hole can be supertranslated by throwing in an asymmetric shock wave. We derive a leading-order Bondi-gauge expression for the linearized horizon supertranslation charge and shown to generate, via the Dirac bracket, supertranslations on the linearized phase space of gravitational excitations of the horizon. The considerations of this paper are largely classical augmented by comments on their implications for the quantum theory.« less

  11. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Carnevale, V.; Raugei, S.

    2009-12-01

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  12. Superrotation charge and supertranslation hair on black holes

    NASA Astrophysics Data System (ADS)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2017-05-01

    It is shown that black hole spacetimes in classical Einstein gravity are characterized by, in addition to their ADM mass M, momentum \\overrightarrow{P} , angular momentum \\overrightarrow{J} and boost charge \\overrightarrow{K} , an infinite head of supertranslation hair. The distinct black holes are distinguished by classical superrotation charges measured at infinity. Solutions with super-translation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown that a black hole can be supertranslated by throwing in an asymmetric shock wave. A leading-order Bondi-gauge expression is derived for the linearized horizon supertranslation charge and shown to generate, via the Dirac bracket, supertranslations on the linearized phase space of gravitational excitations of the horizon. The considerations of this paper are largely classical augmented by comments on their implications for the quantum theory.

  13. Times and locations of explosions; U.S. Geological Survey 1962 field season

    USGS Publications Warehouse

    Roller, John C.

    1962-01-01

    The U.S. Geological Survey detonated 86 large charges of chemical explosives in the western United States from 6 June to 9 August 1962, in a study of crustal structure in the western United States. This Technical Letter consists of two tables containing information about these explosions. Table I gives a brief geographical description of the shotpoints, and Table II gives the date, time, location, charge size, surface elevation, and some general information about the shots. In the Remarks column (Table II), the configuration and depth of most of the charges are given. This part of the table is not complete, as some of this information has not yet been compiled. Three types of explosives were used in the program. These were: Nitramon WW, a carbo-nitrate blasting agent; Composition B, a mixture of RDX and TNT; and Tovex-Gel, a non-nitroglycerin blasting slurry. The loading, firing, and surveying was done by United ElectroDynamics, Inc., of Pasadena, California. The timing was done by the U.S. Geological Survey.

  14. Modeling corona sheath dynamics and effects

    NASA Astrophysics Data System (ADS)

    Carlson, B.; Lehtinen, N. G.

    2016-12-01

    The conductive lightning channel is only a centimeter or so in diameter, but charge deposited along such a narrow channel produces a large electric field that drives corona discharge in nearby air, carrying the charge outward several meters. The formation of this "corona sheath" affects a wide range of observable properties of lightning, including the overall charge carried by the channel, the shape, speed, and attenuation of impulsive currents, and the possibility of x-ray production. Simplified electrostatic and electrodynamic models of the formation of the sheath will be discussed, with results given including regions near the tip of a hypothetical channel. These results suggest that the sheath initially expands very rapidly, limiting the lifetime of the intense fields nearest the channel. The expansion gradually slows as the fields decrease, but under certain circumstances a large-scale streamer-like process can lead to enhancement of electric fields displaced from the tip of the channel, possibly suggesting a mechanism for space stem formation and leader stepping.

  15. Lightning Impulse Breakdown Characteristics and Electrodynamic Process of Insulating Vegetable Oil-Based Nanofluid

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zhang, Zhao-Tao; Zou, Ping; Du, Bin; Liao, Rui-Jin

    2012-06-01

    Insulating vegetable oils are considered environment-friendly and fire-resistant substitutes for insulating mineral oils. This paper presents the lightning impulse breakdown characteristic of insulating vegetable oil and insulating vegetable oil-based nanofluids. It indicates that Fe3O4 nanoparticles can increase the negative lightning impulse breakdown voltages of insulating vegetable oil by 11.8% and positive lightning impulse breakdown voltages by 37.4%. The propagation velocity of streamer is reduced by the presence of nanoparticles. The propagation velocities of streamer to positive and negative lightning impulse breakdown in the insulating vegetable oil-based nanofluids are 21.2% and 14.4% lesser than those in insulating vegetable oils, respectively. The higher electrical breakdown strength and lower streamer velocity is explained by the charging dynamics of nanoparticles in insulating vegetable oil. Space charge build-up and space charge distorted filed in point-sphere gap is also described. The field strength is reduced at the streamer tip due to the low mobility of negative nanoparticles.

  16. The effect of plasma density and emitter geometry on space charge limits for field emitter array electron charge emission into a space plasma

    NASA Astrophysics Data System (ADS)

    Morris, Dave; Gilchrist, Brian; Gallimore, Alec

    2001-02-01

    Field Emitter Array Cathodes (FEACs) are a new technology being developed for several potential spacecraft electron emission and charge control applications. Instead of a single hot (i.e., high powered) emitter, or a gas dependant plasma contactor, FEAC systems consist of many (hundreds or thousands) of small (micron level) cathode/gate pairs printed on a semiconductor wafer that effect cold field emission at relatively low voltages. Each individual cathode emits only micro-amp level currents, but a functional array is capable of amp/cm2 current densities. It is hoped that thus FEAC offers the possibility of a relatively low-power, simple to integrate, and inexpensive technique for the high level of current emissions that are required for an electrodynamic tether (EDT) propulsion mission. Space charge limits are a significant concern for the EDT application. Vacuum chamber tests and PIC simulations are being performed at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory and Space Physics Research Laboratory to determine the effect of plasma density and emitter geometry on space charge limitations. The results of this work and conclusions to date of how to best mitigate space charge limits will be presented. .

  17. Asymptotically (A)dS dilaton black holes with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Hajkhalili, S.; Sheykhi, A.

    It is well known that with an appropriate combination of three Liouville-type dilaton potentials, one can construct charged dilaton black holes in an (anti)-de Sitter [(A)dS] spaces in the presence of linear Maxwell field. However, asymptotically (A)dS dilaton black holes coupled to nonlinear gauge field have not been found. In this paper, we construct, for the first time, three new classes of dilaton black hole solutions in the presence of three types of nonlinear electrodynamics, namely Born-Infeld (BI), Logarithmic (LN) and Exponential nonlinear (EN) electrodynamics. All these solutions are asymptotically (A)dS and in the linear regime reduce to the Einstein-Maxwell-dilaton (EMd) black holes in (A)dS spaces. We investigate physical properties and the causal structure, as well as asymptotic behavior of the obtained solutions, and show that depending on the values of the metric parameters, the singularity can be covered by various horizons. We also calculate conserved and thermodynamic quantities of the obtained solutions. Interestingly enough, we find that the coupling of dilaton field and nonlinear gauge field in the background of (A)dS spaces leads to a strange behavior for the electric field. We observe that the electric field is zero at singularity and increases smoothly until reaches a maximum value, then it decreases smoothly until goes to zero as r →∞. The maximum value of the electric field increases with increasing the nonlinear parameter β or decreasing the dilaton coupling α and is shifted to the singularity in the absence of either dilaton field (α = 0) or nonlinear gauge field (β →∞).

  18. Exact solutions to force-free electrodynamics in black hole backgrounds

    NASA Astrophysics Data System (ADS)

    Brennan, T. Daniel; Gralla, Samuel E.; Jacobson, Ted

    2013-10-01

    A shared property of several of the known exact solutions to the equations of force-free electrodynamics is that their charge-current four-vector is null. We examine the general properties of null-current solutions and then focus on the principal congruences of the Kerr black hole spacetime. We obtain a large class of exact solutions, which are in general time-dependent and non-axisymmetric. These solutions include waves that, surprisingly, propagate without scattering on the curvature of the black hole’s background. They may be understood as generalizations to Robinson’s solutions to vacuum electrodynamics associated with a shear-free congruence of null geodesics. When stationary and axisymmetric, our solutions reduce to those of Menon and Dermer, the only previously known solutions in Kerr. In Kerr, all of our solutions have null electromagnetic fields (\\vec{E} \\cdot \\vec{B} = 0 and E2 = B2). However, in Schwarzschild or flat spacetime there is freedom to add a magnetic monopole field, making the solutions magnetically dominated (B2 > E2). This freedom may be used to reproduce the various flat-spacetime and Schwarzschild-spacetime (split) monopole solutions available in the literature (due to Michel and later authors), and to obtain a large class of time-dependent, non-axisymmetric generalizations. These generalizations may be used to model the magnetosphere of a conducting star that rotates with arbitrary prescribed time-dependent rotation axis and speed. We thus significantly enlarge the class of known exact solutions, while organizing and unifying previously discovered solutions in terms of their null structure.

  19. Soft pair excitations and double-log divergences due to carrier interactions in graphene

    NASA Astrophysics Data System (ADS)

    Lewandowski, Cyprian; Levitov, L. S.

    2018-03-01

    Interactions between charge carriers in graphene lead to logarithmic renormalization of observables mimicking the behavior known in (3+1)-dimensional quantum electrodynamics (QED). Here we analyze soft electron-hole (e -h ) excitations generated as a result of fast charge dynamics, a direct analog of the signature QED effect—multiple soft photons produced by the QED vacuum shakeup. We show that such excitations are generated in photon absorption, when a photogenerated high-energy e -h pair cascades down in energy and gives rise to multiple soft e -h excitations. This fundamental process is manifested in a double-log divergence in the emission rate of soft pairs and a characteristic power-law divergence in their energy spectrum of the form 1/ω ln(ω/Δ ) . Strong carrier-carrier interactions make pair production a prominent pathway in the photoexcitation cascade.

  20. Bose-Einstein condensation, spontaneous symmetry breaking, and gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapusta, J.I.

    1981-07-15

    Bosonic chemical potentials for a variety of relativistic field theories are introduced via the methods of functional integrals with the aim of studying the relationship between Bose-Einstein condensation and spontaneous symmetry breaking. The models studied include the noninteracting and the self-interacting charged scalar field, scalar electrodynamics and the Higgs model, and the Weinberg-Salam model. In general the chemical potential acts as an effective symmetry-breaking parameter although the phase diagrams for the two cases (m/sup 2/<0 and m/sup 2/>0) look very different. It is found that the symmetry-restoring temperature in the Weinberg-Salam model increases with increasing electric charge density. Finally, themore » analysis of Jakobsen, Kon, and Segal of a conserved isotropic total angular momentum for the cosmic background radiation is shown to be erroneous.« less

  1. Regular black holes from semi-classical down to Planckian size

    NASA Astrophysics Data System (ADS)

    Spallucci, Euro; Smailagic, Anais

    In this paper, we review various models of curvature singularity free black holes (BHs). In the first part of the review, we describe semi-classical solutions of the Einstein equations which, however, contains a “quantum” input through the matter source. We start by reviewing the early model by Bardeen where the metric is regularized by-hand through a short-distance cutoff, which is justified in terms of nonlinear electro-dynamical effects. This toy-model is useful to point-out the common features shared by all regular semi-classical black holes. Then, we solve Einstein equations with a Gaussian source encoding the quantum spread of an elementary particle. We identify, the a priori arbitrary, Gaussian width with the Compton wavelength of the quantum particle. This Compton-Gauss model leads to the estimate of a terminal density that a gravitationally collapsed object can achieve. We identify this density to be the Planck density, and reformulate the Gaussian model assuming this as its peak density. All these models, are physically reliable as long as the BH mass is big enough with respect to the Planck mass. In the truly Planckian regime, the semi-classical approximation breaks down. In this case, a fully quantum BH description is needed. In the last part of this paper, we propose a nongeometrical quantum model of Planckian BHs implementing the Holographic Principle and realizing the “classicalization” scenario recently introduced by Dvali and collaborators. The classical relation between the mass and radius of the BH emerges only in the classical limit, far away from the Planck scale.

  2. Dressing the post-Newtonian two-body problem and classical effective field theory

    NASA Astrophysics Data System (ADS)

    Kol, Barak; Smolkin, Michael

    2009-12-01

    We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling post-Newtonian (PN) gravitating binary. We use the effective field theory approach with the nonrelativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a nonlinear classical field theory coupled to pointlike sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain nonlinear worldline vertices, and we classify all the possible topologies of irreducible diagrams for low loop numbers. We apply the dressing program to our post-Newtonian case of interest. The dressed charges consist of the dressed energy-momentum tensor after a nonrelativistic decomposition, and we compute all dressed charges (in the harmonic gauge) appearing up to 2PN in the 2-body effective action (and more). We determine the irreducible skeleton diagrams up to 3PN and we employ the dressed charges to compute several terms beyond 2PN.

  3. Tunneling decay of false vortices

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, M. B.; Yajnik, U. A.; Yeom, Dong-han

    2013-10-01

    We consider the decay of vortices trapped in the false vacuum of a theory of scalar electrodynamics in 2+1 dimensions. The potential is inspired by models with intermediate symmetry breaking to a metastable vacuum that completely breaks a U(1) symmetry, while in the true vacuum, the symmetry is unbroken. The false vacuum is unstable through the formation of true vacuum bubbles; however, the rate of decay can be extremely long. On the other hand, the false vacuum can contain metastable vortex solutions. These vortices contain the true vacuum inside in addition to a unit of magnetic flux and the appropriate topologically nontrivial false vacuum outside. We numerically establish the existence of vortex solutions which are classically stable; however, they can decay via tunneling. In general terms, they tunnel to a configuration which is a large, thin-walled vortex configuration that is now classically unstable to the expansion of its radius. We compute an estimate for the tunneling amplitude in the semiclassical approximation. We believe our analysis would be relevant to superconducting thin films or superfluids.

  4. Quantum optical effective-medium theory and transformation quantum optics for metamaterials

    NASA Astrophysics Data System (ADS)

    Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing; Mortensen, N. Asger

    2016-09-01

    While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions trans- form under coordinate transformations. Spontaneous-emission rates can be either enhanced or suppressed using invisibility cloaks or gradient index lenses. Furthermore, the anisotropic material profile of the cloak enables the directional control of spontaneous emission.

  5. Semi-classical Reissner-Nordstrom model for the structure of charged leptons

    NASA Technical Reports Server (NTRS)

    Rosen, G.

    1980-01-01

    The lepton self-mass problem is examined within the framework of the quantum theory of electromagnetism and gravity. Consideration is given to the Reissner-Nordstrom solution to the Einstein-Maxwell classical field equations for an electrically charged mass point, and the WKB theory for a semiclassical system with total energy zero is used to obtain an expression for the Einstein-Maxwell action factor. The condition obtained is found to account for the observed mass values of the three charged leptons, and to be in agreement with the correspondence principle.

  6. Planckian charged black holes in ultraviolet self-complete quantum gravity

    NASA Astrophysics Data System (ADS)

    Nicolini, Piero

    2018-03-01

    We present an analysis of the role of the charge within the self-complete quantum gravity paradigm. By studying the classicalization of generic ultraviolet improved charged black hole solutions around the Planck scale, we showed that the charge introduces important differences with respect to the neutral case. First, there exists a family of black hole parameters fulfilling the particle-black hole condition. Second, there is no extremal particle-black hole solution but quasi extremal charged particle-black holes at the best. We showed that the Hawking emission disrupts the condition of particle-black hole. By analyzing the Schwinger pair production mechanism, the charge is quickly shed and the particle-black hole condition can ultimately be restored in a cooling down phase towards a zero temperature configuration, provided non-classical effects are taken into account.

  7. GEC - a mission to explore the coupling between the lower boundary of geospace and the magnetosphere

    NASA Astrophysics Data System (ADS)

    Grebowsky, J.; Sojka, J.; Heelis, R.; Wu, C.

    The Geospace Electrodynamic Connections (GEC) mission of NASA's Solar Terrestrial Probes Program is the first mission to comprehensively focus on the electrodynamics in the threshold of the Earth's atmosphere -- i.e., in the transition region where the neutral gas changes from being the sink and driver of electrodynamic processes to being mainly driven by the Geospace charged particles and electric fields. In order to resolve how this region responds to and affects magnetospheric drivers, multiple, deep dipping spacecraft are needed. The GEC mission concept consists of three identical spacecraft with ˜ 200 X 2000 km, 830 inclination parking orbits (i.e., in a ``pearls-on-a-string'' configuration). Using onboard propulsion, the inter-spacecraft spacings can be controlled during the mission to sample different spatial/temporal scales. In addition, the spacecraft are designed to be capable of deep dipping campaigns, of approximately one week durations, down to ˜ 130 km perigee altitude or lower, where the neutral atmosphere causes the ion motions to depart significantly from the magnetosphere-driven EXB motion. The spacecraft can also be configured in a ``petal'' formation where the spacecraft perigees are separated in latitude, allowing simultaneous measurements over he same point on Earth at different altitudes. All spacecraft would carry identical instrument suites to measure in situ all the parameters (i.e., plasma, neutral gas temperatures, densities and composition; electric/magnetic fields; and energetic particle distributions) needed for intensive investigation of the electrodynamic coupling processes between the magnetosphere and the atmosphere. In recent months, the GEC mission definition has been brought to the point where it is ready for implementation, dependent only on the availability of funds. Several industry engineering studies were completed that provided detailed multi-spacecraft, deep-dipping mission concepts. These identified the technical challenges and showed how the challenges could be met. Further, the GEC Science Definition Team has recently refined the mission science rationale with a prioritization of the mission objectives and has defined the orbit scenarios most needed to accomplish the science goals.

  8. Understanding the Magnetosphere: The Counter-intuitive Simplicity of Cosmic Electrodynamics

    NASA Astrophysics Data System (ADS)

    Vasyliūnas, V. M.

    2008-12-01

    Planetary magnetospheres exhibit an amazing variety of phenomena, unlimited in complexity if followed into endlessly fine detail. The challenge of theory is to understand this variety and complexity, ultimately by seeing how the observed effects follow from the basic equations of physics (a point emphasized by Eugene Parker). The basic equations themselves are remarkably simple, only their consequences being exceedingly complex (a point emphasized by Fred Hoyle). In this lecture I trace the development of electrodynamics as an essential ingredient of magnetospheric physics, through the three stages it has undergone to date. Stage I is the initial application of MHD concepts and constraints (sometimes phrased in equivalent single-particle terms). Stage II is the classical formulation of self-consistent coupling between magnetosphere and ionosphere. Stage III is the more recent recognition that properly elucidating time sequence and cause-effect relations requires Maxwell's equations combined with the unique constraints of large-scale plasma. Problems and controversies underlie the transition from each stage to the following. For each stage, there are specific observed aspects of the magnetosphere that can be understood at its level; also, each stage implies a specific way to formulate unresolved questions (particularly important in this age of extensive multi-point observations and ever-more-detailed numerical simulations).

  9. Comparison of Classical and Charge Storage Methods for Determining Conductivity of Thin Film Insulators

    NASA Technical Reports Server (NTRS)

    Swaminathan, Prasanna; Dennison, J. R.; Sim, Alec; Brunson, Jerilyn; Crapo, Eric; Frederickson, A. R.

    2004-01-01

    Conductivity of insulating materials is a key parameter to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. Classical ASTM and IEC methods to measure thin film insulator conductivity apply a constant voltage to two electrodes around the sample and measure the resulting current for tens of minutes. However, conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator. Charge decay methods expose one side of the insulator in vacuum to sequences of charged particles, light, and plasma, with a metal electrode attached to the other side of the insulator. Data are obtained by capacitive coupling to measure both the resulting voltage on the open surface and emission of electrons from the exposed surface, as well monitoring currents to the electrode. Instrumentation for both classical and charge storage decay methods has been developed and tested at Jet Propulsion Laboratory (JPL) and at Utah State University (USU). Details of the apparatus, test methods and data analysis are given here. The JPL charge storage decay chamber is a first-generation instrument, designed to make detailed measurements on only three to five samples at a time. Because samples must typically be tested for over a month, a second-generation high sample throughput charge storage decay chamber was developed at USU with the capability of testing up to 32 samples simultaneously. Details are provided about the instrumentation to measure surface charge and current; for charge deposition apparatus and control; the sample holders to properly isolate the mounted samples; the sample carousel to rotate samples into place; the control of the sample environment including sample vacuum, ambient gas, and sample temperature; and the computer control and data acquisition systems. Measurements are compared here for a number of thin film insulators using both methods at both facilities. We have found that conductivity determined from charge storage decay methods is 102 to 104 larger than values obtained from classical methods. Another Spacecraft Charging Conference presentation describes more extensive measurements made with these apparatus. This work is supported through funding from the NASA Space Environments and Effects Program and the USU Space Dynamics Laboratory Enabling Technologies Program.

  10. Middle atmosphere electrodynamics: Report of the workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar Terrestrial Coupling

    NASA Technical Reports Server (NTRS)

    Maynard, N. C. (Editor)

    1979-01-01

    Significant deficiencies exist in the present understanding of the basic physical processes taking place within the middle atmosphere (the region between the tropopause and the mesopause), and in the knowledge of the variability of many of the primary parameters that regulate Middle Atmosphere Electrodynamics (MAE). Knowledge of the electrical properties, i.e., electric fields, plasma characteristics, conductivity and currents, and the physical processes that govern them is of fundamental importance to the physics of the region. Middle atmosphere electrodynamics may play a critical role in the electrodynamical aspects of solar-terrestrial relations. As a first step, the Workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar-Terrestrial Coupling was held to review the present status and define recommendations for future MAE research.

  11. Spacetimes dressed with stealth electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Smolić, Ivica

    2018-04-01

    Stealth field configurations by definition have a vanishing energy-momentum tensor, and thus do not contribute to the gravitational field equations. While only trivial fields can be stealth in Maxwell's electrodynamics, nontrivial stealth fields appear in some nonlinear models of electromagnetism. We find the necessary and sufficient conditions for the electromagnetic fields to be stealth and analyze which models admit such configurations. Furthermore, we present some concrete exact solutions, featuring a class of black holes dressed with the stealth electromagnetic hair, closely related to force-free solutions. Stealth hair does not alter the generalized Smarr formula, but may contribute to the Komar charges.

  12. Accretion onto some well-known regular black holes

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  13. Thermodynamics of Einstein-Born-Infeld black holes with negative cosmological constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo; INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano

    2008-06-15

    We study the thermodynamics associated to topological black hole solutions of AdS gravity coupled to nonlinear electrodynamics (Born-Infeld) in any dimension, using a background-independent regularization prescription for the Euclidean action given by boundary terms, which explicitly depend on the extrinsic curvature (Kounterterms series). A finite action principle leads to the correct definition of thermodynamic variables as Noether charges, which satisfy a Smarr-like relation. In particular, for the odd-dimensional case, a consistent thermodynamic description is achieved if the internal energy of the system includes the vacuum energy for AdS spacetime.

  14. Electromagnetic energy dispersion in a 5D universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartnett, John G.

    2010-06-15

    Electromagnetism is analyzed in a 5D expanding universe. Compared to the usual 4D description of electrodynamics it can be viewed as adding effective charge and current densities to the universe that are static in time. These lead to effective polarization and magnetization of the vacuum, which is most significant at high redshift. Electromagnetic waves propagate but group and phase velocities are dispersive. This introduces a new energy scale to the cosmos. And as a result electromagnetic waves propagate with superluminal speeds but no energy is transmitted faster than the canonical speed of light c.

  15. Two-dimensional electrodynamic structure of the normal glow discharge in an axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surzhikov, S. T., E-mail: surg@ipmnet.ru

    Results are presented from numerical simulations of an axisymmetric normal glow discharge in molecular hydrogen and molecular nitrogen in an axial magnetic field. The charged particle densities and averaged azimuthal rotation velocities of electrons and ions are studied as functions of the gas pressure in the range of 1–5 Torr, electric field strength in the range of 100–600 V/cm, and magnetic field in the range of 0.01–0.3 T. It is found that the axial magnetic field does not disturb the normal current density law.

  16. Equilibria of a charged artificial satellite subject to gravitational and Lorentz torques

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Yehia A.; Shoaib, Muhammad

    2014-07-01

    The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated.

  17. Neutrino Astrophysics in Slowly Rotating Spacetimes Permeated by Nonlinear Electrodynamics Fields

    NASA Astrophysics Data System (ADS)

    Mosquera Cuesta, Herman J.

    2017-02-01

    Many theoretical and astrophysical arguments involve consideration of the effects of super strong electromagnetic fields and the rotation during the late stages of core-collapse supernovae. In what follows, we solve Einstein field equations that are minimally coupled to an arbitrary (current-free) Born-Infeld nonlinear Lagrangian L(F,G) of electrodynamics (NLED) in the slow rotation regime a ≪ r+ (outer horizon size), up to first order in a/r. We cross-check the physical properties of such NLED spacetime w.r.t. against the Maxwell one. A study case on both neutrino flavor ({ν }e\\to {ν }μ ,{ν }τ ) oscillations and flavor+helicity (spin) flip ({ν }e\\to {\\overline{ν }}μ ,τ ) gyroscopic precession proves that in the spacetime of a slowly rotating nonlinear charged black hole (RNCBH), the neutrino dynamics translates into a positive enhancement of the r-process (reduction of the electron fraction Ye < 0.5). Consequently, it guarantees successful hyperluminous core-collapse supernova explosions due to the enlargement of the number and amount of decaying nuclide species. This posits that, as far as the whole luminosity is concerned, hypernovae will be a proof of the formation of astrophysical RNCBH.

  18. Shuttle Orbiter tethered subsatellite for exploring and tapping space plasmas

    NASA Technical Reports Server (NTRS)

    Banks, P. M.; Williamson, P. R.; Oyama, K. I.

    1981-01-01

    Consideration is given to the possibilities for studies in space plasma physics offered by a subsatellite mechanically tethered above the Space Shuttle Orbiter by a long conducting wire. The proposed experiment, designated the Shuttle Electrodynamic Tether Systems (SETS) is based on the concept of collecting electrons at the subsatellite and ejecting them from the Orbiter, made possible by the emf generated by the motion of the tether across geomagnetic field lines. The power generated in this manner can be used both for practical purposes within the Orbiter and for the creation of large-amplitude plasma and electromagnetic waves within the surrounding plasma. For a conducting spherical subsatellite 30 m in diameter with a 10-km tether drawing 1 A, calculations show that emfs on the order of 1000-2000 V and energy dissipation of as much as 10,000 W can be obtained, accompanied by the generation of two regions of net electric charge in the ionosphere. Scientific studies considered for SETS include the measurement of MHD waves artificially generated in the ionosphere, the investigation of current-driven plasma instabilities, VLF wave generation and the simulation of electrodynamics associated with the motion of celestial bodies through plasma.

  19. Power and charge dissipation from an electrodynamic tether

    NASA Technical Reports Server (NTRS)

    Hite, Gerald E.

    1987-01-01

    The Plasma Motor-Generator project utilizes the influence of the geomagnetic field on a conductive tether attached to a LEO spacecraft to provide a reversible conversion of orbital energy into electrical energy. The behavior of the current into the ionospheric plasma under the influence of the geomagnetic field is of significant experimental and theoretical interest. Theoretical calculations are reviewed which start from Maxwell's equations and treat the ionospheric plasma as a linear dielectric medium. These calculations show a charge emitting tether moving in a magnetic field will generate electromagnetic waves in the plasma which carry the charge in the direction of the magnetic field. The ratio of the tether's speed to the ion cyclotron frequency which is about 25 m for a LEO is a characteristic length for the phenomena. Whereas for the dimensions of the contact plasma much larger than this value the waves are the conventional Alfven waves, when the dimensions are comparable or smaller, diffraction effects occur similar to those associated with Fresnel diffraction in optics. The power required to excite these waves for a given tether current is used to estimate the impedance associated with this mode of charge dissipation.

  20. Double-Slit Interference Pattern for a Macroscopic Quantum System

    NASA Astrophysics Data System (ADS)

    Naeij, Hamid Reza; Shafiee, Afshin

    2016-12-01

    In this study, we solve analytically the Schrödinger equation for a macroscopic quantum oscillator as a central system coupled to two environmental micro-oscillating particles. Then, the double-slit interference patterns are investigated in two limiting cases, considering the limits of uncertainty in the position probability distribution. Moreover, we analyze the interference patterns based on a recent proposal called stochastic electrodynamics with spin. Our results show that when the quantum character of the macro-system is decreased, the diffraction pattern becomes more similar to a classical one. We also show that, depending on the size of the slits, the predictions of quantum approach could be apparently different with those of the aforementioned stochastic description.

  1. Gamma Rays at Very High Energies

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.

  2. The first dozen years of the history of ITEP Theoretical Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Ioffe, B. L.

    2013-01-01

    The theoretical investigations at ITEP in the years 1945 - 1958 are reviewed. There are exposed the most important theoretical results, obtained in the following branches of physics: (1) the theory of nuclear reactors on thermal neutrons; (2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in USA); (3) radiation theory; (4) low temperature physics; (5) quantum electrodynamics and quantum field theories; (6) parity violation in weak interactions, the theory of β-decay and other weak processes; (7) strong interaction and nuclear physics. To the review are added the English translations of a few papers, originally published in Russian, but unknown (or almost unknown) to Western readers.

  3. Scattering of massless scalar waves by magnetically charged black holes in Einstein-Yang-Mills-Higgs theory

    NASA Astrophysics Data System (ADS)

    Gußmann, Alexander

    2017-03-01

    The existence of the classical black hole solutions of the Einstein-Yang-Mills-Higgs equations with non-Abelian Yang-Mills-Higgs hair implies that not all classical stationary magnetically charged black holes can be uniquely described by their asymptotic characteristics. In fact, in a certain domain of parameters, there exist different spherically-symmetric, non-rotating and asymptotically-flat classical black hole solutions of the Einstein-Yang-Mills-Higgs equations which have the same ADM mass and the same magnetic charge but significantly different geometries in the near-horizon regions. (These are black hole solutions which are described by a Reissner-Nordström metric on the one hand and the black hole solutions with non-Abelian Yang-Mills-Higgs hair which are described by a metric which is not of Reissner-Nordström form on the other hand). One can experimentally distinguish such black holes with the same asymptotic characteristics but different near-horizon geometries classically by probing the near-horizon regions of the black holes. We argue that one way to probe the near-horizon region of a black hole which allows one to distinguish magnetically charged black holes with the same asymptotic characteristics but different near-horizon geometries is by classical scattering of waves. Using the example of a minimally-coupled massless probe scalar field scattered by magnetically charged black holes which can be obtained as solutions of the Einstein-Yang-Mills-Higgs equations with a Higgs triplet and gauge group SU(2) in the limit of an infinite Higgs self-coupling constant we show how, in this case, the scattering cross sections differ for the magnetically charged black holes with different near-horizon geometries but the same asymptotic characteristics. We find in particular that the characteristic glory peaks in the cross sections are located at different scattering angles.

  4. On the injection of fine dust from the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Maravilla, D.; Flammer, K. R.; Mendis, D. A.

    1995-01-01

    Using a simple aligned dipole model of the Jovian magnetic field, and exploiting integrals of the gravito-electrodynamic equation of motion of charged dust, we obtain an analytic result which characterizes the nature of the orbits of grains of different (fixed) charge-to-mass ratios launched at different velocities from different radial distances from Jupiter. This enables us to consider various possible sources of the dust-streams emanating from Jupiter which have been observed by the Ulysses spacecraft. We conclude that Jupiter's volcanically active satellite Io is the likely source, in agreement with the earlier calculations and simulations of Horanyi et al. using a detailed three-dimensional model of the Jovian magnetosphere. Our estimates of the size range and the velocity range of these dust grains are also in good agreement with those of the above authors and are within the error bars of the observations.

  5. Single-Gap Superconductivity and Dome of Superfluid Density in Nb-Doped SrTiO 3

    NASA Astrophysics Data System (ADS)

    Thiemann, Markus; Beutel, Manfred H.; Dressel, Martin; Lee-Hone, Nicholas R.; Broun, David M.; Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen; Scheffler, Marc

    2018-06-01

    SrTiO3 exhibits a superconducting dome upon doping with Nb, with a maximum critical temperature Tc≈0.4 K . Using microwave stripline resonators at frequencies from 2 to 23 GHz and temperatures down to 0.02 K, we probe the low-energy optical response of superconducting SrTiO3 with a charge carrier concentration from 0.3 to 2.2 ×1020 cm-3 , covering the majority of the superconducting dome. We find single-gap electrodynamics even though several electronic bands are superconducting. This is explained by a single energy gap 2 Δ due to gap homogenization over the Fermi surface consistent with the low level of defect scattering in Nb-doped SrTiO3 . Furthermore, we determine Tc, 2 Δ , and the superfluid density as a function of charge carrier concentration, and all three quantities exhibit the characteristic dome shape.

  6. Electromagnetic toroidal excitations in matter and free space.

    PubMed

    Papasimakis, N; Fedotov, V A; Savinov, V; Raybould, T A; Zheludev, N I

    2016-03-01

    The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.

  7. Method and apparatus for selective filtering of ions

    DOEpatents

    Page, Jason S [Kennewick, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2009-04-07

    An adjustable, low mass-to-charge (m/z) filter is disclosed employing electrospray ionization to block ions associated with unwanted low m/z species from entering the mass spectrometer and contributing their space charge to down-stream ion accumulation steps. The low-mass filter is made by using an adjustable potential energy barrier from the conductance limiting terminal electrode of an electrodynamic ion funnel, which prohibits species with higher ion mobilities from being transmitted. The filter provides a linear voltage adjustment of low-mass filtering from m/z values from about 50 to about 500. Mass filtering above m/z 500 can also be performed; however, higher m/z species are attenuated. The mass filter was evaluated with a liquid chromatography-mass spectrometry analysis of an albumin tryptic digest and resulted in the ability to block low-mass, "background" ions which account for 40-70% of the total ion current from the ESI source during peak elution.

  8. Strong coupling of a single electron in silicon to a microwave photon

    NASA Astrophysics Data System (ADS)

    Mi, Xiao; Cady, Jeffrey; Zajac, David; Petta, Jason

    We demonstrate a hybrid circuit quantum electrodynamics (cQED) architecture in which a single electron in a Si/SiGe double quantum dot is dipole-coupled to the electric field of microwave photons in a superconducting cavity. Vacuum Rabi splitting is observed in the cavity transmission when the transition energy of the single-electron charge qubit matches that of a cavity photon, demonstrating that our device is in the strong coupling regime. The achievement of strong coupling is largely facilitated by an exceptionally low charge decoherence rate of 5 MHz and paves the way toward a wide range of cQED experiments with quantum dots, such as non-local qubit interactions, strong spin-cavity coupling and single photon generation . Research sponsored by ARO Grant No. W911NF-15-1-0149, the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4535, and the NSF (DMR-1409556 and DMR-1420541).

  9. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  10. The Los Alamos suite of relativistic atomic physics codes

    DOE PAGES

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; ...

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suitemore » can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.« less

  11. Generalized Maxwell equations and charge conservation censorship

    NASA Astrophysics Data System (ADS)

    Modanese, G.

    2017-02-01

    The Aharonov-Bohm electrodynamics is a generalization of Maxwell theory with reduced gauge invariance. It allows to couple the electromagnetic field to a charge which is not locally conserved, and has an additional degree of freedom, the scalar field S = ∂αAα, usually interpreted as a longitudinal wave component. By reformulating the theory in a compact Lagrangian formalism, we are able to eliminate S explicitly from the dynamics and we obtain generalized Maxwell equation with interesting properties: they give ∂μFμν as the (conserved) sum of the (possibly non-conserved) physical current density jν, and a “secondary” current density iν which is a nonlocal function of jν. This implies that any non-conservation of jν is effectively “censored” by the observable field Fμν, and yet it may have real physical consequences. We give examples of stationary solutions which display these properties. Possible applications are to systems where local charge conservation is violated due to anomalies of the Adler-Bell-Jackiw (ABJ) kind or to macroscopic quantum tunnelling with currents which do not satisfy a local continuity equation.

  12. Formation of stable inverse sheath in ion–ion plasma by strong negative ion emission

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Wu, Bang; Yang, Shali; Zhang, Ya; Chen, Dezhi; Fan, Mingwu; Jiang, Wei

    2018-06-01

    The effect of strong charged particle emission on plasma–wall interactions is a classical, yet unresolved question in plasma physics. Previous studies on secondary electron emission have shown that with different emission coefficients, there are classical, space-charge-limited, and inverse sheaths. In this letter, we demonstrate that a stable ion–ion inverse sheath and ion–ion plasma are formed with strong surface emission of negative ions. The continuous space-charge-limited to inverse ion–ion sheath transition is observed, and the plasma near the surface consequently transforms into pure ion–ion plasma. The results may explain the long-puzzled experimental observation that the density of negative ions depends on only charge not mass in negative ion sources.

  13. Classical Hall Effect without Magnetic Field

    NASA Astrophysics Data System (ADS)

    Schade, Nicholas; Tao, Chiao-Yu; Schuster, David; Nagel, Sidney

    We show that the sign and density of charge carriers in a material can be obtained without the presence of a magnetic field. This effect, analogous to the classical Hall effect, is due solely to the geometry of the current-carrying wire. When current flows, surface charges along the wire create small electric fields that direct the current to follow the path of the conductor. In a curved wire, the charge carriers must experience a centripetal force, which arises from an electric field perpendicular to the drift velocity. This electric field produces a potential difference between the sides of the wire that depends on the sign and density of the charge carriers. We experimentally investigate circuits made from superconductors or graphene to find evidence for this effect.

  14. The PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  15. {P}{T}-symmetric interpretation of the electromagnetic self-force

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Gianfreda, Mariagiovanna

    2015-08-01

    In 1980 Englert examined the classic problem of the electromagnetic self-force on an oscillating charged particle. His approach, which was based on an earlier idea of Bateman, was to introduce a time-reversed (charge-conjugate) particle and to show that the two-particle system is Hamiltonian. Unfortunately, Englert’s model did not solve the problem of runaway modes, and the corresponding quantum theory had ghost states. It is shown here that Englert’s Hamiltonian is {P}{T} symmetric, and that the problems with his model arise because the {P}{T} symmetry is broken at both the classical and the quantum level. However, by allowing the charged particles to interact and by adjusting the coupling parameters to put the model into an unbroken {P}{T}-symmetric region, one eliminates the classical nonrelativistic runaway modes and obtains a corresponding nonrelativistic quantum system that is in equilibrium and ghost free.

  16. Inertial effects in systems with magnetic charge

    NASA Astrophysics Data System (ADS)

    Armitage, N. P.

    2018-05-01

    This short article sets out some of the basic considerations that go into detecting the mass of quasiparticles with effective magnetic charge in solids. Effective magnetic charges may be appear as defects in particular magnetic textures. A magnetic monopole is a defect in this texture and as such these are not monopoles in the actual magnetic field B, but instead in the auxiliary field H. They may have particular properties expected for such quasiparticles such as magnetic charge and mass. This effective mass may-in principle-be detected in the same fashion that the mass is detected of other particles classically e.g. through their inertial response to time-dependent electromagnetic fields. I discuss this physics in the context of the "simple" case of the quantum spin ices, but aspects are broadly applicable. Based on extensions to Ryzkhin's model for classical spin ice, a hydrodynamic formulation can be given that takes into account inertial and entropic forces. Ultimately, a form for the susceptibility is obtained that is equivalent to the Rocard equation, which is a classic form used to account for inertial effects in the context of Debye-like relaxation.

  17. Electronic Structure and Stability of [B 12 X 12 ] 2– (X = F–At): A Combined Photoelectron Spectroscopic and Theoretical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warneke, Jonas; Hou, Gao-Lei; Aprà, Edoardo

    2017-10-09

    The relative stability and electron loss process of Multiply Charged Anions have been traditionally explained in terms of the classical Coulomb interaction between spatially separated charges. In this study we report the surprising properties of [B12X12]2-, X = F – At, that are counterintuitive compared to the prevailing classical description and justify their classification into a new class of MCAs. In this new class of MCAs, comprising of a “Boron core” surrounded by a “Halogen shell”, the sign of the total charge in these two regions changes along the halogen series from F to At. With the aid of photoelectronmore » spectroscopy and electronic structure calculations we demonstrate that the behavior of these MCAs is largely determined by quantum effects rather than classical electrostatics. The second excess electron is always taken from the most positively charged region, viz. the “Boron core” for F – Br and the surrounding “Halogen shell” for I, At.« less

  18. Gravito-electrodynamics, Ehd and Their Applications To Natural Hazards and Laboratory Devices

    NASA Astrophysics Data System (ADS)

    Kikuchi, H.

    For the past two decades, theory of dusty and dirty plasmas in space and in the labo - ratory has been developed on the basis of both unconventional gravito-electrody- nam ics and a new EHD (electrohydrodynamics) with novel concepts of electric re- connection and critical ionization velocity as well as modern concepts of self-organ- ization and chaos and has been applied to explanations of a variety of new dust-re- lated and meteorologyico-electric phenomena such as planetary (Saturn's and Jupi- ter's) dust layer or ring formation, terrestrial dust layer formation, terrestrial light - ning including winter thunderstorms, rocket and tower triggered lightning, planetary (Saturn's, Jupiter's, and Io's) lightning, nebular lightning, ball lightning, tornadic thunderstorms, whirlwinds, cloud-to-ionosphere discharges, pre-earthquake atmo- sphereic and ionospheric effects, and new laboratory devices such as electric undu - lators, a universal electric-cusp type plasma reactor for basic laboratory studies, sim- ulations of atmospheric phenomena and pollution control and gas cleaning, plasma processing and new material production for industrial applications, and new devices such as towards cancer treatment for biological and medical applications. Reference H. Kikuchi, Electrohydrodynamics in Dusty and Dirty plasmas, Kluwer Academic Publishers, Dordrecht/The Netherlands, 2001. For describing any plasmas, particle dynamics plays always fundamental and impor - tant roles in understanding all of plasma behaviors. A variety of descriptions in a magnetic field such as a guiding center approach have well been developed as a test-particle approach particularly for a base of MHD. This is still true for EHD or EMHD, but additional factors become significant due to the existence of space charges and electric fields for EHD or EMHD in dielectric or semiconducting fluids. In cosmic plasmas, the existence of double layers, electric and magnetic dipoles or quadru-poles often affects the particle motions drastically even if particles are uncharged, and can play a crucial role in planetary dust layer or ring formation. This is a new discov-ery and has been discussed in detail for the past several EGS meetings. In the presenc e of quadrupole-like charged cloud configurations which constitute electric cusps and mirrors, a neutral or uncharged particle can be accelerated in an electric cusp, reaching a maximum speed near a cusp boundary, if the environment is a tenuous gas whatever it may be neutral or ionized, and also can be reflected back at a mirror point. Otherwise, a dust in an electric cusp is capable for a source origin of plasma layer formation, gas discharges or lightnings due to additional effect of `criti-cal velocity' if the local electric fields around the dust produced by quadrupole-like charged clouds are sufficiently high beyond a gas-breakdown threshold. Then electric reconnection through the dust is followed by streamer or leader formation due to the critical ionization effect and consequent gas discharges or lightnings. One of major features of new electrodynamics, gravito-electrodynamics, and EHD is a new addition of two basic concepts of electric reconnection and critical ionization . First, one may recall that a distribution of scattered charged clouds is so ubiquitous in space and in the laboratory, even in our daily life, whatever they are of large-scale or small-scale, like thunderclouds in the atmosphere, charged clouds in interstellar space, charges on the belt of Van de Graff generator, and a system of miniature thunder-clouds produced by frictional electricity almost everywhere, typically on human hairs. All those cases are capable for electric reconnection. Whenever electric reconnection occurs through dusts in the atmosphere, it can be accompanied by a critical ioniza-tion flow . In this way, electric reconnection and critical ionization could be a signifi-cant cause of electrification and electric discharge and play important roles in a varie-ty of phenomena in meteorologico-electric, dusty and dirty plasma environments.

  19. Introduction to Electrodynamics

    NASA Astrophysics Data System (ADS)

    Griffiths, David J.

    2017-06-01

    1. Vector analysis; 2. Electrostatics; 3. Potentials; 4. Electric fields in matter; 5. Magnetostatics; 6. Magnetic fields in matter; 7. Electrodynamics; 8. Conservation laws; 9. Electromagnetic waves; 10. Potentials and fields; 11. Radiation; 12. Electrodynamics and relativity; Appendix A. Vector calculus in curvilinear coordinates; Appendix B. The Helmholtz theorem; Appendix C. Units; Index.

  20. Conceptual Assessment Tool for Advanced Undergraduate Electrodynamics

    ERIC Educational Resources Information Center

    Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.

    2017-01-01

    As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question…

  1. Strategies for Controlled Placement of Nanoscale Building Blocks

    PubMed Central

    2007-01-01

    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others. PMID:21794185

  2. Eddington's theory of gravity and its progeny.

    PubMed

    Bañados, Máximo; Ferreira, Pedro G

    2010-07-02

    We resurrect Eddington's proposal for the gravitational action in the presence of a cosmological constant and extend it to include matter fields. We show that the Newton-Poisson equation is modified in the presence of sources and that charged black holes show great similarities with those arising in Born-Infeld electrodynamics coupled to gravity. When we consider homogeneous and isotropic space-times, we find that there is a minimum length (and maximum density) at early times, clearly pointing to an alternative theory of the big bang. We thus argue that the modern formulation of Eddington's theory, Born-Infeld gravity, presents us with a novel, nonsingular description of the Universe.

  3. Magneto-optical effects in semimetallic Bi 1–xSb x (x=0.015)

    DOE PAGES

    Dordevic, S. V.; Wolf, M. S.; Stojilovic, N.; ...

    2012-09-12

    We report the results of infrared and magneto-optical spectroscopy study on electrodynamic response of bismuth doped with 1.5% of antimony. The spectra are presented for temperatures down to 4.2 K, and in magnetic fields as high as 18 T. The results reveal strong magneto-optical activity, similar to pure bismuth, however there are some differences introduced by antimony doping. Analysis of optical functions reveals that the two type of charge carriers respond differently to external magnetic field. Finally, when the system enters the extreme quantum regime, both the inter- and intraband Landau Level transition are observed in the spectra.

  4. Asymptotics of quasi-classical localized states in 2D system of charged hard-core bosons

    NASA Astrophysics Data System (ADS)

    Panov, Yu. D.; Moskvin, A. S.

    2018-05-01

    The continuous quasi-classical two-sublattice approximation is constructed for the 2D system of charged hard-core bosons to explore metastable inhomogeneous states analogous to inhomogeneous localized excitations in magnetic systems. The types of localized excitations are determined by asymptotic analysis and compared with numerical results. Depending on the homogeneous ground state, the excitations are the ferro and antiferro type vortices, the skyrmion-like topological excitations or linear domain walls.

  5. Image charge effects on electron capture by dust grains in dusty plasmas.

    PubMed

    Jung, Y D; Tawara, H

    2001-07-01

    Electron-capture processes by negatively charged dust grains from hydrogenic ions in dusty plasmas are investigated in accordance with the classical Bohr-Lindhard model. The attractive interaction between the electron in a hydrogenic ion and its own image charge inside the dust grain is included to obtain the total interaction energy between the electron and the dust grain. The electron-capture radius is determined by the total interaction energy and the kinetic energy of the released electron in the frame of the projectile dust grain. The classical straight-line trajectory approximation is applied to the motion of the ion in order to visualize the electron-capture cross section as a function of the impact parameter, kinetic energy of the projectile ion, and dust charge. It is found that the image charge inside the dust grain plays a significant role in the electron-capture process near the surface of the dust grain. The electron-capture cross section is found to be quite sensitive to the collision energy and dust charge.

  6. Classical electromagnetic radiation of the Dirac electron

    NASA Technical Reports Server (NTRS)

    Lanyi, G.

    1973-01-01

    A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.

  7. Long-distance Lienard-Wiechert potentials and qq-bar spin dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, R.W.

    1987-12-15

    The long-range spin dependence of the qq interaction is considered in a model in which the confining potential is required to be the static limit of retarded scalar and vector potentials analogous to the Lienard-Wiechert potentials of classical electrodynamics. A generalization of Darwin's method is used to obtain the corresponding Hamiltonian. The long-distance spin-dependent interaction is found to be determined completely by only two potentials: namely, the static scalar and vector potentials. This is to be compared with the four potentials required in Eichten and Feinberg's general formulation. Two different solutions are allowed by Gromes's theorem. In one, the scalarmore » potential can be linear; in the other, it must be logarithmic.« less

  8. Study of the Effects of the Electric Field on Charging Measurements on Individual Micron-size Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.

  9. Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Gorney, D. J.; Kishi, A. M.; Newman, A. L.; Schulz, M.; Walterscheid, R. L.; CORNWALL; Prasad, S. S.

    1982-01-01

    Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector; morning and dayside auroras; auroral plasma formation; electrodynamic coupling with the thermosphere; and auroral electron interaction with the atmosphere.

  10. Ion-induced nucleation in solution: promotion of solute nucleation in charged levitated droplets.

    PubMed

    Draper, Neil D; Bakhoum, Samuel F; Haddrell, Allen E; Agnes, George R

    2007-09-19

    We have investigated the nucleation and growth of sodium chloride in both single quiescent charged droplets and charged droplet populations that were levitated in an electrodynamic levitation trap (EDLT). In both cases, the magnitude of a droplet's net excess charge (ions(DNEC)) influenced NaCl nucleation and growth, albeit in different capacities. We have termed the phenomenon ion-induced nucleation in solution. For single quiescent levitated droplets, an increase in ions(DNEC) resulted in a significant promotion of NaCl nucleation, as determined by the number of crystals observed. For levitated droplet populations, a change in NaCl crystal habit, from regular cubic shapes to dome-shaped dendrites, was observed once a surface charge density threshold of -9 x 10(-4) e.nm(-2) was surpassed. Although promotion of NaCl nucleation was observed for droplet population experiments, this can be attributed in part to the increased rate of solvent evaporation observed for levitated droplet populations having a high net charge. Promotion of nucleation was also observed for two organic acids, 2,4,6-trihydroxyacetophenone monohydrate (THAP) and alpha-cyano-4-hydroxycinnamic acid (CHCA). These results are of direct relevance to processes that occur in both soft-ionization techniques for mass spectrometry and to a variety of industrial processes. To this end, we have demonstrated the use of ion-induced nucleation in solution to form ammonium nitrate particles from levitated droplets to be used in in vitro toxicology studies of ambient particle types.

  11. Electrodynamics in cylindrical symmetry in the magnetic plasma state

    NASA Astrophysics Data System (ADS)

    López-Bara, F. I.; López-Aguilar, F.

    2018-05-01

    Excited states in magnetic structures of the so-called spin-ices and in some artificial magnetic materials present a behaviour as being a magnetic neutral plasma. In this state the electromagnetic waves in confined systems (waveguides) filled with materials with magnetic charges are able to transmit information and energy. In the natural spin-ices, the difficulty is the very low temperature for which these magnetic entities appear, whose phenomenology under the electromagnetic interaction is that of solids containing magnetic charges. However, similar behaviour may be present in other compounds at higher temperatures, even at room temperature and they are named artificial spin-ice compounds. This analysis is addressed to obtain theoretical results about magnetic responses and frequency-dependent magnetricity. The key physical magnitudes are the plasmon frequency () which is related to the cut-off frequency in a wave guide and the effective inertial masses () of these magnetic charges. All properties of the electromagnetic propagation in these compounds with effective magnetic monopoles depend on and m. This is carried out including the dissipative forces among magnetic charges which give new characteristic features to the electromagnetic propagation. The main goal of this work is the analysis of these electromagnetic properties in order to find possible circuital applications of these materials to be utilized by devices.

  12. Numerical analysis of ion wind flow using space charge for optimal design

    NASA Astrophysics Data System (ADS)

    Ko, Han Seo; Shin, Dong Ho; Baek, Soo Hong

    2014-11-01

    Ion wind flow has been widly studied for its advantages of a micro fluidic device. However, it is very difficult to predict the performance of the ion wind flow for various conditions because of its complicated electrohydrodynamic phenomena. Thus, a reliable numerical modeling is required to design an otimal ion wind generator and calculate velocity of the ion wind for the proper performance. In this study, the numerical modeling of the ion wind has been modified and newly defined to calculate the veloctiy of the ion wind flow by combining three basic models such as electrostatics, electrodynamics and fluid dynamics. The model has included presence of initial space charges to calculate transfer energy between space charges and air gas molecules using a developed space charge correlation. The simulation has been performed for a geometry of a pin to parallel plate electrode. Finally, the results of the simulation have been compared with the experimental data for the ion wind velocity to confirm the accuracy of the modified numerical modeling and to obtain the optimal design of the ion wind generator. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2013R1A2A2A01068653).

  13. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Felix J.; Vogelsang, Jan, E-mail: jan.vogelsang@physik.uni-regensburg.de; Lupton, John M.

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distributionmore » of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the opposite: the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The results are of interest to developing a microscopic understanding of the intrinsic charge-exciton quenching interaction in devices.« less

  14. Development of a sorption rate technique for single zeolite crystals using an electrodynamic balance

    NASA Astrophysics Data System (ADS)

    Welegala, Mark Joseph

    Conventional means for evaluating intracrystalline diffusion in zeolites are complicated by extracrystalline mass transport resistances, crystallite size distribution, sorption heat effects, and finite instrument response times. A potentially direct means of overcoming these problems is to study sorption uptake on a single crystal suspended within a flowing gas stream in an electrodynamic balance (EDB). The objectives of this research were to design, build and investigate the viability of using such a device for obtaining diffusion coefficients from simple sorbate/zeolite systems, by computing the sorption uptake curve from the levitation voltage as a function of time. The initial electronic cell design was strongly influenced by flow mixing considerations. Accordingly, the conventional bihyperboloid electrode configuration was discarded in favor of novel four-ring (4R), and later two-ring/two-screen (2R/2S) designs with cylindrical interior geometries. A detailed numerical model based on the Method of Discrete Charges (MDC) was developed and used to aid in the design and operational understanding of these cells. Several 2R/2S designs were built and tested, including teflon/mica composite and ceramic cells capable of withstanding up to 750oF, for in situ activation of the zeolites. The diffusion of carbon dioxide in zeolite A was selected for testing due to the large differential weight change (10-20%) which occurs at ambient conditions and the availability of reliable experimental diffusion results (Yucel and Ruthven, 1980a). In addition to the carbon dioxide sorbate, water on zeolite 4A and a system relatively immune to atmospheric contamination, CO2 on activated carbon were also studied. Laboratory 4A crystals of up to 45 μm were grown using Charnell's method. These large solid particles were captured using a dry charging technique, and held during elevated temperature dehydration. Preliminary experimentation introduced externally dried crystals to the cell chamber in 0.5-3 minutes. Only minimal desorption results with carbon dioxide and later, adsorption for water vapor, were obtained. Further experiments revealed that crystal contamination from laboratory air can be considerable in less than one minute, thereby preadsorbing airborne water vapor. The experimental methodology was changed to include in situ heating. Subsequent attempts to circumvent laser heating of the particle had limited success. Particle loss, (due to excessive charge loss) and cell material degradation limited the process to null point temperatures of approximately 260oC, which is insufficient for complete zeolite dehydration. Early, it was demonstrated that gas compositions could be switched while flowing without losing the particle. However, the resulting concentration transient imposes an ultimate limitation on the technique for application to rapidly diffusing systems. Also, the fact that the technique is gravimetric requires that the diffusing species must be appreciably adsorbed at ambient conditions. Thus the single crystal sorption apparatus based on the electrodynamic containment device would appear to have use primarily for strongly adsorbed and slowly diffusing species. (Abstract shortened by UMI.)

  15. Conductivity of higher dimensional holographic superconductors with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheykhi, Ahmad; Hashemi Asl, Doa; Dehyadegari, Amin

    2018-06-01

    We investigate analytically as well as numerically the properties of s-wave holographic superconductors in d-dimensional spacetime and in the presence of Logarithmic nonlinear electrodynamics. We study three aspects of this kind of superconductors. First, we obtain, by employing analytical Sturm-Liouville method as well as numerical shooting method, the relation between critical temperature and charge density, ρ, and disclose the effects of both nonlinear parameter b and the dimensions of spacetime, d, on the critical temperature Tc. We find that in each dimension, Tc /ρ 1 / (d - 2) decreases with increasing the nonlinear parameter b while it increases with increasing the dimension of spacetime for a fixed value of b. Then, we calculate the condensation value and critical exponent of the system analytically and numerically and observe that in each dimension, the dimensionless condensation get larger with increasing the nonlinear parameter b. Besides, for a fixed value of b, it increases with increasing the spacetime dimension. We confirm that the results obtained from our analytical method are in agreement with the results obtained from numerical shooting method. This fact further supports the correctness of our analytical method. Finally, we explore the holographic conductivity of this system and find out that the superconducting gap increases with increasing either the nonlinear parameter or the spacetime dimension.

  16. A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics

    ERIC Educational Resources Information Center

    Pujol, O.; Perez, J. P.

    2007-01-01

    The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…

  17. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Uhlik, Filip; Moucka, Filip

    We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge non-polarizable SPC/E, (ii) Drude point charge polarizable SWM4- DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ionmore » hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration, but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.« less

  18. Accurate description of charged excitations in molecular solids from embedded many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Li, Jing; D'Avino, Gabriele; Duchemin, Ivan; Beljonne, David; Blase, Xavier

    2018-01-01

    We present a novel hybrid quantum/classical approach to the calculation of charged excitations in molecular solids based on the many-body Green's function G W formalism. Molecules described at the G W level are embedded into the crystalline environment modeled with an accurate classical polarizable scheme. This allows the calculation of electron addition and removal energies in the bulk and at crystal surfaces where charged excitations are probed in photoelectron experiments. By considering the paradigmatic case of pentacene and perfluoropentacene crystals, we discuss the different contributions from intermolecular interactions to electronic energy levels, distinguishing between polarization, which is accounted for combining quantum and classical polarizabilities, and crystal field effects, that can impact energy levels by up to ±0.6 eV. After introducing band dispersion, we achieve quantitative agreement (within 0.2 eV) on the ionization potential and electron affinity measured at pentacene and perfluoropentacene crystal surfaces characterized by standing molecules.

  19. Research Technology

    NASA Image and Video Library

    2004-04-15

    This is an artist's concept of an orbiting space vehicle in the Jovian system using an electrodynamic tether propellantless propulsion system. Electrodynamic tethers offer the potential to greatly extend and enhance future scientific missions to Jupiter and the Jovian system. Like Earth, Jupiter posses a strong magnetic field and a significant magnetosphere. This may make it feasible to operate electrodynamic tethers for propulsion and power generation.

  20. Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael P.; Stone, Nobie H.

    2014-01-01

    The PROPEL flight mission concept will demonstrate the safe use of an electrodynamic tether for generating thrust. PROPEL is being designed to be a versatile electrodynamic-tether system for multiple end users and to be flexible with respect to platform. As such, several implementation options are being explored, including a comprehensive mission design for PROPEL with a mission duration of six months; a space demonstration mission concept design with configuration of a pair of tethered satellites, one of which is the Japanese H-II Transfer Vehicle; and an ESPA-based system. We report here on these possible implementation options for PROPEL. electrodynamic tether; PROPEL demonstration mission; propellantless propulsion

  1. Electrodynamic Bare Tether Systems as a Thruster for the Momentum-Exchange/Electrodynamic Reboost(MXER)Project

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Gallagher, D. L.

    2006-01-01

    The concept of electrodynamic tether propulsion has a number of attractive features and has been widely discussed for different applications. Different system designs have been proposed and compared during the last 10 years. In spite of this, the choice of proper design for any particular mission is a unique problem. Such characteristics of tether performance as system acceleration, efficiency, etc., should be calculated and compared on the basis of the known capability of a tether to collect electrical current. We discuss the choice of parameters for circular and tape tethers with regard to the Momentum-Exchange/Electrodynamic Reboost (MXER) tether project.

  2. Streamer discharges as advancing imperfect conductors: inhomogeneities in long ionized channels

    NASA Astrophysics Data System (ADS)

    Luque, A.; González, M.; Gordillo-Vázquez, F. J.

    2017-12-01

    A major obstacle for the understanding of long electrical discharges is the complex dynamics of streamer coronas, formed by many thin conducting filaments. Building macroscopic models for these filaments is one approach to attain a deeper knowledge of the discharge corona. Here, we present a one-dimensional, macroscopic model of a propagating streamer channel with a finite and evolving internal conductivity. We represent the streamer as an advancing finite-conductivity channel with a surface charge density at its boundary. This charge evolves self-consistently due to the electric current that flows through the streamer body and within a thin layer at its surface. We couple this electrodynamic evolution with a field-dependent set of chemical reactions that determine the internal channel conductivity. With this one-dimensional model, we investigate the formation of persisting structures in the wake of a streamer head. In accordance with experimental observations, our model shows that a within a streamer channel some regions are driven towards high fields that can be maintaned for tens of nanoseconds.

  3. Electron capture by U(91+) and U(92+) and ionization of U(90+) and U(91+)

    NASA Technical Reports Server (NTRS)

    Gould, H.; Greiner, D.; Lindstrom, P.; Symons, T. J. M.; Crawford, H.

    1984-01-01

    U(92+)/U(91+) and U(91+)/U(90+) electron-capture and ionization cross sections and equilibrium charge-state distributions are measured experimentally in mylar, Cu and Ta of varying thickness. Relativistic U(68+) ions at 437 or 962 MeV/nucleon are produced by a heavy-ion linear accelerator and synchrotron in tandem and passed through the target material into a magnetic specrometer and position-sensitive proportional counter for evaluation of charge states. The results are presented graphically and discussed. At 962 MeV/nucleon, beams containing 85 percent bare U(92+) nuclei are obtained using 150-mg/sq cm Cu or 85-mg/sq cm Ta; at 437 MeV/nucleon, 50 percent bare U(92+) nuclei are obtained with 90-mg/sq cm Cu. The techniques decribed can be applied to produce beams of bare U nuclei for acceleration to ultrarelativistic speeds or beams of few-electron U for atomic-physics experiments on quantum electrodynamics.

  4. Interaction mechanisms and biological effects of static magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals,more » there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.« less

  5. Charged particle layers in the Debye limit.

    PubMed

    Golden, Kenneth I; Kalman, Gabor J; Kyrkos, Stamatios

    2002-09-01

    We develop an equivalent of the Debye-Hückel weakly coupled equilibrium theory for layered classical charged particle systems composed of one single charged species. We consider the two most important configurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided by the classical fluctuation-dissipation theorem between the random-phase approximation response functions and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and polarization potentials, static structure functions, and static response functions are calculated. The importance of the perfect screening and compressibility sum rules in determining the overall behavior of the system, especially in the r--> infinity limit, is emphasized. The similarities and differences between the quasi-two-dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by the individual layers exhibit a marked nonmonotonic dependence on the layer separation.

  6. Finite-size effects in simulations of electrolyte solutions under periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Thompson, Jeffrey; Sanchez, Isaac

    The equilibrium properties of charged systems with periodic boundary conditions may exhibit pronounced system-size dependence due to the long range of the Coulomb force. As shown by others, the leading-order finite-size correction to the Coulomb energy of a charged fluid confined to a periodic box of volume V may be derived from sum rules satisfied by the charge-charge correlations in the thermodynamic limit V -> ∞ . In classical systems, the relevant sum rule is the Stillinger-Lovett second-moment (or perfect screening) condition. This constraint implies that for large V, periodicity induces a negative bias of -kB T(2 V) - 1 in the total Coulomb energy density of a homogeneous classical charged fluid of given density and temperature. We present a careful study of the impact of such finite-size effects on the calculation of solute chemical potentials from explicit-solvent molecular simulations of aqueous electrolyte solutions. National Science Foundation Graduate Research Fellowship Program, Grant No. DGE-1610403.

  7. Optimizing the switching time for 400 kV SF6 circuit breakers

    NASA Astrophysics Data System (ADS)

    Ciulica, D.

    2018-01-01

    This paper presents real-time voltage and current analysis for optimizing the wave switching point of the circuit breaker SF6. Circuit Breaker plays an important role in power systems. It provides protection for equipment in embedded stations in transport networks. SF6 Circuit Breaker is very important equipment in Power Systems, which is used for up to 400 kV due to its excellent performance. The controlled switching is used to eliminate transient modes and electrodynamic and dielectric charges in the network at manual switching of capacitor, shunt reactors and power transformers. These effects reduce the reliability and lifetime of the equipment installed on the network, or may lead to erroneous protection.

  8. X-ray spectroscopy of high-/Z highly charged ions with the Tokyo EBIT

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobuyuki; Kato, Daiji; Ohtani, Shunsuke

    2003-05-01

    We have been using the Tokyo electron beam ion trap to investigate the relativistic and the quantum electrodynamical effects on the atomic structure of few electron heavy ions. In this paper, we present 1s binding energy measurement for hydrogen-like rhodium which was performed as one of such systematic studies. It has been obtained by measuring the X-ray transition energy for radiative recombination into the 1s vacancy of bare rhodium and subtracting the electron beam energy from it. For further investigation, a bent crystal spectrometer for hard X-rays is being developed. The design of the new spectrometer and the preliminary result with it are also presented.

  9. Development of a Tandem Electrodynamic Trap Apparatus for Merging Charged Droplets and Spectroscopic Characterization of Resultant Dried Particles.

    PubMed

    Kohno, Jun-Ya; Higashiura, Tetsu; Eguchi, Takaaki; Miura, Shumpei; Ogawa, Masato

    2016-08-11

    Materials work in multicomponent forms. A wide range of compositions must be tested to obtain the optimum composition for a specific application. We propose optimization using a series of small levitated single particles. We describe a tandem-trap apparatus for merging liquid droplets and analyzing the merged droplets and/or dried particles that are produced from the merged droplets under levitation conditions. Droplet merging was confirmed by Raman spectroscopic studies of the levitated particles. The tandem-trap apparatus enables the synthesis of a particle and spectroscopic investigation of its properties. This provides a basis for future investigation of the properties of levitated single particles.

  10. Gradiometry and gravitomagnetic field detection

    NASA Technical Reports Server (NTRS)

    Mashhoon, Bahram

    1989-01-01

    Gravitomagnetism was apparently first introduced into physics about 120 years ago when major developments in electrodynamics and the strong similarity between Coulomb's law of electricity and Newton's law of gravity led to the hypothesis that mass current generates a fundamental force of gravitational origin analogous to the magnetic force caused by charge current. According to general relativity, the rotation of a body leads to the dragging of the local inertial frames. In the weak-field approximation, the dragging frequency can be interpreted, up to a constant proportionality factor, as a gravitational magnetic field. There is, as yet, no direct evidence regarding the existence of such a field. The possibility is examined of detecting the gravitomagnetic field of the Earth by gravity gradiometry.

  11. Electrodynamic Arrays Having Nanomaterial Electrodes

    NASA Technical Reports Server (NTRS)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  12. An Experiment on the Limits of Quantum Electro-dynamics

    DOE R&D Accomplishments Database

    Barber, W. C.; Richter, B.; Panofsky, W. K. H.; O'Neill, G. K.; Gittelman, B.

    1959-06-01

    The limitations of previously performed or suggested electrodynamic cutoff experiments are reviewed, and an electron-electron scattering experiment to be performed with storage rings to investigate further the limits of the validity of quantum electrodynamics is described. The foreseen experimental problems are discussed, and the results of the associated calculations are given. The parameters and status of the equipment are summarized. (D.C.W.)

  13. Thermal stability of charged rotating quantum black holes

    NASA Astrophysics Data System (ADS)

    Sinha, Aloke Kumar; Majumdar, Parthasarathi

    2017-12-01

    Criteria for thermal stability of charged rotating black holes of any dimension are derived for horizon areas that are large relative to the Planck area (in these dimensions). The derivation is based on generic assumptions of quantum geometry, supported by some results of loop quantum gravity, and equilibrium statistical mechanics of the Grand Canonical ensemble. There is no explicit use of classical spacetime geometry in this analysis. The only assumption is that the mass of the black hole is a function of its horizon area, charge and angular momentum. Our stability criteria are then tested in detail against specific classical black holes in spacetime dimensions 4 and 5, whose metrics provide us with explicit relations for the dependence of the mass on the charge and angular momentum of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.

  14. Radiation and the classical double copy for color charges

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Ridgway, Alexander K.

    2017-06-01

    We construct perturbative classical solutions of the Yang-Mills equations coupled to dynamical point particles carrying color charge. By applying a set of color to kinematics replacement rules first introduced by Bern, Carrasco and Johansson, these are shown to generate solutions of d -dimensional dilaton gravity, which we also explicitly construct. Agreement between the gravity result and the gauge theory double copy implies a correspondence between non-Abelian particles and gravitating sources with dilaton charge. When the color sources are highly relativistic, dilaton exchange decouples, and the solutions we obtain match those of pure gravity. We comment on possible implications of our findings to the calculation of gravitational waveforms in astrophysical black hole collisions, directly from computationally simpler gluon radiation in Yang-Mills theory.

  15. A Brief 30-Year Review: Research Highlights from Lightning Mapping Systems 1970-2000

    NASA Astrophysics Data System (ADS)

    MacGorman, D. R.

    2016-12-01

    Modern lightning mapping began in the 1970s, the decade in which VHF mapping systems, acoustic mapping systems, and ground strike locating systems were introduced. Adding GPS synchronization of VHF systems in the late 1990s enabled real-time VHF mapping systems to be deployed more extensively. Data these systems provided by 2000 revolutionized our understanding of how storms produce lightning. Among key results: Electrostatics, not electrodynamics, governs where lightning is initiated and where it propagates, contrary to early expectations. Lightning is initiated in a region of large electric field magnitude, typically between a positive charge region and a negative charge region. The geometry of a storm's charge regions governs the spatial extent of each end of the flash. The flash initially propagates bidirectionally toward the two charge regions that initiated it, and once it reaches the charge regions and maximizes the ambient potential difference spanned by the flash structure, it extends through each charge region's ambient electric potential well until the total electric field magnitude at the ends of the flash drops below the threshold for continued propagation. The typical charge distribution producing a cloud-to-ground flash is a region of charge of the polarity being lowered to ground, above a lesser amount of charge of the opposite polarity; the lower region has too little charge to capture the downward propagating channel. Contrary to previous understanding, naturally occurring cloud-to-ground lightning often lowers positive charge to ground, instead of the usual negative charge, in several situations, including winter storms, stratiform precipitation regions, some severe storms, and storms on the High Plains of the United States. The reason cloud-to-ground activity in some storms is dominated by flashes that lower positive charge to ground is that the polarity of the main charge regions in those storms is inverted from the usual polarity, with the main mid-level charge being positive and the main upper-level charge being negative. This strongly implies that the dominant non-inductive electrification mechanism is inverted in those storms, probably because the liquid water content in the mixed phase region is larger than in most storms.

  16. Reduced Order Podolsky Model

    NASA Astrophysics Data System (ADS)

    Thibes, Ronaldo

    2017-02-01

    We perform the canonical and path integral quantizations of a lower-order derivatives model describing Podolsky's generalized electrodynamics. The physical content of the model shows an auxiliary massive vector field coupled to the usual electromagnetic field. The equivalence with Podolsky's original model is studied at classical and quantum levels. Concerning the dynamical time evolution, we obtain a theory with two first-class and two second-class constraints in phase space. We calculate explicitly the corresponding Dirac brackets involving both vector fields. We use the Senjanovic procedure to implement the second-class constraints and the Batalin-Fradkin-Vilkovisky path integral quantization scheme to deal with the symmetries generated by the first-class constraints. The physical interpretation of the results turns out to be simpler due to the reduced derivatives order permeating the equations of motion, Dirac brackets and effective action.

  17. Free electron laser and fundamental physics

    NASA Astrophysics Data System (ADS)

    Dattoli, Giuseppe; Nguyen, Federico

    2018-03-01

    This review paper is devoted to the understanding of free-electron lasers (FEL) as devices for fundamental physics (FP) studies. After clarifying what FP stands for, we select some aspects of the FEL physics which can be viewed as fundamental. Furthermore, we discuss the perspective uses of the FEL in FP experiments. Regarding the FP aspects of the FEL, we analyze the quantum electrodynamics (QED) nature of the underlying laser mechanism. We look for the truly quantum signature in a process whose phenomenology is dominated by classical effects. As to the use of FEL as a tool for FP experiments we discuss the realization of a device dedicated to the study of non-linear effects in QED such as photon-photon scattering and shining-through-the-wall experiments planned to search for dark matter candidates like axions.

  18. A case study of the cusp electrodynamics by the Aureol-3 satellite - Evidence for FTE signatures?

    NASA Technical Reports Server (NTRS)

    Bosqued, Jean M.; Berthelier, Annick; Berthelier, Jean J.; Escoubet, Christophe P.

    1991-01-01

    Particle and field data from a pass of the Aureol-3 satellite through the polar cusp, several minutes after the southward turning of the IMF, are analyzed in detail. Superposed on the classical cusp, characterized by the typical ion and electron precipitations, several very narrow arcs are detected where large fluxes of electrons and ions, accelerated to 2-4 keV, precipitate simultaneously. These localized arcs correspond to the upward current sheets of a succession in latitude of narrow, alternatively upward and downward field-aligned current sheets. The data suggest that the satellite has crossed the ionospheric footprints of 2 adjacent flux transfer events separated by 100-150 km in latitude. Electric spikes and electromagnetic turbulence are typically associated with the region of downward currents.

  19. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. Copyright © 2016, American Association for the Advancement of Science.

  20. Accounting for changes in particle charge, dry mass and composition occurring during studies of single levitated particles.

    PubMed

    Haddrell, Allen E; Davies, James F; Yabushita, Akihiro; Reid, Jonathan P

    2012-10-11

    The most used instrument in single particle hygroscopic analysis over the past thirty years has been the electrodynamic balance (EDB). Two general assumptions are made in hygroscopic studies involving the EDB. First, it is assumed that the net charge on the droplet is invariant over the time scale required to record a hygroscopic growth cycle. Second, it is assumed that the composition of the droplet is constant (aside from the addition and removal of water). In this study, we demonstrate that these assumptions cannot always be made and may indeed prove incorrect. The presence of net charge in the humidified vapor phase reduces the total net charge retained by the droplet over prolonged levitation periods. The gradual reduction in charge limits the reproducibility of hygroscopicity measurements made on repeated RH cycles with a single particle, or prolonged experiments in which the particle is held at a high relative humidity. Further, two contrasting examples of the influence of changes in chemical composition changes are reported. In the first, simple acid-base chemistry in the droplet leads to the irreversible removal of gaseous ammonia from a droplet containing an ammonium salt on a time scale that is shorter than the hygroscopicity measurement. In the second example, the net charge on the droplet (<100 fC) is high enough to drive redox chemistry within the droplet. This is demonstrated by the reduction of iodic acid in a droplet made solely of iodic acid and water to form iodine and an iodate salt.

  1. The microphysics of ash tribocharging: New insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Joshua, M. S.; Dufek, J.

    2014-12-01

    The spectacular lightning strokes observed during eruptions testify to the enormous potentials that can be generated within plumes. Related to the charging of individual ash particles, large electric fields and volcanic lightning have been observed at Eyjafjallajokull, Redoubt, and Sakurajima, among other volcanoes. A number of mechanisms have been proposed for plume electrification, including charging from the brittle failure of rock, charging due to phase change as material is carried aloft, and triboelectric charging, also known as contact charging. While the first two mechanisms (fracto-emission and volatile charging) have been described by other authors (James et al, 2000 and McNutt et al., 2010, respectively), the physics of tribocharging--charging related to the collisions of particles--of ash are still relatively unknown. Because the electric fields and lightning present in volcanic clouds result from the multiphase dynamics of the plume itself, understanding the electrodynamics of these systems may provide a way to detect eruptions and probe the interior of plumes remotely. In the present work, we describe two sets of experiments designed to explore what controls the exchange of charge during particle collisions. We employ natural material from Colima, Mt. Saint Helens, and Tungurahua. Our experiments show that the magnitude and temporal behavior of ash charging depend on a number of factors, including particle size, shape, chemistry, and collisional energy. The first set of experiments were designed to determine the time-dependent electrostatic behavior of a parcel of ash. These experiments consist of fluidizing an ash bed and monitoring the current induced in a set of ring electrodes. As such, we are able to extract charging rates for ash samples driven by different flow rates. The second experimental setup allows us to measure how much charge is exchanged during a single particle-particle collision. Capable of measuring charges as small as 1 fC, this device allows us to methodically to characterize charges on particles with diameters down to 100 microns. Employing this instrument, we quantify the effect of particle pre-charging, mineralogy, and impact energy on the charge exchange between two colliding particles.

  2. Two-dimensional electromagnetic Child-Langmuir law of a short-pulse electron flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S. H.; Tai, L. C.; Liu, Y. L.

    Two-dimensional electromagnetic particle-in-cell simulations were performed to study the effect of the displacement current and the self-magnetic field on the space charge limited current density or the Child-Langmuir law of a short-pulse electron flow with a propagation distance of {zeta} and an emitting width of W from the classical regime to the relativistic regime. Numerical scaling of the two-dimensional electromagnetic Child-Langmuir law was constructed and it scales with ({zeta}/W) and ({zeta}/W){sup 2} at the classical and relativistic regimes, respectively. Our findings reveal that the displacement current can considerably enhance the space charge limited current density as compared to the well-knownmore » two-dimensional electrostatic Child-Langmuir law even at the classical regime.« less

  3. Hybrid Circuit Quantum Electrodynamics: Coupling a Single Silicon Spin Qubit to a Photon

    DTIC Science & Technology

    2015-01-01

    HYBRID CIRCUIT QUANTUM ELECTRODYNAMICS: COUPLING A SINGLE SILICON SPIN QUBIT TO A PHOTON PRINCETON UNIVERSITY JANUARY 2015 FINAL...SILICON SPIN QUBIT TO A PHOTON 5a. CONTRACT NUMBER FA8750-12-2-0296 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jason R. Petta...architectures. 15. SUBJECT TERMS Quantum Computing, Quantum Hybrid Circuits, Quantum Electrodynamics, Coupling a Single Silicon Spin Qubit to a Photon

  4. Non-existence of rest-frame spin-eigenstate spinors in their own electrodynamics

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca; da Rocha, Roldão

    2018-05-01

    We assume a physical situation where gravity with torsion is neglected for an electrodynamically self-interacting spinor that will be taken in its rest-frame and spin-eigenstate: we demonstrate that under this circumstance no solution exists for the system of field equations. Despite such a situation might look artificial nevertheless it represents the instance that is commonly taken as the basis for all computations of quantum electrodynamics.

  5. Rocket/Radar Investigation of Lower Ionospheric Electrodynamics Associated with Intense Midlatitude Sporadic-E Layers

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.

    1998-01-01

    Sporadic layers, which appear in the region from 100 km to 120 km are thought to be formed by convergent Pedersen drifts induced by altitude gradients in the zonal neutral wind. In this altitude region NO+ and 02+ are the major ions produced by photoionization and charge exchange of atmospheric and ionospheric species. The relative composition of atmospheric ions and meteoric ions in sporadic layers is important in determining their persistence, the time scales for formation, and the electrical conductivity of the layers. This rocket investigation will include a diagnosis of the neutral wind field and the electric field distribution. Coupled with ion composition measurements we will be able to expose the relevant formation mechanisms and the electrodynamic consequences of their existence. A rocket trajectory has been chosen to provide substantial horizontal sampling of the layer properties and knowledge of the horizontal gradients in composition and density are essential to determine the polarization electric fields that may be associated with ionospheric layers. The University of Texas at Dallas (UTD) is responsible for designing, building, and operating the ion mass spectrometers included on these rockets. The following provides a summary of the UTD accomplishments in the second year of the project as well as a description of the plans for the third year's activities. The UTD mass spectrometer acronym has been coined as PRIMS for Puerto Rico Ion Mass Spectrometer.

  6. Grid-Sphere Electrodes for Contact with Ionospheric Plasma

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.; Poe, Garrett D.

    2010-01-01

    Grid-sphere electrodes have been proposed for use on the positively biased end of electrodynamic space tethers. A grid-sphere electrode is fabricated by embedding a wire mesh in a thin film from which a spherical balloon is formed. The grid-sphere electrode would be deployed from compact stowage by inflating the balloon in space. The thin-film material used to inflate the balloon is formulated to vaporize when exposed to the space environment. This would leave the bare metallic spherical grid electrode attached to the tether, which would present a small cross-sectional area (essentially, the geometric wire shadow area only) to incident neutral atoms and molecules. Most of the neutral particles, which produce dynamic drag when they impact a surface, would pass unimpeded through the open grid spaces. However, partly as a result of buildup of a space charge inside the grid-sphere, and partially, the result of magnetic field effects, the electrode would act almost like a solid surface with respect to the flux of electrons. The net result would be that grid-sphere electrodes would introduce minimal aerodynamic drag, yet have effective electrical-contact surface areas large enough to collect multiampere currents from the ionospheric plasma that are needed for operation of electrodynamic tethers. The vaporizable-balloon concept could also be applied to the deployment of large radio antennas in outer space.

  7. High-Altitude Particle Acceleration and Radiation in Pulsar Slot Gaps

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2004-01-01

    We explore the pulsar slot gap (SG) electrodynamics up to very high altitudes, where for most relatively rapidly rotating pulsars both the standard small-angle approximation and the assumption that the magnetic field lines are ideal stream lines break down. We address the importance of the electrodynamic conditions at the SG boundaries and the occurrence of a steady-state drift of charged particles across the SG field lines at very high altitudes. These boundary conditions and the cross-field particle motion determine the asymptotic behavior of the scalar potential at all radii from the polar cap (PC) to near the light cylinder. As a result, we demonstrate that the steady-state accelerating electric field, E(sub ll), must approach a small and constant value at high altitude above the PC. This E(sub ll) is capable of maintaining electrons moving with high Lorentz factors (approx. a few x 10(exp 7)) and emitting curvature gamma-ray photons up to nearly the light cylinder. By numerical simulations, we show that primary electrons accelerating from the PC surface to high altitude in the SG along the outer edge of the open field region will form caustic emission patterns on the trailing dipole field lines. Acceleration and emission in such an extended SG may form the physical basis of a model that can successfully reproduce some pulsar high-energy light curves.

  8. Lightning energetics: Estimates of energy dissipation in channels, channel radii, and channel-heating risetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovsky, J.E.

    1998-05-01

    In this report, several lightning-channel parameters are calculated with the aid of an electrodynamic model of lightning. The electrodynamic model describes dart leaders and return strokes as electromagnetic waves that are guided along conducting lightning channels. According to the model, electrostatic energy is delivered to the channel by a leader, where it is stored around the outside of the channel; subsequently, the return stroke dissipates this locally stored energy. In this report this lightning-energy-flow scenario is developed further. Then the energy dissipated per unit length in lightning channels is calculated, where this quantity is now related to the linear chargemore » density on the channel, not to the cloud-to-ground electrostatic potential difference. Energy conservation is then used to calculate the radii of lightning channels: their initial radii at the onset of return strokes and their final radii after the channels have pressure expanded. Finally, the risetimes for channel heating during return strokes are calculated by defining an energy-storage radius around the channel and by estimating the radial velocity of energy flow toward the channel during a return stroke. In three appendices, values for the linear charge densities on lightning channels are calculated, estimates of the total length of branch channels are obtained, and values for the cloud-to-ground electrostatic potential difference are estimated. {copyright} 1998 American Geophysical Union« less

  9. Nanostructures Exploit Hybrid-Polariton Resonances

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2008-01-01

    Nanostructured devices that exploit the hybrid-polariton resonances arising from coupling among photons, phonons, and plasmons are subjects of research directed toward the development of infrared-spectroscopic sensors for measuring extremely small quantities of molecules of interest. The spectroscopic techniques in question are surface enhanced Raman scattering (SERS) and surface enhanced infrared absorption (SEIRA). An important intermediate goal of this research is to increase the sensitivity achievable by these techniques. The basic idea of the approach being followed in this research is to engineer nanostructured devices and thereby engineer their hybrid-polariton resonances to concentrate infrared radiation incident upon their surfaces in such a manner as to increase the absorption of the radiation for SEIRA and measure the frequency shifts of surface vibrational modes. The underlying hybrid-polariton-resonance concept is best described by reference to experimental devices that have been built and tested to demonstrate the concept. The nanostructure of each such device includes a matrix of silicon carbide particles of approximately 1 micron in diameter that are supported on a potassium bromide (KBr) or poly(tetrafluoroethylene) [PTFE] window. These grains are sputter-coated with gold grains of 40-nm size (see figure). From the perspective of classical electrodynamics, in this nanostructure, that includes a particulate or otherwise rough surface, the electric-field portion of an incident electromagnetic field becomes concentrated on the particles when optical resonance conditions are met. Going beyond the perspective of classical electrodynamics, it can be seen that when the resonance frequencies of surface phonons and surface plasmons overlap, the coupling of the resonances gives rise to an enhanced radiation-absorption or -scattering mechanism. The sizes, shapes, and aggregation of the particles determine the frequencies of the resonances. Hence, the task of designing a nanostructure to exhibit the desired radiation-absorption properties translates, in large part, to selecting particle sizes and shapes to obtain the desired enhanced coupling of energy from photons to plasmons and phonons. To broaden the spectral region(s) of enhanced absorption, one would select a distribution of particle sizes and shapes.

  10. Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth

    A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  11. Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth

    A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two-level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  12. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems.

    PubMed

    Kluczyk, Katarzyna; Jacak, Lucjan; Jacak, Witold; David, Christin

    2018-06-25

    Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA) and semi-classical (hydrodynamic) theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.

  13. High-Performance Ion Mobility Spectrometry Using Hourglass Electrodynamic Funnel And Internal Ion Funnel

    DOEpatents

    Smith, Richard D.; Tang, Keqi; Shvartsburg, Alexandre A.

    2004-11-16

    A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.

  14. Classical density functional theory and Monte Carlo simulation study of electric double layer in the vicinity of a cylindrical electrode

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi; Lamperski, Stanisław; Sokołowska, Marta

    2017-07-01

    We have performed extensive Monte-Carlo simulations and classical density functional theory (DFT) calculations of the electrical double layer (EDL) near a cylindrical electrode in a primitive model (PM) modified by incorporating interionic dispersion interactions. It is concluded that (i) in general, an unsophisticated use of the mean field (MF) approximation for the interionic dispersion interactions does not distinctly worsen the classical DFT performance, even if the salt ions considered are highly asymmetrical in size (3:1) and charge (5:1), the bulk molar concentration considered is high up to a total bulk ion packing fraction of 0.314, and the surface charge density of up to 0.5 C m-2. (ii) More specifically, considering the possible noises in the simulation, the local volume charge density profiles are the most accurately predicted by the classical DFT in all situations, and the co- and counter-ion singlet distributions are also rather accurately predicted; whereas the mean electrostatic potential profile is relatively less accurately predicted due to an integral amplification of minor inaccuracy of the singlet distributions. (iii) It is found that the layered structure of the co-ion distribution is abnormally possible only if the surface charge density is high enough (for example 0.5 C m-2) moreover, the co-ion valence abnormally influences the peak height of the first counter-ion layer, which decreases with the former. (iv) Even if both the simulation and DFT indicate an insignificant contribution of the interionic dispersion interaction to the above three ‘local’ quantities, it is clearly shown by the classical DFT that the interionic dispersion interaction does significantly influence a ‘global’ quantity like the cylinder surface-aqueous electrolyte interfacial tension, and this may imply the role of the interionic dispersion interaction in explaining the specific Hofmeister effects. We elucidate all of the above observations based on the arguments from the liquid state theory and at the molecular scale.

  15. An Overview of Electrodynamic Tether Performance in the Jovian System

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Johnson, Les; Bagenal, Fran; Moore, James

    1998-01-01

    The Jovian magnetosphere with its strong magnetic field and rapid planetary rotation present new opportunities and challenges for the use of electrodynamic tethers. An overview of the basic plasma physics properties of an electrodynamic tether moving through the Jovian magnetosphere is examined. Tether use for both propulsion and power generation are considered. Close to the planet, tether propulsive forces are found to be as high as 50 Newtons and power levels as high as 1 million Watts.

  16. Propulsion and Levitation with a Large Electrodynamic Wheel

    NASA Astrophysics Data System (ADS)

    Gaul, Nathan; Lane, Hannah

    We constructed an electrodynamic wheel using a motorized bicycle wheel with a radius of 12 inches and 36 one-inch cube magnets attached to the rim of the wheel. The radial magnetic field on the outside of the wheel was maximized by arranging the magnets into a series of Halbach arrays which amplify the field on one side of the array and reduce it on the other side. Rotating the wheel produces a rapidly oscillating magnetic field. When a conductive metal ``track'' is placed in this area of strong magnetic flux, eddy currents are produced in the track. These eddy currents create magnetic fields that interact with the magnetic fields from the electrodynamic wheel. The interaction of the magnetic fields produces lift and drag forces on the track which were measured with force gauges. Measurements were taken at a variety of wheel speeds, and the results were compared to the theoretical prediction that there should be a linear relationship between the lift and drag forces with increasing wheel speed. Partial levitation was achieved with the current electrodynamic wheel. In the future, the wheel will be upgraded to include 72 magnets rather than 36 magnets. This will double the frequency at which the magnetic field oscillates, increasing the magnetic flux. Electrodynamic wheels have applications to the transportation industry, since multiple electrodynamic wheels could be used on a vehicle to produce a lift and propulsion force over a conductive track.

  17. Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview.

    PubMed

    Riniker, Sereina

    2018-03-26

    In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.

  18. Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: I. Thomas related mechanisms

    NASA Astrophysics Data System (ADS)

    Safarzade, Zohre; Fathi, Reza; Shojaei Akbarabadi, Farideh; Bolorizadeh, Mohammad A.

    2018-04-01

    The scattering of a completely bare ion by atoms larger than hydrogen is at least a four-body interaction, and the charge transfer channel involves a two-step process. Amongst the two-step interactions of the high-velocity single charge transfer in an anion-atom collision, there is one whose amplitude demonstrates a peak in the angular distribution of the cross sections. This peak, the so-called Thomas peak, was predicted by Thomas in a two-step interaction, classically, which could also be described through three-body quantum mechanical models. This work discusses a four-body quantum treatment of the charge transfer in ion-atom collisions, where two-step interactions illustrating a Thomas peak are emphasized. In addition, the Pauli exclusion principle is taken into account for the initial and final states as well as the operators. It will be demonstrated that there is a momentum condition for each two-step interaction to occur in a single charge transfer channel, where new classical interactions lead to the Thomas mechanism.

  19. Start-up and control method and apparatus for resonant free piston Stirling engine

    DOEpatents

    Walsh, Michael M.

    1984-01-01

    A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

  20. Observation of the continuous stern-gerlach effect on an electron bound in an atomic Ion

    PubMed

    Hermanspahn; Haffner; Kluge; Quint; Stahl; Verdu; Werth

    2000-01-17

    We report on the first observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. The measurement was performed on a single hydrogenlike ion ( 12C5+) in a Penning trap. The measured g factor of the bound electron, g = 2.001 042(2), is in excellent agreement with the theoretical value, confirming the relativistic correction at a level of 0.1%. This proves the possibility of g-factor determinations on atomic ions to high precision by using the continuous Stern-Gerlach effect. The result demonstrates the feasibility of conducting experiments on single heavy highly charged ions to test quantum electrodynamics in the strong electric field of the nucleus.

  1. CPT symmetry and antimatter gravity in general relativity

    NASA Astrophysics Data System (ADS)

    Villata, M.

    2011-04-01

    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.

  2. Electrodynamic Dust Shield Technology for Thermal Radiators Used in Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Hogue, Michael D.; Snyder, Sarah J.; Clements, Sidney J.; Johansen, Michael R.; Chen, Albert

    2011-01-01

    Two general types of thermal radiators are being considered for lunar missions: coated metallic surfaces and Second Surface Mirrors. Metallic surfaces are coated with a specially formulated white paint that withstands the space environment and adheres well to aluminium, the most common metal used in space hardware. AZ-93 White Thermal Control Paint, developed for the space program, is an electrically conductive inorganic coating that offers thermal control for spacecraft. It is currently in use on satellite surfaces (Fig 1). This paint withstands exposure to atomic oxygen, charged particle radiation, and vacuum ultraviolet radiation form 118 nm to 170 nm while reflecting 84 to 85% of the incident solar radiation and emitting 89-93% of the internal heat generated inside the spacecraft.

  3. Electrodynamic Dust Shield for Solar Panels on Mars

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Mantovani, J. G.; Clements S.; Chen, A.; Mazumder, M. K.; Biris, A. S.; Nowicki, A. W.

    2004-01-01

    The Materials Adherence Experiment on the Mars Pathfinder mission measured an obscuration of the solar arrays due to dust deposition at a rate of about 0.2 8% per day. It was estimated that settling dust may cause degradation in performance of a solar panel of between 22% and 89% over the course of two years [1, 2]. These results were obtained without the presence of a global dust storm. Several types of adherence forces keep dust particles attached to surfaces. The most widely discussed adherence force is the electrostatic force. Laboratory experiments [3] as well as indirect evidence from the Wheel Abrasion Experiment on Pathfinder [4] indicate that it is very likely that the particles suspended in the Martian atmosphere are electrostatically charged.

  4. Quantum localization of classical mechanics

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.

    2016-07-01

    Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.

  5. The ‘non-Coulombic’ character of classical electrostatic interaction between charges near interfaces

    NASA Astrophysics Data System (ADS)

    Gabovich, A. M.; Voitenko, A. I.

    2018-07-01

    The textbook problem of classical electrostatics concerning the charge–charge interaction energy W in a two-layer system is revisited. In particular, the actual dependence of W on the horizontal distance L between the charges located at the same distance x from the interface is shown to substantially differ from the original Coulomb law due to image charges. The deviations are governed by the ratio L/x and the ratio between the dielectric constants of adjacent media. Thus, the dependence W(L) is never conventionally Coulombic (∼L ‑1) and may even be close to a dipole–dipole one (∼L ‑3). Although these results are implicitly contained in the well-known formulas, they are often overlooked while teaching electrostatics. The results are of interest not only from a purely academic viewpoint but are important for modern surface science, where the electrostatic contribution to the ion–ion interaction is often treated as Coulombic without any reservations.

  6. Microscopic description of exciton polaritons in direct two-band semiconductors

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Trong; Mahler, Günter

    1999-07-01

    Based on a quantum electrodynamical formulation, a microscopic description of exciton polaritons in a two-band semiconductor is presented. We show that the interband exchange Coulomb interaction, responsible for the coupling of the exciton with the longitudinal part of the induced field, should be treated on equal footing together with the coupling to the transverse part of the induced field (the photon field). The constitutive relation is established to connect the current density with the total electric field of polaritons. The classical Maxwell equations are derived from the quantum representation of photons to get a closed system of equations. The temporal evolution for an initial excited exciton state is studied in detail and an anisotropic polariton vacuum Rabi splitting is shown to occur. A number of up-to-now unresolved discrepancies in the literature are clarified.

  7. The Fourth Law of Motion in Classical Mechanics and Electrodynamics

    NASA Astrophysics Data System (ADS)

    Pinheiro, Mario J.

    2010-01-01

    Newton's second law has limited scope of application when transient phenomena are at stake. We endeavor here to consider a modification of Newton's second law in order to take into account sudden change (surge) of angular momentum or linear momentum. It is shown that space react back according to a kind of induction law that is related to inertia, but also appears to give evidence of a "fluidic" nature of space itself. The back-reaction is quantified by the time rate of the angular momentum flux threading a surface, mass dependent, and bearing similarity to the quantum mechanics phase shift, present in the Aharonov-Bohm and Aharonov-Casher effects, thus giving evidence of the property of vacuum polarization, a phenomena which is relative to local space. It is formulated a kind of (qualitative) Lenz law that gives an explanation to precession.

  8. Reexamination of Induction Heating of Primitive Bodies in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Menzel, Raymond L.; Roberge, Wayne G.

    2013-10-01

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the "motional electric field" that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows "electrodynamic heating," calculate its upper limits, and compare them to heating produced by short-lived radionuclides.

  9. Introduction of a Classical Level in Quantum Theory

    NASA Astrophysics Data System (ADS)

    Prosperi, G. M.

    2016-11-01

    In an old paper of our group in Milano a formalism was introduced for the continuous monitoring of a system during a certain interval of time in the framework of a somewhat generalized approach to quantum mechanics (QM). The outcome was a distribution of probability on the space of all the possible continuous histories of a set of quantities to be considered as a kind of coarse grained approximation to some ordinary quantum observables commuting or not. In fact the main aim was the introduction of a classical level in the context of QM, treating formally a set of basic quantities, to be considered as beables in the sense of Bell, as continuously taken under observation. However the effect of such assumption was a permanent modification of the Liouville-von Neumann equation for the statistical operator by the introduction of a dissipative term which is in conflict with basic conservation rules in all reasonable models we had considered. Difficulties were even encountered for a relativistic extension of the formalism. In this paper I propose a modified version of the original formalism which seems to overcome both difficulties. First I study the simple models of an harmonic oscillator and a free scalar field in which a coarse grain position and a coarse grained field respectively are treated as beables. Then I consider the more realistic case of spinor electrodynamics in which only certain coarse grained electric and magnetic fields are introduced as classical variables and no matter related quantities.

  10. Non-Abelian Yang-Mills analogue of classical electromagnetic duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Hong-Mo; Faridani, J.; Tsun, T.S.

    The classic question of non-Abelian Yang-Mills analogue to electromagnetic duality is examined here in a minimalist fashion at the strictly four-dimensional, classical field, and point charge level. A generalization of the Abelian Hodge star duality is found which, though not yet known to give dual symmetry, reproduces analogues to many dual properties of the Abelian theory. For example, there is a dual potential, but it is a two-indexed tensor {ital T}{sub {mu}{nu}} of the Freedman-Townsend-type. Though not itself functioning as such, {ital T}{sub {mu}{nu}} gives rise to a dual parallel transport {ital {tilde A}}{sub {mu}} for the phase of themore » wave function of the color magnetic charge, this last being a monopole of the Yang-Mills field but a source of the dual field. The standard color (electric) charge itself is found to be a monpole of {ital {tilde A}}{sub {mu}}. At the same time, the gauge symmetry is found doubled from say SU({ital N}) to SU({ital N}){times}SU({ital N}). A novel feature is that all equations of motion, including the standard Yang-Mills and Wong equations, are here derived from a ``universal`` principle, namely, the Wu-Yang criterion for monpoles, where interactions arise purely as a consequence of the topological definition of the monopole charge. The technique used is the loop space formulation of Polyakov.« less

  11. Charge Transfer in Collisions of S^4+ with H.

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-05-01

    Charge transfer processes due to collisions of ground state S^4+ ions with atomic hydrogen were investigated for energies between 1 meV/u and 10 MeV/u using the quantum-mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC), and continuum distorted wave methods. The MOCC calculations utilized ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially-stripped S^3+ excited classical states. Hydrogen target isotope effects were explored and rate coefficients for temperatures between 100 and 10^6 K will be presented

  12. Generalized Skyrme model with the loosely bound potential

    NASA Astrophysics Data System (ADS)

    Gudnason, Sven Bjarke; Zhang, Baiyang; Ma, Nana

    2016-12-01

    We study a generalization of the loosely bound Skyrme model which consists of the Skyrme model with a sixth-order derivative term—motivated by its fluidlike properties—and the second-order loosely bound potential—motivated by lowering the classical binding energies of higher-charged Skyrmions. We use the rational map approximation for the Skyrmion of topological charge B =4 , calculate the binding energy of the latter, and estimate the systematic error in using this approximation. In the parameter space that we can explore within the rational map approximation, we find classical binding energies as low as 1.8%, and once taking into account the contribution from spin-isospin quantization, we obtain binding energies as low as 5.3%. We also calculate the contribution from the sixth-order derivative term to the electric charge density and axial coupling.

  13. Classical conformal blocks and accessory parameters from isomonodromic deformations

    NASA Astrophysics Data System (ADS)

    Lencsés, Máté; Novaes, Fábio

    2018-04-01

    Classical conformal blocks appear in the large central charge limit of 2D Virasoro conformal blocks. In the AdS3 /CFT2 correspondence, they are related to classical bulk actions and used to calculate entanglement entropy and geodesic lengths. In this work, we discuss the identification of classical conformal blocks and the Painlevé VI action showing how isomonodromic deformations naturally appear in this context. We recover the accessory parameter expansion of Heun's equation from the isomonodromic τ -function. We also discuss how the c = 1 expansion of the τ -function leads to a novel approach to calculate the 4-point classical conformal block.

  14. Pathfinder

    NASA Image and Video Library

    2004-04-15

    This picture is an artist's concept of an orbiting vehicle using the Electrodynamic Tethers Propulsion System. Relatively short electrodynamic tethers can use solar power to push against a planetary magnetic field to achieve propulsion without the expenditure of propellant.

  15. Blow-up in nonlinear models of extended particles with confined constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, A.; Ranada, A.F.

    1988-11-15

    It is shown that the indefinite character of the charge in classical models of extended particles with confined constituents is a serious handicap since infinite amounts of positive and negative charge can be emitted in some solutions, causing a blow-up in finite time.

  16. Electrodynamics of relativistic electron beam x-ray sources

    NASA Astrophysics Data System (ADS)

    Niknejadi, Pardis

    Probing matter at atomic scales provides invaluable information about its structure; as a result interest in sources of x-rays and gamma-rays with high spectral resolution, low angular divergence and small source size has been on the rise. Explorations in this domain require x-ray or gamma-ray sources with high brightness. In the past decade, relativistic electron sources such as synchrotron rings and free electron lasers have proven to be the best technology available for the production of such beams. We1 start with an introduction to the physics of radiation and provide a summary of the theoretical grounds this work is based on. This dissertation is dedicated to different aspects of both fundamental processes of radiation in relativistic electron sources, and critical control and diagnostics that are required for the operation of these sources. Therefore this work is broken into two main parts. In the first part, the electron source that is currently set up at University of Hawai`i at Manoa will be introduced in detail. This source has unique capabilities as it is an inverse-Compton scattering (ICS) source that uses a free electron laser (FEL) with pulses of picosecond duration at ˜ 3 GHz rate for production of a coherent/semi-coherent x-ray beam by means of an optical cavity. After introducing the essential elements of the system and what was achieved prior to this work, we will focus on the requirements for achieving an optimum electron beam matched for the operation of the system which is the main focus of part I of this dissertation. The transport beam line of our system is unique and complex. For this reason, a simulation module has been developed for the study and delivery of an optimal beam. We will discuss the capabilities of this system and its compatibility with other elements that were already installed on the beam line. Finally, we will present results and experimental data as well as guidelines for future operation of the system when the microwave gun has been enhanced and/or the optical cavity (the final step of this proof-of-principle experiment) has been commissioned. Due to the complexity of this integrated system, one of the goals of this work is to serve the future members and staff of the UH FEL laboratory in configuring and operating this complex system. The final goal of the UH ICS project is to establish the principles on which producing a successful turn-key commercial inverse-Compton x-ray source will depend on. In the second part of this work we start with the discussion of coherent radiation at its most fundamental level, with emphasis on conservation of energy. We show that for coherently radiating particles the failure of conventional classical electrodynamics (CED) is far more serious than the well-known failure of CED at small scales. We will present a covariant picture of radiation in terms of the theory of action-at-a-distance and introduce a time-symmetric approach to electrodynamics. We demonstrate that this time symmetric approach provides a perfect match to the energy radiated by two coherently oscillating charged particles. This work is novel, as this was an unsolved problem in classical electrodynamics up until now. We also discuss how the conceptual implication of this work is demanding. For this purpose, we will propose two different experiments that can further our understanding of the presented problem. The first experiment involves a small (lambda/10) antenna, and the goal is to measure the advanced field of the absorber at distances of 5lambda or less. Calculation and precise measurement of the antenna field/potential at distances of order lambda is challenging, causing this experiment to be a difficult yet possible task. In the second experiment, we discuss in some detail the experimental setup that would verify and/or further our understanding of the underlying physics of Self Amplified Spontaneous Emission (SASE) FELs. We provide an analytical verification as a first step toward better understanding the process, and provide a list of required parameters for the SASE test. These parameters are at the edge of current technology of current light sources, making this experiment also a demanding and challenging task. We conclude that further detailed studies by means of simulation or analytical approaches can reduce the strain of SASE test. 1Even though this dissertation was completed by one person, as hardly any scientific work is ever completed by one, it is written in first person plural. Only in this way, it is possible to give credit to those who have contributed to this research by spending their time till the late hours of the night and sometimes even early morning in the control room. For the theoretical work, the hope is to also invite the reader to follow the work closely and check its validity as they read along, as well as to acknowledge the fruitful conversations that have led to the discussions and conclusions presented here.

  17. Time domain simulations of preliminary breakdown pulses in natural lightning.

    PubMed

    Carlson, B E; Liang, C; Bitzer, P; Christian, H

    2015-06-16

    Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations.

  18. Of dipole antennas in a magnetized plasma in the resonance frequency band

    NASA Astrophysics Data System (ADS)

    Shirokov, E. A.; Chugunov, Yu. V.

    2011-12-01

    We consider characteristics of slow quasielectrostatic waves excited in the resonance frequency band by a source whose dimensions are much less than the wavelength of the electromagnetic wave. We primarily focus on the analysis of the radiation of a harmonic wave in pulsed mode by a dipole source. Firstly, we study the influence of electromagnetic, dispersive, and collisional corrections in the dispersion relation on the field shape. Secondly, we analyze the field structure near the resonance cone. In particular, the effects of the group delay and anomalous spreading of the wave are considered. The developed theory is used to interpret the "OEDIPUS-C" experiment. For example, a delay of 10-4 s and a significant (severalfold) spreading of the pulse were observed at a distance of about ten wavelengths. Finally, some aspects of the inverse problem of electrodynamics are examined. Namely, the role of the smoothness of the antenna charge distribution in the field structure formation is shown and a class of smooth charge distributions creating a given field structure is found.

  19. Time domain simulations of preliminary breakdown pulses in natural lightning

    PubMed Central

    Carlson, B E; Liang, C; Bitzer, P; Christian, H

    2015-01-01

    Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Key Points Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations PMID:26664815

  20. Persistent Hall voltages across thin planar charged quantum rings on the surface of a topological insulator

    NASA Astrophysics Data System (ADS)

    Durganandini, P.

    2015-03-01

    We consider thin planar charged quantum rings on the surface of a three dimensional topological insulator coated with a thin ferromagnetic layer. We show theoretically, that when the ring is threaded by a magnetic field, then, due to the Aharanov-Bohm effect, there are not only the well known circulating persistent currents in the ring but also oscillating persistent Hall voltages across the thin ring. Such oscillating persistent Hall voltages arise due to the topological magneto-electric effect associated with the axion electrodynamics exhibited by the surface electronic states of the three dimensional topological insulator when time reversal symmetry is broken. We further generalize to the case of dipole currents and show that analogous Hall dipole voltages arise. We also discuss the robustness of the effect and suggest possible experimental realizations in quantum rings made of semiconductor heterostructures. Such experiments could also provide new ways of observing the predicted topological magneto-electric effect in three dimensional topological insulators with time reversal symmetry breaking. I thank BCUD, Pune University, Pune for financial support through research grant.

  1. REVIEWS OF TOPICAL PROBLEMS: "Magnetized" black holes

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Gal'tsov, D. V.

    1989-01-01

    Physical aspects of the theory of black holes in an external electromagnetic field are reviewed. The "magnetized" black hole model is currently widely discussed in astrophysics because it provides a basis for the explanation of the high energy activity of galactic cores and quasars. The particular feature of this model is that it predicts unusual "gravimagnetic" phenomena that arise as a result of a natural combination of effects in electrodynamics and gravitation, namely, the appearance of an inductive potential difference during the rotation of a black hole in a magnetic field, the drift of a black hole in an external electromagnetic field, the change in the chemical potential of the event horizon, the creation of an effective ergosphere of a black hole in a magnetic field, and so on. Questions relating to the description of electromagnetic fields in Kerr space-time are examined, including their influence on the space-time metric, the interaction between a rotating charged black hole and an external electromagnetic field, the motion of charged particles near "magnetized" black holes, including their spontaneous and stimulated emission, and the influence of magnetic fields on quantum-mechanical processes in black holes.

  2. Timelike Momenta In Quantum Electrodynamics

    DOE R&D Accomplishments Database

    Brodsky, S. J.; Ting, S. C. C.

    1965-12-01

    In this note we discuss the possibility of studying the quantum electrodynamics of timelike photon propagators in muon or electron pair production by incident high energy muon or electron beams from presently available proton or electron accelerators.

  3. BFV-BRST analysis of the classical and quantum q-deformations of the sl(2) algebra

    NASA Astrophysics Data System (ADS)

    Dayi, O. F.

    1994-01-01

    BFV--BRST charge for q-deformed algebras is not unique. Different constructions of it in the classical as well as in the quantum phase space for the $q$-deformed algebra sl_q(2) are discussed. Moreover, deformation of the phase space without deforming the generators of sl(2) is considered. $\\hbar$-q-deformation of the phase space is shown to yield the Witten's second deformation. To study the BFV--BRST cohomology problem when both the quantum phase space and the group are deformed, a two parameter deformation of sl(2) is proposed, and its BFV-BRST charge is given.

  4. Comparison of Molecular Dynamics with Classical Density Functional and Poisson–Boltzmann Theories of the Electric Double Layer in Nanochannels

    PubMed Central

    2012-01-01

    Comparisons are made among Molecular Dynamics (MD), Classical Density Functional Theory (c-DFT), and Poisson–Boltzmann (PB) modeling of the electric double layer (EDL) for the nonprimitive three component model (3CM) in which the two ion species and solvent molecules are all of finite size. Unlike previous comparisons between c-DFT and Monte Carlo (MC), the present 3CM incorporates Lennard-Jones interactions rather than hard-sphere and hard-wall repulsions. c-DFT and MD results are compared over normalized surface charges ranging from 0.2 to 1.75 and bulk ion concentrations from 10 mM to 1 M. Agreement between the two, assessed by electric surface potential and ion density profiles, is found to be quite good. Wall potentials predicted by PB begin to depart significantly from c-DFT and MD for charge densities exceeding 0.3. Successive layers are observed to charge in a sequential manner such that the solvent becomes fully excluded from each layer before the onset of the next layer. Ultimately, this layer filling phenomenon results in fluid structures, Debye lengths, and electric surface potentials vastly different from the classical PB predictions. PMID:23316120

  5. Ion energy balance in enhanced-confinement reversed-field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Xing, Z. A.; Nornberg, M. D.; Boguski, J.; Craig, D.; den Hartog, D. J.; McCollam, K.

    2017-10-01

    Testing the applicability of collisional ion transport theory using tearing suppressed RFP plasma in MST achieved through Pulsed Poloidal Current Drive (PPCD), we find that the ion temperature dynamics in the core to be well-predicted by classical and collisional terms. Prior work demonstrated that impurity ion particle transport in PPCD plasmas is classical. Neoclassical effects on ions in the RFP are small and the stochastic transport is greatly suppressed during PPCD. Recent neutral modelling with DEGAS2 suggests higher core neutral temperatures than expected due to the preferential penetration of higher temperature neutrals generated by charge exchange. Further, investigations through equilibrium reconstruction point to the existence of an inward pinch flow associated with ExB drift. The heat balance model pulls together a wide range of diagnostic data to forward model Ti evolution in PPCD, which is then compared to charge exchange spectroscopy measurements of Ti. Ion power balance is mostly driven by classical effects including compressional heating, electron collisional heating, and charge exchange transport. This understanding provides a good baseline for investigations of anomalous heating in plasmas with tearing mode activity. This work is supported by US DOE.

  6. Orbit-averaged quantities, the classical Hellmann-Feynman theorem, and the magnetic flux enclosed by gyro-motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, R. J., E-mail: rperkins@pppl.gov; Bellan, P. M.

    Action integrals are often used to average a system over fast oscillations and obtain reduced dynamics. It is not surprising, then, that action integrals play a central role in the Hellmann-Feynman theorem of classical mechanics, which furnishes the values of certain quantities averaged over one period of rapid oscillation. This paper revisits the classical Hellmann-Feynman theorem, rederiving it in connection to an analogous theorem involving the time-averaged evolution of canonical coordinates. We then apply a modified version of the Hellmann-Feynman theorem to obtain a new result: the magnetic flux enclosed by one period of gyro-motion of a charged particle inmore » a non-uniform magnetic field. These results further demonstrate the utility of the action integral in regards to obtaining orbit-averaged quantities and the usefulness of this formalism in characterizing charged particle motion.« less

  7. Electrodynamics panel presentation

    NASA Technical Reports Server (NTRS)

    Mccoy, J.

    1986-01-01

    The Plasma Motor Generator (PMG) concept is explained in detail. The PMG tether systems being used to calculate the estimated performance data is described. The voltage drops and current contact geometries involved in the operation of an electrodynamic tether are displayed illustrating the comparative behavior of hollow cathodes, electron guns, and passive collectors for current coupling into the ionosphere. The basic PMG design involving the massive tether cable with little or no satellite mass at the far end(s) are also described. The Jupiter mission and its use of electrodynamic tethers are given. The need for demonstration experiments is stressed.

  8. APPROACH TO EQUILIBRIUM OF A QUANTUM PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.

    1961-01-01

    The treatment of irreversible processes in a classical plasma (R. Balescu, Phys. Fluids 3, 62(1960)) was extended to a gas of charged particles obeying quantum statistics. The various contributions to the equation of evolution for the reduced one-particle Wigner function were written in a form analogous to the classical formalism. The summation was then performed in a straightforward manner. The resulting equation describes collisions between particles "dressed" by their polarization clouds, exactly as in the classical situation. (auth)

  9. Towards a wave theory of charged beam transport: A collection of thoughts

    NASA Technical Reports Server (NTRS)

    Dattoli, G.; Mari, C.; Torre, A.

    1992-01-01

    We formulate in a rigorous way a wave theory of charged beam linear transport. The Wigner distribution function is introduced and provides the link with classical mechanics. Finally, the von Neumann equation is shown to coincide with the Liouville equation for the nonlinear transport.

  10. Revisiting the Velocity Selector Problem with VPython

    ERIC Educational Resources Information Center

    Milbourne, Jeff; Lim, Halson

    2015-01-01

    The velocity selector is a classic first-year physics problem that demonstrates the influence of perpendicular electric and magnetic fields on a charged particle. Traditionally textbooks introduce this problem in the context of balanced forces, often asking for field strengths that would allow a charged particle, with a specific target velocity,…

  11. Towards a Unified Field Theory for Classical Electrodynamics

    NASA Astrophysics Data System (ADS)

    Benci, Vieri; Fortunato, Donato

    2004-09-01

    In this paper we introduce a model which describes the relation of matter and the electromagnetic field from a unitarian standpoint in the spirit of ideas of Born and Infeld. In this model, based on a semilinear perturbation of Maxwell equations, the particles are finite-energy solitary waves due to the presence of the nonlinearity. In this respect the matter and the electromagnetic field have the same nature. Finite energy means that particles have finite mass and this makes electrodynamics consistent with the special relativity. We analyze the invariants of the motion of the semilinear Maxwell equations (SME) and their static solutions. In the magnetostatic case (i.e., when the electric field E = 0 and the magnetic field H does not depend on time) SME are reduced to the semilinear equation where ∇× denotes the curloperator, f‧ is the gradient of a strictly convex smooth function f:R3→R and A:R3→R3 is the gauge potential related to the magnetic field H (H = ∇× A). Due to the presence of the curl operator, (1) is a strongly degenerate elliptic equation. Moreover, physical considerations impel f to be flat at zero (f‧‧(0)=0) and this fact leads us to study the problem in a functional setting related to the Orlicz space Lp+Lq. The existence of a nontrivial finite- energy solution of (1) is proved under suitable growth conditions on f. The proof is carried out by using a suitable variational framework related to the Hodge splitting of the vector field A.

  12. High Performance Ion Mobility Spectrometry Using Hourglass Electrodynamic Funnel And Internal Ion Funnel

    DOEpatents

    Smith, Richard D.; Tang, Keqi; Shvartsburg, Alexandre A.

    2005-11-22

    A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing a device for transmitting ions from an ion source which allows the transmission of ions without significant delay to an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.

  13. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the American sector and weaker in the African sector - why are the occurrence and amplitude of equatorial irregularities stronger in the African sector?

  14. Lorentz-violating electrodynamics and the cosmic microwave background.

    PubMed

    Kostelecký, V Alan; Mewes, Matthew

    2007-07-06

    Possible Lorentz-violating effects in the cosmic microwave background are studied. We provide a systematic classification of renormalizable and nonrenormalizable operators for Lorentz violation in electrodynamics and use polarimetric observations to search for the associated violations.

  15. Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.

    2004-01-01

    Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our experiments also show that "Malter" electron emission occurs for hours after turning off the electron beam. This Malter emission similar to emission due to negative electron affinity in semiconductors is a result of the prior radiation or optical excitations of valence electrons and their slow drift among traps towards the surface where they are subsequently emitted. This work is supported through funding from the NASA Space Environments and Effects Program.

  16. Fast Atom Ionization in Strong Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Apostol, M.

    2018-05-01

    The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

  17. Neutral dynamics and ion energy transport in MST plasma

    NASA Astrophysics Data System (ADS)

    Xing, Zichuan; Nornberg, Mark; den Hartog, Daniel; Kumar, Santosh; Anderson, Jay

    2015-11-01

    Neutral dynamics can have a significant effect on ion energy transport through charge exchange collisions. Whereas previously charge exchange was considered a direct loss mechanism in MST plasmas, new analysis indicates that significant thermal charge exchange neutrals are reionized. Further, the temperatures of the neutral species in the core of the plasma are suspected to be much higher than room temperature, which has a large effect on ion energy losses due to charge exchange. The DEGAS2 Monte Carlo simulation code is applied to the MST reversed field pinch experiment to estimate the density and temperature profile of the neutral species. The result is then used to further examine the effect of the neutral species on ion energy transport in improved confinement plasmas. This enables the development of a model that accounts for collisional equilibration between species, classical convective and conductive energy transport, and energy loss due to charge exchange collisions. The goal is to quantify classical, stochastic, and anomalous ion heating and transport in RFP plasmas. Work supported by the US DOE. DEGAS2 is provided by PPPL and STRAHL is provided by Ralph Dux of the Max-Planck-Institut fur Plasmaphysik.

  18. Simulation of the charge migration in DNA under irradiation with heavy ions.

    PubMed

    Belov, Oleg V; Boyda, Denis L; Plante, Ianik; Shirmovsky, Sergey Eh

    2015-01-01

    A computer model to simulate the processes of charge injection and migration through DNA after irradiation by a heavy charged particle was developed. The most probable sites of charge injection were obtained by merging spatial models of short DNA sequence and a single 1 GeV/u iron particle track simulated by the code RITRACKS (Relativistic Ion Tracks). Charge migration was simulated by using a quantum-classical nonlinear model of the DNA-charge system. It was found that charge migration depends on the environmental conditions. The oxidative damage in DNA occurring during hole migration was simulated concurrently, which allowed the determination of probable locations of radiation-induced DNA lesions.

  19. Conditional Dispersive Readout of a CMOS Single-Electron Memory Cell

    NASA Astrophysics Data System (ADS)

    Schaal, S.; Barraud, S.; Morton, J. J. L.; Gonzalez-Zalba, M. F.

    2018-05-01

    Quantum computers require interfaces with classical electronics for efficient qubit control, measurement, and fast data processing. Fabricating the qubit and the classical control layer using the same technology is appealing because it will facilitate the integration process, improving feedback speeds and offering potential solutions to wiring and layout challenges. Integrating classical and quantum devices monolithically, using complementary metal-oxide-semiconductor (CMOS) processes, enables the processor to profit from the most mature industrial technology for the fabrication of large-scale circuits. We demonstrate a CMOS single-electron memory cell composed of a single quantum dot and a transistor that locks charge on the quantum-dot gate. The single-electron memory cell is conditionally read out by gate-based dispersive sensing using a lumped-element L C resonator. The control field-effect transistor (FET) and quantum dot are fabricated on the same chip using fully depleted silicon-on-insulator technology. We obtain a charge sensitivity of δ q =95 ×10-6e Hz-1 /2 when the quantum-dot readout is enabled by the control FET, comparable to results without the control FET. Additionally, we observe a single-electron retention time on the order of a second when storing a single-electron charge on the quantum dot at millikelvin temperatures. These results demonstrate first steps towards time-based multiplexing of gate-based dispersive readout in CMOS quantum devices opening the path for the development of an all-silicon quantum-classical processor.

  20. Electrodynamic pressure modulation of protein stability in cosolvents.

    PubMed

    Damodaran, Srinivasan

    2013-11-19

    Cosolvents affect structural stability of proteins in aqueous solutions. A clear understanding of the mechanism by which cosolvents impact protein stability is critical to understanding protein folding in a biological milieu. In this study, we investigated the Lifshitz-van der Waals dispersion interaction of seven different solutes with nine globular proteins and report that in an aqueous medium the structure-stabilizing solutes exert a positive electrodynamic pressure, whereas the structure-destabilizing solutes exert a negative electrodynamic pressure on the proteins. The net increase in the thermal denaturation temperature (ΔTd) of a protein in 1 M solution of various solutes was linearly related to the electrodynamic pressure (PvdW) between the solutes and the protein. The slope of the PvdW versus ΔTd plots was protein-dependent. However, we find a positive linear relationship (r(2) = 0.79) between the slope (i.e., d(ΔTd)/dPvdW) and the adiabatic compressibility (βs) of the proteins. Together, these results clearly indicate that the Lifshitz's dispersion forces are inextricably involved in solute-induced stabilization/destabilization of globular proteins. The positive and/or negative electrodynamic pressure generated by the solute-protein interaction across the water medium seems to be the fundamental mechanism by which solutes affect protein stability. This is at variance with the existing preferential hydration concept. The implication of these results is significant in the sense that, in addition to the hydrophobic effect that drives protein folding, the electrodynamic forces between the proteins and solutes in the biological milieu also might play a role in the folding process as well as in the stability of the folded state.

  1. Theoretical investigation of EM wave generation and radiation in the ULF, ELF, and VLF bands by the electrodynamic orbiting tether

    NASA Technical Reports Server (NTRS)

    Estes, Robert D.; Grossi, Mario D.

    1989-01-01

    The problem of electromagnetic wave generation by an electrodynamic tethered satellite system is important both for the ordinary operation of such systems and for their possible application as orbiting transmitters. The tether's ionospheric circuit closure problem is closely linked with the propagation of charge-carrying electromagnetic wave packets away from the tethered system. Work is reported which represents a step towards a solution to the problem that takes into account the effects of boundaries and of vertical variations in plasma density, collision frequencies, and ion species. The theory of Alfen wave packet generation by an electrodynamic tethered system in an infinite plasma medium is reviewed, and brief summary of previous work on the problem is given. The consequences of the presence of the boundaries and the vertical nonuniformity are then examined. One of the most significant new features to emerge when ion-neutral collisions are taken into account is the coupling of the Alfven waves to the fast magnetosonic wave. This latter wave is important, as it may be confined by vertical variations in the Alfven speed to a sort of leaky ionospheric wave guide, the resonances of which could be of great importance to the signal received on the Earth's surface. The infinite medium solution for this case where the (uniform) geomagnetic field makes an arbitrary angle with the vertical is taken as the incident wave-packet. Even without a full solution, a number of conclusions can be drawn, the most important of which may be that the electromagnetic field associated with the operation of a steady-current tethered system will probably be too weak to detect on the Earth's surface, even for large tethered currents. This is due to the total reflection of the incident wave at the atmospheric boundary and the inability of a steady-current tethered system to excite the ionospheric wave-guide. An outline of the approach to the numerical problem is given. The use of numerical integrations and boundary conditions consistent with a conducting Earth is proposed to obtain the solution for the horizontal electromagnetic field components at the boundary of the ionosphere with the atmospheric cavity.

  2. Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that the electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Laboratory measurements on charging of analogs of the interstellar dust as well as Apollo 11 dust grains conducted at the NASA-MSFC Dusty Plasma Lab. are presented here

  3. Accurate wavelengths for X-ray spectroscopy and the NIST hydrogen-like ion database

    NASA Astrophysics Data System (ADS)

    Kotochigova, S. A.; Kirby, K. P.; Brickhouse, N. S.; Mohr, P. J.; Tupitsyn, I. I.

    2005-06-01

    We have developed an ab initio multi-configuration Dirac-Fock-Sturm method for the precise calculation of X-ray emission spectra, including energies, transition wavelengths and transition probabilities. The calculations are based on non-orthogonal basis sets, generated by solving the Dirac-Fock and Dirac-Fock-Sturm equations. Inclusion of Sturm functions into the basis set provides an efficient description of correlation effects in highly charged ions and fast convergence of the configuration interaction procedure. A second part of our study is devoted to developing a theoretical procedure and creating an interactive database to generate energies and transition frequencies for hydrogen-like ions. This procedure is highly accurate and based on current knowledge of the relevant theory, which includes relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  4. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    NASA Astrophysics Data System (ADS)

    Blencowe, M. P.; Armour, A. D.

    2008-09-01

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  5. On a `time' reparametrization in relativistic electrodynamics with travelling waves

    NASA Astrophysics Data System (ADS)

    Fiore, Gaetano

    2018-01-01

    We briefly report on our method [23] of simplifying the equations of motion of charged particles in an electromagnetic (EM) field that is the sum of a plane travelling wave and a static part; it is based on changes of the dependent variables and the independent one (light-like coordinate ξ instead of time t). We sketch its application to a few cases of extreme laser-induced accelerations, both in vacuum and in plane problems at the vacuum-plasma interface, where we are able to reduce the system of the (Lorentz-Maxwell and continuity) partial differential equations into a family of decoupled systems of Hamilton equations in 1 dimension. Since Fourier analysis plays no role, the method can be applied to all kind of travelling waves, ranging from almost monochromatic to socalled "impulses".

  6. Simulated imaging properties of a series of magnetic electron lenses

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1995-01-01

    The paraxial lens data were determined for a series of symmetrical magnetic lenses of equal lens diameter but variable air gap width for a wide range of lens excitations using the three-dimensional electrodynamic computer code MAFIA. The results are compared with a similar study done by Liebman and Grad wherein the field distributions within the lenses were measured experimentally with a resistance network analogue. Using these fields the lens data were obtained through numerical trajectory tracing. The utility of using MAFIA, instead of experimental methods for lens design is shown by the excellent agreement of the simulated results compared to experiment. Also demonstrated is the capability of using MAFIA to investigate aberration sources such as higher order off-axis magnetic field and space-charge effects.

  7. Lasing in circuit quantum electrodynamics with strong noise

    NASA Astrophysics Data System (ADS)

    Marthaler, M.; Utsumi, Y.; Golubev, D. S.

    2015-05-01

    We study a model which can describe a superconducting single-electron transistor or a double quantum dot coupled to a transmission-line oscillator. In both cases the degree of freedom is given by a charged particle, which couples strongly to the electromagnetic environment or phonons. We consider the case where a lasing condition is established and study the dependence of the average photon number in the resonator on the spectral function of the electromagnetic environment. We focus on three important cases: a strongly coupled environment with a small cutoff frequency, a structured environment peaked at a specific frequency, and 1 /f noise. We find that the electromagnetic environment can have a substantial impact on the photon creation. Resonance peaks are in general broadened and additional resonances can appear.

  8. Precise Determination of the 1s Lamb Shift in Hydrogen-Like Lead and Gold Using Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Ilieva, S.; Kiselev, O.; Kilbourne, C.; McCammon, D.; hide

    2017-01-01

    Quantum electrodynamics in very strong Coulomb fields is one scope which has not yet been tested experimentally with sufficient accuracy to really determine whether the perturbative approach is valid. One sensitive test is the determination of the 1s Lamb shift in highly-charged very heavy ions. The 1s Lamb shift of hydrogen-like lead (Pb81+) and gold (Au78+) has been determined using the novel detector concept of silicon microcalorimeters for the detection of hard x-rays. The results of (260 +/- 53) eV for lead and (211 +/- 42) eV for gold are within the error bars in good agreement with theoretical predictions. To our knowledge, for hydrogen-like lead, this represents the most accurate determination of the 1s Lamb shift.

  9. Comment on "Construction of regular black holes in general relativity"

    NASA Astrophysics Data System (ADS)

    Bronnikov, Kirill A.

    2017-12-01

    We claim that the paper by Zhong-Ying Fan and Xiaobao Wang on nonlinear electrodynamics coupled to general relativity [Phys. Rev. D 94,124027 (2016)], although correct in general, in some respects repeats previously obtained results without giving proper references. There is also an important point missing in this paper, which is necessary for understanding the physics of the system: in solutions with an electric charge, a regular center requires a non-Maxwell behavior of Lagrangian function L (f ) , (f =Fμ νFμ ν) at small f . Therefore, in all electric regular black hole solutions with a Reissner-Nordström asymptotic, the Lagrangian L (f ) is different in different parts of space, and the electromagnetic field behaves in a singular way at surfaces where L (f ) suffers branching.

  10. The momentum of an electromagnetic wave inside a dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Testa, Massimo, E-mail: massimo.testa@roma1.infn.it

    2013-09-15

    The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from themore » conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.« less

  11. Manipulating Images of Popular Culture upon Neo-Classical Theatre: "Tartuffe" at Susquehanna University.

    ERIC Educational Resources Information Center

    Sodd, Mary Jo

    Moliere's "Tartuffe" is an attack, not on religion, but on people who hide behind religion and exploit it. As a college professor in charge of student production searched for a director's concept for "Tartuffe," she realized that it would be unwise to attempt a museum staging of neo-classical theater with limited funding. She…

  12. Classical Swine Fever Virus p7 protein is a viroporin involved in virulence in swine

    USDA-ARS?s Scientific Manuscript database

    The non-structural protein p7 of Classical Swine Fever Virus (CSFV) is a hydrophobic polypeptide with an apparent molecular mass of 7 kDa. The protein contains two hydrophobic stretches of amino acids interrupted by a short charged segment that are predicted to form transmembrane helices and a cytos...

  13. Feedback between neutral winds and auroral arc electrodynamics

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Walterscheid, R. L.

    1986-01-01

    The feedback between neutral atmospheric winds and the electrodynamics of a stable, discrete auroral arc is analyzed. The ionospheric current continuity equation and the equation for neutral gas acceleration by ion drag are solved simultaneously, as a function of time. The results show that, in general, the electric field in the ionosphere adjusts to neutral wind acceleration so as to keep auroral field-aligned currents and electron acceleration approximately independent of time. It is thus concluded that the neutral winds that develop as a result of the electrodynamical forcing associated with an arc do not significantly affect the intensity of the arc.

  14. Flying relativistic mirrors for nonlinear QED studies.

    NASA Astrophysics Data System (ADS)

    Bulanov, Stepan; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2017-10-01

    Recent progress in laser technology has led to a dramatic increase of laser power and intensity. As a result, the laser-matter interaction will happen in the radiation dominated regimes. In a strong electromagnetic field, electrons can be accelerated to such high velocities that the radiation reaction starts to play an important role. The radiation effects change drastically the laser-plasma interaction leading to fast energy losses. Moreover, previously unexplored regimes of the interaction will be entered into, in which quantum electrodynamics (QED) can occur. Depending on the laser intensity and wavelength, either classical or quantum mode of radiation reaction prevail. In order to study different regimes of interaction as well as the transition from one into another the utilization of flying relativistic mirrors, which can generate electromagnetic pulses with varying frequency and intensity, is proposed. The scheme is demonstrated for multiphoton Compton scattering. Work supported by U.S. DOE under Contract No. DE-AC02-05CH11231.

  15. Why Don't They Understand Us?

    NASA Astrophysics Data System (ADS)

    Kvasz, Ladislav

    The aim of the article is to provide teachers some ideas about the development of physical knowledge and to make them more receptive to the differences between their and the students thinking. I want to show, that these differences lie not only in the richness of experience, but also in the structure of this experience. I try to point to some of these differences lying in the content, form and meaningfulness. The article is based on an adapted version of Piaget's model of the growth of physical knowledge. The model represents the changes of semantic understanding, formal language and logical structure of a theory during its historical development. I illustrate the model on the development of classical mechanics, but similar changes can be found also in the history of electrodynamics or quantum mechanics. The central idea of the paper is to use this model of the historical development of physical knowledge in analysis of the cognitive processes in physics education.

  16. Passion at a Distance

    NASA Astrophysics Data System (ADS)

    Howard, Don

    In 1984, Abner Shimony invented the expression, "passion at a distance," to characterize the distinctive relationship of two entangled quantum mechanical systems [1]. It is neither the local causality of pushes, pulls, and central forces familiar from classical mechanics and electrodynamics, nor the non-local causality of instantaneous or just superluminal action at a distance that would spell trouble for relativity theory. This mode of connection of entangled systems has them feeling one another's presence and properties enough to ensure the strong correlations revealed in the Bell experiments, correlations that undergird everything from superfluidity and superconductivity to quantum computing and quantum teleportation, but not in a way that permits direct control of one by manipulation of the other. Intended to echo Aristotle's distinguishing of "potentiality" from "actuality" as different senses of "being," Shimony's "passion at a distance" is all about tendency and propensity, not the concreteness whose misplacement in realm of the physical was lamented by Alfred North Whitehead.

  17. Does Light from Steady Sources Bear Any Observable Imprint of the Dispersive Intergalactic Medium?

    NASA Astrophysics Data System (ADS)

    Lieu, Richard; Duan, Lingze

    2018-02-01

    There has recently been some interest in the prospect of detecting ionized intergalactic baryons by examining the properties of incoherent light from background cosmological sources, namely quasars. Although the paper by Lieu et al. proposed a way forward, it was refuted by the later theoretical work of Hirata & McQuinn and the observational study of Hales et al. In this paper we investigate in detail the manner in which incoherent radiation passes through a dispersive medium both from the frameworks of classical and quantum electrodynamics, leading us to conclude that the premise of Lieu et al. would only work if the pulses involved are genuinely classical ones containing many photons per pulse; unfortunately, each photon must not be treated as a pulse that is susceptible to dispersive broadening. We are nevertheless able to change the tone of the paper at this juncture by pointing out that because current technology allows one to measure the phase of individual modes of radio waves from a distant source, the most reliable way of obtaining irrefutable evidence of dispersion, namely via the detection of its unique signature of a quadratic spectral phase, may well be already accessible. We demonstrate how this technique is only applied to measure the column density of the ionized intergalactic medium.

  18. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  19. Experimental Results of Schlicher's Thrusting Antenna

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Niedra, Janis M.

    2001-01-01

    Experiments were conducted to test the claims by Rex L. Schlicher, et al., (Patent 5,142,86 1) that a certain antenna geometry produces thrust greatly exceeding radiation reaction, when driven by repetitive, fast rise, and relatively slower decay current pulses. In order to test this hypothesis, the antenna was suspended by strings as a 3 in pendulum. Current pulses were fed to the antenna along the suspension path by a very flexible coaxial line constructed from loudspeaker cable and copper braid sheath. When driving the antenna via this cabling, our pulser was capable of sustaining 1200 A pulses at a rate of 30 per second up to a minute. In this way, bursts of pulses could be delivered in synch with the pendulum period in order to build up any motion. However, when using a laser beam passing through a lens attached to the antenna to amplify linear displacement by a factor of at least 25, no correlated motion of the beam spot could be detected on a distant wall. We conclude, in agreement with the momentum theorem of classical electromagnetic theory, that any thrust produced is far below practically useful levels. Hence, within classical electrodynamics, there is little hope of detecting any low level motion that cannot be explained by interactions with surrounding structural steel and the Earth's magnetic field.

  20. Exact Extremal Statistics in the Classical 1D Coulomb Gas

    NASA Astrophysics Data System (ADS)

    Dhar, Abhishek; Kundu, Anupam; Majumdar, Satya N.; Sabhapandit, Sanjib; Schehr, Grégory

    2017-08-01

    We consider a one-dimensional classical Coulomb gas of N -like charges in a harmonic potential—also known as the one-dimensional one-component plasma. We compute, analytically, the probability distribution of the position xmax of the rightmost charge in the limit of large N . We show that the typical fluctuations of xmax around its mean are described by a nontrivial scaling function, with asymmetric tails. This distribution is different from the Tracy-Widom distribution of xmax for Dyson's log gas. We also compute the large deviation functions of xmax explicitly and show that the system exhibits a third-order phase transition, as in the log gas. Our theoretical predictions are verified numerically.

  1. Testing Born-Infeld electrodynamics in waveguides.

    PubMed

    Ferraro, Rafael

    2007-12-07

    Waveguides can be employed to test nonlinear effects in electrodynamics. We solve Born-Infeld equations for TE waves in a rectangular waveguide. We show that the energy velocity acquires a dependence on the amplitude, and harmonic components appear as a consequence of the nonlinear behavior.

  2. Cation Recombination Energy/Coulomb Repulsion Effects in ETD/ECD as Revealed by Variation of Charge per Residue at Fixed Total Charge

    PubMed Central

    Mentinova, Marija; Crizer, David M.; Baba, Takashi; McGee, William M.; Glish, Gary L.; McLuckey, Scott A.

    2013-01-01

    Electron capture dissociation (ECD) and electron transfer dissociation (ETD) experiments in electrodynamic ion traps operated in the presence of a bath gas in the 1–10 mTorr range have been conducted on a common set of doubly protonated model peptides of the form X(AG)nX (X = lysine, arginine, or histidine, n=1, 2, or 4). The partitioning of reaction products was measured using thermal electrons, anions of azobenzene, and anions of 1,3-dinitrobenzene as reagents. Variation of n alters the charge per residue of the peptide cation, which affects recombination energy. The ECD experiments showed that H-atom loss is greatest for the n=1 peptides and decreases as n increases. Proton transfer in ETD, on the other hand, is expected to increase as charge per residue decreases (i.e., as n increases). These opposing tendencies were apparent in the data for the K(AG)nK peptides. H-atom loss appeared to be more prevalent in ECD than in ETD and is rationalized on the basis of either internal energy differences, differences in angular momentum transfer associated with the electron capture versus electron transfer processes, or a combination of the two. The histidine peptides showed the greatest extent of charge reduction without dissociation, the arginine peptides showed the greatest extent of side-chain cleavages, and the lysine peptides generally showed the greatest extent of partitioning into the c/z•-product ion channels. The fragmentation patterns for the complementary c- and z•-ions for ETD and ECD were found to be remarkably similar, particularly for the peptides with X = lysine. PMID:23568028

  3. Thermodynamic properties of charged three-dimensional black holes in the scalar-tensor gravity theory

    NASA Astrophysics Data System (ADS)

    Dehghani, M.

    2018-02-01

    Making use of the suitable transformation relations, the action of three-dimensional Einstein-Maxwell-dilaton gravity theory has been obtained from that of scalar-tensor modified gravity theory coupled to the Maxwell's electrodynamics as the matter field. Two new classes of the static three-dimensional charged dilatonic black holes, as the exact solutions to the coupled scalar, electromagnetic and gravitational field equations, have been obtained in the Einstein frame. Also, it has been found that the scalar potential can be written in the form of a generalized Liouville-type potential. The conserved black hole charge and masses as well as the black entropy, temperature, and electric potential have been calculated from the geometrical and thermodynamical approaches, separately. Through comparison of the results arisen from these two alternative approaches, the validity of the thermodynamical first law has been proved for both of the new black hole solutions in the Einstein frame. Making use of the canonical ensemble method, a black hole stability or phase transition analysis has been performed. Regarding the black hole heat capacity, with the black hole charge as a constant, the points of type-1 and type-2 phase transitions have been determined. Also, the ranges of the black hole horizon radius at which the Einstein black holes are thermally stable have been obtained for both of the new black hole solutions. Then making use of the inverse transformation relations, two new classes of the string black hole solutions have been obtained from their Einstein counterpart. The thermodynamics and thermal stability of the new string black hole solutions have been investigated. It has been found that thermodynamic properties of the new charged black holes are identical in the Einstein and Jordan frames.

  4. Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies.

    PubMed

    Ahmadivand, Arash; Sinha, Raju; Gerislioglu, Burak; Karabiyik, Mustafa; Pala, Nezih; Shur, Michael

    2016-11-15

    We experimentally and numerically analyze the charge transfer THz plasmons using an asymmetric plasmonic assembly of metallic V-shaped blocks. The asymmetric design of the blocks allows for the excitation of classical dipolar and multipolar modes due to the capacitive coupling. Introducing a conductive microdisk between the blocks, we facilitated the excitation of the charge transfer plasmons and studied their characteristics along with the capacitive coupling by varying the size of the disk.

  5. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    PubMed Central

    Grisolia, M.N.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J.E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2015-01-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. PMID:27158255

  6. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    NASA Astrophysics Data System (ADS)

    Grisolia, M. N.; Varignon, J.; Sanchez-Santolino, G.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J. E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2016-05-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions at and between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.

  7. REEXAMINATION OF INDUCTION HEATING OF PRIMITIVE BODIES IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Raymond L.; Roberge, Wayne G., E-mail: menzer@rpi.edu, E-mail: roberw@rpi.edu

    2013-10-20

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the 'motional electric field' that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in themore » freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows 'electrodynamic heating', calculate its upper limits, and compare them to heating produced by short-lived radionuclides.« less

  8. A letter of intent for an experiment to study strong electromagnetic fields at RHIC via multiple electromagnetic processes

    NASA Technical Reports Server (NTRS)

    Fatyga, M.; Norbury, John W.

    1992-01-01

    An experimental program at the Relativistic Heavy Ion Collider (RHIC) which is designed to study nonperturbative aspects of electrodynamics is outlined. Additional possibilities for new studies of electrodynamics via multiple electromagnetic processes are also described.

  9. Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars

    NASA Astrophysics Data System (ADS)

    Denisov, V. I.; Sokolov, V. A.; Svertilov, S. I.

    2017-09-01

    The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and the rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.

  10. Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers

    NASA Astrophysics Data System (ADS)

    Li, Gangqiang; Zhu, Zheng H.; Ruel, Stephane; Meguid, S. A.

    2017-08-01

    This paper developed a new multiphysics finite element method for the elastodynamic analysis of space debris deorbit by a bare flexible electrodynamic tether. Orbital motion limited theory and dynamics of flexible electrodynamic tethers are discretized by the finite element method, where the motional electric field is variant along the tether and coupled with tether deflection and motion. Accordingly, the electrical current and potential bias profiles of tether are solved together with the tether dynamics by the nodal position finite element method. The newly proposed multiphysics finite element method is applied to analyze the deorbit dynamics of space debris by electrodynamic tethers with a two-stage energy control strategy to ensure an efficient and stable deorbit process. Numerical simulations are conducted to study the coupled effect between the motional electric field and the tether dynamics. The results reveal that the coupling effect has a significant influence on the tether stability and the deorbit performance. It cannot be ignored when the libration and deflection of the tether are significant.

  11. Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, V.I.; Sokolov, V.A.; Svertilov, S.I., E-mail: vid.msu@yandex.ru, E-mail: sokolov.sev@inbox.ru, E-mail: sis@coronas.ru

    The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and themore » rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.« less

  12. On deriving the Maxwell stress tensor method for calculating the optical force and torque on an object in harmonic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Ye, Qian; Lin, Haoze

    2017-07-01

    Though extensively used in calculating optical force and torque acting on a material object illuminated by laser, the Maxwell stress tensor (MST) method follows the electromagnetic linear and angular momentum balance that is usually derived in most textbooks for a continuous volume charge distribution in free space, if not resorting to the application of Noether’s theorem in electrodynamics. To cast the conservation laws into a physically appealing form involving the current densities of linear and angular momentum, on which the MST method is based, the divergence theorem is employed to transform a volume integral into a surface integral. When a material object of finite volume is put into the field, it brings about a discontinuity of field across its surface, due to the presence of induced surface charge and surface current. Ambiguity arises among students in whether the divergence theorem can still be directly used without any justification. By taking into account the effect of the induced surface charge and current, we present a simple pedagogical derivation for the MST method for calculating the optical force and torque on an object immersed in monochromatic optical field, without resorting to Noether’s theorem. Although the results turn out to be identical to those given in the standard textbooks, our derivation avoids the direct use of the divergence theorem on a discontinuous function.

  13. Electret accelerometers: physics and dynamic characterization.

    PubMed

    Hillenbrand, J; Haberzettl, S; Motz, T; Sessler, G M

    2011-06-01

    Electret microphones are produced in numbers that significantly exceed those for all other microphone types. This is due to the fact that air-borne electret sensors are of simple and low-cost design but have very good acoustical properties. In contrast, most of the discrete structure-borne sound sensors (or accelerometers) are based on the piezoelectric effect. In the present work, capacitive accelerometers utilizing the electret principle were constructed, built, and characterized. These electret accelerometers comprise a metallic seismic mass, covered by an electret film, a ring of a soft cellular polymer supplying the restoring force, and a metallic backplate. These components replace membrane, spacer, and back electrode, respectively, of the electret microphone. An adjustable static pressure to the seismic mass is generated by two metal springs. The dynamic characterization of the accelerometers was carried out by using an electrodynamic shaker and an external charge or voltage amplifier. Sensors with various seismic masses, air gap distances, and electret voltages were investigated. Charge sensitivities from 10 to 40 pC/g, voltage sensitivities from 600 to 2000 mV/g, and resonance frequencies from 3 to 1.5 kHz were measured. A model describing both the charge and the voltage sensitivity is presented. Good agreement of experimental and calculated values is found. The experimental results show that sensitive, lightweight, and inexpensive electret accelerometers can be built. © 2011 Acoustical Society of America

  14. Correlations and sum rules in a half-space for a quantum two-dimensional one-component plasma

    NASA Astrophysics Data System (ADS)

    Jancovici, B.; Šamaj, L.

    2007-05-01

    This paper is the continuation of a previous one (Šamaj and Jancovici, 2007 J. Stat. Mech. P02002); for a nearly classical quantum fluid in a half-space bounded by a plain plane hard wall (no image forces), we had generalized the Wigner Kirkwood expansion of the equilibrium statistical quantities in powers of Planck's constant \\hbar . As a model system for a more detailed study, we consider the quantum two-dimensional one-component plasma: a system of charged particles of one species, interacting through the logarithmic Coulomb potential in two dimensions, in a uniformly charged background of opposite sign, such that the total charge vanishes. The corresponding classical system is exactly solvable in a variety of geometries, including the present one of a half-plane, when βe2 = 2, where β is the inverse temperature and e is the charge of a particle: all the classical n-body densities are known. In the present paper, we have calculated the expansions of the quantum density profile and truncated two-body density up to order \\hbar ^2 (instead of only to order \\hbar as in the previous paper). These expansions involve the classical n-body densities up to n = 4; thus we obtain exact expressions for these quantum expansions in this special case. For the quantum one-component plasma, two sum rules involving the truncated two-body density (and, for one of them, the density profile) have been derived, a long time ago, by using heuristic macroscopic arguments: one sum rule concerns the asymptotic form along the wall of the truncated two-body density; the other one concerns the dipole moment of the structure factor. In the two-dimensional case at βe2 = 2, we now have explicit expressions up to order \\hbar^2 for these two quantum densities; thus we can microscopically check the sum rules at this order. The checks are positive, reinforcing the idea that the sum rules are correct.

  15. An in vivo study of electrical charge distribution on the bacterial cell wall by atomic force microscopy in vibrating force mode

    NASA Astrophysics Data System (ADS)

    Marlière, Christian; Dhahri, Samia

    2015-05-01

    We report an in vivo electromechanical atomic force microscopy (AFM) study of charge distribution on the cell wall of Gram+ Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, under physiological conditions. The method presented in this paper relies on a detailed study of AFM approach/retract curves giving the variation of the interaction force versus distance between the tip and the sample. In addition to classical height and mechanical (as stiffness) data, mapping of local electrical properties, such as bacterial surface charge, was proved to be feasible at a spatial resolution better than a few tens of nanometers. This innovative method relies on the measurement of the cantilever's surface stress through its deflection far from (>10 nm) the repulsive contact zone: the variations of surface stress come from the modification of electrical surface charge of the cantilever (as in classical electrocapillary measurements) likely stemming from its charging during contact of both the tip and the sample electrical double layers. This method offers an important improvement in local electrical and electrochemical measurements at the solid/liquid interface, particularly in high-molarity electrolytes when compared to techniques focused on the direct use of electrostatic force. It thus opens a new way to directly investigate in situ biological electrical surface processes involved in numerous practical applications and fundamental problems such as bacterial adhesion, biofilm formation, microbial fuel cells, etc.We report an in vivo electromechanical atomic force microscopy (AFM) study of charge distribution on the cell wall of Gram+ Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, under physiological conditions. The method presented in this paper relies on a detailed study of AFM approach/retract curves giving the variation of the interaction force versus distance between the tip and the sample. In addition to classical height and mechanical (as stiffness) data, mapping of local electrical properties, such as bacterial surface charge, was proved to be feasible at a spatial resolution better than a few tens of nanometers. This innovative method relies on the measurement of the cantilever's surface stress through its deflection far from (>10 nm) the repulsive contact zone: the variations of surface stress come from the modification of electrical surface charge of the cantilever (as in classical electrocapillary measurements) likely stemming from its charging during contact of both the tip and the sample electrical double layers. This method offers an important improvement in local electrical and electrochemical measurements at the solid/liquid interface, particularly in high-molarity electrolytes when compared to techniques focused on the direct use of electrostatic force. It thus opens a new way to directly investigate in situ biological electrical surface processes involved in numerous practical applications and fundamental problems such as bacterial adhesion, biofilm formation, microbial fuel cells, etc. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00968e

  16. The Shaped Charge Concept. Part 3. Applications of Shaped Charges

    DTIC Science & Technology

    1990-10-01

    discus.A in Part 2. The MISTEL ( mistletoe ) concept used a fighter aircraft mounted piggyback on the top of a large bomber aircraft The unmanned...Tech. Pub. 2158, p.12. March 1947. Coles, R., and P. L Rickson. ’ Mistletoe - The Deadly Parasite," Air Classics Ouarterly Re’ew. Vol. 4, No. 3, pp. 38

  17. Anomalies in the equilibrium and nonequilibrium properties of correlated ions in complex molecular environments

    NASA Astrophysics Data System (ADS)

    Mahakrishnan, Sathiya; Chakraborty, Subrata; Vijay, Amrendra

    2017-11-01

    Emergent statistical attributes, and therefore the equations of state, of an assembly of interacting charge carriers embedded within a complex molecular environment frequently exhibit a variety of anomalies, particularly in the high-density (equivalently, the concentration) regime, which are not well understood, because they do not fall under the low-concentration phenomenologies of Debye-Hückel-Onsager and Poisson-Nernst-Planck, including their variants. To go beyond, we here use physical concepts and mathematical tools from quantum scattering theory, transport theory with the Stosszahlansatz of Boltzmann, and classical electrodynamics (Lorentz gauge) and obtain analytical expressions both for the average and the frequency-wave vector-dependent longitudinal and transverse current densities, diffusion coefficient, and the charge density, and therefore the analytical expressions for (a) the chemical potential, activity coefficient, and the equivalent conductivity for strong electrolytes and (b) the current-voltage characteristics for ion-transport processes in complex molecular environments. Using a method analogous to the notion of Debye length and thence the electrical double layer, we here identify a pair of characteristic length scales (longitudinal and the transverse), which, being wave vector and frequency dependent, manifestly exhibit nontrivial fluctuations in space-time. As a unifying theme, we advance a quantity (inverse length dimension), gscat(a ), which embodies all dynamical interactions, through various quantum scattering lengths, relevant to molecular species a, and the analytical behavior which helps us to rationalize the properties of strong electrolytes, including anomalies, in all concentration regimes. As an example, the behavior of gscat(a ) in the high-concentration regime explains the anomalous increase of the Debye length with concentration, as seen in a recent experiment on electrolyte solutions. We also put forth an extension of the standard diffusion equation, which manifestly incorporates the effects arising from the underlying microscopic collisions among constituent molecular species. Furthermore, we show a nontrivial connection between the current-voltage characteristics of electrolyte solutions and the Landauer's approach to electrical conduction in mesoscopic solids and thereby establish a definite conceptual bridge between the two disjoint subjects. For numerical insight, we present results on the aqueous solution of KCl as an example of strong electrolyte, and the transport (conduction as well as diffusion) of K+ ions in water, as an example of ion transport across the voltage-gated channels in biological cells.

  18. Anomalies in the equilibrium and nonequilibrium properties of correlated ions in complex molecular environments.

    PubMed

    Mahakrishnan, Sathiya; Chakraborty, Subrata; Vijay, Amrendra

    2017-11-01

    Emergent statistical attributes, and therefore the equations of state, of an assembly of interacting charge carriers embedded within a complex molecular environment frequently exhibit a variety of anomalies, particularly in the high-density (equivalently, the concentration) regime, which are not well understood, because they do not fall under the low-concentration phenomenologies of Debye-Hückel-Onsager and Poisson-Nernst-Planck, including their variants. To go beyond, we here use physical concepts and mathematical tools from quantum scattering theory, transport theory with the Stosszahlansatz of Boltzmann, and classical electrodynamics (Lorentz gauge) and obtain analytical expressions both for the average and the frequency-wave vector-dependent longitudinal and transverse current densities, diffusion coefficient, and the charge density, and therefore the analytical expressions for (a) the chemical potential, activity coefficient, and the equivalent conductivity for strong electrolytes and (b) the current-voltage characteristics for ion-transport processes in complex molecular environments. Using a method analogous to the notion of Debye length and thence the electrical double layer, we here identify a pair of characteristic length scales (longitudinal and the transverse), which, being wave vector and frequency dependent, manifestly exhibit nontrivial fluctuations in space-time. As a unifying theme, we advance a quantity (inverse length dimension), g_{scat}^{(a)}, which embodies all dynamical interactions, through various quantum scattering lengths, relevant to molecular species a, and the analytical behavior which helps us to rationalize the properties of strong electrolytes, including anomalies, in all concentration regimes. As an example, the behavior of g_{scat}^{(a)} in the high-concentration regime explains the anomalous increase of the Debye length with concentration, as seen in a recent experiment on electrolyte solutions. We also put forth an extension of the standard diffusion equation, which manifestly incorporates the effects arising from the underlying microscopic collisions among constituent molecular species. Furthermore, we show a nontrivial connection between the current-voltage characteristics of electrolyte solutions and the Landauer's approach to electrical conduction in mesoscopic solids and thereby establish a definite conceptual bridge between the two disjoint subjects. For numerical insight, we present results on the aqueous solution of KCl as an example of strong electrolyte, and the transport (conduction as well as diffusion) of K^{+} ions in water, as an example of ion transport across the voltage-gated channels in biological cells.

  19. Foldy-Wouthuysen transformation for a Dirac-Pauli dyon and the Thomas-Bargmann-Michel-Telegdi equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tsung-Wei; Chiou, Dah-Wei; Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 106, Taiwan

    The classical dynamics for a charged point particle with intrinsic spin is governed by a relativistic Hamiltonian for the orbital motion and by the Thomas-Bargmann-Michel-Telegdi equation for the precession of the spin. It is natural to ask whether the classical Hamiltonian (with both the orbital and spin parts) is consistent with that in the relativistic quantum theory for a spin-1/2 charged particle, which is described by the Dirac equation. In the low-energy limit, up to terms of the seventh order in 1/E{sub g} (E{sub g}=2mc{sup 2} and m is the particle mass), we investigate the Foldy-Wouthuysen (FW) transformation of themore » Dirac Hamiltonian in the presence of homogeneous and static electromagnetic fields and show that it is indeed in agreement with the classical Hamiltonian with the gyromagnetic ratio being equal to 2. Through electromagnetic duality, this result can be generalized for a spin-1/2 dyon, which has both electric and magnetic charges and thus possesses both intrinsic electric and magnetic dipole moments. Furthermore, the relativistic quantum theory for a spin-1/2 dyon with arbitrary values of the gyromagnetic and gyroelectric ratios can be described by the Dirac-Pauli equation, which is the Dirac equation with augmentation for the anomalous electric and anomalous magnetic dipole moments. The FW transformation of the Dirac-Pauli Hamiltonian is shown, up to the seventh-order again, to be in accord with the classical Hamiltonian as well.« less

  20. TESSX: A Mission for Space Exploration with Tethers

    NASA Technical Reports Server (NTRS)

    Cosmo, Mario L.; Lorenzini, Enrico C.; Gramer, Daniel J.; Hoffman, John H.; Mazzoleni, Andre P.

    2005-01-01

    Tethers offer significant potential for substantially increasing payload mass fraction, increasing spacecraft lifetime, enhancing long-term space travel, and enabling the understanding and development of gravity-dependent technologies required for Moon and Mars exploration. The development of the Tether Electrodynamic Spin-up and Survivability Experiment (TESSX) will support applications relevant to NASA's new exploration initiative, including: artificial gravity generation, formation flying, electrodynamic propulsion, momentum exchange, and multi-amp current collection and emission. Under the broad term TESSX, we are currently evaluating several different tether system configurations and operational modes. The initial results of this work are presented, including hardware development, orbital dynamics simulations, and electrodynamics design and analysis.

  1. Space station operations enhancement using tethers

    NASA Astrophysics Data System (ADS)

    Bekey, I.

    1984-10-01

    Space tethers represent a tool of unusual versatility for applications to operations involving space stations. The present investigation is concerned with a number of applications which exploit the dynamic, static, and electrodynamic properties of tethers. One of the simplest applications of a tethered system on the Space Station might be that of a remote docking port, allowing the Shuttle to dock with no contamination or disturbance effects. Attention is also given to tethered platforms, a tethered microgravity facility, a tethered space station propellant facility, electrodynamic tether principles, a tether power generator, a tether thrust generator (motor), and an electrodynamic tether for drag makeup and energy storage.

  2. Imaging with organic indicators and high-speed charge-coupled device cameras in neurons: some applications where these classic techniques have advantages.

    PubMed

    Ross, William N; Miyazaki, Kenichi; Popovic, Marko A; Zecevic, Dejan

    2015-04-01

    Dynamic calcium and voltage imaging is a major tool in modern cellular neuroscience. Since the beginning of their use over 40 years ago, there have been major improvements in indicators, microscopes, imaging systems, and computers. While cutting edge research has trended toward the use of genetically encoded calcium or voltage indicators, two-photon microscopes, and in vivo preparations, it is worth noting that some questions still may be best approached using more classical methodologies and preparations. In this review, we highlight a few examples in neurons where the combination of charge-coupled device (CCD) imaging and classical organic indicators has revealed information that has so far been more informative than results using the more modern systems. These experiments take advantage of the high frame rates, sensitivity, and spatial integration of the best CCD cameras. These cameras can respond to the faster kinetics of organic voltage and calcium indicators, which closely reflect the fast dynamics of the underlying cellular events.

  3. Classical gluon and graviton radiation from the bi-adjoint scalar double copy

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Prabhu, Siddharth G.; Thompson, Jedidiah O.

    2017-09-01

    We find double-copy relations between classical radiating solutions in Yang-Mills theory coupled to dynamical color charges and their counterparts in a cubic bi-adjoint scalar field theory which interacts linearly with particles carrying bi-adjoint charge. The particular color-to-kinematics replacements we employ are motivated by the Bern-Carrasco-Johansson double-copy correspondence for on-shell amplitudes in gauge and gravity theories. They are identical to those recently used to establish relations between classical radiating solutions in gauge theory and in dilaton gravity. Our explicit bi-adjoint solutions are constructed to second order in a perturbative expansion, and map under the double copy onto gauge theory solutions which involve at most cubic gluon self-interactions. If the correspondence is found to persist to higher orders in perturbation theory, our results suggest the possibility of calculating gravitational radiation from colliding compact objects, directly from a scalar field with vastly simpler (purely cubic) Feynman vertices.

  4. Electrodynamic Dust Shield Demonstrator

    NASA Technical Reports Server (NTRS)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid running a multiphase low frequency AC signal. Electrostatically charged particles, such as those encountered on the moon, Mars, or an asteroid, are carried along by the traveling field due to the action of Coulomb and dielectrophoretic forces."2 The technical details have been described in a separate article. This document details the design and construction process of a small demonstration unit. Once finished, this device will go to the Office of the ChiefTechnologist at NASA headquarters, where it will be used to familiarize the public with the technology. 1 NASA KSC FO Intern, Prototype Development Laboratory, Kennedy Space Center, University of Central Florida Kennedy Space

  5. A comment on the paper by R.I. Khrapko 'On the possibility of an experiment on 'nonlocality' of electrodynamics'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venediktov, V Yu

    2015-04-30

    This methodological note is dedicated to the analysis of the imaginary experiment proposed in the paper by R.I. Khrapko 'On the possibility of an experiment on 'nonlocality' of electrodynamics' [Quantum Electronics, 42, 1133 (2012)]. (discussion)

  6. Students' Difficulties with Vector Calculus in Electrodynamics

    ERIC Educational Resources Information Center

    Bollen, Laurens; van Kampen, Paul; De Cock, Mieke

    2015-01-01

    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven…

  7. Mechanism of Lightning Associated Infrasonic Pulses from Thunderclouds

    NASA Astrophysics Data System (ADS)

    Pasko, V. P.

    2008-12-01

    The infrasonic waves correspond to the region of frequencies of acoustic sound waves 0.02-10 Hz, higher than the acoustic cut-off frequency but lower than the audible frequencies [e.g., Blanc, Ann. Geophys., 3, 673, 1985]. There is a strong experimental evidence that thunderstorms represent significant sources of infrasonic wave activity spanning a broad altitude range from the troposphere and up to the thermosphere [e.g., Blanc, 1985; Few, in Handbook of Atmospheric Electrodynamics, Vol. 2, edited by H. Volland, pp. 1-31, CRC Press, 1995; Drob et al., JGR, 108, 4680, 2003]. This evidence includes electrostatic production of 0.1- 1 Hz infrasonic waves from thunderclouds [Few, 1995] and recent discovery of infrasound from lightning induced transient luminous events in the mesosphere called sprites [Liszka, J. Low Freq. Noise Vibr. Active Control, 23, 85, 2004; Farges et al., GRL, 32, L13824, 2005; Liszka and Hobara, JASTP, 68, 1179, 2006]. The understanding and classification of different infrasonic waves and their sources is of great current interest from a Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification perspective [e.g., Assink et al., GRL, 35, L15802, 2008]. It has been pointed many decades ago by C. T. R. Wilson [Phil. Trans. R. Soc. London A, 221, 73, 1920] that sudden reduction of the electric field inside a thundercloud immediately following a lightning discharge should produce an infrasound signature. Wilson [1920] noted that the pressure within a charged cloud must be less than the pressure outside, similarly to that within a charged soap bubble. In contrast to the sudden expansion of the air along the track of a lightning flash, the sudden contraction of a large volume of air must furnish a measurable rarefaction pulse [Wilson, 1920]. Many experimental and theoretical contributions followed these predictions by C. T. R. Wilson (see [Few, JGR, 90, 6175, 1985] and extensive list of references therein). Modeling investigation of related scenarios leading to emission of infrasound pulses documented in the existing literature, with particular emphasis on the initial compression phase of the observed infrasonic waveforms, represents a goal of the present work. The model employed in the present study utilizes linearized equations of acoustics with classical viscosity and atmospheric gravitational stratification effects. It is demonstrated that a growth of charge density in thundercloud prior to lightning discharge on time scales on the order of 2 to 6 seconds, comparable to typical documented time scales of generation of charge in thunderclouds, is fully sufficient for explanation of the initial compression waves in observed infrasonic pulses generated in accordance with the electrostatic mechanism proposed in [Wilson, 1920; Dessler, JGR, 78, 1889, 1973]. The arguments advanced in the present study agree with the ideas by Bohannon et al. [GRL, 4, 49, 1977] indicating a rapid intensification of the field prior to the lightning discharge. However, we provide a quantitative demonstration that the intensification does not need to be as fast as 0.5 seconds proposed in [Bohannon et al., 1977].

  8. Ionic fluids with r-6 pair interactions have power-law electrostatic screening

    NASA Astrophysics Data System (ADS)

    Kjellander, Roland; Forsberg, Björn

    2005-06-01

    The decay behaviour of radial distribution functions for large distances r is investigated for classical Coulomb fluids where the ions interact with an r-6 potential (e.g. a dispersion interaction) in addition to the Coulombic and the short-range repulsive potentials (e.g. a hard core). The pair distributions and the density-density (NN), charge-density (QN) and charge-charge (QQ) correlation functions are investigated analytically and by Monte Carlo simulations. It is found that the NN correlation function ultimately decays like r-6 for large r, just as it does for fluids of electroneutral particles interacting with an r-6 potential. The prefactor is proportional to the squared compressibility in both cases. The QN correlations decay in general like r-8 and the QQ correlations like r-10 in the ionic fluid. The average charge density around an ion decays generally like r-8 and the average electrostatic potential like r-6. This behaviour is in stark contrast to the decay behaviour for classical Coulomb fluids in the absence of the r-6 potential, where all these functions decay exponentially for large r. The power-law decays are, however, the same as for quantum Coulomb fluids. This indicates that the inclusion of the dispersion interaction as an effective r-6 interaction potential in classical systems yields the same decay behaviour for the pair correlations as in quantum ionic systems. An exceptional case is the completely symmetric binary electrolyte for which only the NN correlation has a power-law decay but not the QQ correlations. These features are shown by an analysis of the bridge function.

  9. Lamb Shift in Nonrelativistic Quantum Electrodynamics.

    ERIC Educational Resources Information Center

    Grotch, Howard

    1981-01-01

    The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)

  10. Electrodynamics in One Dimension: Radiation and Reflection

    ERIC Educational Resources Information Center

    Asti, G.; Coisson, R.

    2011-01-01

    Problems involving polarized plane waves and currents on sheets perpendicular to the wavevector involve only one component of the fields, so it is possible to discuss electrodynamics in one dimension. Taking for simplicity linearly polarized sinusoidal waves, we can derive the field emitted by currents (analogous to dipole radiation in three…

  11. Concise expression of a classical radiation spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.

    1993-06-01

    In this paper we present a concise expression of the classical electromagnetic radiation spectrum of a moving charge. It is shown to be equivalent to the often used and much more complicated form derived from the Lienard-Wiechert potentials when the observation distance [ital R] satisfies the condition [ital R][much gt][gamma][lambda]. The expression reveals a relationship between the radiation spectrum and the motion of the radiation source. It also forms the basis of an efficient computing approach, which is of practical value in numerical calculations of the spectral output of accelerated charges. The advantages of this approach for analytical and numericalmore » applications are discussed and the bending-magnet synchrotron radiation spectrum is calculated according to the approach.« less

  12. Affine q-deformed symmetry and the classical Yang-Baxter σ-model

    NASA Astrophysics Data System (ADS)

    Delduc, F.; Kameyama, T.; Magro, M.; Vicedo, B.

    2017-03-01

    The Yang-Baxter σ-model is an integrable deformation of the principal chiral model on a Lie group G. The deformation breaks the G × G symmetry to U(1)rank( G) × G. It is known that there exist non-local conserved charges which, together with the unbroken U(1)rank( G) local charges, form a Poisson algebra [InlineMediaObject not available: see fulltext.], which is the semiclassical limit of the quantum group {U}_q(g) , with g the Lie algebra of G. For a general Lie group G with rank( G) > 1, we extend the previous result by constructing local and non-local conserved charges satisfying all the defining relations of the infinite-dimensional Poisson algebra [InlineMediaObject not available: see fulltext.], the classical analogue of the quantum loop algebra {U}_q(Lg) , where Lg is the loop algebra of g. Quite unexpectedly, these defining relations are proved without encountering any ambiguity related to the non-ultralocality of this integrable σ-model.

  13. High-precision X-ray spectroscopy of highly-charged ions at the experimental storage ring using silicon microcalorimeters

    NASA Astrophysics Data System (ADS)

    Scholz, Pascal A.; Andrianov, Victor; Echler, Artur; Egelhof, Peter; Kilbourne, Caroline; Kiselev, Oleg; Kraft-Bermuth, Saskia; McCammon, Dan

    2017-10-01

    X-ray spectroscopy on highly charged heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. One limitation of the current accuracy of such experiments is the energy resolution of available X-ray detectors for energies up to 100 keV. To improve this accuracy, a novel detector concept, namely the concept of microcalorimeters, is exploited for this kind of measurements. The microcalorimeters used in the present experiments consist of silicon thermometers, ensuring a high dynamic range, and of absorbers made of high-Z material to provide high X-ray absorption efficiency. Recently, besides an earlier used detector, a new compact detector design, housed in a new dry cryostat equipped with a pulse tube cooler, was applied at a test beamtime at the experimental storage ring (ESR) of the GSI facility in Darmstadt. A U89+ beam at 75 MeV/u and a 124Xe54+ beam at various beam energies, both interacting with an internal gas-jet target, were used in different cycles. This test was an important benchmark for designing a larger array with an improved lateral sensitivity and statistical accuracy.

  14. Quasinormal modes, bifurcations, and nonuniqueness of charged scalar-tensor black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doneva, Daniela D.; Theoretical Astrophysics, Eberhard-Karls University of Tuebingen, Tuebingen 72076; Yazadjiev, Stoytcho S.

    In the present paper, we study the scalar sector of the quasinormal modes of charged general relativistic, static, and spherically symmetric black holes coupled to nonlinear electrodynamics and embedded in a class of scalar-tensor theories. We find that for a certain domain of the parametric space, there exists unstable quasinormal modes. The presence of instabilities implies the existence of scalar-tensor black holes with primary hair that bifurcate from the embedded general relativistic black-hole solutions at critical values of the parameters corresponding to the static zero modes. We prove that such scalar-tensor black holes really exist by solving the full systemmore » of scalar-tensor field equations for the static, spherically symmetric case. The obtained solutions for the hairy black holes are nonunique, and they are in one-to-one correspondence with the bounded states of the potential governing the linear perturbations of the scalar field. The stability of the nonunique hairy black holes is also examined, and we find that the solutions for which the scalar field has zeros are unstable against radial perturbations. The paper ends with a discussion of possible formulations of a new classification conjecture.« less

  15. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  16. Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.; hide

    2005-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.

  17. A perfectly conducting surface in electrodynamics with Lorentz symmetry breaking

    NASA Astrophysics Data System (ADS)

    Borges, L. H. C.; Barone, F. A.

    2017-10-01

    In this paper we consider a model which exhibits explicit Lorentz symmetry breaking due to the presence of a single background vector v^{μ } coupled to the gauge field. We investigate such a theory in the vicinity of a perfectly conducting plate for different configurations of v^{μ }. First we consider no restrictions on the components of the background vector and we treat it perturbatively up to second order. Next, we treat v^{μ } exactly for two special cases: the first one is when it has only components parallel to the plate, and the second one when it has a single component perpendicular to the plate. For all these configurations, the propagator for the gauge field and the interaction force between the plate and a point-like electric charge are computed. Surprisingly, it is shown that the image method is valid in our model and we argue that it is a non-trivial result. We show there arises a torque on the mirror with respect to its positioning in the background field when it interacts with a point-like charge. It is a new effect with no counterpart in theories with Lorentz symmetry in the presence of a perfect mirror.

  18. Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Veenendaal, Michel

    2016-09-01

    The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. For small long-range interactions, recovery can be slow due to domain formation.« less

  19. Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects

    DOE PAGES

    van Veenendaal, Michel

    2016-09-01

    The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. Finally, for small long-range interactions, recovery can be slow due to domain formation.« less

  20. Characterization of single particle aerosols by elastic light scattering at multiple wavelengths

    NASA Astrophysics Data System (ADS)

    Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.

    2018-03-01

    We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.

  1. Hollow cathodes as electron emitting plasma contactors Theory and computer modeling

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1987-01-01

    Several researchers have suggested using hollow cathodes as plasma contactors for electrodynamic tethers, particularly to prevent the Shuttle Orbiter from charging to large negative potentials. Previous studies have shown that fluid models with anomalous scattering can describe the electron transport in hollow cathode generated plasmas. An improved theory of the hollow cathode plasmas is developed and computational results using the theory are compared with laboratory experiments. Numerical predictions for a hollow cathode plasma source of the type considered for use on the Shuttle are presented, as are three-dimensional NASCAP/LEO calculations of the emitted ion trajectories and the resulting potentials in the vicinity of the Orbiter. The computer calculations show that the hollow cathode plasma source makes vastly superior contact with the ionospheric plasma compared with either an electron gun or passive ion collection by the Orbiter.

  2. Determining Trajectory of Triboelectrically Charged Particles, Using Discrete Element Modeling

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Kennedy Space Center (KSC) Electrostatics and Surface Physics Laboratory is participating in an Innovative Partnership Program (IPP) project with an industry partner to modify a commercial off-the-shelf simulation software product to treat the electrodynamics of particulate systems. Discrete element modeling (DEM) is a numerical technique that can track the dynamics of particle systems. This technique, which was introduced in 1979 for analysis of rock mechanics, was recently refined to include the contact force interaction of particles with arbitrary surfaces and moving machinery. In our work, we endeavor to incorporate electrostatic forces into the DEM calculations to enhance the fidelity of the software and its applicability to (1) particle processes, such as electrophotography, that are greatly affected by electrostatic forces, (2) grain and dust transport, and (3) the study of lunar and Martian regoliths.

  3. Quantum Computers

    DTIC Science & Technology

    2010-03-04

    and their sensitivity to charge and flux fluctuations. The first type of superconducting qubit , the charge qubit , omits the inductance . There is no...nanostructured NbN superconducting nanowire detectors have achieved high efficiency and photon number resolution16,17. One approach to a high-efficiency single...resemble classical high- speed integrated circuits and can be readily fabricated using existing technologies. The basic physics behind superconducting qubits

  4. S-duality in SU(3) Yang-Mills theory with non-abelian unbroken gauge group

    NASA Astrophysics Data System (ADS)

    Schroers, B. J.; Bais, F. A.

    1998-12-01

    It is observed that the magnetic charges of classical monopole solutions in Yang-Mills-Higgs theory with non-abelian unbroken gauge group H are in one-to-one correspondence with coherent states of a dual or magnetic group H˜. In the spirit of the Goddard-Nuyts-Olive conjecture this observation is interpreted as evidence for a hidden magnetic symmetry of Yang-Mills theory. SU(3) Yang-Mills-Higgs theory with unbroken gauge group U(2) is studied in detail. The action of the magnetic group on semi-classical states is given explicitly. Investigations of dyonic excitations show that electric and magnetic symmetry are never manifest at the same time: Non-abelian magnetic charge obstructs the realisation of electric symmetry and vice-versa. On the basis of this fact the charge sectors in the theory are classified and their fusion rules are discussed. Non-abelian electric-magnetic duality is formulated as a map between charge sectors. Coherent states obey particularly simple fusion rules, and in the set of coherent states S-duality can be formulated as an SL(2, Z) mapping between sectors which leaves the fusion rules invariant.

  5. Conceptual assessment tool for advanced undergraduate electrodynamics

    NASA Astrophysics Data System (ADS)

    Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.

    2017-12-01

    As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument's development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.

  6. Middle Atmosphere Electrodynamics During a Thunderstorm

    NASA Technical Reports Server (NTRS)

    Croskey, Charles L.

    1996-01-01

    Rocket-based instrumentation investigations of middle atmospheric electrodynamics during thunderstorms were conducted in coordination with balloon-measurements at Wallops Island, Virginia. Middle atmosphere electrodynamics and energy coupling are of particular importance to associated electrical processes at lower and higher altitudes. Objectives of this research effort included: (1) investigation of thunderstorm effects on middle atmosphere electrical structure, including spatial and temporal dependence; (2) characterization of electric field transients and the associated energy deposited at various altitudes; (3) evaluation of the vertical Maxwell current density over a thunderstorm to study the coupling of energy to higher altitudes; and (4) investigation of the coupling of energy to the ionosphere and the current supplied to the 'global circuit.'

  7. Students' difficulties with vector calculus in electrodynamics

    NASA Astrophysics Data System (ADS)

    Bollen, Laurens; van Kampen, Paul; De Cock, Mieke

    2015-12-01

    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.

  8. Discrete-time quantum walk with nitrogen-vacancy centers in diamond coupled to a superconducting flux qubit

    NASA Astrophysics Data System (ADS)

    Hardal, Ali Ü. C.; Xue, Peng; Shikano, Yutaka; Müstecaplıoğlu, Özgür E.; Sanders, Barry C.

    2013-08-01

    We propose a quantum-electrodynamics scheme for implementing the discrete-time, coined quantum walk with the walker corresponding to the phase degree of freedom for a quasimagnon field realized in an ensemble of nitrogen-vacancy centers in diamond. The coin is realized as a superconducting flux qubit. Our scheme improves on an existing proposal for implementing quantum walks in cavity quantum electrodynamics by removing the cumbersome requirement of varying drive-pulse durations according to mean quasiparticle number. Our improvement is relevant to all indirect-coin-flip cavity quantum-electrodynamics realizations of quantum walks. Our numerical analysis shows that this scheme can realize a discrete quantum walk under realistic conditions.

  9. Electrodynamic Tether Propulsion and Power Generation at Jupiter

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Johnson, L.; Moore, J.; Bagenal, F.

    1998-01-01

    The results of a study performed to evaluate the feasibility and merits of using an electrodynamic tether for propulsion and power generation for a spacecraft in the Jovian system are presented. The environment of the Jovian system has properties which are particularly favorable for utilization of an electrodynamic tether. Specifically, the planet has a strong magnetic field and the mass of the planet dictates high orbital velocities which, when combined with the planet's rapid rotation rate, can produce very large relative velocities between the magnetic field and the spacecraft. In a circular orbit close to the planet, tether propulsive forces are found to be as high as 50 N and power levels as high as 1 MW.

  10. Molecular dynamics and charge transport in organic semiconductors: a classical approach to modeling electron transfer

    DOE PAGES

    Pelzer, Kenley M.; Vázquez-Mayagoitia, Álvaro; Ratcliff, Laura E.; ...

    2017-01-01

    Organic photovoltaics (OPVs) are a promising carbon-neutral energy conversion technology, with recent improvements pushing power conversion efficiencies over 10%. A major factor limiting OPV performance is inefficiency of charge transport in organic semiconducting materials (OSCs). Due to strong coupling with lattice degrees of freedom, the charges form polarons, localized quasi-particles comprised of charges dressed with phonons. These polarons can be conceptualized as pseudo-atoms with a greater effective mass than a bare charge. Here we propose that due to this increased mass, polarons can be modeled with Langevin molecular dynamics (LMD), a classical approach with a computational cost much lower thanmore » most quantum mechanical methods. Here we present LMD simulations of charge transfer between a pair of fullerene molecules, which commonly serve as electron acceptors in OSCs. We find transfer rates consistent with experimental measurements of charge mobility, suggesting that this method may provide quantitative predictions of efficiency when used to simulate materials on the device scale. Our approach also offers information that is not captured in the overall transfer rate or mobility: in the simulation data, we observe exactly when and why intermolecular transfer events occur. In addition, we demonstrate that these simulations can shed light on the properties of polarons in OSCs. In conclusion, much remains to be learned about these quasi-particles, and there are no widely accepted methods for calculating properties such as effective mass and friction. Lastly, our model offers a promising approach to exploring mass and friction as well as providing insight into the details of polaron transport in OSCs.« less

  11. Quantum Electrodynamics: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    The Standard Model of particle physics is composed of several theories that are added together. The most precise component theory is the theory of quantum electrodynamics or QED. In this video, Fermilab’s Dr. Don Lincoln explains how theoretical QED calculations can be done. This video links to other videos, giving the viewer a deep understanding of the process.

  12. BIonic system: Extraction of Lovelock gravity from a Born-Infeld-type theory

    NASA Astrophysics Data System (ADS)

    Naimi, Yaghoob; Sepehri, Alireza; Ghaffary, Tooraj; Ghaforyan, Hossein; Ebrahimzadeh, Majid

    It was shown that both Lovelock gravity and Born-Infeld (BI) electrodynamics can be obtained from low effective limit of string theory. Motivated by the mentioned unique origin of the gauge-gravity theories, we are going to find a close relation between them. In this research, we start from the Lagrangian of a BI-type nonlinear electrodynamics with an exponential form to extract the action of Lovelock gravity. We investigate the origin of Lovelock gravity in a system of branes which are connected with each other by different wormholes through a BIonic system. These wormholes are produced as due to the nonlinear electrodynamics which are emerged on the interacting branes. By approaching branes, wormholes dissolve into branes and Lovelock gravity is generated. Also, throats of some wormholes become smaller than their horizons and they transit to black holes. Generalizing calculations to M-theory, it is found that by compacting Mp-branes, Lovelock gravity changes to nonlinear electrodynamics and thus both of them have the same origin. This result is consistent with the prediction of BIonic model in string theory.

  13. On spacetime structure and electrodynamics

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    2016-10-01

    Electrodynamics is the most tested fundamental physical theory. Relativity arose from the completion of Maxwell-Lorentz electrodynamics. Introducing the metric gij as gravitational potential in 1913, versed in general (coordinate-)covariant formalism in 1914 and shortly after the completion of general relativity, Einstein put the Maxwell equations in general covariant form with only the constitutive relation between the excitation and the field dependent on and connected by the metric in 1916. Further clarification and developments by Weyl in 1918, Murnaghan in 1921, Kottler in 1922 and Cartan in 1923 together with the corresponding developments in electrodynamics of continuous media by Bateman in 1910, Tamm in 1924, Laue in 1952 and Post in 1962 established the premetric formalism of electrodynamics. Since almost all phenomena electrodynamics deal with have energy scales much lower than the Higgs mass energy and intermediate boson energy, electrodynamics of continuous media should be applicable and the constitutive relation of spacetime/vacuum should be local and linear. What is the key characteristic of the spacetime/vacuum? It is the Weak Equivalence Principle I (WEP I) for photons/wave packets of light which states that the spacetime trajectory of light in a gravitational field depends only on its initial position and direction of propagation, and does not depend on its frequency (energy) and polarization, i.e. nonbirefringence of light propagation in spacetime/vacuum. With this principle it is proved by the author in 1981 in the weak field limit, and by Lammerzahl and Hehl in 2004 together with Favaro and Bergamin in 2011 without assuming the weak-field condition that the constitutive tensor must be of the core metric form with only two additional degrees of freedom — the pseudoscalar (Abelian axion or EM axion) degree of freedom and the scalar (dilaton) degree of freedom (i.e. metric with axion and dilaton). In this paper, we review this connection and the ultrahigh precision empirical tests of nonbirefringence together with present status of tests of cosmic Abelian axion and dilaton. If the stronger version of WEP is assumed, i.e. WEP II for photons (wave packets of light) which states in addition to WEP I also that the polarization state of the light would not change (e.g. no polarization rotation for linear polarized light) and no amplification/attenuation of light, then no Abelian (EM) axion and no dilaton, and we have a pure metric theory.

  14. Quantum cosmology of a Bianchi III LRS geometry coupled to a source free electromagnetic field

    NASA Astrophysics Data System (ADS)

    Karagiorgos, A.; Pailas, T.; Dimakis, N.; Terzis, Petros A.; Christodoulakis, T.

    2018-03-01

    We consider a Bianchi type III axisymmetric geometry in the presence of an electromagnetic field. A first result at the classical level is that the symmetry of the geometry need not be applied on the electromagnetic tensor Fμν the algebraic restrictions, implied by the Einstein field equations to the stress energy tensor Tμν, suffice to reduce the general Fμν to the appropriate form. The classical solution thus found contains a time dependent electric and a constant magnetic charge. The solution is also reachable from the corresponding mini-superspace action, which is strikingly similar to the Reissner-Nordstr{öm one. This points to a connection between the black hole geometry and the cosmological solution here found, which is the analog of the known correlation between the Schwarzschild and the Kantowski-Sachs metrics. The configuration space is drastically modified by the presence of the magnetic charge from a 3D flat to a 3D pp wave geometry. We map the emerging linear and quadratic classical integrals of motion, to quantum observables. Along with the Wheeler-DeWitt equation these observables provide unique, up to constants, wave functions. The employment of a Bohmian interpretation of these quantum states results in deterministic (semi-classical) geometries most of which are singularity free.

  15. Charged nanoparticle attraction in multivalent salt solution: A classical-fluids density functional theory and molecular dynamics study

    DOE PAGES

    Salerno, K. Michael; Frischknecht, Amalie L.; Stevens, Mark J.

    2016-04-08

    Here, negatively charged nanoparticles (NPs) in 1:1, 1:2, and 1:3 electrolyte solutions are studied in a primitive ion model using molecular dynamics (MD) simulations and classical density functional theory (DFT). We determine the conditions for attractive interactions between the like-charged NPs. Ion density profiles and NP–NP interaction free energies are compared between the two methods and are found to be in qualitative agreement. The NP interaction free energy is purely repulsive for monovalent counterions, but can be attractive for divalent and trivalent counterions. Using DFT, the NP interaction free energy for different NP diameters and charges is calculated. The depthmore » and location of the minimum in the interaction depend strongly on the NPs’ charge. For certain parameters, the depth of the attractive well can reach 8–10 k BT, indicating that kinetic arrest and aggregation of the NPs due to electrostatic interactions is possible. Rich behavior arises from the geometric constraints of counterion packing at the NP surface. Layering of counterions around the NPs is observed and, as secondary counterion layers form the minimum of the NP–NP interaction free energy shifts to larger separation, and the depth of the free energy minimum varies dramatically. We find that attractive interactions occur with and without NP overcharging.« less

  16. Microscopic dynamics of charge separation at the aqueous electrochemical interface.

    PubMed

    Kattirtzi, John A; Limmer, David T; Willard, Adam P

    2017-12-19

    We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water-metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali-halide pair, Na + I - , or classical ions, and the products of water autoionization, H 3 O + OH - , or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water's collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface.

  17. Microscopic dynamics of charge separation at the aqueous electrochemical interface

    PubMed Central

    Kattirtzi, John A.; Limmer, David T.; Willard, Adam P.

    2017-01-01

    We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water–metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali–halide pair, Na+I−, or classical ions, and the products of water autoionization, H3O+OH−, or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water’s collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface. PMID:28698368

  18. Efficiency optimization of a fast Poisson solver in beam dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula

    2016-01-01

    Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.

  19. Force, torque, linear momentum, and angular momentum in classical electr odynamics

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2017-10-01

    The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic (EM) field, force, energy, and momentum, which are intimately tied together by Poynting's theorem and by the Lorentz force law. Whereas Maxwell's equations relate the fields to their material sources, Poynting's theorem governs the flow of EM energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. An alternative force law, first proposed by Einstein and Laub, exists that is consistent with Maxwell's equations and complies with the conservation laws as well as with the requirements of special relativity. While the Lorentz law requires the introduction of hidden energy and hidden momentum in situations where an electric field acts on a magnetized medium, the Einstein-Laub (E-L) formulation of EM force and torque does not invoke hidden entities under such circumstances. Moreover, total force/torque exerted by EM fields on any given object turns out to be independent of whether the density of force/torque is evaluated using the law of Lorentz or that of Einstein and Laub. Hidden entities aside, the two formulations differ only in their predicted force and torque distributions inside matter. Such differences in distribution are occasionally measurable, and could serve as a guide in deciding which formulation, if either, corresponds to physical reality.

  20. Hawking Radiation of the Charged Particles via Tunneling from the ( n+2)-Dimensional Topological Reissner-Nordström-de Sitter Black Hole

    NASA Astrophysics Data System (ADS)

    Yan, Han

    2012-08-01

    Extending Parikh-Wilczek's semi-classical tunneling method, we discuss the Hawking radiation of the charged massive particles via tunneling from the cosmological horizon of ( n+2)-dimensional Topological Reissner-Nordström-de Sitter black hole.The result shows that, when energy conservation and electric charge conservation are taken into account, the derived spectrum deviates from the pure thermal one, but satisfies the unitary theory, which provides a probability for the solution of the information loss paradox.

  1. Guidebook for analysis of tether applications

    NASA Technical Reports Server (NTRS)

    Carroll, J. A.

    1985-01-01

    This guidebook is intended as a tool to facilitate initial analyses of proposed tether applications in space. Topics disscussed include: orbit and orbit transfer equations; orbital perturbations; aerodynamic drag; thermal balance; micrometeoroids; gravity gradient effects; tether control strategies; momentum transfer; orbit transfer by tethered release/rendezvous; impact hazards for tethers; electrodynamic tether principles; and electrodynamic libration control issues.

  2. MURI Center for Multidimensional Surface-Enhanced Sensing and Spectroscopy

    DTIC Science & Technology

    2007-06-30

    and detection using SERS; new understanding of the electromagnetic enhancement properties of nanohole arrays; new first principles theoretical Page 2...support for the experimental program: 1. Studies of the electrodynamics of molecules adsorbed on anisotropic nanoparticles and nanoholes to determine...nanoparticles. George C. Schatz Electrodynamics of metal nanoparticles, small clusters of nanoparticles and nanoholes . We have performed extensive

  3. Application of Science Aesthetics in the Teaching of Electrodynamics

    ERIC Educational Resources Information Center

    Li, Haiyan

    2010-01-01

    As the important part of the theoretical physics, the electrodynamics is a theoretical basic course of the physics and relative subjects. To adapt the demands for cultivating the target of highly-quality talents in the 21st century, the aesthetic principle can be used in the teaching to stimulate students' learning desire and cultivate students'…

  4. Electrodynamics, Differential Forms and the Method of Images

    ERIC Educational Resources Information Center

    Low, Robert J.

    2011-01-01

    This paper gives a brief description of how Maxwell's equations are expressed in the language of differential forms and use this to provide an elegant demonstration of how the method of images (well known in electrostatics) also works for electrodynamics in the presence of an infinite plane conducting boundary. The paper should be accessible to an…

  5. Electrodynamics; Problems and solutions

    NASA Astrophysics Data System (ADS)

    Ilie, Carolina C.; Schrecengost, Zachariah S.

    2018-05-01

    This book of problems and solutions is a natural continuation of Ilie and Schrecengost's first book Electromagnetism: Problems and Solutions. Aimed towards students who would like to work independently on more electrodynamics problems in order to deepen their understanding and problem-solving skills, this book discusses main concepts and techniques related to Maxwell's equations, conservation laws, electromagnetic waves, potentials and fields, and radiation.

  6. Quantum Electrodynamics: Theory

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Standard Model of particle physics is composed of several theories that are added together. The most precise component theory is the theory of quantum electrodynamics or QED. In this video, Fermilab’s Dr. Don Lincoln explains how theoretical QED calculations can be done. This video links to other videos, giving the viewer a deep understanding of the process.

  7. Atomic electron energies including relativistic effects and quantum electrodynamic corrections

    NASA Technical Reports Server (NTRS)

    Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.

    1977-01-01

    Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.

  8. Electrodynamical forbiddance of a strong quadrupole interaction in surface enhanced optical processes. Experimental confirmation of the existence in fullerene C{sub 60}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polubotko, A. M., E-mail: alex.marina@mail.ioffe.ru; Chelibanov, V. P., E-mail: Chelibanov@gmail.com

    2017-02-15

    It is demonstrated that in the SERS and SEIRA spectra of the fullerene C{sub 60}, the lines, which are forbidden in usual Raman and IR spectra and allowed in SERS and SEIRA, are absent. In addition the enhancement SERS coefficient in a single molecule detection regime is ~10{sup 8} instead of the value 10{sup 14}–10{sup 15}, characteristic for this phenomenon. These results are explained by the existence of so-called electrodynamical forbiddance of a strong quadrupole light-molecule interaction, which arises because of belonging of C{sup 60} to the icosahedral symmetry group and due to the electrodynamical law divE = 0.

  9. The dielectric function of weakly ionized dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; China Research Institute of Radio wave Propagation; Wu, Jian

    2016-07-15

    Using classical Boltzmann kinetic theory, the dielectric function of weakly ionized unmagnetized dusty plasma is derived. The elastic Coulomb collision and inelastic charging collision of electrons with charged dust particle as well as charge variation on dust surface are taken into account. The theoretical result is applied to analyze the propagation of electromagnetic wave in a dusty plasma. It is demonstrated that the additional collision mechanism provided by charged dust particle can significantly increase the absorbed power of electromagnetic wave. These increases are mainly determined by the dust radius, density, and the charge numbers on the dust surface. The obtainedmore » results will support an enhanced understanding of the wave propagation processes in space and laboratory dusty plasmas.« less

  10. The Aharonov–Bohm effect in scattering theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitenko, Yu.A., E-mail: yusitenko@bitp.kiev.ua; Vlasii, N.D.

    2013-12-15

    The Aharonov–Bohm effect is considered as a scattering event with nonrelativistic charged particles of the wavelength which is less than the transverse size of an impenetrable magnetic vortex. The quasiclassical WKB method is shown to be efficient in solving this scattering problem. We find that the scattering cross section consists of two terms, one describing the classical phenomenon of elastic reflection and another one describing the quantum phenomenon of diffraction; the Aharonov–Bohm effect is manifested as a fringe shift in the diffraction pattern. Both the classical and the quantum phenomena are independent of the choice of a boundary condition atmore » the vortex edge, providing that probability is conserved. We show that a propagation of charged particles can be controlled by altering the flux of a magnetic vortex placed on their way. -- Highlights: •Aharonov–Bohm effect as a scattering event. •Impenetrable magnetic vortex of nonzero transverse size. •Scattering cross section is independent of a self-adjoint extension employed. •Classical phenomenon of elastic reflection and quantum phenomenon of diffraction. •Aharonov–Bohm effect as a fringe shift in the diffraction pattern.« less

  11. Experimental Basis for IED Particle Model

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J.

    2009-03-01

    The internally electrodynamic (IED) particle model is built on three experimental facts: a) electric charges present in all matter particles, b) an accelerated charge generates electromagnetic (EM) waves by Maxwell's equations and Planck energy equation, and c) source motion gives Doppler effect. A set of well-kwon basic particle equations have been predicted based on first-principles solutions for IED particle (e.g. J Phys CS128, 012019, 2008); the equations are long experimentally validated. A critical review of the key experiments suggests that the IED process underlies these equations not just sufficiently but also necessarily. E.g.: 1) A free IED electron solution is a plane wave ψ= Ce^i(kdX-φT) requisite for producing the diffraction fringe in a Davisson-Germer experiment, and of also all basic point-like attributes facilitated by a linear momentum kd and the model structure. It needs not further be a wave packet which produces not a diffraction fringe. 2)The radial partial EM waves, hence the total ψ, of an IED electron will, on both EM theory and experiment basis -not by assumption, enter two slits at the same time, as is requisite for an electron to interfere with itself as shown in double slit experiments. 3) On annihilation, an electron converts (from mass m) to a radiation energy φ without an acceleration which is externally observable and yet requisite by EM theory. So a charge oscillation of frequency φ and its EM waves must regularly present internal of a normal electron, whence the IED model.

  12. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J. J.; Déprez, G.; Farrell, W. M.; Houghton, I. M. P.; Renno, N. O.; Nicoll, K. A.; Tripathi, S. N.; Zimmerman, M.

    2016-11-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m-1 to 100 kV m-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)—MicroARES ( Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ electrical measurements.

  13. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J J.; Deprez, G.; Farrell, William M.; hide

    2016-01-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m(exp. -1) to 100 kV m(exp. -1) have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m(exp. -1) can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface) MicroARES (Atmospheric Radiation and Electricity Sensor) Instrumentation to Mars in 2016 for the first in situ electrical measurements.

  14. Lunar Electric Fields: Observations and Implications

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Delory, G. T.; Stubbs, T. J.; Farrell, W. M.; Vondrak, R. R.

    2006-12-01

    Alhough the Moon is typically thought of as having a relatively dormant environment, it is in fact very electrically active. The lunar surface, not protected by any substantial atmosphere, is directly exposed to solar UV and X-rays as well as solar wind plasma and energetic particles. This creates a complex electrodynamic environment, with the surface typically charging positive in sunlight and negative in shadow, and surface potentials varying over orders of magnitude in response to changing solar illumination and plasma conditions. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging also drives dust electrification and horizontal and vertical dust transport. We present a survey of the lunar electric field environment, utilizing both newly interpreted Lunar Prospector (LP) orbital observations and older Apollo surface observations, and comparing to theoretical predictions. We focus in particular on time periods when the most significant surface charging was observed by LP - namely plasmasheet crossings (when the Moon is in the Earth's magnetosphere) and space weather events. During these time periods, kV-scale potentials are observed, and enhanced surface electric fields can be expected to drive significant horizontal and vertical dust transport. Both dust and electric fields can have serious effects on habitability and operation of machinery, so understanding the coupled dust-plasma-electric field system around the Moon is critically important for planning exploration efforts, in situ resource utilization, and scientific observations on the lunar surface. Furthermore, from a pure science perspective, this represents an excellent opportunity to study fundamental surface-plasma interactions.

  15. Integrability in AdS/CFT correspondence: quasi-classical analysis

    NASA Astrophysics Data System (ADS)

    Gromov, Nikolay

    2009-06-01

    In this review, we consider a quasi-classical method applicable to integrable field theories which is based on a classical integrable structure—the algebraic curve. We apply it to the Green-Schwarz superstring on the AdS5 × S5 space. We show that the proposed method reproduces perfectly the earlier results obtained by expanding the string action for some simple classical solutions. The construction is explicitly covariant and is not based on a particular parameterization of the fields and as a result is free from ambiguities. On the other hand, the finite size corrections in some particularly important scaling limit are studied in this paper for a system of Bethe equations. For the general superalgebra \\su(N|K) , the result for the 1/L corrections is obtained. We find an integral equation which describes these corrections in a closed form. As an application, we consider the conjectured Beisert-Staudacher (BS) equations with the Hernandez-Lopez dressing factor where the finite size corrections should reproduce quasi-classical results around a general classical solution. Indeed, we show that our integral equation can be interpreted as a sum of all physical fluctuations and thus prove the complete one-loop consistency of the BS equations. We demonstrate that any local conserved charge (including the AdS energy) computed from the BS equations is indeed given at one loop by the sum of the charges of fluctuations with an exponential precision for large S5 angular momentum of the string. As an independent result, the BS equations in an \\su(2) sub-sector were derived from Zamolodchikovs's S-matrix. The paper is based on the author's PhD thesis.

  16. Molecular dynamics and charge transport in organic semiconductors: a classical approach to modeling electron transfer† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04547b Click here for additional data file.

    PubMed Central

    Vázquez-Mayagoitia, Álvaro; Ratcliff, Laura E.; Tretiak, Sergei; Bair, Raymond A.; Gray, Stephen K.; Van Voorhis, Troy; Larsen, Ross E.; Darling, Seth B.

    2017-01-01

    Organic photovoltaics (OPVs) are a promising carbon-neutral energy conversion technology, with recent improvements pushing power conversion efficiencies over 10%. A major factor limiting OPV performance is inefficiency of charge transport in organic semiconducting materials (OSCs). Due to strong coupling with lattice degrees of freedom, the charges form polarons, localized quasi-particles comprised of charges dressed with phonons. These polarons can be conceptualized as pseudo-atoms with a greater effective mass than a bare charge. We propose that due to this increased mass, polarons can be modeled with Langevin molecular dynamics (LMD), a classical approach with a computational cost much lower than most quantum mechanical methods. Here we present LMD simulations of charge transfer between a pair of fullerene molecules, which commonly serve as electron acceptors in OSCs. We find transfer rates consistent with experimental measurements of charge mobility, suggesting that this method may provide quantitative predictions of efficiency when used to simulate materials on the device scale. Our approach also offers information that is not captured in the overall transfer rate or mobility: in the simulation data, we observe exactly when and why intermolecular transfer events occur. In addition, we demonstrate that these simulations can shed light on the properties of polarons in OSCs. Much remains to be learned about these quasi-particles, and there are no widely accepted methods for calculating properties such as effective mass and friction. Our model offers a promising approach to exploring mass and friction as well as providing insight into the details of polaron transport in OSCs. PMID:28553494

  17. Corrections to the Thomson cross section caused by relativistic effects and by the presence of the drift velocity of a classical charged particle in the field of a monochromatic plane wave

    NASA Astrophysics Data System (ADS)

    Perestoronin, A. V.

    2017-03-01

    An approach to the solution of the relativistic problem of the motion of a classical charged particle in the field of a monochromatic plane wave with an arbitrary polarization (linear, circular, or elliptic) is proposed. It is based on the analysis of the 4-vector equation of motion of the charged particle together with the 4-vector and tensor equations for the components of the electromagnetic field tensor of a monochromatic plane wave. This approach provides analytical expressions for the time-averaged square of the 4-acceleration of the charge, as well as for the averaged values of any quantities periodic in the time of the reference frame. Expressions for the integral power of scattered radiation, which is proportional to the time-averaged square of the 4-acceleration of the charge, and for the integral scattering cross section, which is the ratio of the power of scattered radiation to the intensity of incident radiation, are obtained for an arbitrary inertial reference frame. An expression for the scattering cross section, which coincides with the known results at the circular and linear polarizations of the incident waves and describes the case of elliptic polarization of the incident wave, is obtained for the reference frame where the charged particle is on average at rest. An expression for the scattering cross section including relativistic effects and the nonzero drift velocity of a particle in this system is obtained for the laboratory reference frame, where the initial velocity of the charged particle is zero. In the case of the circular polarization of the incident wave, the scattering cross section in the laboratory frame is equal to the Thompson cross section.

  18. Evolution of Instrumentation for the Study of Gas-Phase Ion/Ion Chemistry via Mass Spectrometry

    PubMed Central

    Xia, Yu; McLuckey, Scott A.

    2008-01-01

    The scope of gas phase ion/ion chemistry accessible to mass spectrometry is largely defined by the available tools. Due to the development of novel instrumentation, a wide range of reaction phenomenologies have been noted, many of which have been studied extensively and exploited for analytical applications. This perspective presents the development of mass spectrometry-based instrumentation for the study of the gas phase ion/ion chemistry in which at least one of the reactants is multiply-charged. The instrument evolution is presented within the context of three essential elements required for any ion/ion reaction study: the ionization source(s), the reaction vessel or environment, and the mass analyzer. Ionization source arrangements have included source combinations that allow for reactions between multiply charged ions of one polarity and singly charged ions of opposite polarity, arrangements that enable the study of reactions of multiply charged ions of opposite polarity, and most recently, arrangements that allow for ion formation from more than two ion sources. Gas phase ion/ion reaction studies have been performed at near atmospheric pressure in flow reactor designs and within electrodynamic ion traps operated in the mTorr range. With ion trap as a reaction vessel, ionization and reaction processes can be independently optimized and ion/ion reactions can be implemented within the context of MSn experiments. Spatial separation of the reaction vessel from the mass analyzer allows for the use of any form of mass analysis in conjunction with ion/ion reactions. Time-of-flight mass analysis, for example, has provided significant improvements in mass analysis figures of merit relative to mass filters and ion traps. PMID:18083527

  19. Resilience of the quantum Rabi model in circuit QED

    NASA Astrophysics Data System (ADS)

    E Manucharyan, Vladimir; Baksic, Alexandre; Ciuti, Cristiano

    2017-07-01

    In circuit quantum electrodynamics (circuit QED), an artificial ‘circuit atom’ can couple to a quantized microwave radiation much stronger than its real atomic counterpart. The celebrated quantum Rabi model describes the simplest interaction of a two-level system with a single-mode boson field. When the coupling is large enough, the bare multilevel structure of a realistic circuit atom cannot be ignored even if the circuit is strongly anharmonic. We explored this situation theoretically for flux (fluxonium) and charge (Cooper pair box) type multi-level circuits tuned to their respective flux/charge degeneracy points. We identified which spectral features of the quantum Rabi model survive and which are renormalized for large coupling. Despite significant renormalization of the low-energy spectrum in the fluxonium case, the key quantum Rabi feature—nearly-degenerate vacuum consisting of an atomic state entangled with a multi-photon field—appears in both types of circuits when the coupling is sufficiently large. Like in the quantum Rabi model, for very large couplings the entanglement spectrum is dominated by only two, nearly equal eigenvalues, in spite of the fact that a large number of bare atomic states are actually involved in the atom-resonator ground state. We interpret the emergence of the two-fold degeneracy of the vacuum of both circuits as an environmental suppression of flux/charge tunneling due to their dressing by virtual low-/high-impedance photons in the resonator. For flux tunneling, the dressing is nothing else than the shunting of a Josephson atom with a large capacitance of the resonator. Suppression of charge tunneling is a manifestation of the dynamical Coulomb blockade of transport in tunnel junctions connected to resistive leads.

  20. Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.

    2005-01-01

    Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.

Top