Science.gov

Sample records for classical mechanics

  1. Classical Mechanics

    NASA Astrophysics Data System (ADS)

    Chow, Tai L.

    1995-05-01

    Bring Classical Mechanics To Life With a Realistic Software Simulation! You can enhance the thorough coverage of Chow's Classical Mechanics with a hands-on, real-world experience! John Wiley & Sons, Inc. is proud to announce a new computer simulation for classical mechanics. Developed by the Consortium for Upper-Level Physics Software (CUPS), this simulation offers complex, often realistic calculations of models of various physical systems. Classical Mechanics Simulations (54881-2) is the perfect complement to Chow's text. Like all of the CUPS simulations, it is remarkably easy to use, yet sophisticated enough for explorations of new ideas. Other Important Features Include: * Six powerful simulations include: The Motion Generator, Rotation of Three-Dimensional Objects, Coupled Oscillators, Anharmonic Oscillators, Gravitational Orbits, and Collisions * Pascal source code for all programs is supplied and a number of exercises suggest specific ways the programs can be modified. * Simulations usually include graphical (often animated) displays. The entire CUPS simulation series consists of nine book/software simulations which comprise most of the undergraduate physics major's curriculum.

  2. Supersymmetry in classical mechanics

    NASA Astrophysics Data System (ADS)

    Suen, W. M.; Wong, C. W.; Young, K.

    2000-06-01

    The concept of supersymmetry extended to classical mechanics relates one-parameter families of Hamiltonians H( ξ, x, p)= p2+ V( ξ, x), such that the mapping from the phase space of H( ξ1, x, p) to that of H( ξ2, x, p) preserves time-evolution and conserves total energy; as a result, equal-energy periodic orbits in the two have the same period. While t-evolution is a contact transformation generated by H, ξ-evolution is a generalized contact transformation generated by a function K, and preserves phase volume except for a point sink (source) as ξ increases (decreases). Closed-form solutions of ξ-evolution include several well-known examples.

  3. Operator Formulation of Classical Mechanics.

    ERIC Educational Resources Information Center

    Cohn, Jack

    1980-01-01

    Discusses the construction of an operator formulation of classical mechanics which is directly concerned with wave packets in configuration space and is more similar to that of convential quantum theory than other extant operator formulations of classical mechanics. (Author/HM)

  4. Quantum localization of classical mechanics

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.

    2016-07-01

    Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.

  5. Teaching Classical Mechanics Using Smartphones

    ERIC Educational Resources Information Center

    Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad

    2013-01-01

    A number of articles published in this column have dealt with topics in classical mechanics. This note describes some additional examples employing a smartphone and the new software iMecaProf. Steve Jobs presented the iPhone as "perfect for gaming." Thanks to its microsensors connected in real time to the numerical world, physics…

  6. Teaching classical mechanics using smartphones

    NASA Astrophysics Data System (ADS)

    Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad

    2013-09-01

    A number of articles published in this column have dealt with topics in classical mechanics. This note describes some additional examples employing a smartphone and the new software iMecaProf.4 Steve Jobs presented the iPhone as "perfect for gaming."5 Thanks to its microsensors connected in real time to the numerical world, physics teachers could add that smartphones are "perfect for teaching science." The software iMecaProf displays in real time the measured data on a screen. The visual representation is built upon the formalism of classical mechanics. iMecaProf receives data 100 times a second from iPhone sensors through a Wi-Fi connection using the application Sensor Data.6 Data are the three components of the acceleration vector in the smartphone frame and smartphone's orientation through three angles (yaw, pitch, and roll). For circular motion (uniform or not), iMecaProf uses independent measurements of the rotation angle θ, the angular speed dθ/dt, and the angular acceleration d2θ/dt2.

  7. Classical mechanics of nonconservative systems.

    PubMed

    Galley, Chad R

    2013-04-26

    Hamilton's principle of stationary action lies at the foundation of theoretical physics and is applied in many other disciplines from pure mathematics to economics. Despite its utility, Hamilton's principle has a subtle pitfall that often goes unnoticed in physics: it is formulated as a boundary value problem in time but is used to derive equations of motion that are solved with initial data. This subtlety can have undesirable effects. I present a formulation of Hamilton's principle that is compatible with initial value problems. Remarkably, this leads to a natural formulation for the Lagrangian and Hamiltonian dynamics of generic nonconservative systems, thereby filling a long-standing gap in classical mechanics. Thus, dissipative effects, for example, can be studied with new tools that may have applications in a variety of disciplines. The new formalism is demonstrated by two examples of nonconservative systems: an object moving in a fluid with viscous drag forces and a harmonic oscillator coupled to a dissipative environment.

  8. Dynamical Symmetries in Classical Mechanics

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2012-01-01

    We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…

  9. Factors Influencing the Learning of Classical Mechanics.

    ERIC Educational Resources Information Center

    Champagne, Audrey B.; And Others

    1980-01-01

    Describes a study investigating the combined effect of certain variables on student achievement in classical mechanics. The purpose was to (1) describe preinstructional knowledge and skills; (2) correlate these variables with the student's success in learning classical mechanics; and (3) develop hypothesis about relationships between these…

  10. Bridging classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Haddad, D.; Seifert, F.; Chao, L. S.; Li, S.; Newell, D. B.; Pratt, J. R.; Williams, C.; Schlamminger, S.

    2016-10-01

    Using a watt balance and a frequency comb, a mass-energy equivalence is derived. The watt balance compares mechanical power measured in terms of the meter, the second, and the kilogram to electrical power measured in terms of the volt and the ohm. A direct link between mechanical action and the Planck constant is established by the practical realization of the electrical units derived from the Josephson and the quantum Hall effects. By using frequency combs to measure velocities and acceleration of gravity, the unit of mass can be realized from a set of three defining constants: the Planck constant h, the speed of light c, and the hyperfine splitting frequency of 133Cs.

  11. Classical Mechanics Experiments using Wiimotes

    NASA Astrophysics Data System (ADS)

    Lopez, Alexander; Ochoa, Romulo

    2010-02-01

    The Wii, a video game console, is a very popular device. Although computationally it is not a powerful machine by today's standards, to a physics educator the controllers are its most important components. The Wiimote (or remote) controller contains a three-axis accelerometer, an infrared detector, and Bluetooth connectivity at a relatively low price. Thanks to available open source code, such as GlovePie, any PC or Laptop with Bluetooth capability can detect the information sent out by the Wiimote. We present experiments that use two or three Wiimotes simultaneously to measure the variable accelerations in two mass systems interacting via springs. Normal modes are determined from the data obtained. Masses and spring constants are varied to analyze their impact on the accelerations of the systems. We present the results of our experiments and compare them with those predicted using Lagrangian mechanics. )

  12. Thermodynamic integration from classical to quantum mechanics.

    PubMed

    Habershon, Scott; Manolopoulos, David E

    2011-12-14

    We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable.

  13. Comparison of Classical and Quantum Mechanical Uncertainties.

    ERIC Educational Resources Information Center

    Peslak, John, Jr.

    1979-01-01

    Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)

  14. Unraveling a classical mechanics brain twister

    NASA Astrophysics Data System (ADS)

    Paris, Norman; Broide, Michael L.

    2011-12-01

    We present a comprehensive analysis of an intriguing classical mechanics problem involving the coupled motion of two blocks. The problem illustrates fundamental physics concepts and theoretical techniques. We solve the equations of motion numerically and gain insight into common misconceptions about this system. The problem provides rich opportunities for student investigations using analytical and numerical methods.

  15. Time in classical and in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Elçi, A.

    2010-07-01

    This paper presents an analysis of the time concept in classical mechanics from the perspective of the invariants of a motion. The analysis shows that there is a conceptual gap concerning time in the Dirac-Heisenberg-von Neumann formalism and that Bohr's complementarity principle does not fill the gap. In the Dirac-Heisenberg-von Neumann formalism, a particle's properties are represented by Heisenberg matrices. This axiom is the source of the time problem in quantum mechanics.

  16. Quantum approach to classical statistical mechanics.

    PubMed

    Somma, R D; Batista, C D; Ortiz, G

    2007-07-20

    We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.

  17. Statistical mechanics based on fractional classical and quantum mechanics

    SciTech Connect

    Korichi, Z.; Meftah, M. T.

    2014-03-15

    The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.

  18. On Logical Error Underlying Classical Mechanics

    NASA Astrophysics Data System (ADS)

    Kalanov, Temur Z.

    2012-03-01

    The logical analysis of the general accepted description of mechanical motion of material point M in classical mechanics is proposed. The key idea of the analysis is as follows. Let point M be moved in the positive direction of the axis O 1ptx. Motion is characterized by a change of coordinate x,( t ) -- continuous function of time t(because motion is a change in general). If δ,->;0;δ,;=;0, then δ,;->;0δ,;=;0, i.e., according to practice and formal logic, value of coordinate does not change and, hence, motion does not exist. But, contrary to practice and formal logic, differential calculus and classical mechanics contain the assertion that velocity δ,;->;0;δ,δ,;exists without motion. Then velocity δ,;->;0;δ,δ,;is not real (i.e. not physical) quantity, but fictitious quantity. Therefore, use of non-physical (unreal) quantity (i.e. the first and second derivatives of function) in classical mechanics is a logic error.

  19. Macroscopic quantum mechanics in a classical spacetime.

    PubMed

    Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei

    2013-04-26

    We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.

  20. Metal Ion Modeling Using Classical Mechanics.

    PubMed

    Li, Pengfei; Merz, Kenneth M

    2017-02-08

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.

  1. Metal Ion Modeling Using Classical Mechanics

    PubMed Central

    2017-01-01

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509

  2. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this…

  3. Classical and quantum-mechanical state reconstruction

    NASA Astrophysics Data System (ADS)

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-07-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that used in medical imaging known as computer-aided tomography. It is remarkable that this method can be taken over to quantum mechanics, where it leads to a description of the quantum state in terms of the Wigner function which, although it may take on negative values, plays the role of the probability density in phase space in classical physics. We then present another approach to quantum state reconstruction based on the notion of mutually unbiased bases—a notion of current research interest, for which we give explanatory remarks—and indicate the relation between these two approaches. Since the subject of state reconstruction is rarely considered at the level of textbooks, the presentation in this paper is aimed at graduate-level readers.

  4. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2009-12-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this machine might be improved, a student can gain insight beyond the equations of motion and can test hypotheses on readily available working models. Some of these performance improvements are considered in this paper.

  5. Statistical origin of classical mechanics and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Yuan

    1993-11-01

    The classical action for interacting strings, obtained by generalizing the time-symmetric electrodynamics of Wheeler and Feynman, is exactly additive. The additivity of the string action suggests a connection between the area of the string world sheets and entropy. We find that the action principle of classical mechanics is the condition that the total entropy of the strings be at an extremum, and the path-integral representation of the quantum density matrix element is an approximation to the partition function of the string theory.

  6. Statistical mechanics of quantum-classical systems with holonomic constraints.

    PubMed

    Sergi, Alessandro

    2006-01-14

    The statistical mechanics of quantum-classical systems with holonomic constraints is formulated rigorously by unifying the classical Dirac bracket and the quantum-classical bracket in matrix form. The resulting Dirac quantum-classical theory, which conserves the holonomic constraints exactly, is then used to formulate time evolution and statistical mechanics. The correct momentum-jump approximation for constrained systems arises naturally from this formalism. Finally, in analogy with what was found in the classical case, it is shown that the rigorous linear-response function of constrained quantum-classical systems contains nontrivial additional terms which are absent in the response of unconstrained systems.

  7. Classical and Quantum-Mechanical State Reconstruction

    ERIC Educational Resources Information Center

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…

  8. Classical phase space and statistical mechanics of identical particles.

    PubMed

    Hansson, T H; Isakov, S B; Leinaas, J M; Lindström, U

    2001-02-01

    Starting from the quantum theory of identical particles, we show how to define a classical mechanics that retains information about the quantum statistics. We consider two examples of relevance for the quantum Hall effect: identical particles in the lowest Landau level, and vortices in the Chern-Simons Ginzburg-Landau model. In both cases the resulting classical statistical mechanics is shown to be a nontrivial classical limit of Haldane's exclusion statistics.

  9. Supernovae in Binary Systems: An Application of Classical Mechanics.

    ERIC Educational Resources Information Center

    Mitalas, R.

    1980-01-01

    Presents the supernova explosion in a binary system as an application of classical mechanics. This presentation is intended to illustrate the power of the equivalent one-body problem and provide undergraduate students with a variety of insights into elementary classical mechanics. (HM)

  10. Coherently enhanced measurements in classical mechanics

    NASA Astrophysics Data System (ADS)

    Braun, Daniel; Popescu, Sandu

    2014-08-01

    In all quantitative sciences, it is common practice to increase the signal-to-noise ratio of noisy measurements by measuring identically prepared systems N times and averaging the measurement results. This leads to a scaling of the sensitivity as 1/√N, known in quantum measurement theory as the "standard quantum limit" (SQL). It is known that if one puts the N systems into an entangled state, a scaling as 1/N can be achieved, the socalled "Heisenberg limit" (HL), but decoherence problems have so far prevented implementation of such protocols for large N. Here we show that a method of coherent averaging inspired by a recent entanglement-free quantum enhanced measurement protocol is capable of achieving a sensitivity that scales as 1/N in a purely classical setup. This may substantially improve the measurement of very weak interactions in the classical realm, and, in particular, open a novel route to measuring the gravitational constant with enhanced precision.

  11. Complex Classical Mechanics of a QES Potential

    NASA Astrophysics Data System (ADS)

    Bhabani Prasad, Mandal; Sushant, S. Mahajan

    2015-10-01

    We study a combined parity (P) and time reversal (T) invariant non-Hermitian quasi-exactly solvable (QES) potential, which exhibits PT phase transition, in the complex plane classically to demonstrate different quantum effects. The particle with real energy makes closed orbits around one of the periodic wells of the complex potential depending on the initial condition. However interestingly the particle escapes to an open orbits even with real energy if it is placed beyond a certain distance from the center of the well. On the other hand when the particle energy is complex the trajectory is open and the particle tunnels back and forth between two wells which are separated by a classically forbidden path. The tunneling time is calculated for different pair of wells and is shown to vary inversely with the imaginary component of energy. Our study reveals that spontaneous PT symmetry breaking does not affect the qualitative features of the particle trajectories in the analogous complex classical model. Support from Department of Science and Technology (DST), Govt. of India under SERC Project Sanction Grant No. SR/S2/HEP-0009/2012

  12. Universal local symmetries and nonsuperposition in classical mechanics.

    PubMed

    Gozzi, Ennio; Pagani, Carlo

    2010-10-08

    In the Hilbert space formulation of classical mechanics, pioneered by Koopman and von Neumann, there are potentially more observables than in the standard approach to classical mechanics. In this Letter, we show that actually many of those extra observables are not invariant under a set of universal local symmetries which appear once the Koopman and von Neumann formulation is extended to include the evolution of differential forms. Because of their noninvariance, those extra observables have to be removed. This removal makes the superposition of states in the Koopman and von Neumann formulation, and as a consequence also in classical mechanics, impossible.

  13. Functional methods underlying classical mechanics, relativity and quantum theory

    NASA Astrophysics Data System (ADS)

    Kryukov, A.

    2013-04-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is "made" of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.

  14. Hamilton's Principle and Approximate Solutions to Problems in Classical Mechanics

    ERIC Educational Resources Information Center

    Schlitt, D. W.

    1977-01-01

    Shows how to use the Ritz method for obtaining approximate solutions to problems expressed in variational form directly from the variational equation. Application of this method to classical mechanics is given. (MLH)

  15. A Computer-based Course in Classical Mechanics.

    ERIC Educational Resources Information Center

    Kane, D.; Sherwood, B.

    1980-01-01

    Describes and illustrates the tutorial and homework exercise lessons, student routing, course organization, administration, and evaluation of a PLATO computer-based course in classical mechanics. An appendix lists 41 lessons developed for the course. (CMV)

  16. Amphetamine toxicities Classical and emerging mechanisms

    PubMed Central

    Yamamoto, Bryan K.; Moszczynska, Anna; Gudelsky, Gary A.

    2014-01-01

    The drugs of abuse, methamphetamine and MDMA, produce long-term decreases in markers of biogenic amine neurotransmission. These decreases have been traditionally linked to nerve terminals and are evident in a variety of species, including rodents, nonhuman primates, and humans. Recent studies indicate that the damage produced by these drugs may be more widespread than originally believed. Changes indicative of damage to cell bodies of biogenic and nonbiogenic amine–containing neurons in several brain areas and endothelial cells that make up the blood–brain barrier have been reported. The processes that mediate this damage involve not only oxidative stress but also include excitotoxic mechanisms, neuroinflammation, the ubiquitin proteasome system, as well as mitochondrial and neurotrophic factor dysfunction. These mechanisms also underlie the toxicity associated with chronic stress and human immunodeficiency virus (HIV) infection, both of which have been shown to augment the toxicity to methamphetamine. Overall, multiple mechanisms are involved and interact to promote neurotoxicity to methamphetamine and MDMA. Moreover, the high coincidence of substituted amphetamine abuse by humans with HIV and/or chronic stress exposure suggests a potential enhanced vulnerability of these individuals to the neurotoxic actions of the amphetamines. PMID:20201848

  17. A wave equation interpolating between classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.

    2015-10-01

    We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.

  18. Generalized Galilei-Invariant Classical Mechanics

    NASA Astrophysics Data System (ADS)

    Woodcock, Harry W.; Havas, Peter

    To describe the "slow" motions of n interacting mass points, we give the most general four-dimensional (4D) noninstantaneous, nonparticle symmetric Galilei-invariant variational principle. It involves two-body invariants constructed from particle 4-positions and 4-velocities of the proper orthochronous inhomogeneous Galilei group. The resulting 4D equations of motion and multiple-time conserved quantities involve integrals over the worldlines of the other n-1 interacting particles. For a particular time-asymmetric retarded (advanced) interaction, we show the vanishing of all integrals over worldlines in the ten standard 4D multiple-time conserved quantities, thus yielding a Newtonian-like initial value problem. This interaction gives 3D noninstantaneous, nonparticle symmetric, coupled nonlinear second-order delay-differential equations of motion that involve only algebraic combinations of nonsimultaneous particle positions, velocities, and accelerations. The ten 3D noninstantaneous, nonparticle symmetric conserved quantities involve only algebraic combinations of nonsimultaneous particle positions and velocities. A two-body example with a generalized Newtonian gravity is provided. We suggest that this formalism might be useful as an alternative slow-motion mechanics for astrophysical applications.

  19. Models on the boundary between classical and quantum mechanics.

    PubMed

    Hooft, Gerard 't

    2015-08-06

    Arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there cannot be physical laws that require 'conspiracy'. It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In this report, several such counterexamples are shown. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. So now the question is asked: how can such a model feature 'conspiracy', and how bad is that? Is there conspiracy in the vacuum fluctuations? Arguments concerning Bell's theorem are further sharpened.

  20. Errata report on Herbert Goldstein's Classical Mechanics: Second edition

    SciTech Connect

    Unseren, M.A.; Hoffman, F.M.

    1993-01-01

    This report describes errors in Herbert Goldstein's textbook Classical Mechanics, Second Edition (Copyright 1980, ISBN 0-201-02918-9). Some of the errors in current printings of the text were corrected in the second printing; however, after communicating with Addison Wesley, the publisher for Classical Mechanics, it was discovered that the corrected galley proofs had been lost by the printer and that no one had complained of any errors in the eleven years since the second printing. The errata sheet corrects errors from all printings of the second edition.

  1. Equivalent emergence of time dependence in classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Briggs, John S.

    2015-05-01

    Beginning with the principle that a closed mechanical composite system is timeless, time can be defined by the regular changes in a suitable position coordinate (clock) in the observing part, when one part of the closed composite observes another part. Translating this scenario into both classical and quantum mechanics allows a transition to be made from a time-independent mechanics for the closed composite to a time-dependent description of the observed part alone. The use of Hamilton-Jacobi theory yields a very close parallel between the derivations in classical and quantum mechanics. The time-dependent equations, Hamilton-Jacobi or Schrödinger, appear as approximations since no observed system is truly closed. The quantum case has an additional feature in the condition that the observing environment must become classical in order to define a real classical time variable. This condition leads to a removal of entanglement engendered by the interaction between the observed system and the observing environment. Comparison is made to the similar emergence of time in quantum gravity theory.

  2. A Primer on Elliptic Functions with Applications in Classical Mechanics

    ERIC Educational Resources Information Center

    Brizard, Alain J.

    2009-01-01

    The Jacobi and Weierstrass elliptic functions used to be part of the standard mathematical arsenal of physics students. They appear as solutions of many important problems in classical mechanics: the motion of a planar pendulum (Jacobi), the motion of a force-free asymmetric top (Jacobi), the motion of a spherical pendulum (Weierstrass) and the…

  3. Classical and quantum mechanics of diatomic molecules in tilted fields.

    PubMed

    Arango, Carlos A; Kennerly, William W; Ezra, Gregory S

    2005-05-08

    We investigate the classical and quantum mechanics of diatomic molecules in noncollinear (tilted) static electric and nonresonant linearly polarized laser fields. The classical diatomic in tilted fields is a nonintegrable system, and we study the phase space structure for physically relevant parameter regimes for the molecule KCl. While exhibiting low-energy (pendular) and high-energy (free-rotor) integrable limits, the rotor in tilted fields shows chaotic dynamics at intermediate energies, and the degree of classical chaos can be tuned by changing the tilt angle. We examine the quantum mechanics of rotors in tilted fields. Energy-level correlation diagrams are computed, and the presence of avoided crossings quantified by the study of nearest-neighbor spacing distributions as a function of energy and tilting angle. Finally, we examine the influence of classical periodic orbits on rotor wave functions. Many wave functions in the tilted field case are found to be highly nonseparable in spherical polar coordinates. Localization of wave functions in the vicinity of classical periodic orbits, both stable and unstable, is observed for many states.

  4. Physical analogy between continuum thermodynamics and classical mechanics.

    PubMed

    Umantsev, Alex

    2004-01-01

    The main focus of this paper is the profound physical analogy between a continuum thermodynamical system, which evolves with relaxation under (possibly) nonisothermal conditions, and a classical mechanical system of a few interacting particles moving with dissipation in (possibly), time-dependent nonconservative fields. This analogy is applied to the problem of phase transitions in a one-dimensional thermodynamic system. The thermomechanical analogy stems from the validity of variational methods in mechanics and thermodynamics and allows for a different interpretation of the dynamical selection principle in the theory of pattern formation. This physical analogy is very helpful for understanding different nonlinear thermodynamic phenomena and for developing intuition in numerical simulations.

  5. Transfer from classical mechanics context to electricity and magnetism context

    NASA Astrophysics Data System (ADS)

    Gonzalez, Maria D.; Kanim, Stephen

    2008-10-01

    Some classical mechanics concepts, like density, vectors use, conservative fields, 3^rd Newton Law, velocity and acceleration physical and mathematical relations, are the basis for the development of related concepts that are central to the subsequent electricity and magnetism course. We believe that if students and instructors involved recognize the underlying features that are common to the two contexts, a better understanding and performance will be achieved. We are developing a pre- and post-test that is intended to measure the extent to which (1) students enter the electricity and magnetism course with a sufficient mechanics foundation; (2) there is a correlation between student responses to similar questions in mechanics and electrostatics contexts; and (3) mechanics understanding is strengthened through reintroduction of physics principles in a second context. We will give examples of ``paired'' questions and give data from administrations of the pre- and post-tests.

  6. Gauge transformations and conserved quantities in classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Berche, Bertrand; Malterre, Daniel; Medina, Ernesto

    2016-08-01

    We are taught that gauge transformations in classical and quantum mechanics do not change the physics of the problem. Nevertheless, here we discuss three broad scenarios where under gauge transformations: (i) conservation laws are not preserved in the usual manner; (ii) non-gauge-invariant quantities can be associated with physical observables; and (iii) there are changes in the physical boundary conditions of the wave function that render it non-single-valued. We give worked examples that illustrate these points, in contrast to general opinions from classic texts. We also give a historical perspective on the development of Abelian gauge theory in relation to our particular points. Our aim is to provide a discussion of these issues at the graduate level.

  7. The simplified Fermi accelerator in classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Karner, Gunther

    1994-11-01

    We review the simplified classical Fermi acceleration mechanism and construct a quantum counterpart by imposing time-dependent boundary conditions on solutions of the "free" Schrödinger equation at the unit interval. We find similiar dynamical features in the sense that limiting KAM curves, respectively purely singular quasienergy spectrum, exist(s) for sufficiently smooth "wall oscillations" (typically of C 2 type). In addition, we investigate quantum analogs to local approximations of the Fermi map both in its quasiperiodic and irregular phase space regions. In particular, we find pure point q.e. spectrum in the former case and conjecture that "random boundary conditions" are necessary to model a quantum analog to the chaotic regime of the classical accelerator.

  8. Physics on the boundary between classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    2014-04-01

    Nature's laws in the domain where relativistic effects, gravitational effects and quantum effects are all comparatively strong are far from understood. This domain is called the Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena at such scales can be attributed to something fundamentally simpler. However, arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there can't be physical laws that require "conspiracy". It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In the lecture we will show several such counterexamples. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. This theory is often portrayed as to underly the quantum field theory of the subatomic particles, including the "Standard Model". So now the question is asked: how can this model feature "conspiracy", and how bad is that? Is there conspiracy in the vacuum fluctuations?

  9. Operational dynamic modeling transcending quantum and classical mechanics.

    PubMed

    Bondar, Denys I; Cabrera, Renan; Lompay, Robert R; Ivanov, Misha Yu; Rabitz, Herschel A

    2012-11-09

    We introduce a general and systematic theoretical framework for operational dynamic modeling (ODM) by combining a kinematic description of a model with the evolution of the dynamical average values. The kinematics includes the algebra of the observables and their defined averages. The evolution of the average values is drawn in the form of Ehrenfest-like theorems. We show that ODM is capable of encompassing wide-ranging dynamics from classical non-relativistic mechanics to quantum field theory. The generality of ODM should provide a basis for formulating novel theories.

  10. Minimum length from quantum mechanics and classical general relativity.

    PubMed

    Calmet, Xavier; Graesser, Michael; Hsu, Stephen D H

    2004-11-19

    We derive fundamental limits on measurements of position, arising from quantum mechanics and classical general relativity. First, we show that any primitive probe or target used in an experiment must be larger than the Planck length lP. This suggests a Planck-size minimum ball of uncertainty in any measurement. Next, we study interferometers (such as LIGO) whose precision is much finer than the size of any individual components and hence are not obviously limited by the minimum ball. Nevertheless, we deduce a fundamental limit on their accuracy of order lP. Our results imply a device independent limit on possible position measurements.

  11. PT symmetry in classical and quantum statistical mechanics.

    PubMed

    Meisinger, Peter N; Ogilvie, Michael C

    2013-04-28

    PT-symmetric Hamiltonians and transfer matrices arise naturally in statistical mechanics. These classical and quantum models often require the use of complex or negative weights and thus fall outside the conventional equilibrium statistical mechanics of Hermitian systems. PT-symmetric models form a natural class where the partition function is necessarily real, but not necessarily positive. The correlation functions of these models display a much richer set of behaviours than Hermitian systems, displaying sinusoidally modulated exponential decay, as in a dense fluid, or even sinusoidal modulation without decay. Classical spin models with PT-symmetry include Z(N) models with a complex magnetic field, the chiral Potts model and the anisotropic next-nearest-neighbour Ising model. Quantum many-body problems with a non-zero chemical potential have a natural PT-symmetric representation related to the sign problem. Two-dimensional quantum chromodynamics with heavy quarks at non-zero chemical potential can be solved by diagonalizing an appropriate PT-symmetric Hamiltonian.

  12. Classical mechanics approach applied to analysis of genetic oscillators.

    PubMed

    Vasylchenkova, Anastasiia; Mraz, Miha; Zimic, Nikolaj; Moskon, Miha

    2016-04-05

    Biological oscillators present a fundamental part of several regulatory mechanisms that control the response of various biological systems. Several analytical approaches for their analysis have been reported recently. They are, however, limited to only specific oscillator topologies and/or to giving only qualitative answers, i.e., is the dynamics of an oscillator given the parameter space oscillatory or not. Here we present a general analytical approach that can be applied to the analysis of biological oscillators. It relies on the projection of biological systems to classical mechanics systems. The approach is able to provide us with relatively accurate results in the meaning of type of behaviour system reflects (i.e. oscillatory or not) and periods of potential oscillations without the necessity to conduct expensive numerical simulations. We demonstrate and verify the proposed approach on three different implementations of amplified negative feedback oscillator.

  13. Semi-classical modeling of nano-mechanical transistors

    NASA Astrophysics Data System (ADS)

    Scorrano, Alessandro; Carcaterra, Antonio

    2013-08-01

    The introduction of vibration-based Nano Electro-Mechanical Transistors (NEMT) opens a new horizon for mechanics in computer science. NEMT working principle is based on an electrical charge shuttle between two electrodes operated by a vibrating conductor body. Advantages of these novel devices would be very low power dissipation, limited influence of external electromagnetic disturbances, and improved thermal resistance. The paper introduces an analytical model for such a device, in which the matching of a mechanical resonator and an electric circuit is studied: the coupling is provided by capacitance effects, electrostatic force and the quantum tunneling. The approach is quasi-classical, describing the quantum phenomena through a non-linear conductance and using a continuous variable for the charges. Through suitably introduced simplifications, the model is reduced to a set of two differential equations in terms of pillar position and charge. These equations represent the simplest model still preserving the basic phenomenology of the investigated system. Numerical simulations show different possible motion regimes, both in the single- and multiple-module configurations, the latter able to reproduce the conventional transistor functionality. This opens the way to mechanical voltage-driven switches or amplifiers.

  14. Acceleration of Classical Mechanics by Phase Space Constraints.

    PubMed

    Martínez-Núñez, Emilio; Shalashilin, Dmitrii V

    2006-07-01

    In this article phase space constrained classical mechanics (PSCCM), a version of accelerated dynamics, is suggested to speed up classical trajectory simulations of slow chemical processes. The approach is based on introducing constraints which lock trajectories in the region of the phase space close to the dividing surface, which separates reactants and products. This results in substantial (up to more than 2 orders of magnitude) speeding up of the trajectory simulation. Actual microcanonical rates are calculated by introducing a correction factor equal to the fraction of the phase volume which is allowed by the constraints. The constraints can be more complex than previously used boosting potentials. The approach has its origin in Intramolecular Dynamics Diffusion Theory, which shows that the majority of nonstatistical effects are localized near the transition state. An excellent agreement with standard trajectory simulation at high energies and Monte Carlo Transition State Theory at low energies is demonstrated for the unimolecular dissociation of methyl nitrite, proving that PSCCM works both in statistical and nonstatistical regimes.

  15. Toughness of carbon nanotubes conforms to classic fracture mechanics.

    PubMed

    Yang, Lin; Greenfeld, Israel; Wagner, H Daniel

    2016-02-01

    Defects in crystalline structure are commonly believed to degrade the ideal strength of carbon nanotubes. However, the fracture mechanisms induced by such defects, as well as the validity of solid mechanics theories at the nanoscale, are still under debate. We show that the fracture toughness of single-walled nanotubes (SWNTs) conforms to the classic theory of fracture mechanics, even for the smallest possible vacancy defect (~2 Å). By simulating tension of SWNTs containing common types of defects, we demonstrate how stress concentration at the defect boundary leads to brittle (unstable) fracturing at a relatively low strain, degrading the ideal strength of SWNTs by up to 60%. We find that, owing to the SWNT's truss-like structure, defects at this scale are not sharp and stress concentrations are finite and low. Moreover, stress concentration, a geometric property at the macroscale, is interrelated with the SWNT fracture toughness, a material property. The resulting SWNT fracture toughness is 2.7 MPa m(0.5), typical of moderately brittle materials and applicable also to graphene.

  16. Toughness of carbon nanotubes conforms to classic fracture mechanics

    PubMed Central

    Yang, Lin; Greenfeld, Israel; Wagner, H. Daniel

    2016-01-01

    Defects in crystalline structure are commonly believed to degrade the ideal strength of carbon nanotubes. However, the fracture mechanisms induced by such defects, as well as the validity of solid mechanics theories at the nanoscale, are still under debate. We show that the fracture toughness of single-walled nanotubes (SWNTs) conforms to the classic theory of fracture mechanics, even for the smallest possible vacancy defect (~2 Å). By simulating tension of SWNTs containing common types of defects, we demonstrate how stress concentration at the defect boundary leads to brittle (unstable) fracturing at a relatively low strain, degrading the ideal strength of SWNTs by up to 60%. We find that, owing to the SWNT’s truss-like structure, defects at this scale are not sharp and stress concentrations are finite and low. Moreover, stress concentration, a geometric property at the macroscale, is interrelated with the SWNT fracture toughness, a material property. The resulting SWNT fracture toughness is 2.7 MPa m0.5, typical of moderately brittle materials and applicable also to graphene. PMID:26989774

  17. Geometric control of quantum mechanical and nonlinear classical systems

    NASA Astrophysics Data System (ADS)

    Nelson, Richard Joseph

    1999-10-01

    Geometric control refers to the judicious use of the non- commuting nature of inputs and natural dynamics as the basis for control. The last few decades in control system theory have seen the application of differential geometry in proving several important properties of systems, including controllability and observability. Until recently, however, the results of this mathematical geometry have rarely been used as the basis for designing and implementing an actual controller. This thesis demonstrates the application of a judicious selection of inputs, so that if the system is proven to be controllable using geometric methods, one can design input sequences using the same geometry. A demonstration of this method is shown in simulating the attitude control of a satellite: a highly non-linear, non- holonomic control problem. Although not a practical method for large re-orientations of a typical satellite, the approach can be applied to other nonlinear systems. The method is also applied to the closed-loop performance of a quantum mechanical system to demonstrate the feasibility of coherent quantum feedback-something impossible using a conventional controller. Finally, the method is applied in the open-loop control of a quantum mechanical system: in this case, the creation of Greenberger-Horne-Zeilinger correlations among the nuclei of an ensemble of alanine molecules in a nuclear magnetic resonance spectrometer. In each case, the data demonstrate the usefulness of a geometric approach to control. In addition to demonstrations of geometric control in practice, the quantum mechanical experiments also demonstrate for the first time peculiar quantum correlations, including GHZ correlations, that have no classical analog. The quantum experiments further establish nuclear magnetic resonance as a viable and accessible testbed of quantum predictions and processes. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax

  18. Fundamental Principles of Classical Mechanics: a Geometrical Perspectives

    NASA Astrophysics Data System (ADS)

    Lam, Kai S.

    2014-07-01

    Classical mechanics is the quantitative study of the laws of motion for oscopic physical systems with mass. The fundamental laws of this subject, known as Newton's Laws of Motion, are expressed in terms of second-order differential equations governing the time evolution of vectors in a so-called configuration space of a system (see Chapter 12). In an elementary setting, these are usually vectors in 3-dimensional Euclidean space, such as position vectors of point particles; but typically they can be vectors in higher dimensional and more abstract spaces. A general knowledge of the mathematical properties of vectors, not only in their most intuitive incarnations as directed arrows in physical space but as elements of abstract linear vector spaces, and those of linear operators (transformations) on vector spaces as well, is then indispensable in laying the groundwork for both the physical and the more advanced mathematical - more precisely topological and geometrical - concepts that will prove to be vital in our subject. In this beginning chapter we will review these properties, and introduce the all-important related notions of dual spaces and tensor products of vector spaces. The notational convention for vectorial and tensorial indices used for the rest of this book (except when otherwise specified) will also be established...

  19. Quantum mechanical ground state of hydrogen obtained from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Cole, Daniel C.; Zou, Yi

    2003-10-01

    The behavior of a classical charged point particle under the influence of only a Coulombic binding potential and classical electromagnetic zero-point radiation, is shown to agree closely with the probability density distribution of Schrödinger's wave equation for the ground state of hydrogen. These results again raise the possibility that the main tenets of stochastic electrodynamics (SED) are correct.

  20. Quantum mechanics can reduce the complexity of classical models.

    PubMed

    Gu, Mile; Wiesner, Karoline; Rieper, Elisabeth; Vedral, Vlatko

    2012-03-27

    Mathematical models are an essential component of quantitative science. They generate predictions about the future, based on information available in the present. In the spirit of simpler is better; should two models make identical predictions, the one that requires less input is preferred. Yet, for almost all stochastic processes, even the provably optimal classical models waste information. The amount of input information they demand exceeds the amount of predictive information they output. Here we show how to systematically construct quantum models that break this classical bound, and that the system of minimal entropy that simulates such processes must necessarily feature quantum dynamics. This indicates that many observed phenomena could be significantly simpler than classically possible should quantum effects be involved.

  1. Mechanics of isolated extended bodies in classical field theories

    NASA Astrophysics Data System (ADS)

    Harte, Abraham Isaiah

    2007-08-01

    This thesis discusses a number of issues related to the description and motion of extended matter distributions in certain classical field theories. Particular emphasis is placed on general relativity and Maxwell theory, although many results also apply in related formalisms. They are obtained by extending and applying a series of ideas originally developed by W. G. Dixon to understand the mechanics of isolated bodies. Since this formalism is not well- known, we provide an extensive review in a unified form. This elucidates the structure of an object's stress-energy tensor and electromagnetic current vector. Multipole decompositions of these objects are also studied in considerable detail, and are designed to automatically "factor out" the relevant conservation laws. In the case of charge-current vectors, we show how to extend these results to also take into account the assumed smoothness and compactness of the physical matter. This allows essentially all reasonable current configurations with a given total charge to be parameterized without any reference to the spacetime structure. Such constructions provide natural methods for comparing the properties of current distributions in different systems. They also simplify the study of "rigid" currents. It is found that such objects cannot generally exist without allowing for the presence of singularities. An even stronger result applies to the nonexistence of rigid number density vectors in systems where the total number of particles is fixed. These formal developments are applied in various way to study the motions of various compact extended bodies. The first case considered here is that of an uncharged test mass embedded in a spatially-flat Friedmann-Robertson-Walker universe. It is shown that even with zero (global) momentum, such an object may adjust its mass and trajectory merely by changing shape. Mass shifts are in fact unavoidable in almost all cases, and could be significant for galactic superclusters. This

  2. Categorical quantum mechanics II: Classical-quantum interaction

    NASA Astrophysics Data System (ADS)

    Coecke, Bob; Kissinger, Aleks

    2016-08-01

    This is the second part of a three-part overview, in which we derive the category-theoretic backbone of quantum theory from a process ontology, treating quantum theory as a theory of systems, processes and their interactions. In this part, we focus on classical-quantum interaction. Classical and quantum systems are treated as distinct types, of which the respective behavioral properties are specified in terms of processes and their compositions. In particular, classicality is witnessed by ‘spiders’ which fuse together whenever they connect. We define mixedness and show that pure processes are extremal in the space of all processes, and we define entanglement and show that quantum theory indeed exhibits entanglement. We discuss the classification of tripartite qubit entanglement and show that both the GHZ-state and the W-state come from spider-like families of processes, which differ only in how they behave when they are connected by two or more wires. We define measurements and provide fully comprehensive descriptions of several quantum protocols involving classical data flow. Finally, we give a notion of ‘genuine quantumness’, from which special processes called ‘phase spiders’ arise, and get a first glimpse of quantum nonlocality.

  3. Interpreting nonlinear vibrational spectroscopy with the classical mechanical analogs of double-sided Feynman diagrams.

    PubMed

    Noid, W G; Loring, Roger F

    2004-10-15

    Observables in coherent, multiple-pulse infrared spectroscopy may be computed from a vibrational nonlinear response function. This response function is conventionally calculated quantum-mechanically, but the challenges in applying quantum mechanics to large, anharmonic systems motivate the examination of classical mechanical vibrational nonlinear response functions. We present an approximate formulation of the classical mechanical third-order vibrational response function for an anharmonic solute oscillator interacting with a harmonic solvent, which establishes a clear connection between classical and quantum mechanical treatments. This formalism permits the identification of the classical mechanical analog of the pure dephasing of a quantum mechanical degree of freedom, and suggests the construction of classical mechanical analogs of the double-sided Feynman diagrams of quantum mechanics, which are widely applied to nonlinear spectroscopy. Application of a rotating wave approximation permits the analytic extraction of signals obeying particular spatial phase matching conditions from a classical-mechanical response function. Calculations of the third-order response function for an anharmonic oscillator coupled to a harmonic solvent are compared to numerically correct classical mechanical results.

  4. Some Complex Pressure Effects on Spectra from Simple Classical Mechanics

    NASA Astrophysics Data System (ADS)

    Hartmann, Jean-Michel

    2016-06-01

    I will first recall how [the two Newton's equations, 1rst year of university] one can very easily compute the rotational and translational classical dynamics of an ensemble of linear molecules interacting through an (input) pair-wise intermolecular potential. These Classical Molecular Dynamics Simulations (CMDS), which provide the time dependence of the positions and axis-orientations of gas phase molecules, are then used to calculate a number of pressure effects manifesting in absorption and scattering spectra. The cases of CO2, O2 and N2 will be considered, systems for which fully quantum approaches are intractable, and comparisons with measured data will be made, free of any adjusted parameter. I will show that, with a few input ingredients from literature (molecule geometry, electric multipoles, polarizabilities, ...) an no adjusted parameter, excellent agreements with various measurements are obtained. Examples will be given for: (1) Collision induced absorption (due to the interaction induced dipole) ; (2) The far wings of absorption (due to the dipole) and light scattering (due to polarizability) bands ; (3) The broadening and shapes (with their deviations from the Voigt profile) of individual absorption lines for both "free" and spatially tightly confined gases. If times allows, additional demonstrations of the interest of CMDS will be given by considering line-mixing effects and the relaxation of laser-kicked molecules.

  5. A Comparison of Kinetic Energy and Momentum in Special Relativity and Classical Mechanics

    ERIC Educational Resources Information Center

    Riggs, Peter J.

    2016-01-01

    Kinetic energy and momentum are indispensable dynamical quantities in both the special theory of relativity and in classical mechanics. Although momentum and kinetic energy are central to understanding dynamics, the differences between their relativistic and classical notions have not always received adequate treatment in undergraduate teaching.…

  6. [Classical dengue transmission dynamics involving mechanical control and prophylaxis].

    PubMed

    Toro-Zapata, Hernán D; Restrepo, Leonardo D; Vergaño-Salazar, Juan G; Muñoz-Loaiza, Aníbal

    2010-12-01

    Dengue fever transmission dynamics were studied in an endemic region considering the use of preventative measures and mechanical control in reducing transmission of the disease. A system of ordinary differential equations was proposed, describing the dynamics and their evolution as determined by numerical simulation. Different mechanical control and prophylaxis strategies were compared to the situation without control. The basic reproduction number R₀ was determined R₀ to show that if R₀ > 1 there would be a risk of an epidemic and otherwise the disease would have low impact levels. The basic reproduction number helps determine the dynamics' future pattern and contrast the results so obtained with those obtained numerically. It was concluded that although prophylaxis and mechanical control alone provide effective results in controlling the disease, if both controls are combined then infection levels become significantly reduced. Around 60 % mechanical control and prevention levels are needed to provide suitable results in controlling dengue outbreaks.

  7. Classical mechanics in non-commutative phase space

    NASA Astrophysics Data System (ADS)

    Wei, Gao-Feng; Long, Chao-Yun; Long, Zheng-Wen; Qin, Shui-Jie; Fu, Qiang

    2008-05-01

    In this paper the laws of motion of classical particles have been investigated in a non-commutative phase space. The corresponding non-commutative relations contain not only spatial non-commutativity but also momentum non-commutativity. First, new Poisson brackets have been defined in non-commutative phase space. They contain corrections due to the non-commutativity of coordinates and momenta. On the basis of this new Poisson brackets, a new modified second law of Newton has been obtained. For two cases, the free particle and the harmonic oscillator, the equations of motion are derived on basis of the modified second law of Newton and the linear transformation (Phys. Rev. D, 2005, 72: 025010). The consistency between both methods is demonstrated. It is shown that a free particle in commutative space is not a free particle with zero-acceleration in the non-commutative phase space, but it remains a free particle with zero-acceleration in non-commutative space if only the coordinates are non-commutative. Supported by National Natural Science Foundation of China (10347003, 60666001), Planned Training Excellent Scientific and Technological Youth Foundation of Guizhou Province, China (2002,2013), Science Foundation of Guizhou Province, China, and Creativity Foundation for Graduate Guizhou University, China (2006031)

  8. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    SciTech Connect

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.

  9. Laser-induced spatial symmetry breaking in quantum and classical mechanics.

    PubMed

    Franco, Ignacio; Brumer, Paul

    2006-07-28

    Phase-controllable transport in laser-irradiated spatially symmetric systems is shown to arise both quantum mechanically and classically from a common field-driven interference mechanism. Specifically, the quantum-to-classical transition for symmetry breaking in a quartic oscillator driven by an omega+2omega field is studied. For this, a double perturbation theory in the oscillator anharmonicity and external field strength, that admits an analytic classical limit, is carried out in the Heisenberg picture. The interferences responsible for the symmetry breaking are shown to survive in the classical limit and are the origins of classical control. Differences between reflection symmetry that plays a key role in the analysis, and parity that does not, are discussed.

  10. Entropic fluctuations in statistical mechanics: I. Classical dynamical systems

    NASA Astrophysics Data System (ADS)

    Jakšić, V.; Pillet, C.-A.; Rey-Bellet, L.

    2011-03-01

    Within the abstract framework of dynamical system theory we describe a general approach to the transient (or Evans-Searles) and steady state (or Gallavotti-Cohen) fluctuation theorems of non-equilibrium statistical mechanics. Our main objective is to display the minimal, model independent mathematical structure at work behind fluctuation theorems. In addition to its conceptual simplicity, another advantage of our approach is its natural extension to quantum statistical mechanics which will be presented in a companion paper. We shall discuss several examples including thermostated systems, open Hamiltonian systems, chaotic homeomorphisms of compact metric spaces and Anosov diffeomorphisms.

  11. Time Symmetric Quantum Mechanics and Causal Classical Physics ?

    NASA Astrophysics Data System (ADS)

    Bopp, Fritz W.

    2017-02-01

    A two boundary quantum mechanics without time ordered causal structure is advocated as consistent theory. The apparent causal structure of usual "near future" macroscopic phenomena is attributed to a cosmological asymmetry and to rules governing the transition between microscopic to macroscopic observations. Our interest is a heuristic understanding of the resulting macroscopic physics.

  12. Quantization in Classical Mechanics and Diffusion Mechanism of Alpha Decay, Proton and Cluster Radioactivity, Spontaneous Fission

    SciTech Connect

    Rusov, V. D.; Vlasenko, D. S.; Deliyergiyev, M. A.; Mavrodiev, S. Cht.

    2010-01-01

    Based on the Chetaev generalized theorem the Schroedinger equation as the stability condition of trajectories in classical dynamics in the presence of dissipative forces is derived. In the framework of this approach the alternative model for unified description of alpha decay, spontaneous fission, cluster and proton radioactivity and is developed. We show the possibility of the classical (without tunneling) description of radioactive decay of heavy nuclei, when the so called noise-induced transition or, in other words, the stochastic channel of radioactive decay conditioned by the Kramers diffusion mechanism is generated under certain conditions.Using the ENSDF nuclear data, we have found the parametrized solutions of the Kramers equation of the Langevin type by the Alexandrov dynamic auto-regularization method (REGN-Dubna program). These solutions describe with high-accuracy the dependences of half-life (the decay probability) of heavy radioactive nuclei on total kinetic energy of daughter decay products.Verification of the inverse problem solution in the framework of the universal Kramers description of alpha decay, spontaneous fission, cluster and proton radioactivity, which based on the newest experimental data for alpha-decay of even-even superheavy nuclei (Z = 114, 116, 118), shows good coincidence of the experimental and theoretical dependences of half-life on alpha-decay energy.

  13. From the attempt of certain classical reformulations of quantum mechanics to quasi-probability representations

    SciTech Connect

    Stulpe, Werner

    2014-01-15

    The concept of an injective affine embedding of the quantum states into a set of classical states, i.e., into the set of the probability measures on some measurable space, as well as its relation to statistically complete observables is revisited, and its limitation in view of a classical reformulation of the statistical scheme of quantum mechanics is discussed. In particular, on the basis of a theorem concerning a non-denseness property of a set of coexistent effects, it is shown that an injective classical embedding of the quantum states cannot be supplemented by an at least approximate classical description of the quantum mechanical effects. As an alternative approach, the concept of quasi-probability representations of quantum mechanics is considered.

  14. The Fourth Law of Motion in Classical Mechanics and Electrodynamics

    NASA Astrophysics Data System (ADS)

    Pinheiro, Mario J.

    2010-01-01

    Newton's second law has limited scope of application when transient phenomena are at stake. We endeavor here to consider a modification of Newton's second law in order to take into account sudden change (surge) of angular momentum or linear momentum. It is shown that space react back according to a kind of induction law that is related to inertia, but also appears to give evidence of a "fluidic" nature of space itself. The back-reaction is quantified by the time rate of the angular momentum flux threading a surface, mass dependent, and bearing similarity to the quantum mechanics phase shift, present in the Aharonov-Bohm and Aharonov-Casher effects, thus giving evidence of the property of vacuum polarization, a phenomena which is relative to local space. It is formulated a kind of (qualitative) Lenz law that gives an explanation to precession.

  15. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms

    PubMed Central

    Kschonsak, Marc; Haering, Christian H

    2015-01-01

    How eukaryotic genomes are packaged into compact cylindrical chromosomes in preparation for cell divisions has remained one of the major unsolved questions of cell biology. Novel approaches to study the topology of DNA helices inside the nuclei of intact cells, paired with computational modeling and precise biomechanical measurements of isolated chromosomes, have advanced our understanding of mitotic chromosome architecture. In this Review Essay, we discuss – in light of these recent insights – the role of chromatin architecture and the functions and possible mechanisms of SMC protein complexes and other molecular machines in the formation of mitotic chromosomes. Based on the information available, we propose a stepwise model of mitotic chromosome condensation that envisions the sequential generation of intra-chromosomal linkages by condensin complexes in the context of cohesin-mediated inter-chromosomal linkages, assisted by topoisomerase II. The described scenario results in rod-shaped metaphase chromosomes ready for their segregation to the cell poles. PMID:25988527

  16. Moving Constraints as Stabilizing Controls in Classical Mechanics

    NASA Astrophysics Data System (ADS)

    Bressan, Alberto; Rampazzo, Franco

    2010-04-01

    The paper analyzes a Lagrangian system which is controlled by directly assigning some of the coordinates as functions of time, by means of frictionless constraints. In a natural system of coordinates, the equations of motion contain terms which are linear or quadratic with respect to time derivatives of the control functions. After reviewing the basic equations, we explain the significance of the quadratic terms related to geodesics orthogonal to a given foliation. We then study the problem of stabilization of the system to a given point by means of oscillating controls. This problem is first reduced to theweak stability for a related convex-valued differential inclusion, then studied by Lyapunov functions methods. In the last sections, we illustrate the results by means of various mechanical examples.

  17. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms.

    PubMed

    Kschonsak, Marc; Haering, Christian H

    2015-07-01

    How eukaryotic genomes are packaged into compact cylindrical chromosomes in preparation for cell divisions has remained one of the major unsolved questions of cell biology. Novel approaches to study the topology of DNA helices inside the nuclei of intact cells, paired with computational modeling and precise biomechanical measurements of isolated chromosomes, have advanced our understanding of mitotic chromosome architecture. In this Review Essay, we discuss - in light of these recent insights - the role of chromatin architecture and the functions and possible mechanisms of SMC protein complexes and other molecular machines in the formation of mitotic chromosomes. Based on the information available, we propose a stepwise model of mitotic chromosome condensation that envisions the sequential generation of intra-chromosomal linkages by condensin complexes in the context of cohesin-mediated inter-chromosomal linkages, assisted by topoisomerase II. The described scenario results in rod-shaped metaphase chromosomes ready for their segregation to the cell poles.

  18. Quantum versus classical foundation of statistical mechanics under experimentally realistic conditions.

    PubMed

    Reimann, Peter; Evstigneev, Mykhaylo

    2013-11-01

    Focusing on isolated macroscopic systems, described in terms of either a quantum mechanical or a classical model, our two key questions are how far does an initial ensemble (usually far from equilibrium and largely unknown in detail) evolve towards a stationary long-time behavior (equilibration) and how far is this steady state in agreement with the microcanonical ensemble as predicted by statistical mechanics (thermalization). A recently developed quantum mechanical treatment of the problem is briefly summarized, putting particular emphasis on the realistic modeling of experimental measurements and nonequilibrium initial conditions. Within this framework, equilibration can be proven under very weak assumptions about those measurements and initial conditions, while thermalization still requires quite strong additional hypotheses. An analogous approach within the framework of classical mechanics is developed and compared with the quantum case. In particular, the assumptions to guarantee classical equilibration are now rather strong, while thermalization then follows under relatively weak additional conditions.

  19. Two-Time Green's Functions and the Spectral Density Method in Nonextensive Classical Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Cavallo, A.; Cosenza, F.; de Cesare, L.

    2001-12-01

    The two-time retarded and advanced Green's function technique is formulated in nonextensive classical statistical mechanics within the optimal Lagrange multiplier framework. The main spectral properties are presented and a spectral decomposition for the spectral density is obtained. Finally, the nonextensive version of the spectral density method is given and its effectiveness is tested by exploring the equilibrium properties of a classical ferromagnetic spin chain.

  20. The calculation of the thermal rate coefficient by a method combining classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Wahnström, Göran; Carmeli, Benny; Metiu, Horia

    1988-02-01

    We propose and test a method for computing flux-flux correlation functions (and thermal rate coefficients) which divides the degrees of freedom in two groups, one treated classically and the other quantum mechanically. The method is tested by applying it to a simple model for which we can also obtain exact results. The approximate method gives good results if the mass associated with the classical degrees of freedom exceeds 16 a.u.

  1. Ground-state properties of the retinal molecule: from quantum mechanical to classical mechanical computations of retinal proteins

    SciTech Connect

    Suhai, Sandor

    2011-01-01

    Retinal proteins are excellent systems for understanding essential physiological processes such as signal transduction and ion pumping. Although the conjugated polyene system of the retinal chromophore is best described with quantum mechanics, simulations of the long-timescale dynamics of a retinal protein in its physiological, flexible, lipid-membrane environment can only be performed at the classical mechanical level. Torsional energy barriers are a critical ingredient of the classical force-field parameters. Here we review briefly current retinal force fields and discuss new quantum mechanical computations to assess how the retinal Schiff base model and the approach used to derive the force-field parameters may influence the torsional potentials.

  2. Generalization of classical mechanics for nuclear motions on nonadiabatically coupled potential energy surfaces in chemical reactions.

    PubMed

    Takatsuka, Kazuo

    2007-10-18

    Classical trajectory study of nuclear motion on the Born-Oppenheimer potential energy surfaces is now one of the standard methods of chemical dynamics. In particular, this approach is inevitable in the studies of large molecular systems. However, as soon as more than a single potential energy surface is involved due to nonadiabatic coupling, such a naive application of classical mechanics loses its theoretical foundation. This is a classic and fundamental issue in the foundation of chemistry. To cope with this problem, we propose a generalization of classical mechanics that provides a path even in cases where multiple potential energy surfaces are involved in a single event and the Born-Oppenheimer approximation breaks down. This generalization is made by diagonalization of the matrix representation of nuclear forces in nonadiabatic dynamics, which is derived from a mixed quantum-classical representation of the electron-nucleus entangled Hamiltonian [Takatsuka, K. J. Chem. Phys. 2006, 124, 064111]. A manifestation of quantum fluctuation on a classical subsystem that directly contacts with a quantum subsystem is discussed. We also show that the Hamiltonian thus represented gives a theoretical foundation to examine the validity of the so-called semiclassical Ehrenfest theory (or mean-field theory) for electron quantum wavepacket dynamics, and indeed, it is pointed out that the electronic Hamiltonian to be used in this theory should be slightly modified.

  3. Classical Yang-Mills Mechanics: Instant vs. Light-cone Form

    SciTech Connect

    Mladenov, D.

    2010-11-25

    Two different forms of relativistic dynamics, the instant and the light-cone form, for the pure SU(2) Yang-Mills field theory in 4-dimensional Minkowski space are examined under the supposition that the gauge fields depend on the time evolution parameter only. The obtained under that restriction of gauge potential space homogeneity mechanical matrix model, sometimes called Yang-Mills classical mechanics, is systematically studied in its instant and light-cone form of dynamics using the Dirac's generalized Hamiltonian approach. In the both cases the constraint content of the obtained mechanical systems is found. In contrast to its well-known instant-time counterpart the light-cone version of SU(2) Yang-Mills classical mechanics has in addition to the constraints generating the SU(2) gauge transformations the new first and second class constraints also. On account of all of these constraints a complete reduction in number of the degrees of freedom is performed. In the instant form of dynamics it is shown that after elimination of the gauge degrees of freedom from the classical SU(2) Yang-Mills mechanics the resulting unconstrained system represents the ID{sub 3} Euler-Calogero-Moser model with a certain external fourth-order potential, whereas in the light-cone form it is argued that the classical evolution of the unconstrained degrees of freedom is equivalent to a free one-dimensional particle dynamics.

  4. The Development of Effective Classical Potentials and the Quantum Statistical Mechanical Second Virial Coefficient of Water

    SciTech Connect

    Schenter, Gregory K.

    2002-10-08

    The second virial coefficient of water is calculated at low temperature by considering full quantum statistical mechanical effects. At low enough temperatures experimental results are limited and molecular models can be used for accurate extrapolation. In doing so, one must separate inaccuracies of the intermolecular potential from limitations of simulation such as the neglect of higher-order quantum corrections. Effective classical potentials may be used to understand the limitations of classical simulation. In this work we calculate the exact quantum statistical mechanical second virial coefficient and find that using a simple form for the effective classical potential introduced by Miller we are able to reproduce the exact quantum statistical results. This approach provides a significant improvement to conventional first order expansions of the second virial coefficient.

  5. Quantum epistemology from subquantum ontology: Quantum mechanics from theory of classical random fields

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2017-02-01

    The scientific methodology based on two descriptive levels, ontic (reality as it is) and epistemic (observational), is briefly presented. Following Schrödinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be unaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity-the quantum state ("wave function"). The correspondence PCSFT ↦ QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and the superposition principle-by using the formalism of classical field correlations.

  6. Wave-like variables of a classical particle and their connections to quantum mechanics

    NASA Astrophysics Data System (ADS)

    Yang, Chen

    2017-01-01

    In many texts, the transition from classical mechanics to quantum mechanics is achieved by substituting the action for the phase angle. The paper presents a different approach to show some connections between classical and quantum mechanics for a single particle for an audience at graduate and postgraduate levels. Firstly, it is shown that a wave equation of action can be derived under the free particle condition and the Legendre transform. The wave-like solutions of the action, Hamiltonian and momentum of the free particle are presented. Using the discrete approximation, the equation of motion of a single particle, in scalar potential field, is obtained in a similar form to Schrödinger’s equation. The rest of the paper discusses the propagation, superposition of the wave-like dynamic variables and their connections to quantum mechanics. The superposition of the variables of a particle is generally distinct from the superposition of classical waves (e.g. acoustics). The quantum superposition provides a self-consistent interpretation of the wave-like solutions of the variables. Connections between the classical and quantum relations for corresponding variables are observed from the one-to-one comparisons.

  7. Feeding Behavior of Aplysia: A Model System for Comparing Cellular Mechanisms of Classical and Operant Conditioning

    ERIC Educational Resources Information Center

    Baxter, Douglas A.; Byrne, John H.

    2006-01-01

    Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural…

  8. Quantum mechanics vs local realism near the classical limit:A Bell inequality for spin s

    SciTech Connect

    Mermin, N.D.

    1980-07-15

    The quantitative quantum-mechanical analysis of the Einstein-Podolsky-Rosen experiment for correlated particles of arbitrary spin s is shown to contradict a generalized form of Bell's inequality, for suitable orientations of the detectors. As the classical (s ..-->.. infinity ) limit is approached, the range of angles for which the contradiction arises vanishes as 1/s.

  9. Examining the Construction Process: A Study of Changes in Level 10 Students' Understanding of Classical Mechanics.

    ERIC Educational Resources Information Center

    Shymansky, James A.; And Others

    1997-01-01

    Explores students' conceptual understanding and conceptual growth in classical mechanics in the natural context of a grade 10 science classroom. Findings indicate that students' knowledge structures remained stable across the 10 weeks and remained unchanged 4 weeks after instruction ceased. Contains 30 references. (Author/JRH)

  10. Application of Hamilton's Principle to the Study of the Anharmonic Oscillator in Classical Mechanics.

    ERIC Educational Resources Information Center

    And Others; Gilmartin, Harvey

    1979-01-01

    Presented is a form of Hamilton's principle for classical mechanics appropriate to the study of arbitrary self-sustained vibrations in one dimension. It is applied as an approximate computational tool to the study of several examples of anharmonic oscillation. (Author/GA)

  11. Quantum to classical transition of inflationary perturbations: Continuous spontaneous localization as a possible mechanism

    NASA Astrophysics Data System (ADS)

    Das, Suratna; Lochan, Kinjalk; Sahu, Satyabrata; Singh, T. P.

    2013-10-01

    The inflationary paradigm provides a mechanism to generate the primordial perturbations needed to explain the observed large-scale structures in the Universe. Inflation traces back all the inhomogeneities to quantum fluctuations although the structures look classical today. The squeezing of primordial quantum fluctuations along with the mechanism of decoherence accounts for many aspects of this quantum-to-classical transition, although it remains a matter of debate as to whether this is sufficient to explain the issue of the realization of a single outcome (i.e. the issue of macro-objectification) from a quantum ensemble given that the Universe is a closed system. A similar question of the emergence of classical behavior of macroscopic objects exists also for laboratory systems and apart from decoherence there have been attempts to resolve this issue through continuous spontaneous localization (CSL), which is a stochastic nonlinear modification of the nonrelativistic Schrödinger equation. Recently, Martin et al. have investigated whether a CSL-like mechanism with a constant strength parameter—when the Mukhanov-Sasaki variable is taken as the “collapse operator”—can explain how the primordial quantum perturbations generated during inflation become classical. Within the scope of their assumptions they essentially come to a negative conclusion. In the present work, we generalize their analysis by allowing the CSL strength parameter to depend on physical scales so as to capture the CSL amplification mechanism. We show that such a generalization provides a mechanism for the macro-objectification (i.e. classicalization) of the inflationary quantum perturbations, while also preserving the scale invariance of the power spectrum and the phase coherence of superhorizon perturbation modes in a particular class of these models.

  12. Quantum vs Classical Mechanics for a 'Simple' Dissociation Reaction. Should They Give the Same Results?

    NASA Astrophysics Data System (ADS)

    Holloway, Stephen

    1997-03-01

    When performing molecular dynamical simulations on light systems at low energies, there is always the risk of producing data that bear no similarity to experiment. Indeed, John Barker himself was particularly anxious about treating Ar scattering from surfaces using classical mechanics where it had been shown experimentally in his own lab that diffraction occurs. In such cases, the correct procedure is probably to play the trump card "... well of course, quantum effects will modify this so that....." and retire gracefully. For our particular interests, the tables are turned in that we are interested in gas-surface dynamical studies for highly quantized systems, but would be interested to know when it is possible to use classical mechanics in order that a greater dimensionality might be treated. For molecular dissociation and scattering, it has been oft quoted that the greater the number of degrees of freedom, the more appropriate is classical mechanics, primarily because of the mass averaging over the quantized dimensions. Is this true? We have been investigating the dissociation of hydrogen molecules at surfaces and in this talk I will present quantum results for dissociation and scattering, along with a novel method for their interpretation based upon adiabatic potential energy surfaces. Comparison with classical calculations will be made and conclusions drawn. a novel method for their interpretation based upon adiabatic potential energy surfaces

  13. Classical limits of quantum mechanics on a non-commutative configuration space

    SciTech Connect

    Benatti, Fabio; Gouba, Laure

    2013-06-15

    We consider a model of non-commutative quantum mechanics given by two harmonic oscillators over a non-commutative two dimensional configuration space. We study possible ways of removing the non-commutativity based on the classical limit context known as anti-Wick quantization. We show that removal of non-commutativity from the configuration space and from the canonical operators is not commuting operation.

  14. Structure and Binding Mechanism of Vascular Endothelial Cadherin: A Divergent Classical Cadherin

    SciTech Connect

    J Brasch; O Harrison; G Ahlsen; S Carnally; R Henderson; B Honig; L Shapiro

    2011-12-31

    Vascular endothelial cadherin (VE-cadherin), a divergent member of the type II classical cadherin family of cell adhesion proteins, mediates homophilic adhesion in the vascular endothelium. Previous investigations with a bacterially produced protein suggested that VE-cadherin forms cell surface trimers that bind between apposed cells to form hexamers. Here we report studies of mammalian-produced VE-cadherin ectodomains suggesting that, like other classical cadherins, VE-cadherin forms adhesive trans dimers between monomers located on opposing cell surfaces. Trimerization of the bacterially produced protein appears to be an artifact that arises from a lack of glycosylation. We also present the 2.1-{angstrom}-resolution crystal structure of the VE-cadherin EC1-2 adhesive region, which reveals homodimerization via the strand-swap mechanism common to classical cadherins. In common with type II cadherins, strand-swap binding involves two tryptophan anchor residues, but the adhesive interface resembles type I cadherins in that VE-cadherin does not form a large nonswapped hydrophobic surface. Thus, VE-cadherin is an outlier among classical cadherins, with characteristics of both type I and type II subfamilies.

  15. On the antioxidant mechanism of curcumin: classical methods are needed to determine antioxidant mechanism and activity.

    PubMed

    Barclay, L R; Vinqvist, M R; Mukai, K; Goto, H; Hashimoto, Y; Tokunaga, A; Uno, H

    2000-09-07

    [reaction: see structure] The antioxidant activity of curcumin (1, 7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) was determined by inhibition of controlled initiation of styrene oxidation. Synthetic nonphenolic curcuminoids exhibited no antioxidant activity; therefore, curcumin is a classical phenolic chain-breaking antioxidant, donating H atoms from the phenolic groups not the CH(2) group as has been suggested (Jovanovic et al. J. Am. Chem. Soc. 1999, 121, 9677). The antioxidant activities of o-methoxyphenols are decreased in hydrogen bond accepting media.

  16. The role of quantum-mechanical interference and quasi-classical effects in conjugated hydrocarbons.

    PubMed

    Fantuzzi, Felipe; Cardozo, Thiago Messias; Nascimento, Marco Antonio Chaer

    2012-04-28

    The nature of the chemical bond in conjugated hydrocarbons is analyzed through the generalized product function energy partitioning (GPF-EP) method, which allows the calculation of the quantum-mechanical interference and quasi-classical contributions to the energy. The method is applied to investigate the differences between the chemical bonding in conjugated and non-conjugated hydrocarbon isomers and to evaluate the contribution from the energy components to the stabilization of the molecules. It is shown that in all cases quantum-mechanical interference has the effect of concentrating π electron density between the two carbon atoms directly involved in the (C-C)π bonds. For the conjugated isomers, this effect is accompanied by a substantial reduction of electron density in the π space of the neighbouring (C-C)σ bond. On the other hand, quasi-classical effects are shown to be responsible for the extra stabilization of the conjugated isomers, in which a decrease of the π space kinetic reference energy seems to play an important role. Finally, it is shown that the polarization of p-like orbitals in compounds with alternating single and double bonds ultimately increases electron density in the π space of the neighbouring (C-C)σ bond. Therefore, quasi-classical effects, rather than covalent ones, seem to be responsible for several properties of conjugated molecules, such as thermodynamic stability, planarity and (C-C)σ bond shortening. The shortcomings of the delocalization concept are discussed.

  17. Magnetic monopoles and dyons revisited: a useful contribution to the study of classical mechanics

    NASA Astrophysics Data System (ADS)

    dos Santos, Renato P.

    2015-05-01

    Graduate-level physics curricula in many countries around the world, as well as senior-level undergraduate ones in some major institutions, include classical mechanics courses, mostly based on Goldstein’s textbook masterpiece. During the discussion of central force motion, however, the Kepler problem is virtually the only serious application presented. In this paper, we present another problem that is also soluble, namely the interaction of Schwinger’s dual-charged (dyon) particles. While the electromagnetic interaction of magnetic monopoles and electric charges was studied in detail some 40 years ago, we consider that a pedagogical discussion of it from an essentially classical mechanics point of view is a useful contribution for students. Following a path that generalizes Kepler’s problem and Rutherford scattering, we show that they exhibit remarkable properties such as stable non-planar orbits, as well as rainbow and glory scattering, which are not present in the ordinary scattering of two singly charged particles. Moreover, it can be extended further to the relativistic case and to a semi-classical quantization, which can also be included in the class discussion.

  18. ForceFit: a code to fit classical force fields to quantum mechanical potential energy surfaces.

    PubMed

    Waldher, Benjamin; Kuta, Jadwiga; Chen, Samuel; Henson, Neil; Clark, Aurora E

    2010-09-01

    The ForceFit program package has been developed for fitting classical force field parameters based upon a force matching algorithm to quantum mechanical gradients of configurations that span the potential energy surface of the system. The program, which runs under UNIX and is written in C++, is an easy-to-use, nonproprietary platform that enables gradient fitting of a wide variety of functional force field forms to quantum mechanical information obtained from an array of common electronic structure codes. All aspects of the fitting process are run from a graphical user interface, from the parsing of quantum mechanical data, assembling of a potential energy surface database, setting the force field, and variables to be optimized, choosing a molecular mechanics code for comparison to the reference data, and finally, the initiation of a least squares minimization algorithm. Furthermore, the code is based on a modular templated code design that enables the facile addition of new functionality to the program.

  19. Bosonic seesaw mechanism in a classically conformal extension of the Standard Model

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Ishida, Hiroyuki; Okada, Nobuchika; Yamaguchi, Yuya

    2016-03-01

    We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal U(1) B - L extension of the Standard Model with two Higgs doublet fields. The U(1) B - L symmetry is radiatively broken via the Coleman-Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. Analyzing the renormalization group evolutions for all model couplings, we find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. We identify the regions of model parameters which satisfy the perturbativity of the running couplings and the electroweak vacuum stability as well as the naturalness of the electroweak scale.

  20. Juvenile Huntington's disease: does a dosage-effect pathogenic mechanism differ from the classical adult disease?

    PubMed

    Squitieri, Ferdinando; Frati, Luigi; Ciarmiello, Andrea; Lastoria, Secondo; Quarrell, Oliver

    2006-02-01

    Huntington's disease (HD) is caused by a CAG repeat mutation translating as a polyglutamine (poly(Q)) expansion in the huntingtin protein, whose main pathogenic mechanism is a gain of toxic function. In the case of large expansions beyond 60 repeats onset may result in juvenile HD (JHD, onset before 20 years of age). However, the triplet number does not represent the only onset modifier even in case of large expansions, mechanisms other than the size of the mutation contribute to the phenotype. In this review we discuss the possibility that some of the pathogenic mechanisms contributing to age at onset and progression may differ in the early onset HD compared with the classical adult pathology.

  1. Nucleation theorems, the statistical mechanics of molecular clusters, and a revision of classical nucleation theory

    NASA Astrophysics Data System (ADS)

    Ford, I. J.

    1997-11-01

    The nucleation theorems relate the temperature and supersaturation dependence of the rate of nucleation of droplets from a metastable vapor phase to properties of the critical molecular cluster, the size that is approximately equally likely to grow or decay. They are derived here using a combination of statistical mechanics and cluster population dynamics, using an arbitrary model cluster definition. The theorems are employed to test the validity of the classical theory of homogeneous nucleation and its ``internally consistent'' form. It is found that the properties of the critical cluster for these models are incorrect, and it emerges that this occurs because the classical theory employs the free energy of a fixed droplet, rather than one free to take any position in space. Thus a term representing positional, or mixing, entropy is missing from the cluster free energy. A revised model is proposed, based on the capillarity approximation but with such a term included, and it is shown that it is fully consistent with the nucleation theorems. The model increases classical rates by factors of approximately 104-106. Other nucleation models should be tested for internal consistency using the same methods. Finally, the nucleation theorems are used to extract the excess internal energies of molecular clusters from experimental data for several substances.

  2. Is classical mechanics a prerequisite for learning physics of the 20th century?

    NASA Astrophysics Data System (ADS)

    Walwema, Godfrey B.; French, Debbie A.; Verley, Jim D.; Burrows, Andrea C.

    2016-11-01

    Physics of the 20th century has contributed significantly to modern technology, and yet many physics students are never availed the opportunity to study it as part of the curriculum. One of the possible reasons why it is not taught in high school and introductory physics courses could be because curriculum designers believe that students need a solid background in classical mechanics and calculus in order to study physics of the 20th century such as the photoelectric effect, special and general relativity, the uncertainty principle, etc. This presumption may not be justifiable or valid. The authors of this paper contend that teaching physics of the 20th century aids students in relating physics to modern technology and the real world, making studying physics exciting. In this study, the authors correlated scores for matched questions in the Mechanics Baseline Test and a physics of the 20th century test in order to examine the trend of the scores. The participants included undergraduate students attending an introductory algebra-based physics course with no intention of taking physics at a higher level. The analysis of the scores showed no significant correlation for any of the matched pairs of questions. The purpose of this article is to recommend that even without a solid background in classical mechanics, teachers can introduce physics of the 20th century to their students for increased interest.

  3. Non-classical correlations between single photons and phonons from a mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Riedinger, Ralf; Hong, Sungkun; Norte, Richard A.; Slater, Joshua A.; Shang, Juying; Krause, Alexander G.; Anant, Vikas; Aspelmeyer, Markus; Gröblacher, Simon

    2016-02-01

    Interfacing a single photon with another quantum system is a key capability in modern quantum information science. It allows quantum states of matter, such as spin states of atoms, atomic ensembles or solids, to be prepared and manipulated by photon counting and, in particular, to be distributed over long distances. Such light-matter interfaces have become crucial to fundamental tests of quantum physics and realizations of quantum networks. Here we report non-classical correlations between single photons and phonons—the quanta of mechanical motion—from a nanomechanical resonator. We implement a full quantum protocol involving initialization of the resonator in its quantum ground state of motion and subsequent generation and read-out of correlated photon-phonon pairs. The observed violation of a Cauchy-Schwarz inequality is clear evidence for the non-classical nature of the mechanical state generated. Our results demonstrate the availability of on-chip solid-state mechanical resonators as light-matter quantum interfaces. The performance we achieved will enable studies of macroscopic quantum phenomena as well as applications in quantum communication, as quantum memories and as quantum transducers.

  4. Issues and progress in transforming a middle-division classical mechanics/math methods course

    NASA Astrophysics Data System (ADS)

    Pollock, Steven J.; Pepper, Rachel E.; Marino, Alysia D.

    2012-02-01

    The physics department at the University of Colorado, Boulder has recently begun the transformation of its Classical Mechanics/Math Methods course, a middle-division course taken primarily by sophomore physics majors. We discuss the process of course transformation, including holding faculty meetings to create consensus learning goals and a conceptual diagnostic, and adopting, adapting and creating course materials and structures. We also report preliminary observations of student learning gains, student attitudes towards the transformation, and common student difficulties with the course material. We also discuss ongoing plans for the course transformation.

  5. Use of the poincare sphere in polarization optics and classical and quantum mechanics. Review

    NASA Astrophysics Data System (ADS)

    Malykin, G. B.

    1997-03-01

    The method of the Poincaré sphere, which was proposed by Henri Poincaré in 1891-1892, is a convenient approach to represent polarized light. This method is graphical: each point on the sphere corresponds to a certain polarization state. Apart from the obvious representation of polarized light, the method of the Poincaré sphere permits efficient solution of problems that result from the use of a set of phase plates or a combination of phase plates and ideally homogeneous polarizers. Recently, to calculate the geometric phase (which is often called the Berry phase) in polarization optics and quantum and classical mechanics, the method of the Poincaré sphere has drawn much attention, since it allows us to carry out these calculations very efficiently and intuitively using the solid angle resting, on a closed curve on the Poincaré sphere that corresponds to the change in the state of light polarization or in the state of spin of an elementary particle or its orientation in space from the viewpoint of systems in classical mechanics. The review considers papers on the above problems.

  6. Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics.

    PubMed

    Craig, Ian R; Manolopoulos, David E

    2004-08-22

    We propose an approximate method for calculating Kubo-transformed real-time correlation functions involving position-dependent operators, based on path integral (Parrinello-Rahman) molecular dynamics. The method gives the exact quantum mechanical correlation function at time zero, exactly satisfies the quantum mechanical detailed balance condition, and for correlation functions of the form C(Ax)(t) and C(xB)(t) it gives the exact result for a harmonic potential. It also works reasonably well at short times for more general potentials and correlation functions, as we illustrate with some example calculations. The method provides a consistent improvement over purely classical molecular dynamics that is most apparent in the low-temperature regime.

  7. Quantization in classical mechanics and its relation to the Bohmian {Psi}-field

    SciTech Connect

    Rusov, V.D.; Vlasenko, D.S.; Mavrodiev, S.Cht.

    2011-08-15

    Research highlights: > The Schroedinger equation is derived from the classical Hamiltonian mechanics. > This derivation is based on the Chetaev theorem on stable dynamical trajectories. > The conditions for correctness of trajectory quantum mechanics are discussed. - Abstract: Based on the Chetaev theorem on stable dynamical trajectories in the presence of dissipative forces, we obtain the generalized condition for stability of Hamilton systems in the form of the Schroedinger equation. It is shown that the energy of dissipative forces, which generate the Chetaev generalized condition of stability, coincides exactly with the Bohm 'quantum' potential. Within the frame-work of Bohmian quantum mechanics supplemented by the generalized Chetaev theorem and on the basis of the principle of least action for dissipative forces, we show that the squared amplitude of a wave function in the Schroedinger equation is equivalent semantically and syntactically to the probability density function for the number of particle trajectories, relative to which the velocity and the position of the particle are not hidden parameters. The conditions for the correctness of trajectory interpretation of quantum mechanics are discussed.

  8. Exploring Synergy between Classic Mutagens and Antibiotics To Examine Mechanisms of Synergy and Antibiotic Action.

    PubMed

    Song, Lisa Yun; D'Souza, Sara; Lam, Karen; Kang, Tina Manzhu; Yeh, Pamela; Miller, Jeffrey H

    2015-12-28

    We used classical mutagens in Gram-negative Escherichia coli to study synergies with different classes of antibiotics, test models of antibiotic mechanisms of action, and examine the basis of synergy. We used 4-nitroquinoline 1-oxide (4NQO), zebularine (ZEB), 5-azacytidine (5AZ), 2-aminopurine (2AP), and 5-bromodeoxyuridine (5BrdU) as mutagens (with bactericidal potency of 4NQO > ZEB > 5AZ > 2AP > 5BrdU) and vancomycin (VAN), ciprofloxacin (CPR), trimethoprim (TMP), gentamicin (GEN), tetracycline (TET), erythromycin (ERY), and chloramphenicol (CHL) as antibiotics. We detected the strongest synergies with 4NQO, an agent that oxidizes guanines and ultimately results in double-strand breaks when paired with the bactericidal antibiotics VAN, TMP, CPR, and GEN, but no synergies with the bacteriostatic antibiotics TET, ERY, and CHL. Each of the other mutagens displays synergies with the bactericidal antibiotics to various degrees that reflect their potencies, as well as with some of the other mutagens. The results support recent models showing that bactericidal antibiotics kill bacteria principally by ultimately generating more double-strand breaks than can be repaired. We discuss the synergies seen here and elsewhere as representing dose effects of not the proximal target damage but rather the ultimate resulting double-strand breaks. We also used the results of pairwise tests to place the classic mutagens into functional antibacterial categories within a previously defined drug interaction network.

  9. Erasing the traces of classical mechanics in ionization of H{sub 2} by quantum interferences

    SciTech Connect

    Fojon, O. A.; Stia, C. R.; Rivarola, R. D.

    2011-09-15

    The single ionization of hydrogen molecules by fast electron impact is studied theoretically for transitions from the ground (gerade) state to final ground (gerade) and first-excited (ungerade) states of H{sub 2}{sup +}. It is shown that under definite conditions and for particular orientations of the molecule, the main physical features of the ionization reaction, which are the binary and recoil peaks usually associated with classical mechanisms, are completely erased by quantum interference effects that resemble the ones predicted previously for photoionization reactions. However, these new effects cannot be derived from photoionization results, as the electromagnetic field cannot transfer momentum. In addition, it is found that the emission spectra of transitions leading to the final gerade and ungerade states of the H{sub 2}{sup +} residual target are analogous in certain cases to the patterns of two sources emitting waves in phase or antiphase, respectively. Finally, we show how an average of the emission from randomly oriented molecules produces a binary peak at the classical expected position, in agreement with experiments.

  10. Experimental validation of the direct transmissibility approach to classical transfer path analysis on a mechanical setup

    NASA Astrophysics Data System (ADS)

    Guasch, Oriol; García, Carlos; Jové, Jordi; Artís, Pere

    2013-05-01

    Transmissibility functions have received renewed interest given the important role they play in operational modal analysis and operational transfer path analysis. However, transmissibilities can also be used in the framework of classical transmission path analysis. This avoids some of the problems associated to the latter, such as the measurement of operational loads, or the need to remove the active parts of the system to measure frequency response functions. The key of the transmissibility approach to classical transfer path analysis relies on the notion of direct or blocked transmissibilities, which can be computed from standard measurable transmissibilities. The response at any degree of freedom to a system external load can then be decomposed in terms of the remaining degrees of freedom responses and the system direct transmissibilities. Although the theory supporting this approach has been known for long, no experimental validation test has been reported to date. It is the purpose of this paper to provide such a test by applying the method to a simple mechanical system for which an analytical solution can be derived. For different configurations, it will be shown that direct transmissibilities computed from measured transmissibilities compare fairly well with analytical results. This opens the door to apply the method to more complex situations of practical interest with confidence.

  11. Exploring Synergy between Classic Mutagens and Antibiotics To Examine Mechanisms of Synergy and Antibiotic Action

    PubMed Central

    Song, Lisa Yun; D'Souza, Sara; Lam, Karen; Kang, Tina Manzhu

    2015-01-01

    We used classical mutagens in Gram-negative Escherichia coli to study synergies with different classes of antibiotics, test models of antibiotic mechanisms of action, and examine the basis of synergy. We used 4-nitroquinoline 1-oxide (4NQO), zebularine (ZEB), 5-azacytidine (5AZ), 2-aminopurine (2AP), and 5-bromodeoxyuridine (5BrdU) as mutagens (with bactericidal potency of 4NQO > ZEB > 5AZ > 2AP > 5BrdU) and vancomycin (VAN), ciprofloxacin (CPR), trimethoprim (TMP), gentamicin (GEN), tetracycline (TET), erythromycin (ERY), and chloramphenicol (CHL) as antibiotics. We detected the strongest synergies with 4NQO, an agent that oxidizes guanines and ultimately results in double-strand breaks when paired with the bactericidal antibiotics VAN, TMP, CPR, and GEN, but no synergies with the bacteriostatic antibiotics TET, ERY, and CHL. Each of the other mutagens displays synergies with the bactericidal antibiotics to various degrees that reflect their potencies, as well as with some of the other mutagens. The results support recent models showing that bactericidal antibiotics kill bacteria principally by ultimately generating more double-strand breaks than can be repaired. We discuss the synergies seen here and elsewhere as representing dose effects of not the proximal target damage but rather the ultimate resulting double-strand breaks. We also used the results of pairwise tests to place the classic mutagens into functional antibacterial categories within a previously defined drug interaction network. PMID:26711761

  12. On the connection among three classical mechanical problems via the hypercomplex KS-transformation

    NASA Astrophysics Data System (ADS)

    Vivarelli, Maria D.

    In expanding the twofold hypercomplex description of rotational kinematics developed by the author (1984), it is shown that Kustaanheimo-Steifel (KS) theory and rotation theory are linked. Based on the connection, a relationship between three classical mechanical problems is developed which connects one-body pure elliptical Kepler motion, the R3 spherical rotator, and the 4D isotropic harmonic oscillator problems. The KS regularizing transformation is incorporated as the projection map in the Hopf fibering of the contact 3-sphere, and the Euler-Rodrigues parameters are used in a Lagrangian description of the rotational kinematics. A unit vector 'a' is also introduced to characterize both the attitude frame of the rotator and the direction of the major axis of the Kepler orbit. The quantistic mathematical connection of Ikeda and Miyachi (1970) is examined to demonstrate that the resulting Euler angles do not have to be rewritten.

  13. Some reflections on the role of semi-classical atomic models in the teaching and learning of introductory quantum mechanics

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Colm

    2016-03-01

    The role of "semi-classical" (Bohr-Sommerfeld) and "semi-quantum-mechanical" (atomic orbital) models in the context of the teaching of atomic theory is considered. It is suggested that an appropriate treatment of such models can serve as a useful adjunct to quantum mechanical study of atomic systems.

  14. Models of dark matter halos based on statistical mechanics: The classical King model

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri; Lemou, Mohammed; Méhats, Florian

    2015-03-01

    We consider the possibility that dark matter halos are described by the Fermi-Dirac distribution at finite temperature. This is the case if dark matter is a self-gravitating quantum gas made of massive neutrinos at statistical equilibrium. This is also the case if dark matter can be treated as a self-gravitating collisionless gas experiencing Lynden-Bell's type of violent relaxation. In order to avoid the infinite mass problem and carry out a rigorous stability analysis, we consider the fermionic King model. In this paper, we study the nondegenerate limit leading to the classical King model. This model was initially introduced to describe globular clusters. We propose to apply it also to large dark matter halos where quantum effects are negligible. We determine the caloric curve and study the thermodynamical stability of the different configurations. Equilibrium states exist only above a critical energy Ec in the microcanonical ensemble and only above a critical temperature Tc in the canonical ensemble. For E classical King model to the observations of large dark matter halos. Because of collisions and evaporation, the central density increases while the slope of the halo density profile decreases until an instability takes place. We show that large dark matter halos are relatively well described by the King model at, or close to, the point of marginal microcanonical stability. At that point, the King model generates a density profile that can be approximated by the modified Hubble profile. This profile has a flat core and decreases as r-3 at large distances, like the observational Burkert profile. Less steep halos are unstable. For large halos, the flat core is due to finite temperature effects, not to quantum mechanics. We argue that statistical

  15. Quantum-mechanical machinery for rational decision-making in classical guessing game

    NASA Astrophysics Data System (ADS)

    Bang, Jeongho; Ryu, Junghee; Pawłowski, Marcin; Ham, Byoung S.; Lee, Jinhyoung

    2016-02-01

    In quantum game theory, one of the most intriguing and important questions is, “Is it possible to get quantum advantages without any modification of the classical game?” The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call ‘reasoning’) to generate the best strategy, which may occur internally, e.g., in the player’s brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.

  16. Quantum-mechanical machinery for rational decision-making in classical guessing game.

    PubMed

    Bang, Jeongho; Ryu, Junghee; Pawłowski, Marcin; Ham, Byoung S; Lee, Jinhyoung

    2016-02-15

    In quantum game theory, one of the most intriguing and important questions is, "Is it possible to get quantum advantages without any modification of the classical game?" The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call 'reasoning') to generate the best strategy, which may occur internally, e.g., in the player's brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.

  17. Quantum-mechanical machinery for rational decision-making in classical guessing game

    PubMed Central

    Bang, Jeongho; Ryu, Junghee; Pawłowski, Marcin; Ham, Byoung S.; Lee, Jinhyoung

    2016-01-01

    In quantum game theory, one of the most intriguing and important questions is, “Is it possible to get quantum advantages without any modification of the classical game?” The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call ‘reasoning’) to generate the best strategy, which may occur internally, e.g., in the player’s brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences. PMID:26875685

  18. Therapeutic mechanisms of classic hallucinogens in the treatment of addictions: from indirect evidence to testable hypotheses.

    PubMed

    Bogenschutz, Michael P; Pommy, Jessica M

    2012-01-01

    Alcohol and drug addiction are major public health problems, and existing treatments are only moderately effective. Although there has been interest for over half a century in the therapeutic use of classic hallucinogens to treat addictions, clinical research with these drugs was halted at an early stage in the early 1970s, leaving many fundamental questions unanswered. In the past two decades, clinical research on classic hallucinogens has resumed, although addiction treatment trials are only now beginning. The purpose of this paper is to provide a targeted review of the research most relevant to the therapeutic potential of hallucinogens, and to integrate this information with current thinking about addiction and recovery. On the basis of this information, we present a heuristic model which organizes a number of hypotheses that may be tested in future research. We conclude that existing evidence provides a convincing rationale for further research on the effects of classic hallucinogens in the treatment of addiction.

  19. Thermodynamics and equilibrium structure of Ne38 cluster: quantum mechanics versus classical.

    PubMed

    Predescu, Cristian; Frantsuzov, Pavel A; Mandelshtam, Vladimir A

    2005-04-15

    The equilibrium properties of classical Lennard-Jones (LJ38) versus quantum Ne38 Lennard-Jones clusters are investigated. The quantum simulations use both the path-integral Monte Carlo (PIMC) and the recently developed variational-Gaussian wave packet Monte Carlo (VGW-MC) methods. The PIMC and the classical MC simulations are implemented in the parallel tempering framework. The classical heat capacity Cv(T) curve agrees well with that of Neirotti et al. [J. Chem. Phys. 112, 10340 (2000)], although a much larger confining sphere is used in the present work. The classical Cv(T) shows a peak at about 6 K, interpreted as a solid-liquid transition, and a shoulder at approximately 4 K, attributed to a solid-solid transition involving structures from the global octahedral (Oh) minimum and the main icosahedral (C5v) minimum. The VGW method is used to locate and characterize the low energy states of Ne38, which are then further refined by PIMC calculations. Unlike the classical case, the ground state of Ne38 is a liquidlike structure. Among the several liquidlike states with energies below the two symmetric states (Oh and C5v), the lowest two exhibit strong delocalization over basins associated with at least two classical local minima. Because the symmetric structures do not play an essential role in the thermodynamics of Ne38, the quantum heat capacity is a featureless curve indicative of the absence of any structural transformations. Good agreement between the two methods, VGW and PIMC, is obtained. The present results are also consistent with the predictions by Calvo et al. [J. Chem. Phys. 114, 7312 (2001)] based on the quantum superposition method within the harmonic approximation. However, because of its approximate nature, the latter method leads to an incorrect assignment of the Ne38 ground state as well as to a significant underestimation of the heat capacity.

  20. Rotational excitation of water by hydrogen molecules: comparison of results from classical and quantum mechanics.

    PubMed

    Faure, Alexandre; Wiesenfeld, Laurent; Wernli, Michael; Valiron, Pierre

    2006-06-07

    Quasiclassical trajectory calculations are carried out for rotational excitation of water by hydrogen molecules. State-to-state rate coefficients are determined at 100 K and are compared to available quantum results. A good agreement between classical and quantum rates is observed for downward transitions, with an average accuracy of classical results better than a factor of 2. It is thus found that the ambiguities described by Faure and Wiesenfeld [J. Chem. Phys. 121, 6771 (2004)] can be solved in the particular case of waterlike asymmetric-top molecules.

  1. The dynamics of the H(+) + D(2) reaction: a comparison of quantum mechanical wavepacket, quasi-classical and statistical-quasi-classical results.

    PubMed

    Jambrina, P G; Aoiz, F J; Bulut, N; Smith, Sean C; Balint-Kurti, G G; Hankel, M

    2010-02-07

    A detailed study of the proton exchange reaction H(+) + D(2)(v = 0, j = 0) --> HD + D(+) on its ground 1(1)A' potential energy surface has been carried out using 'exact' close-coupled quantum mechanical wavepacket (WP-EQM), quasi-classical trajectory (QCT), and statistical quasi-classical trajectory (SQCT) calculations for a range of collision energies starting from the reaction threshold to 1.3 eV. The WP-EQM calculations include all total angular momenta up to J(max) = 50, and therefore the various dynamical observables are converged up to 0.6 eV. It has been found that it is necessary to include all Coriolis couplings to obtain reliable converged results. Reaction probabilities obtained using the different methods are thoroughly compared as a function of the total energy for a series of J values. Comparisons are also made of total reaction cross sections as function of the collision energy, and rate constants. In addition, opacity functions, integral cross sections (ICS) and differential cross sections (DCS) are presented at 102 meV, 201.3 meV and 524.6 meV collision energy. The agreement between the three sets of results is only qualitative. The QCT calculations fail to describe the overall reactivity and most of the dynamical observables correctly. At low collision energies, the QCT method is plagued by the lack of conservation of zero point energy, whilst at higher collision energies and/or total angular momenta, the appearance of an effective repulsive potential associated with the centrifugal motion "over" the well causes a substantial decrease of the reactivity. In turn, the statistical models overestimate the reactivity over the whole range of collision energies as compared with the WP-EQM method. Specifically, at sufficiently high collision energies the reaction cannot be deemed to be statistical and important dynamical effects seem to be present. In general the WP-EQM results lie in between those obtained using the QCT and SQCT methods. One of the main

  2. Non-Noetherian symmetries for oscillators in classical mechanics and in field theory

    NASA Technical Reports Server (NTRS)

    Hojman, Sergio A.; Delajara, Jamie; Pena, Leda

    1995-01-01

    Infinitely many new conservation laws both for free fields as well as for test fields evolving on a given gravitational background are presented. The conserved currents are constructed using the field theoretical counterpart of a recently discovered non-Noetherian symmetry which gives rise to a new way of solving the classical small oscillations problem. Several examples are discussed.

  3. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    DOE R&D Accomplishments Database

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  4. Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations.

    PubMed

    Kanaan, Natalia; Crehuet, Ramon; Imhof, Petra

    2015-09-24

    Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant.

  5. Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.

    PubMed

    Bayse, Craig A; Merz, Kenneth M

    2014-08-05

    Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.

  6. Heat control in opto-mechanical system using quantum non-classicality

    NASA Astrophysics Data System (ADS)

    Sharma, Sushamana; Senwar, Subash

    2016-05-01

    Cooling of matter to the quantum ground state is a primary directive of quantum control. In other words, to extract entropy from a quantum system, efficient indirect quantum measurements may be implemented. The main objective is the cooling of the oscillator either to its motional ground state or to non-classical states, such as low-number Fock states, squeezed states or entangled states. It is shown that the use of quantum control procedure is better choice for even experimental realizations because it leads to a squeezed steady state with less than one phonon on average. The steady state of system corresponds to cooling of the system.

  7. The classical and quantum mechanics of a particle on a knot

    SciTech Connect

    Sreedhar, V.V.

    2015-08-15

    A free particle is constrained to move on a knot obtained by winding around a putative torus. The classical equations of motion for this system are solved in a closed form. The exact energy eigenspectrum, in the thin torus limit, is obtained by mapping the time-independent Schrödinger equation to the Mathieu equation. In the general case, the eigenvalue problem is described by the Hill equation. Finite-thickness corrections are incorporated perturbatively by truncating the Hill equation. Comparisons and contrasts between this problem and the well-studied problem of a particle on a circle (planar rigid rotor) are performed throughout.

  8. Structural transformations and melting in neon clusters: quantum versus classical mechanics.

    PubMed

    Frantsuzov, Pavel A; Meluzzi, Dario; Mandelshtam, Vladimir A

    2006-03-24

    The extraordinary complexity of Lennard-Jones (LJ) clusters, which exhibit numerous structures and "phases" when their size or temperature is varied, presents a great challenge for accurate numerical simulations, even without accounting for quantum effects. To study the latter, we utilize the variational Gaussian wave packet method in conjunction with the exchange Monte Carlo sampling technique. We show that the quantum nature of neon clusters has a substantial effect on their size-temperature "phase diagrams," particularly the critical parameters of certain structural transformations. We also give a numerical confirmation that none of the nonicosahedral structures observed for some classical LJ clusters are favorable in the quantum case.

  9. Nonequilibrium statistical mechanics of mixed quantum classical ensembles: application to noncontact atomic force microscopy.

    PubMed

    Kantorovich, L N

    2002-08-26

    Using the nonequilibrium statistical operator method, we suggest a new general method of treating dynamics of a combined system consisting of interacting classical and quantum parts. The method is illustrated on the tip dynamics in the noncontact atomic force microscopy (NC-AFM) where a macroscopic tip interacts with a quantum microscopic system (the surface and the nanotip). The derived general equation of motion for the tip and the Fokker-Planck equation, applicable even at low temperatures, contain memory effects and a friction term which should (at least partially) be responsible for the observed energy dissipation in NC-AFM experiments.

  10. Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism

    SciTech Connect

    Costa, Diogo Ricardo da; Dettmann, Carl P.; Oliveira, Juliano A. de; Leonel, Edson D.

    2015-03-15

    Some dynamical properties for an oval billiard with a scatterer in its interior are studied. The dynamics consists of a classical particle colliding between an inner circle and an external boundary given by an oval, elliptical, or circle shapes, exploring for the first time some natural generalizations. The billiard is indeed a generalization of the annular billiard, which is of strong interest for understanding marginally unstable periodic orbits and their role in the boundary between regular and chaotic regions in both classical and quantum (including experimental) systems. For the oval billiard, which has a mixed phase space, the presence of an obstacle is an interesting addition. We demonstrate, with details, how to obtain the equations of the mapping, and the changes in the phase space are discussed. We study the linear stability of some fixed points and show both analytically and numerically the occurrence of direct and inverse parabolic bifurcations. Lyapunov exponents and generalized bifurcation diagrams are obtained. Moreover, histograms of the number of successive iterations for orbits that stay in a cusp are studied. These histograms are shown to be scaling invariant when changing the radius of the scatterer, and they have a power law slope around −3. The results here can be generalized to other kinds of external boundaries.

  11. A study of quantum mechanical probabilities in the classical Hodgkin-Huxley model.

    PubMed

    Moradi, N; Scholkmann, F; Salari, V

    2015-03-01

    The Hodgkin-Huxley (HH) model is a powerful model to explain different aspects of spike generation in excitable cells. However, the HH model was proposed in 1952 when the real structure of the ion channel was unknown. It is now common knowledge that in many ion-channel proteins the flow of ions through the pore is governed by a gate, comprising a so-called "selectivity filter" inside the ion channel, which can be controlled by electrical interactions. The selectivity filter (SF) is believed to be responsible for the selection and fast conduction of particular ions across the membrane of an excitable cell. Other (generally larger) parts of the molecule such as the pore-domain gate control the access of ions to the channel protein. In fact, two types of gates are considered here for ion channels: the "external gate", which is the voltage sensitive gate, and the "internal gate" which is the selectivity filter gate (SFG). Some quantum effects are expected in the SFG due to its small dimensions, which may play an important role in the operation of an ion channel. Here, we examine parameters in a generalized model of HH to see whether any parameter affects the spike generation. Our results indicate that the previously suggested semi-quantum-classical equation proposed by Bernroider and Summhammer (BS) agrees strongly with the HH equation under different conditions and may even provide a better explanation in some cases. We conclude that the BS model can refine the classical HH model substantially.

  12. Systemic gene dysregulation in classical Galactosaemia: Is there a central mechanism?

    PubMed

    Coss, K P; Treacy, E P; Cotter, E J; Knerr, I; Murray, D W; Shin, Y S; Doran, P P

    2014-11-01

    Classical Galactosaemia is a rare disorder of carbohydrate metabolism caused by a deficiency of galactose-1-phosphate uridyltransferase (GALT). The disease is life-threatening in the neonate, and the only treatment option is life-long dietary restriction of galactose. However, long-term complications persist in treated patients including cognitive impairments, speech and language abnormalities and premature ovarian insufficiency in females. Microarray analysis of T-lymphocytes from treated adult patients identified systemic dysregulation of numerous gene pathways, including the glycosylation, inflammatory and inositol pathways. Analysis of gene expression in patient-derived dermal fibroblasts of patients exposed to toxic levels of galactose, with immunostaining, has further identified the susceptibility of the glycosylation gene alpha-1,2-mannosyltransferase (ALG9) and the inflammatory gene annexin A1 (ANXA1) to increased galactose concentrations. These data suggest that Galactosaemia is a multi-system disorder affecting numerous signalling pathways.

  13. Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non-classical actions of vitamin D.

    PubMed

    Christakos, Sylvia; Dhawan, Puneet; Ajibade, Dare; Benn, Bryan S; Feng, Jingjing; Joshi, Sneha S

    2010-07-01

    Recent studies in our laboratory using calbindin-D9k null mutant mice as well as mice lacking the 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) inducible epithelial calcium channel TRPV6 provide evidence for calbindin-D9k and TRPV6 independent regulation of active intestinal calcium absorption. These findings suggest that in the knock out (KO) mice there is compensation by another calcium channel or protein and that other novel factors are involved in 1,25(OH)2D3 mediated active intestinal calcium absorption. In addition, 1,25(OH)2D3 mediated paracellular transport of calcium may have contributed to the normalization of serum calcium in the null mutant mice. 1,25(OH)2D3 downregulates cadherin-17 and upregulates claudin-2 and claudin-12 in the intestine, suggesting that 1,25(OH)2D3, by regulating these epithelial cell junction proteins, can route calcium through the paracellular path. With regard to non-classical actions, 1,25(OH)2D3 has been reported to inhibit the proliferation of a number of malignant cells and to regulate adaptive as well as innate immunity. This article will review new developments related to the function and regulation of vitamin D target proteins in classical and non-classical vitamin D target tissues that have provided novel insight into mechanisms of vitamin D action.

  14. Comparison Of Quantum Mechanical And Classical Trajectory Calculations Of Cross Sections For Ion-Atom Impact Ionization of Negative - And Positive -Ions For Heavy Ion Fusion Applications

    SciTech Connect

    Igor D. Kaganovich; Edward A. Startsev; Ronald C. Davidson

    2003-05-15

    Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2GeV I{sup -} and Cs{sup +} ions. A large difference in cross section, up to a factor of six, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stripping cross sections at high energies for electron orbitals with low ionization potential.

  15. Historical and critical review of the development of nonholonomic mechanics: the classical period

    NASA Astrophysics Data System (ADS)

    Borisov, Alexey V.; Mamaev, Ivan S.; Bizyaev, Ivan A.

    2016-07-01

    In this historical review we describe in detail the main stages of the development of nonholonomic mechanics starting from the work of Earnshaw and Ferrers to the monograph of Yu. I.Neimark and N.A. Fufaev. In the appendix to this review we discuss the d'Alembert-Lagrange principle in nonholonomic mechanics and permutation relations.

  16. Probing wave function collapse models with a classically driven mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Ho, Melvyn; Lafont, Ambroise; Sangouard, Nicolas; Sekatski, Pavel

    2016-03-01

    We show that the interaction of a pulsed laser light with a mechanical oscillator through the radiation pressure results in an opto-mechanical entangled state in which the photon number is correlated with the oscillator position. Interestingly, the mechanical oscillator can be delocalized over a large range of positions when driven by an intense laser light. This provides a simple yet sensitive method to probe hypothetical post-quantum theories including an explicit wave function collapse model, like the Diosi & Penrose model. We propose an entanglement witness to reveal the quantum nature of this opto-mechanical state as well as an optical technique to record the decoherence of the mechanical oscillator. We also report on a detailed feasibility study giving the experimental challenges that need to be overcome in order to confirm or rule out predictions from explicit wave function collapse models.

  17. [Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: classical cases and new models].

    PubMed

    Gutiérrez-Rojas, Ivonne; Moreno-Sarmiento, Nubia; Montoya, Dolly

    2015-01-01

    Cellulose is the most abundant renewable carbon source on earth. However, this polymer structure comprises a physical and chemical barrier for carbon access, which has limited its exploitation. In nature, only a few percentage of microorganisms may degrade this polymer by cellulase expression. Filamentous fungi are one of the most active and efficient groups among these microorganisms. This review describes similarities and differences between cellulase activity mechanisms and regulatory mechanisms controlling gene expression for 3 of the most studied cellulolytic filamentous fungi models: Trichoderma reesei, Aspergillus niger and Aspergillus nidulans, and the recently described model Neurospora crassa. Unlike gene expression mechanisms, it was found that enzymatic activity mechanisms are similar for all the studied models. Understanding the distinctive elements of each system is essential for the development of strategies for the improvement of cellulase production, either by providing the optimum environment (fermentation conditions) or increasing gene expression in these microorganisms by genetic engineering.

  18. Energy Transfer Sensitization of Luminescent Gold Nanoclusters: More than Just the Classical Förster Mechanism

    NASA Astrophysics Data System (ADS)

    Oh, Eunkeu; Huston, Alan L.; Shabaev, Andrew; Efros, Alexander; Currie, Marc; Susumu, Kimihiro; Bussmann, Konrad; Goswami, Ramasis; Fatemi, Fredrik K.; Medintz, Igor L.

    2016-10-01

    Luminescent gold nanocrystals (AuNCs) are a recently-developed material with potential optic, electronic and biological applications. They also demonstrate energy transfer (ET) acceptor/sensitization properties which have been ascribed to Förster resonance energy transfer (FRET) and, to a lesser extent, nanosurface energy transfer (NSET). Here, we investigate AuNC acceptor interactions with three structurally/functionally-distinct donor classes including organic dyes, metal chelates and semiconductor quantum dots (QDs). Donor quenching was observed for every donor-acceptor pair although AuNC sensitization was only observed from metal-chelates and QDs. FRET theory dramatically underestimated the observed energy transfer while NSET-based damping models provided better fits but could not reproduce the experimental data. We consider additional factors including AuNC magnetic dipoles, density of excited-states, dephasing time, and enhanced intersystem crossing that can also influence ET. Cumulatively, data suggests that AuNC sensitization is not by classical FRET or NSET and we provide a simplified distance-independent ET model to fit such experimental data.

  19. Energy Transfer Sensitization of Luminescent Gold Nanoclusters: More than Just the Classical Förster Mechanism

    PubMed Central

    Oh, Eunkeu; Huston, Alan L.; Shabaev, Andrew; Efros, Alexander; Currie, Marc; Susumu, Kimihiro; Bussmann, Konrad; Goswami, Ramasis; Fatemi, Fredrik K.; Medintz, Igor L.

    2016-01-01

    Luminescent gold nanocrystals (AuNCs) are a recently-developed material with potential optic, electronic and biological applications. They also demonstrate energy transfer (ET) acceptor/sensitization properties which have been ascribed to Förster resonance energy transfer (FRET) and, to a lesser extent, nanosurface energy transfer (NSET). Here, we investigate AuNC acceptor interactions with three structurally/functionally-distinct donor classes including organic dyes, metal chelates and semiconductor quantum dots (QDs). Donor quenching was observed for every donor-acceptor pair although AuNC sensitization was only observed from metal-chelates and QDs. FRET theory dramatically underestimated the observed energy transfer while NSET-based damping models provided better fits but could not reproduce the experimental data. We consider additional factors including AuNC magnetic dipoles, density of excited-states, dephasing time, and enhanced intersystem crossing that can also influence ET. Cumulatively, data suggests that AuNC sensitization is not by classical FRET or NSET and we provide a simplified distance-independent ET model to fit such experimental data. PMID:27774984

  20. Combining classical and molecular approaches elaborates on the complexity of mechanisms underpinning anterior regeneration.

    PubMed

    Evans, Deborah J; Owlarn, Suthira; Tejada Romero, Belen; Chen, Chen; Aboobaker, A Aziz

    2011-01-01

    The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then

  1. Dehydration rate and time of desiccation affect recovery of the lichen alga [corrected] Trebouxia erici: alternative and classical protective mechanisms.

    PubMed

    Gasulla, Francisco; de Nova, Pedro Gómez; Esteban-Carrasco, Alberto; Zapata, José M; Barreno, Eva; Guéra, Alfredo

    2009-12-01

    The mechanisms involved in desiccation tolerance of lichens and their photobionts are still poorly understood. To better understand these mechanisms we have studied dehydration rate and desiccation time in Trebouxia, the most abundant chlorophytic photobiont in lichen. Our findings indicate that the drying rate has a profound effect on the recovery of photosynthetic activity of algae after rehydration, greater than the effects of desiccation duration. The basal fluorescence (F'(o)) values in desiccated algae were significantly higher after rapid dehydration, than after slow dehydration, suggesting higher levels of light energy dissipation in slow-dried algae. Higher values of PSII electron transport were recovered after rehydration of slow-dried Trebouxia erici compared to rapid-dried algae. The main component of non-photochemical quenching after slow dehydration was energy dependent (q (E)), whereas after fast dehydration it was photoinhibition (q (I)). Although q (E) seems to play a role during desiccation recovery, no significant variations were detected in the xanthophyll cycle components. Desiccation did not affect PSI functionality. Classical antioxidant activities like superoxide dismutase or peroxidase decreased during desiccation and early recovery. Dehydrins were detected in the lichen-forming algae T. erici and were constitutively expressed. There is probably a minimal period required to develop strategies which will facilitate transition to the desiccated state in this algae. In this process, the xanthophyll cycle and classical antioxidant mechanisms play a very limited role, if any. However, our results indicate that there is an alternative mechanism of light energy dissipation during desiccation, where activation is dependent on a sufficiently slow dehydration rate.

  2. Mechanics of neurulation: From classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube.

    PubMed

    Vijayraghavan, Deepthi S; Davidson, Lance A

    2016-09-13

    Neural tube defects arise from mechanical failures in the process of neurulation. At the most fundamental level, formation of the neural tube relies on coordinated, complex tissue movements that mechanically transform the flat neural epithelium into a lumenized epithelial tube (Davidson, 2012). The nature of this mechanical transformation has mystified embryologists, geneticists, and clinicians for more than 100 years. Early embryologists pondered the physical mechanisms that guide this transformation. Detailed observations of cell and tissue movements as well as experimental embryological manipulations allowed researchers to generate and test elementary hypotheses of the intrinsic and extrinsic forces acting on the neural tissue. Current research has turned toward understanding the molecular mechanisms underlying neurulation. Genetic and molecular perturbation have identified a multitude of subcellular components that correlate with cell behaviors and tissue movements during neural tube formation. In this review, we focus on methods and conceptual frameworks that have been applied to the study of amphibian neurulation that can be used to determine how molecular and physical mechanisms are integrated and responsible for neurulation. We will describe how qualitative descriptions and quantitative measurements of strain, force generation, and tissue material properties as well as simulations can be used to understand how embryos use morphogenetic programs to drive neurulation. Birth Defects Research (Part A), 2016. © 2016 Wiley Periodicals, Inc.

  3. A Formal Derivation of the Gibbs Entropy for Classical Systems Following the Schrodinger Quantum Mechanical Approach

    ERIC Educational Resources Information Center

    Santillan, M.; Zeron, E. S.; Del Rio-Correa, J. L.

    2008-01-01

    In the traditional statistical mechanics textbooks, the entropy concept is first introduced for the microcanonical ensemble and then extended to the canonical and grand-canonical cases. However, in the authors' experience, this procedure makes it difficult for the student to see the bigger picture and, although quite ingenuous, the subtleness of…

  4. Racemization of Isobornyl Chloride via Carbocations: A Nonclassical Look at a Classic Mechanism

    ERIC Educational Resources Information Center

    Rzepa, Henry S.; Allan, Charlotte S. M.

    2010-01-01

    Our understanding of carbonium ions as intermediates in chemical reaction mechanisms derives from the early work of Julius Stieglitz and the more famous Hans Meerwein, the latter studying the racemization of isobornyl chloride when treated with Lewis acids. This review analyzes how key mechanistic concepts for this reaction evolved and gives the…

  5. The road to matrix mechanics: I. Classical interpretation of the anomalous optical dispersion

    NASA Astrophysics Data System (ADS)

    Crivellari, Lucio

    2016-09-01

    This paper is the first one of a series of two on the role of the optical dispersion in the historical development of early quantum mechanics. As preparation for the successive paper on Ladenburg’s development of the phenomenological theory of radiative transitions between the stationary states of an atom by Einstein, we present here the current theories on optical dispersion between the second half of the 19th century and the beginning of the 20th century.

  6. Dynamics of Observed Reality: Abridged Version of Classical and Quantum Mechanics

    DTIC Science & Technology

    1988-08-01

    34 J. A. Wheeler and W. H. Zurek, eds., Princeton University Press, New Jersey (1983). [51 J. M. Gracia-Bondia and J. C. Varilly, EysLtt, A128:20 (1988...R. P. Feynman and A. R. Hibbs, "Quantum Mechanics and Path Integrals," McGraw-Hill, New York (1965). I p -u y DL/ 1113/86/2 TECHNICAL REPORT

  7. Exact statistical mechanical lattice model and classical Lindemann theory of melting of inert gas solids

    NASA Astrophysics Data System (ADS)

    Dunne, Lawrence J.; Murrell, John N.; Manos, George

    2008-05-01

    A modified form of Lindemann's model shows that the melting points of the heavy inert gases and other effectively spherical molecular species are proportional to the depths of their diatomic potential wells. The success of the model when compared with experiment seems to rely on the almost constant value of the ratio of the fractional volume and entropy changes during fusion. The Lindemann proposal can be incorporated into an exactly treated statistical mechanical lattice model utilising expandable clusters which reproduces the solid-liquid melting phenomenon for argon with a realistic volume change and melting line.

  8. Computational algorithms dealing with the classical and statistical mechanics of celestial scale polymers in space elevator technology

    NASA Astrophysics Data System (ADS)

    Knudsen, Steven; Golubovic, Leonardo

    Prospects to build Space Elevator (SE) systems have become realistic with ultra-strong materials such as carbon nano-tubes and diamond nano-threads. At cosmic length-scales, space elevators can be modeled as polymer like floppy strings of tethered mass beads. A new venue in SE science has emerged with the introduction of the Rotating Space Elevator (RSE) concept supported by novel algorithms discussed in this presentation. An RSE is a loopy string reaching into outer space. Unlike the classical geostationary SE concepts of Tsiolkovsky, Artsutanov, and Pearson, our RSE exhibits an internal rotation. Thanks to this, objects sliding along the RSE loop spontaneously oscillate between two turning points, one of which is close to the Earth whereas the other one is in outer space. The RSE concept thus solves a major problem in SE technology which is how to supply energy to the climbers moving along space elevator strings. The investigation of the classical and statistical mechanics of a floppy string interacting with objects sliding along it required development of subtle computational algorithms described in this presentation

  9. Transition path sampling with quantum/classical mechanics for reaction rates.

    PubMed

    Gräter, Frauke; Li, Wenjin

    2015-01-01

    Predicting rates of biochemical reactions through molecular simulations poses a particular challenge for two reasons. First, the process involves bond formation and/or cleavage and thus requires a quantum mechanical (QM) treatment of the reaction center, which can be combined with a more efficient molecular mechanical (MM) description for the remainder of the system, resulting in a QM/MM approach. Second, reaction time scales are typically many orders of magnitude larger than the (sub-)nanosecond scale accessible by QM/MM simulations. Transition path sampling (TPS) allows to efficiently sample the space of dynamic trajectories from the reactant to the product state without an additional biasing potential. We outline here the application of TPS and QM/MM to calculate rates for biochemical reactions, by means of a simple toy system. In a step-by-step protocol, we specifically refer to our implementation within the MD suite Gromacs, which we have made available to the research community, and include practical advice on the choice of parameters.

  10. Point-source idealization in classical field theories. II. Mechanical energy losses from electromagnetic radiation reaction

    NASA Astrophysics Data System (ADS)

    Kates, Ronald E.; Rosenblum, Arnold

    1982-05-01

    This paper compares the mechanical energy losses due to electromagnetic radiation reaction on a two-particle, slow-motion system, as calculated from (1) the method of matched asymptotic expansions and (2) the Lorentz-Dirac equation, which assumes point sources. The matching derivation of the preceding paper avoided the assumption of a δ-function source by using Reissner-Nordström matching zones. Despite the differing mathematical assumptions of the two methods, their results are in agreement with each other and with the electromagnetic-field energy losses calculated by the evaluation of flux integrals. Our purpose is eventually to analyze Rosenblum's use of point sources as a possible cause of disagreement between the analogous calculations of gravitational radiation on a slow-motion system of two bodies. We begin with the simpler electromagnetic problem.

  11. A witnessed case of a classic metaphyseal fracture caused during IV line placement in a child: Insight into mechanism of injury.

    PubMed

    Burrell, Tanya; Opfer, Erin; Berglund, Lisa; Lowe, Lisa H; Anderst, James

    2015-10-01

    Recent publications argue that classic metaphyseal fractures are caused by rickets as opposed to trauma. Previous case reports of accidental traumatic classic metaphyseal fractures have been discounted due to lack of identification of the fracture at the time of the traumatic event, and lack of an evaluation for boney metabolic disorders. We report a case of a 20 day old male with a diagnosis of congenital vertical talus who sustained a classic metaphyseal fracture of the distal tibia during manipulation in preparation for intravenous line placement. The mechanics of the event causing the classic metaphyseal fracture were witnessed and accompanied by an audible "pop". Prior x-rays of the tibia demonstrate normal osseous morphology, and an evaluation for boney metabolic disorders was normal. This case identifies a traumatic classic metaphyseal fracture and provides insight into the types of forces necessary to cause such a fracture.

  12. Classical molecular dynamics and ab initio simulations of chemical-mechanical polishing of amorphous silica

    NASA Astrophysics Data System (ADS)

    Chagarov, Evgueni Anatolievich

    Chemical-mechanical polishing (CMP) is a widely accepted process in the semiconductor industry. Despite intense theoretical and experimental research on CMP, there is a serious lack of fundamental understanding of the physical-chemical processes of polishing. The present work is intended to investigate these fundamental processes on an atomistic level. To model CMP on the atomic scale, a model of the amorphous silica is prepared by applying Design of Experiments (DOE) techniques to systematically investigate molecular dynamics preparation. These simulations yield high-quality models of amorphous silica, which are in excellent agreement with experimental results and are defect-free. Molecular dynamics simulations are performed to investigate the mechanical deformation during CMP of silica for different geometries and relative velocities. The simulations clarify asperity shape evolution during the process of shear and reveal temperature distributions as a function of time. It is found that the ratio of radii of a particle and asperity strongly affects the amount of the material removed whereas the relative velocity has a weaker affect on it. During shear, a significant local temperature increase occurs. This temperature increase lasts for a short time (picoseconds), but it can have a major impact on the amount of material removed. It is found that there could be significant deposition of the material from the particle to the slab, which can fill surface trenches and thereby make the surface smoother. An analytic model is developed for describing the amount of material removed as a function of asperity and particle radii and relative velocity. Density-functional calculations of different surfaces of two silica polymorphs, alpha-quartz and beta-cristobalite, are performed. The surface energies are calculated as a function of oxygen partial pressure for several different surface reconstructions and terminations. The case of hydrogen passivation is investigated to

  13. The study of oriented aggregation: A non-classical nanocrystal growth mechanism

    NASA Astrophysics Data System (ADS)

    Burrows, Nathan Dennis

    Oriented aggregation is a nonclassical crystal growth mechanism resulting in new secondary nanoparticles composed of crystallographically aligned primary crystallites. These secondary crystals often have unique and symmetry-defying morphologies, can be twinned, and can contain stacking faults and other significant defects. A wide range of important materials, such as titanium dioxide, iron oxides, selenides and sulfides, and metal oxyhydroxides, are known to grow by oriented aggregation under certain conditions. Evidence for oriented aggregation also has been observed in natural materials. However questions remain about what conditions are the most importing in facilitating purposeful control over nanoparticle size, size distribution, and morphology. Kinetic models for oriented aggregation point to important variables such as ionic strength, pH, temperature, and choice of dispersing solvent as being the key or keys to gaining control of this natural phenomenon and moving it towards a tool to be used in designing novel nanomaterials. The main technique used in this research is transmission electron microscopy with temporal resolution to characterize the population of growing nanocrystals. Cryogenic transmission electron microscopy is employed to observe the various stages of crystal growth. With extensive image analysis, it is possible to determine the kinetics of growth and the effects of systematically changing these key growth conditions. Additional complimentary techniques are employed, such as dynamic light scattering as well as various methods of characterization, such as powder X-ray diffraction. As our fundamental understanding of oriented aggregation improves, novel and complex functional materials are expected to emerge.

  14. Another Look at the Mechanisms of Hydride Transfer Enzymes from Quantum and Classical Transition Path Sampling

    NASA Astrophysics Data System (ADS)

    Dzierlenga, Michael; Antoniou, Dimitri; Schwartz, Steven

    2015-03-01

    The mechanisms involved in enzymatic hydride transfer have been studies for years but questions remain, due to the difficulty in determining the participation of protein dynamics and quantum effects, especially hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and lactate dehydrogenase (LDH). Calculation of the work applied to the hydride during the reaction allows for observation of the change in barrier height due to inclusion of quantum effects. Additionally, the same calculations were performed using deuterium as the transferring particle to validate our methods with experimentally measured kinetic isotope effects. The change in barrier height in YADH upon inclusion of quantum effects is indicative of a zero-point energy contribution, and is evidence that the protein mediates a near-barrierless transfer of the rate-limiting hydride. Calculation of kinetic isotope effects using the average difference in barrier between hydride and deuteride agreed well with experimental results. The authors acknowledge the support of the National Institutes of Health Grants GM068036 and GM102226.

  15. Immune-Regulatory Mechanisms of Classical and Experimental Multiple Sclerosis Drugs: A Special Focus on Helminth-Derived Treatments.

    PubMed

    Peón, Alberto N; Terrazas, Luis I

    2016-01-01

    Multiple sclerosis (MS) is the most prevalent autoimmune disease affecting the central nervous system (CNS). Its pathophysiology is centered on neuron myelin sheath destruction in a manner largely dependent upon CD4+/CD8+ T-cell autoreactivity against myelin antigens, inducing Th1/Th17 pathogenic responses with the resulting production of free radicals and soluble mediators that exhibit the effector mechanisms of neurodegeneration. The immune response responsible for this disease is complex and challenges modern medicine. Consequently, many experimental therapies have been proposed in addition to the classical array of immunoregulatory/ immunosuppressive drugs that are normally used to treat MS. In this review, we will describe the effects and mechanisms of action of widely used disease-modifying MS drugs as well as those of select treatments that are currently in the experimental phase. Special emphasis is placed on helminth-derived immunoregulators, as some of them have shown promising results. Additionally, we will compare the mechanisms of action of both the MS drugs and the helminth-derived treatments to discuss the potential importance of some signaling pathways in the control of MS.

  16. Understanding the reaction mechanism and intermediate stabilization in mammalian serine racemase using multiscale quantum-classical simulations.

    PubMed

    Nitoker, Neta; Major, Dan Thomas

    2015-01-20

    Serine racemase (SerR) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme catalyzing the racemization of l-Ser to d-Ser. In mammals, d-Ser is an endogenous coagonist required for the activation of N-methyl-d-aspartate receptors (NMDARs), thus making SerR a promising pharmaceutical target. However, mechanistic studies of SerR are scarce, and the details of the enzymatic racemization reaction are not fully understood. In the current study we elucidate the catalytic mechanism in SerR by employing combined multiscale classical/quantum simulations. The free energy profile of a model SerR racemization reaction is first calculated in the gas phase and in aqueous solution. To obtain the free energy profile for the enzymatic reaction, hybrid quantum mechanics/molecular mechanics molecular dynamics simulations in conjunction with umbrella sampling are performed. The results suggest that in SerR, similarly to the related enzyme alanine racemase, the unprotonated PLP-substrate intermediate is stabilized mostly due to solvation effects contributed by water molecules and active-site residues, as well as long-range electrostatic interactions with the enzyme environment. In addition to a deeper understanding of the racemization mechanism in SerR, based on our simulations we propose specific mutations, which might shift the SerR equilibrium in favor of either l-Ser or d-Ser. Finally, the current studies have produced catalytically competent forms of the rat and human enzymes, which may serve as targets for future docking studies and drug design.

  17. Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra.

    PubMed

    Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C

    2012-09-27

    Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS.

  18. RNA sequencing reveals region-specific molecular mechanisms associated with epileptogenesis in a model of classical hippocampal sclerosis

    PubMed Central

    Vieira, A. S.; de Matos, A. H.; do Canto, A. M.; Rocha, C. S.; Carvalho, B. S.; Pascoal, V. D. B.; Norwood, B.; Bauer, S.; Rosenow, F.; Gilioli, R.; Cendes, F.; Lopes-Cendes, I.

    2016-01-01

    We report here the first complete transcriptome analysis of the dorsal (dDG) and ventral dentate gyrus (vDG) of a rat epilepsy model presenting a hippocampal lesion with a strict resemblance to classical hippocampal sclerosis (HS). We collected the dDG and vDG by laser microdissection 15 days after electrical stimulation and performed high-throughput RNA-sequencing. There were many differentially regulated genes, some of which were specific to either of the two sub-regions in stimulated animals. Gene ontology analysis indicated an enrichment of inflammation-related processes in both sub-regions and of axonal guidance and calcium signaling processes exclusively in the vDG. There was also a differential regulation of genes encoding molecules involved in synaptic function, neural electrical activity and neuropeptides in stimulated rats. The data presented here suggests, in the time point analyzed, a remarkable interaction among several molecular components which takes place in the damaged hippocampi. Furthermore, even though similar mechanisms may function in different regions of the DG, the molecular components involved seem to be region specific. PMID:26935982

  19. Computational methods in the exploration of the classical and statistical mechanics of celestial scale strings: Rotating Space Elevators

    NASA Astrophysics Data System (ADS)

    Knudsen, Steven; Golubovic, Leonardo

    2015-04-01

    With the advent of ultra-strong materials, the Space Elevator has changed from science fiction to real science. We discuss computational and theoretical methods we developed to explore classical and statistical mechanics of rotating Space Elevators (RSE). An RSE is a loopy string reaching deep into outer space. The floppy RSE loop executes a motion which is nearly a superposition of two rotations: geosynchronous rotation around the Earth, and yet another faster rotational motion of the string which goes on around a line perpendicular to the Earth at its equator. Strikingly, objects sliding along the RSE loop spontaneously oscillate between two turning points, one of which is close to the Earth (starting point) whereas the other one is deeply in the outer space. The RSE concept thus solves a major problem in space elevator science which is how to supply energy to the climbers moving along space elevator strings. The exploration of the dynamics of a floppy string interacting with objects sliding along it has required development of novel finite element algorithms described in this presentation. We thank Prof. Duncan Lorimer of WVU for kindly providing us access to his computational facility.

  20. Combining classical molecular dynamics and quantum mechanical methods for the description of electronic excitations: The case of carotenoids.

    PubMed

    Prandi, Ingrid G; Viani, Lucas; Andreussi, Oliviero; Mennucci, Benedetta

    2016-04-30

    Carotenoids are important actors both in light-harvesting (LH) and in photoprotection functions of photosynthetic pigment-protein complexes. A deep theoretical investigation of this multiple role is still missing owing to the difficulty of describing the delicate interplay between electronic and nuclear degrees of freedom. A possible strategy is to combine accurate quantum mechanical (QM) methods with classical molecular dynamics. To do this, however, accurate force-fields (FF) are necessary. This article presents a new FF for the different carotenoids present in LH complexes of plants. The results show that all the important structural properties described by the new FF are in very good agreement with QM reference values. This increased accuracy in the simulation of the structural fluctuations is also reflected in the description of excited states. Both the energy order and the different nature of the lowest singlet states are preserved during the dynamics when the new FF is used, whereas an unphysical mixing is found when a standard FF is used.

  1. Non-classical mechanism of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor channel block by fluoxetine.

    PubMed

    Barygin, Oleg I; Komarova, Margarita S; Tikhonova, Tatiana B; Tikhonov, Denis B

    2015-04-01

    Antidepressants have many targets in the central nervous system. A growing body of data demonstrates the influence of antidepressants on glutamatergic neurotransmission. In the present work, we studied the inhibition of native Ca(2+)-permeable and Ca(2+)-impermeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in rat brain neurons by fluoxetine. The Ca(2+)-impermeable AMPA receptors in CA1 hippocampal pyramidal neurons were weakly affected. The IC50 value for the inhibition of Ca(2+)-permeable AMPA receptors in giant striatal interneurons was 43 ± 7 μM. The inhibition of Ca(2+)-permeable AMPA receptors was voltage dependent, suggesting deep binding in the pore. However, the use dependence of fluoxetine action differed markedly from that of classical AMPA receptor open-channel blockers. Moreover, fluoxetine did not compete with other channel blockers. In contrast to fluoxetine, its membrane-impermeant quaternary analog demonstrated all of the features of channel inhibition typical for open-channel blockers. It is suggested that fluoxetine reaches the binding site through a hydrophobic access pathway. Such a mechanism of block is described for ligands of sodium and calcium channels, but was never found in AMPA receptors. Molecular modeling suggests binding of fluoxetine in the subunit interface; analogous binding was proposed for local anesthetics in closed sodium channels and for benzothiazepines in calcium channels.

  2. Classical Electrodynamics Coupled to Quantum Mechanics for Calculation of Molecular Optical Properties: a RT-TDDFT/FDTD Approach

    SciTech Connect

    Chen, Hanning; McMahon, J. M.; Ratner, Mark A.; Schatz, George C.

    2010-09-02

    A new multiscale computational methodology was developed to effectively incorporate the scattered electric field of a plasmonic nanoparticle into a quantum mechanical (QM) optical property calculation for a nearby dye molecule. For a given location of the dye molecule with respect to the nanoparticle, a frequency-dependent scattering response function was first determined by the classical electrodynamics (ED) finite-difference time-domain (FDTD) approach. Subsequently, the time-dependent scattered electric field at the dye molecule was calculated using the FDTD scattering response function through a multidimensional Fourier transform to reflect the effect of polarization of the nanoparticle on the local field at the molecule. Finally, a real-time time-dependent density function theory (RT-TDDFT) approach was employed to obtain a desired optical property (such as absorption cross section) of the dye molecule in the presence of the nanoparticle’s scattered electric field. Our hybrid QM/ED methodology was demonstrated by investigating the absorption spectrum of the N3 dye molecule and the Raman spectrum of pyridine, both of which were shown to be significantly enhanced by a 20 nm diameter silver sphere. In contrast to traditional quantum mechanical optical calculations in which the field at the molecule is entirely determined by intensity and polarization direction of the incident light, in this work we show that the light propagation direction as well as polarization and intensity are important to nanoparticle-bound dye molecule response. At no additional computation cost compared to conventional ED and QM calculations, this method provides a reliable way to couple the response of the dye molecule’s individual electrons to the collective dielectric response of the nanoparticle.

  3. Interfacing ab initio Quantum Mechanical Method with Classical Drude Osillator Polarizable Model for Molecular Dynamics Simulation of Chemical Reactions

    PubMed Central

    Lu, Zhenyu; Zhang, Yingkai

    2009-01-01

    In order to further improve the accuracy and applicability of combined quantum mechanical/molecular mechanical (QM/MM) methods, we have interfaced the ab initio QM method with the classical Drude oscillator polarizable MM force field (ai-QM/MM-Drude). Different coupling approaches have been employed and compared: 1. the conventional dual self-consistent-field (SCF) procedure; 2. the direct SCF scheme, in which QM densities and MM Drude positions are converged simultaneously; 3. the micro-iterative SCF scheme, in which the Drude positions of the polarizable model are fully converged during each self-consistent field (SCF) step of QM calculations; 4. the one-step-Drude-update scheme, in which the MM Drude positions are updated only once instead of fully converged during each molecular dynamics (MD) step. The last three coupling approaches are found to be efficient and can achieve the desired convergence in a similar number of QM SCF steps comparing with the corresponding QM method coupled to a non-polarizable force field. The feasibility and applicability of the implemented ai-QM/MM-Drude approach have been demonstrated by carrying out Born-Oppenheimer molecular dynamics simulations with the umbrella sampling method to determine potentials of mean force for both the methyl transfer reaction of the methyl chlorine-chlorine ion system and the glycine intra-molecular proton transfer reaction in aqueous solution. Our results indicate that the ai-QM/MM-Drude approach is very promising, which provides a better description of QM/MM interactions while can achieve quite similar computational efficiency in comparison with the corresponding conventional ab initio QM/MM method. PMID:19221605

  4. Understanding the Mechanism of Human P450 CYP1A2 Using Coupled Quantum-Classical Simulations in a Dynamical Environment

    SciTech Connect

    Draeger, E W; Bennion, B; Gygi, F; Lightstone, F

    2006-02-10

    The reaction mechanism of the human P450 CYP1A2 enzyme plays a fundamental role in understanding the effects of environmental carcinogens and mutagens on humans. Despite extensive experimental research on this enzyme system, key questions regarding its catalytic cycle and oxygen activation mechanism remain unanswered. In order to elucidate the reaction mechanism in human P450, new computational methods are needed to accurately represent this system. To enable us to perform computational simulations of unprecedented accuracy on these systems, we developed a dynamic quantum-classical (QM/MM) hybrid method, in which ab initio molecular dynamics are coupled with classical molecular mechanics. This will provide the accuracy needed to address such a complex, large biological system in a fully dynamic environment. We also present detailed calculations of the P450 active site, including the relative charge transfer between iron porphine and tetraphenyl porphyrin.

  5. Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism.

    PubMed

    Zhang, Yuetao; Miyake, Garret M; John, Mallory G; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2012-08-14

    Classical and frustrated Lewis pairs (LPs) of the strong Lewis acid (LA) Al(C(6)F(5))(3) with several Lewis base (LB) classes have been found to exhibit exceptional activity in the Lewis pair polymerization (LPP) of conjugated polar alkenes such as methyl methacrylate (MMA) as well as renewable α-methylene-γ-butyrolactone (MBL) and γ-methyl-α-methylene-γ-butyrolactone (γ-MMBL), leading to high molecular weight polymers, often with narrow molecular weight distributions. This study has investigated a large number of LPs, consisting of 11 LAs as well as 10 achiral and 4 chiral LBs, for LPP of 12 monomers of several different types. Although some more common LAs can also be utilized for LPP, Al(C(6)F(5))(3)-based LPs are far more active and effective than other LA-based LPs. On the other hand, several classes of LBs, when paired with Al(C(6)F(5))(3), can render highly active and effective LPP of MMA and γ-MMBL; such LBs include phosphines (e.g., P(t)Bu(3)), chiral chelating diphosphines, N-heterocyclic carbenes (NHCs), and phosphazene superbases (e.g., P(4)-(t)Bu). The P(4)-(t)Bu/Al(C(6)F(5))(3) pair exhibits the highest activity of the LP series, with a remarkably high turn-over frequency of 9.6 × 10(4) h(-1) (0.125 mol% catalyst, 100% MMA conversion in 30 s, M(n) = 2.12 × 10(5) g mol(-1), PDI = 1.34). The polymers produced by LPs at RT are typically atactic (P(γ)MMBL with ∼47% mr) or syndio-rich (PMMA with ∼70-75% rr), but highly syndiotactic PMMA with rr ∼91% can be produced by chiral or achiral LPs at -78 °C. Mechanistic studies have identified and structurally characterized zwitterionic phosphonium and imidazolium enolaluminates as the active species of the current LPP system, which are formed by the reaction of the monomer·Al(C(6)F(5))(3) adduct with P(t)Bu(3) and NHC bases, respectively. Kinetic studies have revealed that the MMA polymerization by the (t)Bu(3)P/Al(C(6)F(5))(3) pair is zero-order in monomer concentration after an initial

  6. Classics Online.

    ERIC Educational Resources Information Center

    Clayman, Dee L.

    1995-01-01

    Appraises several databases devoted to classical literature. Thesaurus Linguae Graecae (TLG) contains the entire extant corpus of ancient Greek literature, including works on lexicography and historiography, extending into the 15th century. Other works awaiting completion are the Database of Classical Bibliography and a CD-ROM pictorial dictionary…

  7. Classical integrability

    NASA Astrophysics Data System (ADS)

    Torrielli, Alessandro

    2016-08-01

    We review some essential aspects of classically integrable systems. The detailed outline of the sections consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schrödinger model, principal chiral field); 4. Features of classical r-matrices: Belavin-Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel’fand-Levitan-Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.

  8. The classical Bloch equations

    NASA Astrophysics Data System (ADS)

    Frimmer, Martin; Novotny, Lukas

    2014-10-01

    Coherent control of a quantum mechanical two-level system is at the heart of magnetic resonance imaging, quantum information processing, and quantum optics. Among the most prominent phenomena in quantum coherent control are Rabi oscillations, Ramsey fringes, and Hahn echoes. We demonstrate that these phenomena can be derived classically by use of a simple coupled-harmonic-oscillator model. The classical problem can be cast in a form that is formally equivalent to the quantum mechanical Bloch equations with the exception that the longitudinal and the transverse relaxation times (T1 and T2) are equal. The classical analysis is intuitive and well suited for familiarizing students with the basic concepts of quantum coherent control, while at the same time highlighting the fundamental differences between classical and quantum theories.

  9. Classical confined particles

    NASA Technical Reports Server (NTRS)

    Horzela, Andrzej; Kapuscik, Edward

    1993-01-01

    An alternative picture of classical many body mechanics is proposed. In this picture particles possess individual kinematics but are deprived from individual dynamics. Dynamics exists only for the many particle system as a whole. The theory is complete and allows to determine the trajectories of each particle. It is proposed to use our picture as a classical prototype for a realistic theory of confined particles.

  10. Quantum mechanics as a classical theory-application to the interaction of light with an extremely diluted gas: redshifts and black matter in astrophysics.

    NASA Astrophysics Data System (ADS)

    Moret-Bailly, J.

    In the study of experiments of laser spectroscopy, there appears a convergence of the methods of quantum electrodynamics and classical optics: for instance stochastic electrodynamics used for the study of "squeezed states" is common to both theories, and the quantum coherent states are almost classical states. The author shows that this convergence allows to explain the paradoxes of quantum mechanics. The interaction of ultrashort laser pulses with ordinary matter is equivalent to the interaction of incoherent light with extremely dilute gases. Thus, the interaction of light from stars with cosmic gas produces a redshift similar to the Doppler redshift. In a very low pressure gas, the absorption of incoherent light disappears completely, so that the "black matter" could be simply H2 and its products of decomposition by high-frequency radiation.

  11. Classical Novae

    NASA Astrophysics Data System (ADS)

    Bode, Michael F.; Evans, Aneurin

    2012-07-01

    Preface; 1. Novae - a historical perspective Hilmar W. Duerbeck; 2. Properties of novae: an overview Brian Warner; 3. The evolution of nova-producing binary stars Icko Iben, Jr and Masayuki Y. Fujimoto; 4. Thermonuclear processes S. Starrfield, C. Iliadis and W. R. Hix; 5. Nova atmospheres and winds P. H. Hauschildt; 6. Observational mysteries and theoretical challenges Jordi Jose and Steven N. Shore; 7. Radio emission from novae E. R. Seaquist and M. F. Bode; 8. Infrared studies of classical novae Robert D. Gehrz; 9. Optical and ultraviolet evolution Steven N. Shore; 10. X-ray emission from classical novae in outburst Joachim Krautter; 11. Gamma-rays from classical novae Margarita Hernanz; 12. Resolved nova remnants T. J. O'Brien and M. F. Bode; 13. Dust and molecules in nova environments A. Evans and J. M. C. Rawlings; 14. Extragalactic novae Allen Shafter; Index.

  12. Mixed quantum-classical molecular dynamics analysis of the molecular-level mechanisms of vibrational frequency shifts.

    PubMed

    Morales, Christine M; Thompson, Ward H

    2007-06-28

    A detailed analysis of the origins of vibrational frequency shifts of diatomic molecules (I2 and ICl) in a rare gas (Xe) liquid is presented. Specifically, vibrationally adiabatic mixed quantum-classical molecular dynamics simulations are used to obtain the instantaneous frequency shifts and correlate the shifts to solvent configurations. With this approach, important mechanistic questions are addressed, including the following: How many solvent atoms determine the frequency shift? What solvent atom configurations lead to blue shifts, and which lead to red shifts? What is the effect of solute asymmetry? The mechanistic analysis can be generally applied and should be useful in understanding what information is provided by infrared and Raman spectra about the environment of the probed vibrational mode.

  13. Hyperangular momenta and energy partitions in multidimensional many-particle classical mechanics: The invariance approach to cluster dynamics

    SciTech Connect

    Sevryuk, Mikhail B.; Lombardi, Andrea; Aquilanti, Vincenzo

    2005-09-15

    Rigorous and complete definitions of two partitions and one expansion for the kinetic energy of a general N-particle classical system are given. Our recent work, which also provides examples of applications to the molecular dynamics of nanoaggregates, based on computer programs formulated on the basis of the theory presented here, is extended to cover arbitrary physical space dimensions. The partitions and the expansion are in terms of quantities conceived to be instantaneous phase-space invariants - a far-reaching generalization of integrals of the motion. These quantities are introduced setting out as starting points the position matrix Z of the system and the time derivative of Z. In the simplest case, the matrix Z contains the mass-scaled Cartesian coordinates of the N particles. From the position matrix, the kinematic rotations naturally arise through orthogonal transformations, as a concept 'dual' to the ordinary physical rotations. The physical meaning of each partition (expansion) term is clearly described and emphasized, and formulas for the various quantities are provided as well as inequalities among them. Proofs are presented making extensive use of the singular value decomposition (SVD) of matrices and of the signed SVD, an extended version overcoming possible singularities for particular values of N.

  14. Perspective: Quantum or classical coherence?

    PubMed

    Miller, William H

    2012-06-07

    Some coherence effects in chemical dynamics are described correctly by classical mechanics, while others only appear in a quantum treatment--and when these are observed experimentally it is not always immediately obvious whether their origin is classical or quantum. Semiclassical theory provides a systematic way of adding quantum coherence to classical molecular dynamics and thus provides a useful way to distinguish between classical and quantum coherence. Several examples are discussed which illustrate both cases. Particularly interesting is the situation with electronically non-adiabatic processes, where sometimes whether the coherence effects are classical or quantum depends on what specific aspects of the process are observed.

  15. InGaAs tunnel diodes for the calibration of semi-classical and quantum mechanical band-to-band tunneling models

    SciTech Connect

    Smets, Quentin; Verreck, Devin; Vandervorst, Wilfried; Groeseneken, Guido; Heyns, Marc M.; Verhulst, Anne S.; Rooyackers, Rita; Merckling, Clément; Simoen, Eddy; Collaert, Nadine; Thean, Voon Y.; Van De Put, Maarten; Sorée, Bart

    2014-05-14

    Promising predictions are made for III-V tunnel-field-effect transistor (FET), but there is still uncertainty on the parameters used in the band-to-band tunneling models. Therefore, two simulators are calibrated in this paper; the first one uses a semi-classical tunneling model based on Kane's formalism, and the second one is a quantum mechanical simulator implemented with an envelope function formalism. The calibration is done for In{sub 0.53}Ga{sub 0.47}As using several p+/intrinsic/n+ diodes with different intrinsic region thicknesses. The dopant profile is determined by SIMS and capacitance-voltage measurements. Error bars are used based on statistical and systematic uncertainties in the measurement techniques. The obtained parameters are in close agreement with theoretically predicted values and validate the semi-classical and quantum mechanical models. Finally, the models are applied to predict the input characteristics of In{sub 0.53}Ga{sub 0.47}As n- and p-lineTFET, with the n-lineTFET showing competitive performance compared to MOSFET.

  16. NMR lineshape equations for hindered methyl group: a comparison of the semi-classical and quantum mechanical models.

    PubMed

    Bernatowicz, P; Szymański, S

    2003-09-01

    The semiclassical and quantum mechanical NMR lineshape equations for a hindered methyl group are compared. In both the approaches, the stochastic dynamics can be interpreted in terms of a progressive symmetrization of the spin density matrix. However, the respective ways of achieving the same limiting symmetry can be remarkably different. From numerical lineshape simulations it is inferred that in the regime of intermediate exchange, where the conventional theory predicts occurrence of a single Lorentzian, the actual spectrum can have nontrivial features. This observation may open new perspectives in the search for nonclassical effects in the stochastic behavior of methyl groups in liquid-phase NMR.

  17. Prediction of anomalous diffusion and algebraic relaxations for long-range interacting systems, using classical statistical mechanics.

    PubMed

    Bouchet, Freddy; Dauxois, Thierry

    2005-10-01

    We explain the ubiquity and extremely slow evolution of non-Gaussian out-of-equilibrium distributions for the Hamiltonian mean-field model, by means of traditional kinetic theory. Deriving the Fokker-Planck equation for a test particle, one also unambiguously explains and predicts striking slow algebraic relaxation of the momenta autocorrelation, previously found in numerical simulations. Finally, angular anomalous diffusion are predicted for a large class of initial distributions. Non-extensive statistical mechanics is shown to be unnecessary for the interpretation of these phenomena.

  18. Complementarity between Quantum and Classical Mechanics in Chemical Modeling. The H + HeH+ → H2 + + He Reaction: A Rigourous Test for Reaction Dynamics Methods.

    PubMed

    Esposito, Fabrizio; Coppola, Carla Maria; De Fazio, Dario

    2015-12-24

    In this work we present a dynamical study of the H + HeH+ → H2+ + He reaction in a collision energy range from 0.1 meV to 10 eV, suitable to be used in applicative models. The paper extends and complements a recent work [ Phys. Chem. Chem. Phys. 2014, 16, 11662] devoted to the characterization of the reactivity from the ultracold regime up to the three-body dissociation breakup. In particular, the accuracy of the quasi-classical trajectory method below the three-body dissociation threshold has been assessed by a detailed comparison with previous calculations performed with different reaction dynamics methods, whereas the reliability of the results in the high energy range has been checked by a direct comparison with the available experimental data. Integral cross sections for several HeH+ roto-vibrational states have been analyzed and used to understand the extent of quantum effects in the reaction dynamics. By using the quasi-classical trajectory method and quantum mechanical close coupling data, respectively, in the high and low collision energy ranges, we obtain highly accurate thermal rate costants until 15 000 K including all (178) the roto-vibrational bound and quasi-bound states of HeH+. The role of the collision-induced dissociation is also discussed and explicitly calculated for the ground roto-vibrational state of HeH+.

  19. Structure, spectra, and rearrangement mechanism of PH2F3: revisiting a classic problem in structural inorganic chemistry.

    PubMed

    Villaume, Sébastien; Strich, Alain; Perera, S Ajith; Bartlett, Rodney J

    2007-03-22

    The structure, spectra, and rearrangement mechanisms of PH2F3, the first member of the PHnF5-n series and a prototype for molecules that undergo rotational isomerism, have been studied. Aided by the tools developed to compute coupled-cluster (CC) Raman intensities and NMR spin-spin couplings, a full spectroscopic characterization of PH2F3 is presented. Moreover, the structures and the energetics of the various stereoisomers are computed at the CC level (CCSD(T)) to assess the validity of proposed rearrangement mechanisms. While corroborating prior experimental IR and NMR assignments, the results are also able to remedy the "speculative" Raman and NMR assignments that lacked reliable computed values when the experiments were done. More importantly, the results identify "spectral fingerprints" that could distinguish various rotational isomers. These data, when used concurrently along with high resolution measurements, form a powerful basis for the characterization of various rotational isomers of PH2F3. A "new" stability diagram and a rearrangement path based on the computed energetic and structure data are obtained. That is far superior to what has been available in the literature.

  20. Collaborative Simulation Grid: Multiscale Quantum-Mechanical/Classical Atomistic Simulations on Distributed PC Clusters in the US and Japan

    NASA Technical Reports Server (NTRS)

    Kikuchi, Hideaki; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; Iyetomi, Hiroshi; Ogata, Shuji; Kouno, Takahisa; Shimojo, Fuyuki; Tsuruta, Kanji; Saini, Subhash; Biegel, Bryan (Technical Monitor)

    2002-01-01

    A multidisciplinary, collaborative simulation has been performed on a Grid of geographically distributed PC clusters. The multiscale simulation approach seamlessly combines i) atomistic simulation backed on the molecular dynamics (MD) method and ii) quantum mechanical (QM) calculation based on the density functional theory (DFT), so that accurate but less scalable computations are performed only where they are needed. The multiscale MD/QM simulation code has been Grid-enabled using i) a modular, additive hybridization scheme, ii) multiple QM clustering, and iii) computation/communication overlapping. The Gridified MD/QM simulation code has been used to study environmental effects of water molecules on fracture in silicon. A preliminary run of the code has achieved a parallel efficiency of 94% on 25 PCs distributed over 3 PC clusters in the US and Japan, and a larger test involving 154 processors on 5 distributed PC clusters is in progress.

  1. Randomness: Quantum versus classical

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2016-05-01

    Recent tremendous development of quantum information theory has led to a number of quantum technological projects, e.g. quantum random generators. This development had stimulated a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is the elaboration of a consistent and commonly accepted interpretation of a quantum state. Closely related problem is the clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review, we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. We also discuss briefly “digital philosophy”, its role in physics (classical and quantum) and its coupling to the information interpretation of quantum mechanics (QM).

  2. Scalability of a Low-Cost Multi-Teraflop Linux Cluster for High-End Classical Atomistic and Quantum Mechanical Simulations

    NASA Technical Reports Server (NTRS)

    Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash

    2003-01-01

    Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.

  3. Density-Functional Theory with Dispersion-Correcting Potentials for Methane: Bridging the Efficiency and Accuracy Gap between High-Level Wave Function and Classical Molecular Mechanics Methods.

    PubMed

    Torres, Edmanuel; DiLabio, Gino A

    2013-08-13

    Large clusters of noncovalently bonded molecules can only be efficiently modeled by classical mechanics simulations. One prominent challenge associated with this approach is obtaining force-field parameters that accurately describe noncovalent interactions. High-level correlated wave function methods, such as CCSD(T), are capable of correctly predicting noncovalent interactions, and are widely used to produce reference data. However, high-level correlated methods are generally too computationally costly to generate the critical reference data required for good force-field parameter development. In this work we present an approach to generate Lennard-Jones force-field parameters to accurately account for noncovalent interactions. We propose the use of a computational step that is intermediate to CCSD(T) and classical molecular mechanics, that can bridge the accuracy and computational efficiency gap between them, and demonstrate the efficacy of our approach with methane clusters. On the basis of CCSD(T)-level binding energy data for a small set of methane clusters, we develop methane-specific, atom-centered, dispersion-correcting potentials (DCPs) for use with the PBE0 density-functional and 6-31+G(d,p) basis sets. We then use the PBE0-DCP approach to compute a detailed map of the interaction forces associated with the removal of a single methane molecule from a cluster of eight methane molecules and use this map to optimize the Lennard-Jones parameters for methane. The quality of the binding energies obtained by the Lennard-Jones parameters we obtained is assessed on a set of methane clusters containing from 2 to 40 molecules. Our Lennard-Jones parameters, used in combination with the intramolecular parameters of the CHARMM force field, are found to closely reproduce the results of our dispersion-corrected density-functional calculations. The approach outlined can be used to develop Lennard-Jones parameters for any kind of molecular system.

  4. Heterolysis of H2 Across a Classical Lewis Pair, 2,6-Lutidine-BCl3: Synthesis, Characterization, and Mechanism

    SciTech Connect

    Ginovska-Pangovska, Bojana; Autrey, Thomas; Parab, Kshitij K.; Bowden, Mark E.; Potter, Robert G.; Camaioni, Donald M.

    2015-09-10

    We report on a combined computational and experimental study of the activation of hydrogen using for 2,6-lutidine (Lut)/BCl3 Lewis pairs. Herein we describe the synthetic approach used to obtain a new FLP, Lut-BCl3 that activates molecular H2 at ~10 bar, 100 °C in toluene or lutidine as the solvent. The resulting compound is an unexpected neutral hydride, LutBHCl2, rather than the ion pair, which we attribute to ligand redistribution. The mechanism for activation was modeled with density functional theory and accurate G3(MP2)B3 theory. The dative bond in Lut-BCl3 is calculated to have a bond enthalpy of 15 kcal/mol. The separated pair is calculated to react with H2 and form the [LutH+][HBCl3–] ion pair with a barrier of 13 kcal/mol. Metathesis with LutBCl3 produces LutBHCl2 and [LutH][BCl4]. The overall reaction is exothermic by 8.5 kcal/mol. An alternative pathway was explored involving lutidine–borenium cation pair activating H2. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences, and was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.

  5. Reexamining the Quantum-Classical Relation

    NASA Astrophysics Data System (ADS)

    Bokulich, Alisa

    2008-10-01

    1. Intertheoretic relations: are imperialism and isolationism our only options?; 2. Heisenberg's closed theories and pluralistic realism; 3. Dirac's open theories and the reciprocal correspondence principle; 4. Bohr's generalization of classical mechanics; 5. Semiclassical mechanics: putting quantum flesh on classical bones; 6. Can classical structures explain quantum phenomena?; 7. A structural approach to intertheoretic relations; References; Index.

  6. What classicality? Decoherence and Bohr's classical concepts

    NASA Astrophysics Data System (ADS)

    Schlosshauer, Maximilian; Camilleri, Kristian

    2011-03-01

    Niels Bohr famously insisted on the indispensability of what he termed "classical concepts." In the context of the decoherence program, on the other hand, it has become fashionable to talk about the "dynamical emergence of classicality" from the quantum formalism alone. Does this mean that decoherence challenges Bohr's dictum—for example, that classical concepts do not need to be assumed but can be derived? In this paper we'll try to shed some light down the murky waters where formalism and philosophy cohabitate. To begin, we'll clarify the notion of classicality in the decoherence description. We'll then discuss Bohr's and Heisenberg's take on the quantum—classical problem and reflect on different meanings of the terms "classicality" and "classical concepts" in the writings of Bohr and his followers. This analysis will allow us to put forward some tentative suggestions for how we may better understand the relation between decoherence-induced classicality and Bohr's classical concepts.

  7. Non-classical mechanisms of transcriptional regulation by the vitamin D receptor: insights into calcium homeostasis, immune system regulation and cancer chemoprevention.

    PubMed

    Dimitrov, Vassil; Salehi-Tabar, Reyhaneh; An, Beum-Soo; White, John H

    2014-10-01

    Hormonal 1,25-dihydroxyvitamin D [1,25(OH)2D] signals through the nuclear vitamin D receptor (VDR), a ligand-regulated transcription factor. Gene expression profiling studies have revealed that 1,25(OH)2D signaling through the VDR can lead to activation or repression of target gene transcription in roughly equal proportions. Classically, transcriptional regulation by the VDR, similar to other nuclear receptors, has been characterized by its capacity to recognize high affinity cognate vitamin D response elements (VDREs), located in the regulatory regions of target genes. Several biochemical studies revealed that the VDRE-bound receptor recruits a series of coregulatory proteins, leading to transactivation of adjacent target genes. However, genome-wide and other analyses of VDR binding have revealed that a subset of VDR binding sites does not contain VDREs, and that VDREs are not associated with transcriptionally repressed VDR target genes. Work over the last ∼20 years and in particular recent findings have revealed a diverse array of mechanisms by which VDR can form complexes with several other classes of transcriptional activators, leading to repression of gene transcription. Moreover, these efforts have led to several insights into the molecular basis for the physiological regulation of calcium homeostasis, immune system function and cancer chemoprevention by 1,25(OH)2D/VDR signaling. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.

  8. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics.

    PubMed

    Rajput, Nav Nidhi; Qu, Xiaohui; Sa, Niya; Burrell, Anthony K; Persson, Kristin A

    2015-03-11

    In this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectric constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg(2+) → Mg(+)), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI(-) exhibits a significant bond weakening while paired with the transient, partially reduced Mg(+). In contrast, BH4(-) and BF4(-) are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.

  9. Entanglement with classical fields

    SciTech Connect

    Lee, K.F.; Thomas, J.E.

    2004-05-01

    We experimentally demonstrate a simple classical-field optical heterodyne method which employs postselection to reproduce the polarization correlations of a four-particle entangled state. We give a heuristic argument relating this method to the measurement of multiple quantum fields by correlated homodyne detection. We suggest that using multiple classical fields and postselection, one can reproduce the polarization correlations obtained in quantum experiments which employ multiple single-photon sources and linear optics to prepare multiparticle entangled states. Our experimental scheme produces four spatially separated beams which are separately detected by mixing with four independent optical local oscillators (LO) of variable polarization. Analog multiplication of the four beat signals enables projection onto a four-particle polarization-state basis. Appropriate band pass filtering is used to produce a signal proportional to the projections of the maximally entangled four-field polarization state, H{sub 1})H{sub 2})H{sub 3})H{sub 4})+V{sub 1})V{sub 2})V{sub 3})V{sub 4}), onto the product of the four LO polarizations. Since the data from multiple observers is combined prior to postselection, this method does not constitute a test of nonlocality. However, we reproduce the polarization correlations of the 32 elements in the truth table from the quantum mechanical Greenberger-Horne-Zeilinger experiments on the violation of local realism. We also demonstrate a form of classical entanglement swapping in a four-particle basis.

  10. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics

    DOE PAGES

    Rajput, Nav Nidhi; Qu, Xiaohuui; Sa, Niya; ...

    2015-02-10

    Here in this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectricmore » constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg2+ -> Mg+), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI exhibits a significant bond weakening while paired with the transient, partially reduced Mg+. In contrast, BH4$-$ and BF4$-$ are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.« less

  11. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics

    SciTech Connect

    Rajput, Nav Nidhi; Qu, Xiaohuui; Sa, Niya; Burrell, Anthony K.; Persson, Kristin A.

    2015-02-10

    Here in this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectric constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg2+ -> Mg+), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI exhibits a significant bond weakening while paired with the transient, partially reduced Mg+. In contrast, BH4$-$ and BF4$-$ are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.

  12. Testing the Palma-Clary Reduced Dimensionality Model Using Classical Mechanics on the CH4 + H → CH3 + H2 Reaction.

    PubMed

    Vikár, Anna; Nagy, Tibor; Lendvay, György

    2016-07-14

    Application of exact quantum scattering methods in theoretical reaction dynamics of bimolecular reactions is limited by the complexity of the equations of nuclear motion to be solved. Simplification is often achieved by reducing the number of degrees of freedom to be explicitly handled by freezing the less important spectator modes. The reaction cross sections obtained in reduced-dimensionality (RD) quantum scattering methods can be used in the calculation of rate coefficients, but their physical meaning is limited. The accurate test of the performance of a reduced-dimensionality method would be a comparison of the RD cross sections with those obtained in accurate full-dimensional (FD) calculations, which is not feasible because of the lack of complete full-dimensional results. However, classical mechanics allows one to perform reaction dynamics calculations using both the RD and the FD model. In this paper, an RD versus FD comparison is made for the 8-dimensional Palma-Clary model on the example of four isotopologs of the CH4 + H → CH3 + H2 reaction, which has 12 internal dimensions. In the Palma-Clary model, the only restriction is that the methyl group is confined to maintain C3v symmetry. Both RD and FD opacity and excitation functions as well as differential cross sections were calculated using the quasiclassical trajectory method. The initial reactant separation has been handled according to our one-period averaging method [ Nagy et al. J. Chem. Phys. 2016, 144, 014104 ]. The RD and FD excitation functions were found to be close to each other for some isotopologs, but in general, the RD reactivity parameters are lower than the FD reactivity parameters beyond statistical error, and for one of the isotopologs, the deviation is significant. This indicates that the goodness of RD cross sections cannot be taken for granted.

  13. Classical anomalies for spinning particles

    NASA Astrophysics Data System (ADS)

    Gamboa, Jorge; Plyushchay, Mikhail

    1998-02-01

    We discuss the phenomenon of classical anomaly. It is observed for 3D Berezin-Marinov (BM), Barducci-Casalbuoni-Lusanna (BCL) and Cortés-Plyushchay-Velázquez (CPV) pseudoclassical spin particle models. We show that quantum mechanically these different models correspond to the same P, T-invariant system of planar fermions, but the quantum system has global symmetries being not reproducible classically in full in any of the models. We demonstrate that the specific U(1) gauge symmetry characterized by the opposite coupling constants of spin s = + {1}/{2} and s = - {1}/{2} states has a natural classical analog in the CPV model but can be reproduced in the BM and BCL models in an obscure and rather artificial form. We also show that the BM and BCL models quantum mechanically are equivalent in any odd-dimensional space-time, but describe different quantum systems in even space-time dimensions.

  14. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…

  15. The Classics Revivified.

    ERIC Educational Resources Information Center

    Matthews, Dorothy, Ed.

    1979-01-01

    The eight articles in this bulletin suggest methods of introducing classical literature into the English curriculum. Article titles are: "Ideas for Teaching Classical Mythology"; "What Novels Should High School Students Read?"; "Enlivening the Classics for Live Students"; "Poetry in Performance: The Value of Song and Oral Interpretation in…

  16. Classical three-box 'paradox'

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, K. A.

    2003-05-01

    A simple classical probabilistic system (a simple card game) classically exemplifies Aharonov and Vaidman's 'three-box 'paradox'' (1991 J. Phys. A: Math. Gen. 24 2315), implying that the three-box example is neither quantal nor a paradox and leaving one with less difficulty to busy the interpreters of quantum mechanics. An ambiguity in the usual expression of the retrodiction formula is shown to have misled Albert et al (1985 Phys. Rev. Lett. 54 5) to a result not, in fact, 'curious'; the discussion illustrates how to avoid this ambiguity.

  17. Classical underpinnings of gravitationally induced quantum interference

    SciTech Connect

    Mannheim, P.D.

    1998-02-01

    We show that the gravitational modification of the phase of a neutron beam [the Colella-Overhauser-Werner (COW) experiment] has a classical origin, being due to the time delay that classical particles experience in traversing a background gravitational field. Similarly, we show that classical light waves also undergo a phase shift in traversing a gravitational field. We show that the COW experiment respects the equivalence principle even in the presence of quantum mechanics. {copyright} {ital 1998} {ital The American Physical Society}

  18. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Exact Soliton Solutions to a Generalized Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Xu, Si-Liu; Liang, Jian-Chu; Yi, Lin

    2010-01-01

    The (1+1)-dimensional F-expansion technique and the homogeneous nonlinear balance principle have been generalized and applied for solving exact solutions to a general (3+1)-dimensional nonlinear Schrödinger equation (NLSE) with varying coefficients and a harmonica potential. We found that there exist two kinds of soliton solutions. The evolution features of exact solutions have been numerically studied. The (3+1)D soliton solutions may help us to understand the nonlinear wave propagation in the nonlinear media such as classical optical waves and the matter waves of the Bose-Einstein condensates.

  19. Entropy concepts in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Cole, Daniel C.

    2002-11-01

    Aspects of entropy and related thermodynamic analyses are discussed here that have been deduced in recent years in the area of classical electrodynamics. A motivating factor for most of this work has been an attempted theory of nature often called, "stochastic electrodynamics" (SED). This theory involves classical electrodynamics (Maxwell's equations plus the relativistic version of Newton's second law of motion for particles), but with the consideration that motion and fluctuations should not necessarily be assumed to reduce to zero at temperature T = 0. Both fairly subtle and rather blatant assumptions were often imposed in early thermodynamic analyses of electrodynamic systems that prevented the analyses from being sufficiently general to account for these "zero-point" properties, which hindered classical physics from being able to better account for quantum mechanical phenomena observed in nature. In turn, such thermodynamic considerations have helped motivate many of the key ideas of SED.

  20. Chaos in the classical mechanics of bound and quasi-bound HX-4He complexes with X = F, Cl, Br, CN.

    PubMed

    Gamboa, Antonio; Hernández, Henar; Ramilowski, Jordan A; Losada, J C; Benito, R M; Borondo, F; Farrelly, David

    2009-10-01

    The classical dynamics of weakly bound floppy van der Waals complexes have been extensively studied in the past except for the weakest of all, i.e., those involving He atoms. These complexes are of considerable current interest in light of recent experimental work focussed on the study of molecules trapped in small droplets of the quantum solvent (4)He. Despite a number of quantum investigations, details on the dynamics of how quantum solvation occurs remain unclear. In this paper, the classical rotational dynamics of a series of van der Waals complexes, HX-(4)He with X = F, Cl, Br, CN, are studied. In all cases, the ground state dynamics are found to be almost entirely chaotic, in sharp contrast to other floppy complexes, such as HCl-Ar, for which chaos sets in only at relatively high energies. The consequences of this result for quantum solvation are discussed. We also investigate rotationally excited states with J = 1 which, except for HCN-(4)He, are actually resonances that decay by rotational pre-dissociation.

  1. Quantum phase uncertainties in the classical limit

    NASA Technical Reports Server (NTRS)

    Franson, James D.

    1994-01-01

    Several sources of phase noise, including spontaneous emission noise and the loss of coherence due to which-path information, are examined in the classical limit of high field intensities. Although the origin of these effects may appear to be quantum-mechanical in nature, it is found that classical analogies for these effects exist in the form of chaos.

  2. Adsorption mechanisms and effect of temperature in reversed-phase liquid chromatography-Meaning of the classical Van't Hoff plot in chromatography

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2006-07-01

    The effect of temperature on the adsorption and retention behaviors of a low molecular weight compound (phenol) on a C{sub 18}-bonded silica column (C{sub 18}-Sunfire, Waters) from aqueous solutions of methanol (20%) or acetonitrile (15%) was investigated. The results of the measurements were interpreted successively on the basis of the linear (i.e., overall retention factors) and the nonlinear (i.e., adsorption isotherms, surface heterogeneity, saturation capacities, and equilibrium constants) chromatographic methods. The confrontation of these two approaches confirmed the impossibility of a sound physical interpretation of the conventional Van't Hoff plot. The classical linear chromatography theory assumes that retention is determined by the equilibrium thermodynamics of analytes between a homogeneous stationary phase and a homogeneous mobile phase (although there may be two or several types of interactions). From values of the experimental retention factors in a temperature interval and estimates of the activity coefficients at infinite dilution in the same temperature interval provided by the UNIFAC group contribution method, evidence is provided that such a retention model cannot hold. The classical Van't Hoff plot appears meaningless and its linear behavior a mere accident. Results from nonlinear chromatography confirm these conclusions and provide explanations. The retention factors seem to fulfill the Van't Hoff equation, not the Henry constants corresponding to the different types of adsorption sites. The saturation capacities and the adsorption energies are clearly temperature dependent. The temperature dependence of these characteristics of the different assorption sites are different in aqueous methanol and acetonitrile solutions.

  3. Absolutely classical spin states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, F.; Giraud, O.; Braun, D.

    2017-01-01

    We introduce the concept of "absolutely classical" spin states, in analogy to absolutely separable states of bipartite quantum systems. Absolutely classical states are states that remain classical (i.e., a convex sum of projectors on coherent states of a spin j ) under any unitary transformation applied to them. We investigate the maximal size of the ball of absolutely classical states centered on the maximally mixed state and derive a lower bound for its radius as a function of the total spin quantum number. We also obtain a numerical estimate of this maximal radius and compare it to the case of absolutely separable states.

  4. Nonzero Classical Discord

    NASA Astrophysics Data System (ADS)

    Gheorghiu, Vlad; de Oliveira, Marcos C.; Sanders, Barry C.

    2015-07-01

    Quantum discord is the quantitative difference between two alternative expressions for bipartite mutual information, given respectively in terms of two distinct definitions for the conditional entropy. By constructing a stochastic model of shared states, classical discord can be similarly defined, quantifying the presence of some stochasticity in the measurement process. Therefore, discord can generally be understood as a quantification of the system's state disturbance due to local measurements, be it quantum or classical. We establish an operational meaning of classical discord in the context of state merging with noisy measurement and thereby show the quantum-classical separation in terms of a negative conditional entropy.

  5. Classical and Quantum Spreading of Position Probability

    ERIC Educational Resources Information Center

    Farina, J. E. G.

    1977-01-01

    Demonstrates that the standard deviation of the position probability of a particle moving freely in one dimension is a function of the standard deviation of its velocity distribution and time in classical or quantum mechanics. (SL)

  6. The Classics, Con Brio

    ERIC Educational Resources Information Center

    Hansen, James

    1978-01-01

    Sponsored by a consortium of 30 American universities, Rome's Intercollegiate Center for Classical Studies offers a year of study to American undergraduate classics majors. Instructors are also American and normally stay only a year; teaching assistants are always ex-students of the center. Extensive field trips are an important part of the…

  7. Classic-Ada(TM)

    NASA Technical Reports Server (NTRS)

    Valley, Lois

    1989-01-01

    The SPS product, Classic-Ada, is a software tool that supports object-oriented Ada programming with powerful inheritance and dynamic binding. Object Oriented Design (OOD) is an easy, natural development paradigm, but it is not supported by Ada. Following the DOD Ada mandate, SPS developed Classic-Ada to provide a tool which supports OOD and implements code in Ada. It consists of a design language, a code generator and a toolset. As a design language, Classic-Ada supports the object-oriented principles of information hiding, data abstraction, dynamic binding, and inheritance. It also supports natural reuse and incremental development through inheritance, code factoring, and Ada, Classic-Ada, dynamic binding and static binding in the same program. Only nine new constructs were added to Ada to provide object-oriented design capabilities. The Classic-Ada code generator translates user application code into fully compliant, ready-to-run, standard Ada. The Classic-Ada toolset is fully supported by SPS and consists of an object generator, a builder, a dictionary manager, and a reporter. Demonstrations of Classic-Ada and the Classic-Ada Browser were given at the workshop.

  8. Solvation Mechanism of Task-Specific Ionic Liquids in Water: A Combined Investigation Using Classical Molecular Dynamics and Density Functional Theory.

    PubMed

    Yuvaraj, Surya V J; Zhdanov, Ravil K; Belosludov, Rodion V; Belosludov, Vladimir R; Subbotin, Oleg S; Kanie, Kiyoshi; Funaki, Kenji; Muramatsu, Atsushi; Nakamura, Takashi; Kawazoe, Yoshiyuki

    2015-10-08

    The solvation behavior of task-specific ionic liquids (TSILs) containing a common, L-histidine derived imidazolium cation [C20H28N3O3](+) and different anions, bromide-[Br](-) and bis(trifluoromethylsulfonyl)amide-[NTF2](-), in water is examined, computationally. These amino acid functionalized ionic liquids (ILs) are taken into account because of their ability to react with rare earth metal salts. It has been noted that the TSIL with [Br](-) is more soluble than its counterpart TSIL with [NTF2](-), experimentally. In this theoretical work, the combined classical molecular dynamics (CMD) and density functional theory (DFT) calculations are performed to study the behavior of the bulk phase of these two TSILs in the vicinity of water (H2O) molecules with different concentrations. Initially, all the constructed systems are equilibrated using the CMD method. The final structures of the equilibrated systems are extracted for DFT calculations. Under CMD operation, the radial distribution function (RDF) plots and viscosity of TSILs are analyzed to understand the effect of water on TSILs. In the DFT regime, binding energy per H2O, charge transfer, charge density mapping, and electronic density of states (EDOS) analyses are done. The CMD results along with the DFT results are consolidated to support the hydrophilic and hydrophobic nature of the TSILs. Interestingly, we have found a strong correlation between the viscosity and the EDOS results that leads to an understanding of the hydration properties of the TSILs.

  9. Classical/Non‐classical Polyoxometalate Hybrids

    PubMed Central

    Santiago‐Schübel, Beatrix; Willbold, Sabine; Heß, Volkmar

    2016-01-01

    Abstract Two polyanions [SeI V 2PdII 4WVI 14O56H]11− and [SeI V 4PdII 4WVI 28O108H12]12− are the first hybrid polyoxometalates in which classical (Group 5/6 metal based) and non‐classical (late transition‐metal based) polyoxometalate units are joined. Requiring no supporting groups, this co‐condensation of polyoxotungstate and isopolyoxopalladate constituents also provides a logical link between POM‐PdII coordination complexes and the young subclass of polyoxopalladates. Solid‐state, solution, and gas‐phase studies suggest interesting specific reactivities for these hybrids and point to several potential derivatives and functionalization strategies. PMID:27617918

  10. Classical simulation of entangled states

    NASA Astrophysics Data System (ADS)

    Bharath, H. M.; Ravishankar, V.

    2014-06-01

    Characterization of nonclassicality or quantumness of a state is fundamental to foundations of quantum mechanics and quantum information. At the heart of the problem is the question whether there exist classical systems—howsoever complicated—that can mimic a given quantum state. Whilst this has been traditionally addressed through the violation of Bell inequality or nonseparability, we show that it is possible to go beyond them, by introducing the concept of classical simulation. Focusing on the two-qubit case, we show that, while for pure states, classical simulability is equivalent to existence of a local hidden variable (LHV) model, the conditions for simulability can be weaker for mixed states, demanding what we call only a generalized LHV description. Consequently, quantum states which defy a classical simulation—which we call exceptional—may require conditions which are more stringent than violation of Bell inequalities. We illustrate these features with a number of representative examples and discuss the underlying reasons, by employing fairly simple arguments.

  11. Reflections on the mechanical structure of the base of the skull and on the face. Part 1: Classical theories, observed structures.

    PubMed

    Ferré, J C; Chevalier, C; Robert, R; Degrez, J; Le Cloarec, A Y; Legoux, R; Orio, E; Barbin, J Y

    1989-01-01

    Using thick sections of the base of the skull and face their mechanical structure is viewed from the engineering aspect and the anatomic solutions evolved are compared with those selected by Aerospatiale engineers for the concept and development of the Airbus. It is concluded that the anterior and middle cranial fossae, together with the face, constitute an inseparable mechanical assembly each of whose component units participate in the rigidity of the others. Since this mechanical assembly must provide maximal rigidity for minimal weight, this suggests that aeronautical solutions should throw much light on the detail of construction of the skull and face. Indeed, the rigidity and lightness of the latter are obtained by means of solutions familiar in aeronautics: the reliance on thin-shelled beams with a honeycomb filling, the diploe analogous to a preconstrained composite or sandwich structure, a system of frames, struts and stiffeners, and the use of fillets at the sites of junction of struts.

  12. Structural basis for dual-inhibition mechanism of a non-classical Kazal-type serine protease inhibitor from horseshoe crab in complex with subtilisin.

    PubMed

    Shenoy, Rajesh T; Thangamani, Saravanan; Velazquez-Campoy, Adrian; Ho, Bow; Ding, Jeak Ling; Sivaraman, J

    2011-04-26

    Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki = 1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1∶2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.

  13. Structural Basis for Dual-Inhibition Mechanism of a Non-Classical Kazal-Type Serine Protease Inhibitor from Horseshoe Crab in Complex with Subtilisin

    SciTech Connect

    Shenoy, Rajesh T.; Thangamani, Saravanan; Velazquez-Campoy, Adrian; Ho, Bow; Ding, Jeak Ling; Sivaraman, J.; Kursula, Petri

    2011-04-26

    Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki=1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1:2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.

  14. More Gamma More Predictions: Gamma-Synchronization as a Key Mechanism for Efficient Integration of Classical Receptive Field Inputs with Surround Predictions

    PubMed Central

    Vinck, Martin; Bosman, Conrado A.

    2016-01-01

    During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30–90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other’s CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that

  15. Classical and semiclassical aspects of chemical dynamics

    SciTech Connect

    Gray, S.K.

    1982-08-01

    Tunneling in the unimolecular reactions H/sub 2/C/sub 2/ ..-->.. HC/sub 2/H, HNC ..-->.. HCN, and H/sub 2/CO ..-->.. H/sub 2/ + CO is studied with a classical Hamiltonian that allows the reaction coordinate and transverse vibrational modes to be considered directly. A combination of classical perturbation theory and the semiclassical WKB method allows tunneling probabilities to be obtained, and a statistical theory (RRKM) is used to construct rate constants for these reactions in the tunneling regime. In this fashion, it is found that tunneling may be important, particularly for low excitation energies. Nonadiabatic charge transfer in the reaction Na + I ..-->.. Na /sup +/ + I/sup -/ is treated with classical trajectories based on a classical Hamiltonian that is the analogue of a quantum matrix representation. The charge transfer cross section obtained is found to agree reasonably well with the exact quantum results. An approximate semiclassical formula, valid at high energies, is also obtained. The interaction of radiation and matter is treated from a classical viewpoint. The excitation of an HF molecule in a strong laser is described with classical trajectories. Quantum mechanical results are also obtained and compared to the classical results. Although the detailed structure of the pulse time averaged energy absorption cannot be reproduced classically, classical mechanics does predict the correct magnitude of energy absorption, as well as certain other qualitative features. The classical behavior of a nonrotating diatomic molecule in a strong laser field is considered further, by generating a period advance map that allows the solution over many periods of oscillation of the laser to be obtained with relative ease. Classical states are found to form beautiful spirals in phase space as time progresses. A simple pendulum model is found to describe the major qualitative features. (WHM)

  16. Classical decoherence in a nanomechanical resonator

    NASA Astrophysics Data System (ADS)

    Maillet, Olivier; Fefferman, Andrew; Gazizulin, Rasul; Godfrin, Henri; Bourgeois, Olivier; Collin, Eddy; ULT Grenoble Team

    Decoherence can be viewed either in its quantum picture, where it stands for the loss of phase coherence of a superposition state, or as its classical equivalent, where the phase of an oscillating signal is smeared due to frequency fluctuations. Little is known about quantum coherence of mechanical systems, as opposed to electromagnetic degrees of freedom. Indeed the bridge between quantum and classical physics is under intense investigation, using in particular classical nanomechanical analogues of quantum phenomena. Here we report on a model experiment in which the coherence of a high quality silicon-nitride mechanical resonator is defined in the classical picture. Its intrinsic properties are characterized over an unprecedentedly large dynamic range. By engineering frequency fluctuations, we can create artificial pure dephasing and study its effects on the dynamics of the system. Finally, we develop the methods to characterize pure dephasing that can be applied to a wide range of mechanical devices.

  17. From classical psychodynamics to evidence synthesis: the motif of repression and a contemporary understanding of a key mediatory mechanism in psychosis.

    PubMed

    Fleming, Mick P; Martin, Colin R

    2012-06-01

    The stress vulnerability model has proven to be a politically important model for two reasons. It has provided the framework that defines a temporal and dynamic process whereby a person's uniquely determined biopsychosocial vulnerability to schizophrenia symptoms interacts with his or her capacity to manage stress and the amount and type of stress experienced in such a way that the person experiences schizophrenia symptoms. Second, the development of this framework promoted the notion of inherited and acquired vulnerability. Implicit was that vulnerability was individually determined and that there was a role for psychosocial factors in the development/maintenance of schizophrenia symptoms. This proved to be a catalyst for the development of studies implicating psychosocial factors in the etiology of schizophrenia symptoms. Studies derived from cognitive-behavioral theories have proven the most successful in identifying thinking patterns, emotional disturbances, and neurocognitive and defensive vulnerability factors inherent in the development of schizophrenia symptoms. Historically, within the psychoanalytic school there has been debate regarding the role of repressive coping mechanisms in schizophrenia development. Psychoanalytic theories have always appeared incapable of providing etiologic explanations of schizophrenia symptoms, with the possible exception of Melanie Klein, than other more salient psychosocial schools. Mechanisms within the process of repressive coping are consistent with evidence and mechanisms supporting the stress vulnerability models and existing cognitive-behavioral theories regarding development of paranoid delusions. These mechanisms are less consistent with social cognitive explanations of schizophrenia symptoms.

  18. Classical-Quantum Limits

    NASA Astrophysics Data System (ADS)

    Oliynyk, Todd A.

    2016-12-01

    We introduce a new approach to analyzing the interaction between classical and quantum systems that is based on a limiting procedure applied to multi-particle Schrödinger equations. The limit equations obtained by this procedure, which we refer to as the classical-quantum limit, govern the interaction between classical and quantum systems, and they possess many desirable properties that are inherited in the limit from the multi-particle quantum system. As an application, we use the classical-quantum limit equations to identify the source of the non-local signalling that is known to occur in the classical-quantum hybrid scheme of Hall and Reginatto. We also derive the first order correction to the classical-quantum limit equation to obtain a fully consistent first order approximation to the Schrödinger equation that should be accurate for modeling the interaction between particles of disparate mass in the regime where the particles with the larger masses are effectively classical.

  19. No return to classical reality

    NASA Astrophysics Data System (ADS)

    Jennings, David; Leifer, Matthew

    2016-01-01

    At a fundamental level, the classical picture of the world is dead, and has been dead now for almost a century. Pinning down exactly which quantum phenomena are responsible for this has proved to be a tricky and controversial question, but a lot of progress has been made in the past few decades. We now have a range of precise statements showing that whatever the ultimate laws of nature are, they cannot be classical. In this article, we review results on the fundamental phenomena of quantum theory that cannot be understood in classical terms. We proceed by first granting quite a broad notion of classicality, describe a range of quantum phenomena (such as randomness, discreteness, the indistinguishability of states, measurement-uncertainty, measurement-disturbance, complementarity, non-commutativity, interference, the no-cloning theorem and the collapse of the wave-packet) that do fall under its liberal scope, and then finally describe some aspects of quantum physics that can never admit a classical understanding - the intrinsically quantum mechanical aspects of nature. The most famous of these is Bell's theorem, but we also review two more recent results in this area. Firstly, Hardy's theorem shows that even a finite-dimensional quantum system must contain an infinite amount of information, and secondly, the Pusey-Barrett-Rudolph theorem shows that the wave function must be an objective property of an individual quantum system. Besides being of foundational interest, results of this sort now find surprising practical applications in areas such as quantum information science and the simulation of quantum systems.

  20. A Classical Science Transformed.

    ERIC Educational Resources Information Center

    Kovalevsky, Jean

    1979-01-01

    Describes how satellites and other tools of space technology have transformed classical geodesy into the science of space geodynamics. The establishment and the activities of the French Center for Geodynamic and Astronomical Research Studies (CERGA) are also included. (HM)

  1. Quantum simulation of classical thermal states.

    PubMed

    Dür, W; Van den Nest, M

    2011-10-21

    We establish a connection between ground states of local quantum Hamiltonians and thermal states of classical spin systems. For any discrete classical statistical mechanical model in any spatial dimension, we find an associated quantum state such that the reduced density operator behaves as the thermal state of the classical system. We show that all these quantum states are unique ground states of a universal 5-body local quantum Hamiltonian acting on a (polynomially enlarged) qubit system on a 2D lattice. The only free parameters of the quantum Hamiltonian are coupling strengths of two-body interactions, which allow one to choose the type and dimension of the classical model as well as the interaction strength and temperature. This opens the possibility to study and simulate classical spin models in arbitrary dimension using a 2D quantum system.

  2. Quantum-mechanical vs. semi-classical spectral-line widths and shifts from the line core in the non-impact region for the Ar-perturbed/ K-radiator system

    NASA Astrophysics Data System (ADS)

    Kreye, W. C.

    2007-09-01

    New quantum-mechanical (QM) and semi-classical (SC) shifts (d's) and widths (HWHM's, w's) were measured from the line core of computed full spectral-line shapes for the Ar-perturbed/K-radiator system (K/Ar). The initial state of our model was based on a 4p2P3/2,1/2 pseudo-potential for the K/Ar system, and the final state on a zero potential. The Fourier transform of the line shape formed the basis for the computations. Excellent agreement was found between the QM and SC values of d and of w in a high-pressure (P) non-impact region, which was characterized by a √P dependence of w and a P dependence of d. These agreements were shown to be another example of a correspondence between classical (SC) quantities and QM quantities in the limit of large quantum numbers. Typically at P=1×106 Torr and T=400 K, wQM=448 cm-1 and wSC=479 cm-1, where the deviation from the mean is ±3.3%. Also, dQM=-3815 cm-1 and dSC=-3716 cm-1, where the deviation from the mean is ±1.3%. A new general method was formulated which yielded a definite pressure P0, which was defined as an upper limit to the low-pressure impact approximation and a lower limit to the non-impact region.

  3. HIV-1 Reverse Transcriptase Still Remains a New Drug Target: Structure, Function, Classical Inhibitors, and New Inhibitors with Innovative Mechanisms of Actions

    PubMed Central

    Esposito, Francesca; Corona, Angela; Tramontano, Enzo

    2012-01-01

    During the retrotranscription process, characteristic of all retroviruses, the viral ssRNA genome is converted into integration-competent dsDNA. This process is accomplished by the virus-coded reverse transcriptase (RT) protein, which is a primary target in the current treatments for HIV-1 infection. In particular, in the approved therapeutic regimens two classes of drugs target RT, namely, nucleoside RT inhibitors (NRTIs) and nonnucleoside RT inhibitors (NNRTIs). Both classes inhibit the RT-associated polymerase activity: the NRTIs compete with the natural dNTP substrate and act as chain terminators, while the NNRTIs bind to an allosteric pocket and inhibit polymerization noncompetitively. In addition to these two classes, other RT inhibitors (RTIs) that target RT by distinct mechanisms have been identified and are currently under development. These include translocation-defective RTIs, delayed chain terminators RTIs, lethal mutagenesis RTIs, dinucleotide tetraphosphates, nucleotide-competing RTIs, pyrophosphate analogs, RT-associated RNase H function inhibitors, and dual activities inhibitors. This paper describes the HIV-1 RT function and molecular structure, illustrates the currently approved RTIs, and focuses on the mechanisms of action of the newer classes of RTIs. PMID:22778958

  4. Coherent quantum states from classical oscillator amplitudes

    NASA Astrophysics Data System (ADS)

    Briggs, John S.; Eisfeld, Alexander

    2012-05-01

    In the first days of quantum mechanics Dirac pointed out an analogy between the time-dependent coefficients of an expansion of the Schrödinger equation and the classical position and momentum variables solving Hamilton's equations. Here it is shown that the analogy can be made an equivalence in that, in principle, systems of classical oscillators can be constructed whose position and momenta variables form time-dependent amplitudes which are identical to the complex quantum amplitudes of the coupled wave function of an N-level quantum system with real coupling matrix elements. Hence classical motion can reproduce quantum coherence.

  5. Factorizations of one-dimensional classical systems

    SciTech Connect

    Kuru, Senguel; Negro, Javier

    2008-02-15

    A class of one-dimensional classical systems is characterized from an algebraic point of view. The Hamiltonians of these systems are factorized in terms of two functions that together with the Hamiltonian itself close a Poisson algebra. These two functions lead directly to two time-dependent integrals of motion from which the phase motions are derived algebraically. The systems so obtained constitute the classical analogues of the well known factorizable one-dimensional quantum mechanical systems.

  6. Bohmian trajectory from the "classical" Schrödinger equation.

    PubMed

    Sengupta, Santanu; Khatua, Munmun; Chattaraj, Pratim Kumar

    2014-12-01

    The quantum-classical correspondence is studied for a periodically driven quartic oscillator exhibiting integrable and chaotic dynamics, by studying the Bohmian trajectory of the corresponding "classical" Schrödinger equation. Phase plots and the Kolmogorov-Sinai entropy are computed and compared with the classical trajectory as well as the Bohmian trajectory obtained from the time dependent Schrödinger equation. Bohmian mechanics at the classical limit appears to mimick the behavior of a dissipative dynamical system.

  7. Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra.

    PubMed

    Mullin, Jonathan; Schatz, George C

    2012-03-01

    A multiscale method is presented that allows for evaluation of plasmon-enhanced optical properties of nanoparticle/molecule complexes with no additional cost compared to standard electrodynamics (ED) and linear response quantum mechanics (QM) calculations for the particle and molecule, respectively, but with polarization and orientation effects automatically described. The approach first calculates the total field of the nanoparticle by ED using the finite difference time domain (FDTD) method. The field intensity in the frequency domain as a function of distance from the nanoparticle is calculated via a Fourier transform. The molecular optical properties are then calculated with QM in the frequency domain in the presence of the total field of the nanoparticle. Back-coupling due to dipolar reradiation effects is included in the single-molecule plane wave approximation. The effects of polarization and partial orientation averaging are considered. The QM/ED method is evaluated for the well-characterized test case of surface-enhanced Raman scattering (SERS) of pyridine bound to silver, as well as for the resonant Raman chromophore rhodamine 6G. The electromagnetic contribution to the enhancement factor is 10(4) for pyridine and 10(2) for rhodamine 6G.

  8. Classicism and Romanticism.

    ERIC Educational Resources Information Center

    Huddleston, Gregory H.

    1993-01-01

    Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)

  9. Classical Mythology. Fourth Edition.

    ERIC Educational Resources Information Center

    Morford, Mark P. O.; Lenardon, Robert J.

    Designed for students with little or no background in classical literature, this book introduces the Greek and Roman myths of creation, myths of the gods, Greek sagas and local legends, and presents contemporary theories about the myths. Drawing on Homer, Hesiod, Pindar, Vergil, and others, the book provides many translations and paraphrases of…

  10. Renewing Literary Classics.

    ERIC Educational Resources Information Center

    Karolides, Nicholas J., Ed.

    1983-01-01

    The articles in this journal issue suggest techniques for classroom use of literature that has "withstood the test of time." The titles of the articles and their authors are as follows: (1) "The Storytelling Connection for the Classics" (Mary Ellen Martin); (2) "Elizabeth Bennet: A Liberated Woman" (Geneva Marking);…

  11. Careers in the Classics

    ERIC Educational Resources Information Center

    Lum, Lydia

    2005-01-01

    America's few Black classics professors have overcome contempt and criticism to contribute a unique perspective to the study of the ancient world. Dr. Patrice Rankine, an associate professor from Purdue University, has grown used to the irony. As one of the few Black classicists teaching at an American university, he has drawn plenty of skepticism…

  12. Classics in What Sense?

    ERIC Educational Resources Information Center

    Camic, Charles

    2008-01-01

    They seem the perfect bookends for the social psychologist's collection of "classics" of the field. Two volumes, nearly identical in shape and weight and exactly a century old in 2008--each professing to usher "social psychology" into the world as they both place the hybrid expression square in their titles but then proceed to stake out the field…

  13. Children's Classics. Fifth Edition.

    ERIC Educational Resources Information Center

    Jordan, Alice M.

    "Children's Classics," a 1947 article by Alice M. Jordan reprinted from "The Horn Book Magazine," examines the dynamics and appeal of some of the most famous books for young readers, including "Alice in Wonderland,""The Wind in the Willows,""Robinson Crusoe," and "Andersen's Fairy Tales." Paul Hein's annotated bibliography, a revision of Jordan's…

  14. Teaching Tomorrow's Classics.

    ERIC Educational Resources Information Center

    Tighe, Mary Ann; Avinger, Charles

    1994-01-01

    Describes young adult novels that may prove to be classics of the genre. Discusses "The "Chocolate War" by Robert Cormier, "The Outsiders" by S. E. Hinton, "The Witch of Blackbird Pond" by Elizabeth George Speare, and "On Fortune's Wheel" by Cynthia Voight. (HB)

  15. Getting into Classical Chinese

    ERIC Educational Resources Information Center

    Kent, George W.

    1976-01-01

    The world of classical Chinese is distant both in time and space from the world of the English-speaking American. The instructor must not, however, use a no-attention-to-meaning approach assuming some words are untranslateable or create confusion in discussing the nature of Chinese script. (CFM)

  16. Observations of classical cepheids

    NASA Technical Reports Server (NTRS)

    Pel, J. W.

    1980-01-01

    The observations of classical Cepheids are reviewed. The main progress that has been made is summarized and some of the problems yet to be solved are discussed. The problems include color excesses, calibration of color, duplicity, ultraviolet colors, temperature-color relations, mass discrepancies, and radius determination.

  17. Classical Demonstration of Polarization.

    ERIC Educational Resources Information Center

    Bauman, Robert P.; Moore, Dennis R.

    1980-01-01

    Presents a classical demonstration of polarization for high school students. The initial state of this model, which demonstrates the important concepts of the optical and quantum problems, was developed during the 1973 summer program on lecture demonstration at the U.S. Naval Academy. (HM)

  18. Classical galactosaemia revisited.

    PubMed

    Bosch, Annet M

    2006-08-01

    Classical galactosaemia (McKusick 230400) is an: autosomal recessive disorder of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712). Most patients present in the neonatal period, after ingestion of galactose, with jaundice, hepatosplenomegaly, hepatocellular insufficiency, food intolerance, hypoglycaemia, renal tubular dysfunction, muscle hypotonia, sepsis and cataract. The gold standard for diagnosis of classical galactosaemia is measurement of GALT activity in erythrocytes. Gas-chromatographic determination of urinary sugars and sugar alcohols demonstrates elevated concentrations of galactose and galactitol. The only therapy for patients with classical galactosaemia is a galactose-restricted diet, and initially all galactose must be removed from the diet as soon as the diagnosis is suspected. After the neonatal period, a lactose-free diet is advised in most countries, without restriction of galactose-containing fruit and vegetables. In spite of the strict diet, long-term complications such as retarded mental development, verbal dyspraxia, motor abnormalities and hypergonadotrophic hypogonadism are frequently seen in patients with classical galactosaemia. It has been suggested that these complications may result from endogenous galactose synthesis or from abnormal galactosylation. Novel therapeutic strategies, aiming at the prevention of galactose 1-phosphate production, should be developed. In the meantime, the follow-up protocol for patients with GALT deficiency should focus on early detection, evaluation and, if possible, early intervention in problems of motor, speech and cognitive development.

  19. Driven topological systems in the classical limit

    NASA Astrophysics Data System (ADS)

    Duncan, Callum W.; Öhberg, Patrik; Valiente, Manuel

    2017-03-01

    Periodically driven quantum systems can exhibit topologically nontrivial behavior, even when their quasienergy bands have zero Chern numbers. Much work has been conducted on noninteracting quantum-mechanical models where this kind of behavior is present. However, the inclusion of interactions in out-of-equilibrium quantum systems can prove to be quite challenging. On the other hand, the classical counterpart of hard-core interactions can be simulated efficiently via constrained random walks. The noninteracting model, proposed by Rudner et al. [Phys. Rev. X 3, 031005 (2013), 10.1103/PhysRevX.3.031005], has a special point for which the system is equivalent to a classical random walk. We consider the classical counterpart of this model, which is exact at a special point even when hard-core interactions are present, and show how these quantitatively affect the edge currents in a strip geometry. We find that the interacting classical system is well described by a mean-field theory. Using this we simulate the dynamics of the classical system, which show that the interactions play the role of Markovian, or time-dependent disorder. By comparing the evolution of classical and quantum edge currents in small lattices, we find regimes where the classical limit considered gives good insight into the quantum problem.

  20. Un-renormalized classical electromagnetism

    SciTech Connect

    Ibison, Michael . E-mail: ibison@earthtech.org

    2006-02-15

    This paper follows in the tradition of direct-action versions of electromagnetism having the aim of avoiding a balance of infinities wherein a mechanical mass offsets an infinite electromagnetic mass so as to arrive at a finite observed value. However, the direct-action approach ultimately failed in that respect because its initial exclusion of self-action was later found to be untenable in the relativistic domain. Pursing the same end, this paper examines instead a version of electromagnetism wherein mechanical action is excluded and self-action is retained. It is shown that the resulting theory is effectively interacting due to the presence of infinite forces. A vehicle for the investigation is a pair of classical point charges in a positronium-like arrangement for which the orbits are found to be self-sustaining and naturally quantized.

  1. On the Classical Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Benseny, Albert; Tena, David; Oriols, Xavier

    2016-10-01

    In this paper, the classical Schrödinger equation (CSE), which allows the study of classical dynamics in terms of wave functions, is analyzed theoretically and numerically. First, departing from classical (Newtonian) mechanics, and assuming an additional single-valued condition for the Hamilton’s principal function, the CSE is obtained. This additional assumption implies inherent non-classical features on the description of the dynamics obtained from the CSE: the trajectories do not cross in the configuration space. Second, departing from Bohmian mechanics and invoking the quantum-to-classical transition, the CSE is obtained in a natural way for the center of mass of a quantum system with a large number of identical particles. This quantum development imposes the condition of dealing with a narrow wave packet, which implicitly avoids the non-classical features mentioned above. We illustrate all the above points with numerical simulations of the classical and quantum Schrödinger equations for different systems.

  2. Nonequilibrium statistical mechanics of open classical systems

    NASA Astrophysics Data System (ADS)

    Rey-Bellet, Luc

    2006-03-01

    We describe the ergodic and thermodynamical properties of chains of anharmonic oscillators coupled, at the boundaries, to heat reservoirs at positive and different temperatures. We discuss existence and uniqueness of stationary states, rate of convergence to stationarity, heat flows and entropy production, Kubo formula and Gallavotti-Cohen fluctuation theorem.

  3. Rotating Space Elevators: Classical and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Knudsen, Steven

    We investigate a novel and unique dynamical system, the Rotating Space Elevator (RSE). The RSE is a multiply rotating system of strings reaching beyond the Earth geo-synchronous satellite orbit. Objects sliding along the RSE string ("climbers") do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in the space elevator technology which is how to supply the energy to the climbers moving along the string. The RSE is a double rotating floppy string. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in the double rotating frame. The RSE exhibits a variety of interesting dynamical phenomena studied in this thesis.

  4. The symplectic group and classical mechanics.

    PubMed

    Dragt, Alex J

    2005-06-01

    The symplectic group is the underlying symmetry group for Hamiltonian dynamics. Yet relatively little is commonly known about its properties including its Lie structure and representations. This paper describes and summarizes some of these properties; and, as a first application of symplectic group theory, provides a symplectic classification of all first-order differential equations in an even number of variables.

  5. Factors Influencing Learning of Classical Mechanics.

    ERIC Educational Resources Information Center

    Champagne, Audrey B.; And Others

    Beginning college physics students' misconceptions about moving objects, their mathematics skills, and formal reasoning ability, are all believed to be related to their achievement in physics. It is hypothesized that students whose knowledge structures include misconceptions that are in conflict with concepts in the lectures and text will have…

  6. The Statistical Interpretation of Classical Thermodynamic Heating and Expansion Processes

    ERIC Educational Resources Information Center

    Cartier, Stephen F.

    2011-01-01

    A statistical model has been developed and applied to interpret thermodynamic processes typically presented from the macroscopic, classical perspective. Through this model, students learn and apply the concepts of statistical mechanics, quantum mechanics, and classical thermodynamics in the analysis of the (i) constant volume heating, (ii)…

  7. The classic project

    NASA Astrophysics Data System (ADS)

    Iselin, F. Christoph

    1997-02-01

    Exchange of data and algorithms among accelerator physics programs is difficult because of unnecessary differences in input formats and internal data structures. To alleviate these problems a C++ class library called CLASSIC (Class Library for Accelerator System Simulation and Control) is being developed with the goal to provide standard building blocks for computer programs used in accelerator design. It includes modules for building accelerator lattice structures in computer memory using a standard input language, a graphical user interface, or a programmed algorithm. It also provides simulation algorithms. These can easily be replaced by modules which communicate with the control system of the accelerator. Exchange of both data and algorithm between different programs using the CLASSIC library should present no difficulty.

  8. Classical swine fever.

    PubMed

    Moennig, V; Becher, P; Beer, M

    2013-01-01

    Classical swine fever is a serious and economically important transboundary disease threatening pig production globally. The infection may occur in backyard pigs, feral pig populations and domestic pigs. Whereas there are proven control strategies for the latter pig population, control in backyard pigs with poor biosecurity settings or in wild boar populations of high density still poses a problem in some parts of the world. Laboratory diagnostic methods, efficacious vaccines and contingency plans are in place in most industrialised countries. So far modified live vaccines (MLV) are still the first choice for rapid and reliable immune protection. Since antibodies elicited by conventional MLV cannot be distinguished from antibodies after natural infection, considerable efforts are put into the development of a live marker vaccine accompanied by a serological test. Nevertheless, some remaining gaps with respect to the diagnosis of and vaccination against classical swine fever have been identified.

  9. Classical Vs. Superfluid Turbulence

    NASA Astrophysics Data System (ADS)

    Roche, P.-E.

    2008-11-01

    Thanks to a zero-viscosity, superfluids offer a unique testing ground for hydrodynamic models, in particular for turbulence ones. In Kolmogorov's turbulence model, viscosity is well known to damp the kinetic energy of the smallest eddies, and thus to introduce a cut-off at one end of the turbulent cascade. Significant differences between this ``classical'' turbulence and the turbulence of a superfluid are therefore expected, but --surprisingly- most experiments rather evidenced strong similarities. We will give an overview of a set of experiments designed to compare in details the classical versus superfluid turbulences, up to a record mass flow of superfluid (700g/s of He @ 1.6K). Then, we will focus on some unexpected vorticity measurements, which can be interpreted assuming that the superfluid vortices are passively advected by the largest scales of the flow, in contrast with the ``classical'' turbulence counterpart. Numerical simulations -based on regular DNS- will be presented to complete this interpretation. In collaboration with C. Barenghi, University of Newcastle; B. Castaing and E. Levèque, ENSL, Lyon; S. David, IEF, CNRS, Orsay; B. Rousset, SBT/CEA, Grenoble; and P. Tabeling, H. Willaime MMN, ESPCI, Paris.

  10. Quantum Mechanics From the Cradle?

    ERIC Educational Resources Information Center

    Martin, John L.

    1974-01-01

    States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)

  11. Medical and rehabilitation issues in classical ballet.

    PubMed

    Stretanski, Michael F; Weber, G J

    2002-05-01

    Classical ballet is a demanding professional occupation, with participants who are often underserved in terms of accurate diagnosis and appropriate comprehensive medical care. The view that follows is designed to be as global and insightful as published to date. Specific rehabilitation considerations, dance mechanics, idiosyncratic differential diagnosis, and personality and equipment issues are discussed, and a rational view of dogma is presented.

  12. Maxwell and the classical wave particle dualism.

    PubMed

    Mendonça, J T

    2008-05-28

    Maxwell's equations are one of the greatest theoretical achievements in physics of all times. They have survived three successive theoretical revolutions, associated with the advent of relativity, quantum mechanics and modern quantum field theory. In particular, they provide the theoretical framework for the understanding of the classical wave particle dualism.

  13. Semi-classical Electrodynamics

    NASA Astrophysics Data System (ADS)

    Lestone, John

    2016-03-01

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. We describe semi-classical approaches that can be used to obtain a more intuitive physical feel for several QED processes including electro-statics, Compton scattering, pair annihilation, the anomalous magnetic moment, and the Lamb shift, that could be taught easily to undergraduate students. Any physicist who brings their laptop to the talk will be able to build spread sheets in less than 10 minutes to calculate g/2 =1.001160 and a Lamb shift of 1057 MHz.

  14. Fano Interference in Classical Oscillators

    ERIC Educational Resources Information Center

    Satpathy, S.; Roy, A.; Mohapatra, A.

    2012-01-01

    We seek to illustrate Fano interference in a classical coupled oscillator by using classical analogues of the atom-laser interaction. We present an analogy between the dressed state picture of coherent atom-laser interaction and a classical coupled oscillator. The Autler-Townes splitting due to the atom-laser interaction is analogous to the…

  15. Classical Trajectories and Quantum Spectra

    NASA Technical Reports Server (NTRS)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  16. Decoherence, chaos, the quantum and the classical

    SciTech Connect

    Zurek, W.H.; Paz, J.P.

    1994-04-01

    The key ideas of the environment-induced decoherence approach are reviewed. Application of decoherence to the transition from quantum to classical in open quantum systems with chaotic classical analogs is described. The arrow of time is, in this context, a result of the information loss to the correlations with the environment. The asymptotic rate of entropy production (which is reached quickly, on the dynamical timescale) is independent of the details of the coupling of the quantum system to the environment, and is set by the Lyapunov exponents. We also briefly outline the existential interpretation of quantum mechanics, justifying the slogan ``No information without representation.``

  17. Force fields for classical molecular dynamics.

    PubMed

    Monticelli, Luca; Tieleman, D Peter

    2013-01-01

    In this chapter we review the basic features and the principles underlying molecular mechanics force fields commonly used in molecular modeling of biological macromolecules. We start by summarizing the historical background and then describe classical pairwise additive potential energy functions. We introduce the problem of the calculation of nonbonded interactions, of particular importance for charged macromolecules. Different parameterization philosophies are then presented, followed by a section on force field validation. We conclude with a brief overview on future perspectives for the development of classical force fields.

  18. Classical simulation of quantum energy flow in biomolecules.

    PubMed

    Stock, Gerhard

    2009-03-20

    Based on a comparison of classical and quantum-mechanical perturbation theory, the validity of classical nonequilibrium molecular dynamics simulations to describe vibrational energy redistribution in biomolecules is studied. Adopting a small model peptide in aqueous solution as an example, the theory correctly predicts quantum correction factors that need to be applied to the results of classical simulations in order to match the correct quantum results.

  19. The classical vacuum

    NASA Astrophysics Data System (ADS)

    Boyer, T. H.

    1985-08-01

    The history of vacuum concepts is reviewed, noting that no way is known to physically produce a true void. Even at absolute zero, a pattern of electromagnetic wave fluctuations are still present. The fluctuations are called zero-point radiation (ZPR). To be invariant to Lorentz transformation, ZPR has a spectral intensity proportional to the cube of each frequency. ZPR does not change in response to compression and produces a force between objects that is inversely proportional to the 4th power of the separation distance. The ZPR scale value has been measured to be one-half of the Planck constant, and is the measure of the energy of a harmonic oscillator, such as the electron, in a vacuum. Finally, since gravitational accelerations always occur in the physical space, a minimum thermal radiation can also be found for the vacuum, implying that a fixed relationship exists between thermal radiation and the classical vacuum.

  20. Supersymmetric classical cosmology

    SciTech Connect

    Escamilla-Rivera, Celia; Obregón, Octavio; Ureña-López, L. Arturo E-mail: octavio@fisica.ugto.mx

    2010-12-01

    In this work a supersymmetric cosmological model is analyzed in which we consider a general superfield action of a homogeneous scalar field supermultiplet interacting with the scale factor in a supersymmetric FRW model. There appear fermionic superpartners associated with both the scale factor and the scalar field, and classical equations of motion are obtained from the super-Wheeler-DeWitt equation through the usual WKB method. The resulting supersymmetric Einstein-Klein-Gordon equations contain extra radiation and stiff matter terms, and we study their solutions in flat space for different scalar field potentials. The solutions are compared to the standard case, in particular those corresponding to the exponential potential, and their implications for the dynamics of the early Universe are discussed in turn.

  1. Classical and quantum ghosts

    NASA Astrophysics Data System (ADS)

    Sbisà, Fulvio

    2015-01-01

    The aim of these notes is to provide a self-contained review of why it is generically a problem when a solution of a theory possesses ghost fields among the perturbation modes. We define what a ghost field is and we show that its presence is associated with a classical instability whenever the ghost field interacts with standard fields. We then show that the instability is more severe at quantum level, and that perturbative ghosts can exist only in low energy effective theories. However, if we do not consider very ad hoc choices, compatibility with observational constraints implies that low energy effective ghosts can exist only at the price of giving up Lorentz invariance or locality above the cut-off, in which case the cut-off has to be much lower that the energy scales we currently probe in particle colliders. We also comment on the possible role of extra degrees of freedom which break Lorentz invariance spontaneously.

  2. Quantum and classical phases in optomechanics

    NASA Astrophysics Data System (ADS)

    Armata, Federico; Latmiral, Ludovico; Pikovski, Igor; Vanner, Michael R.; Brukner, Časlav; Kim, M. S.

    2016-06-01

    The control of quantum systems requires the ability to change and read-out the phase of a system. The noncommutativity of canonical conjugate operators can induce phases on quantum systems, which can be employed for implementing phase gates and for precision measurements. Here we study the phase acquired by a radiation field after its radiation pressure interaction with a mechanical oscillator, and compare the classical and quantum contributions. The classical description can reproduce the nonlinearity induced by the mechanical oscillator and the loss of correlations between mechanics and optical field at certain interaction times. Such features alone are therefore insufficient for probing the quantum nature of the interaction. Our results thus isolate genuine quantum contributions of the optomechanical interaction that could be probed in current experiments.

  3. Nonlinear atom interferometer surpasses classical precision limit.

    PubMed

    Gross, C; Zibold, T; Nicklas, E; Estève, J; Oberthaler, M K

    2010-04-22

    Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave properties of particles are exploited in metrology using atom interferometers, allowing for high-precision inertia measurements. Furthermore, the state-of-the-art time standard is based on an interferometric technique known as Ramsey spectroscopy. However, the precision of an interferometer is limited by classical statistics owing to the finite number of atoms used to deduce the quantity of interest. Here we show experimentally that the classical precision limit can be surpassed using nonlinear atom interferometry with a Bose-Einstein condensate. Controlled interactions between the atoms lead to non-classical entangled states within the interferometer; this represents an alternative approach to the use of non-classical input states. Extending quantum interferometry to the regime of large atom number, we find that phase sensitivity is enhanced by 15 per cent relative to that in an ideal classical measurement. Our nonlinear atomic beam splitter follows the 'one-axis-twisting' scheme and implements interaction control using a narrow Feshbach resonance. We perform noise tomography of the quantum state within the interferometer and detect coherent spin squeezing with a squeezing factor of -8.2 dB (refs 11-15). The results provide information on the many-particle quantum state, and imply the entanglement of 170 atoms.

  4. Unraveling Quantum Annealers using Classical Hardness.

    PubMed

    Martin-Mayor, Victor; Hen, Itay

    2015-10-20

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as 'D-Wave' chips, promise to solve practical optimization problems potentially faster than conventional 'classical' computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize 'temperature chaos' as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip.

  5. Quantum-classical path integral. I. Classical memory and weak quantum nonlocality.

    PubMed

    Lambert, Roberto; Makri, Nancy

    2012-12-14

    We consider rigorous path integral descriptions of the dynamics of a quantum system coupled to a polyatomic environment, assuming that the latter is well approximated by classical trajectories. Earlier work has derived semiclassical or purely classical expressions for the influence functional from the environment, which should be sufficiently accurate for many situations, but the evaluation of quantum-(semi)classical path integral (QCPI) expressions has not been practical for large-scale simulation because the interaction with the environment introduces couplings nonlocal in time. In this work, we analyze the nature of the effects on a system from its environment in light of the observation [N. Makri, J. Chem. Phys. 109, 2994 (1998)] that true nonlocality in the path integral is a strictly quantum mechanical phenomenon. If the environment is classical, the path integral becomes local and can be evaluated in a stepwise fashion along classical trajectories of the free solvent. This simple "classical path" limit of QCPI captures fully the decoherence of the system via a classical mechanism. Small corrections to the classical path QCPI approximation may be obtained via an inexpensive random hop QCPI model, which accounts for some "back reaction" effects. Exploiting the finite length of nonlocality, we argue that further inclusion of quantum decoherence is possible via an iterative evaluation of the path integral. Finally, we show that the sum of the quantum amplitude factors with respect to the system paths leads to a smooth integrand as a function of trajectory initial conditions, allowing the use of Monte Carlo methods for the multidimensional phase space integral.

  6. Understanding the Planck blackbody spectrum and Landau diamagnetism within classical electromagnetism

    NASA Astrophysics Data System (ADS)

    Boyer, Timothy H.

    2016-11-01

    Electromagnetism is a relativistic theory, and one must exercise care in coupling this theory with nonrelativistic classical mechanics and with nonrelativistic classical statistical mechanics. Indeed historically, both the blackbody radiation spectrum and diamagnetism within classical theory have been misunderstood because of two crucial failures: (1) the neglect of classical electromagnetic zero-point radiation, and (2) the use of erroneous combinations of nonrelativistic mechanics with relativistic electrodynamics. Here we review the treatment of classical blackbody radiation, and show that the presence of Lorentz-invariant classical electromagnetic zero-point radiation can explain both the Planck blackbody spectrum and Landau diamagnetism at thermal equilibrium within classical electromagnetic theory. The analysis requires that relativistic electromagnetism is joined appropriately with simple nonrelativistic mechanical systems which can be regarded as the zero-velocity limits of relativistic systems, and that nonrelativistic classical statistical mechanics is applied only in the low-frequency limit when zero-point energy makes no contribution.

  7. The Aharonov-Bohm effect and classical potentials

    SciTech Connect

    Mijatovic, M.; Trencevski, K.; Veljanoski, B.

    1993-06-01

    Using the inverse scattering method we derive the classical potential which produces the same cross section as the Ahaxonov-Bohm effect. Because the potential is velocity dependent it shows that this effect of quantum scattering theory can reduce to non-potential classical mechanics, only. 7 refs., 3 figs.

  8. Classical system boundaries cannot be determined within quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Fields, Chris

    Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.

  9. Grassmannization of classical models

    NASA Astrophysics Data System (ADS)

    Pollet, Lode; Kiselev, Mikhail N.; Prokof'ev, Nikolay V.; Svistunov, Boris V.

    2016-11-01

    Applying Feynman diagrammatics to non-fermionic strongly correlated models with local constraints might seem generically impossible for two separate reasons: (i) the necessity to have a Gaussian (non-interacting) limit on top of which the perturbative diagrammatic expansion is generated by Wick’s theorem, and (ii) Dyson’s collapse argument implying that the expansion in powers of coupling constant is divergent. We show that for arbitrary classical lattice models both problems can be solved/circumvented by reformulating the high-temperature expansion (more generally, any discrete representation of the model) in terms of Grassmann integrals. Discrete variables residing on either links, plaquettes, or sites of the lattice are associated with the Grassmann variables in such a way that the partition function (as well as all correlation functions) of the original system and its Grassmann-field counterpart are identical. The expansion of the latter around its Gaussian point generates Feynman diagrams. Our work paves the way for studying lattice gauge theories by treating bosonic and fermionic degrees of freedom on equal footing.

  10. Extended symmetrical classical electrodynamics.

    PubMed

    Fedorov, A V; Kalashnikov, E G

    2008-03-01

    In this paper, we discuss a modification of classical electrodynamics in which "ordinary" point charges are absent. The modified equations contain additional terms describing the induced charges and currents. The densities of the induced charges and currents depend on the vector k and the vectors of the electromagnetic field, E and B . It is shown that the vectors E and B can be defined in terms of two four-potentials and the components of k are the components of a four-tensor of the third rank. The Lagrangian of the modified electrodynamics is defined. The conditions are derived at which only one four-potential determines the behavior of the electromagnetic field. It is also shown that static modified electrodynamics can describe the electromagnetic field in the inner region of an electric monopole. In the outer region of the electric monopole the electric field is governed by the Maxwell equations. It follows from boundary conditions at the interface between the inner and outer regions of the monopole that the vector k has a discrete spectrum. The electric and magnetic fields, energy, and angular momentum of the monopole are found for different eigenvalues of k .

  11. Innovation: the classic traps.

    PubMed

    Kanter, Rosabeth Moss

    2006-11-01

    Never a fad, but always in or out of fashion, innovation gets rediscovered as a growth enabler every half dozen years. Too often, though, grand declarations about innovation are followed by mediocre execution that produces anemic results, and innovation groups are quietly disbanded in cost-cutting drives. Each managerial generation embarks on the same enthusiastic quest for the next new thing. And each generation faces the same vexing challenges- most of which stem from the tensions between protecting existing revenue streams critical to current success and supporting new concepts that may be crucial to future success. In this article, Harvard Business School professor Rosabeth Moss Kanter reflects on the four major waves of innovation enthusiasm she's observed over the past 25 years. She describes the classic mistakes companies make in innovation strategy, process, structure, and skills assessment, illustrating her points with a plethora of real-world examples--including AT&T Worldnet, Timberland, and Ocean Spray. A typical strategic blunder is when managers set their hurdles too high or limit the scope of their innovation efforts. Quaker Oats, for instance, was so busy in the 1990s making minor tweaks to its product formulas that it missed larger opportunities in distribution. A common process mistake is when managers strangle innovation efforts with the same rigid planning, budgeting, and reviewing approaches they use in their existing businesses--thereby discouraging people from adapting as circumstances warrant. Companies must be careful how they structure fledgling entities alongside existing ones, Kanter says, to avoid a clash of cultures and agendas--which Arrow Electronics experienced in its attempts to create an online venture. Finally, companies commonly undervalue and underinvest in the human side of innovation--for instance, promoting individuals out of innovation teams long before their efforts can pay off. Kanter offers practical advice for avoiding

  12. A Classic Beauty

    NASA Technical Reports Server (NTRS)

    2007-01-01

    M51, whose name comes from being the 51st entry in Charles Messier's catalog, is considered to be one of the classic examples of a spiral galaxy. At a distance of about 30 million light-years from Earth, it is also one of the brightest spirals in the night sky. A composite image of M51, also known as the Whirlpool Galaxy, shows the majesty of its structure in a dramatic new way through several of NASA's orbiting observatories. X-ray data from NASA's Chandra X-ray Observatory reveals point-like sources (purple) that are black holes and neutron stars in binary star systems. Chandra also detects a diffuse glow of hot gas that permeates the space between the stars. Optical data from the Hubble Space Telescope (green) and infrared emission from the Spitzer Space Telescope (red) both highlight long lanes in the spiral arms that consist of stars and gas laced with dust. A view of M51 with the Galaxy Evolution Explorer telescope shows hot, young stars that produce lots of ultraviolet energy (blue).

    The textbook spiral structure is thought be the result of an interaction M51 is experiencing with its close galactic neighbor, NGC 5195, which is seen just above. Some simulations suggest M51's sharp spiral shape was partially caused when NGC 5195 passed through its main disk about 500 million years ago. This gravitational tug of war may also have triggered an increased level of star formation in M51. The companion galaxy's pull would be inducing extra starbirth by compressing gas, jump-starting the process by which stars form.

  13. Classical Analogs of a Diatomic Chain

    SciTech Connect

    Gutierrez, L.; Diaz-de-Anda, A.; Mendez-Sanchez, R. A.; Morales, A.; Flores, J.; Monsivais, G.

    2010-12-21

    Using one dimensional rods with different configurations classical analogs of quantum mechanical systems frequently used in solid state physics can be obtained. Among this analogs we have recently discussed locally periodic rods which lead to band spectra; the effect of a topological defect, and the Wannier Stark ladders. In this paper, we present an elastic analog of the diatomic chain and show how the acoustical and optical bands emerge, as well of the nature of the wave amplitudes.

  14. Relaxation properties in classical diamagnetism

    NASA Astrophysics Data System (ADS)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  15. Pembrolizumab in classical Hodgkin's lymphoma.

    PubMed

    Maly, Joseph; Alinari, Lapo

    2016-09-01

    Pembrolizumab is a humanized monoclonal antibody directed against programmed cell death protein 1 (PD-1), a key immune-inhibitory molecule expressed on T cells and implicated in CD4+ T-cell exhaustion and tumor immune-escape mechanisms. Classical Hodgkin's lymphoma (cHL) is a unique B-cell malignancy in the sense that malignant Reed-Sternberg (RS) cells represent a small percentage of cells within an extensive immune cell infiltrate. PD-1 ligands are upregulated on RS cells as a consequence of both chromosome 9p24.1 amplification and Epstein-Barr virus infection and by interacting with PD-1 promote an immune-suppressive effect. By augmenting antitumor immune response, pembrolizumab and nivolumab, another monoclonal antibody against PD-1, have shown significant activity in patients with relapsed/refractory cHL as well as an acceptable toxicity profile with immune-related adverse events that are generally manageable. In this review, we explore the rationale for targeting PD-1 in cHL, review the clinical trial results supporting the use of checkpoint inhibitors in this disease, and present future directions for investigation in which this approach may be used.

  16. Teaching and Demonstrating Classical Conditioning.

    ERIC Educational Resources Information Center

    Sparrow, John; Fernald, Peter

    1989-01-01

    Discusses classroom demonstrations of classical conditioning and notes tendencies to misrepresent Pavlov's procedures. Describes the design and construction of the conditioner that is used for demonstrating classical conditioning. Relates how students experience conditioning, generalization, extinction, discrimination, and spontaneous recovery.…

  17. Classical models of the spin 1/2 system

    NASA Astrophysics Data System (ADS)

    Salazar-Lazaro, Carlos H.

    We proposed a Quaternionic mechanical system motivated by the Foucault pendulum as a classical model for the dynamics of the spin ½ system. We showed that this mechanical system contains the dynamics of the spin state of the electron under a uniform magnetic field as it is given by the Schrodinger-Pauli-Equation (SPE). We closed with a characterization of the dynamics of this generalized classical system by showing that it is equivalent with the dynamics of the Schrodinger Pauli Equation as long as the solutions to the generalized classical system are roots of the Lagrangian, that is the condition L = 0 holds.

  18. Unraveling Quantum Annealers using Classical Hardness

    NASA Astrophysics Data System (ADS)

    Martin-Mayor, Victor; Hen, Itay

    2015-10-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip.

  19. Classic hallucinogens in the treatment of addictions.

    PubMed

    Bogenschutz, Michael P; Johnson, Matthew W

    2016-01-04

    Addictive disorders are very common and have devastating individual and social consequences. Currently available treatment is moderately effective at best. After many years of neglect, there is renewed interest in potential clinical uses for classic hallucinogens in the treatment of addictions and other behavioral health conditions. In this paper we provide a comprehensive review of both historical and recent clinical research on the use of classic hallucinogens in the treatment of addiction, selectively review other relevant research concerning hallucinogens, and suggest directions for future research. Clinical trial data are very limited except for the use of LSD in the treatment of alcoholism, where a meta-analysis of controlled trials has demonstrated a consistent and clinically significant beneficial effect of high-dose LSD. Recent pilot studies of psilocybin-assisted treatment of nicotine and alcohol dependence had strikingly positive outcomes, but controlled trials will be necessary to evaluate the efficacy of these treatments. Although plausible biological mechanisms have been proposed, currently the strongest evidence is for the role of mystical or other meaningful experiences as mediators of therapeutic effects. Classic hallucinogens have an excellent record of safety in the context of clinical research. Given our limited understanding of the clinically relevant effects of classic hallucinogens, there is a wealth of opportunities for research that could contribute important new knowledge and potentially lead to valuable new treatments for addiction.

  20. On the emergence of classical gravity

    NASA Astrophysics Data System (ADS)

    Larjo, Klaus

    In this thesis I will discuss how certain black holes arise as an effective, thermodynamical description from non-singular microstates in string theory. This provides a possible solution to the information paradox, and strengthens the case for treating black holes as thermodynamical objects. I will characterize the data defining a microstate of a black hole in several settings, and demonstrate that most of the data is unmeasurable for a classical observer. I will further show that the data that is measurable is universal for nearly all microstates, making it impossible for a classical observer to distinguish between microstates, thus giving rise to an effective statistical description for the black hole. In the first half of the thesis I will work with two specific systems: the half-BPS sector of [Special characters omitted.] = 4 super Yang-Mills the and the conformal field theory corresponding to the D1/D5 system; in both cases the high degree of symmetry present provides great control over potentially intractable computations. For these systems, I will further specify the conditions a quantum mechanical microstate must satisfy in order to have a classical description in terms of a unique metric, and define a 'metric operator' whose eigenstates correspond to classical geometries. In the second half of the thesis I will consider a much broader setting, general [Special characters omitted.] = I superconformal quiver gauge the= ories and their dual gravity theories, and demonstrate that a similar effective description arises also in this setting.

  1. Unraveling Quantum Annealers using Classical Hardness

    PubMed Central

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  2. Classical enhancement of quantum vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    De Lorenci, V. A.; Ford, L. H.

    2017-01-01

    We propose a mechanism for the enhancement of vacuum fluctuations by means of a classical field. The basic idea is that if an observable quantity depends quadratically upon a quantum field, such as the electric field, then the application of a classical field produces a cross term between the classical and quantum fields. This cross term may be significantly larger than the purely quantum part, but also undergoes fluctuations driven by the quantum field. We illustrate this effect in a model for light-cone fluctuations involving pulses in a nonlinear dielectric. Vacuum electric field fluctuations produce fluctuations in the speed of a probe pulse, and form an analog model for quantum gravity effects. If the material has a nonzero third-order susceptibility, then the fractional light speed fluctuations are proportional to the square of the fluctuating electric field. Hence the application of a classical electric field can enhance the speed fluctuations. We give an example where this enhancement can be an increase of 1 order of magnitude, increasing the possibility of observing the effect.

  3. Quantum dynamics in open quantum-classical systems.

    PubMed

    Kapral, Raymond

    2015-02-25

    Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.

  4. Computational quantum-classical boundary of noisy commuting quantum circuits

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  5. Computational quantum-classical boundary of noisy commuting quantum circuits

    PubMed Central

    Fujii, Keisuke; Tamate, Shuhei

    2016-01-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039

  6. Beyond quantum-classical analogies: high time for agreement?

    NASA Astrophysics Data System (ADS)

    Marrocco, Michele

    Lately, many quantum-classical analogies have been investigated and published in many acknowledged journals. Such a surge of research on conceptual connections between quantum and classical physics forces us to ask whether the correspondence between the quantum and classical interpretation of the reality is deeper than the correspondence principle stated by Bohr. Here, after a short introduction to quantum-classical analogies from the recent literature, we try to examine the question from the perspective of a possible agreement between quantum and classical laws. A paradigmatic example is given in the striking equivalence between the classical Mie theory of electromagnetic scattering from spherical scatterers and the corresponding quantum-mechanical wave scattering analyzed in terms of partial waves. The key features that make the correspondence possible are examined and finally employed to deal with the fundamental blackbody problem that marks the initial separation between classical and quantum physics. The procedure allows us to recover the blackbody spectrum in classical terms and the proof is rich in consequences. Among them, the strong analogy between the quantum vacuum and its classical counterpart.

  7. Computational quantum-classical boundary of noisy commuting quantum circuits.

    PubMed

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-18

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  8. Quantum reduplication of classical solitons

    NASA Astrophysics Data System (ADS)

    Sveshnikov, Konstantin

    1993-09-01

    The possible existence of a series of quantum copies of classical soliton solutions is discussed, which do not exist when the effective Planck constant of the theory γ tends to zero. Within the conventional weak-coupling expansion in √ γ such non-classical solitons are O(√ γ) in energy and therefore lie in between the true classical solutions and elementary quantum excitations. Analytic results concerning the shape functions, masses and characteristic scales of such quantum excitations are given for soliton models of a self-interacting scalar field. Stability properties and quantization of fluctuations in the neighborhood of these configurations are also discussed in detail.

  9. Classical and quantum Malus laws

    NASA Astrophysics Data System (ADS)

    Wódkiewicz, Krzysztof

    1995-04-01

    The classical and the quantum Malus laws for light and spin are discussed. It is shown that for spin 1/2, the quantum Malus law is equivalent in form to the classical Malus law provided the statistical average involves a quasidistribution function that can become negative. A generalization of Malus's law for arbitrary spin s is obtained in the form of a Feynman path-integral representation for the Malus amplitude. The classical limit of the Malus amplitude for s-->∞ is discussed.

  10. FSH isoform pattern in classic galactosemia.

    PubMed

    Gubbels, Cynthia S; Thomas, Chris M G; Wodzig, Will K W H; Olthaar, André J; Jaeken, Jaak; Sweep, Fred C G J; Rubio-Gozalbo, M Estela

    2011-04-01

    Female classic galactosemia patients suffer from primary ovarian insufficiency (POI). The cause for this long-term complication is not fully understood. One of the proposed mechanisms is that hypoglycosylation of complex molecules, a known secondary phenomenon of galactosemia, leads to FSH dysfunction. An earlier study showed less acidic isoforms of FSH in serum samples of two classic galactosemia patients compared to controls, indicating hypoglycosylation. In this study, FSH isoform patterns of five classic galactosemia patients with POI were compared to the pattern obtained in two patients with a primary glycosylation disorder (phosphomannomutase-2-deficient congenital disorders of glycosylation, PMM2-CDG) and POI, and in five postmenopausal women as controls. We used FPLC chromatofocussing with measurement of FSH concentration per fraction, and discovered that there were no significant differences between galactosemia patients, PMM2-CDG patients and postmenopausal controls. Our results do not support that FSH dysfunction due to a less acidic isoform pattern because of hypoglycosylation is a key mechanism of POI in this disease.

  11. Hidden invariance of the free classical particle

    SciTech Connect

    Garcia, S. )

    1994-06-01

    A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group [ital G] is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under [ital G] leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by [ital U](1) leads to quantum mechanics.

  12. Experimental contextuality in classical light

    PubMed Central

    Li, Tao; Zeng, Qiang; Song, Xinbing; Zhang, Xiangdong

    2017-01-01

    The Klyachko, Can, Binicioglu, and Shumovsky (KCBS) inequality is an important contextuality inequality in three-level system, which has been demonstrated experimentally by using quantum states. Using the path and polarization degrees of freedom of classical optics fields, we have constructed the classical trit (cetrit), tested the KCBS inequality and its geometrical form (Wright’s inequality) in this work. The projection measurement has been implemented, the clear violations of the KCBS inequality and its geometrical form have been observed. This means that the contextuality inequality, which is commonly used in test of the conflict between quantum theory and noncontextual realism, may be used as a quantitative tool in classical optical coherence to describe correlation characteristics of the classical fields. PMID:28291227

  13. Classical Foundations: Leah Rochel Johnson

    ERIC Educational Resources Information Center

    Lum, Lydia

    2005-01-01

    This article discusses the accomplishments of Leah Rochel Johnson, Assistant Professor of Classics and Ancient Mediterranean Studies and History, Pennsylvania State University. It provides insight into her values and beliefs and testimony from those who work most closely with her.

  14. Experimental contextuality in classical light

    NASA Astrophysics Data System (ADS)

    Li, Tao; Zeng, Qiang; Song, Xinbing; Zhang, Xiangdong

    2017-03-01

    The Klyachko, Can, Binicioglu, and Shumovsky (KCBS) inequality is an important contextuality inequality in three-level system, which has been demonstrated experimentally by using quantum states. Using the path and polarization degrees of freedom of classical optics fields, we have constructed the classical trit (cetrit), tested the KCBS inequality and its geometrical form (Wright’s inequality) in this work. The projection measurement has been implemented, the clear violations of the KCBS inequality and its geometrical form have been observed. This means that the contextuality inequality, which is commonly used in test of the conflict between quantum theory and noncontextual realism, may be used as a quantitative tool in classical optical coherence to describe correlation characteristics of the classical fields.

  15. Quantum money with classical verification

    SciTech Connect

    Gavinsky, Dmitry

    2014-12-04

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.

  16. New Perspective on Classical Electromagnetism

    DTIC Science & Technology

    2013-04-01

    R. Feynman , R. Leighton, and M. Sands, The Feynman Lectures in Physics vol II (Addison-Wesley, Reading, MA, 1964). 6. W.K.H. Panofsky and M...of the basics of classical electromagnetism is provided by recognizing a previously overlooked law of induction as well as the physical reality of the...classical electromagnetism is provided by recognizing a previously overlooked law of induction as well as the physical reality of the vector potential

  17. Classical theory of radiating strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  18. Quantum money with classical verification

    NASA Astrophysics Data System (ADS)

    Gavinsky, Dmitry

    2014-12-01

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.

  19. Dissipative Forces and Quantum Mechanics

    ERIC Educational Resources Information Center

    Eck, John S.; Thompson, W. J.

    1977-01-01

    Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)

  20. Classical vs. non-classical pathways of mineral formation (Invited)

    NASA Astrophysics Data System (ADS)

    De Yoreo, J. J.

    2013-12-01

    Recent chemical analyses, microscopy studies and computer simulations suggest many minerals nucleate through aggregation of pre-nucleation clusters and grow by particle-mediated processes that involve amorphous or disordered precursors. Still other analyses, both experimental and computational, conclude that even simple mineral systems like calcium carbonate form via a barrier-free process of liquid-liquid separation, which is followed by dehydration of the ion-rich phase to form the solid products. However, careful measurements of calcite nucleation rates on a variety of ionized surfaces give results that are in complete agreement with the expectations of classical nucleation theory, in which clusters growing through ion-by-ion addition overcome a free energy barrier through the natural microscopic density fluctuations of the system. Here the challenge of integrating these seemingly disparate observations and analyses into a coherent picture of mineral formation is addressed by considering the energy barriers to calcite formation predicted by the classical theory and the changes in those barriers brought about by the introduction of interfaces and clusters, both stable and metastable. Results from a suite of in situ TEM, AFM, and optical experiments combined with simulations are used to illustrate the conclusions. The analyses show that the expected barrier to homogeneous calcite nucleation is prohibitive even at concentrations exceeding the solubility limit of amorphous calcium carbonate. However, as demonstrated by experiments on self-assembled monolayers, the introduction of surfaces that moderately decrease the interfacial energy associated with the forming nucleus can reduce the magnitude of the barrier to a level that is easily surmounted under typical laboratory conditions. In the absence of such surfaces, experiments that proceed by continually increasing supersaturation with time can easily by-pass direct nucleation of calcite and open up pathways through

  1. Path-integral approach to 't Hooft's derivation of quantum physics from classical physics

    SciTech Connect

    Blasone, Massimo; Jizba, Petr; Kleinert, Hagen

    2005-05-15

    We present a path-integral formulation of 't Hooft's derivation of quantum physics from classical physics. The crucial ingredient of this formulation is Gozzi et al.'s supersymmetric path integral of classical mechanics. We quantize explicitly two simple classical systems: the planar mathematical pendulum and the Roessler dynamical system.

  2. Mesoscopic systems: classical irreversibility and quantum coherence.

    PubMed

    Barbara, Bernard

    2012-09-28

    Mesoscopic physics is a sub-discipline of condensed-matter physics that focuses on the properties of solids in a size range intermediate between bulk matter and individual atoms. In particular, it is characteristic of a domain where a certain number of interacting objects can easily be tuned between classical and quantum regimes, thus enabling studies at the border of the two. In magnetism, such a tuning was first realized with large-spin magnetic molecules called single-molecule magnets (SMMs) with archetype Mn(12)-ac. In general, the mesoscopic scale can be relatively large (e.g. micrometre-sized superconducting circuits), but, in magnetism, it is much smaller and can reach the atomic scale with rare earth (RE) ions. In all cases, it is shown how quantum relaxation can drastically reduce classical irreversibility. Taking the example of mesoscopic spin systems, the origin of irreversibility is discussed on the basis of the Landau-Zener model. A classical counterpart of this model is described enabling, in particular, intuitive understanding of most aspects of quantum spin dynamics. The spin dynamics of mesoscopic spin systems (SMM or RE systems) becomes coherent if they are well isolated. The study of the damping of their Rabi oscillations gives access to most relevant decoherence mechanisms by different environmental baths, including the electromagnetic bath of microwave excitation. This type of decoherence, clearly seen with spin systems, is easily recovered in quantum simulations. It is also observed with other types of qubits such as a single spin in a quantum dot or a superconducting loop, despite the presence of other competitive decoherence mechanisms. As in the molecular magnet V(15), the leading decoherence terms of superconducting qubits seem to be associated with a non-Markovian channel in which short-living entanglements with distributions of two-level systems (nuclear spins, impurity spins and/or charges) leading to 1/f noise induce τ(1)-like

  3. Planck's radiation law: is a quantum-classical perspective possible?

    NASA Astrophysics Data System (ADS)

    Marrocco, Michele

    2016-05-01

    Planck's radiation law provides the solution to the blackbody problem that marks the decline of classical physics and the rise of the quantum theory of the radiation field. Here, we venture to suggest the possibility that classical physics might be equally suitable to deal with the blackbody problem. A classical version of the Planck's radiation law seems to be achievable if we learn from the quantum-classical correspondence between classical Mie theory and quantum-mechanical wave scattering from spherical scatterers (partial wave analysis). This correspondence designs a procedure for countable energy levels of the radiation trapped within the blackbody treated within the multipole approach of classical electrodynamics (in place of the customary and problematic expansion in terms of plane waves that give rise to the ultraviolet catastrophe). In turn, introducing the Boltzmann discretization of energy levels, the tools of classical thermodynamics and statistical theory become available for the task. On the other hand, the final result depends on a free parameter whose physical units are those of an action. Tuning this parameter on the value given by the Planck constant makes the classical result agree with the canonical Planck's radiation law.

  4. Quantum-Classical Correspondence of Shortcuts to Adiabaticity

    NASA Astrophysics Data System (ADS)

    Okuyama, Manaka; Takahashi, Kazutaka

    2017-04-01

    We formulate the theory of shortcuts to adiabaticity in classical mechanics. For a reference Hamiltonian, the counterdiabatic term is constructed from the dispersionless Korteweg-de Vries (KdV) hierarchy. Then the adiabatic theorem holds exactly for an arbitrary choice of time-dependent parameters. We use the Hamilton-Jacobi theory to define the generalized action. The action is independent of the history of the parameters and is directly related to the adiabatic invariant. The dispersionless KdV hierarchy is obtained from the classical limit of the KdV hierarchy for the quantum shortcuts to adiabaticity. This correspondence suggests some relation between the quantum and classical adiabatic theorems.

  5. Unbiased estimators for spatial distribution functions of classical fluids.

    PubMed

    Adib, Artur B; Jarzynski, Christopher

    2005-01-01

    We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density rho(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions.

  6. Classical approach in atomic physics

    NASA Astrophysics Data System (ADS)

    Solov'ev, E. A.

    2011-12-01

    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincaré section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormgroup symmetry, criterion of accuracy and so on are reviewed as well.

  7. Hermeneutic reading of classic texts.

    PubMed

    Koskinen, Camilla A-L; Lindström, Unni Å

    2013-09-01

    The purpose of this article is to broaden the understandinfg of the hermeneutic reading of classic texts. The aim is to show how the choice of a specific scientific tradition in conjunction with a methodological approach creates the foundation that clarifies the actual realization of the reading. This hermeneutic reading of classic texts is inspired by Gadamer's notion that it is the researcher's own research tradition and a clearly formulated theoretical fundamental order that shape the researcher's attitude towards texts and create the starting point that guides all reading, uncovering and interpretation. The researcher's ethical position originates in a will to openness towards what is different in the text and which constantly sets the researcher's preunderstanding and research tradition in movement. It is the researcher's attitude towards the text that allows the text to address, touch and arouse wonder. Through a flexible, lingering and repeated reading of classic texts, what is different emerges with a timeless value. The reading of classic texts is an act that may rediscover and create understanding for essential dimensions and of human beings' reality on a deeper level. The hermeneutic reading of classic texts thus brings to light constantly new possibilities of uncovering for a new envisioning and interpretation for a new understanding of the essential concepts and phenomena within caring science.

  8. Classical Hamiltonian structures in wave packet dynamics

    NASA Astrophysics Data System (ADS)

    Gray, Stephen K.; Verosky, John M.

    1994-04-01

    The general, N state matrix representation of the time-dependent Schrödinger equation is equivalent to an N degree of freedom classical Hamiltonian system. We describe how classical mechanical methods and ideas can be applied towards understanding and modeling exact quantum dynamics. Two applications are presented. First, we illustrate how qualitative insights may be gained by treating the two state problem with a time-dependent coupling. In the case of periodic coupling, Poincaré surfaces of section are used to view the quantum dynamics, and features such as the Floquet modes take on interesting interpretations. The second application illustrates computational implications by showing how Liouville's theorem, or more generally the symplectic nature of classical Hamiltonian dynamics, provides a new perspective for carrying out numerical wave packet propagation. We show how certain simple and explicit symplectic integrators can be used to numerically propagate wave packets. The approach is illustrated with an application to the problem of a diatomic molecule interacting with a laser, although it and related approaches may be useful for describing a variety of problems.

  9. Classical Antiferromagnetism in Kinetically Frustrated Electronic Models

    NASA Astrophysics Data System (ADS)

    Sposetti, C. N.; Bravo, B.; Trumper, A. E.; Gazza, C. J.; Manuel, L. O.

    2014-05-01

    We study, by means of the density matrix renormalization group, the infinite U Hubbard model—with one hole doped away from half filling—in triangular and square lattices with frustrated hoppings, which invalidate Nagaoka's theorem. We find that these kinetically frustrated models have antiferromagnetic ground states with classical local magnetization in the thermodynamic limit. We identify the mechanism of this kinetic antiferromagnetism with the release of the kinetic energy frustration, as the hole moves in the established antiferromagnetic background. This release can occur in two different ways: by a nontrivial spin Berry phase acquired by the hole, or by the effective vanishing of the hopping amplitude along the frustrating loops.

  10. Classical light beams and geometric phases.

    PubMed

    Mukunda, N; Chaturvedi, S; Simon, R

    2014-06-01

    We present a study of geometric phases in classical wave and polarization optics using the basic mathematical framework of quantum mechanics. Important physical situations taken from scalar wave optics, pure polarization optics, and the behavior of polarization in the eikonal or ray limit of Maxwell's equations in a transparent medium are considered. The case of a beam of light whose propagation direction and polarization state are both subject to change is dealt with, attention being paid to the validity of Maxwell's equations at all stages. Global topological aspects of the space of all propagation directions are discussed using elementary group theoretical ideas, and the effects on geometric phases are elucidated.

  11. Quantum remnants in the classical limit

    NASA Astrophysics Data System (ADS)

    Kowalski, A. M.; Plastino, A.

    2016-09-01

    We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt-Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit.

  12. From classical to quantum criticality

    NASA Astrophysics Data System (ADS)

    Podolsky, Daniel; Shimshoni, Efrat; Silvi, Pietro; Montangero, Simone; Calarco, Tommaso; Morigi, Giovanna; Fishman, Shmuel

    2014-06-01

    We study the crossover from classical to quantum phase transitions at zero temperature within the framework of ϕ4 theory. The classical transition at zero temperature can be described by the Landau theory, turning into a quantum Ising transition with the addition of quantum fluctuations. We perform a calculation of the transition line in the regime where the quantum fluctuations are weak. The calculation is based on a renormalization group analysis of the crossover between classical and quantum transitions, and is well controlled even for space-time dimensionality D below 4. In particular, for D =2 we obtain an analytic expression for the transition line which is valid for a wide range of parameters, as confirmed by numerical calculations based on the density matrix renormalization group. This behavior could be tested by measuring the phase diagram of the linear-zigzag instability in systems of trapped ions or repulsively interacting dipoles.

  13. INCLINATION MIXING IN THE CLASSICAL KUIPER BELT

    SciTech Connect

    Volk, Kathryn; Malhotra, Renu

    2011-07-20

    We investigate the long-term evolution of the inclinations of the known classical and resonant Kuiper Belt objects (KBOs). This is partially motivated by the observed bimodal inclination distribution and by the putative physical differences between the low- and high-inclination populations. We find that some classical KBOs undergo large changes in inclination over gigayear timescales, which means that a current member of the low-inclination population may have been in the high-inclination population in the past, and vice versa. The dynamical mechanisms responsible for the time variability of inclinations are predominantly distant encounters with Neptune and chaotic diffusion near the boundaries of mean motion resonances. We reassess the correlations between inclination and physical properties including inclination time variability. We find that the size-inclination and color-inclination correlations are less statistically significant than previously reported (mostly due to the increased size of the data set since previous works with some contribution from inclination variability). The time variability of inclinations does not change the previous finding that binary classical KBOs have lower inclinations than non-binary objects. Our study of resonant objects in the classical Kuiper Belt region includes objects in the 3:2, 7:4, 2:1, and eight higher-order mean motion resonances. We find that these objects (some of which were previously classified as non-resonant) undergo larger changes in inclination compared to the non-resonant population, indicating that their current inclinations are not generally representative of their original inclinations. They are also less stable on gigayear timescales.

  14. Overview of Classical Swine Fever (Hog Cholera, Classical Swine fever)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classical swine fever is a contagious often fatal disease of pigs clinically characterized by high body temperature, lethargy, yellowish diarrhea, vomits and purple skin discoloration of ears, lower abdomen and legs. It was first described in the early 19th century in the USA. Later, a condition i...

  15. Quantum teleportation without classical channel

    NASA Astrophysics Data System (ADS)

    Al Amri, M.; Li, Zheng-Hong; Zubairy, M. Suhail

    2016-11-01

    For the first time, we show how quantum teleportation can be achieved without the assistance of classical channels. Our protocol does not need any pre-established entangled photon pairs beforehand. Just by utilizing quantum Zeno effect and couterfactual communication idea, we can achieve two goals; entangling a photon and an atom and also disentangling them by non-local interaction. Information is completely transferred from atom to photon with controllable disentanglement processes. More importantly, there is no need to confirm teleportation results via classical channels.

  16. Comparing classical and quantum equilibration

    NASA Astrophysics Data System (ADS)

    Malabarba, Artur S. L.; Farrelly, Terry; Short, Anthony J.

    2016-09-01

    By using a physically relevant and theory independent definition of measurement-based equilibration, we show quantitatively that equilibration is easier for quantum systems than for classical systems, in the situation where the initial state of the system is completely known (a pure state). This shows that quantum equilibration is a fundamental aspect of many quantum systems, while classical equilibration relies on experimental ignorance. When the state is not completely known (a mixed state), this framework also shows that quantum equilibration requires weaker conditions.

  17. Classical Music as Enforced Utopia

    ERIC Educational Resources Information Center

    Leech-Wilkinson, Daniel

    2016-01-01

    In classical music composition, whatever thematic or harmonic conflicts may be engineered along the way, everything always turns out for the best. Similar utopian thinking underlies performance: performers see their job as faithfully carrying out their master's (the composer's) wishes. The more perfectly they represent them, the happier the…

  18. Classical and molecular genetic mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A brief history of classical genetic mapping in soybean [Glycine max (L.) Merr.] is described. Detailed descriptions are given of the development of molecular genetic linkage maps based upon various types of DNA markers Like many plant and animal species, the first molecular map of soybean was bas...

  19. Classics in Reading: A Survey.

    ERIC Educational Resources Information Center

    Froese, Victor

    1982-01-01

    Frank Smith and Kenneth Goodman were the most frequently cited authors; Bond and Dykstra's "The Cooperative Research Program in First Grade Reading Instruction" and Chall's "Learning to Read: The Great Debate" the most frequently cited works in a survey that asked graduate faculty in reading to name "classics" in reading research. (FL)

  20. Relative Clauses in Classical Nahuatl

    ERIC Educational Resources Information Center

    Langacker, Ronald W.

    1975-01-01

    Jane Rosenthal's paper on relative clauses in Classical Nahuatl is discussed, and it is argued that she misses an important generalization. An alternative analysis to a class of relative pronouns and new rules for the distribution of relative pronouns are proposed. (SC)

  1. Vowel intelligibility in classical singing.

    PubMed

    Gregg, Jean Westerman; Scherer, Ronald C

    2006-06-01

    Vowel intelligibility during singing is an important aspect of communication during performance. The intelligibility of isolated vowels sung by Western classically trained singers has been found to be relatively low, in fact, decreasing as pitch rises, and it is lower for women than for men. The lack of contextual cues significantly deteriorates vowel intelligibility. It was postulated in this study that the reduced intelligibility of isolated sung vowels may be partly from the vowels used by the singers in their daily vocalises. More specifically, if classically trained singers sang only a few American English vowels during their vocalises, their intelligibility for American English vowels would be less than for those classically trained singers who usually vocalize on most American English vowels. In this study, there were 21 subjects (15 women, 6 men), all Western classically trained performers as well as teachers of classical singing. They sang 11 words containing 11 different American English vowels, singing on two pitches a musical fifth apart. Subjects were divided into two groups, those who normally vocalize on 4, 5, or 6 vowels, and those who sing all 11 vowels during their daily vocalises. The sung words were cropped to isolate the vowels, and listening tapes were created. Two listening groups, four singing teachers and five speech-language pathologists, were asked to identify the vowels intended by the singers. Results suggest that singing fewer vowels during daily vocalises does not decrease intelligibility compared with singing the 11 American English vowels. Also, in general, vowel intelligibility was lower with the higher pitch, and vowels sung by the women were less intelligible than those sung by the men. Identification accuracy was about the same for the singing teacher listeners and the speech-language pathologist listeners except for the lower pitch, where the singing teachers were more accurate.

  2. Classical to quantum correspondence in dissipative directed transport

    NASA Astrophysics Data System (ADS)

    Carlo, Gabriel G.; Rivas, Alejandro M. F.; Spina, María E.

    2015-11-01

    We compare the quantum and classical properties of the (quantum) isoperiodic stable structures [(Q)ISSs], which organize the parameter space of a paradigmatic dissipative ratchet model, i.e., the dissipative modified kicked rotator. We study the spectral behavior of the corresponding classical Perron-Frobenius operators with thermal noise and the quantum superoperators without it for small ℏeff values. We find a remarkable similarity between the classical and quantum spectra. This finding significantly extends previous results—obtained for the mean currents and asymptotic distributions only—and, on the other hand, unveils a classical to quantum correspondence mechanism where the classical noise is qualitatively different from the quantum one. This is crucial not only for simple attractors but also for chaotic ones, where just analyzing the asymptotic distribution is revealed as insufficient. Moreover, we provide with a detailed characterization of relevant eigenvectors by means of the corresponding Weyl-Wigner distributions, in order to better identify similarities and differences. Finally, this model being generic, it allows us to conjecture that this classical to quantum correspondence mechanism is a universal feature of dissipative systems.

  3. Topology of classical molecular optimal control landscapes in phase space

    NASA Astrophysics Data System (ADS)

    Joe-Wong, Carlee; Ho, Tak-San; Long, Ruixing; Rabitz, Herschel; Wu, Rebing

    2013-03-01

    Optimal control of molecular dynamics is commonly expressed from a quantum mechanical perspective. However, in most contexts the preponderance of molecular dynamics studies utilize classical mechanical models. This paper treats laser-driven optimal control of molecular dynamics in a classical framework. We consider the objective of steering a molecular system from an initial point in phase space to a target point, subject to the dynamic constraint of Hamilton's equations. The classical control landscape corresponding to this objective is a functional of the control field, and the topology of the landscape is analyzed through its gradient and Hessian with respect to the control. Under specific assumptions on the regularity of the control fields, the classical control landscape is found to be free of traps that could hinder reaching the objective. The Hessian associated with an optimal control field is shown to have finite rank, indicating the presence of an inherent degree of robustness to control noise. Extensive numerical simulations are performed to illustrate the theoretical principles on (a) a model diatomic molecule, (b) two coupled Morse oscillators, and (c) a chaotic system with a coupled quartic oscillator, confirming the absence of traps in the classical control landscape. We compare the classical formulation with the mathematically analogous quantum state-to-state transition probability control landscape.

  4. Respiratory kinematics in classical (opera) singers.

    PubMed

    Watson, P J; Hixon, T J

    1985-03-01

    Anteroposterior diameter changes of the rib cage and abdomen were recorded during respiratory, speaking, and singing activities in six adult male subjects, all baritones with extensive classical singing training and performance experience. Data were charted to solve for lung volume, volume displacements of the rib cage and abdomen, and inferred muscular mechanisms. Separate major roles were inferred for different parts of the respiratory apparatus in the singing process. The abdomen served as a posturing element that mechanically tuned the diaphragm and rib cage to optimal configurations for performance. The rib cage operated as a pressure-flow generating element that regulated expiratory drive. And, the diaphragm functioned as an inspiratory element devoted to reinflating the lungs. Subjects' descriptions of how they thought they breathed during singing bore little correspondence to how they actually breathed. Implications for the training of singers are offered.

  5. Strong Analog Classical Simulation of Coherent Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng

    2017-02-01

    A strong analog classical simulation of general quantum evolution is proposed, which serves as a novel scheme in quantum computation and simulation. The scheme employs the approach of geometric quantum mechanics and quantum informational technique of quantum tomography, which applies broadly to cases of mixed states, nonunitary evolution, and infinite dimensional systems. The simulation provides an intriguing classical picture to probe quantum phenomena, namely, a coherent quantum dynamics can be viewed as a globally constrained classical Hamiltonian dynamics of a collection of coupled particles or strings. Efficiency analysis reveals a fundamental difference between the locality in real space and locality in Hilbert space, the latter enables efficient strong analog classical simulations. Examples are also studied to highlight the differences and gaps among various simulation methods. Funding support from NSERC of Canada and a research fellowship at Department of Physics and Astronomy, University of British Columbia are acknowledged

  6. On the classical roots of the Einstein Podolsky Rosen paradox

    NASA Astrophysics Data System (ADS)

    Lando, A.; Bringuier, E.

    2008-03-01

    The 1935 debate opposing Einstein, Podolsky and Rosen to Bohr elicited so many comments and developments, both theoretical and experimental, until this day, that the main point at stake at that time can be overlooked by modern readers, especially students. This paper draws the reader's attention to the historical background of Einstein's paper and Bohr's reply. We show that Einstein's definition of a complete physical theory is taken from Mach's criticism of atomic theory based upon classical-mechanical views. As for Bohr's definition of physical reality, it can be simply understood by reference to classical physics although it was embedded in the quantum-mechanical formalism.

  7. Extending In Vitro Conditioning in "Aplysia" to Analyze Operant and Classical Processes in the Same Preparation

    ERIC Educational Resources Information Center

    Brembs, Bjorn; Baxter, Douglas A.; Byrne, John H.

    2004-01-01

    Operant and classical conditioning are major processes shaping behavioral responses in all animals. Although the understanding of the mechanisms of classical conditioning has expanded significantly, the understanding of the mechanisms of operant conditioning is more limited. Recent developments in "Aplysia" are helping to narrow the gap in the…

  8. Classical Analog to Entanglement Reversibility

    NASA Astrophysics Data System (ADS)

    Chitambar, Eric; Fortescue, Ben; Hsieh, Min-Hsiu

    2015-08-01

    In this Letter we study the problem of secrecy reversibility. This asks when two honest parties can distill secret bits from some tripartite distribution pX Y Z and transform secret bits back into pX Y Z at equal rates using local operation and public communication. This is the classical analog to the well-studied problem of reversibly concentrating and diluting entanglement in a quantum state. We identify the structure of distributions possessing reversible secrecy when one of the honest parties holds a binary distribution, and it is possible that all reversible distributions have this form. These distributions are more general than what is obtained by simply constructing a classical analog to the family of quantum states known to have reversible entanglement. An indispensable tool used in our analysis is a conditional form of the Gács-Körner common information.

  9. Invariants from classical field theory

    SciTech Connect

    Diaz, Rafael; Leal, Lorenzo

    2008-06-15

    We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian BF, Chern-Simons, and two-dimensional Yang-Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss' and the second Milnor's invariant for links in S{sup 3}, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.

  10. Classical photometry of prefractal surfaces.

    PubMed

    Shkuratov, Yuriy; Petrov, Dmitriy; Videen, Gorden

    2003-11-01

    Using the scale invariance of classical photometry, we develop an approach to finding the photometric function of prefractal structures that form a random topography. The photometric function of the prefractal surfaces is found as the general solution of the resulting differential equation in partial derivatives. The function depends on two parameters: the number of hierarchical levels of the prefractal structures and the roughness parameter of the single-level generation. As a limiting case, the approach includes our previous theory that considered fractoids.

  11. Psoriasis: classical and emerging comorbidities*

    PubMed Central

    de Oliveira, Maria de Fátima Santos Paim; Rocha, Bruno de Oliveira; Duarte, Gleison Vieira

    2015-01-01

    Psoriasis is a chronic inflammatory systemic disease. Evidence shows an association of psoriasis with arthritis, depression, inflammatory bowel disease and cardiovascular diseases. Recently, several other comorbid conditions have been proposed as related to the chronic inflammatory status of psoriasis. The understanding of these conditions and their treatments will certainly lead to better management of the disease. The present article aims to synthesize the knowledge in the literature about the classical and emerging comorbidities related to psoriasis. PMID:25672294

  12. Canonical perturbation expansions to large order from classical hypervirial and Hellmann-Feynman theorems.

    NASA Astrophysics Data System (ADS)

    McRae, S. M.; Vrscay, E. R.

    1992-09-01

    The classical hypervirial and Hellmann-Feynman theorems are used to formulate a "perturbation theory without Fourier series" that can be used to generate canonical series expansions for the energies of perturbed periodic orbits for separable classical Hamiltonians. Here, the method is applied to one-dimensional anharmonic oscillators and radial Kepler problems. In all cases, the classical series for energies and expectation values are seen to correspond to the expansions associated with their quantum mechanical counterparts through an appropriate action preserving classical limit. This "action fixing" is inherent in the classical Hellmann-Feynman theorem applied to periodic orbits.

  13. Quantum to classical randomness extractors

    NASA Astrophysics Data System (ADS)

    Wehner, Stephanie; Berta, Mario; Fawzi, Omar

    2013-03-01

    The goal of randomness extraction is to distill (almost) perfect randomness from a weak source of randomness. When the source yields a classical string X, many extractor constructions are known. Yet, when considering a physical randomness source, X is itself ultimately the result of a measurement on an underlying quantum system. When characterizing the power of a source to supply randomness it is hence a natural question to ask, how much classical randomness we can extract from a quantum system. To tackle this question we here introduce the notion of quantum-to-classical randomness extractors (QC-extractors). We identify an entropic quantity that determines exactly how much randomness can be obtained. Furthermore, we provide constructions of QC-extractors based on measurements in a full set of mutually unbiased bases (MUBs), and certain single qubit measurements. As the first application, we show that any QC-extractor gives rise to entropic uncertainty relations with respect to quantum side information. Such relations were previously only known for two measurements. As the second application, we resolve the central open question in the noisy-storage model [Wehner et al., PRL 100, 220502 (2008)] by linking security to the quantum capacity of the adversary's storage device.

  14. What is a Particle in Classical Physics? A Wave?

    NASA Astrophysics Data System (ADS)

    Mickens, Ronald E.

    2005-11-01

    The concepts of ``particle" and ``wave" play important roles in quantum mechanics in that a given microscopic system can, under the proper circumstances, display properties of each.ootnotetextA Messiah, Quantum Mechanics, Vols. I and II (Wiley, 1961). However, these categories have their genesis in classical mechanicsootnotetextH. Goldstein, Classical Mechanics (Addison-Wesley, 1980, 2nd edition). and we must turn to this area to understand what they mean. In particular, it must be clearly understood that these concepts are idealistic representations of physical phenomena and, as a consequence, each may not correspond to any actual physical system. We discuss the definition of ``particle'' from the perspective of how it has been defined in standard textbooks and carry out a similar analysis for the notion of ``wave.'' We then define ``particle'' and ``wave'' within the context of classical mechanics by means of their respective equations of motion. The general (tentative) conclusion is that within the framework of classical mechanics the concepts of ``particle'' and ``wave'' systems may be unambiguously defined.

  15. Classical and quantum routes to linear magnetoresistance

    NASA Astrophysics Data System (ADS)

    Hu, Jingshi

    The transverse, positive magnetoresistance of suitably doped silver chalcogenides and indium antimonides changes linearly with magnetic field by thousands of percent, with no sign of saturation up to MegaGauss. A precise characterization of these unexpected observations has led to two very different, yet equally interesting magnetotransport mechanisms: the classical inhomogeneity-induced current jetting, and quantum linear magnetoresistance. The inhomogeneous distribution of excess/deficient silver atoms lies behind the anomalous magnetoresistive response of silver chalcogenides, introducing spatial conductivity fluctuations with length scales independent of the cyclotron radius. We show that a systematic investigation of the resistivity tensor in longitudinal field could be used to identify the spatial inhomogeneities and determine the associated length scale of the current distortion. By contrast, the linear magnetoresistance observed in single-crystalline InSb presents a spectacular manifestation of magnetotransport in the extreme quantum limit, when only one Landau band is partially filled. Harnessing both the classical and quantum effects opens the gate to artificial fabrication of conducting networks with micron scale unit size for enhanced magnetoresistive sensitivity.

  16. Mass flux in extended and classical hydrodynamics.

    PubMed

    Grmela, Miroslav

    2014-06-01

    In classical hydrodynamics, the mass flux is universally chosen to be the momentum field. In extended hydrodynamics, the mass flux acquires different terms. The extended hydrodynamics introduced and investigated in this paper uses a one-particle distribution function as the extra state variable chosen to characterize the microstructure. We prove that the extended hydrodynamics is fully autonomous in the sense that it is compatible with thermodynamics (i.e., the entropy does not decrease during the time evolution) and with mechanics (i.e., the part of the time evolution that leaves the entropy unchanged is Hamiltonian). Subsequently, we investigate its possible reductions. In some situations the emerging reduced dynamical theory is the classical hydrodynamics that is fully autonomous (i.e., all the structure that makes the extended theory fully autonomous is kept in the reduced theory). In other situations (for example, when the fluids under investigation have large density gradients) the reduced theories are not fully autonomous. In such a case the reduced theories constitute a family of mutually related dynamical theories (each of them involving a different amount of detail) that we consider to be a mathematical formulation of multiscale (or multilevel) hydrodynamics. It is in the reduced theories belonging to the multiscale hydrodynamics where the terms that emerge in the mass flux take the form of self-diffusion.

  17. Classical-field model of the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Rashkovskiy, Sergey A.

    2017-02-01

    It is shown that all of the basic properties of the hydrogen atom can be consistently described in terms of classical electrodynamics if instead of considering the electron to be a particle, we consider an electrically charged classical wave field—an "electron wave"—which is held by the electrostatic field of the proton. It is shown that quantum mechanics must be considered not as a theory of particles but as a classical field theory in the spirit of classical electrodynamics. In this case, we are not faced with difficulties in interpreting the results of the theory. In the framework of classical electrodynamics, all of the well-known regularities of the spontaneous emission of the hydrogen atom are obtained, which is usually derived in the framework of quantum electrodynamics. It is shown that there are no discrete states and discrete energy levels of the atom: the energy of the atom and its states change continuously. An explanation of the conventional corpuscular-statistical interpretation of atomic phenomena is given. It is shown that this explanation is only a misinterpretation of continuous deterministic processes. In the framework of classical electrodynamics, the nonlinear Schrödinger equation is obtained, which accounts for the inverse action of self-electromagnetic radiation of the electron wave and completely describes the spontaneous emissions of an atom.

  18. A Simple Explanation of the Classic Hydrostatic Paradox

    ERIC Educational Resources Information Center

    Kontomaris, Stylianos-Vasileios; Malamou, Anna

    2016-01-01

    An interesting problem in fluid mechanics, with significant educational importance, is the classic hydrostatic paradox. The hydrostatic paradox states the fact that in different shaped containers, with the same base area, which are filled with a liquid of the same height, the applied force by the liquid on the base of each container is exactly the…

  19. Classical Optics and its Applications

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2009-02-01

    Preface; Introduction; 1. Abbe's sine condition; 2. Fourier optics; 3. Effect of polarization on diffraction in systems of high numerical aperture; 4. Gaussian beam optics; 5. Coherent and incoherent imaging; 6. First-order temporal coherence in classical optics; 7. The Van Cittert-Zernike theorem; 8. Partial polarization, Stokes parameters, and the Poincarè Sphere; 9. Second-order coherence and the Hanbury Brown - Twiss experiment; 10. What in the world are surface plasmons?; 11. Surface plasmon polaritons on metallic surfaces; 12. The Faraday effecy; 13. The magneto-optical Kerr effect; 14. The Sagnac interferometer; 15. Fabry-Perot etalons in polarized light; 16. The Ewald-Oseen extinction theorem; 17. Reciprocity in classical Linear optics; 18. Optical pulse compression; 19. The uncertainty principle in classical optics; 20. Omni-directional dielectric mirrors; 21. Optical vortices; 22. Geometric-optical rays, Poynting's vector, and field momenta; 23. Doppler shift, stellar aberration, and convection of light by moving Media; 24. Diffraction gratings; 25. Diffractive optical elements; 26. The talbot effect; 27. Some quirks of total internal reflection; 28. Evanescent coupling; 29. Internal and external conical refraction; 30. Transmission of light through small elliptical apertures; 31. The method of Fox and Li; 32. The beam propagation method; 33. Launching light into a Fiber; 34. The optics of demiconductor fiode Laser; 35. Michelson's dtellar interferometer; 36. Bracewell's interferometric telescope; 37. Scanning optical microscopy; 38. Zernike's method of phase contrast; 39. Polarization microscopy; 40. Nomarski's differential interference contrast microscope; 41. The Van Leeuwenhoek microscope; 42. Projection photolithography; 43. Interaction of light with subwavelength structures; 44 The Ronchi test; 45. The Shack-Hartmann Wavefront sensor; 46. Ellipsometry; 47. Holography and holographic interferometry; 48. Self-focusing in non-linear optical media; 49

  20. Classical analog of quantum phase

    SciTech Connect

    Ord, G.N.

    1992-07-01

    A modified version of the Feynman relativistic chessboard model (FCM) is investigated in which the paths involved are spirals in the space-time. Portions of the paths in which the particle`s proper time is reversed are interpreted in terms of antiparticles. With this intepretation the particle-antiparticle field produced by such trajectories provides a classical analog of the phase associated with particle paths in the unmodified FCM. It is shwon that in the nonrelativistic limit the resulting kernel is the correct Dirac propagator and that particle-antiparticle symmetry is in this case responsible for quantum interference. 7 refs., 3 figs.

  1. Superadditivity of classical capacity revisited

    SciTech Connect

    Pilyavets, Oleg V.; Karpov, Evgueni A.; Schäfer, Joachim

    2014-12-04

    We introduce new type of superadditivity for classical capacity of quantum channels, which involves the properties of channels’ environment. By imposing different restrictions on the total energy contained in channels’ environment we can consider different types of superadditivity. Using lossy bosonic and additive noise quantum channels as examples, we demonstrate that their capacities can be either additive or superadditive depending on the values of channels parameters. The parameters corresponding to transition between the additive and superadditive cases are related with recently found critical and supercritical parameters for Gaussian channels.

  2. Classical dynamics on Snyder spacetime

    NASA Astrophysics Data System (ADS)

    Mignemi, S.

    2015-04-01

    We study the classical dynamics of a particle in Snyder spacetime, adopting the formalism of constrained Hamiltonian systems introduced by Dirac. We show that the motion of a particle in a scalar potential is deformed with respect to special relativity by terms of order βE2. A remarkable result is that in the relativistic Snyder model a consistent choice of the time variable must necessarily depend on the dynamics. This is a consequence of the nontrivial mixing between position and momentum coordinates intrinsic to the Snyder model.

  3. Classics in Chemical Neuroscience: Haloperidol.

    PubMed

    Tyler, Marshall W; Zaldivar-Diez, Josefa; Haggarty, Stephen J

    2017-02-15

    The discovery of haloperidol catalyzed a breakthrough in our understanding of the biochemical basis of schizophrenia, improved the treatment of psychosis, and facilitated deinstitutionalization. In doing so, it solidified the role for chemical neuroscience as a means to elucidate the molecular underpinnings of complex neuropsychiatric disorders. In this Review, we will cover aspects of haloperidol's synthesis, manufacturing, metabolism, pharmacology, approved and off-label indications, and adverse effects. We will also convey the fascinating history of this classic molecule and the influence that it has had on the evolution of neuropsychopharmacology and neuroscience.

  4. Innovations in classical hormonal targets for endometriosis.

    PubMed

    Pluchino, Nicola; Freschi, Letizia; Wenger, Jean-Marie; Streuli, Isabelle

    2016-01-01

    Endometriosis is a chronic disease of unknown etiology that affects approximately 10% of women in reproductive age. Several evidences show that endometriosis lesions are associated to hormonal imbalance, including estrogen synthesis, metabolism and responsiveness and progesterone resistance. These hormonal alterations influence the ability of endometrial cells to proliferate, migrate and to infiltrate the mesothelium, causing inflammation, pain and infertility. Hormonal imbalance in endometriosis represents also a target for treatment. We provide an overview on therapeutic strategies based on innovations of classical hormonal mechanisms involved in the development of endometriosis lesions. The development phase of new molecules targeting these pathways is also discussed. Endometriosis is a chronic disease involving young women and additional biological targets of estrogen and progesterone pharmacological manipulation (brain, bone and cardiovascular tissue) need to be carefully considered in order to improve and overcome current limits of long-term medical management of endometriosis.

  5. Physiological characteristics of classical ballet.

    PubMed

    Schantz, P G; Astrand, P O

    1984-10-01

    The aerobic and anaerobic energy yield during professional training sessions ("classes") of classical ballet as well as during rehearsed and performed ballets has been studied by means of oxygen uptake, heart rate, and blood lactate concentration determinations on professional ballet dancers from the Royal Swedish Ballet in Stockholm. The measured oxygen uptake during six different normal classes at the theatre averaged about 35-45% of the maximal oxygen uptake, and the blood lactate concentration averaged 3 mM (N = 6). During 10 different solo parts of choreographed dance (median length = 1.8 min) representative for moderately to very strenuous dance, an average oxygen uptake (measured during the last minute) of 80% of maximum and blood lactate concentration of 10 mM was measured (N = 10). In addition, heart rate registrations from soloists in different ballets during performance and final rehearsals frequently indicated a high oxygen uptake relative to maximum and an average blood lactate concentration of 11 mM (N = 5). Maximal oxygen uptake, determined in 1971 (N = 11) and 1983 (N = 13) in two different groups of dancers, amounted to on the average 51 and 56 ml X min-1 X kg-1 for the females and males, respectively. In conclusion, classical ballet is a predominantly intermittent type of exercise. In choreographed dance each exercise period usually lasts only a few minutes, but can be very demanding energetically, while during the dancers' basic training sessions, the energy yield is low.

  6. Overuse injuries in classical ballet.

    PubMed

    Khan, K; Brown, J; Way, S; Vass, N; Crichton, K; Alexander, R; Baxter, A; Butler, M; Wark, J

    1995-05-01

    Successful management of classical ballet dancers with overuse injuries requires an understanding of the art form, precise knowledge of anatomy and awareness of certain conditions. Turnout is the single most fundamental physical attribute in classical ballet and 'forcing turnout' frequently contributes to overuse injuries. Common presenting conditions arising from the foot and ankle include problems at the first metatarsophalangeal joint, second metatarsal stress fractures, flexor hallucis longus tendinitis and anterior and posterior ankle impingement syndromes. Persistent shin pain in dancers is often due to chronic compartment syndrome, stress fracture of the posteromedial or anterior tibia. Knee pain can arise from patellofemoral syndrome, patellar tendon insertional pathologies, or a combination of both. Hip and back problems are also prevalent in dancers. To speed injury recovery of dancers, it is important for the sports medicine team to cooperate fully. This permits the dancer to benefit from accurate diagnosis, technique correction where necessary, the full range of manual therapies to joint and soft tissue, appropriate strengthening programmes and maintenance of dance fitness during any time out of class with Pilates-based exercises and nutrition advice. Most overuse ballet conditions respond well to a combination of conservative therapies. Those dancers that do require surgical management still depend heavily on ballet-specific rehabilitation for a complete recovery.

  7. Friedreich Ataxia in Classical Galactosaemia.

    PubMed

    Neville, Siobhán; O'Sullivan, Siobhan; Sweeney, Bronagh; Lynch, Bryan; Hanrahan, Donncha; Knerr, Ina; Lynch, Sally Ann; Crushell, Ellen

    2016-01-01

    Movement disorders such as ataxia are a recognized complication of classical galactosaemia, even in diet-compliant patients. Here, we report the coexistence of classical galactosaemia and Friedreich ataxia (FRDA) in nine children from seven Irish Traveller families. These two autosomal recessive disorders, the loci for which are located on either side of the centromere of chromosome 9, appear to be in linkage disequilibrium in this subgroup. Both conditions are known to occur with increased frequency amongst the Irish Traveller population.Each member of our cohort had been diagnosed with galactosaemia in the neonatal period, and all are homozygous for the common Q188R mutation in the GALT gene. Eight of the nine patients later presented with progressive ataxia, between the ages of 5-13 years. Another child presented in cardiac failure secondary to dilated cardiomyopathy at 7 years of age. He was not ataxic at presentation and, one year from diagnosis, his neurological examination remains normal. The diagnosis of FRDA was confirmed by detecting the common pathogenic GAA expansion in both alleles of the frataxin gene (FXN) in each patient.Neurological symptoms are easily attributed to an underlying diagnosis of galactosaemia. It is important to consider a diagnosis of Friedreich ataxia in a child from the Irish Traveller population with galactosaemia who presents with ataxia or cardiomyopathy.

  8. Classically spinning and isospinning solitons

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Haberichter, Mareike

    2012-09-01

    We investigate classically spinning topological solitons in (2+1)- and (3+1)-dimensional models; more explicitely spinning sigma model solitons in 2+1 dimensions and Skyrme solitons in 2+1 and 3+1 dimensions. For example, such types of solitons can be used to describe quasiparticle excitations in ferromagnetic quantum Hall systems or to model spin and isospin states of nuclei. The standard way to obtain solitons with quantised spin and isospin is the semiclassical quantization procedure: One parametrizes the zero-mode space - the space of energy-degenerate soliton configurations generated from a single soliton by spatial translations and rotations in space and isospace - by collective coordinates which are then taken to be time-dependent. This gives rise to additional dynamical terms in the Hamiltonian which can then be quantized following semiclassical quantization rules. A simplification which is often made in the literature is to apply a simple adiabatic approximation to the (iso)rotational zero modes of the soliton by assuming that the soliton's shape is rotational frequency independent. Our numerical results on classically spinning arbitrarily deforming soliton solutions clearly show that soliton deformation cannot be ignored.

  9. Diminuendo: Classical Music and the Academy

    ERIC Educational Resources Information Center

    Asia, Daniel

    2010-01-01

    How is the tradition of Western classical music faring on university campuses? Before answering this question, it is necessary to understand what has transpired with classical music in the wider culture, as the relationship between the two is so strong. In this article, the author discusses how classical music has taken a big cultural hit in…

  10. Africa in Classical Antiquity: A Curriculum Resource

    ERIC Educational Resources Information Center

    Masciantonio, Rudolph

    1977-01-01

    A curriculum resource developed by the School District of Philadelphia deals with Africa in Classical Antiquity. Each unit contains suggestions for lower, middle and upper schools. Topics covered are: history of Africa; great Africans in the Graeco-Roman world; racial attitudes; blacks in classical art, and Africa in classical literature. (CHK)

  11. Africa in Classical Antiquity: A Curriculum Resource.

    ERIC Educational Resources Information Center

    Masciantonio, Rudolph; And Others

    This curriculum resource is intended primarily to assist teachers of Latin and Greek to infuse material on Africa in classical antiquity into the curriculum at all levels. It gathers together background information on the role of Africa in classical antiquity that has not been treated in traditional classical language courses. The resource guide…

  12. Introducing the Classics to Reluctant Readers.

    ERIC Educational Resources Information Center

    Lazarus, Lissa J.

    Using the pocket classics can be a painless way to introduce the classics to eighth-grade students. Condensed versions of the classics can take the sting out of the reading, stimulate students' interest, and help prepare them for high school. To offer students in one eighth-grade class some control over their own learning, a contract system was…

  13. Desmosomes: new perspectives on a classic.

    PubMed

    Green, Kathleen J; Simpson, Cory L

    2007-11-01

    Desmosomes are highly specialized anchoring junctions that link intermediate filaments to sites of intercellular adhesion, thus facilitating the formation of a supracellular scaffolding that distributes mechanical forces throughout a tissue. These junctions are thus particularly important for maintaining the integrity of tissues that endure physical stress, such as the epidermis and myocardium. The importance of the classic mechanical functions of desmosomal constituents is underscored by pathologies reported in animal models and an ever-expanding list of human mutations that target both desmosomal cadherins and their associated cytoskeletal anchoring proteins. However, the notion that desmosomes are static structures that exist simply to glue cells together belies their susceptibility to remodeling in response to environmental cues and their important tissue-specific roles in cell behavior and signaling. Here, we review the molecular blueprint of the desmosome and models for assembling its protein components to form an adhesive interface and the desmosomal plaque. We also discuss emerging evidence of supra-adhesive roles for desmosomal proteins in regulating tissue morphogenesis and homeostasis. Finally, we highlight the dynamic nature of these adhesive organelles, examining mechanisms in health and disease for modulating adhesive strength and stability of desmosomes.

  14. High-NOON states by mixing quantum and classical light.

    PubMed

    Afek, Itai; Ambar, Oron; Silberberg, Yaron

    2010-05-14

    Precision measurements can be brought to their ultimate limit by harnessing the principles of quantum mechanics. In optics, multiphoton entangled states, known as NOON states, can be used to obtain high-precision phase measurements, becoming more and more advantageous as the number of photons grows. We generated "high-NOON" states (N = 5) by multiphoton interference of quantum down-converted light with a classical coherent state in an approach that is inherently scalable. Super-resolving phase measurements with up to five entangled photons were produced with a visibility higher than that obtainable using classical light only.

  15. DOE Fundamentals Handbook: Classical Physics

    SciTech Connect

    Not Available

    1992-06-01

    The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment.

  16. Classically Stable Nonsingular Cosmological Bounces

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna; Steinhardt, Paul J.

    2016-09-01

    One of the fundamental questions of theoretical cosmology is whether the Universe can undergo a nonsingular bounce, i.e., smoothly transit from a period of contraction to a period of expansion through violation of the null energy condition (NEC) at energies well below the Planck scale and at finite values of the scale factor such that the entire evolution remains classical. A common claim has been that a nonsingular bounce either leads to ghost or gradient instabilities or a cosmological singularity. In this Letter, we consider a well-motivated class of theories based on the cubic Galileon action and present a procedure for explicitly constructing examples of a nonsingular cosmological bounce without encountering any pathologies and maintaining a subluminal sound speed for comoving curvature modes throughout the NEC violating phase. We also discuss the relation between our procedure and earlier work.

  17. Classically Stable Nonsingular Cosmological Bounces.

    PubMed

    Ijjas, Anna; Steinhardt, Paul J

    2016-09-16

    One of the fundamental questions of theoretical cosmology is whether the Universe can undergo a nonsingular bounce, i.e., smoothly transit from a period of contraction to a period of expansion through violation of the null energy condition (NEC) at energies well below the Planck scale and at finite values of the scale factor such that the entire evolution remains classical. A common claim has been that a nonsingular bounce either leads to ghost or gradient instabilities or a cosmological singularity. In this Letter, we consider a well-motivated class of theories based on the cubic Galileon action and present a procedure for explicitly constructing examples of a nonsingular cosmological bounce without encountering any pathologies and maintaining a subluminal sound speed for comoving curvature modes throughout the NEC violating phase. We also discuss the relation between our procedure and earlier work.

  18. Classical Cosmology Through Animation Stories

    NASA Astrophysics Data System (ADS)

    Mijic, Milan; Kang, E. Y. E.; Longson, T.; State LA SciVi Project, Cal

    2010-05-01

    Computer animations are a powerful tool for explanation and communication of ideas, especially to a younger generation. Our team completed a three part sequence of short, computer animated stories about the insight and discoveries that lead to the understanding of the overall structure of the universe. Our principal characters are Immanuel Kant, Henrietta Leavitt, and Edwin Hubble. We utilized animations to model and visualize the physical concepts behind each discovery and to recreate the characters, locations, and flavor of the time. The animations vary in length from 6 to 11 minutes. The instructors or presenters may wish to utilize them separately or together. The animations may be used for learning classical cosmology in a visual way in GE astronomy courses, in pre-college science classes, or in public science education setting.

  19. Gamma Rays from Classical Novae

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA at the University of Chicago, provided support for a program of theoretical research into the nature of the thermonuclear outbursts of the classical novae and their implications for gamma ray astronomy. In particular, problems which have been addressed include the role of convection in the earliest stages of nova runaway, the influence of opacity on the characteristics of novae, and the nucleosynthesis expected to accompany nova outbursts on massive Oxygen-Neon-Magnesium (ONeMg) white dwarfs. In the following report, I will identify several critical projects on which considerable progress has been achieved and provide brief summaries of the results obtained:(1) two dimensional simulation of nova runaway; (2) nucleosynthesis of nova modeling; and (3) a quasi-analytic study of nucleosynthesis in ONeMg novae.

  20. GALK inhibitors for classic galactosemia.

    PubMed

    Lai, Kent; Boxer, Matthew B; Marabotti, Anna

    2014-06-01

    Classic galactosemia is an inherited metabolic disease for which, at present, no therapy is available apart from galactose-restricted diet. However, the efficacy of the diet is questionable, since it is not able to prevent the insurgence of chronic complications later in life. In addition, it is possible that dietary restriction itself could induce negative side effects. Therefore, there is a need for an alternative therapeutic approach that can avert the manifestation of chronic complications in the patients. In this review, the authors describe the development of a novel class of pharmaceutical agents that target the production of a toxic metabolite, galactose-1-phosphate, considered as the main culprit for the cause of the complications, in the patients.

  1. Gastrointestinal Health in Classic Galactosemia.

    PubMed

    Shaw, Kelly A; Mulle, Jennifer G; Epstein, Michael P; Fridovich-Keil, Judith L

    2016-07-01

    Classic galactosemia (CG) is an autosomal recessive disorder of galactose metabolism that affects approximately 1/50,000 live births in the USA. Following exposure to milk, which contains large quantities of galactose, affected infants may become seriously ill. Early identification by newborn screening with immediate dietary galactose restriction minimizes or prevents the potentially lethal acute symptoms of CG. However, more than half of individuals with CG still experience long-term complications including cognitive disability, behavioral problems, and speech impairment. Anecdotal reports have also suggested frequent gastrointestinal (GI) problems, but this outcome has not been systematically addressed. In this study we explored the prevalence of GI symptoms among 183 children and adults with CG (cases) and 190 controls. Cases reported 4.5 times more frequent constipation (95% CI 1.8-11.5) and 4.2 times more frequent nausea (95% CI 1.2-15.5) than controls. Cases with genotypes predicting residual GALT activity reported less frequent constipation than cases without predicted GALT activity but this difference was not statistically significant. Because the rigor of dietary galactose restriction varies among individuals with galactosemia, we further tested whether GI symptoms associated with diet in infancy. Though constipation was almost four times as common among cases reporting a more restrictive diet in infancy, this difference was not statistically significant. These data confirm that certain GI symptoms are more common in classic galactosemia compared to controls and suggest that future studies should investigate associations with residual GALT activity and dietary galactose restriction in early life.

  2. The ambiguity of simplicity in quantum and classical simulation

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, Cina; Mahoney, John R.; Crutchfield, James P.

    2017-04-01

    A system's perceived simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Here, we associate simplicity with small model-memory. We see that the notions of absolute physical simplicity at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the ;elegance; of competing theories, may be fundamentally subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.

  3. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    SciTech Connect

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary. The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.

  4. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    DOE PAGES

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less

  5. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    SciTech Connect

    Du, Q.; Lehoucq, Richard B.; Tartakovsky, Alexandre M.

    2015-04-01

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary. The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. An immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.

  6. Generic emergence of classical features in quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Piani, Marco; Horodecki, Paweł

    2015-08-01

    Quantum Darwinism posits that only specific information about a quantum system that is redundantly proliferated to many parts of its environment becomes accessible and objective, leading to the emergence of classical reality. However, it is not clear under what conditions this mechanism holds true. Here we prove that the emergence of classical features along the lines of quantum Darwinism is a general feature of any quantum dynamics: observers who acquire information indirectly through the environment have effective access at most to classical information about one and the same measurement of the quantum system. Our analysis does not rely on a strict conceptual splitting between a system-of-interest and its environment, and allows one to interpret any system as part of the environment of any other system. Finally, our approach leads to a full operational characterization of quantum discord in terms of local redistribution of correlations.

  7. Generic emergence of classical features in quantum Darwinism.

    PubMed

    Brandão, Fernando G S L; Piani, Marco; Horodecki, Paweł

    2015-08-12

    Quantum Darwinism posits that only specific information about a quantum system that is redundantly proliferated to many parts of its environment becomes accessible and objective, leading to the emergence of classical reality. However, it is not clear under what conditions this mechanism holds true. Here we prove that the emergence of classical features along the lines of quantum Darwinism is a general feature of any quantum dynamics: observers who acquire information indirectly through the environment have effective access at most to classical information about one and the same measurement of the quantum system. Our analysis does not rely on a strict conceptual splitting between a system-of-interest and its environment, and allows one to interpret any system as part of the environment of any other system. Finally, our approach leads to a full operational characterization of quantum discord in terms of local redistribution of correlations.

  8. Proton transport in barium stannate: classical, semi-classical and quantum regimes.

    PubMed

    Geneste, Grégory; Ottochian, Alistar; Hermet, Jessica; Dezanneau, Guilhem

    2015-07-15

    Density-functional theory calculations are performed to investigate proton transport in BaSnO3. Structural optimizations in the stable and saddle point configurations for transfer (hopping) and reorientation allow description of the high-temperature classical and semi-classical regimes, in which diffusion occurs by over-barrier motion. At lower temperature (typically below 300 K), we describe the thermally-assisted quantum regime, in which protonic motion is of quantum nature and occurs in "coincidence" configurations favored by thermal fluctuations of the surrounding atoms. Both the non-adiabatic and the adiabatic limits are examined. In the adiabatic limit, the protonic energy landscape in the coincidence configuration is very flat. Path-integral molecular dynamics simulations of the proton in the coincidence potential reveal, in the transfer case, that the density of probability of H(+) has its maximum at the saddle point, because the zero-point energy exceeds the coincidence barrier. Arguments are given that support the adiabatic picture for the transfer mechanism. In the case of reorientation, the time scales for the existence of the coincidence and for protonic motion, as estimated from the time-energy uncertainty principle by using a simple one-dimensional model, are of the same order of magnitude, suggesting that the adiabatic limit is not reached. Protonic transfer and reorientation in this oxide are therefore governed by different mechanisms below room temperature.

  9. Classical Stückelberg interferometry of a nanomechanical two-mode system

    NASA Astrophysics Data System (ADS)

    Seitner, Maximilian J.; Ribeiro, Hugo; Kölbl, Johannes; Faust, Thomas; Kotthaus, Jörg P.; Weig, Eva M.

    2016-12-01

    Stückelberg interferometry is a phenomenon that has been well established for quantum-mechanical two-level systems. Here, we present classical two-mode interference of a nanomechanical two-mode system, realizing a classical analog of Stückelberg interferometry. Our experiment relies on the coherent energy exchange between two strongly coupled, high-quality factor nanomechanical resonator modes. Furthermore, we discuss an exact theoretical solution for the double-passage Stückelberg problem by expanding the established finite-time Landau-Zener single-passage solution. For the parameter regime explored in the experiment, we find that the Stückelberg return probability in the classical version of the problem formally coincides with the quantum case, which reveals the analogy of the return probabilities in the quantum-mechanical and the classical version of the problem. This result qualifies classical two-mode systems at large to simulate quantum-mechanical interferometry.

  10. Two-slit experiment: quantum and classical probabilities

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2015-06-01

    Inter-relation between quantum and classical probability models is one of the most fundamental problems of quantum foundations. Nowadays this problem also plays an important role in quantum technologies, in quantum cryptography and the theory of quantum random generators. In this letter, we compare the viewpoint of Richard Feynman that the behavior of quantum particles cannot be described by classical probability theory with the viewpoint that quantum-classical inter-relation is more complicated (cf, in particular, with the tomographic model of quantum mechanics developed in detail by Vladimir Man'ko). As a basic example, we consider the two-slit experiment, which played a crucial role in quantum foundational debates at the beginning of quantum mechanics (QM). In particular, its analysis led Niels Bohr to the formulation of the principle of complementarity. First, we demonstrate that in complete accordance with Feynman's viewpoint, the probabilities for the two-slit experiment have the non-Kolmogorovian structure, since they violate one of basic laws of classical probability theory, the law of total probability (the heart of the Bayesian analysis). However, then we show that these probabilities can be embedded in a natural way into the classical (Kolmogorov, 1933) probability model. To do this, one has to take into account the randomness of selection of different experimental contexts, the joint consideration of which led Feynman to a conclusion about the non-classicality of quantum probability. We compare this embedding of non-Kolmogorovian quantum probabilities into the Kolmogorov model with well-known embeddings of non-Euclidean geometries into Euclidean space (e.g., the Poincaré disk model for the Lobachvesky plane).

  11. Mouse Spermatogenesis Requires Classical and Nonclassical Testosterone Signaling.

    PubMed

    Toocheck, Corey; Clister, Terri; Shupe, John; Crum, Chelsea; Ravindranathan, Preethi; Lee, Tae-Kyung; Ahn, Jung-Mo; Raj, Ganesh V; Sukhwani, Meena; Orwig, Kyle E; Walker, William H

    2016-01-01

    Testosterone acts though the androgen receptor in Sertoli cells to support germ cell development (spermatogenesis) and male fertility, but the molecular and cellular mechanisms by which testosterone acts are not well understood. Previously, we found that in addition to acting through androgen receptor to directly regulate gene expression (classical testosterone signaling pathway), testosterone acts through a nonclassical pathway via the androgen receptor to rapidly activate kinases that are known to regulate spermatogenesis. In this study, we provide the first evidence that nonclassical testosterone signaling occurs in vivo as the MAP kinase cascade is rapidly activated in Sertoli cells within the testis by increasing testosterone levels in the rat. We find that either classical or nonclassical signaling regulates testosterone-mediated Rhox5 gene expression in Sertoli cells within testis explants. The selective activation of classical or nonclassical signaling pathways in Sertoli cells within testis explants also resulted in the differential activation of the Zbtb16 and c-Kit genes in adjacent spermatogonia germ cells. Delivery of an inhibitor of either pathway to Sertoli cells of mouse testes disrupted the blood-testis barrier that is essential for spermatogenesis. Furthermore, an inhibitor of nonclassical testosterone signaling blocked meiosis in pubertal mice and caused the loss of meiotic and postmeiotic germ cells in adult mouse testes. An inhibitor of the classical pathway caused the premature release of immature germ cells. Collectively, these observations indicate that classical and nonclassical testosterone signaling regulate overlapping and distinct functions that are required for the maintenance of spermatogenesis and male fertility.

  12. New developments in classical chaotic scattering.

    PubMed

    Seoane, Jesús M; Sanjuán, Miguel A F

    2013-01-01

    Classical chaotic scattering is a topic of fundamental interest in nonlinear physics due to the numerous existing applications in fields such as celestial mechanics, atomic and nuclear physics and fluid mechanics, among others. Many new advances in chaotic scattering have been achieved in the last few decades. This work provides a current overview of the field, where our attention has been mainly focused on the most important contributions related to the theoretical framework of chaotic scattering, the fractal dimension, the basins boundaries and new applications, among others. Numerical techniques and algorithms, as well as analytical tools used for its analysis, are also included. We also show some of the experimental setups that have been implemented to study diverse manifestations of chaotic scattering. Furthermore, new theoretical aspects such as the study of this phenomenon in time-dependent systems, different transitions and bifurcations to chaotic scattering and a classification of boundaries in different types according to symbolic dynamics are also shown. Finally, some recent progress on chaotic scattering in higher dimensions is also described.

  13. A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics

    ERIC Educational Resources Information Center

    Pujol, O.; Perez, J. P.

    2007-01-01

    The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…

  14. Strongly magnetized classical plasma models

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Peyraud, J.; Dewitt, C.

    1974-01-01

    Discrete particle processes in the presence of a strong external magnetic field were investigated. These processes include equations of state and other equilibrium thermodynamic relations, thermal relaxation phenomena, transport properties, and microscopic statistical fluctuations in such quantities as the electric field and the charge density. Results from the equilibrium statistical mechanics of two-dimensional plasmas are discussed, along with nonequilibrium statistical mechanics of the electrostatic guiding-center plasma (a two-dimensional plasma model).

  15. Open questions in classical gravity

    SciTech Connect

    Mannheim, P.D. )

    1994-04-01

    In this work, the authors discuss some outstanding open questions regarding the validity and uniqueness of the standard second-order Newton-Einstein classical gravitational theory. On the observational side the authors discuss the degree to which the realm of validity of Newton's law of gravity can actually be extended to distances much larger than the solar system distance scales on which the law was originally established. On the theoretical side the authors identify some commonly accepted (but actually still open to question) assumptions which go into the formulation of the standard second-order Einstein theory in the first place. In particular, it is shown that while the familiar second-order Poisson gravitational equation (and accordingly its second-order covariant Einstein generalization) may be sufficient to yield Newton's law of gravity they are not in fact necessary. The standard theory thus still awaits the identification of some principle which would then make it necessary too. It is shown that current observational information does not exclusively mandate the standard theory, and that the conformal invariant fourth-order theory of gravity considered recently by Mannheim and Kazanas is also able to meet the constraints of data, and in fact to do so without the need for any so far unobserved nonluminous or dark matter. 37 refs., 7 figs.

  16. Ordering in classical Coulombic systems.

    SciTech Connect

    Schiffer, J. P.

    1998-01-22

    The author discusses the properties of classical Coulombic matter at low temperatures. It has been well known for some time [1,2] that infinite Coulombic matter will crystallize in body-centered cubic form when the quantity {Lambda} (the dimensionless ratio of the average two-particle Coulomb energy to the kinetic energy per particle) is larger than {approximately}175. But the systems of such particles that have been produced in the laboratory in ion traps, or ion beams, are finite with surfaces defined by the boundary conditions that have to be satisfied. This results in ion clouds with sharply defined curved surfaces, and interior structures that show up as a set of concentric layers that are parallel to the outer surface. The ordering does not appear to be cubic, but the charges on each shell exhibit a ''hexatic'' pattern of equilateral triangles that is the characteristic of liquid crystals. The curvature of the surfaces prevents the structures on successive shells from interlocking in any simple fashion. This class of structures was first found in simulations [3] and later in experiments [4].

  17. Revivals and classical-motion bases of quantum wave packets

    NASA Astrophysics Data System (ADS)

    Aronstein, David L.

    This thesis explores the boundary between classical and quantum mechanics by studying wave packets, coherent superpositions of the stationary states of a quantum system. Such wave packets travel as localized entities along the trajectories predicted by classical mechanics for small windows of time before they spread out and decay away. Our investigations focus on two central issues---the revivals of the shape and classical motion of these wave packets that occur long after their initial decay, and the classical-motion bases that describe the quantum wavefunction in terms of constitutive objects that move classically. We study the infinite square-well potential, a simple model of complete confinement in a one-dimensional interval. The quantum motion seen in this potential is compared with classical models of a particle bouncing between two walls and of a wave traveling along a stretched string with both ends secured. We uncover a remarkable wave-motion basis, with which the wavefunction at any moment in time can be decomposed into a sum of distinct wave propagations of the initial quantum wavefunction in the classical wave equation. These results are extended to the finite square-well potential and we show how the wave-motion basis can be reconciled with the seemingly disparate theory of revivals for highly excited quantum wave packets. We explore the commonalities of the quantum revivals seen in a wide variety of systems by developing a mathematical formalism called phase-difference equations. These equations connect physical models for revivals with the subsequent prediction of revival times in a general way and offer a comprehensive "calculus" for understanding revival phenomena. We apply this calculus to several examples to demonstrate its power and versatility. Using a recently developed semiclassical basis for quantum states, we explore the radial wave packets of the hydrogen atom. Viewed in the semiclassical basis, the revivals of these wave packets are shown

  18. Structure of classical affine and classical affine fractional W-algebras

    SciTech Connect

    Suh, Uhi Rinn

    2015-01-15

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.

  19. Diagrammar in classical scalar field theory

    SciTech Connect

    Cattaruzza, E.; Gozzi, E.; Francisco Neto, A.

    2011-09-15

    In this paper we analyze perturbatively a g{phi}{sup 4}classical field theory with and without temperature. In order to do that, we make use of a path-integral approach developed some time ago for classical theories. It turns out that the diagrams appearing at the classical level are many more than at the quantum level due to the presence of extra auxiliary fields in the classical formalism. We shall show that a universal supersymmetry present in the classical path-integral mentioned above is responsible for the cancelation of various diagrams. The same supersymmetry allows the introduction of super-fields and super-diagrams which considerably simplify the calculations and make the classical perturbative calculations almost 'identical' formally to the quantum ones. Using the super-diagrams technique, we develop the classical perturbation theory up to third order. We conclude the paper with a perturbative check of the fluctuation-dissipation theorem. - Highlights: > We provide the Feynman diagrams of perturbation theory for a classical field theory. > We give a super-formalism which links the quantum diagrams to the classical ones. > We check perturbatively the fluctuation-dissipation theorem.

  20. Classical teleportation of a quantum Bit

    PubMed

    Cerf; Gisin; Massar

    2000-03-13

    Classical teleportation is defined as a scenario where the sender is given the classical description of an arbitrary quantum state while the receiver simulates any measurement on it. This scenario is shown to be achievable by transmitting only a few classical bits if the sender and receiver initially share local hidden variables. Specifically, a communication of 2.19 bits is sufficient on average for the classical teleportation of a qubit, when restricted to von Neumann measurements. The generalization to positive-operator-valued measurements is also discussed.

  1. Classical Solution Thermodynamics: A Retrospective View.

    ERIC Educational Resources Information Center

    Van Ness, H. C.; Abbott, M. M.

    1985-01-01

    Examines topics related to classical solution thermodynamics, considering energy, enthalpy, and the Gibbs function. Applicable mathematical equations are introduced and discussed when appropriate. (JN)

  2. Primitive Ontology and the Classical World

    NASA Astrophysics Data System (ADS)

    Allori, Valia

    In this chapter, I present the common structure of quantum theories with a primitive ontology (PO), and discuss in what sense the classical world emerges from quantum theories as understood in this framework. In addition, I argue that the PO approach is better at analyzing the classical limit than the rival wave function ontology approach or any other approach in which the classical world is non-reductively "emergent:" even if the classical limit within this framework needs to be fully developed, the difficulties are technical rather than conceptual, while this is not true for the alternatives.

  3. Grid generation using classical techniques

    NASA Technical Reports Server (NTRS)

    Moretti, G.

    1980-01-01

    A brief historical review of conformal mapping and its applications to problems in fluid mechanics and electromagnetism is presented. The use of conformal mapping as a grid generator is described. The philosophy of the 'closed form' approach and its application to a Neumann problem is discussed. Karman-Trefftz mappings and grids for ablated, three dimensional bodies are also discussed.

  4. Lie Algebroids in Classical Mechanics and Optimal Control

    NASA Astrophysics Data System (ADS)

    Martínez, Eduardo

    2007-03-01

    We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.

  5. No-broadcasting theorem and its classical counterpart.

    PubMed

    Kalev, Amir; Hen, Itay

    2008-05-30

    Although it is widely accepted that "no-broadcasting"-the nonclonability of quantum information-is a fundamental principle of quantum mechanics, an impossibility theorem for the broadcasting of general density matrices has not yet been formulated. In this Letter, we present a general proof for the no-broadcasting theorem, which applies to arbitrary density matrices. The proof relies on entropic considerations, and as such can also be directly linked to its classical counterpart, which applies to probabilistic distributions of statistical ensembles.

  6. Classical molecular dynamics simulation of electronically non-adiabatic processes.

    PubMed

    Miller, William H; Cotton, Stephen J

    2016-12-22

    Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).

  7. Pembrolizumab in classical Hodgkin’s lymphoma

    PubMed Central

    Maly, Joseph; Alinari, Lapo

    2016-01-01

    Pembrolizumab is a humanized monoclonal antibody directed against programmed cell death protein 1 (PD-1), a key immune-inhibitory molecule expressed on T cells and implicated in CD4+ T-cell exhaustion and tumor immune-escape mechanisms. Classical Hodgkin’s lymphoma (cHL) is a unique B-cell malignancy in the sense that malignant Reed–Sternberg (RS) cells represent a small percentage of cells within an extensive immune cell infiltrate. PD-1 ligands are upregulated on RS cells as a consequence of both chromosome 9p24.1 amplification and Epstein–Barr virus infection and by interacting with PD-1 promote an immune-suppressive effect. By augmenting antitumor immune response, pembrolizumab and nivolumab, another monoclonal antibody against PD-1, have shown significant activity in patients with relapsed/refractory cHL as well as an acceptable toxicity profile with immune-related adverse events that are generally manageable. In this review, we explore the rationale for targeting PD-1 in cHL, review the clinical trial results supporting the use of checkpoint inhibitors in this disease, and present future directions for investigation in which this approach may be used. PMID:27147112

  8. Classical Trajectory and Monte Carlo Techniques

    NASA Astrophysics Data System (ADS)

    Olson, Ronald

    The classical trajectory Monte Carlo (CTMC) method originated with Hirschfelder, who studied the H + D2 exchange reaction using a mechanical calculator [58.1]. With the availability of computers, the CTMC method was actively applied to a large number of chemical systems to determine reaction rates, and final state vibrational and rotational populations (see, e.g., Karplus et al. [58.2]). For atomic physics problems, a major step was introduced by Abrines and Percival [58.3] who employed Kepler's equations and the Bohr-Sommerfield model for atomic hydrogen to investigate electron capture and ionization for intermediate velocity collisions of H+ + H. An excellent description is given by Percival and Richards [58.4]. The CTMC method has a wide range of applicability to strongly-coupled systems, such as collisions by multiply-charged ions [58.5]. In such systems, perturbation methods fail, and basis set limitations of coupled-channel molecular- and atomic-orbital techniques have difficulty in representing the multitude of activeexcitation, electron capture, and ionization channels. Vector- and parallel-processors now allow increasingly detailed study of the dynamics of the heavy projectile and target, along with the active electrons.

  9. Why/How Does Classics Matter?

    ERIC Educational Resources Information Center

    Cartledge, Paul

    2005-01-01

    Classics is in the news--or on the screen: "Gladiator" a few years ago, "Troy" very recently, "Alexander" as I write. How significant is this current Hollywood fascination with the ancient Greeks and Romans? Or should we take far more seriously the decline of the teaching of the Classical languages in schools, a…

  10. Velopharyngeal Port Status during Classical Singing

    ERIC Educational Resources Information Center

    Tanner, Kristine; Roy, Nelson; Merrill, Ray M.; Power, David

    2005-01-01

    Purpose: This investigation was undertaken to examine the status of the velopharyngeal (VP) port during classical singing. Method: Using aeromechanical instrumentation, nasal airflow (mL/s), oral pressure (cm H[subscript 2]O), and VP orifice area estimates (cm[squared]) were studied in 10 classically trained sopranos during singing and speaking.…

  11. Rediscovering the Classics: The Project Approach.

    ERIC Educational Resources Information Center

    Townsend, Ruth; Lubell, Marcia

    Focusing on seven classics of literature that are most challenging for teachers and students, but which are also a part of the high school literary canon, this book shares ways to create a learner-centered classroom for the study of literature. For each of the seven classics, the book "walks teachers through" the teaching-learning…

  12. Tarnished Gold: Classical Music in America

    ERIC Educational Resources Information Center

    Asia, Daniel

    2010-01-01

    A few articles have appeared recently regarding the subject of the health of classical music (or more broadly, the fine arts) in America. These include "Classical Music's New Golden Age," by Heather Mac Donald, in the "City Journal" and "The Decline of the Audience," by Terry Teachout, in "Commentary." These articles appeared around the time of…

  13. Linguistic Investigations into Ellipsis in Classical Sanskrit

    NASA Astrophysics Data System (ADS)

    Gillon, Brendan S.

    Ellipsis is a common phenomenon of Classical Sanskrit prose. No inventory of the forms of ellipsis in Classical Sanskrit has been made. This paper presents an inventory, based both on a systematic investigation of one text and on examples based on sundry reading.

  14. Converting Projects from STK Classic to STK

    SciTech Connect

    Foucar, James G.

    2014-08-01

    The version of STK (Sierra ToolKit) that has long been provided with Trilinos is no longer supported by the core develop- ment team. With the introduction of a the new STK library into Trilinos, the old STK has been renamed to stk classic. This document contains a rough guide of how to port a stk classic code to STK.

  15. Milgram's Obedience Study: A Contentious Classic Reinterpreted

    ERIC Educational Resources Information Center

    Griggs, Richard A.

    2017-01-01

    Given the many older criticisms of Milgram's obedience study and the more damning recent criticisms based on analyses of materials available in the Milgram archives at Yale, this study has become a contentious classic. Yet, current social psychology textbooks present it as an uncontentious classic, with no coverage of the recent criticisms and…

  16. Classic and Romantic in Irish Curriculum Development.

    ERIC Educational Resources Information Center

    McKernan, Jim

    Recent trends in curriculum development in Irish post-primary schools are traced according to two models: the classic-centrist and the romantic-decentralist. The classic model, initiated by agencies external to the school, views curriculum development as a science and focuses on accountability and competency-based teaching and testing. The…

  17. The Classical Performing Arts of India.

    ERIC Educational Resources Information Center

    Curtiss, Marie Joy

    A monograph of the numerous activities that have contributed to the current renaissance of India's classical performing arts covers the theoretical aspects, musical instruments, the main schools of classical dance, and drama. Besides the basic research described, the total project produced a set of 300 slides with annotated listing, picturing the…

  18. New Classical and New Keynesian Macroeconomics.

    ERIC Educational Resources Information Center

    Vane, Howard; Snowdon, Brian

    1992-01-01

    Summarizes underlying tenets and policy implications of new classical and new Keynesian macroeconomics. Compares new approaches with orthodox Keynesian and monetarist schools of thought. Identifies the fundamental difference between new classical and new Keynesian models as the assumption regarding the speed of wage and price adjustment following…

  19. Teaching the Classics in High School.

    ERIC Educational Resources Information Center

    Shelley, Anne Crout

    1998-01-01

    Discusses why the classics can be difficult to teach in high schools. Offers suggestions for making difficult literature more approachable for high school students by scaffolding students' engagement with classic texts; building background knowledge; developing vocabulary; facilitating the reading of the text; and through enrichment an extension.…

  20. A Classical Rhetoric for "Powerful" Argumentation.

    ERIC Educational Resources Information Center

    Wiethoff, William E.

    1980-01-01

    Analyzes a 1976 House of Representatives' debate in light of classical writings on the problem of defining and using "power" for rhetorical ends. Outlines the classical solution of powerful diction, brevity, and figures of speech for intensifying the impact of already compelling argument and applies these to the contemporary analysis.…

  1. Günther's formalism (κ-symplectic formalism) in classical field theory: Skinner-Rusk approach and the evolution operator

    NASA Astrophysics Data System (ADS)

    Rey, Angel M.; Román-Roy, Narciso; Salgado, Modesto

    2005-05-01

    The first aim of this paper is to extend the Skinner-Rusk formalism on classical mechanics for first-order field theories. The second is to generalize the definition and properties of the evolution K-operator on classical mechanics for first-order field theories using in both cases Günther's formalism (k-symplectic formalism).

  2. Classical transport in disordered systems

    NASA Astrophysics Data System (ADS)

    Papaioannou, Antonios

    This thesis reports on the manifestation of structural disorder on molecular transport and it consists of two parts. Part I discusses the relations between classical transport and the underlying structural complexity of the system. Both types of molecular diffusion, namely Gaussian and non- Gaussian are presented and the relevant time regimes are discussed. In addition the concept of structural universality is introduced and connected with the diffusion metrics. One of the most robust techniques for measuring molecular mean square displacements is magnetic resonance. This method requires encoding and subsequently reading out after an experimentally controlled time, a phase φ to the spins using magnetic field gradients. The main limitation for probing short diffusion lengths L(t) ˜ 1micro m with magnetic resonance is the requirement to encode and decode the phase φ in very short time intervals. Therefore, to probe such displacements a special probe was developed equipped with a gradient coil capable of delivering magnetic field gradients of approximately 90 G/cmA . The design of the probe is reported. Part I also includes a discussion of experiments of transport in two qualitatively different disordered phantoms and reports on a direct observation of universality in one-dimension. The results reveal the universal power law scaling of the diffusion coefficient at the long-time regime and illustrate the essence of structural universality by experimentally determining the structure correlation function of the phantoms. In addition, the scaling of the diffusive permeability of the phantoms with respect to the pore size is investigated. Additional work presented includes a detailed study of adsorption of methane gas in Vycor disordered glass. The techniques described in Part I of this thesis are widely used for measuring structural parameters of porous media, such as the surface-to-volume ratio or diffusive permeability. Part II of this thesis discusses the

  3. NUCLEAR THERMOMETERS FOR CLASSICAL NOVAE

    SciTech Connect

    Downen, Lori N.; Iliadis, Christian; Jose, Jordi; Starrfield, Sumner

    2013-01-10

    Classical novae are stellar explosions occurring in binary systems, consisting of a white dwarf and a main-sequence companion. Thermonuclear runaways on the surface of massive white dwarfs, consisting of oxygen and neon, are believed to reach peak temperatures of several hundred million kelvin. These temperatures are strongly correlated with the underlying white dwarf mass. The observational counterparts of such models are likely associated with outbursts that show strong spectral lines of neon in their shells (neon novae). The goals of this work are to investigate how useful elemental abundances are for constraining the peak temperatures achieved during these outbursts and determine how robust 'nova thermometers' are with respect to uncertain nuclear physics input. We present updated observed abundances in neon novae and perform a series of hydrodynamic simulations for several white dwarf masses. We find that the most useful thermometers, N/O, N/Al, O/S, S/Al, O/Na, Na/Al, O/P, and P/Al, are those with the steepest monotonic dependence on peak temperature. The sensitivity of these thermometers to thermonuclear reaction rate variations is explored using post-processing nucleosynthesis simulations. The ratios N/O, N/Al, O/Na, and Na/Al are robust, meaning they are minimally affected by uncertain rates. However, their dependence on peak temperature is relatively weak. The ratios O/S, S/Al, O/P, and P/Al reveal strong dependences on temperature and the poorly known {sup 30}P(p, {gamma}){sup 31}S rate. We compare our model predictions to neon nova observations and obtain the following estimates for the underlying white dwarf masses: 1.34-1.35 M {sub Sun} (V838 Her), 1.18-1.21 M {sub Sun} (V382 Vel), {<=}1.3 M {sub Sun} (V693 CrA), {<=}1.2 M {sub Sun} (LMC 1990 no. 1), and {<=}1.2 M {sub Sun} (QU Vul).

  4. k-Cosymplectic Classical Field Theories: Tulczyjew and Skinner-Rusk Formulations

    NASA Astrophysics Data System (ADS)

    Rey, Angel M.; Román-Roy, Narciso; Salgado, Modesto; Vilariño, Silvia

    2012-06-01

    The k-cosymplectic Lagrangian and Hamiltonian formalisms of first-order classical field theories are reviewed and completed. In particular, they are stated for singular and almost-regular systems. Subsequently, several alternative formulations for k-cosymplectic first-order field theories are developed: First, generalizing the construction of Tulczyjew for mechanics, we give a new interpretation of the classical field equations. Second, the Lagrangian and Hamiltonian formalisms are unified by giving an extension of the Skinner-Rusk formulation on classical mechanics.

  5. Required Revisions to Classical Electromagnetism

    DTIC Science & Technology

    2008-10-15

    Feynman Lectures in Physics vol II (Addison-Wesley, Reading, MA, 1964). 4. Feynman , R., and Hibbs, A. R., Quantum Mechanics and Path Integrals... physical variables such as E, IE , and CE . While this leads to a proliferation of variables, it provides more clarity. In the literature, the same...symbol, E, is used for all electric field variables, which obscures the physics and leads to errors, as we will illustrate (see also, the Appendix

  6. Classical field approach to quantum weak measurements.

    PubMed

    Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco

    2014-03-21

    By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.

  7. Polymerization by classical and frustrated Lewis pairs.

    PubMed

    Chen, Eugene Y-X

    2013-01-01

    Main-group classical and frustrated Lewis pairs (CLPs and FLPs) comprising strong Lewis acids (LAs) and strong Lewis bases (LBs) are highly active for polymerization of conjugated polar alkenes, affording typically high molecular weight polymers with relatively narrow molecular weight distributions. Especially effective systems are the Lewis pairs (LPs) consisting of the strong LA Al(C6F5)3 and strong LBs, such as achiral phosphines and chiral chelating diphosphines, N-heterocyclic carbenes, and phosphazene superbases, for polymerization of methacrylates and acrylamides as well as renewable α-methylene-γ-butyrolactones. Chain initiation involves cooperative addition of LPs to the monomer to generate zwitterionic active species, and chain propagation proceeds via a bimetallic, activated-monomer addition mechanism. Transition metal nucleophile/electrophile pairs comprising neutral metallocene bis(ester enolate)s and strong LAs E(C6F5)3 (E = Al, B) generate two drastically different polymerization systems, depending on the LA. With E = Al, catalyst activation and chain initiating events lead to dually active ion-pairs, thereby effecting ion-pairing polymerization that affords polymers with unique stereo-multiblock microstructures. With E = B, on the other hand, the FLP-induced catalyst activation generates metallacyclic cations paired with the hydridoborate anion [HB(C6F5)3](-); uniquely, such ion-pairs effect catalytic polymerization of conjugated polar alkenes by an H-shuttling mechanism, with the cation catalyzing chain growth and the anion promoting chain transfer by shuttling the hydride between the cation and anion centers through the neutral borane.

  8. Bidirectional Classical Stochastic Processes with Measurements and Feedback

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    2005-01-01

    A measurement on a quantum system is said to cause the "collapse" of the quantum state vector or density matrix. An analogous collapse occurs with measurements on a classical stochastic process. This paper addresses the question of describing the response of a classical stochastic process when there is feedback from the output of a measurement to the input, and is intended to give a model for quantum-mechanical processes that occur along a space-like reaction coordinate. The classical system can be thought of in physical terms as two counterflowing probability streams, which stochastically exchange probability currents in a way that the net probability current, and hence the overall probability, suitably interpreted, is conserved. The proposed formalism extends the . mathematics of those stochastic processes describable with linear, single-step, unidirectional transition probabilities, known as Markov chains and stochastic matrices. It is shown that a certain rearrangement and combination of the input and output of two stochastic matrices of the same order yields another matrix of the same type. Each measurement causes the partial collapse of the probability current distribution in the midst of such a process, giving rise to calculable, but non-Markov, values for the ensuing modification of the system's output probability distribution. The paper concludes with an analysis of a classical probabilistic version of the so-called grandfather paradox.

  9. Classical description of the dynamics and time-resolved spectroscopy of nonadiabatic cis- trans photoisomerization

    NASA Astrophysics Data System (ADS)

    Uspenskiy, Igor; Strodel, Birgit; Stock, Gerhard

    2006-10-01

    The mapping formulation of nonadiabatic quantum dynamics is applied to obtain a classical description of the ultrafast dynamics and time-resolved spectroscopy of a photochemical reaction. Adopting a previously studied dissipative two-state two-mode model of nonadiabatic cis-trans photoisomerization, classical mapping simulations are compared to quantum-mechanical reduced density matrix calculations. Overall, the simple classical method is found to reproduce the quantum reference calculations quite well. In particular, it is studied if the classical approach yields the correct long-time cis/trans localization of the wave packet and therefore the correct quantum yield of the photoreaction. As the long-time behavior of the classical mapping formulation suffers from the well-known zero point energy problem of classical mechanics, a new practical method is proposed to determine a zero point energy correction. Employing a second-order Franck-Condon-type approximation, the capability of the classical method to simulate time- and frequency-resolved pump-probe spectra of the nonadiabatic photoreaction is studied. The potential of the classical approach as a practical method to describe condensed-phase photoreactions is discussed.

  10. Geometric Mechanics

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    1999-10-01

    Mechanics for the nonmathematician-a modern approach For physicists, mechanics is quite obviously geometric, yet the classical approach typically emphasizes abstract, mathematical formalism. Setting out to make mechanics both accessible and interesting for nonmathematicians, Richard Talman uses geometric methods to reveal qualitative aspects of the theory. He introduces concepts from differential geometry, differential forms, and tensor analysis, then applies them to areas of classical mechanics as well as other areas of physics, including optics, crystal diffraction, electromagnetism, relativity, and quantum mechanics. For easy reference, Dr. Talman treats separately Lagrangian, Hamiltonian, and Newtonian mechanics-exploring their geometric structure through vector fields, symplectic geometry, and gauge invariance respectively. Practical perturbative methods of approximation are also developed. Geometric Mechanics features illustrative examples and assumes only basic knowledge of Lagrangian mechanics. Of related interest . . . APPLIED DYNAMICS With Applications to Multibody and Mechatronic Systems Francis C. Moon A contemporary look at dynamics at an intermediate level, including nonlinear and chaotic dynamics. 1998 (0-471-13828-2) 504 pp. MATHEMATICAL PHYSICS Applied Mathematics for Scientists and Engineers Bruce Kusse and Erik Westwig A comprehensive treatment of the mathematical methods used to solve practical problems in physics and engineering. 1998 (0-471-15431-8) 680 pp.

  11. Survival of classic cholera in Bangladesh.

    PubMed

    Siddique, A K; Baqui, A H; Eusof, A; Haider, K; Hossain, M A; Bashir, I; Zaman, K

    1991-05-11

    During the present cholera pandemic the El Tor biotype of Vibrio cholerae has completely displaced the classic biotype, except in Bangladesh. We studied the distribution of these two biotypes in twenty-four rural districts during epidemics in 1988-89; there was clustering of the classic biotype in the southern region and of the El Tor biotype in all other regions. These findings suggest that the southern coastal region is now (and may always have been) the habitat of classic cholera. The selective distribution of V cholerae O1 biotypes in Bangladesh may have been affected by ecological changes occurring in the country.

  12. Failure of classical elasticity in auxetic foams

    NASA Astrophysics Data System (ADS)

    Roh, J. H.; Giller, C. B.; Mott, P. H.; Roland, C. M.

    2013-04-01

    Poisson's ratio, ν, was measured for four materials, a rubbery polymer, a conventional soft foam, and two auxetic foams. We find that for the first two materials, having ν ≥ 0.2, the experimental determinations of Poisson's ratio are in good agreement with values calculated from the shear and tensile moduli using the equations of classical elasticity. However, for the two auxetic materials (ν < 0), the equations of classical elasticity give values significantly different from the measured ν. We offer an interpretation of these results based on a recently published analysis of the bounds on Poisson's ratio for classical elasticity to be applicable.

  13. A model for explaining fusion suppression using classical trajectory method

    NASA Astrophysics Data System (ADS)

    Phookan, C. K.; Kalita, K.

    2015-01-01

    We adopt a semi-classical approach for explanation of projectile breakup and above barrier fusion suppression for the reactions 6Li+152Sm and 6Li+144Sm. The cut-off impact parameter for fusion is determined by employing quantum mechanical ideas. Within this cut-off impact parameter for fusion, the fraction of projectiles undergoing breakup is determined using the method of classical trajectory in two-dimensions. For obtaining the initial conditions of the equations of motion, a simplified model of the 6Li nucleus has been proposed. We introduce a simple formula for explanation of fusion suppression. We find excellent agreement between the experimental and calculated fusion cross section. A slight modification of the above formula for fusion suppression is also proposed for a three-dimensional model.

  14. Review of semi-classical calculations for breakup

    SciTech Connect

    Baye, Daniel

    2005-10-14

    In semi-classical approximations, the relative motion between target and projectile is represented by a classical trajectory but the projectile internal motion is treated quantum mechanically. A time-dependent Schroedinger equation describes the breakup of exotic nuclei induced by the Coulomb and nuclear forces. Different accurate techniques of resolution of this time-dependent equation are reviewed for one space dimension. The respective merits of their extensions to three dimensions are compared. Applications to the breakup of the 11Be, 15C, and 19C halo nuclei are presented and discussed. The first-order perturbation theory is compared with the time-dependent method and its relevance for the Coulomb breakup determination of the astrophysical S factor is analyzed.

  15. Quantum-to-classical transition in cavity quantum electrodynamics.

    PubMed

    Fink, J M; Steffen, L; Studer, P; Bishop, Lev S; Baur, M; Bianchetti, R; Bozyigit, D; Lang, C; Filipp, S; Leek, P J; Wallraff, A

    2010-10-15

    The quantum properties of electromagnetic, mechanical or other harmonic oscillators can be revealed by investigating their strong coherent coupling to a single quantum two level system in an approach known as cavity quantum electrodynamics (QED). At temperatures much lower than the characteristic energy level spacing the observation of vacuum Rabi oscillations or mode splittings with one or a few quanta asserts the quantum nature of the oscillator. Here, we study how the classical response of a cavity QED system emerges from the quantum one when its thermal occupation-or effective temperature-is raised gradually over 5 orders of magnitude. In this way we explore in detail the continuous quantum-to-classical crossover and demonstrate how to extract effective cavity field temperatures from both spectroscopic and time-resolved vacuum Rabi measurements.

  16. Classical imaging theory of a microlens with super-resolution.

    PubMed

    Duan, Yubo; Barbastathis, George; Zhang, Baile

    2013-08-15

    Super-resolution in imaging through a transparent spherical microlens has attracted lots of attention because of recent promising experimental results with remarkable resolution improvement. To provide physical insight for this super-resolution phenomenon, previous studies adopted a phenomenological explanation mainly based on the super-focusing effect of a photonic nanojet, while a direct imaging calculation with classical imaging theory has rarely been studied. Here we theoretically model the imaging process through a microlens with vectorial electromagnetic analysis, and then exclude the previously plausible explanation of super-resolution based on the super-focusing effect. The results showed that, in the context of classical imaging theory subject to the two-point resolution criterion, a microlens with a perfect spherical shape cannot achieve the experimentally verified sub-100 nm resolution. Therefore, there must be some other physical mechanisms that contribute to the reported ultrahigh resolution but have not been revealed in theory.

  17. Gauge coupling unification in a classically scale invariant model

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Ishida, Hiroyuki; Takahashi, Ryo; Yamaguchi, Yuya

    2016-02-01

    There are a lot of works within a class of classically scale invariant model, which is motivated by solving the gauge hierarchy problem. In this context, the Higgs mass vanishes at the UV scale due to the classically scale invariance, and is generated via the Coleman-Weinberg mechanism. Since the mass generation should occur not so far from the electroweak scale, we extend the standard model only around the TeV scale. We construct a model which can achieve the gauge coupling unification at the UV scale. In the same way, the model can realize the vacuum stability, smallness of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abundance. The model predicts the existence vector-like fermions charged under SU(3) C with masses lower than 1 TeV, and the SM singlet Majorana dark matter with mass lower than 2.6 TeV.

  18. Path integral approach to electron scattering in classical electromagnetic potential

    NASA Astrophysics Data System (ADS)

    Chuang, Xu; Feng, Feng; Ying-Jun, Li

    2016-05-01

    As is known to all, the electron scattering in classical electromagnetic potential is one of the most widespread applications of quantum theory. Nevertheless, many discussions about electron scattering are based upon single-particle Schrodinger equation or Dirac equation in quantum mechanics rather than the method of quantum field theory. In this paper, by using the path integral approach of quantum field theory, we perturbatively evaluate the scattering amplitude up to the second order for the electron scattering by the classical electromagnetic potential. The results we derive are convenient to apply to all sorts of potential forms. Furthermore, by means of the obtained results, we give explicit calculations for the one-dimensional electric potential. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374360, 11405266, and 11505285) and the National Basic Research Program of China (Grant No. 2013CBA01504).

  19. A classical case of the Gasul phenomenon.

    PubMed

    Sabnis, Girish R; Phadke, Milind S; Kerkar, Prafulla G

    2016-02-01

    This case demonstrates the development of secondary infundibular stenosis in a 10-year-old male child with documented large non-restrictive perimembranous ventricular septal defect in infancy - the classical Gasul phenomenon.

  20. Classic Phenylketonuria: Diagnosis Through Heterozygote Detection

    ERIC Educational Resources Information Center

    Griffin, Robert F.; Elsas, Louis J.

    1975-01-01

    In an attempt to improve the identification of the asymptomatic carrier of classic phenylketonuria (PKU) 59 male and female normal control Ss were differentiated from 18 males and females heterozgous for PKU. (DB)

  1. Secure quantum communication using classical correlated channel

    NASA Astrophysics Data System (ADS)

    Costa, D.; de Almeida, N. G.; Villas-Boas, C. J.

    2016-10-01

    We propose a secure protocol to send quantum information from one part to another without a quantum channel. In our protocol, which resembles quantum teleportation, a sender (Alice) and a receiver (Bob) share classical correlated states instead of EPR ones, with Alice performing measurements in two different bases and then communicating her results to Bob through a classical channel. Our secure quantum communication protocol requires the same amount of classical bits as the standard quantum teleportation protocol. In our scheme, as in the usual quantum teleportation protocol, once the classical channel is established in a secure way, a spy (Eve) will never be able to recover the information of the unknown quantum state, even if she is aware of Alice's measurement results. Security, advantages, and limitations of our protocol are discussed and compared with the standard quantum teleportation protocol.

  2. Three Neglected Advances in Classical Genetics.

    ERIC Educational Resources Information Center

    Miller, Wilmer J.; Hollander, Willard F.

    1995-01-01

    This article describes three advances in classical genetics: improved pedigree charting, use of a standard of reference, and calculation of probabilities in complex assortment. Provides support for the importance of teaching these methods in addition to new techniques. (LZ)

  3. Classics in the Classroom: Great Expectations Fulfilled.

    ERIC Educational Resources Information Center

    Pearl, Shela

    1986-01-01

    Describes how an English teacher in a Queens, New York, ghetto school introduced her grade nine students to Charles Dickens's "Great Expectations." Focuses on students' responses, which eventually became enthusiastic, and discusses the use of classics within the curriculum. (KH)

  4. Classics in Chemical Neuroscience: Xanomeline.

    PubMed

    Bender, Aaron M; Jones, Carrie K; Lindsley, Craig W

    2017-01-31

    Xanomeline (1) is an orthosteric muscarinic acetylcholine receptor (mAChR) agonist, often referred to as M1/M4-preferring that received widespread attention for its clinical efficacy in schizophrenia and Alzheimer's disease (AD) patients. Despite the compound's promising initial clinical results, dose-limiting side effects limited further clinical development. While xanomeline, and related orthosteric muscarinic agonists, have yet to receive approval from the FDA for the treatment of these CNS disorders, interest in the compound's unique M1/M4-preferring mechanism of action is ongoing in the field of chemical neuroscience. Specifically, the promising cognitive and behavioral effects of xanomeline in both schizophrenia and AD have spurred a renewed interest in the development of safer muscarinic ligands with improved subtype selectivity for either M1 or M4. This Review will address xanomeline's overall importance in the field of neuroscience, with a specific focus on its chemical structure and synthesis, pharmacology, drug metabolism and pharmacokinetics (DMPK), and adverse effects.

  5. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments

    SciTech Connect

    Rosenberg, Danna; Peterson, Charles G; Dallmann, Nicholas; Hughes, Richard J; Mccabe, Kevin P; Nordholt, Jane E; Tyagi, Hush T; Peters, Nicholas A; Toliver, Paul; Chapman, Thomas E; Runser, Robert J; Mcnown, Scott R

    2008-01-01

    To move beyond dedicated links and networks, quantum communications signals must be integrated into networks carrying classical optical channels at power levels many orders of magnitude higher than the quantum signals themselves. We demonstrate transmission of a 1550-nm quantum channel with up to two simultaneous 200-GHz spaced classical telecom channels, using ROADM (reconfigurable optical <1dd drop multiplexer) technology for multiplexing and routing quantum and classical signals. The quantum channel is used to perform quantum key distribution (QKD) in the presence of noise generated as a by-product of the co-propagation of classical channels. We demonstrate that the dominant noise mechanism can arise from either four-wave mixing or spontaneous Raman scattering, depending on the optical path characteristics as well <1S the classical channel parameters. We quantity these impairments and discuss mitigation strategies.

  6. Quantum physics of classical waves in plasma

    NASA Astrophysics Data System (ADS)

    Dodin, I. Y.

    2012-10-01

    The Lagrangian approach to plasma wave physics is extended to a universal nonlinear theory which yields generic equations invariant with respect to the wave nature. The traditional understanding of waves as solutions of the Maxwell-Vlasov system is abandoned. Oscillations are rather treated as physical entities, namely, abstract vectors |ψ> in a specific Hilbert space. The invariant product <ψ|ψ> is the total action and has the sign of the oscillation energy. The action density is then an operator. Projections of the corresponding operator equation generate assorted wave kinetic equations; the nonlinear Wigner-Moyal equation is just one example and, in fact, may be more delicate than commonly assumed. The linear adiabatic limit of this classical theory leads to quantum mechanics in its general form. The action conservation theorem, together with its avatars such as Manley-Rowe relations, then becomes manifest and in partial equilibrium can modify statistical properties of plasma fluctuations. In the quasi-monochromatic limit geometrical optics (GO) is recovered and can as well be understood as a particular field theory in its own right. For linear waves, the energy-momentum equations, in both canonical and (often) kinetic form, then follow automatically, even without a reference to electromagnetism. Yet for waves in plasma the general GO Lagrangian is also derived explicitly, in terms of single-particle oscillation-center Hamiltonians. Applications to various plasma waves are then discussed with an emphasis on the advantages of an abstract theory. Specifically covered are nonlinear dispersion, dynamics, and stability of BGK modes, and also other wave transformations in laboratory and cosmological plasmas.

  7. Understanding singularities — Classical and quantum

    NASA Astrophysics Data System (ADS)

    Konkowski, Deborah A.; Helliwell, Thomas M.

    2016-01-01

    The definitions of classical and quantum singularities are reviewed. Examples are given of both as well as their utility in general relativity. In particular, the classical and quantum singularity structure of certain interesting conformally static spherically symmetric spacetimes modeling scalar field collapse are reviewed. The spacetimes include the Roberts spacetime, the Husain-Martinez-Nuñez spacetime and the Fonarev spacetime. The importance of understanding spacetime singularity structure is discussed.

  8. Automatic target recognition via classical detection theory

    NASA Astrophysics Data System (ADS)

    Morgan, Douglas R.

    1995-07-01

    Classical Bayesian detection and decision theory applies to arbitrary problems with underlying probabilistic models. When the models describe uncertainties in target type, pose, geometry, surround, scattering phenomena, sensor behavior, and feature extraction, then classical theory directly yields detailed model-based automatic target recognition (ATR) techniques. This paper reviews options and considerations arising under a general Bayesian framework for model- based ATR, including approaches to the major problems of acquiring probabilistic models and of carrying out the indicated Bayesian computations.

  9. Quantum Simulations of Classical Annealing Processes

    NASA Astrophysics Data System (ADS)

    Somma, R. D.; Boixo, S.; Barnum, H.; Knill, E.

    2008-09-01

    We describe a quantum algorithm that solves combinatorial optimization problems by quantum simulation of a classical simulated annealing process. Our algorithm exploits quantum walks and the quantum Zeno effect induced by evolution randomization. It requires order 1/δ steps to find an optimal solution with bounded error probability, where δ is the minimum spectral gap of the stochastic matrices used in the classical annealing process. This is a quadratic improvement over the order 1/δ steps required by the latter.

  10. Quantum-classical correspondence principles for locally nonequilibrium driven systems.

    PubMed

    Smith, Eric

    2008-02-01

    Many of the core concepts and (especially field-theoretic) tools of statistical mechanics have developed within the context of thermodynamic equilibrium, where state variables are all taken to be charges, meaning that their values are inherently preserved under reversal of the direction of time. A principle concern of nonequilibrium statistical mechanics is to understand the emergence and stability of currents, quantities whose values change sign under time reversal. Whereas the correspondence between classical charge-valued state variables and their underlying statistical or quantum ensembles is quite well understood, the study of currents away from equilibrium has been more fragmentary, with classical descriptions relying on the asymmetric auxiliary-field formalism of Martin, Siggia, and Rose (and often restricted to the Markovian assumption of Doi and Peliti), while quantum descriptions employ a symmetric two-field formalism introduced by Schwinger and further clarified by Keldysh. In this paper we demonstrate that for quantum ensembles in which superposition is not violated by very strong conditions of decoherence, there is a large natural generalization of the principles and tools of equilibrium, which not only admits but requires the introduction of current-valued state variables. For these systems, not only do Martin-Siggia-Rose (MSR) and Schwinger-Keldysh (SK) field methods both exist, in some cases they provide inequivalent classical and quantum descriptions of identical ensembles. With these systems for examples, we can both study the correspondence between classical and quantum descriptions of currents, and also clarify the nature of the mapping between the structurally homologous but interpretationally different MSR and SK formalisms.

  11. Quantum and Classical Electrostatics Among Atoms

    NASA Astrophysics Data System (ADS)

    Doerr, T. P.; Obolensky, O. I.; Ogurtsov, A. Y.; Yu, Yi-Kuo

    Quantum theory has been unquestionably successful at describing physics at the atomic scale. However, it becomes more difficult to apply as the system size grows. On the other hand, classical physics breaks down at sufficiently short length scales but is clearly correct at larger distances. The purpose of methods such as QM/MM is to gain the advantages of both quantum and classical regimes: quantum theory should provide accuracy at the shortest scales, and classical theory, with its somewhat more tractable computational demands, allows results to be computed for systems that would be inaccessible with a purely quantum approach. This strategy will be most effective when one knows with good accuracy the length scale at which quantum calculations are no longer necessary and classical calculations are sufficient. To this end, we have performed both classical and quantum calculations for systems comprising a small number of atoms for which experimental data is also available. The classical calculations are fully exact; the quantum calculations are at the MP4(SDTQ)/aug-cc-pV5Z and CCSD(T)/aug-cc-pV5Z levels. The precision of both sets of calculations along with the existence of experimental results allows us to draw conclusions about the range of utility of the respective calculations. This research was supported by the Intramural Research Program of the NIH, NLM and utilized the computational resources of the NIH HPC Biowulf cluster.

  12. Classical microscopic theory of dispersion, emission and absorption of light in dielectrics. Classical microscopic theory of dielectric susceptibility

    NASA Astrophysics Data System (ADS)

    Carati, Andrea; Galgani, Luigi

    2014-10-01

    This paper is a continuation of a recent one in which, apparently for the first time, the existence of polaritons in ionic crystals was proven in a microscopic electrodynamic theory. This was obtained through an explicit computation of the dispersion curves. Here the main further contribution consists in studying electric susceptibility, from which the spectrum can be inferred. We show how susceptibility is obtained by the Green-Kubo methods of Hamiltonian statistical mechanics, and give for it a concrete expression in terms of time-correlation functions. As in the previous paper, here too we work in a completely classical framework, in which the electrodynamic forces acting on the charges are all taken into account, both the retarded forces and the radiation reaction ones. So, in order to apply the methods of statistical mechanics, the system has to be previously reduced to a Hamiltonian one. This is made possible in virtue of two global properties of classical electrodynamics, namely, the Wheeler-Feynman identity and the Ewald resummation properties, the proofs of which were already given for ordered system. The second contribution consists in formulating the theory in a completely general way, so that in principle it applies also to disordered systems such as glasses, or liquids or gases, provided the two general properties mentioned above continue to hold. A first step in this direction is made here by providing a completely general proof of the Wheeler-Feynman identity, which is shown to be the counterpart of a general causality property of classical electrodynamics. Finally it is shown how a line spectrum can appear at all in classical systems, as a counterpart of suitable stability properties of the motions, with a broadening due to a coexistence of chaoticity. The relevance of some recent results of the theory of dynamical systems in this connection is also pointed out.

  13. Clusters of classical water models

    NASA Astrophysics Data System (ADS)

    Kiss, Péter T.; Baranyai, András

    2009-11-01

    charge in the models plays a crucial role. In this respect models with SPC geometry provided structures different from the TIP4P-type potentials, including polarizable ones. The TIP4P variants form configurations similar to one another. Results for TIP4P-EW and for TIP4P/2005 were especially close to each other in every respect. This is also true for the BSV and the DC pair. The charge-on-spring models (SWM4-DP and SWM4-NDP) are also very similar to each other, despite the sign exchange of charges on the spring particle and the oxygen. The spherical polarization of water is crucial. Due to the planar polarization of the SPC-FQ and the TIP4P-FQ models, they prefer planar arrangements contrary to other polarizable models and quantum chemical calculations. The tetrahedral geometry of TIP5P stabilizes additional clusters with peculiar geometries and small O-O distances. Inclusion of vibrations causes only insignificant changes in the characteristic geometries but decreases the internal energy relative to its reference rigid version. Comparing with quantum mechanical calculations the GCP model provided the best overall results.

  14. There is no classical analog of a quantum time-translation machine

    NASA Astrophysics Data System (ADS)

    Vaidman, Lev

    1995-11-01

    In a recent article [D. Suter, Phys. Rev. A 51, 45 (1995)] Suter has claimed to present an optical implementation of the quantum time-translation machine that ``shows all the features that the general concept predicts and also allows, besides the quantum-mechanical, a classical description.'' It is argued that the experiment proposed and performed by Suter does not have the features of the quantum time-translation machine and that the latter has no classical analog.

  15. The classical model for moment tensors

    NASA Astrophysics Data System (ADS)

    Tape, W.; Tape, C.

    2013-12-01

    A seismic moment tensor is a description of an earthquake source, but the description is indirect. The moment tensor describes seismic radiation rather than the actual physical process that initiates the radiation. A moment tensor 'model' then ties the physical process to the moment tensor. The model is not unique, and the physical process is therefore not unique. In the classical moment tensor model (Aki and Richards, 1980), an earthquake arises from slip along a planar fault, but with the slip not necessarily in the plane of the fault. The model specifies the resulting moment tensor in terms of the slip vector, the fault normal vector, and the Lame elastic parameters, assuming isotropy. We review the classical model in the context of the fundamental lune. The lune is closely related to the space of moment tensors, and it provides a setting that is conceptually natural as well as pictorial. In addition to the classical model, we consider a crack plus double couple model (CDC model) in which a moment tensor is regarded as the sum of a crack tensor and a double couple. A compilation of full moment tensors from the literature reveals large deviations in Poisson's ratio as implied by the classical model. Either the classical model is inadequate or the published full moment tensors have very large uncertainties. We question the common interpretation of the isotropic component as a volume change in the source region.

  16. Effective dynamics of a classical point charge

    SciTech Connect

    Polonyi, Janos

    2014-03-15

    The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham–Lorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-pole of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out. -- Highlights: •Extension of the classical action principle for dissipative systems. •New derivation of the Abraham–Lorentz force for a point charge. •Absence of a runaway solution of the Abraham–Lorentz force. •Acausality in classical electrodynamics. •Renormalization of classical electrodynamics of point charges.

  17. Population structure of the Classic period Maya.

    PubMed

    Scherer, Andrew K

    2007-03-01

    This study examines the population structure of Classic period (A.D. 250-900) Maya populations through analysis of odontometric variation of 827 skeletons from 12 archaeological sites in Mexico, Guatemala, Belize, and Honduras. The hypothesis that isolation by distance characterized Classic period Maya population structure is tested using Relethford and Blangero's (Hum Biol 62 (1990) 5-25) approach to R matrix analysis for quantitative traits. These results provide important biological data for understanding ancient Maya population history, particularly the effects of the competing Tikal and Calakmul hegemonies on patterns of lowland Maya site interaction. An overall F(ST) of 0.018 is found for the Maya area, indicating little among-group variation for the Classic Maya sites tested. Principal coordinates plots derived from the R matrix analysis show little regional patterning in the data, though the geographic outliers of Kaminaljuyu and a pooled Pacific Coast sample did not cluster with the lowland Maya sites. Mantel tests comparing the biological distance matrix to a geographic distance matrix found no association between genetic and geographic distance. In the Relethford-Blangero analysis, most sites possess negative or near-zero residuals, indicating minimal extraregional gene flow. The exceptions were Barton Ramie, Kaminaljuyu, and Seibal. A scaled R matrix analysis clarifies that genetic drift is a consideration for understanding Classic Maya population structure. All results indicate that isolation by distance does not describe Classic period Maya population structure.

  18. Quantum-classical crossover in electrodynamics

    SciTech Connect

    Polonyi, Janos

    2006-09-15

    A classical field theory is proposed for the electric current and the electromagnetic field interpolating between microscopic and macroscopic domains. It represents a generalization of the density functional for the dynamics of the current and the electromagnetic field in the quantum side of the crossover and reproduces standard classical electrodynamics on the other side. The effective action derived in the closed time path formalism and the equations of motion follow from the variational principle. The polarization of the Dirac-sea can be taken into account in the quadratic approximation of the action by the introduction of the deplacement field strengths as in conventional classical electrodynamics. Decoherence appears naturally as a simple one-loop effect in this formalism. It is argued that the radiation time arrow is generated from the quantum boundary conditions in time by decoherence at the quantum-classical crossover and the Abraham-Lorentz force arises from the accelerating charge or from other charges in the macroscopic or the microscopic side, respectively. The functional form of the quantum renormalization group, the generalization of the renormalization group method for the density matrix, is proposed to follow the scale dependence through the quantum-classical crossover in a systematical manner.

  19. Graphical Calculi and Mutually Unbiassed Embeddings of Classical Logic

    NASA Astrophysics Data System (ADS)

    Duncan, Ross

    2008-03-01

    While arbitrary quantum states may not be freely cloned or deleted [1], we note, following [2], that these distinctively classical operations may be performed on states which lie within a given basis. Each basis therefore provides an embedding of classical logic into a quantum state space. This work provides a categorical axiomatisation (cf [3]) of the interaction of such embeddings when distinct mutually unbiassed bases [4] are used. We provide a graphical language (cf. [5]) for the classical operations that each embedding provides, and demonstrate that this system captures many properties of multi-partite entangled states and can simulate quantum algorithms. [1] W. Wootters and W. Zurek. A single quantum cannot be cloned, 1982. A.K. Pati and S. L. Braunstein. Impossibility of deleting an unknown quantum state, 2000. [2] B. Coecke and D. Pavlovic (2007) Quantum measurements without sums. arXiv:quant-ph/0608035. [3] S. Abramsky and B. Coecke (2004) A categorical semantics of quantum protocols. arXiv:quant-ph/0402130. [4] J. Schwinger (1960) Unitary operator bases. Proceedings of the National Academy of Sciences of the U.S.A. 46 [5] B. Coecke (2005) Kindergarten quantum mechanics. arXiv:quant-ph/0510032

  20. Sweet and sour: an update on classic galactosemia.

    PubMed

    Coelho, Ana I; Rubio-Gozalbo, M Estela; Vicente, João B; Rivera, Isabel

    2017-03-09

    Classic galactosemia is a rare inherited disorder of galactose metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme of the Leloir pathway. It presents in the newborn period as a life-threatening disease, whose clinical picture can be resolved by a galactose-restricted diet. The dietary treatment proves, however, insufficient in preventing severe long-term complications, such as cognitive, social and reproductive impairments. Classic galactosemia represents a heavy burden on patients' and their families' lives. After its first description in 1908 and despite intense research in the past century, the exact pathogenic mechanisms underlying galactosemia are still not fully understood. Recently, new important insights on molecular and cellular aspects of galactosemia have been gained, and should open new avenues for the development of novel therapeutic strategies. Moreover, an international galactosemia network has been established, which shall act as a platform for expertise and research in galactosemia. Herein are reviewed some of the latest developments in clinical practice and research findings on classic galactosemia, an enigmatic disorder with many unanswered questions warranting dedicated research.

  1. Electron spin or "classically non-describable two-valuedness"

    NASA Astrophysics Data System (ADS)

    Giulini, Domenico

    In December 1924 Wolfgang Pauli proposed the idea of an inner degree of freedom of the electron, which he insisted should be thought of as genuinely quantum mechanical in nature. Shortly thereafter Ralph Kronig and a little later Samuel Goudsmit and George Uhlenbeck took up a less radical stance by suggesting that this degree of freedom somehow corresponded to an inner rotational motion, though it was unclear from the very beginning how literal one was actually supposed to take this picture, since it was immediately recognised (already by Goudsmit and Uhlenbeck) that it would very likely lead to serious problems with Special Relativity if the model were to reproduce the electron's values for mass, charge, angular momentum, and magnetic moment. However, probably due to the then overwhelming impression that classical concepts were generally insufficient for the proper description of microscopic phenomena, a more detailed reasoning was never given. In this contribution I shall investigate in some detail what the restrictions on the physical quantities just mentioned are, if they are to be reproduced by rather simple classical models of the electron within the framework of Special Relativity. It turns out that surface stresses play a decisive role and that the question of whether a classical model for the electron does indeed contradict Special Relativity can only be answered on the basis of an exact solution, which has hitherto not been given.

  2. Observation of Quantum Fingerprinting Beating the Classical Limit.

    PubMed

    Guan, Jian-Yu; Xu, Feihu; Yin, Hua-Lei; Li, Yuan; Zhang, Wei-Jun; Chen, Si-Jing; Yang, Xiao-Yan; Li, Li; You, Li-Xing; Chen, Teng-Yun; Wang, Zhen; Zhang, Qiang; Pan, Jian-Wei

    2016-06-17

    Quantum communication has historically been at the forefront of advancements, from fundamental tests of quantum physics to utilizing the quantum-mechanical properties of physical systems for practical applications. In the field of communication complexity, quantum communication allows the advantage of an exponential reduction in the transmitted information over classical communication to accomplish distributed computational tasks. However, to date, demonstrating this advantage in a practical setting continues to be a central challenge. Here, we report a proof-of-principle experimental demonstration of a quantum fingerprinting protocol that for the first time surpasses the ultimate classical limit to transmitted information. Ultralow noise superconducting single-photon detectors and a stable fiber-based Sagnac interferometer are used to implement a quantum fingerprinting system that is capable of transmitting less information than the classical proven lower bound over 20 km standard telecom fiber for input sizes of up to 2 Gbits. The results pave the way for experimentally exploring the advanced features of quantum communication and open a new window of opportunity for research in communication complexity and testing the foundations of physics.

  3. Observation of Quantum Fingerprinting Beating the Classical Limit

    NASA Astrophysics Data System (ADS)

    Guan, Jian-Yu; Xu, Feihu; Yin, Hua-Lei; Li, Yuan; Zhang, Wei-Jun; Chen, Si-Jing; Yang, Xiao-Yan; Li, Li; You, Li-Xing; Chen, Teng-Yun; Wang, Zhen; Zhang, Qiang; Pan, Jian-Wei

    2016-06-01

    Quantum communication has historically been at the forefront of advancements, from fundamental tests of quantum physics to utilizing the quantum-mechanical properties of physical systems for practical applications. In the field of communication complexity, quantum communication allows the advantage of an exponential reduction in the transmitted information over classical communication to accomplish distributed computational tasks. However, to date, demonstrating this advantage in a practical setting continues to be a central challenge. Here, we report a proof-of-principle experimental demonstration of a quantum fingerprinting protocol that for the first time surpasses the ultimate classical limit to transmitted information. Ultralow noise superconducting single-photon detectors and a stable fiber-based Sagnac interferometer are used to implement a quantum fingerprinting system that is capable of transmitting less information than the classical proven lower bound over 20 km standard telecom fiber for input sizes of up to 2 Gbits. The results pave the way for experimentally exploring the advanced features of quantum communication and open a new window of opportunity for research in communication complexity and testing the foundations of physics.

  4. Limit cycles in nonlinear excitation of clusters of classical oscillators

    NASA Astrophysics Data System (ADS)

    De Lauro, E.; De Martino, S.; Falanga, M.; Ixaru, L. Gr.

    2009-10-01

    In this paper we develop a numerical procedure for detecting the existence of limit cycles in nonlinear excitation of clusters of classical harmonic oscillators. Our technique is able to compute also the main parameters of a limit cycle, that is the amplitudes and the period. The numerical method, based on the propagation matrix formalism, is transparent and easy to apply. It may find application in various areas where nonlinear excitations are involved, e.g., sound and mechanic vibrations in musical instruments, ground vibrations in volcanic areas, and sea tides.

  5. Critical scaling laws and a classical equation of state

    NASA Astrophysics Data System (ADS)

    van Pelt, A.; Jin, G. X.; Sengers, J. V.

    1994-07-01

    In this paper we present a method which modifies a classical equation of state by incorporating the nonclassical critical behavior. As an example we have applied our procedure to the Carnahan-Starling-DeSantis (CSD) equation of state. The resulting equation reproduces the universal scaling behavior near the critical point and reduces to the universal ideal-gas behavior at low densities. We show that the renormalized CSD equation yields an improved and consistent representation of both mechanical and caloric thermodynamic properties. In addition, the suppression of the critical temperature due to the critical fluctuations is clearly demonstrated.

  6. Multisymplectic Lagrangian and Hamiltonian Formalisms of Classical Field Theories

    NASA Astrophysics Data System (ADS)

    Román-Roy, Narciso

    2009-11-01

    This review paper is devoted to presenting the standard multisymplectic formulation for describing geometrically classical field theories, both the regular and singular cases. First, the main features of the Lagrangian formalism are revisited and, second, the Hamiltonian formalism is constructed using Hamiltonian sections. In both cases, the variational principles leading to the Euler-Lagrange and the Hamilton-De Donder-Weyl equations, respectively, are stated, and these field equations are given in different but equivalent geometrical ways in each formalism. Finally, both are unified in a new formulation (which has been developed in the last years), following the original ideas of Rusk and Skinner for mechanical systems.

  7. A simple example of a classical gauge transformation

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.

    1983-01-01

    Attention is given to the manner in which the interaction of a gravitational field with a diffusing gas is induced by a gauge transformation. Since the gas can be thought of as a field, the diffusion process may be represented by a Lagrangian density with the symmetry property of invariance under translation. While this property is lost when the field interacts with a static gravitational field, it is formally restored when an appropriate gauge transformation is performed. This ascription of field properties to a gas offers an illuminating illustration of the coupling of matter to a gauge field within the context of classical mechanics.

  8. Classically conformal radiative neutrino model with gauged B - L symmetry

    NASA Astrophysics Data System (ADS)

    Okada, Hiroshi; Orikasa, Yuta

    2016-09-01

    We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B - L symmetry in the standard model that is essential in order to work the Coleman-Weinberg mechanism well that induces the B - L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman-Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ → eγ), the current bound on the Z‧ mass at the CERN Large Hadron Collider, and neutrino oscillations.

  9. Exchange potentials for semi-classical electrons.

    PubMed

    Herzfeld, Judith; Ekesan, Solen

    2016-11-09

    Semi-classical electrons offer access to efficient and intuitive simulations of chemical reactions. As for any treatment of fermions, the greatest difficulty is in accounting for anti-symmetry effects. Semi-classical efforts to-date either reference Slater-determinants from ab initio treatments or adopt a heuristic approach inspired by density functional treatments. Here we revisit the problem with a combined approach. We conclude that semi-classical electrons need to reference a non-conventional wave function and find that (1) contrary to earlier suppositions, contributions from the electrostatic terms in the Hamiltonian are of similar magnitude to those from the kinetic terms and (2) the former point to a need to supplement pair potentials with 3-body potentials. The first result explains features of reported heuristic potentials, and the second provides a firm footing for extending the transferability of potentials across a wider range of elements and bonding scenarios.

  10. Non-Classical Inhibition of Carbonic Anhydrase

    PubMed Central

    Lomelino, Carrie L.; Supuran, Claudiu T.; McKenna, Robert

    2016-01-01

    Specific isoforms from the carbonic anhydrase (CA) family of zinc metalloenzymes have been associated with a variety of diseases. Isoform-specific carbonic anhydrase inhibitors (CAIs) are therefore a major focus of attention for specific disease treatments. Classical CAIs, primarily sulfonamide-based compounds and their bioisosteres, are examined as antiglaucoma, antiepileptic, antiobesity, antineuropathic pain and anticancer compounds. However, many sulfonamide compounds inhibit all CA isoforms nonspecifically, diluting drug effectiveness and causing undesired side effects due to off-target inhibition. In addition, a small but significant percentage of the general population cannot be treated with sulfonamide-based compounds due to a sulfa allergy. Therefore, CAIs must be developed that are not only isoform specific, but also non-classical, i.e. not based on sulfonamides, sulfamates, or sulfamides. This review covers the classes of non-classical CAIs and the recent advances in the development of isoform-specific inhibitors based on phenols, polyamines, coumarins and their derivatives. PMID:27438828

  11. Fractionalized Z_{2} Classical Heisenberg Spin Liquids.

    PubMed

    Rehn, J; Sen, Arnab; Moessner, R

    2017-01-27

    Quantum spin systems are by now known to exhibit a large number of different classes of spin liquid phases. By contrast, for classical Heisenberg models, only one kind of fractionalized spin liquid phase, the so-called Coulomb or U(1) spin liquid, has until recently been identified: This exhibits algebraic spin correlations and impurity moments, "orphan spins," whose size is a fraction of that of the underlying microscopic degrees of freedom. Here, we present two Heisenberg models exhibiting fractionalization in combination with exponentially decaying correlations. These can be thought of as a classical continuous spin version of a Z_{2} spin liquid. Our work suggests a systematic search and classification of classical spin liquids as a worthwhile endeavor.

  12. Machian classical and semiclassical emergent time

    NASA Astrophysics Data System (ADS)

    Anderson, Edward

    2014-01-01

    Classical and semiclassical schemes are presented that are timeless at the primary level and recover time from Mach’s ‘time is to be abstracted from change’ principle at the emergent secondary level. The semiclassical scheme is a Machian variant of the semiclassical approach to the problem of time in quantum gravity. The classical scheme is Barbour’s, cast here explicitly as the classical precursor of the semiclassical approach. Thus the two schemes have been married up, as equally-Machian and necessarily distinct, since the latter’s timestandard is abstracted in part from quantum change. I provide perturbative schemes for these in which the timefunction is to be determined rather than assumed. This paper is useful modelling as regards the Halliwell-Hawking arena for the quantum origin of the inhomogeneous cosmological fluctuations.

  13. Classical Ising model test for quantum circuits

    NASA Astrophysics Data System (ADS)

    Geraci, Joseph; Lidar, Daniel A.

    2010-07-01

    We exploit a recently constructed mapping between quantum circuits and graphs in order to prove that circuits corresponding to certain planar graphs can be efficiently simulated classically. The proof uses an expression for the Ising model partition function in terms of quadratically signed weight enumerators (QWGTs), which are polynomials that arise naturally in an expansion of quantum circuits in terms of rotations involving Pauli matrices. We combine this expression with a known efficient classical algorithm for the Ising partition function of any planar graph in the absence of an external magnetic field, and the Robertson-Seymour theorem from graph theory. We give as an example a set of quantum circuits with a small number of non-nearest-neighbor gates which admit an efficient classical simulation.

  14. Quantum and classical optics-emerging links

    NASA Astrophysics Data System (ADS)

    Eberly, J. H.; Qian, Xiao-Feng; Qasimi, Asma Al; Ali, Hazrat; Alonso, M. A.; Gutiérrez-Cuevas, R.; Little, Bethany J.; Howell, John C.; Malhotra, Tanya; Vamivakas, A. N.

    2016-06-01

    Quantum optics and classical optics are linked in ways that are becoming apparent as a result of numerous recent detailed examinations of the relationships that elementary notions of optics have with each other. These elementary notions include interference, polarization, coherence, complementarity and entanglement. All of them are present in both quantum and classical optics. They have historic origins, and at least partly for this reason not all of them have quantitative definitions that are universally accepted. This makes further investigation into their engagement in optics very desirable. We pay particular attention to effects that arise from the mere co-existence of separately identifiable and readily available vector spaces. Exploitation of these vector-space relationships are shown to have unfamiliar theoretical implications and new options for observation. It is our goal to bring emerging quantum-classical links into wider view and to indicate directions in which forthcoming and future work will promote discussion and lead to unified understanding.

  15. Voice disorders in children with classic galactosemia.

    PubMed

    Potter, Nancy L

    2011-04-01

    Children with classic galactosemia are at risk for motor speech disorders resulting from disruptions in motor planning and programming (childhood apraxia of speech or CAS) or motor execution (dysarthria). In the present study of 33 children with classic galactosemia, 21% were diagnosed with CAS, 3% with ataxic dysarthria, and 3% with mixed CAS-dysarthria. Voice disorders due to laryngeal insufficiency were common in children with dysarthria and co-occurred with CAS. Most (58%) of the children with classic galactosemia had decreased respiratory-phonatory support for speech, and 33% had disturbed vocal quality that was indicative of cerebellar dysfunction. Three children, two diagnosed with CAS and one not diagnosed with a motor speech disorder, had vocal tremors. Treatment of voice dysfunction in neurogenic speech disorders is discussed.

  16. Modeling Classical Heat Conduction in FLAG

    SciTech Connect

    Ramsey, Scott D.; Hendon, Raymond Cori

    2015-01-12

    The Los Alamos National Laboratory FLAG code contains both electron and ion heat conduction modules; these have been constructed to be directly relevant to user application problems. However, formal code verification of these modules requires quantitative comparison to exact solutions of the underlying mathematical models. A wide variety of exact solutions to the classical heat conduction equation are available for this purpose. This report summarizes efforts involving the representation of the classical heat conduction equation as following from the large electron-ion coupling limit of the electron and ion 3T temperature equations, subject to electron and ion conduction processes. In FLAG, this limiting behavior is quantitatively verified using a simple exact solution of the classical heat conduction equation. For this test problem, both heat conduction modules produce nearly identical spatial electron and ion temperature profiles that converge at slightly less than 2nd order to the corresponding exact solution.

  17. The role of interleukin-3 in classical Hodgkin's disease.

    PubMed

    Aldinucci, Donatella; Olivo, Karin; Lorenzon, Debora; Poletto, Dalisa; Gloghini, Annunziata; Carbone, Antonino; Pinto, Antonio

    2005-03-01

    Classical Hodgkin's disease (HD) is a peculiar form of lymphoma characterized by a low frequency of tumor cells, the so-called Hodgkin (H) and Reed/Sternberg (RS) cells, embedded in a background of non-neoplastic (reactive) cells believed to be recruited and activated by H-RS cell-derived cytokines/chemokines. How these tumor cells can survive in such a seemingly hostile environment has confused researchers. We have previously identified interleukin (IL)-3 receptor (R) expression as a common feature of classical HD and unveiled the potential role of IL-3 as a growth and anti-apoptotic factor for H-RS cells. More then 90% of malignant cells of classical HD usually express the alpha chain of the IL-3R (IL-3R(alpha)), as evidenced by immunostaining of frozen sections and cell suspensions from neoplastic lymph nodes. Consistently, HD-derived cell lines (L428, KMH2, HDLM2 and L1236) express the alpha and beta chains that form IL-3R, both at the mRNA and protein level, with a molecular size of IL-3R(alpha) identical (70 kDa) to that expressed by human myeloid cells. Exogenous IL-3 promotes the growth of cultured H-RS cells, such an effect being potentiated by IL-9 and stem cell factor (SCF) co-stimulation, and is able to partially rescue tumor cells from apoptosis induced by serum deprivation. Finally, cultured H-RS cells are able to increase the production of IL-3 by pre-activated T cells, suggesting an involvement of IL-3/IL-3R interactions in the cellular growth of HD through paracrine mechanisms. This review will outline the biological activity of IL-3 and summarize the evidence indicating IL-3 as a growth and anti-apoptotic factor for H-RS cells in classical HD.

  18. Observable signatures of a classical transition

    SciTech Connect

    Johnson, Matthew C.; Lin, Wei E-mail: lewisweilin@gmail.com

    2016-03-01

    Eternal inflation arising from a potential landscape predicts that our universe is one realization of many possible cosmological histories. One way to access different cosmological histories is via the nucleation of bubble universes from a metastable false vacuum. Another way to sample different cosmological histories is via classical transitions, the creation of pocket universes through the collision between bubbles. Using relativistic numerical simulations, we examine the possibility of observationally determining if our observable universe resulted from a classical transition. We find that classical transitions produce spatially infinite, approximately open Friedman-Robertson-Walker universes. The leading set of observables in the aftermath of a classical transition are negative spatial curvature and a contribution to the Cosmic Microwave Background temperature quadrupole. The level of curvature and magnitude of the quadrupole are dependent on the position of the observer, and we determine the possible range of observables for two classes of single-scalar field models. For the first class, where the inflationary phase has a lower energy than the vacuum preceding the classical transition, the magnitude of the observed quadrupole generally falls to zero with distance from the collision while the spatial curvature grows to a constant. For the second class, where the inflationary phase has a higher energy than the vacuum preceding the classical transition, the magnitude of the observed quadrupole generically falls to zero with distance from the collision while the spatial curvature grows without bound. We find that the magnitude of the quadrupole and curvature grow with increasing centre of mass energy of the collision, and explore variations of the parameters in the scalar field lagrangian.

  19. Classical ultra-relativistic scattering in ADD

    NASA Astrophysics Data System (ADS)

    Gal'tsov, Dmitry V.; Kofinas, Georgios; Spirin, Pavel; Tomaras, Theodore N.

    2009-05-01

    The classical differential cross-section is calculated for high-energy small-angle gravitational scattering in the factorizable model with toroidal extra dimensions. The three main features of the classical computation are: (a) It involves summation over the infinite Kaluza-Klein towers but, contrary to the Born amplitude, it is finite with no need of an ultraviolet cutoff. (b) It is shown to correspond to the non-perturbative saddle-point approximation of the eikonal amplitude, obtained by the summation of an infinite number of ladder graphs of the quantum theory. (c) In the absence of extra dimensions it reproduces all previously known results.

  20. Communication: quantum dynamics in classical spin baths.

    PubMed

    Sergi, Alessandro

    2013-07-21

    A formalism for studying the dynamics of quantum systems embedded in classical spin baths is introduced. The theory is based on generalized antisymmetric brackets and predicts the presence of open-path off-diagonal geometric phases in the evolution of the density matrix. The weak coupling limit of the equation can be integrated by standard algorithms and provides a non-Markovian approach to the computer simulation of quantum systems in classical spin environments. It is expected that the theory and numerical schemes presented here have a wide applicability.

  1. Classical noise, quantum noise and secure communication

    NASA Astrophysics Data System (ADS)

    Tannous, C.; Langlois, J.

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems.

  2. Classical swine fever in China: a minireview.

    PubMed

    Luo, Yuzi; Li, Su; Sun, Yuan; Qiu, Hua-Ji

    2014-08-06

    Classical swine fever (CSF), caused by Classical swine fever virus (CSFV), is an OIE-listed, highly contagious, often fatal disease of swine worldwide. Currently, the disease is controlled by prophylactic vaccination in China and many other countries using the modified live vaccines derived from C-strain, which was developed in China in the mid-1950s. This minireview summarizes the epidemiology, diagnostic assays, control and challenges of CSF in China. Though CSF is essentially under control, complete eradication of CSF in China remains a challenging task and needs long-term, joint efforts of stakeholders.

  3. Quantization of soluble classical constrained systems

    SciTech Connect

    Belhadi, Z.; Menas, F.; Bérard, A.; Mohrbach, H.

    2014-12-15

    The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way.

  4. The classic. Review article: Traffic accidents. 1966.

    PubMed

    Tscherne, H

    2013-09-01

    This Classic Article is a translation of the original work by Prof. Harald Tscherne, Der Straßenunfall [Traffic Accidents]. An accompanying biographical sketch of Prof. Tscherne is available at DOI 10.1007/s11999-013-3011-x . An online version of the original German article is available as supplemental material. The Classic Article is reproduced with permission from Brüder Hollinek & Co. GesmbH, Purkersdorf, Austria. The original article was published in Wien Med Wochenschr. 1966;116:105-108. (Translated by Dr. Roman Pfeifer.).

  5. Are Volume Plasmons Excitable by Classical Light?

    NASA Astrophysics Data System (ADS)

    Höflich, Katja; Gösele, Ulrich; Christiansen, Silke

    2009-08-01

    Volume plasmons are collective eigenmodes of the free-electron gas inside a metal. Because of their longitudinal character and the transversal nature of light, the photoexcitation of volume plasmons is forbidden in classical electrodynamics. Nevertheless, we show their existence for metallic nanoshells using analytical solutions of the classical scattering problem. Solely for the case of a vanishing real part of the shell permittivity, a local maximum at the natural plasma frequency appears in the extinction spectra. For explaining our observations, we suggest a simple physical picture which is supported by examples on silver and gold shells.

  6. Simulation of Pake doublet with classical spins and correspondence between the quantum and classical approaches

    NASA Astrophysics Data System (ADS)

    Henner, Victor K.; Klots, Andrey; Belozerova, Tatyana

    2016-12-01

    Problems of interacting quantum magnetic moments become exponentially complex with increasing number of particles. As a result, classical equations are often used to model spin systems. In this paper we show that a classical spins based approach can be used to describe the phenomena essentially quantum in nature such as of the Pake doublet.

  7. Comparisons of classical chemical dynamics simulations of the unimolecular decomposition of classical and quantum microcanonical ensembles.

    PubMed

    Manikandan, Paranjothy; Hase, William L

    2012-05-14

    Previous studies have shown that classical trajectory simulations often give accurate results for short-time intramolecular and unimolecular dynamics, particularly for initial non-random energy distributions. To obtain such agreement between experiment and simulation, the appropriate distributions must be sampled to choose initial coordinates and momenta for the ensemble of trajectories. If a molecule's classical phase space is sampled randomly, its initial decomposition will give the classical anharmonic microcanonical (RRKM) unimolecular rate constant for its decomposition. For the work presented here, classical trajectory simulations of the unimolecular decomposition of quantum and classical microcanonical ensembles, at the same fixed total energy, are compared. In contrast to the classical microcanonical ensemble, the quantum microcanonical ensemble does not sample the phase space randomly. The simulations were performed for CH(4), C(2)H(5), and Cl(-)---CH(3)Br using both analytic potential energy surfaces and direct dynamics methods. Previous studies identified intrinsic RRKM dynamics for CH(4) and C(2)H(5), but intrinsic non-RRKM dynamics for Cl(-)---CH(3)Br. Rate constants calculated from trajectories obtained by the time propagation of the classical and quantum microcanonical ensembles are compared with the corresponding harmonic RRKM estimates to obtain anharmonic corrections to the RRKM rate constants. The relevance and accuracy of the classical trajectory simulation of the quantum microcanonical ensemble, for obtaining the quantum anharmonic RRKM rate constant, is discussed.

  8. Classical and Mixed Quantum-Classical Dynamics of Adsorbate-Surface Systems: Application to Non-Thermal Desorption

    NASA Astrophysics Data System (ADS)

    Dzegilenko, Fedor N.

    1995-01-01

    Both classical and mixed quantum-classical approaches have been used to study the non-thermal desorption of CO from a variety of model surfaces to which it is weakly adsorbed. In addition to three degrees of freedom for the CO adsorbate (bond stretching, physisorption, libration) which are treated quantum mechanically in the mixed method, a significant number of lattice degrees of freedom have been included using the generalized Langevin approximation. In the mixed method, two sets of equations for the quantum and classical subsystems (coupled via the Ehrenfest theorem) are solved self-consistently using the discrete variable representation method for the propagation of the quantum wave function. Non-thermal amounts of energy have been put into both the CO stretching and librational modes at t = 0. We find that for initial values of the stretching quantum number vstr = 0 -4 desorption does not take place at all within the simulation time unless there is also significant librational excitation. The detailed mechanism by which librational energy causes desorption is discussed. The role of the surface is also explored; we find that the probability of desorption is a non-monotonic function of the Debye frequency of the solid in the range 28-5000 cm^{-1}, and is larger for "non-rigid" lattices with low Debye frequencies in both of the methods. The classical results are explained in terms of resonances between low frequency libration and physisorption modes and high frequency phonon modes. For the combined method, two different mechanisms for desorption (due to lattice effects and due to symmetry properties of wave function) have been found and analyzed in detail. A comparative analysis of the two methods is presented and the limitations of the mixed scheme are discussed. An indirect mechanism for populating rapidly desorbing, highly excited levels of surface CO, based on intermolecular V to V,R energy exchange between the CO and vibrationally excited surface hydroxyl

  9. Quantum Mechanical Models Of The Fermi Shuttle

    SciTech Connect

    Sternberg, James

    2011-06-01

    The Fermi shuttle is a mechanism in which high energy electrons are produced in an atomic collision by multiple collisions with a target and a projectile atom. It is normally explained purely classically in terms of the electron's orbits prescribed in the collision. Common calculations to predict the Fermi shuttle use semi-classical methods, but these methods still rely on classical orbits. In reality such collisions belong to the realm of quantum mechanics, however. In this paper we discuss several purely quantum mechanical calculations which can produce the Fermi shuttle. Being quantum mechanical in nature, these calculations produce these features by wave interference, rather than by classical orbits.

  10. Can Communicative Principles Enhance Classical Language Acquisition?

    ERIC Educational Resources Information Center

    Overland, Paul; Fields, Lee; Noonan, Jennifer

    2011-01-01

    Is it feasible for nonfluent instructors to teach Biblical Hebrew by communicative principles? If it is feasible, will communicative instruction enhance postsecondary learning of a classical language? To begin answering these questions, two consultants representing second language acquisition (SLA) and technology-assisted language learning led 8…

  11. Using CAS to Solve Classical Mathematics Problems

    ERIC Educational Resources Information Center

    Burke, Maurice J.; Burroughs, Elizabeth A.

    2009-01-01

    Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…

  12. Entanglement in Quantum-Classical Hybrid

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    It is noted that the phenomenon of entanglement is not a prerogative of quantum systems, but also occurs in other, non-classical systems such as quantum-classical hybrids, and covers the concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems. Application of hybrid systems for physics of life, as well as for quantum-inspired computing, has been outlined. In representing the Schroedinger equation in the Madelung form, there is feedback from the Liouville equation to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the same topology, the innovators replaced the quantum potential with other types of feedback, and investigated the property of these hybrid systems. A function of probability density has been introduced. Non-locality associated with a global geometrical constraint that leads to an entanglement effect was demonstrated. Despite such a quantum like characteristic, the hybrid can be of classical scale and all the measurements can be performed classically. This new emergence of entanglement sheds light on the concept of non-locality in physics.

  13. Selected topics from classical bacterial genetics.

    PubMed

    Raleigh, Elisabeth A; Elbing, Karen; Brent, Roger

    2002-08-01

    Current cloning technology exploits many facts learned from classical bacterial genetics. This unit covers those that are critical to understanding the techniques described in this book. Topics include antibiotics, the LAC operon, the F factor, nonsense suppressors, genetic markers, genotype and phenotype, DNA restriction, modification and methylation and recombination.

  14. The classical pion field in a nucleus

    NASA Astrophysics Data System (ADS)

    Ripka, Georges

    2008-12-01

    A self-consistent symmetry arises when the nucleon angular momentum j and the isospin t are coupled to a grand spin G. Closed G shells become sources of a classical pion field with a hedgehog shape. Although the amplitude of the pion field, as measured by the chiral angle, is small, it is found to perturb significantly the energies of the nucleon orbits.

  15. Concerning gauge field fluctuations around classical configurations

    SciTech Connect

    Dietrich, Dennis D.

    2009-05-15

    We treat the fluctuations of non-Abelian gauge fields around a classical configuration by means of a transformation from the Yang-Mills gauge field to a homogeneously transforming field variable. We use the formalism to compute the effective action induced by these fluctuations in a static background without Wu-Yang ambiguity.

  16. Essays on Classical Rhetoric and Modern Discourse.

    ERIC Educational Resources Information Center

    Connors, Robert J., Ed.; And Others

    Noting the rediscovery by composition scholars of the tradition of classical rhetoric, this collection of essays explores the resurgence in the teaching of written discourse in college English departments. The 18 articles and their authors are as follows: (1) "The Revival of Rhetoric in America," by Robert Connors, Lisa Ede, and Andrea…

  17. The Oxford Treasury of Classic Poems.

    ERIC Educational Resources Information Center

    Harrison, Michael, Ed.; Stuart-Clark, Christopher, Ed.

    This book contains over 90 classic poems for children. The collection of poems includes nonsense verse by Lear and Carroll, story poems by Tennyson and Keats, and humorous poems by Belloc and Betjeman. The collection also includes poems by modern poets, such as Charles Causley, Ted Hughes, John Agard, Roger McGough, and Stevie Smith. The…

  18. Foreign Language, the Classics, and College Admissions.

    ERIC Educational Resources Information Center

    LaFleur, Richard A.

    1993-01-01

    This article reports the results of a survey, funded by the American Classical League (ACL) and conducted during 1990-91, that assessed attitudes toward high school foreign-language study, in particular the study of Latin and Greek, in the college admissions process. (21 references) (VWL)

  19. Gender and the Classics Curriculum: A Survey

    ERIC Educational Resources Information Center

    Blundell, Sue

    2009-01-01

    A survey was carried out in 2006 of all the UK universities where Classics and Ancient History degrees are taught at undergraduate level. The results reveal that nearly half of these courses include at least one dedicated gender module, and that the great majority also have gender embedded in the content of modules dealing with other topics.…

  20. Classical Pragmatism on Mind and Rationality

    ERIC Educational Resources Information Center

    Maattanen, Pentti

    2005-01-01

    One of the major changes in twentieth century philosophy was the so-called linguistic turn, in which natural and formal languages became central subjects of study. This meant that theories of meaning became mostly about linguistic meaning, thinking was now analyzed in terms of symbol manipulation, and rules of classical logic formed the nucleus of…

  1. The Strange World of Classical Physics

    ERIC Educational Resources Information Center

    Green, David

    2010-01-01

    We have heard many times that the commonsense world of classical physics was shattered by Einstein's revelation of the laws of relativity. This is certainly true; the shift from our everyday notions of time and space to those revealed by relativity is one of the greatest stretches the mind can make. What is seldom appreciated is that the laws of…

  2. Louis Guttman's Contributions to Classical Test Theory

    ERIC Educational Resources Information Center

    Zimmerman, Donald W.; Williams, Richard H.; Zumbo, Bruno D.; Ross, Donald

    2005-01-01

    This article focuses on Louis Guttman's contributions to the classical theory of educational and psychological tests, one of the lesser known of his many contributions to quantitative methods in the social sciences. Guttman's work in this field provided a rigorous mathematical basis for ideas that, for many decades after Spearman's initial work,…

  3. Classic Readers Theatre for Young Adults.

    ERIC Educational Resources Information Center

    Barchers, Suzanne I.; Kroll, Jennifer L.

    This book presents 16 original scripts that have been adapted from classic works of literature for use for readers theatre with young adults and ESL (English as a Second Language) students. Adaptations of the following works are included: "Little Women" (Louisa May Alcott); episodes from "Don Quixote" (Miguel de Cervantes; "The Necklace" (Guy de…

  4. Unified classical path theories of pressure broadening.

    NASA Technical Reports Server (NTRS)

    Bottcher, C.

    1971-01-01

    Derivation of a unified classical path theory of pressure broadening, using only elementary concepts. It is shown that the theory of Smith, Cooper and Vidal (1969) is only correct at all frequencies to first order in the number density of perturbers.

  5. An Approach to Teaching Classical Chinese Poetry.

    ERIC Educational Resources Information Center

    Hung, Ming-shui

    1980-01-01

    English translations can be used to teach classical Chinese poetry to students above the intermediate level who have a limited vocabulary. To overcome this deficiency, and to bridge the gap between vernacular and literary Chinese, several texts are suggested. Examples are given to show the benefit of English translations. (PJM)

  6. The Classical Version of Stokes' Theorem Revisited

    ERIC Educational Resources Information Center

    Markvorsen, Steen

    2008-01-01

    Using only fairly simple and elementary considerations--essentially from first year undergraduate mathematics--we show how the classical Stokes' theorem for any given surface and vector field in R[superscript 3] follows from an application of Gauss' divergence theorem to a suitable modification of the vector field in a tubular shell around the…

  7. Fertility preservation in female classic galactosemia patients.

    PubMed

    van Erven, Britt; Gubbels, Cynthia S; van Golde, Ron J; Dunselman, Gerard A; Derhaag, Josien G; de Wert, Guido; Geraedts, Joep P; Bosch, Annet M; Treacy, Eileen P; Welt, Corrine K; Berry, Gerard T; Rubio-Gozalbo, M Estela

    2013-07-16

    Almost every female classic galactosemia patient develops primary ovarian insufficiency (POI) as a diet-independent complication of the disease. This is a major concern for patients and their parents, and physicians are often asked about possible options to preserve fertility. Unfortunately, there are no recommendations on fertility preservation in this group. The unique pathophysiology of classic galactosemia with a severely reduced follicle pool at an early age requires an adjusted approach. In this article recommendations for physicians based on current knowledge concerning galactosemia and fertility preservation are made. Fertility preservation is only likely to be successful in very young prepubertal patients. In this group, cryopreservation of ovarian tissue is currently the only available technique. However, this technique is not ready for clinical application, it is considered experimental and reduces the ovarian reserve. Fertility preservation at an early age also raises ethical questions that should be taken into account. In addition, spontaneous conception despite POI is well described in classic galactosemia. The uncertainty surrounding fertility preservation and the significant chance of spontaneous pregnancy warrant counseling towards conservative application of these techniques. We propose that fertility preservation should only be offered with appropriate institutional research ethics approval to classic galactosemia girls at a young prepubertal age.

  8. Studying the Leaders of Classical Antiquity.

    ERIC Educational Resources Information Center

    Moritz, Helen E.

    This paper describes a graduate seminar for educational administrators, using works of ancient Greek and Roman literature as bases for the consideration of organization and leadership problems identified in theoretical literature. The seminar was team taught by professors from the Departments of Educational Administration and Classics at the…

  9. Multimer recognition and secretion by the non-classical secretion pathway in Bacillus subtilis

    PubMed Central

    Zhao, Liuqun; Chen, Jingqi; Sun, Jibin; Zhang, Dawei

    2017-01-01

    Non-classical protein secretion in bacteria is a common phenomenon. However, the selection principle for non-classical secretion pathways remains unclear. Here, our experimental data, to our knowledge, are the first to show that folded multimeric proteins can be recognized and excreted by a non-classical secretion pathway in Bacillus subtilis. We explored the secretion pattern of a typical cytoplasmic protein D-psicose 3-epimerase from Ruminococcus sp. 5_1_39BFAA (RDPE), and showed that its non-classical secretion is not simply due to cell lysis. Analysis of truncation variants revealed that the C- and N-terminus, and two hydrophobic domains, are required for structural stability and non-classical secretion of RDPE. Alanine scanning mutagenesis of the hydrophobic segments of RDPE revealed that hydrophobic residues mediated the equilibrium between its folded and unfolded forms. Reporter mCherry and GFP fusions with RDPE regions show that its secretion requires an intact tetrameric protein complex. Using cross-linked tetramers, we show that folded tetrameric RDPE can be secreted as a single unit. Finally, we provide evidence that the non-classical secretion pathway has a strong preference for multimeric substrates, which accumulate at the poles and septum region. Altogether, these data show that a multimer recognition mechanism is likely applicable across the non-classical secretion pathway. PMID:28276482

  10. Merits and qualms of work fluctuations in classical fluctuation theorems

    NASA Astrophysics Data System (ADS)

    Deng, Jiawen; Tan, Alvis Mazon; Hänggi, Peter; Gong, Jiangbin

    2017-01-01

    Work is one of the most basic notions in statistical mechanics, with work fluctuation theorems being one central topic in nanoscale thermodynamics. With Hamiltonian chaos commonly thought to provide a foundation for classical statistical mechanics, here we present general salient results regarding how (classical) Hamiltonian chaos generically impacts on nonequilibrium work fluctuations. For isolated chaotic systems prepared with a microcanonical distribution, work fluctuations are minimized and vanish altogether in adiabatic work protocols. For isolated chaotic systems prepared at an initial canonical distribution at inverse temperature β , work fluctuations depicted by the variance of e-β W are also minimized by adiabatic work protocols. This general result indicates that, if the variance of e-β W diverges for an adiabatic work protocol, it diverges for all nonadiabatic work protocols sharing the same initial and final Hamiltonians. Such divergence is hence not an isolated event and thus greatly impacts on the efficiency of using Jarzynski's equality to simulate free-energy differences. Theoretical results are illustrated in a Sinai model. Our general insights shall boost studies in nanoscale thermodynamics and are of fundamental importance in designing useful work protocols.

  11. Merits and qualms of work fluctuations in classical fluctuation theorems.

    PubMed

    Deng, Jiawen; Tan, Alvis Mazon; Hänggi, Peter; Gong, Jiangbin

    2017-01-01

    Work is one of the most basic notions in statistical mechanics, with work fluctuation theorems being one central topic in nanoscale thermodynamics. With Hamiltonian chaos commonly thought to provide a foundation for classical statistical mechanics, here we present general salient results regarding how (classical) Hamiltonian chaos generically impacts on nonequilibrium work fluctuations. For isolated chaotic systems prepared with a microcanonical distribution, work fluctuations are minimized and vanish altogether in adiabatic work protocols. For isolated chaotic systems prepared at an initial canonical distribution at inverse temperature β, work fluctuations depicted by the variance of e^{-βW} are also minimized by adiabatic work protocols. This general result indicates that, if the variance of e^{-βW} diverges for an adiabatic work protocol, it diverges for all nonadiabatic work protocols sharing the same initial and final Hamiltonians. Such divergence is hence not an isolated event and thus greatly impacts on the efficiency of using Jarzynski's equality to simulate free-energy differences. Theoretical results are illustrated in a Sinai model. Our general insights shall boost studies in nanoscale thermodynamics and are of fundamental importance in designing useful work protocols.

  12. Coherent control of a classical nanomechanical two-level system

    NASA Astrophysics Data System (ADS)

    Faust, T.; Rieger, J.; Seitner, M. J.; Kotthaus, J. P.; Weig, E. M.

    2013-08-01

    The Bloch sphere is a generic picture describing the coherent dynamics of coupled classical or quantum-mechanical two-level systems under the control of electromagnetic fields. It is commonly applied to systems such as spin ensembles, atoms, quantum dots and superconducting circuits. The underlying Bloch equations describe the state evolution of the two-level system and allow the characterization of both energy and phase relaxation processes. Here we realize a classical nanomechanical two-level system driven by radiofrequency signals. It is based on the two orthogonal fundamental flexural modes of a high-quality-factor nanostring resonator that are strongly coupled by dielectric gradient fields. Full Bloch sphere control is demonstrated by means of Rabi, Ramsey and Hahn echo experiments. Furthermore, we determine the energy relaxation time T1and phase relaxation times T2 and T2*, and find them all to be equal. Thus decoherence is dominated by energy relaxation, implying that not only T1 but also T2 can be increased by engineering larger mechanical quality factors.

  13. Report of the Colloquium on the Classics in Education, 1965.

    ERIC Educational Resources Information Center

    Else, Gerald F., Ed.

    This is the report of an international meeting on the Classics, conducted August 1965 in London, England. Resolutions adopted by the Colloquium, minutes of group sessions, papers, and national reports on the state of classical education are presented. Group sessions discuss the teaching of classical languages, classical literatures, and ancient…

  14. Cholera outbreaks in the classical biotype era.

    PubMed

    Siddique, A K; Cash, Richard

    2014-01-01

    In the Indian subcontinent description of a disease resembling cholera has been mentioned in Sushruta Samita, estimated to have been written between ~400 and 500 BC. It is however not clear whether the disease known today as cholera caused by Vibrio cholerae Vibrio cholerae O1 is the evolutionary progression of the ancient disease. The modern history of cholera began in 1817 when an explosive epidemic broke out in the Ganges River Delta region of Bengal. This was the first of the seven recorded cholera pandemics cholera pandemics that affected nearly the entire world and caused hundreds of thousands of deaths. The bacterium responsible for this human disease was first recognised during the fifth pandemic and was named V. cholerae which was grouped as O1, and was further differentiated into Classical and El Tor biotypes. It is now known that the fifth and the sixth pandemics were caused by the V. cholerae O1 of the Classical biotype Classical biotype and the seventh by the El Tor biotype El Tor biotype . The El Tor biotype of V. cholerae, which originated in Indonesia Indonesia and shortly thereafter began to spread in the early 1960s. Within the span of 50 years the El Tor biotype had invaded nearly the entire world, completely displacing the Classical biotype from all the countries except Bangladesh. What prompted the earlier pandemics to begin is not clearly understood, nor do we know how and why they ended. The success of the seventh pandemic clone over the pre-existing sixth pandemic strain remains largely an unsolved mystery. Why classical biotype eventually disappeared from the world remains to be explained. For nearly three decades (1963-1991) during the Seventh cholera pandemic seventh pandemic, cholera in Bangladesh has recorded a unique history of co-existence of Classical and El Tor biotypes of V. cholerae O1 as epidemic and endemic strain. This long co-existence has provided us with great opportunity to improve our understanding of the disease itself

  15. Classical Photogrammetry and Uav - Selected Ascpects

    NASA Astrophysics Data System (ADS)

    Mikrut, S.

    2016-06-01

    The UAV technology seems to be highly future-oriented due to its low costs as compared to traditional aerial images taken from classical photogrammetry aircrafts. The AGH University of Science and Technology in Cracow - Department of Geoinformation, Photogrammetry and Environmental Remote Sensing focuses mainly on geometry and radiometry of recorded images. Various scientific research centres all over the world have been conducting the relevant research for years. The paper presents selected aspects of processing digital images made with the UAV technology. It provides on a practical example a comparison between a digital image taken from an airborne (classical) height, and the one made from an UAV level. In his research the author of the paper is trying to find an answer to the question: to what extent does the UAV technology diverge today from classical photogrammetry, and what are the advantages and disadvantages of both methods? The flight plan was made over the Tokarnia Village Museum (more than 0.5 km2) for two separate flights: the first was made by an UAV - System FT-03A built by FlyTech Solution Ltd. The second was made with the use of a classical photogrammetric Cesna aircraft furnished with an airborne photogrammetric camera (Ultra Cam Eagle). Both sets of photographs were taken with pixel size of about 3 cm, in order to have reliable data allowing for both systems to be compared. The project has made aerotriangulation independently for the two flights. The DTM was generated automatically, and the last step was the generation of an orthophoto. The geometry of images was checked under the process of aerotriangulation. To compare the accuracy of these two flights, control and check points were used. RMSE were calculated. The radiometry was checked by a visual method and using the author's own algorithm for feature extraction (to define edges with subpixel accuracy). After initial pre-processing of data, the images were put together, and shown side by side

  16. Phase difference enhancement with classical intensity interferometry

    NASA Astrophysics Data System (ADS)

    Shirai, Tomohiro

    2016-12-01

    It is demonstrated theoretically and experimentally that, as a novel function of classical intensity interferometry, a phase difference distribution recorded in the form of an interferogram can be enhanced by a factor of 2 on the basis of the classical intensity correlation. Such phase difference enhancement which is also referred to as phase difference amplification is, in general, known to be practically important since it increases sensitivity and accuracy in interferometric measurements. The method proposed in this study prevails over the existing methods in the sense that it can be readily implemented without difficulty in comparison with all other methods so far proposed, although the phase difference enhancement is limited to a factor of 2 in our method and thus so is the improvement of sensitivity and accuracy.

  17. Fast forward to the classical adiabatic invariant

    NASA Astrophysics Data System (ADS)

    Jarzynski, Christopher; Deffner, Sebastian; Patra, Ayoti; Subaşı, Yiǧit

    2017-03-01

    We show how the classical action, an adiabatic invariant, can be preserved under nonadiabatic conditions. Specifically, for a time-dependent Hamiltonian H =p2/2 m +U (q ,t ) in one degree of freedom, and for an arbitrary choice of action I0, we construct a so-called fast-forward potential energy function VFF(q ,t ) that, when added to H , guides all trajectories with initial action I0 to end with the same value of action. We use this result to construct a local dynamical invariant J (q ,p ,t ) whose value remains constant along these trajectories. We illustrate our results with numerical simulations. Finally, we sketch how our classical results may be used to design approximate quantum shortcuts to adiabaticity.

  18. Isoperiodic classical systems and their quantum counterparts

    NASA Astrophysics Data System (ADS)

    Asorey, M.; Cariñena, J. F.; Marmo, G.; Perelomov, A.

    2007-06-01

    One-dimensional isoperiodic classical systems have been first analyzed by Abel. Abel's characterization can be extended for singular potentials and potentials which are not defined on the whole real line. The standard shear equivalence of isoperiodic potentials can also be extended by using reflection and inversion transformations. We provide a full characterization of isoperiodic rational potentials showing that they are connected by translations, reflections or Joukowski transformations. Upon quantization many of these isoperiodic systems fail to exhibit identical quantum energy spectra. This anomaly occurs at order O( ℏ2) because semiclassical corrections of energy levels of order O( ℏ) are identical for all isoperiodic systems. We analyze families of systems where this quantum anomaly occurs and some special systems where the spectral identity is preserved by quantization. Conversely, we point out the existence of isospectral quantum systems which do not correspond to isoperiodic classical systems.

  19. Classical simulation of quantum fields I

    NASA Astrophysics Data System (ADS)

    Hirayama, T.; Holdom, B.

    2006-10-01

    We study classical field theories in a background field configuration where all modes of the theory are excited, matching the zero-point energy spectrum of quantum field theory. Our construction involves elements of a theory of classical electrodynamics by Wheeler-Feynman and the theory of stochastic electrodynamics of Boyer. The nonperturbative effects of interactions in these theories can be very efficiently studied on the lattice. In lambda phi(4) theory in 1 + 1 dimensions, we find results, in particular, for mass renormalization and the critical coupling for symmetry breaking that are in agreement with their quantum counterparts. We then study the perturbative expansion of the n-point Green's functions and find a loop expansion very similar to that of quantum field theory. When compared to the usual Feynman rules, we find some differences associated with particular combinations of internal lines going on-shell simultaneously.

  20. Classical sequential growth dynamics for causal sets

    NASA Astrophysics Data System (ADS)

    Rideout, D. P.; Sorkin, R. D.

    2000-01-01

    Starting from certain causality conditions and a discrete form of general covariance, we derive a very general family of classically stochastic, sequential growth dynamics for causal sets. The resulting theories provide a relatively accessible ``halfway house'' to full quantum gravity that possibly contains the latter's classical limit (general relativity). Because they can be expressed in terms of state models for an assembly of Ising spins residing on the relations of the causal set, these theories also illustrate how nongravitational matter can arise dynamically from the causal set without having to be built in at the fundamental level. Additionally, our results bring into focus some interpretive issues of importance for a causal set dynamics and for quantum gravity more generally.