Sample records for classical nova explosions

  1. Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013).

    PubMed

    Tajitsu, Akito; Sadakane, Kozo; Naito, Hiroyuki; Arai, Akira; Aoki, Wako

    2015-02-19

    The origin of lithium (Li) and its production process have long been uncertain. Li could be produced by Big Bang nucleosynthesis, interactions of energetic cosmic rays with interstellar matter, evolved low-mass stars, novae, and supernova explosions. Chemical evolution models and observed stellar Li abundances suggest that at least half the Li may have been produced in red giants, asymptotic giant branch (AGB) stars, and novae. No direct evidence, however, for the supply of Li from evolved stellar objects to the Galactic medium has hitherto been found. Here we report the detection of highly blue-shifted resonance lines of the singly ionized radioactive isotope of beryllium, (7)Be, in the near-ultraviolet spectra of the classical nova V339 Del (Nova Delphini 2013) 38 to 48 days after the explosion. (7)Be decays to form (7)Li within a short time (half-life of 53.22 days). The (7)Be was created during the nova explosion via the alpha-capture reaction (3)He(α,γ)(7)Be (ref. 5). This result supports the theoretical prediction that a significant amount of (7)Li is produced in classical nova explosions.

  2. Orbital eccentricity in classical novae

    NASA Technical Reports Server (NTRS)

    Edwards, D. A.; Pringle, J. E.

    1987-01-01

    The effect on the orbital parameters of a classical nova of the ejection of mass during the nova explosion is considered. The most easily observable consequence is the generation of a small eccentricity in the orbit which leads to a luminosity modulation at a period just longer than the orbital period. Observation of such an effect would have implications not just for interpreting the dynamics of the explosion but also for measuring the secular effect of tidal interaction after the outburst.

  3. Fermi Establishes Classical Novae as a Distinct Class of Gamma-ray Sources

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; hide

    2014-01-01

    A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in gamma rays and stood in contrast to the first gamma-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient gamma-ray sources detected over 2-3 week durations. The gamma-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic gamma-ray sources.

  4. Fermi establishes classical novae as a distinct class of gamma-ray sources

    DOE PAGES

    Cheung, C. C.

    2014-07-31

    A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in γ rays and stood in contrast to the first γ-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient γ-ray sources detected over 2-3 week durations. The γ-ray detections point to unexpected high-energy particle acceleration processes linkedmore » to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic γ-ray sources.« less

  5. The awakening of a classical nova from hibernation.

    PubMed

    Mróz, Przemek; Udalski, Andrzej; Pietrukowicz, Paweł; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Poleski, Radosław; Kozłowski, Szymon; Skowron, Jan; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał

    2016-09-29

    Cataclysmic variable stars-novae, dwarf novae, and nova-likes-are close binary systems consisting of a white dwarf star (the primary) that is accreting matter from a low-mass companion star (the secondary). From time to time such systems undergo large-amplitude brightenings. The most spectacular eruptions, with a ten-thousandfold increase in brightness, occur in classical novae and are caused by a thermonuclear runaway on the surface of the white dwarf. Such eruptions are thought to recur on timescales of ten thousand to a million years. In between, the system's properties depend primarily on the mass-transfer rate: if it is lower than a billionth of a solar mass per year, the accretion becomes unstable and the matter is dumped onto the white dwarf during quasi-periodic dwarf nova outbursts. The hibernation hypothesis predicts that nova eruptions strongly affect the mass-transfer rate in the binary, keeping it high for centuries after the event. Subsequently, the mass-transfer rate should significantly decrease for a thousand to a million years, starting the hibernation phase. After that the nova awakes again-with accretion returning to the pre-eruption level and leading to a new nova explosion. The hibernation model predicts cyclical evolution of cataclysmic variables through phases of high and low mass-transfer. The theory gained some support from the discovery of ancient nova shells around the dwarf novae Z Camelopardalis and AT Cancri, but direct evidence for considerable mass-transfer changes prior, during and after nova eruptions has not hitherto been found. Here we report long-term observations of the classical nova V1213 Cen (Nova Centauri 2009) covering its pre- and post-eruption phases and precisely documenting its evolution. Within the six years before the explosion, the system revealed dwarf nova outbursts indicative of a low mass-transfer rate. The post-nova is two orders of magnitude brighter than the pre-nova at minimum light with no trace of dwarf nova behaviour, implying that the mass-transfer rate increased considerably as a result of the nova explosion.

  6. On Presolar Stardust Grains from CO Classical Novae

    NASA Astrophysics Data System (ADS)

    Iliadis, Christian; Downen, Lori N.; José, Jordi; Nittler, Larry R.; Starrfield, Sumner

    2018-03-01

    About 30%–40% of classical novae produce dust 20–100 days after the outburst, but no presolar stardust grains from classical novae have been unambiguously identified yet. Although several studies claimed a nova paternity for certain grains, the measured and simulated isotopic ratios could only be reconciled, assuming that the grains condensed after the nova ejecta mixed with a much larger amount of close-to-solar matter. However, the source and mechanism of this potential post-explosion dilution of the ejecta remains a mystery. A major problem with previous studies is the small number of simulations performed and the implied poor exploration of the large nova parameter space. We report the results of a different strategy, based on a Monte Carlo technique, that involves the random sampling over the most important nova model parameters: the white dwarf composition; the mixing of the outer white dwarf layers with the accreted material before the explosion; the peak temperature and density; the explosion timescales; and the possible dilution of the ejecta after the outburst. We discuss and take into account the systematic uncertainties for both the presolar grain measurements and the simulation results. Only those simulations that are consistent with all measured isotopic ratios of a given grain are accepted for further analysis. We also present the numerical results of the model parameters. We identify 18 presolar grains with measured isotopic signatures consistent with a CO nova origin, without assuming any dilution of the ejecta. Among these, the grains G270_2, M11-334-2, G278, M11-347-4, M11-151-4, and Ag26 have the highest probability of a CO nova paternity.

  7. β Decay as a Probe of Explosive Nucleosynthesis in Classical Novae

    NASA Astrophysics Data System (ADS)

    Wrede, C.; Bennett, M. B.; Liddick, S. N.; Bardayan, D. W.; Bowe, A.; Brown, B. A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Fry, C.; Glassman, B.; Irvine, D.; José, J.; Langer, C.; Larson, N.; McNeice, E. I.; Meisel, Z.; Montes, F.; Naqvi, F.; Pain, S. D.; O'Malley, P.; Ortez, R.; Ong, W.; Pereira, J.; Pérez-Loureiro, D.; Prokop, C.; Quaglia, J.; Quinn, S.; Santia, M.; Schatz, H.; Schwartz, S. B.; Simon, A.; Shanab, S.; Spyrou, A.; Suchyta, S.; Thiagalingam, E.; Thompson, P.; Walters, M.

    Classical novae are common thermonuclear explosions in the Milky Way galaxy, occurring on the surfaces of white-dwarf stars that are accreting hydrogen-rich material from companion stars. Nucleosynthesis in classical novae depends on radiative proton-capture reaction rates on radioactive nuclides. Many of these reactions cannot be measured directly at current accelerator facilities due to the lack of intense, high-quality, radioactive-ion beams at the relevant energies. Since most of these reactions proceed via resonant capture, their rates can be determined indirectly by measuring the properties of the resonances. At the National Superconducting Cyclotron Laboratory, we have used the β-delayed γ decays of 26P and 31Cl to populate resonances in 26Si and 31S and study the radiative proton captures on 25Al and 30P, respectively. These were two out of the three most important nuclear-physics uncertainties associated with the observable products of nova nucleosynthesis. The 26P experiment has enabled a more accurate estimate of the nova contribution to the long-lived Galactic 26Al detected with γ-ray telescopes. The 31Cl experiment, currently under analysis, will calibrate potential nova thermometers and mixing meters based on elemental abundance ratios, and facilitate the identification of pre-solar nova grain candidates found in primitive meteorites based on isotopic ratios.

  8. Expanded Very Large Array Nova Project Observations of the Classical Nova V1723 Aquilae

    NASA Astrophysics Data System (ADS)

    Krauss, Miriam I.; Chomiuk, Laura; Rupen, Michael; Roy, Nirupam; Mioduszewski, Amy J.; Sokoloski, J. L.; Nelson, Thomas; Mukai, Koji; Bode, M. F.; Eyres, S. P. S.; O'Brien, T. J.

    2011-09-01

    We present radio light curves and spectra of the classical nova V1723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists utilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of V1723 Aql span 1-37 GHz in frequency, and we report on data from 14 to 175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of V1723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.

  9. Expanded Very Large Array Nova Project Observations of the Classical NovaV1723 Aquilae

    NASA Technical Reports Server (NTRS)

    Krauss, Miriam I.; Chomiuk, Laura; Rupen, Michael; Roy, Nirupam; Mioduszewski, Amy J.; Sokoloski, J. L.; Nelson, Thomas; Mukai, Koji; Bode, M. F.; Eyres, S. P. S.; hide

    2011-01-01

    We present radio light curves and spectra of the classical nova VI723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists utilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of VI723 Aql span 1-37 GHz in frequency, and we report on data from 14 to 175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of VI723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.

  10. Improving the {sup 33}S(p,{gamma}){sup 34}Cl Reaction Rate for Models of Classical Nova Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parikh, A.; Faestermann, Th.; Kruecken, R.

    2011-10-28

    Reduced uncertainty in the thermonuclear rate of the {sup 33}S(p,{gamma}){sup 34}Cl reaction would help to improve our understanding of nucleosynthesis in classical nova explosions. At present, models are generally in concordance with observations that nuclei up to roughly the calcium region may be produced in these explosive phenomena; better knowledge of this rate would help with the quantitative interpretation of nova observations over the S-Ca mass region, and contribute towards the firm establishment of a nucleosynthetic endpoint. As well, models find that the ejecta of nova explosions on massive oxygen-neon white dwarfs may contain as much as 150 times themore » solar abundance of {sup 33}S. This characteristic isotopic signature of a nova explosion could possibly be observed through the analysis of microscopic grains formed in the environment surrounding a nova and later embedded within primitive meteorites. An improved {sup 33}S(p,{gamma}){sup 34}Cl rate (the principal destruction mechanism for {sup 33}S in novae) would help to ensure a robust model prediction for the amount of {sup 33}S that may be produced. Finally, constraining this rate could confirm or rule out the decay of an isomeric state of {sup 34}Cl(E{sub x} = 146 keV, t{sub 1/2} = 32 m) as a source for observable gamma-rays from novae. We have performed several complementary experiments dedicated to improving our knowledge of the {sup 33}S(p,{gamma}){sup 34}Cl rate, using both indirect methods (measurement of the {sup 34}S({sup 3}He,t){sup 34}Cl and {sup 33}S({sup 3}He,d){sup 34}Cl reactions with the Munich Q3D spectrograph) and direct methods (in normal kinematics at CENPA, University of Washington, and in inverse kinematics with the DRAGON recoil mass separator at TRIUMF). Our results will be used with nova models to facilitate comparisons of model predictions with present and future nova observables.« less

  11. 3D Hydrodynamic Simulation of Classical Novae Explosions

    NASA Astrophysics Data System (ADS)

    Kendrick, Coleman J.

    2015-01-01

    This project investigates the formation and lifecycle of classical novae and determines how parameters such as: white dwarf mass, star mass and separation affect the evolution of the rotating binary system. These parameters affect the accretion rate, frequency of the nova explosions and light curves. Each particle in the simulation represents a volume of hydrogen gas and are initialized randomly in the outer shell of the companion star. The forces on each particle include: gravity, centrifugal, coriolis, friction, and Langevin. The friction and Langevin forces are used to model the viscosity and internal pressure of the gas. A velocity Verlet method with a one second time step is used to compute velocities and positions of the particles. A new particle recycling method was developed which was critical for computing an accurate and stable accretion rate and keeping the particle count reasonable. I used C++ and OpenCL to create my simulations and ran them on two Nvidia GTX580s. My simulations used up to 1 million particles and required up to 10 hours to complete. My simulation results for novae U Scorpii and DD Circinus are consistent with professional hydrodynamic simulations and observed experimental data (light curves and outburst frequencies). When the white dwarf mass is increased, the time between explosions decreases dramatically. My model was used to make the first prediction for the next outburst of nova DD Circinus. My simulations also show that the companion star blocks the expanding gas shell leading to an asymmetrical expanding shell.

  12. Binary Orbits as the Driver of Gamma-Ray Emission and Mass Ejection in Classical Novae

    NASA Technical Reports Server (NTRS)

    Chomiuk, Laura; Linford, Justin D.; Yang, Jun; O'Brien, T. J.; Paragi, Zsolt; Mioduszewski, Amy J.; Beswick, R. J.; Cheung, C. C.; Mukai, Koji; Nelson, Thomas

    2014-01-01

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10 (sup -4) solar masses of material at velocities exceeding 1,000 kilometers per second.However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at giga-electronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion..At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters.

  13. X ray and gamma ray emission from classical nova outbursts

    NASA Technical Reports Server (NTRS)

    Truran, James W.; Starrfield, Sumner; Sparks, Warren M.

    1992-01-01

    The outbursts of classical novae are now recognized to be consequences of thermonuclear runaways proceeding in accreted hydrogen-rich shells on white dwarfs in close binary systems. For the conditions that are known to exist in these environments, it is expected that soft x-rays can be emitted, and indeed x-rays were detected from a number of novae. The circumstances for which we expect novae to produce significant x-ray fluxes and provide estimates of the luminosities and effective temperatures are described. It is also known that at the high temperatures that are known to be achieved in this explosive hydrogen-burning environment, significant production of both Na-22 and Al-26 will occur. In this context, we identify the conditions for which gamma-ray emission may be expected to result from nova outbursts.

  14. MASTER OT J004207.99+405501.1/M31LRN 2015 luminous red nova in M31: discovery, light curve, hydrodynamics and evolution

    NASA Astrophysics Data System (ADS)

    Lipunov, V. M.; Blinnikov, S.; Gorbovskoy, E.; Tutukov, A.; Baklanov, P.; Krushinski, V.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Gorbunov, I.; Shumkov, V.; Vladimirov, V.; Gress, O.; Budnev, N. M.; Ivanov, K.; Tlatov, A.; Gabovich, A.; Yurkov, V.; Sergienko, Yu.; Zalozhnykh, I.

    2017-09-01

    We report the discovery and multicolour (VRIW) photometry of the rare explosive star MASTER OT J004207.99+405501.1 - a luminous red nova - in the Andromeda galaxy M31N2015-01a. We use our original light curve acquired with identical MASTER Global Robotic Net telescopes in one photometric system: VRI during the first 30 d and W (unfiltered) during 70 d. Also, we added published multicolour photometry data to estimate the mass and energy of the ejected shell and we discuss the likely formation scenarios of outbursts of this type. We propose an interpretation of the explosion that is consistent with an evolutionary scenario where the merging of stellar components or the disruption of the common envelope of a close binary can explain some luminous red novae. Radiative hydrodynamic simulations of a luminous red nova were carried out in extended parameter space to fit its light curves. We find that the multicolour passband light curves of the luminous red nova are consistent with an initial common envelope radius of 10 R⊙, a merger mass of 3 M⊙ and an explosion energy of 3 × 1048 erg. As a result, the phenomenon of novae consists of two classes: classical nuclear novae and more rare events (red novae) connected with the loss of compact common envelopes.

  15. Restablished Accretion in Post-outburst Classical Novae Revealed by X-rays

    NASA Astrophysics Data System (ADS)

    Hernanz, Margarita; Ferri, Carlo; Sala, Glòria

    2009-05-01

    Classical novae are explosions on accreting white dwarfs (hereinafter WDs) in cataclysmic variables (hereinafter CVs) a hydrogen thermonuclear runaway on top of the WD is responsible for the outburst. X-rays provide a unique way to study the turn-off of H-burning, because super soft X-rays reveal the hot WD photosphere, but also to understand how accretion is established again in the binary system. Observations with XMM-Newton of some post-outburst novae have revealed such a process, but a coverage up to larger energies -as Simbol-X will provide- is fundamental to well understand the characteristics of the binary system and of the nova ejecta. We present a brief summary of our results up to now and prospects for the Simbol-X mission.

  16. The Distance to Nova V959 Mon from VLA Imaging

    NASA Astrophysics Data System (ADS)

    Linford, J. D.; Ribeiro, V. A. R. M.; Chomiuk, L.; Nelson, T.; Sokoloski, J. L.; Rupen, M. P.; Mukai, K.; O'Brien, T. J.; Mioduszewski, A. J.; Weston, J.

    2015-06-01

    Determining reliable distances to classical novae is a challenging but crucial step in deriving their ejected masses and explosion energetics. Here we combine radio expansion measurements from the Karl G. Jansky Very Large Array with velocities derived from optical spectra to estimate an expansion parallax for nova V959 Mon, the first nova discovered through its γ-ray emission. We spatially resolve the nova at frequencies of 4.5-36.5 GHz in nine different imaging epochs. The first five epochs cover the expansion of the ejecta from 2012 October to 2013 January, while the final four epochs span 2014 February-May. These observations correspond to days 126 through 199 and days 615 through 703 after the first detection of the nova. The images clearly show a non-spherical ejecta geometry. Utilizing ejecta velocities derived from three-dimensional modeling of optical spectroscopy, the radio expansion implies a distance between 0.9 ± 0.2 and 2.2 ± 0.4 kpc, with a most probable distance of 1.4 ± 0.4 kpc. This distance implies a γ-ray luminosity of 0.6× {{10}35} erg s-1, which is much less than the prototype γ-ray-detected nova, V407 Cyg, possibly due to the lack of a red giant companion in the V959 Mon system. V959 Mon also has a much lower γ-ray luminosity than other classical novae detected in γ-rays to date, indicating a range of at least a factor of 10 in the γ-ray luminosities for these explosions.

  17. X-ray Modeling of Classical Novae

    NASA Astrophysics Data System (ADS)

    Nemeth, Peter

    2010-01-01

    It has been observed and theoretically supported in the last decade that the peak of the spectral energy distribution of classical novae gradually shifts to higher energies at constant bolometric luminosity after a nova event. For this reason, comprehensive evolutionary studies require spectral analysis in multiple spectral bands. After a nova explosion, the white dwarf can maintain stable surface hydrogen burning, the duration of which strongly correlates with the white dwarf mass. During this stage the peak of the luminosity is in the soft X-ray band (15 - 60 Angstroms). By extending the modeling range of TLUSTY/SYNSPEC, I analyse the luminosity and abundance evolution of classical novae. Model atoms required for this work were built using atomic data from NIST/ASD and TOPBASE. The accurate but incomplete set of energy levels and radiative transitions in NIST were completed with calculated data from TOPBASE. Synthetic spectra were then compared to observed data to derive stellar parameters. I show the capabilities and validity of this project on the example of V4743 Sgr. This nova was observed with both Chandra and XMM-Newton observatories and has already been modeled by several scientific groups (PHOENIX, TMAP).

  18. Firework Nova

    NASA Image and Video Library

    2015-07-02

    In Hollywood blockbusters, explosions are often among the stars of the show. In space, explosions of actual stars are a focus for scientists who hope to better understand their births, lives, and deaths and how they interact with their surroundings. Using NASA’s Chandra X-ray Observatory, astronomers have studied one particular explosion that may provide clues to the dynamics of other, much larger stellar eruptions. A team of researchers pointed the telescope at GK Persei, an object that became a sensation in the astronomical world in 1901 when it suddenly appeared as one of the brightest stars in the sky for a few days, before gradually fading away in brightness. Today, astronomers cite GK Persei as an example of a “classical nova,” an outburst produced by a thermonuclear explosion on the surface of a white dwarf star, the dense remnant of a Sun-like star.

  19. A Classical Nova Explosion in a Binary System with B[e] Star

    NASA Astrophysics Data System (ADS)

    Filippova, E.; Revnivtsev, M.; Lutovinov, A.

    2011-09-01

    The description of a thermonuclear runaway on a white dwarf, which causes a Classical Nova (CN) explosion, has several uncertainties. Observational tests of models are challenging because the majority of CNe are observed in optical and NIR spectral bands days after the onset of the explosion. We propose to use the properties of the X-ray emission of CNe for these tests. We have developed a model for the 1998 CN explosion in the binary system CI Cam. According to the adopted model the stellar wind from the optical component (a B[e] star), heated by a strong shock wave that was produced when matter was ejected from the white dwarf as the result of a thermonuclear explosion on its surface, is the source of X-ray emission in the standard X-ray band (˜ 2 - 10 keV). We use this model to explain the behaviour of the X-ray luminosity and of the mean temperature of the heated material during the explosion, and obtain velocity and mass estimates of the ejected matter from the WD surface. Discrepancies between model and observations, for example the slower decline of the theoretical luminosity compared to the observed one, are likely caused by the rough assumption of spherical symmetry. Using 3D calculations we find possible density perturbations (accretion wakes) that can reconcile theory with observations.

  20. Three-dimensional simulations of turbulent convective mixing in ONe and CO classical nova explosions

    DOE PAGES

    Casanova, Jordi; José, Jordi; García-Berro, Enrique; ...

    2016-10-25

    Classical novae are thermonuclear explosions that take place in the envelopes of accreting white dwarfs in binary systems. The material piles up under degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures of ~(1-4) × 10 8 K. During these events, about 10 -3-10 -7 M ⊙, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, Al) are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, the high concentrations of metalsmore » spectroscopically inferred in the ejecta), models require mixing between the (solar-like) material transferred from the secondary and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Recent multidimensional simulations have demonstrated that Kelvin-Helmholtz instabilities can naturally produce self-enrichment of the accreted envelope with material from the underlying white dwarf at levels that agree with observations. However, the feasibility of this mechanism has been explored in the framework of CO white dwarfs, while mixing with different substrates still needs to be properly addressed. We performed three-dimensional simulations of mixing at the core-envelope interface during nova outbursts with the multidimensional code FLASH, for two types of substrates: CO- and ONe-rich. We also show that the presence of an ONe-rich substrate, as in “neon novae”, yields higher metallicity enhancements in the ejecta than CO-rich substrates (i.e., non-neon novae). Finally, a number of requirements and constraints for such 3D simulations (e.g., minimum resolution, size of the computational domain) are also outlined.« less

  1. STELLAR ORIGINS OF EXTREMELY {sup 13}C- AND {sup 15}N-ENRICHED PRESOLAR SIC GRAINS: NOVAE OR SUPERNOVAE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.

    Extreme excesses of {sup 13}C ({sup 12}C/{sup 13}C < 10) and {sup 15}N ({sup 14}N/{sup 15}N < 20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae, though an origin in core collapse supernovae (CCSNe) has also been proposed. We report C, N, and Si isotope data for 14 submicron- to micron-sized {sup 13}C- and {sup 15}N-enriched presolar SiC grains ({sup 12}C/{sup 13}C < 16 and {sup 14}N/{sup 15}N < ∼100) from Murchison, and their correlated Mg–Al, S, and Ca–Ti isotope data when available. These grains are enriched in {sup 13}C and {sup 15}N,more » but with quite diverse Si isotopic signatures. Four grains with {sup 29,30}Si excesses similar to those of type C SiC grains likely came from CCSNe, which experienced explosive H burning occurred during explosions. The independent coexistence of proton- and neutron-capture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in pre-supernovae. Two of the seven putative nova grains with {sup 30}Si excesses and {sup 29}Si depletions show lower-than-solar {sup 34}S/{sup 32}S ratios that cannot be explained by classical nova nucleosynthetic models. We discuss these signatures within the CCSN scenario. For the remaining five putative nova grains, both nova and supernova origins are viable because explosive H burning in the two stellar sites could result in quite similar proton-capture isotopic signatures. Three of the grains are sub-type AB grains that are also {sup 13}C enriched, but have a range of higher {sup 14}N/{sup 15}N. We found that {sup 15}N-enriched AB grains (∼50 < {sup 14}N/{sup 15}N < ∼100) have distinctive isotopic signatures compared to putative nova grains, such as higher {sup 14}N/{sup 15}N, lower {sup 26}Al/{sup 27}Al, and lack of {sup 30}Si excess, indicating weaker proton-capture nucleosynthetic environments.« less

  2. Early X- and HE γ-ray emission from the symbiotic recurrent novae V745 Sco & RS Oph.

    NASA Astrophysics Data System (ADS)

    Delgado, L.; Hernanz, M.

    2017-10-01

    RS Oph was the first nova for which evidence of particle acceleration during its 2006 outburst was found. In recent years, several nova explosions - eight classical and two symbiotic recurrent novae - have been detected by Fermi/LAT at E>100 MeV. In most cases, this emission has been observed early after the explosion, around the optical maximum, and for a short period of time. The high-energy γ-ray emission is a consequence of π^{0} decay and/or Inverse Compton, which are related to particle (p and e^{-}) acceleration in the strong shock between the nova ejecta and the circumstellar matter. Our aim is to understand the acceleration process through the analysis of contemporaneous X-ray emission, and in particular, through the evolution of the shock wave. A deep analysis of early X-ray observations of the symbiotic recurrent novae V745 Sco (2014) by Swift/XRT, Chandra/HETG and NuStar, and RS Oph (2006) by XMM-Newton/EPIC and RGS, Swift/XRT and BAT and RXTE/PCA is presented taking into account the contemporaneous information from the IR and radio observations. This provides for the first time a global view of the early evolution of a nova remnant and its relationship with particle acceleration.

  3. Three-dimensional simulations of the interaction between the nova ejecta, accretion disk, and companion star

    NASA Astrophysics Data System (ADS)

    Figueira, Joana; José, Jordi; García-Berro, Enrique; Campbell, Simon W.; García-Senz, Domingo; Mohamed, Shazrene

    2018-05-01

    Context. Classical novae are thermonuclear explosions hosted by accreting white dwarfs in stellar binary systems. Material piles up on top of the white dwarf star under mildly degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope, mostly proton-capture reactions and β+-decays, heats the material up to peak temperatures ranging from 100 to 400 MK. In these events, about 10-3-10-7 M⊙, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, and Al) are ejected into the interstellar medium. Aims: To date, most of the efforts undertaken in the modeling of classical nova outbursts have focused on the early stages of the explosion and ejection, ignoring the interaction of the ejecta, first with the accretion disk orbiting the white dwarf and ultimately with the secondary star. Methods: A suite of 3D, smoothed-particle hydrodynamics (SPH) simulations of the interaction between the nova ejecta, accretion disk, and stellar companion were performed to fill this gap; these simulations were aimed at testing the influence of the model parameters—that is, the mass and velocity of the ejecta, mass and the geometry of the accretion disk—on the dynamical and chemical properties of the system. Results: We discuss the conditions that lead to the disruption of the accretion disk and to mass loss from the binary system. In addition, we discuss the likelihood of chemical contamination of the stellar secondary induced by the impact with the nova ejecta and its potential effect on the next nova cycle. Movies showing the full evolution of several models are available online at http://https://www.aanda.org and at http://www.fen.upc.edu/users/jjose/Downloads.html

  4. Hydrodynamic Simulations of the Consequences of Accretion onto ONe White Dwarfs

    NASA Astrophysics Data System (ADS)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William Raphael; Woodward, Charles E.; Wagner, Robert M.; José, Jordi; Hernanz, Margarita; Feng, Wanda

    2018-06-01

    Mass and luminosity variations of the white dwarf, combined with changes in the mass accretion rate and composition of the accreted material affect the evolution of the thermonuclear runaway (TNR) in classical and recurrent novae. Here we highlight continued investigations of these effects on accreting Oxygen-Neon (ONe) white dwarfs. We now use the results of the multi-dimensional studies of TNRs in white dwarfs, accreting only solar matter, which show that sufficient core material is dredged-up during the TNR to agree with the measurements of ejecta abundances in classical nova explosions. Therefore, we first accrete solar material and follow the evolution until a TNR is ongoing. We then switch the composition to a mixture with either 25% core material or 50% core material (plus accreted material) and follow the resulting evolution of the TNR through peak nuclear burning and decline. We use our 1D, Lagrangian, hydrodynamic code: NOVA. We will report on the results of these new simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. We will also compare these results to our companion studies, done in a similar fashion, where we have followed the consequences of accretion onto Carbon-Oxygen white dwarfs. This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics.

  5. Hydrodynamic Simulations of Classical Nova explosions: predictions of 7Be and 7Li production and the growth to the Chandrasekhar Limit

    NASA Astrophysics Data System (ADS)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; Wagner, R. Mark; Woodward, Charles E.; Jose', Jordi; Hernanz, Margarita

    2018-01-01

    We have continued our studies of Classical Nova explosions by following the evolution of thermonuclear runaways (TNRs) on Carbon Oxygen white dwarfs (WDs). We have varied both the mass of the WD and the composition of the accreted material. We now rely on the results of multi-D studies of TNRs in WDs that accrete only Solar matter. They find that mixing with the core occurs after the TNR is well underway, reaching enrichment levels in agreement with observations of the ejecta abundances. We, therefore, accrete only Solar matter with NOVA (our 1-D, fully implicit, hydro code) until the TNR is initiated and then switch the accreted composition to a mixed composition: either 25% core and 75% Solar or 50% core and 50% Solar. Because the amount of accreted material is inversely proportional to the initial 12C abundance, by accreting Solar matter the amount of material taking part in the outburst is larger than if we had used mixed material from the beginning. We follow the TNR through the peak and tabulate the amount of ejected gases, their velocities and abundances. We also predict the amount of 7Li and 7Be produced and ejected by the explosion and compare our predictions to the observations in a companion poster describing the LBT measurements of 7Li in V5668 Sgr. We also compare our abundance predictions to those measured in pre-solar grains that may arise from Classical Nova explosions. Our predictions are also compared to results with SHIVA (Josè and Hernanz). Finally, many of these simulations eject significantly less mass than accreted and, therefore, the WD is growing in mass toward the Chandrasekhar Limit. This suggests that the single degenerate scenario is still a viable option for SN Ia progenitors. This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. Our results benefitted from collaborations and/or information exchange within NASA's Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA's Science Mission Directorate.

  6. Hydrodynamic Simulations of Classical Novae: Accretion onto CO White Dwarfs as SN Ia Progenitors

    NASA Astrophysics Data System (ADS)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita

    2017-06-01

    We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material but chosen to keep the mass accretion rate at 2 x 10^{-10} solar masses per year to obtain the largest amount of accreted material possible with rates near to those observed. We assume either 25% core material or 50% core material has been mixed into the accreting material prior to the explosion. We use our 1D, lagrangian, hydrodynamic code: NOVA. We will report on the results of these simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Jose and Hernanz). We find that in all cases and for all white dwarf masses that less mass is ejected than accreted and, therefore, the white dwarf is growing in mass as a result of the accretion and resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.

  7. Atypical dust species in the ejecta of classical novae

    NASA Astrophysics Data System (ADS)

    Helton, L. A.; Evans, A.; Woodward, C. E.; Gehrz, R. D.

    2011-03-01

    A classical nova outburst arises from a thermonuclear runaway in the hydrogen-rich material accreted onto the surface of a white dwarf in a binary system. These explosions can produce copious amounts of heavy element enriched material that are ejected violently into the surrounding interstellar medium. In some novae, conditions in the ejecta are suitable for the formation of dust of various compositions, including silicates, amorphous carbon, silicon carbide, and hydrocarbons. Multiple dust grain types are sometimes produced in the same system. CO formation in novae may not reach saturation, thus invalidating the usual paradigm in which the C:O ratio determines the dust species. A few novae, such as V705 Cas and DZ Cru, have exhibited emission features near 6, 8, and 11 μmthat are similar to "Unidentified Infrared" (UIR) features, but with significant differences in position and band structure. Here, we present Spitzer IRS spectra of two recent dusty novae, V2361 Cyg and V2362 Cyg, that harbor similar peculiar emission structures superimposed on features arising from carbonaceous grains. In other astronomical objects, such as star forming regions and young stellar objects, emission peaks at 6.2, 7.7, and 11.3 μmhave been associated with polycyclic aromatic hydrocarbon (PAH) complexes. We suggest that hydrogenated amorphous carbon (HAC) may be the source of these features in novae based upon the spectral behavior of the emission features and the conditions under which the dust formed.

  8. Research activities in nuclear astrophysics and related areas

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA/GRO grant NAG 5-2081, at the University of Chicago, has provided support for a broad program of theoretical research in nuclear astrophysics and related areas, with regard to gamma-ray and hard X-ray emission from classical nova explosions. This research emphasized the possible detection of 22Na gamma-ray line emission from nearby novae involving ONeMg white dwarfs, the detailed examination of 26Al production in novae, and the possible detection of the predicted early gamma ray emission from novae that arises from the decay of the short lived, positron emitting isotopes of CNO elements. Studies of nova related problems have consumed an increasing fraction of the Principal Investigator's research efforts over the past decade. Current research addresses problems associated with the standard model for the outbursts of the classical novae: the occurrence of thermonuclear runaways (TNR) in the accreted hydrogen rich envelopes on white dwarfs in close binary systems (see, e.g., the reviews by Truran 1982; and Shara 1989). Research in progress and planned for the next three years has three main objectives: (1) to gain an improved understanding of the early evolution of the light curves of, particularly, the fastest novae; (2) to gain an improved understanding of the relative importance of the various possible mechanisms of envelope hydrogen depletion (e.g. winds, common envelope driven mass loss, and nuclear burning) to the long term evolution of novae in outburst; and (3) to seek to provide a somewhat more definitive statement of the role of classical novae in nucleosynthesis. Our proposed 2-D studies of convection during the early phases of the TNR and our systematic attempt to incorporate an improved treatment of radiation hydrodynamics into the hydrodynamic code utilized in our calculations, are particularly relevant to the first of these objectives. Further 2-D studies of the effects of common envelope evolution are intended to provide more realistic constraints on the mass depletion mechanisms. Finally, detailed calculations of the thermonuclear history of the matter ejected in novae will be carried out for representative nova configurations involving both carbon-oxygen (CO) and oxygen-neon-magnesium (ONeMg) white dwarfs.

  9. Kelvin-Helmholtz instabilities as the source of inhomogeneous mixing in nova explosions.

    PubMed

    Casanova, Jordi; José, Jordi; García-Berro, Enrique; Shore, Steven N; Calder, Alan C

    2011-10-19

    Classical novae are thermonuclear explosions in binary stellar systems containing a white dwarf accreting material from a close companion star. They repeatedly eject 10(-4)-10(-5) solar masses of nucleosynthetically enriched gas into the interstellar medium, recurring on intervals of decades to tens of millennia. They are probably the main sources of Galactic (15)N, (17)O and (13)C. The origin of the large enhancements and inhomogeneous distribution of these species observed in high-resolution spectra of ejected nova shells has, however, remained unexplained for almost half a century. Several mechanisms, including mixing by diffusion, shear or resonant gravity waves, have been proposed in the framework of one-dimensional or two-dimensional simulations, but none has hitherto proven successful because convective mixing can only be modelled accurately in three dimensions. Here we report the results of a three-dimensional nuclear-hydrodynamic simulation of mixing at the core-envelope interface during nova outbursts. We show that buoyant fingering drives vortices from the Kelvin-Helmholtz instability, which inevitably enriches the accreted envelope with material from the outer white-dwarf core. Such mixing also naturally produces large-scale chemical inhomogeneities. Both the metallicity enhancement and the intrinsic dispersions in the abundances are consistent with the observed values.

  10. ToO Galactic Nova -- Michelle ``Quick Response''

    NASA Astrophysics Data System (ADS)

    Helton, L. Andrew; Woodward, Chick; Evans, Nye; Geballe, Tom; Spitzer Nova Team

    2006-08-01

    Stars are the engines of energy production and chemical evolution in our Universe, depositing radiative and mechanical energy into their environments and enriching the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CN) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. We propose to obtain mid-IR spectra of a new galactic CN in outburst to investigate aspects of the CN phenomenon including the in situ formation and mineralogy of nova dust and the elemental abundances resulting from thermonuclear runaway. Synoptic, high S/N Michelle spectra permit: 1) determination of the grain size distribution and mineral composition of nova dust; 2) estimation of chemical abundances of nova ejecta from coronal and other emission line spectroscopy; and 3) measurement of the density and masses of the ejecta. This Gemini `Target of Opportunity' initiative (trigger K=5- 8 mag, assuming adequate PWFS guide stars exist) complements our extensive Spitzer, Chandra, Swift, XMM-Newton CN DDT/ToO programs.

  11. Synoptic Mid-IR Spectra ToO Novae

    NASA Astrophysics Data System (ADS)

    Helton, L. Andrew; Woodward, Chick; Evans, Nye; Geballe, Tom; Spitzer Nova Team

    2007-02-01

    Stars are the engines of energy production and chemical evolution in our Universe, depositing radiative and mechanical energy into their environments and enriching the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CN) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. We propose to obtain mid-IR spectra of a new galactic CN in outburst to investigate aspects of the CN phenomenon including the in situ formation and mineralogy of nova dust and the elemental abundances resulting from thermonuclear runaway. Synoptic, high S/N Michelle spectra permit: 1) determination of the grain size distribution and mineral composition of nova dust; 2) estimation of chemical abundances of nova ejecta from coronal and other emission line spectroscopy; and 3) measurement of the density and masses of the ejecta. This Gemini `Target of Opportunity' initiative (trigger K=5- 8 mag, assuming adequate PWFS guide stars exist) complements our extensive Spitzer, Chandra, Swift, XMM-Newton CN DDT/ToO programs.

  12. AT Cnc: A SECOND DWARF NOVA WITH A CLASSICAL NOVA SHELL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shara, Michael M.; Mizusawa, Trisha; Zurek, David

    2012-10-20

    We are systematically surveying all known and suspected Z Cam-type dwarf novae for classical nova shells. This survey is motivated by the discovery of the largest known classical nova shell, which surrounds the archetypal dwarf nova Z Camelopardalis. The Z Cam shell demonstrates that at least some dwarf novae must have undergone classical nova eruptions in the past, and that at least some classical novae become dwarf novae long after their nova thermonuclear outbursts, in accord with the hibernation scenario of cataclysmic binaries. Here we report the detection of a fragmented 'shell', 3 arcmin in diameter, surrounding the dwarf novamore » AT Cancri. This second discovery demonstrates that nova shells surrounding Z Cam-type dwarf novae cannot be very rare. The shell geometry is suggestive of bipolar, conical ejection seen nearly pole-on. A spectrum of the brightest AT Cnc shell knot is similar to that of the ejecta of the classical nova GK Per, and of Z Cam, dominated by [N II] emission. Galaxy Evolution Explorer FUV imagery reveals a similar-sized, FUV-emitting shell. We determine a distance of 460 pc to AT Cnc, and an upper limit to its ejecta mass of {approx}5 Multiplication-Sign 10{sup -5} M {sub Sun }, typical of classical novae.« less

  13. X-Ray Emission from an Asymmetric Blast Wave and a Massive White Dwarf in the Gamma Ray Emitting Nova V407 CYG

    NASA Technical Reports Server (NTRS)

    Nelson, Thomas; Donato, Davide; Mukai, Koji; Sokoloski, Jennifer; Chomiuk, Laura

    2012-01-01

    Classical nova events in symbiotic stars, although rare, offer a unique opportunity to probe the interaction between ejecta and a dense environment in stellar explosions. In this work, we use X-ray data obtained with Swift and Suzaku during the recent classical nova outburst in V407 Cyg to explore such an interaction. We find evidence of both equilibrium and non-equilibrium ionization plasmas at the time of peak X-ray brightness, indicating a strong asymmetry in the density of the emitting region. Comparing a simple model to the data, we find that the X-ray evolution is broadly consistent with nova ejecta driving a forward shock into the dense wind of the Mira companion. We detect a highly absorbed soft X-ray component in the spectrum during the first 50 days of the outburst that is consistent with supersoft emission from the nuclear burning white dwarf. The high temperature and short turn off time of this emission component, in addition to the observed breaks in the optical and UV lightcurves, indicate that the white dwarf in the binary is extremely massive. Finally, we explore the connections between the X-ray and GeV-ray evolution, and propose that the gamma ray turn-off is due to the stalling of the forward shock as the ejecta reach the red giant surface.

  14. Hydrogen burning of oxygen-17

    NASA Astrophysics Data System (ADS)

    Newton, Joseph

    Classical novae are explosive binary systems involving the accretion of hydrogen rich material from a main sequence star onto the surface of a white dwarf partner, reaching peak temperatures of T = 0.1-0.4 GK. Observed elemental abundances from the ejecta provide much needed constraints for the modeling of these explosions. Novae are thought to be the most significant source of 15 N and 17 O in the universe. The 17 O(p,g) 18 F and 17 O(p,g) 14 N reactions have an important effect on nucleosynthesis in novae, since they determine the creation and destruction of 17 O and 18 F, which produces detectable g- radiation. The dominant contributor to the 17 O(p,g) 14 N reaction is a resonance at [Special characters omitted.] = 193 keV. The strength of this resonance has been measured and the results are presented. For the 17 O(p,g) 18 F reaction, the dominant contribution comes from the nonresonant direct capture process. The literature direct capture cross sections currently differ by a factor of two. This cross section has been measured in the current work and the results are also presented. New reaction rates have been calculated with these measured cross sections using a new Monte Carlo technique and these new rates have significantly reduced uncertainties compared to the current literature.

  15. Synthesis of C-rich dust in CO nova outbursts

    NASA Astrophysics Data System (ADS)

    José, Jordi; Halabi, Ghina M.; El Eid, Mounib F.

    2016-09-01

    Context. Classical novae are thermonuclear explosions that take place in the envelopes of accreting white dwarfs in stellar binary systems. The material transferred onto the white dwarf piles up under degenerate conditions, driving a thermonuclear runaway. In these outbursts, about 10-7-10-3 M⊙, enriched in CNO and sometimes other intermediate-mass elements (e.g., Ne, Na, Mg, or Al for ONe novae) are ejected into the interstellar medium. The large concentrations of metals spectroscopically inferred in the nova ejecta reveal that the solar-like material transferred from the secondary mixes with the outermost layers of the underlying white dwarf. Aims: Most theoretical models of nova outbursts reported to date yield, on average, outflows characterized by O > C, from which, in principle, only oxidized condensates (e.g., O-rich grains) would be expected. Methods: To specifically address whether CO novae can actually produce C-rich dust, six different hydrodynamic nova models have been evolved, from accretion to the expansion and ejection stages, with different choices for the composition of the substrate with which the solar-like accreted material mixes. Updated chemical profiles inside the H-exhausted core have been used, based on stellar evolution calculations for a progenitor of 8 M⊙ through H- and He-burning phases. Results: We show that these profiles lead to C-rich ejecta after the nova outburst. This extends the possible contribution of novae to the inventory of presolar grains identified in meteorites, particularly in a number of carbonaceous phases (I.e., nanodiamonds, silicon carbides, and graphites).

  16. Accretion onto Carbon-Oxygen White Dwarfs as a possible mechanism for growth to the Chandrasekhar Limit

    NASA Astrophysics Data System (ADS)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita

    2017-08-01

    We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways (TNRs) on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material. We use the results of the multi-dimensional studies of TNRs in white dwarfs, accreting only Solar matter, which show that sufficient core material is dredged-up by the TNR and then ejected by the explosion to agree with the observations of the ejecta abundances. We have also found that the initial 12C abundance is inversely proportional to the amount of material accreted prior to the TNR. Therefore, we first accrete Solar material and follow the evolution until a TNR occurs. Because the 12C abundance is significantly smaller then if we had initially mixed the accreting gas with the carbon-oxygen core, more matter takes part in the explosion than if we had begun the evolution with the mixed composition. We then instantaneously switch the composition to a mixture with either 25% core material or 50% core material (plus accreted material) and follow the resulting evolution of the TNR. We use our 1D, Lagrangian, hydrodynamic code: NOVA. We report on the results of these new simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Josè and Hernanz). We find that there are some white dwarf masses where significantly less mass is ejected than accreted during the Classical Nova event and, therefore, the white dwarf is growing in mass as a result of the accretion and in spite of the resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.

  17. Firework Nova

    NASA Image and Video Library

    2017-12-08

    Nova Stars are essentially giant fusion reactions occurring in the vacuum of space. Because stars have so much mass, they possess powerful gravitational force—but they don’t collapse because of the outward force generated by nuclear fusion, continually converting hydrogen atoms to helium. Sometimes stars begin orbiting each other, forming a binary star system. Typically this involves a white dwarf star and a red giant. Orbiting the red giant like a moon, the dwarf star rips matter from its companion until it essentially gags on the excess, coughing hot gas and radiation into space. This dramatic phenomenon is relatively common, and the white dwarf is not destroyed in the resulting nova. To learn more about x-ray emissions, read about NASA’s Chandra mission: www.nasa.gov/mission_pages/chandra/main/ --- Original caption: In Hollywood blockbusters, explosions are often among the stars of the show. In space, explosions of actual stars are a focus for scientists who hope to better understand their births, lives, and deaths and how they interact with their surroundings. Using NASA’s Chandra X-ray Observatory, astronomers have studied one particular explosion that may provide clues to the dynamics of other, much larger stellar eruptions. A team of researchers pointed the telescope at GK Persei, an object that became a sensation in the astronomical world in 1901 when it suddenly appeared as one of the brightest stars in the sky for a few days, before gradually fading away in brightness. Today, astronomers cite GK Persei as an example of a “classical nova,” an outburst produced by a thermonuclear explosion on the surface of a white dwarf star, the dense remnant of a Sun-like star. Read Full Article: www.nasa.gov/mission_pages/chandra/mini-supernova-explosi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. The Masses and Accretion Rates of White Dwarfs in Classical and Recurrent Novae

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Prialnik, Dina; Hillman, Yael; Kovetz, Attay

    2018-06-01

    Models have long predicted that the frequency-averaged masses of white dwarfs (WDs) in Galactic classical novae are twice as large as those of field WDs. Only a handful of dynamically well-determined nova WDs masses have been published, leaving the theoretical predictions poorly tested. The recurrence time distributions and mass accretion rate distributions of novae are even more poorly known. To address these deficiencies, we have combined our extensive simulations of nova eruptions with the Strope et al. and Schaefer databases of outburst characteristics of Galactic classical and recurrent novae (RNe) to determine the masses of 92 WDs in novae. We find that the mean mass (frequency-averaged mean mass) of 82 Galactic classical novae is 1.06 (1.13) M ⊙, while the mean mass of 10 RNe is 1.31 M ⊙. These masses, and the observed nova outburst amplitude and decline time distributions allow us to determine the long-term mass accretion rate distribution of classical novae. Remarkably, that value is just 1.3 × 10‑10 M ⊙ yr‑1, which is an order of magnitude smaller than that of cataclysmic binaries in the decades before and after classical nova eruptions. This predicts that old novae become low-mass transfer rate systems, and hence dwarf novae, for most of the time between nova eruptions. We determine the mass accretion rates of each of the 10 known Galactic recurrent nova, finding them to be in the range of 10‑7–10‑8 M ⊙ yr‑1. We are able to predict the recurrence time distribution of novae and compare it with the predictions of population synthesis models.

  19. Proper-motion age dating of the progeny of Nova Scorpii AD 1437.

    PubMed

    Shara, M M; Iłkiewicz, K; Mikołajewska, J; Pagnotta, A; Bode, M F; Crause, L A; Drozd, K; Faherty, J; Fuentes-Morales, I; Grindlay, J E; Moffat, A F J; Pretorius, M L; Schmidtobreick, L; Stephenson, F R; Tappert, C; Zurek, D

    2017-08-30

    'Cataclysmic variables' are binary star systems in which one star of the pair is a white dwarf, and which often generate bright and energetic stellar outbursts. Classical novae are one type of outburst: when the white dwarf accretes enough matter from its companion, the resulting hydrogen-rich atmospheric envelope can host a runaway thermonuclear reaction that generates a rapid brightening. Achieving peak luminosities of up to one million times that of the Sun, all classical novae are recurrent, on timescales of months to millennia. During the century before and after an eruption, the 'novalike' binary systems that give rise to classical novae exhibit high rates of mass transfer to their white dwarfs. Another type of outburst is the dwarf nova: these occur in binaries that have stellar masses and periods indistinguishable from those of novalikes but much lower mass-transfer rates, when accretion-disk instabilities drop matter onto the white dwarfs. The co-existence at the same orbital period of novalike binaries and dwarf novae-which are identical but for their widely varying accretion rates-has been a longstanding puzzle. Here we report the recovery of the binary star underlying the classical nova eruption of 11 March AD 1437 (refs 12, 13), and independently confirm its age by proper-motion dating. We show that, almost 500 years after a classical-nova event, the system exhibited dwarf-nova eruptions. The three other oldest recovered classical novae display nova shells, but lack firm post-eruption ages, and are also dwarf novae at present. We conclude that many old novae become dwarf novae for part of the millennia between successive nova eruptions.

  20. Recurrent novae

    NASA Technical Reports Server (NTRS)

    Hack, Margherita; Selvelli, Pierluigi

    1993-01-01

    Recurrent novae seem to be a rather inhomogeneous group: T CrB is a binary with a M III companion; U Sco probably has a late dwarf as companion. Three are fast novae; two are slow novae. Some of them appear to have normal chemical composition; others may present He and CNO excess. Some present a mass-loss that is lower by two orders of magnitude than classical novae. However, our sample is too small for saying whether there are several classes of recurrent novae, which may be related to the various classes of classical novae, or whether the low mass-loss is a general property of the class or just a peculiarity of one member of the larger class of classical novae and recurrent novae.

  1. The Military in Disaster Relief After the Explosion in Halifax, Nova Scotia, December 1917

    DTIC Science & Technology

    2017-06-09

    Scotia. The blast had one- sixth the power of the first atomic bomb and killed or wounded 20 percent of the Halifax population. The enormous ensuing...in Halifax, Nova Scotia. The blast had one-sixth the power of the first atomic bomb and killed or wounded 20 percent of the Halifax population. The...Simpson and Alan Ruffman, “Explosions, Bombs , and Bumps: Scientific Aspects of the Explosion,” in Ground Zero: A Reassessment of the 1917 Explosion in

  2. Novae as a Class of Transient X-ray Sources

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Orio, M.; Valle, M. Della

    2007-01-01

    Motivated by the recently discovered class of faint (10(exp 34)-10(exp 35) ergs/s) X-ray transients in the Galactic Center region, we investigate the 2-10 keV properties of classical and recurrent novae. Existing data are consistent with the idea that all classical novae are transient X-ray sources with durations of months to years and peak luminosities in the 10(exp 34)-10(exp 35)ergs/s range. This makes classical novae a viable candidate class for the faint Galactic Center transients. We estimate the rate of classical novae within a 15 arcmin radius region centered on the Galactic Center (roughly the field of view of XMM-Newton observations centered on Sgr A*) to be approx.0.1 per year. Therefore, it is plausible that some of the Galactic Center transients that have been announced to date are unrecognized classical novae. The continuing monitoring of the Galactic Center region carried out by Chandra and XMM-Newton may therefore provide a new method to detect classical novae in this crowded and obscured region, an

  3. Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wu, C.; Wang, B.; Liu, D.; Han, Z.

    2017-07-01

    Context. Type Ia supernovae (SNe Ia) play a crucial role in studying cosmology and galactic chemical evolution. They are thought to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs) when their masses reach the Chandrasekar mass limit in binaries. Previous studies have suggested that He novae may be progenitor candidates of SNe Ia. However, the mass retention efficiencies during He nova outbursts are still uncertain. Aims: In this article, we aim to study the mass retention efficiencies of He nova outbursts and to investigate whether SNe Ia can be produced through He nova outbursts. Methods: Using the stellar evolution code Modules for Experiments in Stellar Astrophysics, we simulated a series of multicycle He-layer flashes, in which the initial WD masses range from 0.7 to 1.35 M⊙ with various accretion rates. Results: We obtained the mass retention efficiencies of He nova outbursts for various initial WD masses, which can be used in the binary population synthesis studies. In our simulations, He nova outbursts can increase the mass of the WD to the Chandrasekar mass limit and the explosive carbon burning can be triggered in the center of the WD; this suggests that He nova outbursts can produce SNe Ia. Meanwhile, the mass retention efficiencies in the present work are lower than those of previous studies, which leads to a lower birthrates of SNe Ia through the WD + He star channel. Furthermore, we obtained the elemental abundances distribution at the moment of explosive carbon burning, which can be used as the initial input parameters in studying explosion models of SNe Ia.

  4. Mixing in classical novae: a 2-D sensitivity study

    NASA Astrophysics Data System (ADS)

    Casanova, J.; José, J.; García-Berro, E.; Calder, A.; Shore, S. N.

    2011-03-01

    Context. Classical novae are explosive phenomena that take place in stellar binary systems. They are powered by mass transfer from a low-mass, main sequence star onto a white dwarf. The material piles up under degenerate conditions and a thermonuclear runaway ensues. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures of ~(1-4) × 108 K. During these events, about 10-4-10-5M⊙, enriched in CNO and other intermediate-mass elements, are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, a metallicity enhancement in the ejecta above solar values), numerical models assume mixing between the (solar-like) material transferred from the companion and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Aims: The nature of the mixing mechanism that operates at the core-envelope interface has puzzled stellar modelers for about 40 years. Here we investigate the role of Kelvin-Helmholtz instabilities as a natural mechanism for self-enrichment of the accreted envelope with core material. Methods: The feasibility of this mechanism is studied by means of the multidimensional code FLASH. Here, we present a series of 9 numerical simulations perfomed in two dimensions aimed at testing the possible influence of the initial perturbation (duration, strength, location, and size), the resolution adopted, or the size of the computational domain on the results. Results: We show that results do not depend substantially on the specific choice of these parameters, demonstrating that Kelvin-Helmholtz instabilities can naturally lead to self-enrichment of the accreted envelope with core material, at levels that agree with observations. Movie is only available in electronic form at http://www.aanda.org

  5. Recent progress in understanding the eruptions of classical novae

    NASA Technical Reports Server (NTRS)

    Shara, Michael M.

    1988-01-01

    Dramatic progress has occurred in the last two decades in understanding the physical processes and events leading up to, and transpiring during the eruption of a classical nova. The mechanism whereby a white dwarf accreting hydrogen-rich matter from a low-mass main-sequence companion produces a nova eruption has been understood since 1970. The mass-transferring binary stellar configuration leads inexorably to thermonuclear runaways detected at distances of megaparsecs. Summarized here are the efforts of many researchers in understanding the physical processes which generate nova eruptions; the effects upon nova eruptions of different binary-system parameters (e.g., chemical composition or mass of the white dwarf, different mass accretion rates); the possible metamorphosis from dwarf to classical novae and back again; and observational diagnostics of novae, including x ray and gamma ray emission, and the characteristics and distributions of novae in globular clusters and in extragalactic systems. While the thermonuclear-runaway model remains the successful cornerstone of nova simulation, it is now clear that a wide variety of physical processes, and three-dimensional hydrodynamic simulations, will be needed to explain the rich spectrum of behavior observed in erupting novae.

  6. Discovery of a New Photometric Sub-class of Faint and Fast Classical Novae

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Cenko, S. B.; Kulkarni, S. R.; Ofek, E. O.; Quimby, R.; Rau, A.

    2011-07-01

    We present photometric and spectroscopic follow-up of a sample of extragalactic novae discovered by the Palomar 60 inch telescope during a search for "Fast Transients In Nearest Galaxies" (P60-FasTING). Designed as a fast cadence (1 day) and deep (g < 21 mag) survey, P60-FasTING was particularly sensitive to short-lived and faint optical transients. The P60-FasTING nova sample includes 10 novae in M 31, 6 in M 81, 3 in M 82, 1 in NGC 2403, and 1 in NGC 891. This significantly expands the known sample of extragalactic novae beyond the Local Group, including the first discoveries in a starburst environment. Surprisingly, our photometry shows that this sample is quite inconsistent with the canonical maximum-magnitude-rate-of-decline (MMRD) relation for classical novae. Furthermore, the spectra of the P60-FasTING sample are indistinguishable from classical novae. We suggest that we have uncovered a sub-class of faint and fast classical novae in a new phase space in luminosity-timescale of optical transients. Thus, novae span two orders of magnitude in both luminosity and time. Perhaps the MMRD, which is characterized only by the white dwarf mass, was an oversimplification. Nova physics appears to be characterized by a relatively rich four-dimensional parameter space in white dwarf mass, temperature, composition, and accretion rate.

  7. Exquisite Nova Light Curves from the Solar Mass Ejection Imager (SMEI)

    NASA Astrophysics Data System (ADS)

    Hounsell, R.; Bode, M. F.; Hick, P. P.; Buffington, A.; Jackson, B. V.; Clover, J. M.; Shafter, A. W.; Darnley, M. J.; Mawson, N. R.; Steele, I. A.; Evans, A.; Eyres, S. P. S.; O'Brien, T. J.

    2010-11-01

    We present light curves of three classical novae (CNe; KT Eridani, V598 Puppis, V1280 Scorpii) and one recurrent nova (RS Ophiuchi) derived from data obtained by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. SMEI provides near complete skymap coverage with precision visible-light photometry at 102 minute cadence. The light curves derived from these skymaps offer unprecedented temporal resolution around, and especially before, maximum light, a phase of the eruption normally not covered by ground-based observations. They allow us to explore fundamental parameters of individual objects including the epoch of the initial explosion, the reality and duration of any pre-maximum halt (found in all three fast novae in our sample), the presence of secondary maxima, speed of decline of the initial light curve, plus precise timing of the onset of dust formation (in V1280 Sco) leading to estimation of the bolometric luminosity, white dwarf mass, and object distance. For KT Eri, Liverpool Telescope SkyCamT data confirm important features of the SMEI light curve and overall our results add weight to the proposed similarities of this object to recurrent rather than to CNe. In RS Oph, comparison with hard X-ray data from the 2006 outburst implies that the onset of the outburst coincides with extensive high-velocity mass loss. It is also noted that two of the four novae we have detected (V598 Pup and KT Eri) were only discovered by ground-based observers weeks or months after maximum light, yet these novae reached peak magnitudes of 3.46 and 5.42, respectively. This emphasizes the fact that many bright novae per year are still overlooked, particularly those of the very fast speed class. Coupled with its ability to observe novae in detail even when relatively close to the Sun in the sky, we estimate that as many as five novae per year may be detectable by SMEI.

  8. X-rays Provide a New Way to Investigate Exploding Stars

    NASA Astrophysics Data System (ADS)

    2007-05-01

    The European Space Agency's X-ray observatory XMM-Newton has revealed a new class of exploding stars - where the X-ray emission 'lives fast and dies young'. The identification of this particular class of explosion gives astronomers a valuable new constraint to help them understand stellar explosions. Exploding stars called novae remain a puzzle to astronomers. "Modelling these outbursts is very difficult," says Wolfgang Pietsch, Max Planck Institut für Extraterrestrische Physik. Now, ESA's XMM-Newton and NASA's Chandra have provided valuable information about when individual novae emit X-rays. Between July 2004 and February 2005, the X-ray observatories watched the heart of the nearby Andromeda Galaxy, known to astronomers as M31. During that time, Pietsch and his colleagues monitored novae, looking for the X-rays. X-ray Image of Andromeda Galaxy (M31) Chandra X-ray Image of Andromeda Galaxy (M31) They detected that eleven out of the 34 novae that had exploded in the galaxy during the previous year were shining X-rays into space. "X-rays are an important window onto novae. They show the atmosphere of the white dwarf," says Pietsch. White dwarfs are hot stellar corpses left behind after the rest of the star has been ejected into space. A typical white dwarf contains about the mass of the Sun, in a spherical volume little bigger than the Earth. It has a strong pull of gravity and, if it is in orbit around a normal star, can rip gas from it. This material builds up on the surface of the white dwarf until it reaches sufficient density to nuclear detonate. The resultant explosion creates a nova. However, these particular events are not strong enough to destroy the underlying white dwarf. The X-ray emission becomes visible some time after the detonation, when the matter ejected by the nova thins out enough to allow astronomers to peer down to the nuclear burning white dwarf atmosphere beneath. At the end of the process, the X-ray emission stops when the fuel is exhausted. The duration of this X-ray emission traces the amount of material left on the white dwarf after the nova explosion. Optical Image of Andromeda Galaxy (M31) Optical Image of Andromeda Galaxy (M31) A well determined start time of the optical nova outburst and the X-ray turn-on and turn-off times are therefore important benchmarks for replication in computer models of novae. Whilst monitoring the M31 novae, frequently over several months, for the appearance and subsequent disappearance of the X-rays, Pietsch made an important discovery. Some novae start to emit X-rays and then turn them off again within just a few months. "These novae are a new class. They would have been overlooked before," says Pietsch. That's because previous surveys looked only every six months or so. Within that time, the fast X-ray novae could have blinked both on and off. In addition to discovering the short-lived ones, the new survey also confirms that other novae generate X-rays over a much longer time. XMM-Newton detected seven novae that were still shining X-rays into space, up to a decade after the original eruption. The differing lengths of times are thought to reflect the masses of the white dwarfs at the heart of the nova explosion. The fastest evolving novae are thought to be those coming from the most massive white dwarfs. To investigate further, the team have been awarded more XMM-Newton and Chandra observing time. They now plan to monitor M31's novae every ten days for several months, starting in November 2007 to glean more information about these puzzling stellar explosions. Notes for editors: X-ray monitoring of optical novae in M31 from July 2004 to February 2005 by W. Pietsch et al. is published in Astronomy and Astrophysics, 465, 375-392 (2007). For more information: Wolfgang Pietsch wnp@mpe.mpg.de Norbert Schartel Norbert.Schartel@sciops.esa.int

  9. Nuclear reaction rate uncertainties and the 22Ne( p,gamma)23Na reaction: Classical novae and globular clusters

    NASA Astrophysics Data System (ADS)

    Kelly, Keegan John

    The overall theme of this thesis is the advancement of nuclear astrophysics via the analysis of stellar processes in the presence of varying levels of precision in the available nuclear data. With regard to classical novae, the level of mixing that occurs between the outer layers of the white dwarf core and the solar accreted material in oxygen-neon novae is presently undetermined by stellar models, but the nuclear data relevant to these explosive phenomena are fairly precise. This precision allowed for the identification of a series of elemental ratios indicative of the level of mixing occurring in novae. Direct comparisons of the modelled elemental ratios to observations showed that there is likely to be much less of this mixing than was previously assumed. Thus, our understanding of classical novae was altered via the investigation of the nuclear reactions relevant to this phenomenon. However, this level of experimental precision is rare and large nuclear reaction uncertainties can hinder our understanding of certain astrophysical phenomena. For example, it is commonly believed that uncertainties in the 22Ne(p,g)23Na reaction rate at temperatures relevant to thermally-pulsing asymptotic giant branch stars are largely responsible for our inability to explain the observed sodium-oxygen anti-correlation in globular clusters. With this motivation, resonances in the 22Ne(p,g) 23Na reaction at E_{c.m.} = 458, 417, 178, and 151 keV were measured. The direct-capture contribution was also measured at E_{lab} = 425 keV. It was determined that the 22Ne(p,g)23Na reaction rate in the astrophysically relevant temperature range is dominated by the resonances at 178 and 151 keV and that the total reaction rate is greater than the previously assumed rate by a factor of approximately ˜40 at 0.15 GK. This increased reaction rate impacts the expected nucleosynthesis that occurs in these stars and will shed light onto the origin of this anti-correlation as it is incorporated into sophisticated stellar models in the future. In both of these cases the available nuclear data were used to probe stellar processes. This analysis of stellar processes through nuclear reactions is an extremely useful technique that is crucial for the advancement of astrophysics.

  10. Gamma Rays from Classical Novae

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA at the University of Chicago, provided support for a program of theoretical research into the nature of the thermonuclear outbursts of the classical novae and their implications for gamma ray astronomy. In particular, problems which have been addressed include the role of convection in the earliest stages of nova runaway, the influence of opacity on the characteristics of novae, and the nucleosynthesis expected to accompany nova outbursts on massive Oxygen-Neon-Magnesium (ONeMg) white dwarfs. In the following report, I will identify several critical projects on which considerable progress has been achieved and provide brief summaries of the results obtained:(1) two dimensional simulation of nova runaway; (2) nucleosynthesis of nova modeling; and (3) a quasi-analytic study of nucleosynthesis in ONeMg novae.

  11. Pixel CdTe semiconductor module to implement a sub-MeV imaging detector for astrophysics

    NASA Astrophysics Data System (ADS)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Pellegrini, G.; Lozano, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2017-03-01

    Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of nova and supernova explosions in X and gamma rays, with the use of space missions such as INTEGRAL, XMM-Newton and Swift. We have been also involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes, such as GRI, DUAL and e-ASTROGAM. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs). In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm, with a pixel pitch of 1mm x 1mm. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. An ohmic CdTe pixel detector has been characterised by means of 57Co, 133Ba and 22Na sources. Based on this, its spectroscopic performance and the influence of charge sharing is reported here. The pixel study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the pixel size selection.

  12. Fermi-LAT Gamma-Ray Detections of Classical Novae V1369 Centauri 2013 and V5668 Sagittarii 2015

    NASA Astrophysics Data System (ADS)

    Cheung, C. C.; Jean, P.; Shore, S. N.; Stawarz, Ł.; Corbet, R. H. D.; Knödlseder, J.; Starrfield, S.; Wood, D. L.; Desiante, R.; Longo, F.; Pivato, G.; Wood, K. S.

    2016-08-01

    We report the Fermi Large Area Telescope (LAT) detections of high-energy (>100 MeV) γ-ray emission from two recent optically bright classical novae, V1369 Centauri 2013 and V5668 Sagittarii 2015. At early times, Fermi target-of-opportunity observations prompted by their optical discoveries provided enhanced LAT exposure that enabled the detections of γ-ray onsets beginning ˜2 days after their first optical peaks. Significant γ-ray emission was found extending to 39-55 days after their initial LAT detections, with systematically fainter and longer-duration emission compared to previous γ-ray-detected classical novae. These novae were distinguished by multiple bright optical peaks that encompassed the time spans of the observed γ-rays. The γ-ray light curves and spectra of the two novae are presented along with representative hadronic and leptonic models, and comparisons with other novae detected by the LAT are discussed.

  13. Measurement of key resonance states for the P 30 ( p , γ ) S 31 reaction rate, and the production of intermediate-mass elements in nova explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kankainen, A.; Woods, P. J.; Schatz, H.

    2017-06-01

    We report the first experimental constraints on spectroscopic factors and strengths of key resonances in the P-30(p, gamma)S-31 reaction critical for determining the production of intermediate-mass elements up to Ca in nova ejecta. The P-30(d,n)S-31 reaction was studied in inverse kinematics using the GRETINA gamma-ray array to measure the angle-integrated cross-sections of states above the proton threshold. In general, negative parity states are found to be most strongly produced but the absolute values of spectroscopic factors are typically an order of magnitude lower than predicted by the shell-model calculations employing WBP Hamiltonian for the negative-parity states. The results clearly indicatemore » the dominance of a single 3/2(-) resonance state at 196 keV in the region of nova burning T approximate to 0.10-0.17 GM, well within the region of interest for nova nucleosynthesis. Hydrodynamic simulations of nova explosions have been performed to demonstrate the effect on the composition of nova ejecta.« less

  14. Measurement of key resonance states for the 30P (p , γ)31S reaction rate, and the production of intermediate-mass elements in nova explosions

    NASA Astrophysics Data System (ADS)

    Kankainen, A.; Woods, P. J.; Schatz, H.; Poxon-Pearson, T.; Doherty, D. T.; Bader, V.; Baugher, T.; Bazin, D.; Brown, B. A.; Browne, J.; Estrade, A.; Gade, A.; José, J.; Kontos, A.; Langer, C.; Lotay, G.; Meisel, Z.; Montes, F.; Noji, S.; Nunes, F.; Perdikakis, G.; Pereira, J.; Recchia, F.; Redpath, T.; Stroberg, R.; Scott, M.; Seweryniak, D.; Stevens, J.; Weisshaar, D.; Wimmer, K.; Zegers, R.

    2017-06-01

    We report the first experimental constraints on spectroscopic factors and strengths of key resonances in the 30P (p , γ)31S reaction critical for determining the production of intermediate-mass elements up to Ca in nova ejecta. The 30P (d , n)31S reaction was studied in inverse kinematics using the GRETINA γ-ray array to measure the angle-integrated cross-sections of states above the proton threshold. In general, negative-parity states are found to be most strongly produced but the absolute values of spectroscopic factors are typically an order of magnitude lower than predicted by the shell-model calculations employing WBP Hamiltonian for the negative-parity states. The results clearly indicate the dominance of a single 3 /2- resonance state at 196 keV in the region of nova burning T ≈ 0.10- 0.17 GK, well within the region of interest for nova nucleosynthesis. Hydrodynamic simulations of nova explosions have been performed to demonstrate the effect on the composition of nova ejecta.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasliwal, M. M.; Kulkarni, S. R.; Ofek, E. O.

    We present photometric and spectroscopic follow-up of a sample of extragalactic novae discovered by the Palomar 60 inch telescope during a search for 'Fast Transients In Nearest Galaxies' (P60-FasTING). Designed as a fast cadence (1 day) and deep (g < 21 mag) survey, P60-FasTING was particularly sensitive to short-lived and faint optical transients. The P60-FasTING nova sample includes 10 novae in M 31, 6 in M 81, 3 in M 82, 1 in NGC 2403, and 1 in NGC 891. This significantly expands the known sample of extragalactic novae beyond the Local Group, including the first discoveries in a starburstmore » environment. Surprisingly, our photometry shows that this sample is quite inconsistent with the canonical maximum-magnitude-rate-of-decline (MMRD) relation for classical novae. Furthermore, the spectra of the P60-FasTING sample are indistinguishable from classical novae. We suggest that we have uncovered a sub-class of faint and fast classical novae in a new phase space in luminosity-timescale of optical transients. Thus, novae span two orders of magnitude in both luminosity and time. Perhaps the MMRD, which is characterized only by the white dwarf mass, was an oversimplification. Nova physics appears to be characterized by a relatively rich four-dimensional parameter space in white dwarf mass, temperature, composition, and accretion rate.« less

  16. Fermi-LAT gamma ray detections of classical novae V1369 centauri 2013 and V5668 Sagittarii 2015

    DOE PAGES

    Cheung, C. C.; Jean, P.; Shore, S. N.; ...

    2016-07-27

    Here, we report the Fermi Large Area Telescope (LAT) detections of high-energy (>100 MeV) γ-ray emission from two recent optically bright classical novae, V1369 Centauri 2013 and V5668 Sagittarii 2015. Furthermore, at early times, Fermi target-of-opportunity observations prompted by their optical discoveries provided enhanced LAT exposure that enabled the detections of γ-ray onsets beginning ~2 days after their first optical peaks. Significant γ-ray emission was found extending to 39–55 days after their initial LAT detections, with systematically fainter and longer-duration emission compared to previous γ-ray-detected classical novae. These novae were distinguished by multiple bright optical peaks that encompassed the timemore » spans of the observed γ-rays. Finally, we discussed the γ-ray light curves and spectra of the two novae are presented along with representative hadronic and leptonic models, and comparisons with other novae detected by the LAT.« less

  17. A Hubble Space Telescope survey for Novae in M87. II. Snuffing out the maximum magnitude–rate of decline relation for novae as a non-standard candle, and a prediction of the existence of ultrafast novae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shara, Michael M.; Doyle, Trisha; Lauer, Tod R.

    The extensive grid of numerical simulations of nova eruptions first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giant elliptical galaxy M87 as they are inmore » the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10 –7–10 –8 M ⊙, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. As a result, these same models predict the existence of ultrafast novae that display decline times, t 2, to be as short as five hours. We outline a strategy for their future detection.« less

  18. A Hubble Space Telescope Survey for Novae in M87. II. Snuffing out the Maximum Magnitude–Rate of Decline Relation for Novae as a Non-standard Candle, and a Prediction of the Existence of Ultrafast Novae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shara, Michael M.; Doyle, Trisha; Zurek, David

    The extensive grid of numerical simulations of nova eruptions from the work of Yaron et al. first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giantmore » elliptical galaxy M87 as they are in the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10{sup −7}–10{sup −8} M {sub ⊙}, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. These same models predict the existence of ultrafast novae that display decline times, t {sub 2,} to be as short as five hours. We outline a strategy for their future detection.« less

  19. A Hubble Space Telescope survey for Novae in M87. II. Snuffing out the maximum magnitude–rate of decline relation for novae as a non-standard candle, and a prediction of the existence of ultrafast novae

    DOE PAGES

    Shara, Michael M.; Doyle, Trisha; Lauer, Tod R.; ...

    2017-04-20

    The extensive grid of numerical simulations of nova eruptions first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giant elliptical galaxy M87 as they are inmore » the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10 –7–10 –8 M ⊙, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. As a result, these same models predict the existence of ultrafast novae that display decline times, t 2, to be as short as five hours. We outline a strategy for their future detection.« less

  20. The Use of the BAT Instrument on SWIFT for the Detection of Prompt Gamma-Ray Emission from Novae

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Senziani, Fabio; Jean, Pierre; Hernanz, Margarita

    2007-01-01

    Gamma-rays are expected to be emitted during and immediately following a nova explosion due to the annihilation of positrons emitted by freshly produced short-lived radioactive isotopes. The expected gammaray emission is relatively short-lived and as nova explosions are unpredictable, the best chance of detecting the gamma-rays is with n wide field instrument. At the time when the flux is expected to rcach its peak, most of the gamma-ray production is at depths such that the photons suffer several Compton scatterings before escaping, degrading their energy down to the hard X-ray band (10s of keV). SWIFT/BAT is a very wide field coded mask instrument working in the energy band 14-190 keV and so is very well suited to the search for such gamma-rays. A retrospective search is being made in the BAT data for evidence for gamma-ray emission from the direction of novae at around the time of their explosion. So far the only positive detection is of RS Ophiuchi and in this case the emission is probably due to shock heating.

  1. Dust, Abundances, and the Evolution of Novae

    NASA Astrophysics Data System (ADS)

    Woodward, Charles; Bode, Michael; Evans, Anuerin; Geballe, Thomas; Gehrz, Robert; Helton, Andrew; Krautter, Joachim; Lynch, David; Ness, Jan-Uwe; Rudy, Richard; Schwarz, Greg; Shore, Steve; Starrfield, Sumner; Truran, James; Vanlandingham, Karen; Wagner, R. Mark

    2008-03-01

    Evolved stars are the engines of energy production and chemical evolution in our Universe. They deposit radiative and mechanical energy into their environments. They enrich the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CNe) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. Our capstone study of 10 CNe will provide an ensemble of objects, well-populated in CNe parameter space (fast, slow, 'coronal', dusty) for detailed photoionization modeling and analysis. CNe are laboratories in which several poorly-understood astrophysical processes (e.g., mass transfer, thermonuclear runaway, optically thick winds, common envelope evolution, molecule and grain formation, coronal emission) may be observed. With Spitzer's unique wavelength coverage and point-source sensitivity we can: (i) investigate the in situ formation, astromineralogy, and processing of nova dust, (ii) determine the ejecta elemental abundances resulting from thermonuclear runaway, (iii) constrain the correlation of ejecta mass with progenitor type, (iv) measure the bolometric luminosity of the outburst, and (v) characterize the kinematics and structure of the ejected envelopes. Extensive ground-based and space-based (Chandra, Swift, XMM-Newton) programs led by team CoIs will complement Spitzer CNe observations.

  2. A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray-luminous Classical Nova to Date

    NASA Astrophysics Data System (ADS)

    Finzell, Thomas; Chomiuk, Laura; Metzger, Brian D.; Walter, Frederick M.; Linford, Justin D.; Mukai, Koji; Nelson, Thomas; Weston, Jennifer H. S.; Zheng, Yong; Sokoloski, Jennifer L.; Mioduszewski, Amy; Rupen, Michael P.; Dong, Subo; Starrfield, Sumner; Cheung, C. C.; Woodward, Charles E.; Taylor, Gregory B.; Bohlsen, Terry; Buil, Christian; Prieto, Jose; Wagner, R. Mark; Bensby, Thomas; Bond, I. A.; Sumi, T.; Bennett, D. P.; Abe, F.; Koshimoto, N.; Suzuki, D.; Tristram, P. J.; Christie, Grant W.; Natusch, Tim; McCormick, Jennie; Yee, Jennifer; Gould, Andy

    2018-01-01

    It has recently been discovered that some, if not all, classical novae emit GeV gamma-rays during outburst, but the mechanisms involved in the production ofgamma-rays are still not well understood. We present here a comprehensive multiwavelength data set—from radio to X-rays—for the most gamma-ray-luminous classical nova to date, V1324 Sco. Using this data set, we show that V1324 Sco is a canonical dusty Fe II-type nova, with a maximum ejecta velocity of 2600 km s‑1 and an ejecta mass of a few × {10}-5 {M}ȯ . There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324 Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324 Sco with other gamma-ray-detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma-rays in novae.

  3. Discovery of a New Classical Nova Shell Around a Nova-like Cataclysmic Variable

    NASA Astrophysics Data System (ADS)

    Guerrero, Martín A.; Sabin, Laurence; Tovmassian, Gagik; Santamaría, Edgar; Michel, Raul; Ramos-Larios, Gerardo; Alarie, Alexandre; Morisset, Christophe; Bermúdez Bustamante, Luis C.; González, Chantal P.; Wright, Nicholas J.

    2018-04-01

    The morphology and optical spectrum of IPHASX J210204.7+471015, a nebula classified as a possible planetary nebula are, however, strikingly similar to those of AT Cnc, a classical nova shell around a dwarf nova. To investigate its true nature, we have obtained high-resolution narrowband [O III] and [N II] images and deep optical spectra. The nebula shows an arc of [N II]-bright knots notably enriched in nitrogen, while an [O III]-bright bow shock is progressing throughout the ISM. Diagnostic line ratios indicate that shocks are associated with the arc and bow shock. The central star of this nebula has been identified by its photometric variability. Time-resolved photometric and spectroscopic data of this source reveal a period of 4.26 hr, which is attributed to a binary system. The optical spectrum is notably similar to that of RW Sex, a cataclysmic variable star (CV) of the UX UMa nova-like (NL) type. Based on these results, we propose that IPHASX J210204.7 + 471015 is a classical nova shell observed around a CV-NL system in quiescence.

  4. Typical examples of classical novae

    NASA Technical Reports Server (NTRS)

    Hack, Margherita; Selvelli, Pierluigi; Bianchini, Antonio; Duerbeck, Hilmar W.

    1993-01-01

    Because of the very complicated individualistic behavior of each nova, we think it necessary to review the observations of a few well-observed individuals. We have selected a few objects of different speed classes, which have been extensively observed. They are: V1500 Cygni 1975, a very fast nova; V603 Aql 1918, fast nova; CP Pup 1942, fast nova; GK Per 1901, fast nova; V 1668 Cyg 1979, moderately fast nova; FH Ser 1970, slow nova; DQ Her 1934, slow nova; T Aur 1891, slow nova; RR Pic 1925, slow nova; and HR Del 1967, very slow nova.

  5. Typical examples of classical novae

    NASA Astrophysics Data System (ADS)

    Hack, Margherita; Selvelli, Pierluigi; Bianchini, Antonio; Duerbeck, Hilmar W.

    1993-09-01

    Because of the very complicated individualistic behavior of each nova, we think it necessary to review the observations of a few well-observed individuals. We have selected a few objects of different speed classes, which have been extensively observed. They are: V1500 Cygni 1975, a very fast nova; V603 Aql 1918, fast nova; CP Pup 1942, fast nova; GK Per 1901, fast nova; V 1668 Cyg 1979, moderately fast nova; FH Ser 1970, slow nova; DQ Her 1934, slow nova; T Aur 1891, slow nova; RR Pic 1925, slow nova; and HR Del 1967, very slow nova.

  6. β-delayed p-decay of proton-rich nuclei ^23Al and ^31Cl and explosive H-burning in novae

    NASA Astrophysics Data System (ADS)

    Trache, L.; Banu, A.; Hardy, J. C.; McCleskey, M.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Aysto, J.; Jokinen, A.; Saastamoinen, A.; Davinson, T.; Woods, P. J.; Achouri, L.; Roeder, B.

    2008-10-01

    We developed a technique to measure β-delayed proton-decay of proton-rich nuclei produced and separated with MARS at TAMU. In particular, we studied the decay of ^23Al and ^31Cl, both important for understanding explosive H-burning in novae. We have pulsed the beam, implanting the source nuclei moving at about 40 MeV/u in a thin Si strip detector, and then measured β-p and β-γ coincidences simultaneously. The states populated above the proton threshold in ^23Mg and ^31S, respectively, may proton decay. They are resonances in the reaction ^22Na(p,γ)^23Mg (crucial for the depletion of ^22Na in ONe novae) and in ^30P(p,γ)^31S (critical point in explosive H-burning in novae), but the protons emitted have very low energies, starting at about 200 keV, an experimental challenge. The setup and the results are described. The β-decay schemes were established for both nuclei, and IAS identified. The technique has shown a remarkable selectivity to β-delayed charged particle emission and shown to work even at radioactive beam rates of a few pps, for rare isotopes with lifetimes as low as 10s msec.

  7. Cataclysmic variables and related objects

    NASA Technical Reports Server (NTRS)

    Hack, Margherita; Ladous, Constanze; Jordan, Stuart D. (Editor); Thomas, Richard N. (Editor); Goldberg, Leo; Pecker, Jean-Claude

    1993-01-01

    This volume begins with an introductory chapter on general properties of cataclysmic variables. Chapters 2 through 5 of Part 1 are devoted to observations and interpretation of dwarf novae and nova-like stars. Chapters 6 through 10, Part 2, discuss the general observational properties of classical and recurrent novae, the theoretical models, and the characteristics and models for some well observed classical novae and recurrent novae. Chapters 11 through 14 of Part 3 are devoted to an overview of the observations of symbiotic stars, to a description of the various models proposed for explaining the symbiotic phenomenon, and to a discussion of a few selected objects, respectively. Chapter 15 briefly examines the many unsolved problems posed by the observations of the different classes of cataclysmic variables and symbiotic stars.

  8. The Orbital Period of the Classical Nova V458 Vul

    NASA Astrophysics Data System (ADS)

    Goranskij, V. P.; Metlova, N. V.; Barsukova, E. A.; Burenkov, A. N.; Soloviev, V. Ya.

    2008-07-01

    Classical nova V458 Vul (N Vul 2007 No.1) was detected as a supersoft X-ray source (SSS) by the Swift XRT several times in the time range between 2007 October 18 and 2008 June 18 (J. Drake et al., ATel #1246 and #1603). Our V photometry shows the plateau in the light curve continued since January till June 2008. This feature accompanies usually the SSS phases in some classical novae. The fragmentary monitoring during plateau shows night- to-night variability with the amplitudes between 1.2 and 0.4 mag and rapid variability by 0.1 mag in the time scale of an hour.

  9. Olivier Chesneau's Work on Novae

    NASA Astrophysics Data System (ADS)

    Millour, F.; Lagadec, E.

    2015-12-01

    Olivier Chesneau founded a brand new field of observational astrophysics with his attempts to resolve the novae expanding fireball from the very first days of the explosion. With the images he could get, he showed that novae do indeed explode in an aspherical way, leading to a change of paradigm for the physics of these yet-poorly understood catastrophic systems. He also set the stage for a new way of estimating novae distances, by directly measuring the sky-size of the fireball and comparing it with spectroscopic scales, taking into account the tremendous effects of the fireball geometry.

  10. MULTIWAVELENGTH PHOTOMETRY AND HUBBLE SPACE TELESCOPE SPECTROSCOPY OF THE OLD NOVA V842 CENTAURUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sion, Edward M.; Szkody, Paula; Mukadam, Anjum

    2013-08-01

    We present ground-based optical and near infrared photometric observations and Hubble Space Telescope (HST) COS spectroscopic observations of the old nova V842 Cen (Nova Cen 1986). Analysis of the optical light curves reveals a peak at 56.5 {+-} 0.3 s with an amplitude of 8.9 {+-} 4.2 mma, which is consistent with the rotation of a magnetic white dwarf primary in V842 Cen that was detected earlier by Woudt et al., and led to its classification as an intermediate polar. However, our UV lightcurve created from the COS time-tag spectra does not show this periodicity. Our synthetic spectral analysis ofmore » an HST COS spectrum rules out a hot white dwarf photosphere as the source of the FUV flux. The best-fitting model to the COS spectrum is a full optically thick accretion disk with no magnetic truncation, a low disk inclination angle, low accretion rate and a distance less than half the published distance that was determined on the basis of interstellar sodium D line strengths. Truncated accretion disks with truncation radii of 3 R{sub wd} and 5 R{sub wd} yielded unsatisfactory agreement with the COS data. The accretion rate is unexpectedly low for a classical nova only 24 yr after the explosion when the accretion rate is expected to be high and the white dwarf should still be very hot, especially if irradiation of the donor star took place. Our low accretion rate is consistent with those derived from X-ray and ground-based optical data.« less

  11. A Hubble Space Telescope survey for novae in M87.I. light and color curves, spatial distributions, and the nova rate

    DOE PAGES

    Shara, Michael M.; Doyle, Trisha F.; Lauer, Tod R.; ...

    2016-11-08

    The Hubble Space Telescope has imaged the central part of M87 over a 10 week span, leading to the discovery of 32 classical novae (CNe) and nine fainter, likely very slow, and/or symbiotic novae. In this first paper of a series, we present the M87 nova finder charts, and the light and color curves of the novae. We demonstrate that the rise and decline times, and the colors of M87 novae are uncorrelated with each other and with position in the galaxy. The spatial distribution of the M87 novae follows the light of the galaxy, suggesting that novae accreted by M87 during cannibalistic episodes are well-mixed. Conservatively using only the 32 brightest CNe we derive a nova rate for M87:more » $${363}_{-45}^{+33}$$ novae yr –1. We also derive the luminosity-specific classical nova rate for this galaxy, which is $${7.88}_{-2.6}^{+2.3}\\,{\\mathrm{yr}}^{-1}/{10}^{10}\\,{L}_{\\odot }{,}_{K}$$. Both rates are 3–4 times higher than those reported for M87 in the past, and similarly higher than those reported for all other galaxies. As a result, we suggest that most previous ground-based surveys for novae in external galaxies, including M87, miss most faint, fast novae, and almost all slow novae near the centers of galaxies.« less

  12. The supersoft X-ray source in V5116 Sagittarii. I. The high resolution spectra

    NASA Astrophysics Data System (ADS)

    Sala, G.; Ness, J. U.; Hernanz, M.; Greiner, J.

    2017-05-01

    Context. Classical nova explosions occur on the surface of an accreting white dwarf in a binary system. After ejection of a fraction of the envelope and when the expanding shell becomes optically thin to X-rays, a bright source of supersoft X-rays arises, powered by residual H burning on the surface of the white dwarf. While the general picture of the nova event is well established, the details and balance of accretion and ejection processes in classical novae are still full of unknowns. The long-term balance of accreted matter is of special interest for massive accreting white dwarfs, which may be promising supernova Ia progenitor candidates. Nova V5116 Sgr 2005b was observed as a bright and variable supersoft X-ray source by XMM-Newton in March 2007, 610 days after outburst. The light curve showed a periodicity consistent with the orbital period. During one third of the orbit the luminosity was a factor of seven brighter than during the other two thirds of the orbital period. Aims: In the present work we aim to disentangle the X-ray spectral components of V5116 Sgr and their variability. Methods: We present the high resolution spectra obtained with XMM-Newton RGS and Chandra LETGS/HRC-S in March and August 2007. Results: The grating spectrum during the periods of high-flux shows a typical hot white dwarf atmosphere dominated by absorption lines of N VI and N VII. During the low-flux periods, the spectrum is dominated by an atmosphere with the same temperature as during the high-flux period, but with several emission features superimposed. Some of the emission lines are well modeled with an optically thin plasma in collisional equilibrium, rich in C and N, which also explains some excess in the spectra of the high-flux period. No velocity shifts are observed in the absorption lines, with an upper limit set by the spectral resolution of 500 km s-1, consistent with the expectation of a non-expanding atmosphere so late in the evolution of the post-nova. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  13. Photometric and Spectroscopic Analysis of Classical Novae: An Examination of Their Observational Characteristics and Greater Astronomical Impact

    NASA Astrophysics Data System (ADS)

    Helton, Lorren Andrew

    2010-12-01

    Classical novae (CNe) are violent thermonuclear explosions arising on the surface of white dwarfs in binary systems and are contributors to the chemical evolution of the interstellar medium through the production and ejection of copious amounts of metal-rich material. Observations and modeling of CNe eruptions illuminate numerous fundamental processes of astrophysical interest, including non-equilibrium thermonuclear runaway, radiative processes in dynamic nebular environments, binary star interaction, as well as dust condensation and grain growth. Here I summarize key findings from selected Galactic CNe observed as part of a 5 year, panchromatic optical/infrared observing campaign using Spitzer, Gemini, and other ground based optical facilities. In particular, I present detailed analysis of nova V1065 Centauri, including photoionization analysis of the emission lines, which enabled the derivation of abundances in the ejecta, and radiative transport modeling of the dust emission features, which allowed determination of the composition and characteristics of the dust in this system. I present analysis of three novae, V1974 Cygni, V382 Velorum, and V1494 Aquilae, observed from 4.4--15.5 years after outburst, discuss the characteristics of the nebulae at these late times, and estimate the abundances in their ejecta. In the case of V1494 Aql, I also report the first detection of neon. Finally, I present observations of three novae, DZ Crucis, V2361 Cygni, and V2362 Cygni, that exhibited unidentified infrared (UIR) features in their mid-infrared spectra, which exhibited unusual characteristics. I relate these features to other dusty novae in which features with similar characteristics were observed, and discuss possible sources for the UIR carriers. Analysis of the data obtained in the CNe monitoring campaign presented here highlights the need for synoptic observations obtained with broad wavelength coverage. Observations of V1065 Cen, which exhibited spectra rich in metals (e.g O, Ne, Mg, S, Ar, and Fe) produced during the thermonuclear runaway and through dredge up from the surface layers of the underlying WD, yielded robust estimates of WD composition, ejecta mass, and absolute abundances in the ejecta. Dusty novae such as V1065 Cen, V2362 Cyg, and V2361 Cyg, produced a variety of grain types as revealed by emission features characteristic of silicates, hydrogenated amorphous carbon dust, and PAH-like molecules, often in the same system. This data set is exceptional in that observations of many targets commenced immediately after eruption and followed the development for hundreds of days post-outburst providing unique insight into the evolution of conditions within the ejecta including the complete cycle of growth, processing, and dissipation of dust grains.

  14. A Hubble Space Telescope Survey for Novae in M87. I. Light and Color Curves, Spatial Distributions, and the Nova Rate

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Doyle, Trisha F.; Lauer, Tod R.; Zurek, David; Neill, J. D.; Madrid, Juan P.; Mikołajewska, Joanna; Welch, D. L.; Baltz, Edward A.

    2016-11-01

    The Hubble Space Telescope has imaged the central part of M87 over a 10 week span, leading to the discovery of 32 classical novae (CNe) and nine fainter, likely very slow, and/or symbiotic novae. In this first paper of a series, we present the M87 nova finder charts, and the light and color curves of the novae. We demonstrate that the rise and decline times, and the colors of M87 novae are uncorrelated with each other and with position in the galaxy. The spatial distribution of the M87 novae follows the light of the galaxy, suggesting that novae accreted by M87 during cannibalistic episodes are well-mixed. Conservatively using only the 32 brightest CNe we derive a nova rate for M87: {363}-45+33 novae yr‑1. We also derive the luminosity-specific classical nova rate for this galaxy, which is {7.88}-2.6+2.3 {yr}}-1/{10}10 {L}ȯ {,}K. Both rates are 3–4 times higher than those reported for M87 in the past, and similarly higher than those reported for all other galaxies. We suggest that most previous ground-based surveys for novae in external galaxies, including M87, miss most faint, fast novae, and almost all slow novae near the centers of galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  15. First optical candidate for a recovered classical nova in a globular cluster - Nova 1938 in M14

    NASA Technical Reports Server (NTRS)

    Shara, Michael M.; Potter, Michael; Moffat, Anthony F. J.; Hogg, Helen S.; Wehlau, Amelia

    1986-01-01

    U, B, V, R, and H-alpha CCD frames of the field of the nova which appeared in the globular cluster M14 in 1938 have been compared with the nova discovery images. On the basis of positional coincidence, brightness, and blue color, a candidate nova was identified and its right ascension and declination to within 1 arcsec each. Confirmation of the candidate and detailed study of the quiescent nova will probably require Hubble Space Telescope observations.

  16. Modeling SOFIA/FORCAST spectra of the classical nova V5568 Sgr with 3D pyCloudy

    NASA Astrophysics Data System (ADS)

    Calvén, Emilia; Helton, L. Andrew; Sankrit, Ravi

    2017-06-01

    We present our first results modelling Nova V5668 Sgr using the pseudo-3D photoionization code pyCloudy (Morisset 2013). V5668 Sgr is a classical nova of the FeII class (Williams et al. 2015; Seach 2015) showing signs of a bipolar flow (Banerjee et al. 2015). We construct a grid of models, which use hour-glass morphologies and a range of C, N, O and Ne abundances, to fit a suite of spectroscopic data in the near and mid-IR obtained between 82 to 556 days after outburst. The spectra were obtained using the FORCAST mid-IR instrument onboard the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) and the 1.2m near-IR telescope of the Mount Abu Infrared Observatory. Additional photometric data from FORCAST, The STONY BROOK/SMARTS Atlas of (mostly) Southern Novae (Walter et al., 2012) and the American Association of Variable Star Observers (AAVSO) were used to supplement the spectral data to obtain the SED of the nova at different times during its evolution. The work presented here is the initial step towards developing a large database of 1D and 3D models that may be used to derive the elemental abundances and dust properties of classical novae.

  17. On the interpretation and implications of nova abundances: An abundance of riches or an overabundance of enrichments

    NASA Technical Reports Server (NTRS)

    Livio, Mario; Truran, James W.

    1994-01-01

    We reexamine the question of the frequency of occurrence of oxygen-neon-magnesium (ONeMg) degenerate dwarfs in classical nova systems, in light of recent observations which have been interpreted as suggesting that 'neon novae' can be associated with relatively low mass white dwarfs. Determinations of heavy-element concentrations in nova ejecta are reviewed, and possible interpretations of their origin are examined. We conclude that, of the 18 classical novae for which detailed abundance analyses are availble, only two (or possibly three) seem unambiguously to demand the presence of an underlying ONeMg white dwarf: V693 CrA 1981, V1370 Aql 1982, and possibly QU Vul 1984. Three other novae which exhibit significant neon enrichments, relative to their total heavy-element concentrations, are RR Pic 1925, V977, Sco 1989, and LMC 1990 No. 1. This result is entirely consistent with present frequency estimates, and our interpretation of the lower levels of enrichment in other systems explains, in a natural way, the existence of relatively low mass white dwarfs in some of the 'neon' novae.

  18. OGLE ATLAS OF CLASSICAL NOVAE. II. MAGELLANIC CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mróz, P.; Udalski, A.; Poleski, R.

    2016-01-15

    The population of classical novae in the Magellanic Clouds was poorly known because of a lack of systematic studies. There were some suggestions that nova rates per unit mass in the Magellanic Clouds were higher than in any other galaxy. Here, we present an analysis of data collected over 16 years by the OGLE survey with the aim of characterizing the nova population in the Clouds. We found 20 eruptions of novae, half of which are new discoveries. We robustly measure nova rates of 2.4 ± 0.8 yr{sup −1} (LMC) and 0.9 ± 0.4 yr{sup −1} (SMC) and confirm that the K-band luminosity-specific novamore » rates in both Clouds are 2–3 times higher than in other galaxies. This can be explained by the star formation history in the Magellanic Clouds, specifically the re-ignition of the star formation rate a few Gyr ago. We also present the discovery of the intriguing system OGLE-MBR133.25.1160, which mimics recurrent nova eruptions.« less

  19. Classical novae and recurrent novae: General properties

    NASA Technical Reports Server (NTRS)

    Hack, Margherita; Selvelli, Pierluigi; Duerbeck, Hilmar W.

    1993-01-01

    We describe the observable characteristics of classical novae and recurrent novae obtained by different techniques (photometry, spectroscopy, and imaging) in all the available spectral ranges. We consider the three stages in the life of a nova: quiescence (pre- and post-outburst), outburst, final decline and nebular phase. We describe the photometric properties during the quiescent phase. We describe the photometric properties during outburst, the classification according the rate of decline (magnitudes per day), which permits us to define very fast, fast, intermediate, slow, and very slow novae and the correlation between luminosity and speed class. We report the scanty data on the spectra of the few known prenovae and those on the spectra of old novae and those of dwarf novae and nova-like, which, however, are almost undistinguishable. We describe the typical spectra appearing from the beginning of the outburst, just before maximum, up to the nebular phase and the correlation between spectral type at maximum, expansional velocity, and speed class of the nova. We report the existing infrared observations, which permit us to explain some of the characteristics of the outburst light curve, and give evidence of the formation of a dust shell in slow and intermediate novae (with the important exception of the very slow nova HR Del 1967) and its absence or quasi-absence in fast novae. The ultraviolet and X-ray observations are described. The X ray observations of novae, mainly from the two satellites EINSTEIN and EXOSAT, are reported. Observations of the final decline and of the envelopes appearing several months after outburst are also reported.

  20. Photometric Investigation of Novae T Pyx, BT Mon and V574 Pup at Quiescence by using the 2.4-m Thai National Telescope

    NASA Astrophysics Data System (ADS)

    Thipboon, Ritthichai; Kaewrakmuk, Metichai; Surina, Farung; Sanguansak, Nuanwan

    2017-09-01

    Recurrent novae (RNe) are novae with multiple recorded outbursts powered by a thermonuclear runaway. The outburst occurs on the surface of the white dwarf which accompanies with a late type main-sequence or giant secondary star transferring material onto the white dwarf primary star. They resemble classical novae (CNe) outbursts but only RNe has more than one recorded outbursts. RNe play an important role as one of the suspected progenitor systems of Type Ia supernovae (SNe) which are used as primary distance indicators in cosmology. Thus, it is important to investigate the outburst type of CNe and RNe and finally ascertain the population of objects that might ultimately be candidates for Type Ia SNe explosions. The proposal that RNe occupy a region separated from CNe in an outburst amplitude versus speed class diagram was adopted. Since the low amplitude results from the existence of an evolved secondary and/or high mass transfer rate in the quiescent system, RNe candidates should accordingly have low amplitude. We selected 3 preliminary targets including T Pyx, BT Mon and V574 Pup. Their amplitudes are not that low but the lowest amplitude that can be observed with Thai National Telescope (TNT). We obtained their magnitudes at quiescence using ULTRASPEC camera on the 2.4-m TNT. The positions of three targets on optical and near-infrared color-magnitude diagrams suggest that all three should have main-sequence secondary stars. This is true for T Pyx, whose secondary star has been confirmed its spectroscopy to be a main-sequence star, but not yet confirmed for BT Mon and V574 Pup.

  1. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Jose, Jordi

    2016-01-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  2. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    José, Jordi

    2015-12-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  3. SALT high-resolution spectroscopy of nova PNV J15384000-4744500

    NASA Astrophysics Data System (ADS)

    Aydi, E.; Buckley, D. A. H.; Mohamed, S.; Whitelock, P. A.

    2018-06-01

    We report on high-resolution spectroscopy of PNV J15384000-4744500 which was reported as a possible nova by Rob Kaufman (Bright, Victoria, Australia; CBAT follow-up: http://www.cbat.eps.harvard.edu/unconf/followups/J15384000-4744500.html) and confirmed as a classical nova by F. Walter (ATel #11681).

  4. The Evolution of NR TrA (Nova TrA 2008) from 2008 through 2017

    NASA Astrophysics Data System (ADS)

    Walter, Frederick M.; Burwitz, Vadim; Kafka, Stella

    2018-06-01

    The classical nova NR TrA was discovered as an O-type optically-thick classical nova. There is no evidence that it formed dust. Within four years the envelope became sufficiently thin to reveal an eclipsing accretion disk-dominated system with orbitally-modulated permitted lines of C IV, N V, and O VI. XMM observations reveal a non-eclipsing soft X-ray source and a deeply-eclipsing UV continuum. We will present the first ten years of optical spectral evolution of this system accompanied by ten years of BVRIJHK photometry, with an eye to deciphering the current nature of the system.

  5. ORIGINS OF ABSORPTION SYSTEMS OF CLASSICAL NOVA V2659 CYG (NOVA CYG 2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, A.; Kawakita, H.; Shinnaka, Y.

    2016-10-10

    We report on high-dispersion spectroscopy results of a classical nova V2659 Cyg (Nova Cyg 2014) that are taken 33.05 days after the V -band maximum. The spectrum shows two distinct blueshifted absorption systems originating from H i, Fe ii, Ca ii, etc. The radial velocities of the absorption systems are −620 km s{sup −1}, and −1100 to −1500 km s{sup −1}. The higher velocity component corresponds to the P-Cygni absorption features frequently observed in low-resolution spectra. Much larger numbers of absorption lines are identified at the lower velocity. These mainly originate from neutral or singly ionized Fe-peak elements (Fe i,more » Ti ii, Cr ii, etc.). Based on the results of our spectroscopic observations, we discuss the structure of the ejecta of V2659 Cyg. We conclude that the low- and high-velocity components are likely to be produced by the outflow wind and the ballistic nova ejecta, respectively.« less

  6. A UNIVERSAL DECLINE LAW OF CLASSICAL NOVAE. IV. V838 HER (1991): A VERY MASSIVE WHITE DWARF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Mariko; Hachisu, Izumi; Cassatella, Angelo, E-mail: mariko@educ.cc.keio.ac.j, E-mail: hachisu@ea.c.u-tokyo.ac.j, E-mail: cassatella@fis.uniroma3.i

    2009-10-20

    We present a unified model of optical and ultraviolet (UV) light curves for one of the fastest classical novae, V838 Herculis (Nova Herculis 1991), and estimate its white dwarf (WD) mass. Based on an optically thick wind theory of nova outbursts, we model the optical light curves with free-free emission and the UV 1455 A light curves with blackbody emission. Our models of 1.35 +- 0.02 M {sub sun} WD simultaneously reproduce the optical and UV 1455 A observations. The mass lost by the wind is DELTAM {sub wind} approx 2 x 10{sup -6} M {sub sun}. We provide newmore » determinations of the reddening, E(B - V) = 0.53 +- 0.05, and of the distance, 2.7 +- 0.5 kpc.« less

  7. A LIGHT CURVE ANALYSIS OF CLASSICAL NOVAE: FREE-FREE EMISSION VERSUS PHOTOSPHERIC EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachisu, Izumi; Kato, Mariko, E-mail: hachisu@ea.c.u-tokyo.ac.jp, E-mail: mariko@educ.cc.keio.ac.jp

    2015-01-10

    We analyzed light curves of seven relatively slower novae, PW Vul, V705 Cas, GQ Mus, RR Pic, V5558 Sgr, HR Del, and V723 Cas, based on an optically thick wind theory of nova outbursts. For fast novae, free-free emission dominates the spectrum in optical bands rather than photospheric emission, and nova optical light curves follow the universal decline law. Faster novae blow stronger winds with larger mass-loss rates. Because the brightness of free-free emission depends directly on the wind mass-loss rate, faster novae show brighter optical maxima. In slower novae, however, we must take into account photospheric emission because of theirmore » lower wind mass-loss rates. We calculated three model light curves of free-free emission, photospheric emission, and their sum for various white dwarf (WD) masses with various chemical compositions of their envelopes and fitted reasonably with observational data of optical, near-IR (NIR), and UV bands. From light curve fittings of the seven novae, we estimated their absolute magnitudes, distances, and WD masses. In PW Vul and V705 Cas, free-free emission still dominates the spectrum in the optical and NIR bands. In the very slow novae, RR Pic, V5558 Sgr, HR Del, and V723 Cas, photospheric emission dominates the spectrum rather than free-free emission, which makes a deviation from the universal decline law. We have confirmed that the absolute brightnesses of our model light curves are consistent with the distance moduli of four classical novae with known distances (GK Per, V603 Aql, RR Pic, and DQ Her). We also discussed the reason why the very slow novae are about ∼1 mag brighter than the proposed maximum magnitude versus rate of decline relation.« less

  8. A deep optical imaging study of the nebular remnants of classical novae

    NASA Astrophysics Data System (ADS)

    Slavin, A. J.; O'Brien, T. J.; Dunlop, J. S.

    1995-09-01

    An optical imaging study of old nova remnants has revealed previously unobserved features in the shells of 13 classical novae - DQ Her, FH Ser, HR Del, GK Per, V1500 Cyg, T Aur, V533 Her, NQ Vul, V476 Cyg, DK Lac, LV Vul, RW UMi and V450 Cyg. These data indicate a possible correlation between nova speed class and the ellipticity of the resulting remnants - those of faster novae tend to comprise randomly distributed clumps of ejecta superposed on spherically symmetric diffuse material, whilst slower novae produce more structured ellipsoidal remnants with at least one and sometimes several rings of enhanced emission. By measuring the extent of the resolved shells and combining this information with previously published ejection speeds, we use expansion parallax to estimate distances for the 13 novae. Whilst we are able to deduce new information about every nova, it is notable that these observations include the first detections of shells around the old novae V450 Cyg and NQ Vul, and that velocity-resolved images of FH Ser and DQ Her have enabled us to estimate their orbital inclinations. Our observations of DQ Her also show that the main ellipsoidal shell is constricted by three rings and surrounded by a faint halo; this halo contains long tails extending outwards from bright knots, perhaps indicating that during or after outburst a fast inner wind has broken through the fractured principal shell.

  9. Gamma-ray emission concurrent with the nova in the symbiotic binary V407 Cygni.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Carrigan, S; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Corbel, S; Corbet, R; DeCesar, M E; den Hartog, P R; Dermer, C D; de Palma, F; Digel, S W; Donato, D; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Fortin, P; Frailis, M; Fuhrmann, L; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Harding, A K; Hayashida, M; Hays, E; Healey, S E; Hill, A B; Horan, D; Hughes, R E; Itoh, R; Jean, P; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Garde, M Llena; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nestoras, I; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ripken, J; Ritz, S; Romani, R W; Roth, M; Sadrozinski, H F-W; Sander, A; Parkinson, P M Saz; Scargle, J D; Schinzel, F K; Sgrò, C; Shaw, M S; Siskind, E J; Smith, D A; Smith, P D; Sokolovsky, K V; Spandre, G; Spinelli, P; Stawarz, Ł; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Tanaka, Y; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wolff, M T; Wood, K S; Yang, Z; Ylinen, T; Ziegler, M; Maehara, H; Nishiyama, K; Kabashima, F; Bach, U; Bower, G C; Falcone, A; Forster, J R; Henden, A; Kawabata, K S; Koubsky, P; Mukai, K; Nelson, T; Oates, S R; Sakimoto, K; Sasada, M; Shenavrin, V I; Shore, S N; Skinner, G K; Sokoloski, J; Stroh, M; Tatarnikov, A M; Uemura, M; Wahlgren, G M; Yamanaka, M

    2010-08-13

    Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here, we report the Fermi Large Area Telescope detection of variable gamma-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particles can be accelerated effectively to produce pi(0) decay gamma-rays from proton-proton interactions. Emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachisu, Izumi; Kato, Mariko, E-mail: hachisu@ea.c.u-tokyo.ac.jp, E-mail: mariko@educ.cc.keio.ac.jp

    We identified a general course of classical nova outbursts in the B – V versus U – B color-color diagram. It is reported that novae show spectra similar to those of A-F supergiants near optical light maximum. However, they do not follow the supergiant sequence in the color-color diagram, neither the blackbody nor the main-sequence sequence. Instead, we found that novae evolve along a new sequence in the pre-maximum and near-maximum phases, which we call 'the nova-giant sequence'. This sequence is parallel to but Δ(U – B) ≈ –0.2 mag bluer than the supergiant sequence. This is because the massmore » of a nova envelope is much (∼10{sup –4} times) less than that of a normal supergiant. After optical maximum, its color quickly evolves back blueward along the same nova-giant sequence and reaches the point of free-free emission (B – V = –0.03, U – B = –0.97), which coincides with the intersection of the blackbody sequence and the nova-giant sequence, and remains there for a while. Then the color evolves leftward (blueward in B – V but almost constant in U – B), owing mainly to the development of strong emission lines. This is the general course of nova outbursts in the color-color diagram, which was deduced from eight well-observed novae in various speed classes. For a nova with unknown extinction, we can determine a reliable value of the color excess by matching the observed track of the target nova with this general course. This is a new and convenient method for obtaining the color excesses of classical novae. Using this method, we redetermined the color excesses of 20 well-observed novae. The obtained color excesses are in reasonable agreement with the previous results, which in turn support the idea of our general track of nova outbursts. Additionally, we estimated the absolute V magnitudes of about 30 novae using a method for time-stretching nova light curves to analyze the distance-reddening relations of the novae.« less

  11. One-Proton Breakup of 18F and the 17O(p,γ)18F Reaction in Classical Novae

    NASA Astrophysics Data System (ADS)

    Isherwood, Bryan; Banu, A.; E491 Collaboration

    2013-10-01

    Classical nova studies are of considerable interest for understanding the chemical evolution of the Galaxy. They have been proposed as the most significant source for the nucleosynthesis of the isotopes 13C, 15N, and 17O in the Universe. Novae are also likely to synthesize the short-lived radioisotope 18F (T1/2 = 110 min), which is expected to be the most important contributor to the observed emission of 511 keV gamma radiation by space-based γ-ray telescopes. This emission is produced by electron-positron annihilation following the beta + decay of radioactive nuclei. A detection of these gamma rays could significantly constrain the nova simulation models. 18F nucleosynthesis in classical novae strongly depends on the thermonuclear rate of the 17O(p,γ)18F reaction, which is part of the CNO cycle. This work presents preliminary results toward determination of the 17O(p,γ)18F reaction cross section, which was measured by the indirect method of one-proton nuclear breakup at intermediate energies. The experiment was carried out at GANIL using a beam of 18F at 40 MeV/u impinging on a carbon target. Longitudinal momentum distributions of the 17O breakup fragments were measured in coincidence with γ-rays emitted by 17O residues.

  12. Nucleosynthesis and the nova outburst

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Truran, J.W.; Wiescher, M.; Sparks, W.M.

    1995-01-01

    A nova outburst is the consequence of the accretion of hydrogen rich material onto a white dwarf and it can be considered as the largest hydrogen bomb in the Universe. The fuel is supplied by a secondary star in a close binary system while the strong degeneracy of the massive white dwarf acts to contain the gas during the early stages of the explosion. The containment allows the temperature in the nuclear burning region to exceed 10(sup 8)K under all circumstances. As a result a major fraction of CNO nuclei in the envelope are transformed into (beta)(sup +)-unstable nuclei. We discuss the effects of these nuclei on the evolution. Recent observational studies have shown that there are two compositional classes of novae; one which occurs on carbon-oxygen white dwarfs, and a second class that occurs on oxygen-neon-magnesium white dwarfs. In this review we will concentrate on the latter explosions since they produce the most interesting nucleosynthesis. We report both on the results of new observational determinations of nova abundances and, in addition, new hydrodynamic calculations that examine the consequences of the accretion process on 1.0M(sub (circle dot)), 1.25M(sub (circle dot)), and 1.35M(sub (circle dot)) white dwarfs. Our results show that novae can produce (sup 22)Na, (sup 26)Al, and other intermediate mass nuclei in interesting amounts. We will present the results of new calculations, done with updated nuclear reaction rates and opacities, which exhibit quantitative differences with respect to published work.

  13. A survey of IRAS data on 41 classical novae

    NASA Astrophysics Data System (ADS)

    Harrison, T. E.; Gehrz, R. D.

    1988-09-01

    The IRAS database has been searched for detections of 41 classical novae using coadditions of survey scans; 15 were detected. IRAS temporal observations of novae in outburst are discussed. The observed long-wavelength infrared distributions of DQ Her, and possibly HR Del, can be explained by emission from small (a of about 0.1 microns) dust grains heated by the central object. An alternative explanation for the energy distributions of DQ Her and HR Del is emission from fine-structure lines. FH Ser and LW Ser display energy distributions that have color temperatures much too hot to be due to heating of dust by the central source in any plausible scenario. Line emission is probably the best explanation of their observed energy distributions. The novae NQ Vul and LV Vul have energy distributions that may be contaminated by emission from galactic cirrus. The unusual object PL 1547.3-5612 exhibits an energy distribution that does not resemble those of planetary nebulae or other novae detected in this sample. An IRAS low-resolution spectrum of RR Tel shows the 10-micron silicate emission feature.

  14. ASAS-SN Discovery of a Possible Galactic Nova ASASSN-18ix

    NASA Astrophysics Data System (ADS)

    Stanek, K. Z.; Kochanek, C. S.; Shields, J. V.; Thompson, T. A.; Chomiuk, L.; Strader, J.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Dong, Subo; Stritzinger, M.

    2018-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from multiple ASAS-SN telescopes, we detect a new bright transient source, possibly a classical nova, but it might also be a young, large amplitude outburst of a cataclysmic variable Object RA (J2000) DEC (J2000) Gal l (deg) Gal b (deg) Disc.

  15. Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-08-13

    Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here in this paper, we report the Fermi Large Area Telescope detection of variable γ-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particlesmore » can be accelerated effectively to produce π 0 decay γ-rays from proton-proton interactions. Lastly, emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.« less

  16. Nova Delphini 2013: Backyard Analysis of a Classical Nova

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2014-01-01

    On August 14, 2013, Nova Delphini was discovered by Koichi Itagaki. This nova erupted to a maximum brightness of magnitude 4.4 by August 16, 2013. The extraordinary brightness of this event has allowed many amateur astronomers to have the chance to study it. More than 750 amateur astronomers have contributed to the AAVSO photometry database of Nova Delphini.1 The amount and quality of spectroscopic data gathered is unprecedented as well, as over 700 individual spectra have been collected so far in the ARAS database.2 A nova is a class of variable star that undergoes a cataclysmic eruption, which can be observed through a sudden increase in brightness that declines over a series of months or years. At the center of a nova is an accreting white dwarf star which is collecting hydrogen from its surroundings. The accreting mass causes a nuclear reaction on the surface of the white dwarf and as the pressure increases the reaction becomes super-critical and a thermonuclear runaway is ignited causing the brightness increase as well as triggering the ejection of a shell of material form the star. The stages of a classical nova outburst are outlined along with techniques available to amateur astronomers for study of these phenomena. The author’s equipment and software setup are detailed. Results obtained using a low resolution grating, Schmidt-cassegrain telescope and CCD camera that were acquired while Nova Delphini was in the “fireball stage” 3 and subsequent “iron curtain phase”3 are compared and discussed. Results obtained using a high resolution spectroscope, Schmidt-cassegrain telescope and CCD camera that were acquired during the “lifting of the iron curtain phase”3 are also presented. References 1. Turner, Rebecca. “AAVSO - Nova Del 2013” 20 Aug 2013 Web. 8 Sep 2013 2. Tessier, Francois. “ARAS Spectral Database - Nova-Del-2013” 22 Sep 2013 Web. 22 Sep 2013 3. Shore, Steven N. “Spectroscopy of Novae - A User’s Manual” arXiv:1211.3176 [astro-ph.SR] 14 Nov 2012

  17. SALT confirmation of PNV J17244011-2421463 as a classical nova

    NASA Astrophysics Data System (ADS)

    Aydi, E.; Buckley, D. A. H.; Mohamed, S.; Whitelock, P. A.

    2018-02-01

    We report on high-resolution spectroscopy of PNV J17244011-2421463 which was reported as a possible nova by T. Kojima, Gunma-ken, Japan (CBAT follow-up: http://www.cbat.eps.harvard.edu/unconf/followups/J17244011-2421463.html).

  18. HUBBLE SEES CHANGES IN GAS SHELL AROUND NOVA CYGNI 1992

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The European Space Agency's ESA Faint Object Camera utilizing the corrective optics provided by NASA's COSTAR (Corrective Optics Space Telescope Axial Replacement), has given astronomers their best look yet at a rapidly ballooning bubble of gas blasted off a star. The shell surrounds Nova Cygni 1992, which erupted on February 19, 1992. A nova is a thermonuclear explosion that occurs on the surface of a white dwarf star in a double star system. The new HST image [right] reveals an elliptical and slightly lumpy ring-like structure. The ring is the edge of a bubble of hot gas blasted into space by the nova. The shell is so thin that the FOC does not resolve its true thickness, even with HST's restored vision. An HST image taken on May 31 1993, [left] 467 days after the explosion, provided the first glimpse of the ring and a mysterious bar-like structure. But the image interpretation was severely hampered by HST's optical aberration, that scattered light from the central star which contaminated the ring's image. A comparison of the pre and post COSTAR/FOC images reveals that the ring has evolved in the seven months that have elapsed between the two observations. The ring has expanded from a diameter of approximately 74 to 96 billion miles. The bar-like structure seen in the earlier HST image has disappear. These changes might confirm theories that the bar was produced by a dense layer of gas thrown off in the orbital plane of the double star system. The gas has subsequently grown more tenuous and so the bar has faded. The ring has also grown noticeably more oblong since the earlier image. This suggests the hot gas is escaping more rapidly above and below the system's orbital plane. As the gas continues escaping the ring should grow increasingly egg-shaped in the coming years. HST's newly improved sensitivity and high resolution provides a unique opportunity to understand the novae by resolving the effects of the explosion long before they can be resolved in ground based telescopes. Nova Cygni is 10,430 light years away (as measured directly from the ring's diameter), and located in the summer constellation Cygnus the Swan. Credit: F. Paresce, R. Jedrzejewski (STScI) NASA/ESA PHOTO RELEASE NO.: STScI-PR94-06

  19. FUSE SPECTROSCOPIC ANALYSIS OF THE SLOWEST SYMBIOTIC NOVA AG PEG DURING QUIESCENCE

    NASA Astrophysics Data System (ADS)

    Sion, Edward Michael; Godon, Patrick; Katynski, Marcus; Mikolajewska, Joanna

    2018-01-01

    We present a far ultraviolet spectroscopic analysis of the slowest known symbiotic nova AG Peg (MIII giant + hot white dwarf; P_orb = 818.4 days) which underwent a nova explosion in 1850 followed by a very slow decline that did not end until ~ 1996, marking the beginning of queiscence. Eight years of quiescence ended in June 2015, when AG Peg exhibited a Z And-type outburst with an optical amplitude of ~ 3 magnitudes. We have carried out accretion disk and WD photosphere synthetic spectral modeling of a FUSE spectrum (Froning et al. 2014) obtained on June 5.618, 2003 during the quiescence intervai ~ 12 years before the 2015 outburst. The spectrum is heavily affected by ISM absorption as well as strong broad emission lines. We de-reddened the FUSE fluxes with E(B-V) = 0.10 which is the maximum galactic reddening in the direction of AG Peg and took the distance of 800 pc (Kenyon et al. 1993) but used a range of white dwarf masses, surface temperatures and disk inclination angles. Our analysis also incororates archival HST FOS spectra obtained in 1996 at the onset of quiescence, 147 years after the 1850 nova explosion. The results of our analysis are presented and implications are discussed.This work is supported in part by NASA ADP grant NNX17AF36G to Villanova University.

  20. Nova Ophiuchus 2017 as a Probe of 13C Nucleosynthesis and Carbon Monoxide Formation and Destruction in Classical Novae

    NASA Astrophysics Data System (ADS)

    Joshi, Vishal; Banerjee, D. P. K.; Srivastava, Mudit

    2017-12-01

    We present a series of near-infrared spectra of Nova Ophiuchus 2017 in the K band that record the evolution of the first overtone CO emission in unprecedented detail. Starting from 11.7 days after maximum, when CO is first detected at great strength, the spectra track the CO emission to +25.6 days by which time it is found to have rapidly declined in strength by almost a factor of ∼35. The cause for the rapid destruction of CO is examined in the framework of different mechanisms for CO destruction, namely, an increase in photoionizating flux, chemical pathways of destruction, or destruction by energetic nonthermal particles created in shocks. From LTE modeling of the CO emission, the 12C/13C ratio is determined to be 1.6 ± 0.3. This is consistent with the expected value of this parameter from nucleosynthesis theory for a nova eruption occuring on a low mass (∼ 0.6 {M}ȯ ) carbon–oxygen core white dwarf. The present 12C/13C estimate constitutes one of the most secure estimates of this ratio in a classical nova.

  1. SOFIA: A Promising Resource for Future Nova Studies

    NASA Astrophysics Data System (ADS)

    Helton, L. A.; Sofia Science Team

    2014-12-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5-m telescope carried on board a Boeing 747-SP aircraft. Optimized for observations from infrared through sub-mm wavelengths, SOFIA observes from an altitude of 37,000 - 45,000 feet, above 99% of the atmospheric water vapor. The Observatory's complement of instruments possesses a broad range of capabilities, many of which are especially well suited for observations of classical novae, recurrent novae, and other cataclysmic variables. Here we present a selection of the instruments available on board SOFIA that may prove to be very useful for future novae studies.

  2. Cannibal Stars Cause Giant Explosions in Fornax Cluster Galaxy

    NASA Astrophysics Data System (ADS)

    2000-07-01

    The VLT Observes Most Remote Novae Ever Seen About 70 million years ago, when dinosaurs were still walking on the Earth, a series of violent thermo-nuclear explosions took place in a distant galaxy. After a very long travel across vast reaches of virtually empty space (70 million light-years, or ~ 7 x 10 20 km), dim light carrying the message about these events has finally reached us. It was recorded by the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile) during an observing programme by a group of Italian astronomers [1]. The subsequent analysis has shown that the observers witnessed the most distant nova outbursts ever seen . They were caused by "stellar cannibalism" in binary systems in which one relatively cool star loses matter to its smaller and hotter companion. An instability results that leads to the ignition of a "hydrogen bomb" on the surface of the receiving star. The "Stella Nova" Phenomenon A stellar outburst of the type now observed with the VLT is referred to as a "Stella Nova" ("new star" in Latin), or just "Nova" . Novae caused by explosions in binary stars in our home galaxy, the Milky Way system, are relatively frequent and about every second or third year one of them is bright enough to be easily visible with the naked eye. For our ancestors, who had no means to see the faint binary star before the explosion, it looked as if a new star had been born in the sky, hence the name. The most common nova explosion occurs in a binary stellar system in which a white dwarf (a very dense and hot, compact star with a mass comparable to that of the Sun and a size like the Earth) accretes hydrogen from a cooler and larger red dwarf star [2]. As the hydrogen collects on the surface of the white dwarf star, it becomes progressively hotter until a thermonuclear explosion is ignited at the bottom of the collected gas. A huge amount of energy is released and causes a million-fold increase in the brightness of the binary system within a few hours. After reaching maximum light within some days or weeks, it begins to fade as the hydrogen supply is exhausted and blown into space. The processed material is ejected at high speeds, up to ~1000 km/sec, and may later be visible as an expanding shell of emitting gas. Altogether, the tremendous flash of light involves the release of about 10 45 ergs in a few weeks, or about as much energy as our Sun produces in 10,000 years. Supernovae explosions that completely destroy heavier stars at the end of their lives are even more powerful. However, in contrast to supernovae and despite the colossal energy production, the progenitor of a nova is not destroyed during the explosion. Some time after an outburst, transfer of hydrogen from the companion star begins anew, and the process repeats itself with explosions taking place about once every 100,000 years. The nova star will finally die of "old age" when the cool companion has been completely cannibalized. Novae as Distance Indicators Due to their exceptional luminosity, novae can be used as powerful beacons that allow relative distances to different types of galaxies to be measured. The measurement is based on the assumption that novae of the same type are intrinsically equally bright, together with the physical law that states that an object's observed brightness decreases with the square of the distance to the observer. Thus, if we observe that a nova in a certain galaxy is one million times fainter than a nearby one, we know that it must be one thousand times more distant. In addition, observations of novae in other galaxies shed light on the history of formation of their stars. Despite their scientific importance, surveys of novae in distant, rich clusters of galaxies have not been very popular among astronomers. Major reasons are probably the inherent observational difficulties and the comparatively low rates of discovery. In the past, with 4-m class telescopes, tens of hours of monitoring of several galaxies have indeed been necessary to detect a few distant novae [3]. VLT observations of NGC 1316 in the Fornax Cluster ESO PR Photo 18a/00 ESO PR Photo 18a/00 [Preview - JPEG: 400 x 448 pix - 28k] [Normal - JPEG: 800 x 895 pix - 136k] [Full-Res - JPEG: 1941 x 2172 pix - 904k] Caption : Colour composite photo of the central area of NGC 1316 , a giant elliptical galaxy in the Fornax cluster of galaxies. Many dark dust clouds and lanes are visible. Some of the star-like objects in the field are globular clusters of stars that belong to the galaxy. It is based on CCD exposures, obtained with the 8.2-m VLT/ANTU telescope and the FORS-1 multi-mode instrument through B (blue), V (green-yellow) and I (here rendered as red) filters, respectively. The "pyramids" above and below the bright centre of the galaxy and the vertical lines at some of the brighter stars are caused by overexposure ("CCD bleeding"). The field measures 6.8 x 6.8 arcmin 2 , with 0.2 arcsec/pixel. The image quality of this composite is about 0.9 arcsec. North is up and East is left. NGC 1316 is a giant "dusty" galaxy ( PR Photo 18a/00 ), located in the Fornax cluster seen in the southern constellation of that name ("The Oven"). This galaxy is of special interest in connection with current attempts to establish an accurate distance scale in the Universe. In 1980 and 1981, NGC 1316 was the host of two supernovae of type Ia , a class of object that is widely used as a "cosmological standard candle" to determine the distance to very distant galaxies, cf. ESO PR 21/98. A precise measurement of the distance to NGC 1316 may therefore provide an independent calibration of the intrinsic brightness of these supernovae. The new observations were performed during 8 nights distributed over the period from January 9 to 19, 2000. They were made in service mode at the 8.2-m VLT/ANTU telescope with the FORS-1 multi-mode instrument, using a 2k x 2k CCD camera with 0.2 arcsec pixels and a field of 6.8 x 6.8 arcmin 2. The exposures lasted 20 min and were carried out with three optical filters (B, V and I). The most distant Novae observed so far ESO PR Photo 18b/00 ESO PR Photo 18b/00 [Preview - JPEG: 400 x 452 pix - 83k] [Normal - JPEG: 800 x 904 pix - 224k] ESO PR Photo 18c/00 ESO PR Photo 18c/00 [Preview - JPEG: 400 x 458 pix - 54k] [Normal - JPEG: 800 x 916 pix - 272k] Caption : Images of two of the novae in NGC 1316 that were discovered during the observational programme described in this Press Release. Both composites show the blue images (B-filter) obtained on January 9 (upper left), 12 (upper right), 15 (lower left) and 19 (lower right), 2000, respectively. The decline of the brightness of the objects is obvious. An analysis of the images that were obtained in blue light (B-filter) resulted in the detection of four novae. They were identified because of the typical change of brightness over the observation period, cf. PR Photos 18b-c/00 , as well as their measured colours. Although the time-consuming reduction of the data and the subsequent astrophysical interpretation is still in progress, the astronomers are already now very satisfied with the outcome. In particular, no less than four novae were detected in a single giant galaxy within only 11 days . This implies a rate of approximately 100 novae/year in NGC 1316, or about 3 times larger than the rate estimated for the Milky Way galaxy. This may (at least partly) be due to the fact that NGC 1316 is of a different type and contains more stars than our own galaxy. The novae in NGC 1316 are quite faint, of about magnitude 24 and decreasing towards 25-26 during the period of observation. This corresponds to nearly 100 million times fainter than what can be seen with the naked eye. The corresponding distance to NGC 1316 is found to be about 70 million light-years . Moreover, the discovery of four novae in one galaxy in the Fornax cluster was possible with only 3 hours of observing time per filter. This clearly shows that the new generation of 8-m class telescopes like the VLT, equipped with the new and large detectors, is able to greatly improve the efficiency of this type of astronomical investigations (by a factor of 10 or more) , as compared to previous searches with 4-m telescopes. The road is now open for exhaustive searches for novae in remote galaxies, with all the resulting benefits, also for the accurate determination of the extragalactic distance scale. Notes [1]: The group consists of Massimo Della Valle (Osservatorio Astrofisico di Arcetri, Firenze, Italy), Roberto Gilmozzi and Rodolfo Viezzer (both ESO). [2]: A graphical illustration of the nova phenomenon can be found at this website. [3]: For example, in 1987, Canadian astronomers Christopher Pritchet and Sidney van den Bergh , in an heroic tour de force with the 4-m Canada-France-Hawaii telescope, found 9 novae after 56 hours of monitoring of 3 giant elliptical galaxies in the Virgo cluster of galaxies.

  3. Direct measurement of astrophysically important resonances in 38K(p ,γ )39Ca

    NASA Astrophysics Data System (ADS)

    Christian, G.; Lotay, G.; Ruiz, C.; Akers, C.; Burke, D. S.; Catford, W. N.; Chen, A. A.; Connolly, D.; Davids, B.; Fallis, J.; Hager, U.; Hutcheon, D.; Mahl, A.; Rojas, A.; Sun, X.

    2018-02-01

    Background: Classical novae are cataclysmic nuclear explosions occurring when a white dwarf in a binary system accretes hydrogen-rich material from its companion star. Novae are partially responsible for the galactic synthesis of a variety of nuclides up to the calcium (A ˜40 ) region of the nuclear chart. Although the structure and dynamics of novae are thought to be relatively well understood, the predicted abundances of elements near the nucleosynthesis endpoint, in particular Ar and Ca, appear to sometimes be in disagreement with astronomical observations of the spectra of nova ejecta. Purpose: One possible source of the discrepancies between model predictions and astronomical observations is nuclear reaction data. Most reaction rates near the nova endpoint are estimated only from statistical model calculations, which carry large uncertainties. For certain key reactions, these rate uncertainties translate into large uncertainties in nucleosynthesis predictions. In particular, the 38K(" close=")p ,γ )">p ,γ 39Ca reaction has been identified as having a significant influence on Ar, K, and Ca production. In order to constrain the rate of this reaction, we have performed a direct measurement of the strengths of three candidate ℓ =0 resonances within the Gamow window for nova burning, at 386 ±10 keV, 515 ±10 keV, and 689 ±10 keV. Method: The experiment was performed in inverse kinematics using a beam of unstable 38K impinged on a windowless hydrogen gas target. The 39Ca recoils and prompt γ rays from 38K, 39Ca reactions were detected in coincidence using a recoil mass separator and a bismuth-germanate scintillator array, respectively. Results: For the 689 keV resonance, we observed a clear recoil-γ coincidence signal and extracted resonance strength and energy values of 120-30+50(stat.)-60 +20(sys .) meV and 679-1+2(stat .) ±1 (sys .) keV , respectively. We also performed a singles analysis of the recoil data alone, extracting a resonance strength of 120 ±20 (stat .)±15 (sys .) meV, consistent with the coincidence result. For the 386 keV and 515 keV resonances, we extract 90 % confidence level upper limits of 2.54 meV and 18.4 meV, respectively. Conclusions: We have established a new recommended 38K(p ,γ ) 39Ca rate based on experimental information, which reduces overall uncertainties near the peak temperatures of nova burning by a factor of ˜250 . Using the rate obtained in this work in model calculations of the hottest oxygen-neon novae reduces overall uncertainties on Ar, K, and Ca synthesis to factors of 15 or less in all cases.

  4. Waiting Points in Nova and X-ray Burst Nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunayama, Tomomi; Smith, Michael Scott; Lingerfelt, Eric J

    2008-01-01

    In nova and X-ray burst nucleosynthesis, waiting points are nuclei in the reaction path which interrupt the nuclear flow towards heavier nuclei, typically because of a weak proton capture reaction and a long beta+ lifetime. Waiting points can influence the energy generation and final abundances synthesized in these explosions. We have constructed a systematic, quantitative set of criteria to identify rp-process waiting points, and use them to search for waiting points in post-processing simulations of novae and X-ray bursts. These criteria have been incorporated into the Computational Infrastructure for Nuclear Astrophysics, online at nucastrodata.org, to enable anyone to run customizedmore » searches for waiting points.« less

  5. Waiting Points in Nova and X-ray burst Nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunayama, Tomomi; Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37831-0117; Smith, Michael S.

    2008-05-21

    In nova and X-ray burst nucleosynthesis, waiting points are nuclei in the reaction path which delay the nuclear flow towards heavier nuclei, typically because of a weak proton capture reaction and a long {beta}{sup +} lifetime. Waiting points can influence the energy generation and final abundances synthesized in these explosions. We have constructed a systematic, quantitative set of criteria to identify rp-process waiting points, and use them to search for waiting points in post-processing simulations of novae and X-ray bursts. These criteria have been incorporated into the Computational Infrastructure for Nuclear Astrophysics, online at nucastrodata.org, to enable anyone to runmore » customized searches for waiting points.« less

  6. Development of a β-delayed charged particle detector for studying novae and x-ray bursts

    NASA Astrophysics Data System (ADS)

    Friedman, Moshe; Budner, Tamas; Cortesi, Marco; Harris, Madison; Janasik, Molly; Perez-Loureiro, David; Pollaco, Emmanuel; Roosa, Michael; Tiwari, Pranjal; Wrede, Chris; Yurkon, John

    2017-09-01

    Classical novae and type I x-ray bursts are energetic and common thermonuclear astrophysical explosions. However, our ability to understand these events is limited by the lack of comprehensive nuclear data on proton-rich nuclei. Specifically, constraining the 30P(p , γ) 31S and 15O(α , γ) 19N e reaction rates has been found to be crucial to the understanding of nucleosynthesis and energy generation in these events. As direct measurements of these reactions are not technically feasible at the present time, a gas-filled detector of β-delayed charged particles has been designed and built to measure the 31Cl(βp) 30P and 20Mg(βpα) 15O decay sequences at NSCL, providing an indirect probe of resonances in the radiative capture reactions above. The detector is coupled with the Segmented Germanium Array (SeGA) to enable coincidence γ detection, as an additional probe of interaction details and for normalization purposes. The first phase of the detector functions as a proton calorimeter and it is currently being tested and optimized. We will describe the technical status of Phase I, including the concept, simulations, design, assembly, and first offline measurements using radioactive sources. This work is supported by NSF Grant No. PHY-1102511 and DOE Award No. DE-SC0016052.

  7. Bipolar gas outflow from the nova V458 Vul

    NASA Astrophysics Data System (ADS)

    Goranskij, V. P.; Barsukova, E. A.; Fatkhullin, T. A.

    2010-06-01

    Classical nova V458 Vul (N Vul 2007 No.1) was detected as a supersoft X-ray source by the Swift XRT (ATel#1246, #1603). This star is interesting with its spectral class change: features of Fe II class nova completely changed by features of He/N class in the SSS phase (T.N. Tarasova, IBVS No.5807). We performed spectral observations of V458 Vul with the Russian 6-m telescope BTA and spectral camera SCORPIO on 2010 June 9.84 UT.

  8. Optical Spectroscopy of Nova Ophiuchi 2015 (PNV J17291350-1846120)

    NASA Astrophysics Data System (ADS)

    Danilet, A. B.; Holoien, T. W.-S.; Wagner, R. M.; Woodward, C. E.; Starrfield, S.; Wilber, A.; Walter, F.; Shore, S.

    2015-04-01

    Following the discovery by Y. Sakurai (Ibaraki-ken, Japan) on 2015 Mar. 29.766 UT of a new stellar object of magnitude 12.2 in Ophiuchus (S. Nakano, CBET 4086) and its subsequent confirmation as a likely He/N classical nova (K Ayani, CBET 4086), we obtained a spectrum (range: 398-685 nm; resolution 0.3 nm) of Nova Oph 2015 on 2015 April 1.459 UT with the 2.4 m Hiltner telescope (+OSMOS) of the MDM Observatory on Kitt Peak.

  9. Outbursts in Symbiotic Binaries

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Keyes, Charles

    2005-01-01

    A major question for symbiotic stars concerns the nature and cause of their outbursts. A small subset of symbiotics, the slow novae are fairly well established as thermonuclear events that last on the order of decades. The several symbiotic recurrent novae, which are much shorter and last on the order of months, are also thought to be thermonuclear runaways. Yet the majority of symbiotics are neither slow novae nor recurrent novae. These are the so-called classical symbiotics, many of which show outbursts whose cause is not well understood. In some cases, jets are produced in association with an outburst, therefore an investigation into the causes of outbursts will yield important insights into the production of collimated outflows. To investigate the cause and nature of classical symbiotic outbursts, we initiated a program of multiwavelength observations of these events. In FUSE Cycle 2, we obtained six observational epochs of the 2000-2002 classic symbiotic outburst in the first target of our campaign - class prototype, Z Andromedae. That program was part of a coordinated multi-wavelength Target-of-Opportunity (TOO) campaign with FUSE, XMM, Chandra, MERLIN, the VLA, and ground-based spectroscopic and high time-resolution photometric observations. Our campaign proved the concept, utility, and need for coordinated multi-wavelength observations in order to make progress in understanding the nature of the outburst mechanisms in symbiotic stars. Indeed, the FUSE data were the cornerstone of this project

  10. Thermonuclear runaways in nova outbursts. 2: Effect of strong, instantaneous, local fluctuations

    NASA Technical Reports Server (NTRS)

    Shankar, Anurag; Arnett, David

    1994-01-01

    In an attempt to understand the manner in which nova outbursts are initiated on the surface of a white dwarf, we investigate the effects fluctuations have on the evolution of a thermonuclear runaway. Fluctuations in temperature density, or the composition of material in the burning shell may arise due to the chaotic flow field generated by convection when it occurs, or by the accretion process itself. With the aid of two-dimensional reactive flow calculations, we consider cases where a strong fluctutation in temperature arises during the early, quiescent accretion phase or during the later, more dynamic, explosion phase. In all cases we find that an instantaneous, local temperature fluctuation causes the affected material to become Rayleigh-Taylor unstable. The rapid rise and subsequent expansion of matter immediately cools the hot blob, which prevents the lateral propagation of burning. This suggests that local temperature fluctuations do not play a significant role in directly initiating the runaway, especially during the early stages. However, they may provide an efficient mechanism of mixing core material into the envelope (thereby pre-enriching the fuel for subsequent episodes of explosive hydrogen burning) and of mixing substantial amounts of the radioactive nucleus N-13 into the surface layers, making novae potential gamma-ray sources. This suggests that it is the global not the local, evolution of the core-envelope interface to high temperatures which dominates the development of the runaway. We also present a possible new scenario for the initiation of nova outbursts based on our results.

  11. Models of classical and recurrent novae

    NASA Technical Reports Server (NTRS)

    Friedjung, Michael; Duerbeck, Hilmar W.

    1993-01-01

    The behavior of novae may be divided roughly into two separate stages: quiescence and outburst. However, at closer inspection, both stages cannot be separated. It should be attempted to explain features in both stages with a similar model. Various simple models to explain the observed light and spectral observations during post optical maximum activity are conceivable. In instantaneous ejection models, all or nearly all material is ejected in a time that is short compared with the duration of post optical maximum activity. Instantaneous ejection type 1 models are those where the ejected material is in a fairly thin shell, the thickness of which remains small. In the instantaneous ejection type 2 model ('Hubble Flow'), a thick envelope is ejected instantaneously. This envelope remains thick as different parts have different velocities. Continued ejection models emphasize the importance of winds from the nova after optical maximum. Ejection is supposed to occur from one of the components of the central binary, and one can imagine a general swelling of one of the components, so that something resembling a normal, almost stationary, stellar photosphere is observed after optical maximum. The observed characteristics of recurrent novae in general are rather different from those of classical novae, thus, models for these stars need not be the same.

  12. Photometric long-term variations and superhump occurrence in the Classical Nova RR Pictoris

    NASA Astrophysics Data System (ADS)

    Fuentes-Morales, I.; Vogt, N.; Tappert, C.; Schmidtobreick, L.; Hambsch, F.-J.; Vučković, M.

    2018-02-01

    We present an analysis of all available time-resolved photometry from the literature and new light curves obtained in 2013-2014 for the old nova RR Pictoris. The well-known hump light curve phased with the orbital period reveals significant variations over the last 42 yr in shape, amplitude and other details which apparently are caused by long-term variations in the disc structure. In addition, we found evidence for the presence of superhumps in 2007, with the same period ( ˜ 9 per cent longer than the orbital period), as reported earlier by other authors from observations in 2005. Possibly, superhumps arise quickly in RR Pic, but are sporadic events, because in all the other observing runs analysed no significant superhump signal was detected. We also determined an actual version of the Stolz-Schoembs relation between superhump period and orbital period, analysing separately dwarf novae, classical novae and nova-like stars, and conclude that this relation is of general validity for all superhumpers among the cataclysmic variables (CVs), in spite of small but significant differences among the sub-types mentioned above. We emphasize the importance of such a study in context with the still open question of the interrelation between the different sub-classes of CVs, crucial for our understanding of the long-term CV evolution.

  13. Collimation and Asymmetry of the Hot Blast Wave from the Recurrent Nova V745 Sco

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Delgado, Laura; Laming, J. Martin; Starrfield, Sumner; Kashyap, Vinay; Orlando, Salvatore; Page, Kim L.; Hernanz, M.; Ness, J.-U.; Gehrz, R. D.; van Rossum, Daan; Woodward, Charles E.

    2016-07-01

    The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 107 K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s-1, an FWHM of 1200 ± 30 km s-1, and an average net blueshift of 165 ± 10 km s-1. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 1043 erg and confirms an ejected mass of approximately 10-7 M ⊙. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.

  14. The Early Spectral Evolution of the Classical Nova ASASSN-15th in M33

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark; Neric, Marko; Darnley, Matt J.; Williams, Steven; Starrfield, Sumner; Woodward, Charles E.; Prieto, Jose Luis

    2016-06-01

    During the course of the All Sky Automated Survey for SuperNovae (ASAS-SN) a new transient source designated ASASSN-15th was identified on images of the nearby galaxy M33 obtained with the 14 cm Brutus telescope in Haleakala, Hawaii on 2015 Dec 1.4 UT at V ~ 16.5 mag. Given the location of the transient in M33 and its apparent V magnitude at discovery, the implied absolute visual magnitude was about -8.5 mag suggesting that the transient was a new classical nova outburst in M33. Optical spectroscopy obtained by us on 2015 Dec 2.3 showed broad emission lines of Balmer, Fe II, and Na I D with P Cygni-type line profiles superposed on a blue continuum. The spectrum was consistent with a Fe II-type classical nova in M33 discovered early in the outburst. Subsequent spectra obtained by us on 2015 Dec 10.9 UT showed significant evolution since our first spectrum in that the deep P Cygni-type line profiles seen earlier were now extremely shallow or had almost completely disappeared with the emission component growing in strength. Additional emission lines from O I, Si II, and possibly He I were also present. We obtained optical spectroscopy of ASASSN-15th on 17 epochs between 2015 Dec 1 and 2016 Feb 11 UT with the 2.4 m Hiltner telescope (+OSMOS) of the MDM Observatory, the 2 m fully robotic Liverpool Telescope (+SPRAT), and the 2 x 8.4 m Large Binocular Telescope (+MODS). We will present our spectroscopy and discuss the early evolution of ASASSN-15th in the context of Galactic Fe II-class novae.

  15. Beryllium detection in the very fast nova ASASSN-16kt (V407 Lupi)

    NASA Astrophysics Data System (ADS)

    Izzo, L.; Molaro, P.; Bonifacio, P.; Della Valle, M.; Cano, Z.; de Ugarte Postigo, A.; Prieto, J. L.; Thöne, C.; Vanzi, L.; Zapata, A.; Fernandez, D.

    2018-02-01

    We present high-resolution spectroscopic observations of the fast nova ASASSN-16kt (V407 Lup). A close inspection of spectra obtained at early stages has revealed the presence of low-ionization lines, and among the others we have identified the presence of the ionised 7Be doublet in a region relatively free from possible contaminants. After studying their intensities, we have inferred that ASASSN-16kt has produced (5.9 - 7.7)× 10-9 M⊙ of 7Be. The identification of bright Ne lines may suggest that the nova progenitor is a massive (1.2 M⊙) oxygen-neon white dwarf. The high outburst frequency of oxygen-neon novae implies that they likely produce an amount of Be similar, if not larger, to that produced by carbon-oxygen novae, then confirming that classical novae are among the main factories of lithium in the Galaxy.

  16. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer Helen Seng; E-Nova Project

    2017-01-01

    In this dissertation, I use radio observations with the Karl G. Jansky Very Large Array (VLA) to reveal that colliding flows within the ejecta from nova explosions can lead to shocks that accelerate particles and produce radio synchrotron emission. In both novae V1723 Aql and V5589 Sgr, radio emission within the first one to two months deviated strongly from the classic thermal model for radio emission from novae. Three years of radio observations of V1723 Aql show that multiple outflows from the system collided to create non-thermal shocks with a brightness temperature of >106 K. After these shocks faded, the radio light curve became roughly consistent with an expanding thermal shell. However, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months. In the case of nova V5589 Sgr, I show that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. These findings have important implications for understanding how normal novae generate GeV gamma-rays.Additionally, I present VLA observations of the symbiotic star CH Cyg and two small surveys of symbiotic binaries. Radio observations of CH Cyg tie the ejection of a collimated jet to a change of state in the accretion disk, strengthening the link between bipolar outflows from accreting white dwarfs and other types of accreting compact objects. Next, I use a survey of eleven accretion-driven symbiotic binaries to determine that the radio brightness of a symbiotic system could potentially be used as an indicator of whether it is powered predominantly by shell burning on the surface of the white dwarf or by accretion. This survey also produces the first radio detections of seven of the target systems. In the second survey of seventeen symbiotic binaries, I spatially resolve extended radio emission in several systems for the first time. The results from these surveys provide some support for the model of radio emission where the red giant wind is photoionized by the white dwarf, and suggest that there may be a greater population of radio faint, accretion driven symbiotic systems.

  17. Bottlenecks and Waiting Points in Nucleosynthesis in X-ray bursts and Novae

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Sunayama, Tomomi; Hix, W. Raphael; Lingerfelt, Eric J.; Nesaraja, Caroline D.

    2010-08-01

    To better understand the energy generation and element synthesis occurring in novae and X-ray bursts, we give quantitative definitions to the concepts of ``bottlenecks'' and ``waiting points'' in the thermonuclear reaction flow. We use these criteria to search for bottlenecks and waiting points in post-processing element synthesis explosion simulations. We have incorporated these into the Computational Infrastructure for Nuclear Astrophysics, a suite of nuclear astrophysics codes available online at nucastrodata.org, so that anyone may perform custom searches for bottlenecks and waiting points.

  18. Bottlenecks and Waiting Points in Nucleosynthesis in X-ray bursts and Novae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Michael S.; Hix, W. Raphael; Nesaraja, Caroline D.

    2010-08-12

    To better understand the energy generation and element synthesis occurring in novae and X-ray bursts, we give quantitative definitions to the concepts of ''bottlenecks'' and ''waiting points'' in the thermonuclear reaction flow. We use these criteria to search for bottlenecks and waiting points in post-processing element synthesis explosion simulations. We have incorporated these into the Computational Infrastructure for Nuclear Astrophysics, a suite of nuclear astrophysics codes available online at nucastrodata.org, so that anyone may perform custom searches for bottlenecks and waiting points.

  19. "Special Case" Stellar Blast Teaching Astronomers New Lessons About Cosmic Explosions

    NASA Astrophysics Data System (ADS)

    2006-07-01

    A powerful thermonuclear explosion on a dense white-dwarf star last February has given astronomers their best look yet at the early stages of such explosions, called novae, and also is giving them tantalizing new clues about the workings of bigger explosions, called supernovae, that are used to measure the Universe. RS Ophiuchi Expansion RS Ophiuchi Expansion CREDIT: Rupen, Mioduszewski & Sokoloski, NRAO/AUI/NSF (Click on image for full-sized image and detailed caption) Using the National Science Foundation's Very Long Baseline Array (VLBA) and other telescopes, "We have seen structure in the blast earlier than in any other stellar explosion," said Tim O'Brien of the University of Manchester's Jodrell Bank Observatory in the U.K. "We see evidence that the explosion may be ejecting material in jets, contrary to theoretical models that assumed a spherical shell of ejected material," O'Brien added. The explosion occurred in a star system called RS Ophiuchi, in the constellation Ophiuchus. RS Ophiuchi consists of a dense white dwarf star with a red giant companion whose prolific stellar wind dumps material onto the surface of the white dwarf. When enough of this material has accumulated, theorists say, a gigantic thermonuclear explosion, similar to a hydrogen bomb but much larger, occurs. Systems such as RS Ophiuchi may eventually produce a vastly more powerful explosion -- a supernova -- when the white dwarf accumulates enough mass to cause it to collapse and explode violently. Because such supernova explosions (called Type 1a supernovae by astronomers) all are triggered as the white dwarf reaches the same mass, they are thought to be identical in their intrinsic brightness. This makes them extremely valuable as "standard candles" for measuring distances in the Universe. "We think the white dwarf in RS Ophiuchi is about as massive as a white dwarf can get, and so is close to the point when it will become a supernova," said Jennifer Sokoloski, of the Harvard- Smithsonian Center for Astrophysics. "If astronomers use such supernovae to measure the Universe, it's important to fully understand how these systems evolve prior to the explosion," she added. RS Ophiuchi is a "recurrent" nova that experienced such blasts in 1898, 1933, 1958, 1967, and 1985 prior to this year's event. Sokoloski also pointed out that RS Ophiuchi is "a very special type of system," in which the nova explosions occur inside a gaseous nebula created by the stellar wind coming from the red giant companion to the white dwarf. "This means that we can track the outward-moving blast wave from the explosion by observing X-rays produced as the blast plows through this nebula," said Sokoloski, who led a team using the Rossi X-Ray Timing Explorer (RXTE) satellite to do so. "One natural way to produce what we observe is with an explosion that was not spherical," she added. Another surprise came when the radio waves coming from RS Ophiuchi indicated that a strong magnetic field is present in the material ejected by the explosion. "This is the first case we've seen that showed signs of such a magnetic field in a recurrent nova," said Michael Rupen who, with Amy Mioduszewski, both of the National Radio Astronomy Observatory, and Sokoloski, did another study of the system using the VLBA. Rupen pointed out the importance of observing the object with both X-ray and radio telescopes. "What we could infer from the X-ray data, we could image with the radio telescopes," he said. All the researchers agree that their studies show that the explosion is more complex than scientists previously thought such blasts to be. "It's a jet-like explosion, probably shaped by the geometry of the binary-star system at the center," said O'Brien. Rupen added that RS Ophiuchi showed the "earliest detection ever of such a jet. In fact, we could actually tell -- within a couple of days -- when the jet turned on." The new information is valuable for understanding not just nova explosions but other stellar blasts, the scientists believe. "The physics is analogous to the physics of supernova explosions, so what we're learning from this object can be applied to supernovae and possibly to stellar explosions in general," Sokoloski said. In addition, she said, "in the early days of this explosion, we saw changes in the blast wave that it would take hundreds of years to see in a supernova explosion." The teams led by O'Brien and Sokoloski reported their findings in the July 20 edition of the scientific journal Nature. Rupen and Mioduszewski are submitting their results to the Astrophysical Journal Letters. Working with O'Brien were Mike Bode of Liverpool John Moores University in the U.K., Richard Porcas of the Max Planck Institute for Radioastronomy in Germany, Tom Muxlow of Jodrell Bank Observatory, Stewart Eyres of the University of Central Lancashire in the U.K., Rob Beswick, Simon Garrington and Richard Davis, all of Jodrell Bank, and Nye Evans of Keele University in the U.K. Working with Sokoloski were Gerardo Luna of the Harvard Smithsonian Center for Astrophysics, Koji Mukai of NASA's Goddard Space Flight Center and Scott Kenyon of the Harvard-Smithsonian Center for Astrophysics. In addition to the VLBA, O'Brien's group used the NSF's Very Large Array (VLA), the Multi-Element Radio-Linked Interferometer Network (MERLIN) in the U.K., and the European VLBI Network (EVN). The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  20. Ultraviolet photometry of Nova Cygni 1992 obtained with the high speed photometer

    NASA Technical Reports Server (NTRS)

    Taylor, M.; Bless, R. C.; Oegelman, H.; Elliot, J. L.; Gallagher, J. S.; Nelson, M. J.; Percival, J. W.; Robinson, E. L.; Van Citters, G. W.

    1994-01-01

    In this Letter we present the first high-speed ultraviolet photometry of an active, classical nova, Nova Cygni 1992. The 45 minute observation shows significant evidence for power at frequencies that correspond to periods of about 565 and 900 s. Each of these periods has an amplitude of about 3 mmag. Since this data set is short, we cannot establish the nature of the detected variability and so, we discuss possible physical mechanisms ranging from short-lived phenomena to stable periodic modulations that could result in the observed variations.

  1. Polarimetry and spectroscopy of the "oxygen flaring" DQ Herculis-like nova: V5668 Sagittarii (2015)

    NASA Astrophysics Data System (ADS)

    Harvey, E. J.; Redman, M. P.; Darnley, M. J.; Williams, S. C.; Berdyugin, A.; Piirola, V. E.; Fitzgerald, K. P.; O'Connor, E. G. P.

    2018-03-01

    Context. Classical novae are eruptions on the surface of a white dwarf in a binary system. The material ejected from the white dwarf surface generally forms an axisymmetric shell of gas and dust around the system. The three-dimensional structure of these shells is difficult to untangle when viewed on the plane of the sky. In this work a geometrical model is developed to explain new observations of the 2015 nova V5668 Sagittarii. Aim. We aim to better understand the early evolution of classical nova shells in the context of the relationship between polarisation, photometry, and spectroscopy in the optical regime. To understand the ionisation structure in terms of the nova shell morphology and estimate the emission distribution directly following the light curve's dust-dip. Methods: High-cadence optical polarimetry and spectroscopy observations of a nova are presented. The ejecta is modelled in terms of morpho-kinematics and photoionisation structure. Results: Initially observational results are presented, including broadband polarimetry and spectroscopy of V5668 Sgr nova during eruption. Variability over these observations provides clues towards the evolving structure of the nova shell. The position angle of the shell is derived from polarimetry, which is attributed to scattering from small dust grains. Shocks in the nova outflow are suggested in the photometry and the effect of these on the nova shell are illustrated with various physical diagnostics. Changes in density and temperature as the super soft source phase of the nova began are discussed. Gas densities are found to be of the order of 109 cm-3 for the nova in its auroral phase. The blackbody temperature of the central stellar system is estimated to be around 2.2 × 105 K at times coincident with the super soft source turn-on. It was found that the blend around 4640 Å commonly called "nitrogen flaring" is more naturally explained as flaring of the O II multiplet (V1) from 4638-4696 Å, i.e. "oxygen flaring". Conclusions: V5668 Sgr (2015) was a remarkable nova of the DQ Her class. Changes in absolute polarimetric and spectroscopic multi-epoch observations lead to interpretations of physical characteristics of the nova's evolving outflow. The high densities that were found early-on combined with knowledge of the system's behaviour at other wavelengths and polarimetric measurements strongly suggest that the visual "cusps" are due to radiative shocks between fast and slow ejecta that destroy and create dust seed nuclei cyclically.

  2. COLLIMATION AND ASYMMETRY OF THE HOT BLAST WAVE FROM THE RECURRENT NOVA V745 Sco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, Jeremy J.; Kashyap, Vinay; Delgado, Laura

    The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 10{sup 7} K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s{sup 1}, an FWHM of 1200 ± 30 km s{sup 1}, and an average net blueshift of 165more » ± 10 km s{sup 1}. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 10{sup 43} erg and confirms an ejected mass of approximately 10{sup 7} M {sub ⊙}. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.« less

  3. The Expanding Bipolar Shell of the Helium Nova V445 Puppis

    NASA Astrophysics Data System (ADS)

    Woudt, P. A.; Steeghs, D.; Karovska, M.; Warner, B.; Groot, P. J.; Nelemans, G.; Roelofs, G. H. A.; Marsh, T. R.; Nagayama, T.; Smits, D. P.; O'Brien, T.

    2009-11-01

    From multi-epoch adaptive optics imaging and integral field unit spectroscopy, we report the discovery of an expanding and narrowly confined bipolar shell surrounding the helium nova V445 Puppis (Nova Puppis 2000). An equatorial dust disc obscures the nova remnant, and the outflow is characterized by a large polar outflow velocity of 6720 ± 650 km s-1 and knots moving at even larger velocities of 8450 ± 570 km s-1. We derive an expansion parallax distance of 8.2 ± 0.5 kpc and deduce a pre-outburst luminosity of the underlying binary of log L/L sun = 4.34 ± 0.36. The derived luminosity suggests that V445 Puppis probably contains a massive white dwarf accreting at high rate from a helium star companion making it part of a population of binary stars that potentially lead to supernova Ia explosions due to accumulation of helium-rich material on the surface of a massive white dwarf.

  4. A Hubble Space Telescope survey for novae in M87 - III. Are novae good standard candles 15 d after maximum brightness?

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Doyle, Trisha F.; Pagnotta, Ashley; Garland, James T.; Lauer, Tod R.; Zurek, David; Baltz, Edward A.; Goerl, Ariel; Kovetz, Attay; Machac, Tamara; Madrid, Juan P.; Mikołajewska, Joanna; Neill, J. D.; Prialnik, Dina; Welch, D. L.; Yaron, Ofer

    2018-02-01

    Ten weeks of daily imaging of the giant elliptical galaxy M87 with the Hubble Space Telescope (HST) has yielded 41 nova light curves of unprecedented quality for extragalactic cataclysmic variables. We have recently used these light curves to demonstrate that the observational scatter in the so-called maximum-magnitude rate of decline (MMRD) relation for classical novae is so large as to render the nova-MMRD useless as a standard candle. Here, we demonstrate that a modified Buscombe-de Vaucouleurs hypothesis, namely that novae with decline times t2 > 10 d converge to nearly the same absolute magnitude about two weeks after maximum light in a giant elliptical galaxy, is supported by our M87 nova data. For 13 novae with daily sampled light curves, well determined times of maximum light in both the F606W and F814W filters, and decline times t2 > 10 d we find that M87 novae display M606W,15 = -6.37 ± 0.46 and M814W,15 = -6.11 ± 0.43. If very fast novae with decline times t2 < 10 d are excluded, the distances to novae in elliptical galaxies with stellar binary populations similar to those of M87 should be determinable with 1σ accuracies of ± 20 per cent with the above calibrations.

  5. Chandra Discovers Eruption and Pulsation in Nova Outburst

    NASA Astrophysics Data System (ADS)

    2001-09-01

    NASA's Chandra X-ray Observatory has discovered a giant outburst of X-rays and unusual cyclical pulsing from a white dwarf star that is closely orbiting another star -- the first time either of these phenomena has been seen in X-rays. The observations are helping scientists better understand the thermonuclear explosions that occur in certain binary star systems. The observations of Nova Aquilae were reported today at the "Two Years of Science with Chandra" symposium by an international team led by Sumner Starrfield of Arizona State University. "We found two important results in our Chandra observations. The first was an underlying pulsation every 40 minutes in the X-ray brightness, which we believe comes from the cyclical expansion and contraction of the outer layers of the white dwarf," said Starrfield. "The other result was an enormous flare of X-rays that lasted for 15 minutes. Nothing like this has been seen before from a nova, and we don't know how to explain it." Novas occur on a white dwarf (a star which used up all its nuclear fuel and shrank to roughly the size of the Earth) that is orbiting a normal size star. Strong gravity tides drag hydrogen gas off the normal star and onto the white dwarf, where it can take more than 100,000 years for enough hydrogen to accumulate to ignite nuclear fusion reactions. Gradually, these reactions intensify until a cosmic-sized hydrogen bomb blast results. The outer layers of the white dwarf are then blown away, producing a nova outburst that can be observed for a period of months to years as the material expands into space. "Chandra has allowed us to see deep into the gases ejected by this giant explosion and extract unparalleled information on the evolution of the white dwarf whose surface is exploding," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics. The brightening of Nova Aquilae was first detected by optical astronomers in December 1999. "Although this star is at a distance of more than 6,000 light years, it could be seen with the naked eye for about a month, during which it was about 100,000 times brighter than our own Sun," said R. Mark Wagner of the University of Arizona. Nova Aquilae Chandra observed the nova, so-called because early astronomers believed they heralded the appearance of a new star, four times from April 2000 through October 2000. "Our first Chandra observations showed that the expanding gas around Nova Aquilae was hot and nearly opaque," said Joachim Krautter of the State Observatory in Heidelberg, Germany. "When we looked months later with Chandra, the expanding gases cleared enough for us to see through them to the underlying star on which the explosion occurred." The latter Chandra X-ray data revealed the cyclical changes in brightness are due to the white dwarf expanding and shrinking over a 40-minute period. They also showed that the temperature on the surface of the white dwarf was 300,000 degrees Celsius, making Nova Aquilae one of the hottest stars ever observed to undergo such pulsations. "The observations told us that thermonuclear fusion reactions were still occurring on the surface layers of the white dwarf - more than eight months after the explosion first began!" said Robert Gehrz of the University of Minnesota. Other members of the team are Howard Bond (Space Telescope Science Institute), Yousaf Butt (Harvard-Smithsonian Center for Astrophysics), Koji Mukai (Goddard Space Flight Center), Peter Hauschildt (University of Georgia), Margarida Hernanz (Institute for Space Studies, Catalonia, Spain), Marina Orio (University of Wisconsin and the Torino Observatory in Italy), and Charles Woodward (University of Minnesota). Chandra observed Nova Aquilae for a total of 10 hours with the High Resolution Camera (HRC) and the Advanced CCD Imaging Spectrometer (ACIS). The HRC was built for NASA by the Smithsonian Astrophysical Observatory, Cambridge, MA. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  6. On the long term evolution of white dwarfs in cataclysmic variables and their recurrence times

    NASA Technical Reports Server (NTRS)

    Sion, E. M.; Starrfield, S. G.

    1985-01-01

    The relevance of the long term quasi-static evolution of accreting white dwarfs to the outbursts of Z Andromeda-like symbiotics; the masses and accretion rates of classical nova white dwarfs; and the observed properties of white dwarfs detected optically and with IUE in low M dot cataclysmic variables is discussed. A surface luminosity versus time plot for a massive, hot white dwarf bears a remarkable similarity to the outburst behavior of the hot blue source in Z Andromeda. The long term quasi-static models of hot accreting white dwarfs provide convenient constraints on the theoretically permissible parameters to give a dynamical (nova-like) outburst of classic white dwarfs.

  7. When does an old nova become a dwarf nova? Kinematics and age of the nova shell of the dwarf nova AT Cancri

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Drissen, Laurent; Martin, Thomas; Alarie, Alexandre; Stephenson, F. Richard

    2017-02-01

    The Z Cam-type dwarf nova AT Cancri (AT Cnc) displays a classical nova (CN) shell, demonstrating that mass transfer in cataclysmic binaries decreases substantially after a CN eruption. The hibernation scenario of cataclysmic binaries predicts such a decrease, on a time-scale of a few centuries. In order to measure the time since AT Cnc's last CN eruption, we have measured the radial velocities of a hundred clumps in its ejecta with SITELLE, Canada-France-Hawaii Telescope's recently commissioned imaging Fourier transform spectrometer. These range from -455 to +490 km s-1. Coupled with the known distance to AT Cnc of 460 pc, the size of AT Cnc's shell, and a simple model of nova ejecta deceleration, we determine that the last CN eruption of this system occurred 330_{-90}^{+135} yr ago. This is the most rapid transition from a high mass-transfer rate, nova-like variable to a low mass-transfer rate, dwarf nova yet measured, and in accord with the hibernation scenario of cataclysmic binaries. We conclude by noting the similarity in the deduced outburst date (within a century of 1686 CE) of AT Cnc to a `guest star' reported in the constellation Cancer by Korean observers in 1645 CE.

  8. A search for novae in M 31 globular clusters

    NASA Astrophysics Data System (ADS)

    Ciardullo, Robin; Tamblyn, Peter; Phillips, A. C.

    1990-10-01

    By combining a local sky-fitting algorithm with a Fourier point-spread-function matching technique, nova outbursts have been searched for inside 54 of the globular clusters contained on the Ciardullo et al. (1987 and 1990) H-alpha survey frames of M 31. Over a mean effective survey time of about 2.0 years, no cluster exhibited a magnitude increase indicative of a nova explosion. If the cataclysmic variables (CVs) contained within globular clusters are similar to those found in the field, then these data imply that the overdensity of CVs within globulars is at least several times less than that of the high-luminosity X-ray sources. If tidal capture is responsible for the high density of hard binaries within globulars, then the probability of capturing condensed objects inside globular clusters may depend strongly on the mass of the remnant.

  9. Gelfand-type problem for two-phase porous media

    PubMed Central

    Gordon, Peter V.; Moroz, Vitaly

    2014-01-01

    We consider a generalization of the Gelfand problem arising in Frank-Kamenetskii theory of thermal explosion. This generalization is a natural extension of the Gelfand problem to two-phase materials, where, in contrast to the classical Gelfand problem which uses a single temperature approach, the state of the system is described by two different temperatures. We show that similar to the classical Gelfand problem the thermal explosion occurs exclusively owing to the absence of stationary temperature distribution. We also show that the presence of interphase heat exchange delays a thermal explosion. Moreover, we prove that in the limit of infinite heat exchange between phases the problem of thermal explosion in two-phase porous media reduces to the classical Gelfand problem with renormalized constants. PMID:24611025

  10. Identifying and quantifying recurrent novae masquerading as classical novae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagnotta, Ashley; Schaefer, Bradley E., E-mail: pagnotta@amnh.org

    2014-06-20

    Recurrent novae (RNe) are cataclysmic variables with two or more nova eruptions within a century. Classical novae (CNe) are similar systems with only one such eruption. Many of the so-called CNe are actually RNe for which only one eruption has been discovered. Since RNe are candidate Type Ia supernova progenitors, it is important to know whether there are enough in our Galaxy to provide the supernova rate, and therefore to know how many RNe are masquerading as CNe. To quantify this, we collected all available information on the light curves and spectra of a Galactic, time-limited sample of 237 CNemore » and the 10 known RNe, as well as exhaustive discovery efficiency records. We recognize RNe as having (1) outburst amplitude smaller than 14.5 – 4.5 × log (t {sub 3}), (2) orbital period >0.6 days, (3) infrared colors of J – H > 0.7 mag and H – K > 0.1 mag, (4) FWHM of Hα > 2000 km s{sup –1}, (5) high excitation lines, such as Fe X or He II near peak, (6) eruption light curves with a plateau, and (7) white dwarf mass greater than 1.2 M {sub ☉}. Using these criteria, we identify V1721 Aql, DE Cir, CP Cru, KT Eri, V838 Her, V2672 Oph, V4160 Sgr, V4643 Sgr, V4739 Sgr, and V477 Sct as strong RN candidates. We evaluate the RN fraction among the known CNe using three methods to get 24% ± 4%, 12% ± 3%, and 35% ± 3%. With roughly a quarter of the 394 known Galactic novae actually being RNe, there should be approximately a hundred such systems masquerading as CNe.« less

  11. Outbursts in Symbiotic Binaries: Z and Continued Observation

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Keyes, Charles

    2005-01-01

    A major question for symbiotic stars concerns the nature and cause of their outbursts. A small subset of symbiotics, the "slow novae" are fairly well established as thermonuclear events that last on the order of decades. The several symbiotic "recurrent novae", which are much shorter and last on the order of months, are also thought to be thermonuclear runaways. Yet the majority of symbiotics are neither slow novae nor recurrent novae. These are the so-called "classical symbiotics," many of which show outbursts whose cause is not well understood. In some cases, jets are produced in association with an outburst, therefore an investigation into the causes of outbursts will yield important insights into the production of collimated outflows. To investigate the cause and nature of classical symbiotic outbursts, we initiated a program of multi- wavelength observations of these events. First of all in FUSE Cycle 2, we obtained six observational epochs of the 2000-2002 classic symbiotic outburst in the first target of our campaign - class prototype, Z Andromedae. That program was part of a coordinated multi-wavelength Target-of-Opportunity (TOO) campaign with FUSE, XMM, Chandra, MERLIN, the VLA, and ground-based spectroscopic and high time-resolution photometric observations. Our campaign proved the concept, utility, and need for coordinated multi-wavelength observations in order to make progress in understanding the nature of the outburst mechanisms in symbiotic stars. Indeed, the FUSE data were the cornerstone of this project. The present program is a continuation of that cycle 2 effort. Indeed, the observations acquired in this program are vital to the proper interpretation of the material acquired in cycle 2 as the new data cover the critical time period when the star continues to decline from outburst and actually returns to quiescence. The utilization of these data have allowed us to refine and complete description of our new model for classical symbiotic system outbursts.

  12. V1369 Cen High-resolution Panchromatic Late Nebular Spectra in the Context of a Unified Picture for Nova Ejecta

    NASA Astrophysics Data System (ADS)

    Mason, Elena; Shore, Steven N.; De Gennaro Aquino, Ivan; Izzo, Luca; Page, Kim; Schwarz, Greg J.

    2018-01-01

    Nova Cen 2013 (V1369 Cen) is the fourth bright nova observed panchromatically through high-resolution UV+optical multiepoch spectroscopy. It is also the nova with the richest set of spectra (in terms of both data quality and number of epochs) thanks to its exceptional brightness. Here, we use the late nebular spectra taken between day ∼250 and day ∼837 after outburst to derive the physical, geometrical, and kinematical properties of the nova. We compare the results with those determined for the other panchromatic studies in this series: T Pyx, V339 Del (nova Del 2013), and V959 Mon (nova Mon 2012). From this we conclude that in all these novae the ejecta geometry and phenomenology can be consistently explained by clumpy gas expelled during a single, brief ejection episode and in ballistic expansion, and not by a wind. For V1369 Cen the ejecta mass (∼1 × 10‑4 M⊙) and filling factor (0.1 ≤ f ≤ 0.2) are consistent with those of classical novae but larger (by at least an order of magnitude) than those of T Pyx and the recurrent novae. V1369 Cen has an anomalously high (relative to solar) N/C ratio that is beyond the range currently predicted for a CO nova, and the Ne emission line strengths are dissimilar to those of typical ONe or CO white dwarfs.

  13. A Hubble Space Telescope survey for novae in M87 – III. Are novae good standard candles 15 d after maximum brightness?

    DOE PAGES

    Shara, Michael M.; Doyle, Trisha F.; Pagnotta, Ashley; ...

    2017-11-16

    Ten weeks of daily imaging of the giant elliptical galaxy M87 with the Hubble Space Telescope (HST) has yielded 41 nova light curves of unprecedented quality for extragalactic cataclysmic variables. We have recently used these light curves to demonstrate that the observational scatter in the so-called maximum-magnitude rate of decline (MMRD) relation for classical novae is so large as to render the nova-MMRD useless as a standard candle. Here in this paper, we demonstrate that a modified Buscombe–de Vaucouleurs hypothesis, namely that novae with decline times t2 > 10 d converge to nearly the same absolute magnitude about two weeksmore » after maximum light in a giant elliptical galaxy, is supported by our M87 nova data. For 13 novae with daily sampled light curves, well determined times of maximum light in both the F606W and F814W filters, and decline times t 2 > 10 d we find that M87 novae display M606W,15 = -6.37 ± 0.46 and M814W,15 = -6.11 ± 0.43. If very fast novae with decline times t 2 < 10 d are excluded, the distances to novae in elliptical galaxies with stellar binary populations similar to those of M87 should be determinable with 1σ accuracies of ± 20 percent with the above calibrations.« less

  14. A Hubble Space Telescope survey for novae in M87 – III. Are novae good standard candles 15 d after maximum brightness?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shara, Michael M.; Doyle, Trisha F.; Pagnotta, Ashley

    Ten weeks of daily imaging of the giant elliptical galaxy M87 with the Hubble Space Telescope (HST) has yielded 41 nova light curves of unprecedented quality for extragalactic cataclysmic variables. We have recently used these light curves to demonstrate that the observational scatter in the so-called maximum-magnitude rate of decline (MMRD) relation for classical novae is so large as to render the nova-MMRD useless as a standard candle. Here in this paper, we demonstrate that a modified Buscombe–de Vaucouleurs hypothesis, namely that novae with decline times t2 > 10 d converge to nearly the same absolute magnitude about two weeksmore » after maximum light in a giant elliptical galaxy, is supported by our M87 nova data. For 13 novae with daily sampled light curves, well determined times of maximum light in both the F606W and F814W filters, and decline times t 2 > 10 d we find that M87 novae display M606W,15 = -6.37 ± 0.46 and M814W,15 = -6.11 ± 0.43. If very fast novae with decline times t 2 < 10 d are excluded, the distances to novae in elliptical galaxies with stellar binary populations similar to those of M87 should be determinable with 1σ accuracies of ± 20 percent with the above calibrations.« less

  15. Early evolution of the extraordinary Nova Delphini 2013 (V339 Del)

    NASA Astrophysics Data System (ADS)

    Skopal, A.; Drechsel, H.; Tarasova, T.; Kato, T.; Fujii, M.; Teyssier, F.; Garde, O.; Guarro, J.; Edlin, J.; Buil, C.; Antao, D.; Terry, J.-N.; Lemoult, T.; Charbonnel, S.; Bohlsen, T.; Favaro, A.; Graham, K.

    2014-09-01

    Aims: We determine the temporal evolution of the luminosity (LWD), radius (RWD) and effective temperature (Teff) of the white dwarf (WD) pseudophotosphere of V339 Del from its discovery to around day 40. Another main objective was studying the ionization structure of the ejecta. Methods: These aims were achieved by modelling the optical/near-IR spectral energy distribution (SED) using low-resolution spectroscopy (3500-9200 Å), UBVRCIC and JHKLM photometry. Important insights in the physical conditions of the ejecta were gained from an analysis of the evolution of the Hα and Raman-scattered 6825 Å O vi line using medium-resolution spectroscopy (R ~ 10 000). Results: During the fireball stage (Aug. 14.8-19.9, 2013), Teff was in the range of 6000-12 000 K, RWD was expanding non-uniformly in time from ~66 to ~300 (d/ 3 kpc) R⊙, and LWD was super-Eddington, but not constant. Its maximum of ~9 × 1038 (d/ 3 kpc)2 erg s-1 occurred around Aug. 16.0, at the maximum of Teff, half a day before the visual maximum. After the fireball stage, a large emission measure of 1.0-2.0 × 1062 (d/ 3 kpc)2 cm-3 constrained the lower limit of LWD to be well above the super-Eddington value. The mass of the ionized region was a few × 10-4 M⊙, and the mass-loss rate was decreasing from ~5.7 (Aug. 22) to ~0.71 × 10-4 M⊙ yr-1 (Sept. 20). The evolution of the Hα line and mainly the transient emergence of the Raman-scattered O vi 1032 Å line suggested a biconical ionization structure of the ejecta with a disk-like H i region persisting around the WD until its total ionization, around day 40. On Sept. 20 (day 35), the model SED indicated a dust emission component in the spectrum. The dust was located beyond the H i zone, where it was shielded from the hard, ≳105 K, radiation of the burning WD at that time. Conclusions: Our extensive spectroscopic observations of the classical nova V339 Del allowed us to map its evolution from the very early phase after its explosion. It is evident that the nova was not evolving according to the current theoretical prediction. The unusual non-spherically symmetric ejecta of nova V339 Del and its extreme physical conditions and evolution during and after the fireball stage represent interesting new challenges for the theoretical modelling of the nova phenomenon. Based on data collected by amateur astronomers.

  16. Spectroscopic Confirmation of TCP J07134590-2112330 as a Galactic Classical Nova in Canis Major

    NASA Astrophysics Data System (ADS)

    Strader, Jay; Chomiuk, Laura; Bahramian, Arash; Swihart, Sam

    2018-03-01

    TCP J07134590-2112330 was discovered by Yuji Nakamura on 2018 March 24.5 UT as a 12 mag optical transient. We obtained spectroscopic observations of TCP J07134590-2112330 with the Goodman spectrograph on the 4-m SOAR telescope on 2018 Mar 25.1 UT, with a low-resolution spectrum (R 1200) covering 3850-7850 A. The spectrum indicates that TCP J07134590-2112330 is a young classical nova, with strong hydrogen Balmer emission lines and additional strong lines of [O I] and Fe II. The Balmer lines show P Cygni profiles; the FWHM of the H alpha emission component is 1250 km/s, and the absorption trough extends to -2000 km/s.

  17. Nova Eruptions from Radio to Gamma-raysówith AAVSO Data in the Middle (Abstract)

    NASA Astrophysics Data System (ADS)

    Mukai, K.; Kafka, S.; Chomiuk, L.; Li, R.; Finzell, T.; Linford, J.; Sokoloski, J.; Nelson, T.; Rupen, M.; Mioduszewski, A.; Weston, J.

    2018-06-01

    (Abstract only) Novae are among the longest-known class of optical transients. In recent years, V1369 Cen in the south reached magnitude 3.3 in late 2013, and had repeated (but not periodic) cycles of re-brightening. Earlier in 2013, V339 Del almost reached magnitude 4.0 during the northern summer. An expanding ball of gas, at about 10,000 K, expelled by a nuclear explosion on the surface of a white dwarf, can explain much of the visible light outputs of novae. But these spectacular visible light displays turn out to be just a small part of the show. Novae are also transient objects in the radio through gamma-raysóin addition to the warm, visible light-emitting gas, we need cold dust particles that emit in the infra-red, 10 million degree shock-heated gas that emits hard X-rays, and the exposed surface of the nuclear-burning white dwarf that emits soft X-rays. Last but not least, we need an exotic process of particle acceleration to explain the gamma-rays and some radio data.

  18. Nova Sco 2016 No. 2 = PNV J17225112-3158349 = ASASSN-16kd

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2016-09-01

    AAVSO Alert Notice 550 announces the independent discovery of Nova Sco 2016 No. 2 = ASASSN-16kd = PNV J17225112-3158349 = V1656 Sco by Shigehisa Fujikawa (Kan'onji, Kagawa, Japan) at unfiltered CCD magnitude 11.6 on 2016 September 06.481 UT; and by ASAS-SN (Stanek et al., ATel #9469) at 12.13 V on 2016 September 06.00 UT. Spectroscopy indicating that Nova Sco 2016 No. 2 is a highly reddened classical Fe II-type nova was obtained by Arai and Honda (CBET 4320); by Bohlsen (ATel #9477); by Bersier et al. (ATel #9478); and by Prieto et al. (ATel #9479). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  19. Late stages in the evolution of classical novae

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Krautter, J.; Sonneborn, G.; Shore, S. N.; Wagner, R. M.; Austin, S.; Saizar, P.; Ferland, G.; Wade, R.; Gehrz, R. D.

    1990-01-01

    We have begun a study of the long term evolution of novae in outburst in order to determine the means by which they return in quiescence when nuclear burning has ended. This project involves both IUE and optical observations and theoretical predictions. Recently, in the initial observational part of this project, we have obtained IUE Short Wavelength Prime (SWP) spectra of GQ Mus 1983 and QU Vul 1984. Each spectrum was a 16 hour exposure using a combined US1 plus Vilspa shift. No novae have been studied in the UV for as long as QU Vul and GQ Mus and observations of their spectral evolution are providing unique data on the turn-off time scale. We have also obtained the spectra of old novae from the IUE archives in order to compare and contrast the existing spectra with those of GQ Mus and Qu Vul. The theoretical prediction is that a nova should be very hot just before turnoff but x ray observations from EXOSAT do not confirm this prediction.

  20. Fusion reactions induced by radioactive beams: the 18F(p,α)15O case

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; Roeder, B. T.; Trache, L.; Tribble, R. E.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Indelicato, I.; La Cognata, M.; Lamia, L.; Rapisarda, G. G.; Spartá, R.

    2017-11-01

    Gamma ray astronomy has made big strides in the last decades paving the way to a better understanding of explosive nucleosynthesis. In particular, crucial information on novae nucleosynthesis is linked to the abundance of the 18F isotope, which might be detected in explosive environments. Therefore, the reaction network producing and destroying this radioactive isotope has been extensively studied in the last years. Among those reactions, the 18F(p,α)15O cross section has been measured by means of several dedicated experiments, both using direct and indirect methods. The presence of resonances in the energy region of astrophysical interest has been reported by many authors. In the present work a report on a recent experiment performed via the Trojan Horse Method (THM) at the Texas A&M Cyclotron Institute is presented and the results are given and compared with the ones known in the literature, both direct and indirect. Data arising from THM measurements are then averaged and the reaction rate calculated in the novae energy range. Hints on future astrophysical applications will also be given.

  1. Measurement of the strengths of the resonances at 417, 458, 611, 632 and 1222 keV in the 22Ne(p, γ)23Na reaction

    NASA Astrophysics Data System (ADS)

    Ferraro, Federico

    2018-01-01

    The 22Ne(p, γ)23Na reaction is part of the NeNa cycle of hydrogen burning. This cycle plays a key role in the nucleosynthesis of the elements between 20Ne and 27Al in red giant stars, asymptotic giant stars and classical nova explosions. The strengths of the resonances at proton energies above 400 keV are still affected by high uncertainty. In order to reduce this uncertainty, a precision study of some of the most intense resonances between 400 keV and 1250 keV has been performed at the HZDR 3 MV Tandetron. The target, made of 22Ne implanted in a 0.22 mm thick Ta backing, has been characterized using the 1222 keV and 458 keV resonances, well known in literature. Subsequently, the strengths of the resonances at 417, 458, 611, 632 and 1222 keV were determined. Two HPGe detectors equipped with active anti-Compton shielding have been used.

  2. PTF 10fqs: A LUMINOUS RED NOVA IN THE SPIRAL GALAXY MESSIER 99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasliwal, Mansi M.; Kulkarni, Shri R.; Quimby, Robert M.

    2011-04-01

    The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary science driver of PTF is building a complete inventory of transients in the local universe (distance less than 200 Mpc). Here, we report the discovery of PTF 10fqs, a transient in the luminosity 'gap' between novae and supernovae. Located on a spiral arm of Messier 99, PTF 10fqs has a peak luminosity of M{sub r} = -12.3, red color (g - r = 1.0), and is slowly evolving (decayed by 1 mag in 68 days). It has a spectrum dominated by intermediate-width H{alpha} ({approx}930more » km s{sup -1}) and narrow calcium emission lines. The explosion signature (the light curve and spectra) is overall similar to that of M85 OT2006-1, SN 2008S, and NGC 300 OT. The origin of these events is shrouded in mystery and controversy (and in some cases, in dust). PTF 10fqs shows some evidence of a broad feature (around 8600 A) that may suggest very large velocities ({approx}10,000 km s{sup -1}) in this explosion. Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy, infrared monitoring, and statistics (e.g., disk versus bulge) will eventually make it possible for astronomers to unravel the nature of these mysterious explosions.« less

  3. Classical-Nova Contribution to the Milky Way’s Al 26 Abundance: Exit Channel of the Key Al 25 ( p , γ ) Si 26 Resonance

    DOE PAGES

    Bennett, M. B.; Wrede, C.; Chipps, K. A.; ...

    2013-12-04

    We present that classical novae are expected to contribute to the 1809-keV Galactic γ-ray emission by producing its precursor 26Al, but the yield depends on the thermonuclear rate of the unmeasured 25Al(p,γ) 26Si reaction. Using the β decay of 26P to populate the key J π=3 + resonance in this reaction, we report the first evidence for the observation of its exit channel via a 1741.6±0.6(stat)±0.3(syst) keV primary γ ray, where the uncertainties are statistical and systematic, respectively. By combining the measured γ-ray energy and intensity with other experimental data on 26Si, we find the center-of-mass energy and strength of the resonance to be E r=414.9±0.6(stat)±0.3(syst)±0.6(lit.) keV and ωγ=23±6(stat)more » $$+11\\atop{-10}$$(lit.) meV, respectively, where the last uncertainties are from adopted literature data. Finally, we use hydrodynamic nova simulations to model 26Al production showing that these measurements effectively eliminate the dominant experimental nuclear-physics uncertainty and we estimate that novae may contribute up to 30% of the Galactic 26Al.« less

  4. Trojan Horse Method and RIBs: The {sup 18}F(p,{alpha}){sup 15}O reaction at astrophysical energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherubini, S.; Gulino, M.; Rapisarda, G. G.

    2012-11-12

    The abundance of {sup 18}F in Nova explosions is an important issue for the understanding of this astrophysical phenomenon. For this reason it is necessary to study the nuclear reactions that produce or destroy this isotope in novae. Among these latter processes, the {sup 18}F(p,{alpha}){sup 15}O is one of the main {sup 18}F destruction channels. We report here on the preliminary results of the first experiment that applies the Trojan Horse Method to a Radioactive Ion Beam induced reaction. The experiment was performed using the CRIB apparatus of the Center for Nuclear Study of The Tokyo University.

  5. Nonradial Pulsations in Post-outburst Novae

    NASA Astrophysics Data System (ADS)

    Wolf, William M.; Townsend, Richard H. D.; Bildsten, Lars

    2018-03-01

    After an optical peak, a classical or recurrent nova settles into a brief (days to years) period of quasi-stable thermonuclear burning in a compact configuration nearly at the white dwarf (WD) radius. During this time, the underlying WD becomes visible as a strong emitter of supersoft X-rays. Observations during this phase have revealed oscillations in the X-ray emission with periods on the order of tens of seconds. A proposed explanation for the source of these oscillations is internal gravity waves excited by nuclear reactions at the base of the hydrogen-burning layer. In this work, we present the first models exhibiting unstable surface g-modes with periods similar to oscillation periods found in galactic novae. However, when comparing mode periods of our models to the observed oscillations of several novae, we find that the modes that are excited have periods shorter than that observed.

  6. Optical Spectroscopy of the Classical Novae V339 Del (2013) and V5668 Sgr (2015 No. 2)

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark; Woodward, Charles E.; Starrfield, Sumner; Ilyin, Ilya; Strassmeier, Klaus G.; Page, Kim; Osborne, Julian P.; Beardmore, Andrew P.

    2016-01-01

    We report the results of optical spectroscopy of the gamma-ray classical novae V339 Del (2013) and V5668 Sgr (PNV J18365700-2855420/Nova Sgr 2015 No. 2) supplemented by UV and X-ray observations obtained with Swift. Our spectra were obtained with the Steward Observatory Bok 2.3 m telescope (+B&C), the MDM 2.4 m Hiltner telescope (+OSMOS), the 6.5 m MMT (+BlueChannel), and the 2 x 8.4 m Large Binocular Telescope (+MODS1 and PEPSI) between 2013 August and 2015 September. The PEPSI spectra cover all or part of the 384-907 nm spectral region at a resolution of up to 270,000 (1 km/s). This is the highest resolution available on any 8-10 m class telescope. V339 Del was discovered on 2015 August 14.58 by Itagaki at V about 6.8. This nova reached a peak magnitude of about 4.3 making it one of the brightest novae of this century. Because of its exceptional brightness it has been observed at a variety of wavelengths and by a host of observatories both on the ground and in space. V5668 Sgr was discovered on 2015 March 15.634 by Seach at a magnitude of 6.0. It subsequently reached a maximum brightness of about 4.0 in late March. High resolution PEPSI spectra obtained in early April show dramatic variations in the multi-component P Cygni-type line profiles. V5668 Sgr was observed to form dust in June thereafter fading to about 13th magnitude. Our recent observations show that it has now evolved into the nebular phase. SS acknowledges partial support from NSF and NASA grants to ASU. CEW acknowledges support from NASA.

  7. Identification of Recurrent Novae in M31

    NASA Astrophysics Data System (ADS)

    Shafter, Allen W.; Rector, T. A.; Schweizer, F.; Bryan, J.

    2014-01-01

    Over roughly the past century a total of more than 900 optical transient events have been recorded in M31, the vast majority of which are believed to represent eruptions of classical novae. The impressive dataset of nova positions put together by Pietsch (http://www.mpe.mpg.de m31novae/opt/m31/) provides the opportunity to search for multiple nova outbursts from the same progenitor system, and thus to characterize the population of recurrent novae (RNe) in M31. In order to identify RNe candidates, we have searched for spatial near coincidences among the 945 recorded novae given in the Pietsch catalog through the end of August 2013. Given that the positions of many of the early novae are quite uncertain, we have set our initial screen to include nova pairs with nominal separations less than or equal to 6 arcsec. We have identified a total of 102 novae that pass this coarse screen. Of these, 78 novae form 39 pairs, 15 form five triples, four novae are part of a quad, and five novae form a quint. As demonstrated by Shafter, Rice and Daub (2009, presented at the "Wild Stars in the Old West II" conference, mintaka.sdsu.edu/faculty/shafter/extragalactic_novae/RNePoster4.pdf), the majority of the 102 novae surviving our initial screen are expected to be associated with chance positional near coincidences (especially near the nucleus), and are not RNe. To decide which candidates are indeed RNe, we have undertaken a study to locate the original discovery plates, CCD images or published finding charts, and to perform the necessary astrometry to identify which of our candidate RNe are chance positional coincidences, and which are RNe. For each candidate, we estimate the probability that the object is a chance positional coincidence as in Shafter et al. (2009). To date, we have been successful in identifying finding charts or original images for most of the candidates, and have found a total of 23 nova outbursts in M31 associated with 10 systems that are almost certainly RNe.

  8. New {sup 34}Cl proton-threshold states and the thermonuclear {sup 33}S(p,{gamma}){sup 34}Cl rate in ONe novae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parikh, A.; Faestermann, T.; Kruecken, R.

    2009-07-15

    Analysis of presolar grains in primitive meteorites has shown isotopic ratios largely characteristic of the conditions thought to prevail in various astrophysical environments. A possible indicator for a grain of ONe nova origin is a large {sup 33}S abundance: nucleosynthesis calculations predict as much as 150 times the solar abundance of {sup 33}S in the ejecta of nova explosions on massive ONe white dwarfs. This overproduction factor may, however, vary by factors of at least 0.01-3 because of uncertainties of several orders of magnitude in the {sup 33}S(p,{gamma}){sup 34}Cl reaction rate at nova peak temperatures (T{sub peak}{approx}0.1-0.4 GK). These uncertaintiesmore » arise due to the lack of nuclear physics information for states within {approx}600 keV of the {sup 33}S+p threshold in {sup 34}Cl (S{sub p}({sup 34}Cl) = 5143 keV). To better constrain this rate we have measured, for the first time, the {sup 34}S({sup 3}He,t){sup 34}Cl reaction over the region E{sub x}({sup 34}Cl) = 4.9-6 MeV. We confirm previous states and find 15 new states in this energy region. New {sup 33}S(p,{gamma}){sup 34}Cl resonances at E{sub R}=281(2), 301(2), and 342(2) keV may dominate this rate at relevant nova temperatures. Our results could affect predictions of sulphur isotopic ratios in nova ejecta (e.g., {sup 32}S/{sup 33}S) that may be used as diagnostic tools for the nova paternity of grains.« less

  9. The physics of black hole x ray novae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. C.; Kim, S.-W.; Moscoso, M. D.; Mineshige, S.

    1994-01-01

    X-ray transients that are established or plausible black hole candidates have been discovered at a rate of about one per year in the galaxy for the last five years. There are now well over a dozen black hole candidates, most being in the category of X-ray novae with low-mass companions. There may be hundreds of such transient systems in the galaxy yet to be discovered. Classic black hole candidates like Cygnus X-1 with massive companions are in the minority, and their census in the galaxy and magellanic clouds is likely to be complete. The black hole X-ray novae (BHXN) do not represent only the most common environment in which to discover black holes. Their time dependence gives a major new probe with which to study the physics of accretion into black holes. The BHXN show both a soft X-ray flux from an optically thick disk and a hard power law tail that is reminiscent of AGN spectra. The result may be new insight into the classical systems like Cyg X-1 and LMC X-1 that show similar power law tails, but also to accretion into supermassive black holes and AGN.

  10. The spectroscopic evolution of novae in the bulge of M31 and a search for their possible origin in the M31 globular cluster system

    NASA Astrophysics Data System (ADS)

    Tomaney, Austin Bede

    Results are presented from a three year (1987 to 1989) spectroscopic and photometric survey of novae in M3l's bulge, the first comprehensive study of novae outside the Galactic and Magellanic Cloud systems. Nine novae were detected and monitored and their spectra cover a range of outburst states from early decline to the early nebular phases. Broad agreement in spectral morphology and evolution is found with Galactic novae. Since Galactic novae are mainly disk objects, this indicates that novae outburst properties are not critically dependent on the metallicity of the progenitor population. However, in this sample, and in a sample of four M31 nova spectra taken in 1983, no fast, violent outbursts frequently associated with nova systems containing ONeMg white dwarfs were found, suggestive of a systematic difference between the observed proportion of such outbursts between Galactic and M31 bulge novae. Three novae in the sample were observed on succeeding nights during the transition phase of their evolution. Extraordinary variations in some nightly line strengths, particularly the N III lines, were discovered. It is argued that this variability reflects the deposition of drag energy by the secondary star during the common envelope phase of nova evolution and is indicative of a key phase in mass loss from nova systems. Observations include the spectroscopic coverage of an extremely slow nova from 1987 to l990, during the object's evolution in the nebula phase. This provided a unique opportunity to make the first detailed comparison of the evolution and properties of an extra galactic nova with those in our own Galaxy. The roughly solar abundances obtained are typical of similar slow Galactic novae. Further observations are also presented of a unique outburst in 1988 that was independently discovered and reported by Rich et al. These data confirm the inferences of other observers that the outburst differed markedly from that of a typical classical nova. Finally an extensive spectroscopic survey of the M31 globular cluster system was made in an effort to find evidence of a previously suggested enhanced nova rate in these objects. No outbursts were detected during an effective survey time of one year for the entire system.

  11. First results of Trojan horse method using radioactive ion beams: {sup 18}F(p,α) at astrophysical energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherubini, S.; Spitaleri, C.; Puglia, S.

    2014-05-02

    The abundance of {sup 18}F in Nova explosions is considered to be an important piece of information for the understanding of this astrophysical phenomenon. It is then necessary to study the nuclear processess that both produce and destroy this isotope in Novae. Among these latter reactions, the {sup 18}F(p,α){sup 15}O is one of the most important {sup 18}F destruction channels. Here we report on an experiment performed using the CRIB apparatus of the Center for Nuclear Study of the University of Tokyo. This was the first experiment that used the Trojan Horse method applied to a Radioactive Ion Beam inducedmore » reaction.« less

  12. Sublimating icy planetesimals as the source of nucleation seeds for grain condensation in classical novae

    NASA Technical Reports Server (NTRS)

    Matese, John J.; Whitmire, D. P.; Reynolds, R. T.

    1989-01-01

    The problem of grain nucleation during novae outbursts is a major obstacle to our understanding of dust formation in these systems. How nucleation seeds can form in the hostile post-outburst environment remains an unresolved matter. It is suggested that the material for seeding the condensation of ejecta outflow is stored in a primordial disk of icy planetesimals surrounding the system. Evidence is presented that the requisite number of nucleation seeds can be released by sublimation of the planetesimals during outbursts.

  13. The optical re-brightening of nova M31N 2017-11a

    NASA Astrophysics Data System (ADS)

    Xu, Zhijian; Gao, Xing; Li, Yanxi; Zhao, Jingyuan; Zhang, Mi

    2017-12-01

    We report the initial discovery of the optical re-brightening of the Fe II class nova M31N 2017-11a (AT2017hvi = PTSS-17zap) which was first reported by PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/ ), (2017, TNS Discovery Report https://wis-tns.weizmann.ac.il/object/2017hvi) at r-Sloan magnitude 18.5 on 2017-11-04 16:41:02 UT. Spectroscopy by Williams & Darnley using the 2-m Liverpool telescope (ATel #10990) on 2017 Nov 20.11 UT, and by Fabrika et al., (ATel #10998) taken two days later at the Russian BTA telescope, showed Balmer emission lines together with numerous strong Fe II lines, confirming its classification as a classical Fe II class nova.

  14. Nova Scorpii 2011 = PNV J16551100-3838120

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2011-06-01

    Announces the discovery of Nova Scorpii 2011 = PNV J16551100-3838120 by John Seach (Chatsworth Island, NSW, Australia) on 2011 June 1.40 UT at magnitude 9.5 (DSLR + orange filter). Spectra by Bernard Heathcote (South Yarra, Vic, Australia) on Jun 2.4896 UT, A. Arai, T. Kajikawa, and M. Nagashima (Kyoto Sangyo University, Japan) on 2011 June 2.68 UT, and Masayuki Yamanaka and Ryosuke Itoh (Hiroshima University, Japan) on Jun 2 UT indicate a highly-reddened classical nova. Initially reported to the AAVSO by Seach and announced in AAVSO Special Notice #240 (Arne Henden) and IAU CBET 2735 (Daniel W. E. Green, ed.). The object was designated PNV J18102135-2305306 when posted on the Central Bureau's Transient Objects Confirmation Page (TOCP) webpage. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details, observations, and links to images. [Nova Sco 2011 subsequently assigned the name V1312 Sco

  15. DYNAMICAL FRAGMENTATION OF THE T PYXIDIS NOVA SHELL DURING RECURRENT ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toraskar, Jayashree; Mac Low, Mordecai-Mark; Shara, Michael M.

    2013-05-01

    Hubble Space Telescope images of the ejecta surrounding the nova T Pyxidis resolve the emission into more than 2000 bright knots. We simulate the dynamical evolution of the ejecta from T Pyxidis during its multiple eruptions over the last 150 years using the adaptive mesh refinement code Ramses. We demonstrate that the observed knots are the result of Richtmyer-Meshkov gas dynamical instabilities (the equivalent of Rayleigh-Taylor instabilities in an accelerated medium). These instabilities are caused by the overrunning of the ejecta from the classical nova of 1866 by fast-moving ejecta from the six subsequent recurrent nova outbursts. Magnetic fields maymore » play a role in determining knot scale and preventing their conductive evaporation. The model correctly predicts the observed expansion and dimming of the T Pyx ejecta as well as the knotty morphology. The model also predicts that deeper, high-resolution imagery will show filamentary structure connecting the knots. We show reprocessed Hubble Space Telescope imagery that shows the first hints of such a structure.« less

  16. The Massive CO White Dwarf in the Symbiotic Recurrent Nova RS Ophiuchi

    NASA Astrophysics Data System (ADS)

    Mikołajewska, Joanna; Shara, Michael M.

    2017-10-01

    If accreting white dwarfs (WDs) in binary systems are to produce type Ia supernovae (SNe Ia), they must grow to nearly the Chandrasekhar mass and ignite carbon burning. Proving conclusively that a WD has grown substantially since its birth is a challenging task. Slow accretion of hydrogen inevitably leads to the erosion, rather than the growth of WDs. Rapid hydrogen accretion does lead to growth of a helium layer, due to both decreased degeneracy and the inhibition of mixing of the accreted hydrogen with the underlying WD. However, until recently, simulations of helium-accreting WDs all claimed to show the explosive ejection of a helium envelope once it exceeded ˜ {10}-1 {M}⊙ . Because CO WDs cannot be born with masses in excess of ˜ 1.1 {M}⊙ , any such object in excess of ˜ 1.2 {M}⊙ must have grown substantially. We demonstrate that the WD in the symbiotic nova RS Oph is in the mass range 1.2-1.4 M ⊙. We compare UV spectra of RS Oph with those of novae with ONe WDs and with novae erupting on CO WDs. The RS Oph WD is clearly made of CO, demonstrating that it has grown substantially since birth. It is a prime candidate to eventually produce an SN Ia.

  17. Superstars: How stellar explosions shape the destiny of our universe

    NASA Astrophysics Data System (ADS)

    Clark, D. H.

    Research into the nature of supernovae and their influence on the Galaxy are discussed. Historical records of Chinese and European astronomers are also examined. Topics considered include the generation of the solar system, the influence of nearby novae on earth's biological and climatic evolutions, the formation of heavy elements such as gold and uranium, the ice age, the Star of Bethlehem, and pulsars.

  18. Nova Sco 2011 No. 2 = PNV J16364440-4132340 = PNV J16364300-4132460

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2011-09-01

    Announcement of discovery of Nova Sco 2011 No. 2 = PNV J16364440-4132340 = PNV J16364300-4132460. Discovered independently by John Seach (Chatsworth Island, NSW, Australia, on 2011 Sep. 06.37 UT at mag=9.8 (DSLR)) and by Yuji Nakamura (Kameyama, Mie, Japan, on 2011 Sep. 06.4313 UT at mag=9.7 C (CCD)). Posted on the IAU Central Bureau for Astronomical Telegrams Transient Object Confirmation Page (TOCP) as PNV J16364440-4132340 (Nakamura) and PNV J16364300-4132460 (Seach); identifications consolidated in VSX under PNV J16364440-4132340. Spectra obtained by A. Arai et al. on 2011 Sep. 7.42 UT suggest a highly reddened Fe II-type classical nova. Spectra by F. Walter and J. Seron obtained Sep. 2011 8.091 UT confirm a young galactic nova; they report spectra are reminiscent of an early recurrent nova. Initially announced in AAVSO Special Notice #251 (Matthew Templeton) and IAU Central Bureau Electronic Telegram 2813 (Daniel W. E. Green, ed.). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.

  19. Featured Image: Identifying a Glowing Shell

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-05-01

    New nebulae are being discovered and classified every day and this false-color image reveals one of the more recent objects of interest. This nebula, IPHASX J210204.7+471015, was recently imaged by the Andalucia Faint Object Spectrograph and Camera mounted on the 2.5-m Nordic Optical Telescope in La Palma, Spain. J210204 was initially identified as a possible planetary nebula a remnant left behind at the end of a red giants lifetime. Based on the above imaging, however, a team of authors led by Martn Guerrero (Institute of Astrophysics of Andalusia, Spain) is arguing that this shell of glowing gas was instead expelled around a classical nova. In a classical nova eruption, a white dwarf and its binary companion come very close together, and mass transfers to form a thin atmosphere of hydrogen around the white dwarf. When this hydrogen suddenly ignites in runaway fusion, this outer atmosphere can be expelled, forming a short-lived nova remnant which is what Guerrero and collaborators think were seeing with J210204. If so, this nebula can reveal information about the novathat caused it. To find out more about what the authors learned from this nebula, check out the paper below.CitationMartn A. Guerrero et al 2018 ApJ 857 80. doi:10.3847/1538-4357/aab669

  20. First spin-parity constraint of the 306 keV resonance in Cl 35 for nova nucleosynthesis

    DOE PAGES

    Chipps, K. A.; Rutgers Univ., New Brunswick, NJ; Pain, S. D.; ...

    2017-04-28

    Something of particular interest in astrophysics is the 34 S ( p , γ ) 35 Cl reaction, which serves as a stepping stone in thermonuclear runaway reaction chains during a nova explosion. Although the isotopes involved are all stable, the reaction rate of this significant step is not well known, due to a lack of experimental spectroscopic information on states within the Gamow window above the proton separation threshold of 35 Cl . Furthermore, measurements of level spins and parities provide input for the calculation of resonance strengths, which ultimately determine the astrophysical reaction rate of the 34 Smore » ( p , γ ) 35 Cl proton capture reaction. By performing the 37 Cl ( p , t ) 35 Cl reaction in normal kinematics at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory, we have conducted a study of the region of astrophysical interest in 35 Cl , and have made the first-ever constraint on the spin and parity assignment for a level at 6677 ± 15 keV ( E r = 306 keV), inside the Gamow window for novae.« less

  1. First spin-parity constraint of the 306 keV resonance in 35Cl for nova nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Pain, S. D.; Kozub, R. L.; Bardayan, D. W.; Cizewski, J. A.; Chae, K. Y.; Liang, J. F.; Matei, C.; Moazen, B. H.; Nesaraja, C. D.; O'Malley, P. D.; Peters, W. A.; Pittman, S. T.; Schmitt, K. T.; Smith, M. S.

    2017-04-01

    Of particular interest in astrophysics is the 34S(p ,γ )35Cl reaction, which serves as a stepping stone in thermonuclear runaway reaction chains during a nova explosion. Though the isotopes involved are all stable, the reaction rate of this significant step is not well known, due to a lack of experimental spectroscopic information on states within the Gamow window above the proton separation threshold of 35Cl. Measurements of level spins and parities provide input for the calculation of resonance strengths, which ultimately determine the astrophysical reaction rate of the 34S(p ,γ )35Cl proton capture reaction. By performing the 37Cl(p ,t )35Cl reaction in normal kinematics at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory, we have conducted a study of the region of astrophysical interest in 35Cl, and have made the first-ever constraint on the spin and parity assignment for a level at 6677 ±15 keV (Er=306 keV), inside the Gamow window for novae.

  2. Multiwavelength Modeling of Nove Atmospheres

    NASA Technical Reports Server (NTRS)

    Huschildt, P. H.

    2001-01-01

    LMC 1988 #1 was a slow, CO type, dust forming classical nova. It was the first extragalactic nova to be observed with the IUE satellite. We have successfully fitted observed ultraviolet and optical spectra of LMC 1988 #1 taken within the first two months of its outburst (when the atmosphere was still optically thick) with synthetic spectra computed using PHOENIX nova model atmospheres. The synthetic spectra reproduce most of the features seen in the spectra and provide V band magnitudes consistent with the observed light curve. The fits are improved by increasing the CNO abundances to 10 times the solar values. The bolometric luminosity of LMC 1988 #1 was approximately constant at 2 x 10(exp 38) ergs per second at a distance of 47.3 kpc for the first 2 months of the outburst until the formation of the dust shell.

  3. Helium runaways in white dwarfs

    NASA Technical Reports Server (NTRS)

    Taam, R. E.

    1979-01-01

    The long term evolution of an accreting carbon white dwarf was studied from the onset of accretion to the ignition of helium. The variations in the details of the helium shell flash examined with respect to variations in mass accretion rate. For intermediate rates the helium flash is potentially explosive whereas for high rates the shell flash is relatively weak. The results are discussed in the context of the long term evolution of novae.

  4. Thermonuclear runaways in nova outbursts

    NASA Technical Reports Server (NTRS)

    Shankar, Anurag; Arnett, David; Fryxell, Bruce A.

    1992-01-01

    Results of exploratory, two-dimensional numerical calculations of a local thermonuclear runaway on the surface of a white dwarf are reported. It is found that the energy released by the runaway can induce a significant amount of vorticity near the burning region. Such mass motions account naturally for mixing of core matter into the envelope during the explosion. A new mechanism for the lateral spread of nuclear burning is also discussed.

  5. The Progenitor and Remnant of the Helium Nova V445 Puppis

    NASA Astrophysics Data System (ADS)

    Goranskij, V.; Shugarov, S.; Zharova, A.; Kroll, P.; Barsukova, E. A.

    2010-10-01

    V445 Pup was a peculiar nova with no hydrogen spectral lines during the outburst. The spectrum contained strong emission lines of carbon, oxygen, calcium, sodium, and iron. We have performed digital processing of photographic images of the V445 Pup progenitor using astronomical plate archives. The brightness of the progenitor in the B band was 14.3m. It was a periodic variable star, its most probable period being 0.650654+/-0.000011 days. The light curve shape suggests that the progenitor was a common-envelope binary with a spot on the surface and variable surface brightness. The spectral energy distribution of the progenitor between 0.44 and 2.2 microns was similar to that of an A0V type star. After the explosion in 2001, the dust was formed in the ejecta, and the star became a strong infrared source. This resulted in the star's fading below 20m in the V band. Our CCD BVR observations acquired between 2003 and 2009 suggest that the dust absorption minimum finished in 2004, and the remnant reappeared at the level of 18.5m V. The dust dispersed but a star-like object was absent in frames taken in the K band with the VLT adaptive optics. Only expanding ejecta of the explosion were seen in these frames till March 2007. No reddened A0V type star reappeared in the spectral energy distribution. The explosion of V445 Pup in 2000 was a helium flash on the surface of a CO-type white dwarf. Taking into account the results of modern dynamic calculations, we discuss the possibility of a white-dwarf core detonation triggered by the helium flash and the observational evidence for it. Additionally, the common envelope of the system was lost in the explosion. Destruction in the system and mass loss from its components exclude the future SN Ia scenario for V445 Pup.

  6. Development of a Monte Carlo code for the data analysis of the 18F(p,α)15O reaction at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Caruso, A.; Cherubini, S.; Spitaleri, C.; Crucillà, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Rapisarda, G.; Romano, S.; Sergi, ML.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Wakabayashi, Y.; Iwasa, N.; Kato, S.; Komatsubara, T.; Teranishi, T.; Coc, A.; Hammache, F.; de Séréville, N.

    2015-02-01

    Novae are astrophysical events (violent explosion) occurring in close binary systems consisting of a white dwarf and a main-sequence star or a star in a more advanced stage of evolution. They are called "narrow systems" because the two components interact with each other: there is a process of mass exchange with resulting in the transfer of matter from the companion star to the white dwarf, leading to the formation of this last of the so-called accretion disk, rich mainly of hydrogen. Over time, more and more material accumulates until the pressure and the temperature reached are sufficient to trigger nuclear fusion reactions, rapidly converting a large part of the hydrogen into heavier elements. The products of "hot hydrogen burning" are then placed in the interstellar medium as a result of violent explosions. Studies on the element abundances observed in these events can provide important information about the stages of evolution stellar. During the outbursts of novae some radioactive isotopes are synthesized: in particular, the decay of short-lived nuclei such as 13N and 18F with subsequent emission of gamma radiation energy below 511 keV. The gamma rays from products electron-positron annihilation of positrons emitted in the decay of 18F are the most abundant and the first observable as soon as the atmosphere of the nova starts to become transparent to gamma radiation. Hence the importance of the study of nuclear reactions that lead both to the formation and to the destruction of 18F . Among these, the 18F(p,α)15O reaction is one of the main channels of destruction. This reaction was then studied at energies of astrophysical interest. The experiment done at Riken, Japan, has as its objective the study of the 18F(p,α)15O reaction, using a beam of 18F produced at CRIB, to derive important information about the phenomenon of novae. In this paper we present the experimental technique and the Monte Carlo code developed to be used in the data analysis process.

  7. Pre-Discovery Detection of ASASSN-18fv by Evryscope

    NASA Astrophysics Data System (ADS)

    Corbett, H.; Law, N.; Goeke, E.; Ratzloff, J.; Howard, W.; Fors, O.; del Ser, D.; Quimby, R. M.

    2018-03-01

    We have identified pre-discovery imaging of the probable classical nova ASASSN-18fv by Evryscope-South (http://evryscope.astro.unc.edu/), an array of 6-cm telescopes continuously monitoring 8000 square degrees of sky at 2-minute cadence from CTIO, Chile.

  8. Identification of Metabolic Routes and Catabolic Enzymes Involved in Phytoremediation of the Nitro-Substituted Explosives TNT, RDX, and HMX

    DTIC Science & Technology

    2006-07-31

    Identification of Metabolic Routes and Catabolic Enzymes Involved in Phytoremediation of the Nitro- Substituted Explosives TNT, RDX...Routes and Catabolic Enzymes Involved in Phytoremediation of the Nitro-Substituted Explosives TNT, RDX, and HMX Final Technical Report 5a. CONTRACT NUMBER... Phytoremediation has been shown to provide a cost-effective alternative to classical technologies for cleaning up nitro-substituted explosive

  9. V5588 SGR = Nova Sagittarii 2011 No. 2 = Pnv J18102135-2305306

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2011-04-01

    Announces the discovery of Nova Sgr 2011 No. 2 = V5588 SGR = PNV J18102135-2305306 by Koichi Nishiyama (Kurume, Japan) and Fujio Kabashima (Miyaki, Japan) on ~ 2011 March 27.832 UT at unfiltered CCD magnitude mag 11.7. Spectra obtained by A. Arai, M. Nagashima, T. Kajikawa, and C. Naka (Koyama Astronomical Observatory, Kyoto Sangyo University) on Mar. 28.725 UT suggest that the object is a classical nova reddened by interstellar matter. The object was designated PNV J18102135-2305306 when posted on the Central Bureau's Transient Objects Confirmation Page (TOCP) webpage. E. Kazarovets, on behalf of the GCVS team, reports that the name V5588 Sgr has been assigned to this nova. It was nitially announced in CBET 2679 (Daniel W. E. Green, ed.) and AAVSO Special Notice #237 (Waagen). Additional information published in IAU Circular 9203 (Green, ed.). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.

  10. Supernovae in Binary Systems: An Application of Classical Mechanics.

    ERIC Educational Resources Information Center

    Mitalas, R.

    1980-01-01

    Presents the supernova explosion in a binary system as an application of classical mechanics. This presentation is intended to illustrate the power of the equivalent one-body problem and provide undergraduate students with a variety of insights into elementary classical mechanics. (HM)

  11. XMM-Newton Proposal 03039101

    NASA Astrophysics Data System (ADS)

    Hernanz, Margarita

    2004-10-01

    Two recent galactic novae, V2487 Oph 1998 and V4633 Sgr 1998, have been detec- ted in both soft and hard X-rays with XMM. V2487 Oph showed an iron fluores- cent line only 2.7 yrs after its explosion, a clear signature of the very fast recovery of accretion, and V4633 Sgr displayed hard X-ray emission not clearly attributable to shocked ejecta or accretion. Longer observations are needed to do accurate timing and high resolution spectroscopy, essential to determine the main properties of the underlying cataclysmic variable in V2487 Oph (first nova seen in X-rays prior and after exploding) and to disentangle the origin of the hard X-rays from V4633 Sgr, through an analysis of the chemical compo- sition of the emitting thermal plasma, solar if accretion, non solar if ejecta.

  12. IRAS observations of binaries with compact objects

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.

    1986-01-01

    The infrared emission data, obtained on 260 binary systems by the all-sky IRAS survey in wavelengths between 12 and 100 microns, are reported. Of all the 260 sources, which contained compact objects including white dwarfs, neutron stars, or possibly black holes, only 32 contained detectable IR radiation. The X-ray emitting Be-type stars (gamma-Cas and X Per) were found to have their energy flux proportional to frequency in the range of the log nu values of 12.7-14.7. However, the GS304-1 flux distribution is unique, in that its flux rises by several orders of magnitude as the wavelength changes from 4000 A to 60 microns. A static dust cloud was detected, with a radius of about 1 AU, which has formed around the classical nova RR Pic since its 1925 eruption. The post-eruption far-IR light curve of a classical nova provides strong evidence for IR emissions from both dust grains formed during the eruption and dust grains existing from previous eruptions.

  13. Light metal explosives and propellants

    DOEpatents

    Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.; Viecelli, James A.

    2005-04-05

    Disclosed herein are light metal explosives, pyrotechnics and propellants (LME&Ps) comprising a light metal component such as Li, B, Be or their hydrides or intermetallic compounds and alloys containing them and an oxidizer component containing a classic explosive, such as CL-20, or a non-explosive oxidizer, such as lithium perchlorate, or combinations thereof. LME&P formulations may have light metal particles and oxidizer particles ranging in size from 0.01 .mu.m to 1000 .mu.m.

  14. Challenges Facing Guitar Education

    ERIC Educational Resources Information Center

    Harrison, Eli

    2010-01-01

    The guitar is an extremely versatile instrument. It can produce complex chords and arpeggiated textures as readily as single-note melodies. In the twentieth century alone, it has appeared in a wide range of genres; classical, jazz, blues, rock, and bossa nova compose a partial list. The guitar is also a difficult instrument. Inconsistencies across…

  15. Nuclear Astrophysics At ISAC With DRAGON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Auria, John M.

    2005-05-24

    The unique DRAGON (recoil mass separator) facility is now available to provide measurements of radiative capture reactions involving short-lived exotic reactants which are considered important in explosive stellar scenarios such as novae and X-ray bursts. A description of the first study completed, the 1H(21Na,22Mg){gamma} reaction, will be summarized and updated. In addition, the planned program for DRAGON will be presented along with a summary of the upgrade of the ISAC Radioactive Beams laboratory.

  16. Analytical Support, Characterization, and Optimization of a Canine Training Aid Delivery System: Phase 2

    DTIC Science & Technology

    2016-01-29

    Arlington, Virginia 22203-1995 61-9496-A-2-5 ONR May 2014 – April 2015 *Nova Research, Inc., Alexandria, VA Improvised explosive device Detector dog Canine...37 Figure 30. Mass of MeS collected from three subsequent mock dog sniffs above the MODD. .. 37 Figure 31. Vapor concentration...particularly for the detection of HMEs. In 2012, the Office of Naval Research deployed as many as 280 IED Detector Dogs (IDDs) to Afghanistan [1

  17. Nova Sagittarii 2014 = PNV J18250860-2236024 AND Erratum

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2014-02-01

    Details of discovery of Nova Sagittarii 2014 (PNV J18250860-2236024) and procedures for observing and reporting observations are announced. Discovered by Sigeru Furuyama (Tone-machi, Ibaraki-ken, Japan) andreported by S. Nakano (Sumoto, Japan) at unfiltered CCD magnitude 8.7 on 2014 Jan. 26.857 UT. Coordinates: R.A. 18 25 08.60 Decl. = -22 36 02.4 (2000.0). Nova Sgr 2014 is Fe II-type classical nova past maximum, per low-resolution spectra obtained by A. Arai on 2014 Jan. 30.87 UT. Announced in IAU CBAT CBET 3802 (D. W. E. Green, ed.). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations. Also, an Erratum is reported. In AAVSO Alert Notice 496, Mati Morel (MMAT, Thornton, NSW, Australia) was credited with the discovery of the 1989 outburst of V745 Sco. The discoverer was William Liller (LIW, Vina del Mar, Chile), who observed V745 Sco on 1989 July 30.08 UT at magnitude 9.7 (PROBLICOM discovery using 2415 film with orange filter).

  18. BK Lyncis: the oldest old nova and a Bellwether for cataclysmic variable evolution

    NASA Astrophysics Data System (ADS)

    Patterson, Joseph; Uthas, Helena; Kemp, Jonathan; de Miguel, Enrique; Krajci, Thomas; Foote, Jerry; Hambsch, Franz-Josef; Campbell, Tut; Roberts, George; Cejudo, David; Dvorak, Shawn; Vanmunster, Tonny; Koff, Robert; Skillman, David; Harvey, David; Martin, Brian; Rock, John; Boyd, David; Oksanen, Arto; Morelle, Etienne; Ulowetz, Joseph; Kroes, Anthony; Sabo, Richard; Jensen, Lasse

    2013-09-01

    We summarize the results of a 20-yr campaign to study the light curves of BK Lyn, a nova-like star strangely located below the 2 to 3 h orbital-period gap in the family of cataclysmic variables (CVs). Two apparent superhumps dominate the nightly light curves, with periods 4.6 per cent longer, and 3.0 per cent shorter, than the orbital period. The first appears to be associated with the star's brighter states (V ˜ 14), while the second appears to be present throughout and becomes very dominant in the low state (V ˜ 15.7). It is plausible that these arise, respectively, from a prograde apsidal precession and a retrograde nodal precession of the star's accretion disc. Starting in the year 2005, the star's light curve became indistinguishable from that of a dwarf nova - in particular, that of the ER UMa subclass. No such clear transition has ever been observed in a CV before. Reviewing all the star's oddities, we speculate: (a) BK Lyn is the remnant of the probable nova on 101 December 30, and (b) it has been fading ever since, but it has taken ˜2000 yr for the accretion rate to drop sufficiently to permit dwarf-nova eruptions. If such behaviour is common, it can explain other puzzles of CV evolution. One: why the ER UMa class even exists (because all members can be remnants of recent novae). Two: why ER UMa stars and short-period nova-likes are rare (because their lifetimes, which are essentially cooling times, are short). Three: why short-period novae all decline to luminosity states far above their true quiescence (because they are just getting started in their post-nova cooling). Four: why the orbital periods, accretion rates and white dwarf temperatures of short-period CVs are somewhat too large to arise purely from the effects of gravitational radiation (because the unexpectedly long interval of enhanced post-nova brightness boosts the mean mass-transfer rate). And maybe even five: why very old, post-period-bounce CVs are hard to find (because the higher mass-loss rates have `burned them out'). These are substantial rewards in return for one investment of hypothesis: that the second parameter in CV evolution, besides orbital period, is time since the last classical-nova eruption.

  19. Stellar explosions from accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Moore, Kevin L.

    Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off-center ignition of the underlying WD in the double detonation scenario for Type Ia supernovae.

  20. Decay spectroscopy for nuclear astrophysics: β- and β-delayed proton decay

    NASA Astrophysics Data System (ADS)

    Trache, L.; Banu, A.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Roeder, B. T.; Simmons, E.; Spiridon, A.; Tribble, R. E.; Saastamoinen, A.; Jokinen, A.; Äysto, J.; Davinson, T.; Lotay, G.; Woods, P. J.; Pollacco, E.

    2012-02-01

    In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of 23Al, 27P, 31Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions 22Na(p,γ)23Mg (crucial for the depletion of 22Na in novae), 26mAl(p,γ)27Si and 30P(p,γ)31S (bottleneck in novae and XRB burning), respectively. Lastly, results with a new detector that allowed us to measure down to about 80 keV proton energy are announced.

  1. Computer Simulation of Magnetic Nova Shell Expantion

    NASA Astrophysics Data System (ADS)

    Dudnikova, Galina; Nikitin, Sergei; Snytnikov, Valeri; Vshivkov, Vitali

    2000-10-01

    An asymmetrical character of the shell expantion observed at many Nova may be associated with infuence of an inherent star magnetic field. Magneto-dipole energy of a Nova is much less than a kinetic energy of an exploding envelope. By this reason the conventional hydrodynamic models of point-like explosion with a spherical outward-directed shock wave do not consider effect of star magnetic field on the plasma movement. We used the numerical model based on the system of equations of the hybrid type( MHD approximation for electrons and Vlasov kinetic equations for ions). PIC-method for solving Vlasov equations was used. It gives an opportunaty to consider a complicated multi-flow motion of particles in plasma at super-Alfven velocity. At the beginning there is an immobile (cold) background plasma of a homogeneous concentration in a cylindrical region with a dipole magnetic field. Into the central spherical region of radius R, where the magnetic field remains uniform and constant , the external plasma does not penetrate with elastic reflections of ions at the spherical core surface. This boundary is spaced at r<

  2. The Photometric Evolution of the Classical Nova V723 Cassiopeia from 2006 through 2016

    NASA Astrophysics Data System (ADS)

    Hamilton-Drager, Catrina M.; Lane, Ryan I.; Recine, Kristen A.; Ljungquist, Lindsey S.; Grant, Jacob A.; Shrader, Katherine; Frymark, Derek G.; Dornbush, Eric M.; Richey-Yowell, Tyler; Boyle, Robert J.; Schwarz, Greg J.; Page, Kim L.

    2018-02-01

    We present photometric data of the classical nova, V723 Cas (Nova Cas 1995), over a span of 10 years (2006 through 2016) taken with the 0.9 m telescope at Lowell Observatory, operated as the National Undergraduate Research Observatory (NURO) on Anderson Mesa near Flagstaff, Arizona. A photometric analysis of the data produced light curves in the optical bands (Bessel B, V, and R filters). The data analyzed here reveal an asymmetric light curve (steep rise to maximum, followed by a slow decline to minimum), the overall structure of which exhibits pronounced evolution including a decrease in magnitude from year to year, at the rate of ∼0.15 mag yr‑1. We model these data with an irradiated secondary and an accretion disk with a hot spot using the eclipsing binary modeling program Nightfall. We find that we can model reasonably well each season of observation by changing very few parameters. The longitude of the hot spot on the disk and the brightness of the irradiated spot on the companion are largely responsible for the majority of the observed changes in the light curve shape and amplitude until 2009. After that, a decrease in the temperature of the white dwarf is required to model the observed light curves. This is supported by Swift/X-Ray Telescope observations, which indicate that nuclear fusion has ceased, and that V723 Cas is no longer detectable in the X-ray.

  3. Development of a Monte Carlo code for the data analysis of the {sup 18}F(p,α){sup 15}O reaction at astrophysical energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caruso, A.; Cherubini, S.; Spitaleri, C.

    Novae are astrophysical events (violent explosion) occurring in close binary systems consisting of a white dwarf and a main-sequence star or a star in a more advanced stage of evolution. They are called 'narrow systems' because the two components interact with each other: there is a process of mass exchange with resulting in the transfer of matter from the companion star to the white dwarf, leading to the formation of this last of the so-called accretion disk, rich mainly of hydrogen. Over time, more and more material accumulates until the pressure and the temperature reached are sufficient to trigger nuclearmore » fusion reactions, rapidly converting a large part of the hydrogen into heavier elements. The products of 'hot hydrogen burning' are then placed in the interstellar medium as a result of violent explosions. Studies on the element abundances observed in these events can provide important information about the stages of evolution stellar. During the outbursts of novae some radioactive isotopes are synthesized: in particular, the decay of short-lived nuclei such as {sup 13}N and {sup 18}F with subsequent emission of gamma radiation energy below 511 keV. The gamma rays from products electron-positron annihilation of positrons emitted in the decay of {sup 18}F are the most abundant and the first observable as soon as the atmosphere of the nova starts to become transparent to gamma radiation. Hence the importance of the study of nuclear reactions that lead both to the formation and to the destruction of {sup 18}F. Among these, the {sup 18}F(p,α){sup 15}O reaction is one of the main channels of destruction. This reaction was then studied at energies of astrophysical interest. The experiment done at Riken, Japan, has as its objective the study of the {sup 18}F(p,α){sup 15}O reaction, using a beam of {sup 18}F produced at CRIB, to derive important information about the phenomenon of novae. In this paper we present the experimental technique and the Monte Carlo code developed to be used in the data analysis process.« less

  4. Imaging Stellar Surface with The CHARA Array

    NASA Astrophysics Data System (ADS)

    Schaefer, Gail

    2018-04-01

    I will provide an overview of results on imaging stellar surfaces with the CHARA Array. These include imaging gravity darkening on rapid rotators, starspots on magnetically active stars, convective cells on red supergiants, and stellar winds from massive stars. In binary systems, the CHARA Array has been used to observe tidal distortions from Roche lobe filling in interactive binaries, transiting companions as they move through eclipse, and the angular expansion of novae explosions. I will discuss the impact of these results in an astrophysical context.

  5. Strong [Fe X] Emission and Deep Optical Eclipses of the Classical Nova V5593 Sgr 2012 No. 5

    NASA Astrophysics Data System (ADS)

    Starrfield, Sumner; Wagner, R. Mark; Walter, Frederick M.; Woodward, Charles E.; Schwarz, Greg; Krautter, Joachim

    2016-01-01

    V5593 Sgr was discovered by T. Kojima on 2012 July 16.512 UT at a magnitude of ~12.6. A low-resolution spectrum obtained by M. Fujii on 2012 July 18.572 UT confirmed that the object was indeed a Classical Nova. The AAVSO V-band light curve showed that the nova peaked near 11th mag on July 23-24 UT and subsequently declined in brightness with a t_2 of about 27 days making it a moderately fast nova. We obtained optical spectroscopy of V5593 Sgr between 2012 July 26 and 2013 February 19 UT with the SMARTS/CTIO 1.5 m telescope (+RC spectrograph) and then between 2014 August 25 and 2015 June 17 UT using the MDM Observatory 2.4 m Hiltner telescope (+CCDS), the 8.4 m Large Binocular Telescope (+MODS1), and the 6.5 m MMT (+BlueChannel). The SMARTS spectra confirmed the Fe II classification but showed that by 2013 February 19 UT the Fe II lines became much weaker and strong He II 468.5 nm and [Fe VII] 608.7 nm became prominent. A spectrum obtained on 2014 August 25 UT exhibited Balmer, He II, and [Fe VII] emission lines, but also for the first time, the presence of strong [Fe X] 637.4 nm emission with an observed intensity ratio with respect to Halpha of about 1.5. Other identified emission lines in our spectra included O VI, [Ca V], [Ca VI], [Ca VII], [Fe VI], [Fe XI], and [Fe XIV]. Surprisingly, [O III] emission was weak or absent. By 2015 June, a spectrum showed that the observed [Fe X]/Halpha intensity ratio had decreased to about 0.74. Contemporaneous optical photometry was obtained with the SMARTS/CTIO 1 m telescope (+ANDICAM) between 2014 March 19 and 2015 September 28 UT in the BVRIJHK bands. In agreement with our spectra in quiescence, V5593 Sgr is very red with (B-V) ~ 1 mag and (V-K) ~ 5 mag. The photometry shows ellipsoidal-like modulations with a peak-to-peak amplitude exceeding 2 mag in R and I. The modulation is seen in B through K; however, the amplitude is lower in JHK. Brief eclipses occur at the minimum of the ellipsoidal variation with a depth of at least 5 mag in R and I. The eclipse is seen in all bands covered by our observations. Two or more candidate periods may be consistent with the data. We will discuss these results in the context of other classical novae including GQ Mus and V723 Cas.

  6. NanoSIMS isotope studies of rare types of presolar silicon carbide grains from the Murchison meteorite: Implications for supernova models and the role of 14C

    NASA Astrophysics Data System (ADS)

    Hoppe, Peter; Pignatari, Marco; Kodolányi, János; Gröner, Elmar; Amari, Sachiko

    2018-01-01

    We have conducted a NanoSIMS ion imaging survey of about 1800 presolar silicon carbide (SiC) grains from the Murchison meteorite. A total of 21 supernova (SN) X grains, two SN C grains, and two putative nova grains were identified. Six particularly interesting grains, two X and C grains each and the two putative nova grains were subsequently studied in greater detail, namely, for C-, N-, Mg-Al-, Si-, S-, and Ca-Ti-isotopic compositions and for the initial presence of radioactive 26Al (half life 716,000 yr), 32Si (half life 153 yr), and 44Ti (half life 60 yr). Their isotope data along with those of three X grains from the literature were compared with model predictions for 15 M⊙ and 25 M⊙ Type II supernovae (SNe). The best fits were found for 25 M⊙ SN models that consider for the He shell the temperature and density of a 15 M⊙ SN and ingestion of H into the He shell before the explosion. In these models a C- and Si-rich zone forms at the bottom of the He burning zone (C/Si zone). The region above the C/Si zone is termed the O/nova zone and exhibits the isotopic fingerprints of explosive H burning. Satisfactory fits of measured C-, N-, and Si-isotopic compositions and of 26Al/27Al ratios require small-scale mixing of matter originating from a region extending over 0.2 M⊙ for X and C grains and over 0.4 M⊙ for one of the putative nova grains, involving matter from a thin Si-rich layer slightly below the C/Si zone, the C/Si zone, and the O/nova zone. Simultaneous fitting of 14N/15N and 26Al/27Al requires a C-N fractionation of a factor of 50 during SiC condensation. This leads to preferential incorporation of radioactive 14C (half life 5700 yr) over directly produced 14N and can account for the 14N/15N along with 26Al/27Al ratios as observed in the SiC grains. The good fit for one of the putative nova grains along with its high 26Al/27Al points towards a SN origin and supports previous suggestions that some grains classified as nova grains might be from SNe. Apparent problems with the small-scale mixing scheme considered here are C/O ratios that are mostly <1 if C-, N-, and Si-isotopic compositions and 26Al/27Al ratios are simultaneously matched, underproduction of 32Si, and overproduction of 44Ti. This confirms the limitations of one-dimensional hydrodynamical models for H ingestion and stresses the need to better study the convective-boundary mixing mechanisms at the bottom of the convective He shell in massive star progenitors. This is crucial to define the effective size of the C/Si zone formed by the SN shock. The comparison between the Si isotope data of the SN grains and the models gives a hint that the predicted 30Si is too high at the bottom of the He burning shell.

  7. Thermal and non-thermal explosion in metals ablation by femtosecond laser pulse: classical approach of the Two Temperature Model

    NASA Astrophysics Data System (ADS)

    Abdelmalek, Ahmed; Bedrane, Zeyneb; Amara, El-Hachemi

    2018-03-01

    We propose a classical Two Temperature Model TTMc where we consider the metal film during the irradiation like an ideal plasma. The numerical results are comparing to those finding by the existing TTM and the experimental data. In our model The cooper is taken as a target irradiated by a single laser pulse with 120 fs at 800 nm wavelength in air room. Our numerical results shown that there are a thermal and non-thermal explosion successively occurs in metal ablation by ultrashort laser pulse.

  8. A luminous, blue progenitor system for the type Iax supernova 2012Z

    NASA Astrophysics Data System (ADS)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Bildsten, Lars; Fong, Wen-Fai; Kirshner, Robert P.; Marion, G. H.; Riess, Adam G.; Stritzinger, Maximilian D.

    2014-08-01

    Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are `less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.

  9. A luminous, blue progenitor system for the type Iax supernova 2012Z.

    PubMed

    McCully, Curtis; Jha, Saurabh W; Foley, Ryan J; Bildsten, Lars; Fong, Wen-fai; Kirshner, Robert P; Marion, G H; Riess, Adam G; Stritzinger, Maximilian D

    2014-08-07

    Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are 'less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.

  10. Moment-Tensor Spectra of Source Physics Experiments (SPE) Explosions in Granite

    NASA Astrophysics Data System (ADS)

    Yang, X.; Cleveland, M.

    2016-12-01

    We perform frequency-domain moment tensor inversions of Source Physics Experiments (SPE) explosions conducted in granite during Phase I of the experiment. We test the sensitivity of source moment-tensor spectra to factors such as the velocity model, selected dataset and smoothing and damping parameters used in the inversion to constrain the error bound of inverted source spectra. Using source moments and corner frequencies measured from inverted source spectra of these explosions, we develop a new explosion P-wave source model that better describes observed source spectra of these small and over-buried chemical explosions detonated in granite than classical explosion source models derived mainly from nuclear-explosion data. In addition to source moment and corner frequency, we analyze other features in the source spectra to investigate their physical causes.

  11. MID-INFRARED SPECTROSCOPIC OBSERVATIONS OF THE DUST-FORMING CLASSICAL NOVA V2676 OPH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakita, Hideyo; Arai, Akira; Shinnaka, Yoshiharu

    2017-02-01

    The dust-forming nova V2676 Oph is unique in that it was the first nova to provide evidence of C{sub 2} and CN molecules during its near-maximum phase and evidence of CO molecules during its early decline phase. Observations of this nova have revealed the slow evolution of its lightcurves and have also shown low isotopic ratios of carbon ({sup 12}C/{sup 13}C) and nitrogen ({sup 14}N/{sup 15}N) in its envelope. These behaviors indicate that the white dwarf (WD) star hosting V2676 Oph is a CO-rich WD rather than an ONe-rich WD (typically larger in mass than the former). We performed mid-infraredmore » spectroscopic and photometric observations of V2676 Oph in 2013 and 2014 (respectively 452 and 782 days after its discovery). No significant [Ne ii] emission at 12.8 μ m was detected at either epoch. These provided evidence for a CO-rich WD star hosting V2676 Oph. Both carbon-rich and oxygen-rich grains were detected in addition to an unidentified infrared feature at 11.4 μ m originating from polycyclic aromatic hydrocarbon molecules or hydrogenated amorphous carbon grains in the envelope of V2676 Oph.« less

  12. The Early X-ray Emission From V382 Velorum (=Nove Vel 1999): An Internal Shock Model

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Ishida, Manabu

    2000-01-01

    We present the results of ASCA and RXTE observations of the early X-ray emission from the classical nova V382 Velorum. Its ASCA spectrum was hard (kT approximately 10 KeV) with a strong (10(exp 13)/sq cm) intrinsic absorption. In the subsequent RXTE data, the spectra became softer both due to a declining temperature and a diminishing column. We argue that this places the X-ray emission interior to the outermost ejecta produced by V382 Vel in 1999, and therefore must have been the result of a shock internal to the nova ejecta. The weakness of the Fe K.alpha lines probably indicates that the X-ray emitting plasmas are not in ionization equilibrium.

  13. The Progenitor of Tycho’s Supernova was Not Hot and Luminous

    NASA Astrophysics Data System (ADS)

    Ghavamian, Parviz; Woods, T. E.; Gilfanov, M.; Badenes, C.; T. E. Woods, C. Badenes, M. Gilfanov

    2018-01-01

    Canonical accretion models of Type Ia supernovae predict that a hot and luminous progenitor will ionize the surrounding gas out to a radius of ∼10–100 pc for ∼100,000 years after the explosion. Tycho’s supernova of 1572 was a Type Ia explosion which produced a remnant that is currently interacting with neutral gas in the form of Balmer-dominated shocks. From analysis of these shocks and photoionization calculations, we have placed stringent upper limits on the temperature and luminosity of the progenitor of Tycho’s supernova. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the current SNR radius (∼3 parsecs) can thus be excluded. This rules out steadily nuclear-burning white dwarfs (i..e, supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting 1E-8 solar masses per year (recurrent novae). The lack of a Stromgren sphere around Tycho’s SNR is consistent with a double degenerate explosion, although other more exotic scenarios may be possible.

  14. The classical nova hibernation scenario: a definitive confirmation

    NASA Astrophysics Data System (ADS)

    Gaensicke, Boris

    2017-08-01

    The detached white dwarf plus M-dwarf binary LL Eri exhibits truly unique behaviour within this class of compact binaries. As part of a COS snapshot survey, we detected large-amplitude variability in the ultraviolet flux of the white dwarf, confirmed by extensive ground-based blue-band photometry. The three independent frequencies detected in the light curves clearly identify this variability as non-radial pulsations of the white dwarf. However, with a hydrogen atmosphere and Teff=17200K, this white dwarf is nearly 5000K hotter than the canonical instability strip.The COS spectrum, albeit noisy, reveals that the metal lines typically detected in this class of stars, arising from material captured from the M-dwarf wind, are very broad. If interpreted as rotationally broadened, they imply a spin of only a few minutes. Such a short period could be explained by a past phase of intense accretion of mass and angular momentum. It has been postulated for over thirty years that classical nova eruptions on the white dwarf could cause such switching from a semi-detached to a detached binary configuration, during which the system hibernates - yet, to date no hibernating nova has been identified. However, the broad lines could also be due to pulsation-driven surface velocity fields, in which case the nature and past evolution of LL Eri would not be easily linked to any exisiting scenario for compact binary evolution. We propose to obtain a deeper COS observations to unambiguosly determine whether the cause of the observed line broadening is due to rapid rotation, which would unequivocally confirm the hibernation scenario.

  15. Measurement of Reactions on 30P for Nova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Ma, Z.; Guidry, M. W.; Hix, W. R.; Smith, M. S.

    2003-05-01

    Replace these paragraphs with your abstract. We encourage you to include a sentence acknowledging your funding agency. In a recent study the 30P(p,gamma)31S rate played a crucial role in the synthesis of heavier nuclear species, from Si to Ca, in nova outbursts on ONe White Dwarfs [1]. The adopted rate of this reaction, based on a Hauser-Feshbach calculation [2], has a large uncertainty and could be as much as a factor of 100 too high or too low [3]. In their study, Jose et al.[1] varied the 30P(p,gamma)31S reaction rate within this uncertainty and found that, when rate is reduced by a factor of 100, the synthesis of elements above Si is lowered by a factor 10 with respect to the values found with the nominal rate. This has important consequences for nova nucleosynthesis, as overproduction of isotopes in the Si to Ca mass region has been observed in the ejecta from some nova explosions (e.g.,[4,5]). While generally valid at higher temperatures, Hauser-Feshbach calculations of the rates at nova temperatures can have large uncertainties. At these temperatures, the rate is more likely dominated by a few individual nuclear resonances. At present there are about 10 31S resonances known above the 30P + p threshold that may contribute to the 30P(p,gamma)31S reaction rate at nova temperatures. The excitation energies of these levels are known but spins and parities (for all but two) are not. We plan to measure the 30P(p,p)30P and 30P(p,gamma)31S reactions at HRIBF to better determine this reaction rate. A detailed description of the experiments will be given. We are also conducting a new nova nucleosynthesis simulation over multiple spatial zones of the exploding envelope to investigate the influence of the 30P(p,gamma)31S reaction rate on nova nucleosynthesis. The results of these calculations will be discussed. 1. Jose , J., Coc, A., Hernanz, M., Astrophys. J., 560, 897(2001). 2. Thielemann, F.-K et al., 1987, Advances in Nuclear Astrophysics, ed. E. Vangioni-Flam ( Gif-sur-Yvette: Editions Frontiere), 525(SMOKER). 3. Iliadis, C. et al., Astrophys. J. Suppl., 134,151(2001). 4. Snijders et al., 1987 Snijders, M. A. J., et al., Mon. Not. Roy. Astron. Soc., 228, 329(1987). 5. Andrea, J., Drechsel, H., Starrfield, S., Astron. Astrophys., 291,869(1994) *Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  16. Comparison and prediction of chirping in NSTX and DIII-D

    NASA Astrophysics Data System (ADS)

    Duarte, Vinicius; Berk, Herbert; Gorelenkov, Nikolai; Heidbrink, William; Kramer, Gerrit; Nazikian, Raffi; Pace, David; Podesta, Mario; van Zeeland, Michael

    2016-10-01

    We present an explanation of why frequency chirping of Alfven waves is ubiquitous in NSTX and rarely observed in DIII-D. A time-delayed cubic nonlinear equation is employed for the study of the onset of nonlinear phase-space structures. Its explosive solutions are chirping precursors. We employ NOVA and NOVA-K codes to provide consistent Alfvenic eigenmodes and weighted physical contributions from all regions of phase space. In addition, TRANSP is employed to determine the diffusivity needed to fulfill power balance. Though background micro-turbulence is usually unimportant in determining the energetic particle spatial profile, it may still be important with regard to whether chirping structures likely form. We show that the energetic particle micro-turbulent induced scattering often competes with collisional pitch-angle scattering. This competition explains the tendency for NSTX, where micro-turbulence is weak, to exhibit Alfvénic chirping, whereas in DIII-D turbulent diffusion usually dominates and chirping is not observed except when micro-turbulence markedly reduces.

  17. ^2H(^18F,p)^19F Study at 6 MeV/u

    NASA Astrophysics Data System (ADS)

    Kozub, R. L.; Nesaraja, C. D.; Moazen, B. H.; Scott, J. P.; Bardayan, D. W.; Blackmon, J. C.; Gross, C. J.; Shapira, D.; Smith, M. S.; Batchelder, J. C.; Brune, C. R.; Champagne, A. E.; Sahin, L.; Cizewski, J. A.; Thomas, J. S.; Davinson, T.; Woods, P. J.; Greife, U.; Jewett, C.; Livesay, R. J.; Ma, Z.; Parker, P. D.

    2003-04-01

    The degree to which the (p,α) and (p,γ) reactions destroy ^18F at temperatures ˜1-4 x 10^8 K is important for understanding the synthesis of nuclei in nova explosions and for using ^18F as a monitor of nova mechanisms in gamma ray astronomy. The reactions are dominated by low-lying proton resonances near the ^18F+p threshold (E_x=6.411 MeV excitation energy in ^19Ne). To gain further information about these resonances, we have used the inverse ^18F(d,p)^19F neutron transfer reaction at the Holifield Radioactive Ion Beam Facility to selectively populate corresponding mirror states in ^19F. Proton angular distributions were measured for states in ^19F in the excitation energy range 0-9 MeV. Results and implications for the ^18F+p reactions and nuclear structure will be presented. ^1Supported by DOE. ^2ORNL is managed by UT-Battelle, LLC, for the USDOE.

  18. Suzaku Observation of the Classical Nova V2491 Cyg in Quiescence

    NASA Technical Reports Server (NTRS)

    Zemko, P.; Mukai, K.; Orio, M.

    2015-01-01

    We present Suzaku XIS observation of V2491 Cyg (Nova Cyg 2008 No. 2) obtained in quiescence, more than two years after the outburst. The nova was detected as a very luminous source in a wide spectral range from soft to hard X-rays. A very soft blackbody-like component peaking at 0.5 keV indicates that either we observe remaining, localized hydrogen burning on the surface of the white dwarf, or accretion onto a magnetized polar cap. In the second case, V2491 Cyg is a candidate "soft intermediate polar". We obtained the best fit for the X-ray spectra with several components: two of thermal plasma, a blackbody and a complex absorber. The later is typical of intermediate polars. The X-ray light-curve shows a modulation with an approximately 38 min period. The amplitude of this modulation is strongly energy dependent and reaches maximum in the 0.8-2.0 keV range. We discuss the origin of the X-ray emission and pulsations, and the likelihood of the intermediate polar scenario.

  19. Constraining the astrophysical 23Mg(p, γ)24Al reaction rate using the 23Na(d,p)24Na reaction

    NASA Astrophysics Data System (ADS)

    Bennett, E. A.; Catford, W. N.; Christian, G.; Dede, S.; Hallam, S.; Lotay, G.; Ota, S.; Saastamoinen, A.; Wilkinson, R.

    2017-09-01

    The 23Mg(p, γ)24Al reaction provides an escape from the Ne-Na cycle in classical novae and is therefore important in understanding nova nucleosynthesis in the A > 20 mass range. Although several resonances may contribute to the overall rate at novae temperatures, the resonance at 475 keV is thought to be dominant. The strength of this resonance has been directly measured using a radioactive 23Mg beam impinging on a windowless H2 gas target; however, recent high-precision 24Al mass measurements have called this result into question. Here we make an indirect measurement using the 23Na(d,p)24Na reaction in inverse kinematics to study the mirror state of the 475 keV resonance in 24Na. The experiment, performed at the Texas A&M Cyclotron Institute, utilized the TIARA silicon array, four HPGe detectors, and the MDM spectrometer to measure the excited states of the 24Na nucleus. Preliminary results from the experiment will be presented along with progress from the ongoing analysis.

  20. ON THE EFFECT OF EXPLOSIVE THERMONUCLEAR BURNING ON THE ACCRETED ENVELOPES OF WHITE DWARFS IN CATACLYSMIC VARIABLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sion, Edward M.; Sparks, Warren, E-mail: edward.sion@villanova.edu, E-mail: warrensparks@comcast.net

    2014-11-20

    The detection of heavy elements at suprasolar abundances in the atmospheres of some accreting white dwarfs in cataclysmic variables (CVs), coupled with the high temperatures needed to produce these elements, requires explosive thermonuclear burning. The central temperatures of any formerly more massive secondary stars in CVs undergoing hydrostatic CNO burning are far too low to produce these elements. Evidence is presented that at least some CVs contain donor secondaries that have been contaminated by white dwarf remnant burning during the common envelope phase and are transferring this material back to the white dwarf. This scenario does not exclude the channelmore » in which formerly more massive donor stars underwent CNO processing in systems with thermal timescale mass transfer. Implications for the progenitors of CVs are discussed and a new scenario for the white dwarf's accretion-nova-outburst is given.« less

  1. Science and technology in the stockpile stewardship program, S & TR reprints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storm, E

    This document reports on these topics: Computer Simulations in Support of National Security; Enhanced Surveillance of Aging Weapons; A New Precision Cutting Tool: The Femtosecond Laser; Superlasers as a Tool of Stockpile Stewardship; Nova Laser Experiments and Stockpile Stewardship; Transforming Explosive Art into Science; Better Flash Radiography Using the FXR; Preserving Nuclear Weapons Information; Site 300Õs New Contained Firing Facility; The Linear Electric Motor: Instability at 1,000 gÕs; A Powerful New Tool to Detect Clandestine Nuclear Tests; High Explosives in Stockpile Surveillance Indicate Constancy; Addressing a Cold War Legacy with a New Way to Produce TATB; JumpinÕ Jupiter! Metallic Hydrogen;more » Keeping the Nuclear Stockpile Safe, Secure, and Reliable; The Multibeam FabryÐPerot Velocimeter: Efficient Measurements of High Velocities; Theory and Modeling in Material Science; The Diamond Anvil Cell; Gamma-Ray Imaging Spectrometry; X-Ray Lasers and High-Density Plasma« less

  2. Who Were the Fifteen Saudis?

    DTIC Science & Technology

    2003-06-01

    definitions range from “terrorism consists of acts that in themselves may be classic forms of crime - murder, arson, the use of explosives – but that differ...from classic crimes in that they are executed with the deliberate intention of causing panic, disorder, and terror within an organized society;”8 to...

  3. Constraining Calcium Production in Novae

    NASA Astrophysics Data System (ADS)

    Tiwari, Pranjal; C. Fry, C. Wrede Team; A. Chen, J. Liang Collaboration; S. Bishop, T. Faestermann, D. Seiler Collaboration; R. Hertenberger, H. Wirth Collaboration

    2017-09-01

    Calcium is an element that can be produced by thermonuclear reactions in the hottest classical novae. There are discrepancies between the abundance of Calcium observed in novae and expectations based on astrophysical models. Unbound states 1 MeV above the proton threshold affect the production of Calcium in nova models because they act as resonances in the 38 K(p , γ) 39 Ca reaction present. This work describes an experiment to measure the energies of the excited states of 39 Ca . We will bombard a thin target of 40 Ca with a beam of 22 MeV deuterons, resulting in tritons and 39Ca. We will use a Q3D magnetic spectrograph from the MLL in Garching, Germany to momenta analyze the tritons to observe the excitation energies of the resulting 39 Ca states. Simulations have been run to determine the optimal spectrograph settings. We decided to use a chemically stable target composed of CaF2 , doing so resulted in an extra contaminant, Fluorine, which is dealt with by measuring the background from a LiF target. These simulations have led to settings and targets that will result in the observation of the 39 Ca states of interest with minimal interference from contaminants. Preliminary results from this experiment will be presented. National Sciences and Engineering Research Council of Canada and U.S. National Science Foundation.

  4. EVERY INTERACTING DOUBLE WHITE DWARF BINARY MAY MERGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Ken J.

    2015-05-20

    Interacting double white dwarf (WD) binaries can give rise to a wide variety of astrophysical outcomes ranging from faint thermonuclear and Type Ia supernovae to the formation of neutron stars and stably accreting AM Canum Venaticorum systems. One key factor affecting the final outcome is whether mass transfer remains dynamically stable or instead diverges, leading to the tidal disruption of the donor and the merger of the binary. It is typically thought that for low ratios of the donor mass to the accretor mass, mass transfer remains stable, especially if accretion occurs via a disk. In this Letter, we examinemore » low mass ratio double WD binaries and find that the initial phase of hydrogen-rich mass transfer leads to a classical nova-like outburst on the accretor. Dynamical friction within the expanding nova shell shrinks the orbit and causes the mass transfer rate to increase dramatically above the accretor's Eddington limit, possibly resulting in a binary merger. If the binary survives the first hydrogen-rich nova outbursts, dynamical friction within the subsequent helium-powered nova shells pushes the system even more strongly toward merger. While further calculations are necessary to confirm this outcome for the entire range of binaries previously thought to be dynamically stable, it appears likely that most, if not all, interacting double WD binaries will merge during the course of their evolution.« less

  5. BLOBS IN SPACE: THE LEGACY OF A NOVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    TThe prolific number of eruptions by the recurrent nova T Pyxidis has attracted the attention of many telescopes. The image on the left, taken by a ground-based telescope, shows shells of gas around the star that were blown off during several eruptions. Closer inspection by the Hubble Space Telescope (right-hand image), however, reveals that the shells are not smooth at all. In fact, this high-resolution image shows that the shells are actually more than 2,000 gaseous blobs packed into an area that is 1 light-year across. Resembling shrapnel from a shotgun blast, the blobs may have been produced by the nova explosion, the subsequent expansion of gaseous debris, or collisions between fast-moving and slow- moving gas from several eruptions. False color has been applied to this image to enhance details in the blobs. The ground-based image was taken Jan. 19, 1995 by the European Southern Observatory's New Technology Telescope in La Silla, Chile. The Hubble telescope picture is a compilation of data taken on Feb. 26, 1994, and June 16, Oct. 7, and Nov. 10, 1995, by the Wide Field and Planetary Camera 2. T Pyxidis is 6,000 light-years away in the dim southern constellation Pyxis, the Mariner's Compass. Credits: Mike Shara, Bob Williams, and David Zurek (Space Telescope Science Institute); Roberto Gilmozzi (European Southern Observatory); Dina Prialnik (Tel Aviv University); and NASA.

  6. NOVA - Official Website | Invisible Universe Revealed

    Science.gov Websites

    ): They look like artworks in the heavens. Each one of them is different, like snowflakes. And these are coming to a focus at different points. And that is the classic problem called "spherical aberration chips of paint. They had thrown off the laser-guided measuring tool used to shape the mirror. JIM

  7. The Spectroscopic Evolution of the Symbiotic-like Recurrent Nova V407 Cygni During Its 2010 Outburst. 2. The Circumstellar Environment and the Aftermath

    NASA Technical Reports Server (NTRS)

    Shore, S. N.; Wahlgren, G. M.; Augusteijn, T.; Liimets, T.; Koubsky, P.; Slechta, M.; Votruba, V.

    2011-01-01

    The nova outburst of V407 Cyg in 2010 Mar. 10 was the first observed for this star but its close resemblance to the well known symbiotic-like recurrent nova RS Oph suggests that it is also a member of this rare type of Galactic novae. The nova was the first detected at gamma-ray energies and is the first known nova explosion for this system. The extensive multiwavelength coverage of this outburst makes it an ideal comparison with the few other outbursts known for similar systems. We extend our previous analysis of the Mira and the expanding shock from the explosion to detail the time development of the photoionized Mira wind, circumstellar medium, and shocked circumstellar environment to derive their physical parameters and how they relate to large scale structure of the environment, extending the previous coverage to more than 500 days after outburst. We use optical spectra obtained at high resolution with the Nordic Optical Telescope (NOT) (R approx. =.45000 to 65000) and medium resolution Ondrejov Observatory (R approx. = 12000) data and compare the line variations with publicly available archival measurements at 30 GHz OVNR and at X-rays with Swift during the first four months of the outburst, through the end of the epoch of strong XR emission. We use nebular diagnostics and high resolution profile variations to derive the densities and locations of the extended emission. We find that the higher the ionization and/or the higher the excitation energy, the more closely the profiles resemble the He II/Ca V-type high velocity shock profile discussed in Paper I. This also accounts for the comparative development of the [N II] and [O III] isoelectronic transitions: the [O III] 4363A profile does not show the low velocity peaks while the excited [N II] 5754A does. If nitrogen is mainly N(+3) or higher in the shock, the upper state of the [N II] nebular lines will contribute but if the oxygen is O(+2) then this line is formed by recombination, masking the nebular contributor, and the lower states are collisionally quenched but emit from the low density surroundings. Absorption lines of Fe-peak ions formed in the Mira wind were visible as P Cyg profiles at low velocity before Day 69, around the time of the X-ray peak and we identified many absorption transitions without accompanying emission for metal lines. The H Balmer lines showed strong P Cyg absorption troughs that weakened during the 2010 observing period, through Day 128. The Fe-peak line profiles and flux variations were different for permitted and forbidden transitions: the E1 transitions were not visible after Day 128 but had shown a narrow peak superimposed on an extended (200 km/s) blue wing, while the M1 and E2 transitions persisted to Day 529, the last observation, and showed extended redshifted wings up of the same velocity. We distinguish the components from the shock, the photoionized environment, and the chromosphere and inner Mira wind using spectra taken more than one year after outburst. The multiple shells and radiative excitation phenomenology are similar to those recently cited for GRBs and SNIa .

  8. Type IA Supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1992-01-01

    Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.

  9. Inter-Longitude Astronomy (ILA) Project: Current Highlights And Perspectives. I. Magnetic vs. Non-Magnetic Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.; Antoniuk, K. A.; Baklanov, A. V.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Dubovsky, P. A.; Han, W.; Hegedus, T.; Henden, A.; Hric, L.; Chun-Hwey, Kim; Yonggi, Kim; Kolesnikov, S. V.; Kudzej, I.; Liakos, A.; Niarchos, P. G.; Oksanen, A.; Patkos, L.; Petrik, K.; Pit', N. V.; Shakhovskoy, N. M.; Virnina, N. A.; Yoon, J.; Zola, S.

    2010-12-01

    We present a review of highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types classical, asynchronous, intermedi ate polars with 25 timescales corresponding to differ ent physical mechanisms and their combinations (part "Polar"); negative and positive superhumpers in nova- like and dwarf novae stars ("Superhumper"); symbiotic ("Symbiosis"); eclipsing variables with and without ev idence for a current mass transfer ("Eclipser") with a special emphasis on systems with a direct impact of the stream into the gainor star's atmosphere, which we propose to call "Impactors", or V361 Lyr-type stars. Other parts of the ILA project are "Stellar Bell" (pul sating variables of different types and periods - M, SR, RV Tau, RR Lyr, Delta Sct) and "New Variable".

  10. Time-Dependent Moment Tensors of the First Four Source Physics Experiments (SPE) Explosions

    NASA Astrophysics Data System (ADS)

    Yang, X.

    2015-12-01

    We use mainly vertical-component geophone data within 2 km from the epicenter to invert for time-dependent moment tensors of the first four SPE explosions: SPE-1, SPE-2, SPE-3 and SPE-4Prime. We employ a one-dimensional (1D) velocity model developed from P- and Rg-wave travel times for Green's function calculations. The attenuation structure of the model is developed from P- and Rg-wave amplitudes. We select data for the inversion based on the criterion that they show consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, diagonal components of the moment tensors are well constrained. Nevertheless, the moment tensors, particularly their isotropic components, provide reasonable estimates of the long-period source amplitudes as well as estimates of corner frequencies, albeit with larger uncertainties. The estimated corner frequencies, however, are consistent with estimates from ratios of seismogram spectra from different explosions. These long-period source amplitudes and corner frequencies cannot be fit by classical P-wave explosion source models. The results motivate the development of new P-wave source models suitable for these chemical explosions. To that end, we fit inverted moment-tensor spectra by modifying the classical explosion model using regressions of estimated source parameters. Although the number of data points used in the regression is small, the approach suggests a way for the new-model development when more data are collected.

  11. Reaction Studies With Light, Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Ernst Rehm, K.

    2006-10-01

    The availability of beams of exotic nuclei allows us for the first time to study in a terrestrial laboratory reactions, which occur in stellar explosions, such as Novae, Supernovae or X-ray bursts. In this talk I will present results from recent experiments performed with beams of light, unstable nuclei, which are produced via the in-flight technique at the ATLAs accelerator at Argonne. This work was supported by the US Department of Energy, Nuclear Physics Division, under contract No. W-31-109-ENG-38 and by the NSF Grant No. PHY-02-16783 (Joint Institute for Nuclear Astrophysics).

  12. Astrophysics experiments with radioactive beams at ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Back, B. B.; Clark, J. A.; Pardo, R. C.

    Reactions involving short-lived nuclei play an important role in nuclear astrophysics, especially in explosive scenarios which occur in novae, supernovae or X-ray bursts. This article describes the nuclear astrophysics program with radioactive ion beams at the ATLAS accelerator at Argonne National Laboratory. The CARIBU facility as well as recent improvements for the in-flight technique are discussed. New detectors which are important for studies of the rapid proton or the rapid neutron-capture processes are described. At the end we briefly mention plans for future upgrades to enhance the intensity, purity and the range of in-flight and CARIBU beams.

  13. Observing the Next Galactic Supernova with the NOvA Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasel, Justin A.; Sheshukov, Andrey; Habig, Alec

    The next galactic core-collapse supernova will deliver a wealth of neutrinos which for the first time we are well-situated to measure. These explosions produce neutrinos with energies between 10 and 100 MeV over a period of tens of seconds. Galactic supernovae are relatively rare events, occurring with a frequency of just a few per century. It is therefore essential that all neutrino detectors capable of detecting these neutrinos are ready to trigger on this signal when it occurs. This poster describes a data-driven trigger which is designed to detect the neutrino signal from a galactic core-collapse supernova with the NOvAmore » detectors. The trigger analyzes 5ms blocks of detector activity and applies background rejection algorithms to detect the signal time structure over the background. This background reduction is an essential part of the process, as the NOvA detectors are designed to detect neutrinos from Fermilab's NuMI beam which have an average energy of 2GeV--well above the average energy of supernova neutrinos.« less

  14. Detection of residues from explosive manipulation by near infrared hyperspectral imaging: a promising forensic tool.

    PubMed

    Fernández de la Ossa, Mª Ángeles; Amigo, José Manuel; García-Ruiz, Carmen

    2014-09-01

    In this study near infrared hyperspectral imaging (NIR-HSI) is used to provide a fast, non-contact, non-invasive and non-destructive method for the analysis of explosive residues on human handprints. Volunteers manipulated individually each of these explosives and after deposited their handprints on plastic sheets. For this purpose, classical explosives, potentially used as part of improvised explosive devices (IEDs) as ammonium nitrate, blackpowder, single- and double-base smokeless gunpowders and dynamite were studied. A partial-least squares discriminant analysis (PLS-DA) model was built to detect and classify the presence of explosive residues in handprints. High levels of sensitivity and specificity for the PLS-DA classification model created to identify ammonium nitrate, blackpowder, single- and double-base smokeless gunpowders and dynamite residues were obtained, allowing the development of a preliminary library and facilitating the direct and in situ detection of explosives by NIR-HSI. Consequently, this technique is showed as a promising forensic tool for the detection of explosive residues and other related samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Adaptive radiation versus 'radiation' and 'explosive diversification': why conceptual distinctions are fundamental to understanding evolution.

    PubMed

    Givnish, Thomas J

    2015-07-01

    Adaptive radiation is the rise of a diversity of ecological roles and role-specific adaptations within a lineage. Recently, some researchers have begun to use 'adaptive radiation' or 'radiation' as synonymous with 'explosive species diversification'. This essay aims to clarify distinctions between these concepts, and the related ideas of geographic speciation, sexual selection, key innovations, key landscapes and ecological keys. Several examples are given to demonstrate that adaptive radiation and explosive diversification are not the same phenomenon, and that focusing on explosive diversification and the analysis of phylogenetic topology ignores much of the rich biology associated with adaptive radiation, and risks generating confusion about the nature of the evolutionary forces driving species diversification. Some 'radiations' involve bursts of geographic speciation or sexual selection, rather than adaptive diversification; some adaptive radiations have little or no effect on speciation, or even a negative effect. Many classic examples of 'adaptive radiation' appear to involve effects driven partly by geographic speciation, species' dispersal abilities, and the nature of extrinsic dispersal barriers; partly by sexual selection; and partly by adaptive radiation in the classical sense, including the origin of traits and invasion of adaptive zones that result in decreased diversification rates but add to overall diversity. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  16. Outflows from Compact Objects in Supernovae and Novae

    NASA Astrophysics Data System (ADS)

    Vlasov, Andrey Dmitrievich

    Originally thought of as a constant and unchanging place, the Universe is full of dramas of stars emerging, dying, eating each other, colliding, etc. One of the first transient phenomena noticed were called novae (the name means "new" in Latin). Years later, supernovae were discovered. Despite their names, both novae and supernovae are events in relatively old stars, with supernovae marking the point of stellar death. Known for thousands of years, supernovae and novae remain among the most studied events in our Universe. Supernovae strongly influence the circumstellar medium, enriching it with heavy elements and shocking it, facilitating star formation. Cosmic rays are believed to be accelerated in shocks from supernovae, with small contribution possibly coming from novae. Even though the basic physics of novae is understood, many questions remain unanswered. These include the geometry of the ejecta, why some novae are luminous radio or gamma-ray sources and others are not, what is the ultimate fate of recurrent novae, etc. Supernova explosions are the primary sources of elements heavier than hydrogen and helium. The elements up to nuclear masses A around 100 can form through successive nuclear fusion in the cores of stars starting with hydrogen. Beyond iron, the fusion becomes endothermic instead of exothermic. In addition, for these nuclear masses the temperatures required to overcome the Coulomb barriers are so high that the nuclei are dissociated into alpha particles and free nucleons. Hence all elements heavier than A around 100 should have formed by some other means. These heavier nuclear species are formed by neutron capture on seed nuclei close to or heavier than iron-group nuclei. Depending on the ratio between neutron-capture timescale and beta-decay timescale, neutron-capture processes are called rapid or slow (r- and s-processes, respectively). The s-process, which occurs near the valley of stable isotopes, terminates at Bi (Z=83), because after Bi there is a gap of four elements with no stable isotopes (Po, At, Rn, Ac) until we come to stable Th. The significant abundance of Th and U in our Universe therefore implies the presence of a robust source of r-process. The astrophysical site of r-process is still under debate. Here we present a study of a candidate site for r-process, neutrino-heated winds from newly-formed strongly magnetized, rapidly rotating neutron stars ("proto-magnetars"). Even though we find such winds are incapable of synthesizing the heaviest r-process elements like U and Th, they produce substantial amounts of weak r-process (38 Supernova explosions are the primary sources of elements heavier than hydrogen and helium. The elements up to nuclear masses A around 100 can form through successive nuclear fusion in the cores of stars starting with hydrogen. Beyond iron, the fusion becomes endothermic instead of exothermic. In addition, for these nuclear masses the temperatures required to overcome the Coulomb barriers are so high that the nuclei are dissociated into alpha particles and free nucleons. Hence all elements heavier than A around 100 should have formed by some other means. These heavier nuclear species are formed by neutron capture on seed nuclei close to or heavier than iron-group nuclei. Depending on the ratio between neutron-capture timescale and beta-decay timescale, neutron-capture processes are called rapid or slow (r- and s-processes, respectively). The s-process, which occurs near the valley of stable isotopes, terminates at Bi (Z=83), because after Bi there is a gap of four elements with no stable isotopes (Po, At, Rn, Ac) until we come to stable Th. The significant abundance of Th and U in our Universe therefore implies the presence of a robust source of r-process. The astrophysical site of r-process is still under debate. Here we present a study of a candidate site for r-process, neutrino-heated winds from newly-formed strongly magnetized, rapidly rotating neutron stars ("proto-magnetars"). Even though we find such winds are incapable of synthesizing the heaviest r-process elements like U and Th, they produce substantial amounts of weak r-process (38.

  17. Origin of Ne emission line of very luminous soft X-ray transient MAXI J0158–744

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtani, Yukari; Morii, Mikio; Shigeyama, Toshikazu

    2014-06-01

    We investigate the mechanism that reproduced notable spectral features at the ignition phase of the nova explosion observed for a super-Eddington X-ray transient source MAXI J0158–744 in the Small Magellanic Cloud. These features include a strong Ne IX emission line at 0.92 keV with large equivalent widths of 0.32{sub −0.11}{sup +0.21} keV and the absence of the Ne X line at 1.02 keV. In this paper, we calculate the radiative transfer using a Monte Carlo code, taking into account the line blanketing effect due to transitions of N, O, Ne, Mg, and Al ions in an accelerating wind emanating frommore » a white dwarf with a structure based on a spherically symmetric stationary model. We found that the strong Ne IX line can be reproduced if the mass fraction of Ne is enhanced to 10{sup –3} or more and if that of O is reduced to ∼5 × 10{sup –9} or less and that the absence of other lines, including Ne X ions at higher energies, can be also reproduced by the line blanketing effect. This enhancement of the Ne mass fraction indicates that the ejecta are enriched by Ne dredged up from the surface of the white dwarf composed of O, Ne, and Mg rather than C and O, as already pointed out in previous work. We argue that the CNO cycle driving this nova explosion converted most of C and O into N and thus reduced the O mass fraction.« less

  18. VizieR Online Data Catalog: Properties of the known Galactic classical novae (Pagnotta+, 2014)

    NASA Astrophysics Data System (ADS)

    Pagnotta, A.; Schaefer, B. E.

    2017-07-01

    RNe and CNe have substantial overlap in the observed distributions of their properties. Indeed, this is expected, since many CNe are really RNe. Nevertheless, a variety of properties are greatly different between the CNe and the RNe. For example, most RNe have orbital periods longer than 0.6 days, while most CNe have orbital periods shorter than 0.3 days. Such properties can be used as indicators for recognizing RNe among the CNe. Due to the overlapping distribution of properties, no one property (other than multiple observed nova eruptions) can be used to definitively identify the CN or RN nature of any system. We never prove that a system is an RN by any means other than finding multiple eruptions. The presence of multiple positive indicators, however, especially if none are contrary, can make a strong case for the RN nature of a system. (2 data files).

  19. Gamma-ray emission from internal shocks in novae

    NASA Astrophysics Data System (ADS)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity <2000 km s-1 and a mass-loss rate of 10-4-10-3 M⊙ yr-1 declining over a time scale of a few days. Because of the large uncertainties in the measurements, many parameters of the problem are degenerate and/or poorly constrained except for the wind velocity, the relatively low values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main features in the observations of the recent gamma-ray nova ASASSN-16ma. Conclusions: The internal shock model can account for the gamma-ray emission of the novae detected by Fermi LAT. Gamma-ray observations hold potential for probing the mechanism of mass ejection in novae, but should be combined to diagnostics of the thermal emission at lower energies to be more constraining.

  20. Laminography using resonant neutron attenuation for detection of drugs and explosives

    NASA Astrophysics Data System (ADS)

    Loveman, R. A.; Feinstein, R. L.; Bendahan, J.; Gozani, T.; Shea, P.

    1997-02-01

    Resonant neutron attenuation has been shown to be usable for assaying elements which constitute explosives, cocaine, and heroin. By careful analysis of attenuation measurements, the determination of the presence or absence of explosives can be determined. Simple two dimensional radiographic techniques only give results for areal density and consequently will be limited in their effectiveness. Classical tomographic techniques are both computationally very intensive and place strict requirements on the quality and amount of data acquired. These requirements and computations take time and are likely to be very difficult to perform in real time. Simulation studies described in this article have shown that laminographic image reconstruction can be used effectively with resonant neutron attenuation measurements to interrogate luggage for explosives or drugs. The design of the system described in this article is capable of pseudo-three dimensional image reconstruction of all of the elemental densities pertinent to explosive and drug detection.

  1. The active quiescence of HR Del (Nova Del 1967). The ex-nova HR Del

    NASA Astrophysics Data System (ADS)

    Selvelli, P.; Friedjung, M.

    2003-04-01

    This new UV study of the ex-nova HR Del is based on all of the data obtained with the International Ultraviolet Explorer (IUE) satellite, and includes the important series of spectra taken in 1988 and 1992 that have not been analyzed so far. This has allowed us to make a detailed study of both the long-timescale and the short-timescale UV variations, after the return of the nova, around 1981-1982, to the pre-outburst optical magnitude. After the correction for the reddening (EB-V=0.16), adopting a distance d =850 pc we have derived a mean UV luminosity close to LUV ~ 56 Lsun, the highest value among classical novae in ``quiescence". Also the ``average" optical absolute magnitude (Mv=+2.30) is indicative of a bright object. The UV continuum luminosity, the HeII 1640 Å emission line luminosity, and the optical absolute magnitude all give a mass accretion rate dot {M} very close to 1.4x 10-7 Msun yr-1, if one assumes that the luminosity of the old nova is due to a non-irradiated accretion disk. The UV continuum has declined by a factor less than 1.2 over the 13 years of the IUE observations, while the UV emission lines have faded by larger factors. The continuum distribution is well fitted with either a black body of 33 900 K, or a power-law Flambda ~ lambda -2.20. A comparison with the grid of models of Wade & Hubeny (\\cite{Wade}) indicates a low M1 value and a relatively high dot {M} but the best fittings to the continuum and the line spectrum come from different models. We show that the ``quiescent" optical magnitude at mv ~ 12 comes from the hot component and not from the companion star. Since most IUE observations correspond to the ``quiescent" magnitude at mv ~ 12, the same as in the pre-eruption stage, we infer that the pre-nova, for at least 70 years prior to eruption, was also very bright at near the same LUV, Mv, dot {M}, and T values as derived in the present study for the ex-nova. The wind components in the P Cyg profiles of the CIV 1550 Å and NV 1240 Å resonance lines are strong and variable on short timescales, with vedge up to -5000 km s-1, a remarkably high value. The phenomenology of the short-time variations of the wind indicates the presence of an inhomogeneous outflow. We discuss the nature of the strong UV continuum and wind features and the implications of the presence of a ``bright" state a long time before and after outburst on our present knowledge of the pre-nova and post-nova behavior. Based on observations made with the International Ultraviolet Explorer and de-archived from the ESA VILSPA Database. }

  2. Detonation corner turning in vapor-deposited explosives using the micromushroom test

    NASA Astrophysics Data System (ADS)

    Tappan, Alexander S.; Yarrington, Cole D.; Knepper, Robert

    2017-06-01

    Detonation corner turning describes the ability of a detonation wave to propagate into unreacted explosive that is not immediately in the path normal to the wave. The classic example of corner turning is cylindrical and involves a small diameter explosive propagating into a larger diameter explosive as described by Los Alamos' Mushroom test (e.g. (Hill, Seitz et al. 1998)), where corner turning is inferred from optical breakout of the detonation wave. We present a complimentary method to study corner turning in millimeter-scale explosives through the use of vapor deposition to prepare the slab (quasi-2D) analog of the axisymmetric mushroom test. Because the samples are in a slab configuration, optical access to the explosive is excellent and direct imaging of the detonation wave and ``dead zone'' that results during corner turning is possible. Results are compared for explosives that demonstrate a range of behaviors, from pentaerythritol tetranitrate (PETN), which has corner turning properties that are nearly ideal; to HNAB (hexanitroazobenzene), which has corner turning properties that reveal a substantial dead zone. Results are discussed in the context of microstructure and detonation failure thickness.

  3. Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging.

    PubMed

    Ablikim, Utuq; Bomme, Cédric; Xiong, Hui; Savelyev, Evgeny; Obaid, Razib; Kaderiya, Balram; Augustin, Sven; Schnorr, Kirsten; Dumitriu, Ileana; Osipov, Timur; Bilodeau, René; Kilcoyne, David; Kumarappan, Vinod; Rudenko, Artem; Berrah, Nora; Rolles, Daniel

    2016-12-02

    An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C 2 H 2 Br 2 ). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model.

  4. Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging

    PubMed Central

    Ablikim, Utuq; Bomme, Cédric; Xiong, Hui; Savelyev, Evgeny; Obaid, Razib; Kaderiya, Balram; Augustin, Sven; Schnorr, Kirsten; Dumitriu, Ileana; Osipov, Timur; Bilodeau, René; Kilcoyne, David; Kumarappan, Vinod; Rudenko, Artem; Berrah, Nora; Rolles, Daniel

    2016-01-01

    An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C2H2Br2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model. PMID:27910943

  5. Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, Utuq; Bomme, Cédric; Xiong, Hui

    An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C 2H 2Br 2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. Lastly, the experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model.

  6. Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging

    DOE PAGES

    Ablikim, Utuq; Bomme, Cédric; Xiong, Hui; ...

    2016-12-02

    An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C 2H 2Br 2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. Lastly, the experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model.

  7. The SSS classical nova V5116 Sgr

    NASA Astrophysics Data System (ADS)

    Sala, G.; Ness, J.; Greiner, J.; Hernanz, M.

    2017-10-01

    XMM-Newton observed the nova V5116 Sgr during its supersoft phase (SSS). V5116 Sgr showed a decrease of the flux by a factor around 8 during 2/3 of the orbital period. The broad band EPIC spectra remain unchanged during the different flux phases, suggesting an occultation of the central source in a high inclination system. While the global SED does not change significantly, the RGS spectrum is changing between the high and the low flux phases. The non-occultation phase shows a typical white dwarf atmosphere spectrum, dominated by absorption lines. During the low flux periods an extra component of emission lines is superimposed to the soft X-ray continuum. This supports the picture of V5116 Sgr as the clearest example of a system switching between the SSa class of SSS novae, with spectra dominated by absorption lines, and the SSe class, showing an emission lines component. In addition, the simultaneous OM images allow us to find a phase solution for the X-ray light-curve. A thick rim of the accretion disk as the one developed for the SSSs CAL 87, RX J0019.8, and RX J0513.9 could provide a plausible model both for the optical and the X-ray light curve of V5116 Sgr.

  8. The HEPCloud Facility: elastic computing for High Energy Physics - The NOvA Use Case

    NASA Astrophysics Data System (ADS)

    Fuess, S.; Garzoglio, G.; Holzman, B.; Kennedy, R.; Norman, A.; Timm, S.; Tiradani, A.

    2017-10-01

    The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a common interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 38 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This paper describes the Fermilab HEPCloud Facility and the challenges overcome for the CMS and NOvA communities.

  9. Explosive synchronization coexists with classical synchronization in the Kuramoto model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danziger, Michael M., E-mail: michael.danziger@biu.ac.il; Havlin, Shlomo; Moskalenko, Olga I.

    2016-06-15

    Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model.more » We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10{sup 6}) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.« less

  10. Laser-driven planar Rayleigh-Taylor instability experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glendinning, S.G.; Weber, S.V.; Bell, P.

    1992-08-24

    We have performed a series of experiments on the Nova Laser Facility to examine the hydrodynamic behavior of directly driven planar foils with initial perturbations of varying wavelength. The foils were accelerated with a single, frequency doubled, smoothed and temporally shaped laser beam at 0.8{times}10{sup 14} W/cm{sup 2}. The experiments are in good agreement with numerical simulations using the computer codes LASNEX and ORCHID which show growth rates reduced to about 70% of classical for this nonlinear regime.

  11. Synthesis of Al-26 in explosive hydrogen burning

    NASA Technical Reports Server (NTRS)

    Arnould, M.; Norgaard, H.; Thielemann, F.-K.; Hillebrandt, W.

    1980-01-01

    The possibility of Al-26 synthesis during the explosive processing of hydrogen-rich material in the outer layers of a supernova or in nova envelopes is investigated. It is found that in the peak temperature range of 1-3 x 10 to the 8th deg K and for expansion time scales of the order of 1-1000 s, values of (Al-26)/(Al-27) as high as 0.1-1 can be obtained for values of 0.001-100,000 for the product of the peak density in g/cu cm and the proton mass fraction. Such a level of Al-26 production is considerably higher than that of recent carbon/neon burning nucleosynthesis models, and is sufficient to account for the magnesium anomalies detected in certain inclusions from the Leoville and Allende meteorites. Al abundances resulting from a hydrodynamical calculation performed on the grounds of a 25 solar mass presupernova model are also presented, and the influence of uncertainties in the input physics is discussed; in particular, the rates of the (Mg-25)(p,gamma)(Al-26) and (Al-26)(p,gamma)(Si-27) key reactions are studied.

  12. Constraints on the Progenitor System of the Type Ia Supernova 2014J from Pre-Explosion Hubble Space Telescope Imaging

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.

    2014-01-01

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d (is) approx. 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T (is) approximately 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of RV and AV values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T (is) less than 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  13. Metallic glass formation at the interface of explosively welded Nb and stainless steel

    NASA Astrophysics Data System (ADS)

    Bataev, I. A.; Hokamoto, K.; Keno, H.; Bataev, A. A.; Balagansky, I. A.; Vinogradov, A. V.

    2015-07-01

    The interface between explosively welded niobium and stainless steel SUS 304 was studied using scanning electron microscopy, transmission electron microscopy and energy dispersive X-Ray spectroscopy. The wavy interface along which vortex zones were located was observed. The vortex zones formed due to the mixing of materials typically had amorphous structure. Inoue's criteria of glass formation were used to explain this result. The effect of the composition, cooling rate and pressure on the glass formation are discussed. The conditions of deformation, heating, and cooling as well as shockwaves propagation were numerically simulated. We show that the conditions of vortex zone formation resemble the conditions of rapid solidification processes. In contrast to the "classical" methods of rapid solidification of melt, the conditions of metastable phase formation during explosive welding are significantly complicated by the fluctuations of composition and pressure. Possible metastable structures formation at the interface of some common explosively joined materials is predicted.

  14. NQR detection of explosive simulants using RF atomic magnetometers

    NASA Astrophysics Data System (ADS)

    Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) is a highly selective spectroscopic method that can be used to detect and identify a number of chemicals of interest to the defense, national security, and law enforcement community. In the past, there have been several documented attempts to utilize NQR to detect nitrogen bearing explosives using induction sensors to detect the NQR RF signatures. We present here our work on the NQR detection of explosive simulants using optically pumped RF atomic magnetometers. RF atomic magnetometers can provide an order of magnitude (or more) improvement in sensitivity versus induction sensors and can enable mitigation of RF interference, which has classically has been a problem for conventional NQR using induction sensors. We present the theory of operation of optically pumped RF atomic magnetometers along with the result of laboratory work on the detection of explosive simulant material. An outline of ongoing work will also be presented along with a path for a fieldable detection system.

  15. Interaction between a steady detonation wave in nitromethane and geometrical complex confinement defects.

    NASA Astrophysics Data System (ADS)

    Crouzet, Blandine; Carion, Noel; Manczur, Philippe

    2007-06-01

    It is well known that detonation propagation is altered if the explosive is encased in an inert confining material. But in practice, explosives are rarely used without confinement and particular attention must be paid to the problem of explosive/confinement interactions. In this work, we have carried out two copper cylinder expansion tests on nitromethane. They differ from the classical cylinder test in that the liner includes evenly-spaced protruding circular defects. The aim is to study how a detonation front propagating in the liquid explosive interacts with the confining material defects. The subsequent motion of the metal, accelerated by the expanding detonation products, is measured using a range of diagnostic techniques: electrical probes, rapid framing camera, glass block associated with streak camera and velocity laser interferometers. The different experimental records have been examined in the light of a simple 2D theoretical shock polar analysis and 2D numerical simulations.

  16. Nonideal detonation regimes in low density explosives

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.; Kashkarov, A. O.; Pruuel, E. R.; Satonkina, N. P.; Sil'vestrov, V. V.; Yunoshev, A. S.; Plastinin, A. V.

    2016-02-01

    Measurements using Velocity Interferometer System for Any Reflector (VISAR) were performed for three high explosives at densities slightly above the natural loose-packed densities. The velocity histories at the explosive/window interface demonstrate that the grain size of the explosives plays an important role. Fine-grained materials produced rather smooth records with reduced von Neumann spike amplitudes. For commercial coarse-grained specimens, the chemical spike (if detectable) was more pronounced. This difference can be explained as a manifestation of partial burn up. In fine-grained explosives, which are more sensitive, the reaction can proceed partly within the compression front, which leads to a lower initial shock amplitude. The reaction zone was shorter in fine-grained materials because of higher density of hot spots. The noise level was generally higher for the coarse-grained explosives, which is a natural stochastic effect of the highly non-uniform flow of the heterogeneous medium. These results correlate with our previous data of electrical conductivity diagnostics. Instead of the classical Zel'dovich-von Neumann-Döring profiles, violent oscillations around the Chapman-Jouguet level were observed in about half of the shots using coarse-grained materials. We suggest that these unusual records may point to a different detonation wave propagation mechanism.

  17. The Blob That Ate Physics

    ERIC Educational Resources Information Center

    Thomsen, Dietrick E.

    1975-01-01

    Summarizes some thoughts of Stephen W. Hawking who proposes that certain kinds of communications across the event horizon are possible, that they lead to the evaporation or explosion of the black hole, and, therefore, that classical or quantum mechanical causality has no meaning. (GS)

  18. The HEPCloud Facility: elastic computing for High Energy Physics – The NOvA Use Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuess, S.; Garzoglio, G.; Holzman, B.

    The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a commonmore » interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 25 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This paper describes the Fermilab HEPCloud Facility and the challenges overcome for the CMS and NOvA communities.« less

  19. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2004-08-23

    This spectacular Chandra X-Ray Observatory (CXO) image of the supernova remnant Cassiopeia A is the most detailed image ever made of the remains of an exploded star. The one-million-second image shows a bright outer ring (green) 10 light years in diameter that marks the location of a shock wave generated by the supernova explosion. In the upper left corner is a large jet-like structure that protrudes beyond the shock wave, and a counter-jet can be seen on the lower right. The x-ray spectra show that the jets are rich in silicon atoms, and relatively poor in iron atoms. This indicates that the jets formed soon after the initial explosion of the star, otherwise, the jets should have contained large quantities of iron from the star’s central regions. The bright blue areas are composed almost purely of iron gas, which was produced in the central, hottest regions of the star and somehow ejected in a direction almost perpendicular to the jets. The bright source at the center of the image is presumed to be a neutron star created during the supernova. Unlike most others, this neutron star is quiet, faint, and so far shows no evidence of pulsed radiation. A working hypothesis is that the explosion that created Cassiopeia A produced high speed jets similar to, but less energetic than, the hyper nova jets thought to produce gamma-ray bursts. During the explosion, the star may have developed an extremely strong magnetic filed that helped to accelerate the jets and later stifled any pulsar wind activity. CXO project management is the responsibility of NASA’s Marshall Space Flight Center in Huntsville, Alabama.

  20. LIGHT CURVES OF CORE-COLLAPSE SUPERNOVAE WITH SUBSTANTIAL MASS LOSS USING THE NEW OPEN-SOURCE SUPERNOVA EXPLOSION CODE (SNEC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozova, Viktoriya; Renzo, Mathieu; Ott, Christian D.

    We present the SuperNova Explosion Code (SNEC), an open-source Lagrangian code for the hydrodynamics and equilibrium-diffusion radiation transport in the expanding envelopes of supernovae. Given a model of a progenitor star, an explosion energy, and an amount and distribution of radioactive nickel, SNEC generates the bolometric light curve, as well as the light curves in different broad bands assuming blackbody emission. As a first application of SNEC, we consider the explosions of a grid of 15 M{sub ⊙} (at zero-age main sequence, ZAMS) stars whose hydrogen envelopes are stripped to different extents and at different points in their evolution. Themore » resulting light curves exhibit plateaus with durations of ∼20–100 days if ≳1.5–2 M{sub ⊙} of hydrogen-rich material is left and no plateau if less hydrogen-rich material is left. If these shorter plateau lengths are not seen for SNe IIP in nature, it suggests that, at least for ZAMS masses ≲20 M{sub ⊙}, hydrogen mass loss occurs as an all or nothing process. This perhaps points to the important role binary interactions play in generating the observed mass-stripped supernovae (i.e., Type Ib/c events). These light curves are also unlike what is typically seen for SNe IIL, arguing that simply varying the amount of mass loss cannot explain these events. The most stripped models begin to show double-peaked light curves similar to what is often seen for SNe IIb, confirming previous work that these supernovae can come from progenitors that have a small amount of hydrogen and a radius of ∼500 R{sub ⊙}.« less

  1. Deepest Image of Exploded Star Uncovers Bipolar Jets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This spectacular Chandra X-Ray Observatory (CXO) image of the supernova remnant Cassiopeia A is the most detailed image ever made of the remains of an exploded star. The one-million-second image shows a bright outer ring (green) 10 light years in diameter that marks the location of a shock wave generated by the supernova explosion. In the upper left corner is a large jet-like structure that protrudes beyond the shock wave, and a counter-jet can be seen on the lower right. The x-ray spectra show that the jets are rich in silicon atoms, and relatively poor in iron atoms. This indicates that the jets formed soon after the initial explosion of the star, otherwise, the jets should have contained large quantities of iron from the star's central regions. The bright blue areas are composed almost purely of iron gas, which was produced in the central, hottest regions of the star and somehow ejected in a direction almost perpendicular to the jets. The bright source at the center of the image is presumed to be a neutron star created during the supernova. Unlike most others, this neutron star is quiet, faint, and so far shows no evidence of pulsed radiation. A working hypothesis is that the explosion that created Cassiopeia A produced high speed jets similar to, but less energetic than, the hyper nova jets thought to produce gamma-ray bursts. During the explosion, the star may have developed an extremely strong magnetic filed that helped to accelerate the jets and later stifled any pulsar wind activity. CXO project management is the responsibility of NASA's Marshall Space Flight Center in Huntsville, Alabama.

  2. Dust clouds around red giant stars - Evidence of sublimating comet disks?

    NASA Technical Reports Server (NTRS)

    Matese, John J.; Whitmire, Daniel P.; Reynolds, Ray T.

    1989-01-01

    The dust production by disk comets around intermediate mass stars evolving into red giants is studied, focusing on AGB supergiants. The model of Iben and Renzini (1983) is used to study the observed dust mass loss for AGB stars. An expression is obtained for the comet disk net dust production rate and values of the radius and black body temperature corresponding to peak sublimation are calculated for a range of stellar masses. Also, the fractional amount of dust released from a cometesimal disk during a classical nova outburst is estimated.

  3. Experimental Studies of Light-Ion Nuclear Reactions Using Low-Energy RI Beams

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Kahl, D.; Hayakawa, S.; Sakaguchi, Y.; Abe, K.; Shimuzu, H.; Wakabayashi, Y.; Hashimoto, T.; Cherubini, S.; Gulino, M.; Spitaleri, C.; Rapisarda, G. G.; La Cognata, M.; Lamia, L.; Romano, S.; Kubono, S.; Iwasa, N.; Teranishi, T.; Kawabata, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. N.; Kato, S.; Komatsubara, T.; Coc, A.; de Sereville, N.; Hammache, F.; Kiss, G.; Bishop, S.

    CRIB (CNS Radio-Isotope Beam separator) is a low-energy RI beam separator of Center for Nuclear Study (CNS), the University of Tokyo. Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the RI beams at CRIB, forming international collaborations. A striking method to study astrophyiscal reactions involving radioactive nuclei is the thick-target method in inverse kinematics. Several astrophysical alpha-induced reactions have been be studied with that method at CRIB. A recent example is on the α resonant scattering with a radioactive 7Be beam. This study is related to the astrophysical 7Be(α , γ ) reactions, important at hot p-p chain and ν p-process in supernovae. There have been measurements based on several indirect methods, such as the asymptotic normalization coefficient (ANC) and Trojan horse method (THM). The first THM measurement using an RI beam has been performed at CRIB, to study the 18F(p, α )15O reaction at astrophysical energies via the three body reaction 2H(18F, α 15O)n. The 18F(p, α )15O reaction rate is crucial to understand the 511-keV γ -ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time.

  4. Indirect studies on astrophysical reactions at the low-energy RI beam separator CRIB

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Kahl, D.; Hayakawa, S.; Yang, L.; Shimizu, H.; Sakaguchi, Y.; Abe, K.; Wakabayashi, Y.; Hashimoto, T.; Nakao, T.; Kubono, S.; Suhara, T.; Iwasa, N.; Kim, A.; Kim, D. H.; Cha, S. M.; Kwag, M. S.; Lee, J. H.; Lee, E. J.; Chae, K. Y.; Imai, N.; Kitamura, N.; Lee, P.; Moon, J. Y.; Lee, K. B.; Akers, C.; Jung, H. S.; Duy, N. N.; Khiem, L. H.; Lee, C. S.; Cherubini, S.; Gulino, M.; Spitaleri, C.; Rapisarda, G. G.; Cognata, M. La; Lamia, L.; Romano, S.; Coc, A.; de Sereville, N.; Hammache, F.; Kiss, G.; Bishop, S.; Teranishi, T.; Kawabata, T.; Kwon, Y. K.; Binh, D. N.

    2018-04-01

    Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the radioactive-isotope (RI) beams at the low-energy RI beam separator CRIB, operated by Center for Nuclear Study (CNS), the University of Tokyo. A type of measurement to study astophysical reactions at CRIB is by the elastic resonant scattering with the thick-target method in inverse kinematics. An example is the α resonant scattering with 7Be beam, related to the astrophysical 7Be(α,γ) reactions, which is relevant in the hot p-p chain and νp-process in supernovae. Other α resonant scattering measurements with 30S, 10Be, 15O, and 18Ne beams have been performed at CRIB, using the thick-target method. There have also been measurements based on other experimental methods. The first Trojan horse method (THM) measurement using an RI beam has been performed at CRIB, to study the 18F(p, α)15O reaction at astrophysical energies via the three body reaction 2H(18F, α15O)n. The 18F(p, α)15O reaction rate is crucial to understand the 511-keV γ-ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time.

  5. Simulating X-ray bursts with a radiation hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Seong, Gwangeon; Kwak, Kyujin

    2018-04-01

    Previous simulations of X-ray bursts (XRBs), for example, those performed by MESA (Modules for Experiments in Stellar Astrophysics) could not address the dynamical effects of strong radiation, which are important to explain the photospheric radius expansion (PRE) phenomena seen in many XRBs. In order to study the effects of strong radiation, we propose to use SNEC (the SuperNova Explosion Code), a 1D Lagrangian open source code that is designed to solve hydrodynamics and equilibrium-diffusion radiation transport together. Because SNEC is able to control modules of radiation-hydrodynamics for properly mapped inputs, radiation-dominant pressure occurring in PRE XRBs can be handled. Here we present simulation models for PRE XRBs by applying SNEC together with MESA.

  6. Effects of combined and classic training on different isometric rate of force development parameters of leg extensors in female volleyball players: Discriminative analysis approach

    PubMed Central

    Branislav, Rajić; Milivoj, Dopsaj; Abella, Carlos Pablos; Deval, Vicente Caratalla; Siniša, Karišik

    2013-01-01

    Background: The aim of this study is to verify the effects of the combined and classic training of different isometric rates of force development (RFD) parameters of legs. Materials and Methods: Three groups of female athletes was tested: Experimental group (N = 12), classically trained group (N = 11), and control group (N = 20) of athletes. The isometric “standing leg extension” and “Rise on Toes” tests were conducted to evaluate the maximal force, time necessary time to reach it and the RFD analyzed at 100 ms, 180 ms, 250 ms from the onset, and 50-100% of its maximal result. Results: The maximal RFD of legs and calves are dominant explosive parameters. Special training enhanced the RFD of calves of GROUPSPEC at 100 ms (P = 0.05), at 180 ms (P = 0.039), at 250 ms (P = 0.039), at 50% of the Fmax (P = 0.031) and the Fmax (P = 0.05). Domination of GROUPSPEC toward GROUPCLASS and GROUPCONTROL is in case of legs at 100 ms (P = 0.04); at 180 ms (P = 0.04); at 250 ms (P = 0.00); at 50% of the Fmax (P = 0.01) and at the Fmax (P = 0.00); in case of calves at 100 ms (P = 0.07); 180 ms (P = 0.001); at 250 ms (P = 0.00); at 50% of the Fmax (P = 0.00) and at Fmax (P = 0.000). Conclusion: Dominant explosive factors are maximal RFD of leg extensors and calves, and legs at 250ms. Specific training enhanced explosiveness of calves of GROUPSPEC general and partial domination of GROUPSPEC by 87% over GROUPCLASS, and 35% over GROUPCONTROL. PMID:24497853

  7. Fire suppression as a thermal implosion

    NASA Astrophysics Data System (ADS)

    Novozhilov, Vasily

    2017-01-01

    The present paper discusses the possibility of the thermal implosion scenario. This process would be a reverse of the well known thermal explosion (autoignition) phenomenon. The mechanism for thermal implosion scenario is proposed which involves quick suppression of the turbulent diffusion flame. Classical concept of the thermal explosion is discussed first. Then a possible scenario for the reverse process (thermal implosion) is discussed and illustrated by a relevant mathematical model. Based on the arguments presented in the paper, thermal implosion may be observed as an unstable equilibrium point on the generalized Semenov diagram for turbulent flame, however this hypothesis requires ultimate experimental confirmation.

  8. Simulating Hadronic-to-Quark-Matter with Burn-UD: Recent work and astrophysical applications

    NASA Astrophysics Data System (ADS)

    Welbanks, Luis; Ouyed, Amir; Koning, Nico; Ouyed, Rachid

    2017-06-01

    We present the new developments in Burn-UD, our in-house hydrodynamic combustion code used to model the phase transition of hadronic-to-quark matter. Our two new modules add neutrino transport and the time evolution of a (u, d, s) quark star (QS). Preliminary simulations show that the inclusion of neutrino transport points towards new hydrodynamic instabilities that increase the burning speed. A higher burning speed could elicit the deflagration to detonation of a neutron star (NS) into a QS. We propose that a Quark-Nova (QN: the explosive transition of a NS to a QS) could help us explain the most energetic astronomical events to this day: superluminous supernovae (SLSNe). Our models consider a QN occurring in a massive binary, experiencing two common envelope stages and a QN occurring after the supernova explosion of a Wolf-Rayet (WO) star. Both models have been successful in explaining the double humped light curves of over half a dozen SLSNe. We also introduce SiRop our r-process simulation code and propose that a QN site has the hot temperatures and neutron densities required to make it an ideal site for the r-process.

  9. The resonant structure of ^18Ne and its relevance in the breakout of the Hot CNO cycle

    NASA Astrophysics Data System (ADS)

    Almaraz-Calderon, S.; Tan, W.; Aprahamian, A.; Bucher, B.; Gorres, J.; Roberts, A.; Villano, A.; Wiescher, M.; Brune, C.; Heinen, Z.; Massey, T.; Mach, H.; Guray, N.; Guray, R. T.

    2009-10-01

    In explosive hydrogen burning environments such as Novae and X-ray bursts, temperatures and densities achieved are sufficiently high to bypass the beta decay of the waiting points of the hot CNO cycle by alpha captures, leading to a thermonuclear runaway via the rp-process. One of the two paths to a breakout from the hot CNO cycle is the route starting from ^14O(α,p)^17F followed by ^17F(p,γ)^18Ne and ^18Ne(α,p). The ^14O(α,p) reaction proceeds through resonant states in ^18Ne, making the reaction rate dependent on the excitation energies and spins as well as partial and total widths of these resonances. We used the ^16O(^3He,n) reaction and charged particle-neutron coincidences to measure the structure details of levels in ^18Ne. In particular, the α and proton decay branching ratios via ground state and excited states in ^17F were measured. The analysis of the data will allow us to provide crucial information to be included in the reaction network calculations that could have great impact on the nuclear energy generation and nucleosynthesis that occur in these explosive environments.

  10. Two peculiar fast transients in a strongly lensed host galaxy

    NASA Astrophysics Data System (ADS)

    Rodney, S. A.; Balestra, I.; Bradac, M.; Brammer, G.; Broadhurst, T.; Caminha, G. B.; Chirivı, G.; Diego, J. M.; Filippenko, A. V.; Foley, R. J.; Graur, O.; Grillo, C.; Hemmati, S.; Hjorth, J.; Hoag, A.; Jauzac, M.; Jha, S. W.; Kawamata, R.; Kelly, P. L.; McCully, C.; Mobasher, B.; Molino, A.; Oguri, M.; Richard, J.; Riess, A. G.; Rosati, P.; Schmidt, K. B.; Selsing, J.; Sharon, K.; Strolger, L.-G.; Suyu, S. H.; Treu, T.; Weiner, B. J.; Williams, L. L. R.; Zitrin, A.

    2018-04-01

    A massive galaxy cluster can serve as a magnifying glass for distant stellar populations, as strong gravitational lensing magnifies background galaxies and exposes details that are otherwise undetectable. In time-domain astronomy, imaging programmes with a short cadence are able to detect rapidly evolving transients, previously unseen by surveys designed for slowly evolving supernovae. Here, we describe two unusual transient events discovered in a Hubble Space Telescope programme that combined these techniques with high-cadence imaging on a field with a strong-lensing galaxy cluster. These transients were faster and fainter than any supernovae, but substantially more luminous than a classical nova. We find that they can be explained as separate eruptions of a luminous blue variable star or a recurrent nova, or as an unrelated pair of stellar microlensing events. To distinguish between these hypotheses will require clarification of the cluster lens models, along with more high-cadence imaging of the field that could detect related transient episodes. This discovery suggests that the intersection of strong lensing with high-cadence transient surveys may be a fruitful path for future astrophysical transient studies.

  11. The Orbital Ephemeris of the Classical Nova RR Pictoris: Presence of a Third Body?

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Schreiber, M. R.; Hambsch, F.-J.; Retamales, G.; Tappert, C.; Schmidtobreick, L.; Fuentes-Morales, I.

    2017-01-01

    The ex-nova RR Pic presents a periodic hump in its light curve which is considered to refer to its orbital period. By analyzing all available epochs of these hump maxima in the literature and then combining them with those from new light curves obtained in 2013 and 2014, we establish an unique cycle count scheme valid during the past 50 years and derive an ephemeris with the orbital period 0.145025959(15) days. The O—C diagram of this linear ephemeris reveals systematic deviations that could have different causes. One of them could be a light-travel-time effect caused by the presence of a hypothetical third body near the star/brown dwarf mass limit, with an orbital period of the order of 70 years. We also examine the difficulty of the problematic of detecting substellar or planetary companions of close red-dwarf white-dwarf binaries (including cataclysmic variables) and discuss other possible mechanisms responsible for the observed deviations in O—C. For RR Pic, we propose strategies to solve this question by new observations.

  12. Hamilton-Jacobi theory in multisymplectic classical field theories

    NASA Astrophysics Data System (ADS)

    de León, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso; Vilariño, Silvia

    2017-09-01

    The geometric framework for the Hamilton-Jacobi theory developed in the studies of Cariñena et al. [Int. J. Geom. Methods Mod. Phys. 3(7), 1417-1458 (2006)], Cariñena et al. [Int. J. Geom. Methods Mod. Phys. 13(2), 1650017 (2015)], and de León et al. [Variations, Geometry and Physics (Nova Science Publishers, New York, 2009)] is extended for multisymplectic first-order classical field theories. The Hamilton-Jacobi problem is stated for the Lagrangian and the Hamiltonian formalisms of these theories as a particular case of a more general problem, and the classical Hamilton-Jacobi equation for field theories is recovered from this geometrical setting. Particular and complete solutions to these problems are defined and characterized in several equivalent ways in both formalisms, and the equivalence between them is proved. The use of distributions in jet bundles that represent the solutions to the field equations is the fundamental tool in this formulation. Some examples are analyzed and, in particular, the Hamilton-Jacobi equation for non-autonomous mechanical systems is obtained as a special case of our results.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavanaugh, J.E.; McQuarrie, A.D.; Shumway, R.H.

    Conventional methods for discriminating between earthquakes and explosions at regional distances have concentrated on extracting specific features such as amplitude and spectral ratios from the waveforms of the P and S phases. We consider here an optimum nonparametric classification procedure derived from the classical approach to discriminating between two Gaussian processes with unequal spectra. Two robust variations based on the minimum discrimination information statistic and Renyi's entropy are also considered. We compare the optimum classification procedure with various amplitude and spectral ratio discriminants and show that its performance is superior when applied to a small population of 8 land-based earthquakesmore » and 8 mining explosions recorded in Scandinavia. Several parametric characterizations of the notion of complexity based on modeling earthquakes and explosions as autoregressive or modulated autoregressive processes are also proposed and their performance compared with the nonparametric and feature extraction approaches.« less

  14. Models of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Friedjung, Michael

    1993-01-01

    One of the most important features of symbiotic stars is the coexistence of a cool spectral component that is apparently very similar to the spectrum of a cool giant, with at least one hot continuum, and emission lines from very different stages of ionization. The cool component dominates the infrared spectrum of S-type symbiotics; it tends to be veiled in this wavelength range by what appears to be excess emission in D-type symbiotics, this excess usually being attributed to circumstellar dust. The hot continuum (or continua) dominates the ultraviolet. X-rays have sometimes also been observed. Another important feature of symbiotic stars that needs to be explained is the variability. Different forms occur, some variability being periodic. This type of variability can, in a few cases, strongly suggest the presence of eclipses of a binary system. One of the most characteristic forms of variability is that characterizing the active phases. This basic form of variation is traditionally associated in the optical with the veiling of the cool spectrum and the disappearance of high-ionization emission lines, the latter progressively appearing (in classical cases, reappearing) later. Such spectral changes recall those of novae, but spectroscopic signatures of the high-ejection velocities observed for novae are not usually detected in symbiotic stars. However, the light curves of the 'symbiotic nova' subclass recall those of novae. We may also mention in this connection that radio observations (or, in a few cases, optical observations) of nebulae indicate ejection from symbiotic stars, with deviations from spherical symmetry. We shall give a historical overview of the proposed models for symbiotic stars and make a critical analysis in the light of the observations of symbiotic stars. We describe the empirical approach to models and use the observational data to diagnose the physical conditions in the symbiotics stars. Finally, we compare the results of this empirical approach with existing models and discuss unresolved problems requiring new observational and theoretical work.

  15. Analysis of Spattering Activity at Halema'uma'u in 2015

    NASA Astrophysics Data System (ADS)

    Mintz, Bianca G.

    The classical explosive basaltic eruption spectrum is traditionally defined by the following end member eruption styles: Hawaiian and Strombolian. The field use of high-speed cameras has enabled volcanologists to make improved quantifications and more accurate descriptions of these classical eruptions styles and to quantify previously undecipherable activity (including activity on the basaltic eruption spectrum between the two defined end members). Explosive activity in 2015 at the free surface of the Halema'uma'u lava lake at Kilauea exhibited features of both sustained (Hawaiian) fountaining and transient (Strombolian) explosivity. Most of this activity is internally triggered by the internal rise of decoupled gas bubbles from below the lake's surface, but external triggering via rock falls, was also observed. Here I identify three styles of bubble bursting and spattering eruptive activity (isolated events, clusters of events, and prolonged episodes) at the lava lake, and distinguished them based on their temporal and spatial distributions. Isolated events are discrete single bubble bursts that persist for a few tenths of seconds to seconds and are separated by repose periods of similar or longer time scales. Cluster of events are closely spaced, repeated events grouped around a narrow point source, which persist for seconds to minutes. Prolonged episodes are groupings of numerous events closely linked in space and time that persist for tens of minutes to hours. Analysis of individual events from high-speed camera images indicates that they are made up of up to three phases: the bubble ascent phase, the bursting and pyroclast ejection phase, and the drain back (and rebound) phase. Based on the numerical parameters established in this study, the 2015 activity was relatively weak (i.e., of low intensity) but still falls in a region between those of continuous Hawaiian fountains and impulsive, short-lived Strombolian explosions, in terms of duration.

  16. Resurrection Symphony: "El Sistema" as Ideology in Venezuela and Los Angeles

    ERIC Educational Resources Information Center

    Fink, Robert

    2016-01-01

    The explosive growth of Venezuela's "El Sistema" is rewriting the agenda of musical education in the West. Many commentators from the world of classical music react to the spectacle of dedicated young colonial musicians playing European masterworks as a kind of "miracle," accepting "Sistema" founder José Antonio…

  17. NOVA2-mediated RNA regulation is required for axonal pathfinding during development.

    PubMed

    Saito, Yuhki; Miranda-Rottmann, Soledad; Ruggiu, Matteo; Park, Christopher Y; Fak, John J; Zhong, Ru; Duncan, Jeremy S; Fabella, Brian A; Junge, Harald J; Chen, Zhe; Araya, Roberto; Fritzsch, Bernd; Hudspeth, A J; Darnell, Robert B

    2016-05-25

    The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development. Corresponding axonal pathfinding defects were specific to NOVA2 deficiency: Nova2-/- but not Nova1-/- mice had agenesis of the corpus callosum, and axonal outgrowth defects specific to ventral motoneuron axons and efferent innervation of the cochlea. Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo.

  18. Molecular Outflows: Explosive versus Protostellar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina

    2017-02-10

    With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using {sup 12}CO( J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, butmore » with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.« less

  19. NOVA2-mediated RNA regulation is required for axonal pathfinding during development

    PubMed Central

    Saito, Yuhki; Miranda-Rottmann, Soledad; Ruggiu, Matteo; Park, Christopher Y; Fak, John J; Zhong, Ru; Duncan, Jeremy S; Fabella, Brian A; Junge, Harald J; Chen, Zhe; Araya, Roberto; Fritzsch, Bernd; Hudspeth, A J; Darnell, Robert B

    2016-01-01

    The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development. Corresponding axonal pathfinding defects were specific to NOVA2 deficiency: Nova2-/- but not Nova1-/- mice had agenesis of the corpus callosum, and axonal outgrowth defects specific to ventral motoneuron axons and efferent innervation of the cochlea. Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo. DOI: http://dx.doi.org/10.7554/eLife.14371.001 PMID:27223325

  20. Quark-novae Occurring in Massive Binaries : A Universal Energy Source in Superluminous Supernovae with Double-peaked Light Curves

    NASA Astrophysics Data System (ADS)

    Ouyed, Rachid; Leahy, Denis; Koning, Nico

    2016-02-01

    A quark-nova (QN; the sudden transition from a neutron star into a quark star), which occurs in the second common envelope (CE) phase of a massive binary, gives excellent fits to superluminous, hydrogen-poor, supernovae (SLSNe) with double-peaked light curves, including DES13S2cmm, SN 2006oz, and LSQ14bdq (http://www.quarknova.ca/LCGallery.html). In our model, the H envelope of the less massive companion is ejected during the first CE phase, while the QN occurs deep inside the second, He-rich, CE phase after the CE has expanded in size to a radius of a few tens to a few thousands of solar radii; this yields the first peak in our model. The ensuing merging of the quark star with the CO core leads to black hole formation and accretion, explaining the second long-lasting peak. We study a sample of eight SLSNe Ic with double-humped light curves. Our model provides good fits to all of these, with a universal explosive energy of 2 × 1052 erg (which is the kinetic energy of the QN ejecta) for the first hump. The late-time emissions seen in iPTF13ehe and LSQ14bdq are fit with a shock interaction between the outgoing He-rich (I.e., second) CE and the previously ejected H-rich (I.e., first) CE.

  1. Explosive Disintegration of a Massive Young Stellar System in Orion

    NASA Astrophysics Data System (ADS)

    Zapata, Luis A.; Schmid-Burgk, Johannes; Ho, Paul T. P.; Rodríguez, Luis F.; Menten, Karl M.

    2009-10-01

    Young massive stars in the center of crowded star clusters are expected to undergo close dynamical encounters that could lead to energetic, explosive events. However, there has so far never been clear observational evidence of such a remarkable phenomenon. We here report new interferometric observations that indicate the well-known enigmatic wide-angle outflow located in the Orion BN/KL star-forming region to have been produced by such a violent explosion during the disruption of a massive young stellar system, and that this was caused by a close dynamical interaction about 500 years ago. This outflow thus belongs to a totally different family of molecular flows that is not related to the classical bipolar flows that are generated by stars during their formation process. Our molecular data allow us to create a three-dimensional view of the debris flow and to link this directly to the well-known Orion H2 "fingers" farther out.

  2. SAPS-Associated Explosive Brightening on the Duskside: A New Type of Onset-Like Disturbance

    NASA Astrophysics Data System (ADS)

    Henderson, M. G.; Morley, S. K.; Kepko, L. E.

    2018-01-01

    Quasiperiodic energetic particle injections have been observed at geosynchronous orbit on the duskside during a steady magnetospheric convection event. We examine high-resolution auroral imager data and ground magnetometer data associated with the first of these injections and conclude that it was not associated with classical substorm signatures. It is proposed that these injections are caused by the explosive nonlinear growth of a shear flow-ballooning instability in the region where subauroral polarization streams (SAPS) also occur. It is suggested that interchange will occur preferentially in the low-conductivity SAPS region since the magnetic Richardson number is lowest there and the "line-tying" effect will also be least stabilizing there. We propose that the observed particle injection signatures and auroral morphology constitute a new type of SAPS-associated explosive "onset-like" disturbance that can occur during intervals of strong convection.

  3. The May 18, 1998 Indian Nuclear Test Seismograms at station NIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, W R; Rodgers, A J; Bowers, D

    2005-04-11

    The last underground nuclear tests were conducted by India and Pakistan in May 1998. Although the Comprehensive Test Ban Treaty has not entered force, an International Monitoring System (IMS), established by the treaty is nearing completion. This system includes 170 seismic stations, a number of them originally established by IRIS. The station IRIS station NIL (Nilore, Pakistan) is close to a planned IMS primary station and recorded some very interesting seismograms from the May 18, 1998 Indian test. We carefully calibrated the path to NIL using a prior Mw 4.4 that occurred on April 4, 1995 about 110 km northmore » of the Indian test site. We used joint epicentral location techniques along with teleseismic P waves and regional surface waves to fix the epicenter, depth, mechanism and moment of this event. From these we obtained a velocity model for the path to NIL and created explosion synthetic seismograms to compare with the data. Interestingly the observed Rayleigh waves are reversed, consistent with an implosion rather than an explosion source. The preferred explanation is that the explosion released tectonic stress near the source region, which can be modeled as a thrust earthquake of approximate Mw 4.0 plus a pure explosion. This tectonic release is sufficient to completely dominate the Rayleigh waves and produce the observed signal (Walter et al. 2005). We also examined the explosion at high frequencies of 6 6-8 Hz where many studies have shown that relative P/S amplitudes can discriminate explosions from a background of earthquakes (Rodgers and Walter, 2002). Comparing with the April 4 1995 earthquake we see the classic difference of relatively large P/S values for the explosion compared to the earthquakes despite the complication of the large tectonic release during the explosion.« less

  4. Discovery of Classical Nova in NGC2403 : P60-NGC2403-090314

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Cenko, S. B.; Ofek, E. O.; Quimby, R.; Rau, A.; Caltech, Kulkarni, S. R.

    2009-03-01

    On UT 2009 Mar 14.160, P60-FasTING (Palomar 60-inch Fast Transients In Nearby Galaxies) discovered an optical transient in NGC2403 at RA(J2000) = 07:36:35.00, DEC(J2000)=+65:40:20.8, offset from the nucleus by 101.0"W, 252.0"N. P60-NGC2403-090314 had a brightness of g = 20.6 +/- 0.1 at discovery. At peak, on Mar 15.147, the apparent g = 19.6 corresponded to Mg = -8.2, at the distance of NGC2403. It was not detected by P60 to g > 21.8 on Mar 2.164.

  5. The Galactic Nova Rate Revisited

    NASA Astrophysics Data System (ADS)

    Shafter, A. W.

    2017-01-01

    Despite its fundamental importance, a reliable estimate of the Galactic nova rate has remained elusive. Here, the overall Galactic nova rate is estimated by extrapolating the observed rate for novae reaching m≤slant 2 to include the entire Galaxy using a two component disk plus bulge model for the distribution of stars in the Milky Way. The present analysis improves on previous work by considering important corrections for incompleteness in the observed rate of bright novae and by employing a Monte Carlo analysis to better estimate the uncertainty in the derived nova rates. Several models are considered to account for differences in the assumed properties of bulge and disk nova populations and in the absolute magnitude distribution. The simplest models, which assume uniform properties between bulge and disk novae, predict Galactic nova rates of ˜50 to in excess of 100 per year, depending on the assumed incompleteness at bright magnitudes. Models where the disk novae are assumed to be more luminous than bulge novae are explored, and predict nova rates up to 30% lower, in the range of ˜35 to ˜75 per year. An average of the most plausible models yields a rate of {50}-23+31 yr-1, which is arguably the best estimate currently available for the nova rate in the Galaxy. Virtually all models produce rates that represent significant increases over recent estimates, and bring the Galactic nova rate into better agreement with that expected based on comparison with the latest results from extragalactic surveys.

  6. Novae as distance indicators

    NASA Technical Reports Server (NTRS)

    Ford, Holland C.; Ciardullo, Robin

    1988-01-01

    Nova shells are characteristically prolate with equatorial bands and polar caps. Failure to account for the geometry can lead to large errors in expansion parallaxes for individual novae. When simple prescriptions are used for deriving expansion parallaxes from an ensemble of randomly oriented prolate spheroids, the average distance will be too small by factors of 10 to 15 percent. The absolute magnitudes of the novae will be underestimated and the resulting distance scale will be too small by the same factors. If observations of partially resolved nova shells select for large inclinations, the systematic error in the resulting distance scale could easily be 20 to 30 percent. Extinction by dust in the bulge of M31 may broaden and shift the intrinsic distribution of maximum nova magnitudes versus decay rates. We investigated this possibility by projecting Arp's and Rosino's novae onto a composite B - 6200A color map of M31's bulge. Thirty two of the 86 novae projected onto a smooth background with no underlying structure due to the presence of a dust cloud along the line of sight. The distribution of maximum magnitudes versus fade rates for these unreddened novae is indistinguishable from the distribution for the entire set of novae. It is concluded that novae suffer very little extinction from the filamentary and patchy distribution of dust seen in the bulge of M31. Time average B and H alpha nova luminosity functions are potentially powerful new ways to use novae as standard candles. Modern CCD observations and the photographic light curves of M31 novae found during the last 60 years were analyzed to show that these functions are power laws. Consequently, unless the eruption times for novae are known, the data cannot be used to obtain distances.

  7. Fluorine in the solar neighborhood: Chemical evolution models

    NASA Astrophysics Data System (ADS)

    Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.

    2018-04-01

    Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.

  8. 3-D high-speed imaging of volcanic bomb trajectory in basaltic explosive eruptions

    USGS Publications Warehouse

    Gaudin, D.; Taddeucci, J; Houghton, Bruce F.; Orr, Tim R.; Andronico, D.; Del Bello, E.; Kueppers, U.; Ricci, T.; Scarlato, P.

    2016-01-01

    Imaging, in general, and high speed imaging in particular are important emerging tools for the study of explosive volcanic eruptions. However, traditional 2-D video observations cannot measure volcanic ejecta motion toward and away from the camera, strongly hindering our capability to fully determine crucial hazard-related parameters such as explosion directionality and pyroclasts' absolute velocity. In this paper, we use up to three synchronized high-speed cameras to reconstruct pyroclasts trajectories in three dimensions. Classical stereographic techniques are adapted to overcome the difficult observation conditions of active volcanic vents, including the large number of overlapping pyroclasts which may change shape in flight, variable lighting and clouding conditions, and lack of direct access to the target. In particular, we use a laser rangefinder to measure the geometry of the filming setup and manually track pyroclasts on the videos. This method reduces uncertainties to 10° in azimuth and dip angle of the pyroclasts, and down to 20% in the absolute velocity estimation. We demonstrate the potential of this approach by three examples: the development of an explosion at Stromboli, a bubble burst at Halema'uma'u lava lake, and an in-flight collision between two bombs at Stromboli.

  9. The Death Spiral of T Pyxidis

    NASA Astrophysics Data System (ADS)

    Patterson, J.; Oksanen, A.; Monard, B.; Rea, R.; Hambsch, F.; McCormick, J.; Nelson, P.; Kemp, J.; Allen, W.; Krajci, T.; Lowther, S.; Dvorak, S.; Richards, T.; Myers, G.; Bolt, G.

    2014-12-01

    We report a long campaign to track the 1.8 hr photometric wave in the recurrent nova T Pyxidis, using the global telescope network of the Center for Backyard Astrophysics. During 1996-2011, that wave was highly stable in amplitude and waveform, resembling the orbital wave commonly seen in supersoft binaries. The period, however, was found to increase on a timescale P/P =3 ×105 yr. This suggests a mass transfer rate of ˜ 10-7 M⊙/yr in quiescence. The orbital signal became vanishingly weak (< 0.003 mag) near maximum light of the 2011 eruption. After it returned to visibility near V=11, the orbital period had increased by 0.0054(6) %. This is a measure of the mass ejected in the nova outburst. For a plausible choice of binary parameters, that mass is at least 3×10-5 M⊙, and probably more. This represents > 300 yr of accretion at the pre-outburst rate, but the time between outbursts was only 45 yr. Thus the erupting white dwarf seems to have ejected at least 6 × more mass than it accreted. If this eruption is typical, the white dwarf must be eroding, rather than growing, in mass — dashing the star's hopes of ever becoming famous via a supernova explosion. Instead, it seems likely that the binary dynamics are basically a suicide pact between the eroding white dwarf and the low-mass secondary, excited and rapidly whittled down, probably by the white dwarf's EUV radiation.

  10. A space bourne crystal diffraction telescope for the energy range of nuclear transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Ballmoos, P.; Naya, J.E.; Albernhe, F.

    1995-10-01

    Recent experimental work of the Toulouse-Argonne collaboration has opened for perspective of a focusing gamma-ray telescope operating in the energy range of nuclear transitions, featuring unprecedented sensitivity, angular and energy resolution. The instrument consists of a tunable crystal diffraction lens situated on a stabilized spacecraft, focusing gamma-rays onto a small array of Germanium detectors perched on an extendible boom. While the weight of such an instrument is less than 500 kg, it features an angular resolution of 15 in., an energy resolution of 2 keV and a 3 {sigma} narrow line sensitivity of a few times 10{sup {minus}7} photons s{supmore » {minus}1} cm{sup {minus}2} (10{sup 6} sec observation). This instrumental concept permits observation of any identified source at any selected line-energy in a range of typically 200 keV to 1300 keV. The resulting ``sequential`` operation mode makes sites of explosive nucleosynthesis natural scientific objectives for such a telescope: the nuclear lines of extragalactic supernovae ({sup 56}Ni, {sup 44}Ti, {sup 60}Fe) and galactic novae (p{sup {minus}}p{sup +} line, {sup 7}Be) are accessible to observation, one at a time, due to the erratic appearance and the sequence of half-lifes of these events. Other scientific objectives, include the narrow 511 keV line from galactic broad class annihilators (such as 1E1740-29, nova musca) and possible redshifted annihilation lines from AGN`s.« less

  11. A statistical analysis of IUE spectra of dwarf novae and nova-like stars

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1990-01-01

    First results of a statistical analysis of the IUE International Ultraviolet Explorer archive on dwarf novae and nova like stars are presented. The archive contains approximately 2000 low resolution spectra of somewhat over 100 dwarf novae and nova like stars. Many of these were looked at individually, but so far the collective information content of this set of data has not been explored. The first results of work are reported.

  12. CARBON-RICH PRESOLAR GRAINS FROM MASSIVE STARS: SUBSOLAR {sup 12}C/{sup 13}C AND {sup 14}N/{sup 15}N RATIOS AND THE MYSTERY OF {sup 15}N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pignatari, M.; Zinner, E.; Hoppe, P.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing {sup 12}C/{sup 13}C and {sup 14}N/{sup 15}N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations aremore » considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of {sup 13}C and {sup 15}N. The short-lived radionuclides {sup 22}Na and {sup 26}Al are increased by orders of magnitude. The production of radiogenic {sup 22}Ne from the decay of {sup 22}Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with {sup 14}N/{sup 15}N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of {sup 14}N and {sup 15}N in the Galaxy, helping to produce the {sup 14}N/{sup 15}N ratio in the solar system.« less

  13. Carbon-rich presolar grains from massive stars. Subsolar 12 C/ 13 C and 14 N/ 15 N ratios and the mystery of 15 N

    DOE PAGES

    Pignatari, M.; Zinner, E.; Hoppe, P.; ...

    2015-07-30

    We compared carbon-rich grains with isotopic anomalies to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. Furthermore, we present a new set of models for the explosive He shell and compare them with the grains showing 12C/ 13C and 14N/ 15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. All of the explosion energies and Hmore » concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/ 15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/ 15N ratio in the solar system.« less

  14. Watching a 'New Star' Make the Universe Dusty

    NASA Astrophysics Data System (ADS)

    2008-07-01

    Using ESO's Very Large Telescope Interferometer, and its remarkable acuity, astronomers were able for the first time to witness the appearance of a shell of dusty gas around a star that had just erupted, and follow its evolution for more than 100 days. This provides the astronomers with a new way to estimate the distance of this object and obtain invaluable information on the operating mode of stellar vampires, dense stars that suck material from a companion. Uncovering the disc ESO PR Photo 22/08 Dust shells around a nova Although novae were first thought to be new stars appearing in the sky, hence their Latin name, they are now understood as signaling the brightening of a small, dense star. Novae occur in double star systems comprising a white dwarf - the end product of a solar-like star - and, generally, a low-mass normal star - a red dwarf. The two stars are so close together that the red dwarf cannot hold itself together and loses mass to its companion. Occasionally, the shell of matter that has fallen onto the ingesting star becomes unstable, leading to a thermonuclear explosion which makes the system brighter. Nova Scorpii 2007a (or V1280 Scorpii), was discovered by Japanese amateur astronomers on 4 February 2007 towards the constellation Scorpius ("the Scorpion"). For a few days, it became brighter and brighter, reaching its maximum on 17 February, to become one of the brightest novae of the last 35 years. At that time, it was easily visible with the unaided eye. Eleven days after reaching its maximum, astronomers witnessed the formation of dust around the object. Dust was present for more than 200 days, as the nova only slowly emerged from the smoke between October and November 2007. During these 200 days, the erupting source was screened out efficiently, becoming more than 10,000 times dimmer in the visual. An unprecedented high spatial resolution monitoring of the dust formation event was carried out with the Very Large Telescope Interferometer (VLTI), extending over more than 5 months following the discovery. The astronomers first used the AMBER near-infrared instrument, then, as the nova continued to produce dust at a high rate, they moved to using the MIDI mid-infrared instrument, that is more sensitive to the radiation of the hot dust. Similarly, as the nova became fainter, the astronomers switched from the 1.8-m Auxiliary Telescopes to their larger brethren, the 8.2-m Unit Telescopes. With the interferometry mode, the resolution obtained is equivalent to using a telescope with a size between 35 and 71 metres (the distance between the 2 telescopes used). The first observations, secured 23 days after the discovery, showed that the source was very compact, less than 1 thousandth of an arcsecond (1 milli-arcsecond or mas), which is a size comparable to viewing one grain of sand from about 100 kilometres away. A few days later, after the detection of the major dust formation event, the source measured 13 mas. "It is most likely that the latter size corresponds to the diameter of the dust shell in expansion, while the size previously measured was an upper limit of the erupting source," explains lead author Olivier Chesneau. Over the following months the dusty shell expanded regularly, at a rate close to 2 million km/h. "This is the first time that the dust shell of a nova is spatially resolved and its evolution traced starting from the onset of its formation up to the point that it becomes too diluted to be seen", says co-author Dipankar Banerjee, from India. The measurement of the angular expansion rate, together with the knowledge of the expansion velocity, enables the astronomer to derive the distance of the object, in this case about 5500 light-years. "This is a new and promising technique for providing distances of close novae. This was made possible because the state of the art facility of the VLTI, both in terms of infrastructure and management of the observations, allows one to schedule such observations," says co-author Markus Wittkowski from ESO. Moreover, the quality of the data provided by the VLTI was such that it was possible to estimate the daily production of dust and infer the total mass ejected. "Overall, V1280 Sco probably ejected more than the equivalent of 33 times the mass of the Earth, a rather impressive feat if one considers that this mass was ejected from a star not larger in radius than the Earth," concludes Chesneau. Of this material, about a percent or less was in the form of dust.

  15. SAPS-associated explosive brightening on the dusk-side: A new type of onset-like disturbance: A new type of onset-like disturbance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, M. G.; Morley, S. K.; Kepko, L. E.

    Quasi-periodic energetic particle injections have been observed at geosynchronous orbit on the dusk-side during a steady magnetospheric convection event. Here, we examine high resolution auroral imager data and ground magnetometer data associated with the first of these injections and conclude that it was not associated with classical substorm signatures. It is proposed that these injections are caused by the explosive non-linear growth of a shear-flow-ballooning instability in the region where sub-auroral polarization streams (SAPS) also occur. It is suggested that interchange will occur preferentially in the low-conductivity SAPS region since the magnetic Richardson number is lowest there and the ‘line-tying’more » effect will also be least stabilizing there. We also propose that the observed particle injection signatures and auroral morphology constitute a new type of SAPS-associated explosive ‘onset-like’ disturbance that can occur during intervals of strong convection.« less

  16. Nuclear fusion driven by Coulomb explosion of homonuclear and heteronuclear deuterium- and tritium-containing clusters

    NASA Astrophysics Data System (ADS)

    Last, Isidore; Jortner, Joshua

    2001-12-01

    The ionization and Coulomb explosion of homonuclear Dn and Tn (n=959-8007) and heteronuclear (D2O)n and (T2O)n (n=459-2171) clusters in very intense (I=5×1014-5×1018 W cm-2) laser fields is studied using classical dynamics simulations. The efficiency of the d+d and d+t nuclear fusion driven by the Coulomb explosion (NFDCE) is explored. The d+d NFDCE of (D2O)n heteronuclear clusters is enhanced by energetic and kinematic effects for D+, while for (T2O)n heteronuclear clusters the kinetic energy of T+ is dominated by energetic effects. The cluster size dependence of the fusion reaction yield has been established. The heteronuclear clusters provide considerably higher d+d and d+t fusion reaction yields than the homonuclear clusters of the same size. The clusters consisting of both D and T atoms can provide highly efficient d+t fusion reactions.

  17. SAPS-associated explosive brightening on the dusk-side: A new type of onset-like disturbance: A new type of onset-like disturbance

    DOE PAGES

    Henderson, M. G.; Morley, S. K.; Kepko, L. E.

    2017-12-06

    Quasi-periodic energetic particle injections have been observed at geosynchronous orbit on the dusk-side during a steady magnetospheric convection event. Here, we examine high resolution auroral imager data and ground magnetometer data associated with the first of these injections and conclude that it was not associated with classical substorm signatures. It is proposed that these injections are caused by the explosive non-linear growth of a shear-flow-ballooning instability in the region where sub-auroral polarization streams (SAPS) also occur. It is suggested that interchange will occur preferentially in the low-conductivity SAPS region since the magnetic Richardson number is lowest there and the ‘line-tying’more » effect will also be least stabilizing there. We also propose that the observed particle injection signatures and auroral morphology constitute a new type of SAPS-associated explosive ‘onset-like’ disturbance that can occur during intervals of strong convection.« less

  18. Search for gamma-ray emission from Galactic novae with the Fermi -LAT

    NASA Astrophysics Data System (ADS)

    Franckowiak, A.; Jean, P.; Wood, M.; Cheung, C. C.; Buson, S.

    2018-02-01

    Context. A number of novae have been found to emit high-energy gamma rays (>100 MeV). However, the origin of this emission is not yet understood. We report on the search for gamma-ray emission from 75 optically detected Galactic novae in the first 7.4 years of operation of the Fermi Large Area Telescope using the Pass 8 data set. Aims: We compile an optical nova catalog including light curves from various resources and estimate the optical peak time and optical peak magnitude in order to search for gamma-ray emission to determine whether all novae are gamma-ray emitters. Methods: We repeated the analysis of the six novae previously identified as gamma-ray sources and developed a unified analysis strategy that we then applied to all novae in our catalog. We searched for emission in a 15 day time window in two-day steps ranging from 20 days before to 20 days after the optical peak time. We performed a population study with Monte Carlo simulations to set constraints on the properties of the gamma-ray emission of novae. Results: Two new novae candidates have been found at 2σ global significance. Although these two novae candidates were not detected at a significant level individually, taking them together with the other non-detected novae, we found a sub-threshold nova population with a cumulative 3σ significance. We report the measured gamma-ray flux for detected sources and flux upper limits for novae without significant detection. Our results can be reproduced by several gamma-ray emissivity models (e.g., a power-law distribution with a slope of 2), while a constant emissivity model (i.e., assuming novae are standard candles) can be rejected.

  19. Search for gamma-ray emission from Galactic novae with the Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franckowiak, A.; Jean, P.; Wood, M.

    Context. A number of novae have been found to emit high-energy gamma rays (>100 MeV). However, the origin of this emission is not yet understood. We report on the search for gamma-ray emission from 75 optically detected Galactic novae in the first 7.4 years of operation of the Fermi Large Area Telescope using the Pass 8 data set. Aims. We compile an optical nova catalog including light curves from various resources and estimate the optical peak time and optical peak magnitude in order to search for gamma-ray emission to determine whether all novae are gamma-ray emitters. Methods. We repeated themore » analysis of the six novae previously identified as gamma-ray sources and developed a unified analysis strategy that we then applied to all novae in our catalog. We searched for emission in a 15 day time window in two-day steps ranging from 20 days before to 20 days after the optical peak time. We performed a population study with Monte Carlo simulations to set constraints on the properties of the gamma-ray emission of novae. Results. Two new novae candidates have been found at ~ 2σ global significance. Although these two novae candidates were not detected at a significant level individually, taking them together with the other non-detected novae, we found a sub-threshold nova population with a cumulative 3σ significance. We report the measured gamma-ray flux for detected sources and flux upper limits for novae without significant detection. Lastly, our results can be reproduced by several gamma-ray emissivity models (e.g., a power-law distribution with a slope of 2), while a constant emissivity model (i.e., assuming novae are standard candles) can be rejected.« less

  20. Search for gamma-ray emission from Galactic novae with the Fermi-LAT

    DOE PAGES

    Franckowiak, A.; Jean, P.; Wood, M.; ...

    2018-02-05

    Context. A number of novae have been found to emit high-energy gamma rays (>100 MeV). However, the origin of this emission is not yet understood. We report on the search for gamma-ray emission from 75 optically detected Galactic novae in the first 7.4 years of operation of the Fermi Large Area Telescope using the Pass 8 data set. Aims. We compile an optical nova catalog including light curves from various resources and estimate the optical peak time and optical peak magnitude in order to search for gamma-ray emission to determine whether all novae are gamma-ray emitters. Methods. We repeated themore » analysis of the six novae previously identified as gamma-ray sources and developed a unified analysis strategy that we then applied to all novae in our catalog. We searched for emission in a 15 day time window in two-day steps ranging from 20 days before to 20 days after the optical peak time. We performed a population study with Monte Carlo simulations to set constraints on the properties of the gamma-ray emission of novae. Results. Two new novae candidates have been found at ~ 2σ global significance. Although these two novae candidates were not detected at a significant level individually, taking them together with the other non-detected novae, we found a sub-threshold nova population with a cumulative 3σ significance. We report the measured gamma-ray flux for detected sources and flux upper limits for novae without significant detection. Lastly, our results can be reproduced by several gamma-ray emissivity models (e.g., a power-law distribution with a slope of 2), while a constant emissivity model (i.e., assuming novae are standard candles) can be rejected.« less

  1. Nova V2214 Ophiuchi 1988 - A magnetic nova inside the period gap

    NASA Technical Reports Server (NTRS)

    Baptista, R.; Jablonski, F. J.; Cieslinski, D.; Steiner, J. E.

    1993-01-01

    The discovery of a coherent photometric modulation in Nova Oph 1988 with period 0.117515 +/- 0.000002 d, which is associated with the orbital period of the underlying binary, is reported. On the basis of photometric observations, it is concluded that Nova V2214 Oph 1988 is a magnetic nova with an orbital period inside the period gap. The inclusion of this system in the statistics of novae suggests that there is no period gap for novae and that there is a clear correlation between the occurrence of novae with short orbital periods and the presence of magnetic white dwarfs. It is suggested that funneling of the accretion flow onto the magnetic poles favors the conditions for a thermonuclear runaway, increasing the frequency of eruptions for magnetic systems.

  2. Infrared spectroscopy of the remnant of Nova Sco 2014: a symbiotic star with too little circumstellar matter to decelerate the ejecta

    NASA Astrophysics Data System (ADS)

    Munari, U.; Banerjee, D. P. K.

    2018-03-01

    Pre-outburst 2MASS and WISE photometry of Nova Sco 2014 (V1534 Sco) has suggested the presence of a cool giant at the location of the nova in the sky. The spectral evolution recorded for the nova did not, however, support a direct partnership because no flash-ionized wind and no deceleration of the ejecta were observed, contrary to the behaviour displayed by other novae which erupted within symbiotic binaries like V407 Cyg or RS Oph. We have therefore obtained 0.8-2.5 μm spectra of the remnant of Nova Sco 2014 in order to ascertain if a cool giant is indeed present and if it is physically associated with the nova. The spectrum shows the presence of a M6III giant, reddened by E(B - V) = 1.20, displaying the typical and narrow emission-line spectrum of a symbiotic star, including He I 1.0830 μm with a deep P-Cyg profile. This makes Nova Sco 2014 a new member of the exclusive club of novae that erupt within a symbiotic binary. Nova Sco 2014 shows that a nova erupting within a symbiotic binary does not always come with a deceleration of the ejecta, contrary to the common belief. Many other similar systems may lay hidden in past novae, especially in those that erupted prior to the release of the 2MASS all-sky infrared survey, which could be profitably cross-matched now against them.

  3. New Nova Candidates from the RSBE M31 Nova Survey

    NASA Astrophysics Data System (ADS)

    Lauber, Stephanie; Rector, Travis A.; Shafter, Allen W.

    2015-01-01

    Since 1995 the Kitt Peak National Observatory WIYN 0.9-m telescope has been used to monitor M31 for novae as part of the Research-Based Science Education Project (RBSE). The resulting images, which typically cover approximately the inner 20 arc min of M31, are taken through a broad-band H-alpha filter to isolate the strong H-alpha emission lines characteristic of novae shortly after eruption.We are in the process of reanalyzing the entire RBSE data set covering the period between September 1995 and August 2014 in order to produce an up-to-date list of novae from this survey. Here, we present coordinates and H-alpha magnitudes for 4 new nova discoveries not previous reported. Among the new nova discoveries, one system appears spatially coincident with M31N 1988-09a, and is thus a recurrent nova candidate.

  4. On the implications of the period distributions of subclasses of cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Verbunt, Frank

    1997-09-01

    The period distributions of dwarf novae and nova-like variables above the period gap are different if the VY Scl systems are classed with the nova-like variables, but the same when the VY Scl phenomenon is classed with the dwarf nova outbursts. For the remaining nova-like variables, the period gap is no longer significant. Classification of the VY Scl phenomenon with dwarf novae suggests that dwarf nova outbursts are caused by variation in mass transfer from the donor. Absence of the period gap obviates the need for models explaining it, and invalidates one piece of evidence for the importance of magnetic braking for the evolution of cataclysmic variables and of low-mass binaries in general.

  5. What Video Games Have to Teach Us about Learning and Literacy. Second Edition: Revised and Updated Edition

    ERIC Educational Resources Information Center

    Gee, James Paul

    2007-01-01

    The author begins his classic book with "I want to talk about video games--yes, even violent video games--and say some positive things about them." With this simple but explosive statement, one of America's most well-respected educators looks seriously at the good that can come from playing video games. In this revised edition, new games like…

  6. Interaction Between a Steady Detonation Wave in Nitromethane and Geometrical Complex Confinement Defects

    NASA Astrophysics Data System (ADS)

    Crouzet, B.; Soulard, L.; Carion, N.; Manczur, P.

    2007-12-01

    Two copper cylinder expansion tests were carried out on nitromethane. They differ from the classical cylinder test in that the liner includes evenly-spaced protruding circular defects. The aim is to study how a detonation front propagating in the liquid explosive interacts with the confining material defects. The subsequent motion of the metal, accelerated by the expanding detonation products, is measured using a range of diagnostic techniques: electrical probes, a rapid framing camera, a glass block associated with a streak camera and velocity laser interferometers. The different experimental records have been examined in the light of previous classical cylinder test measurements, simple 2D theoretical shock polar analysis results and 2D numerical simulations.

  7. FUSE Observations of Galactic and LMC Novae in Outburst

    NASA Technical Reports Server (NTRS)

    Huschildt, P. H.

    2001-01-01

    This document is a collection of five abstracts from papers written on the 'FUSE Observations of Galactic and LMC Novae in Outburst'. The titles are the following: (1) Analyzing FUSE Observations of Galactic and LMC Novae; (2) Detailed NLTE Model Atmospheres for Novae during Outburst: Modeling Optical and Ultraviolet Observations for Nova LMC 1988; (3) Numerical Solution of the Expanding Stellar Atmosphere Problem; (4) A Non-LTE Line-Blanketed Expanding Atmosphere Model for A-supergiant Alpha Cygni; and (5) Non-LTE Model Atmosphere Analysis of the Early Ultraviolet Spectra of Nova Andromedae 1986. A list of journal publications is also included.

  8. Novae in External Galaxies: M51, M87, and M101

    NASA Astrophysics Data System (ADS)

    Shafter, A. W.; Ciardullo, R.; Pritchet, C. J.

    2000-02-01

    As part of a program to determine the stellar population of novae, we have conducted a multiepoch Hα survey of the galaxies M51, M87, and M101. A total of nine and 12 novae were detected in the spiral galaxies M51 and M101, respectively, during four epochs of observation, and two epochs of observation yielded a total of nine novae in the giant elliptical galaxy M87. After correcting for the effective survey time and for the fraction of luminosity sampled, we find global nova rates of 18+/-7, 91+/-34, and 12+/-4 novae per year for M51, M87, and M101, respectively. After normalizing to the total K-band luminosity of each galaxy, we estimate luminosity-specific nova rates for M51, M87, and M101 of 1.09+/-0.47, 2.30+/-0.99, and 0.97+/-0.38 novae per year per 1010 solar luminosities in K. When we compare these data with measured values for the luminosity-specific nova rates of other galaxies, we find no compelling evidence for a significant variation with Hubble type. Possible ramifications of this result are discussed within the context of current theoretical models for nova production in galaxies.

  9. The NOvA Technical Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, D.S.; Drake, G.R.; Goodman, M.C.

    Technical Design Report (TDR) describes the preliminary design of the NOvA accelerator upgrades, NOvA detectors, detector halls and detector sites. Compared to the March 2006 and November 2006 NOvA Conceptual Design Reports (CDR), critical value engineering studies have been completed and the alternatives still active in the CDR have been narrowed to achieve a preliminary technical design ready for a Critical Decision 2 review. Many aspects of NOvA described this TDR are complete to a level far beyond a preliminary design. In particular, the access road to the NOvA Far Detector site in Minnesota has an advanced technical design atmore » a level appropriate for a Critical Decision 3a review. Several components of the accelerator upgrade and new neutrino detectors also have advanced technical designs appropriate for a Critical Decision 3a review. Chapter 1 is an Executive Summary with a short description of the NOvA project. Chapter 2 describes how the Fermilab NuMI beam will provide a narrow band beam of neutrinos for NOvA. Chapter 3 gives an updated overview of the scientific basis for the NOvA experiment, focusing on the primary goal to extend the search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations and measure the sin{sup 2}(2{theta}{sub 13}) parameter. This parameter has not been measured in any previous experiment and NOvA would extend the search by about an order of magnitude beyond the current limit. A secondary goal is to measure the dominant mode oscillation parameters, sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sub 32}{sup 2} to a more precise level than previous experiments. Additional physics goals for NOvA are also discussed. Chapter 4 describes the Scientific Design Criteria which the Fermilab accelerator complex, NOvA detectors and NOvA detector sites must satisfy to meet the physics goals discussed in Chapter 3. Chapter 5 is an overview of the NOvA project. The changes in the design relative to the NOvA CDR are discussed. Chapter 6 summarizes the NOvA design performance relative to the Design Criteria set out in Chapter 4. Chapter 7 presents the Work Breakdown Structure dictionary at Level 3 and the Milestone dictionary. Chapters 8 through 17 then take each Level 2 WBS element of the NOvA project and present each part of the design in more detail than the overview given in Chapter 5. Specific technical design criteria are delineated for each part of the project in addition to the scientific design criteria outlined in Chapter 4. Changes in the design since the NOvA CDR are discussed in detail. The work remaining to bring each part of this preliminary design to a final design is outlined. Appendix A is a guide to other NOvA Project documentation with links to those documents.« less

  10. The structure of Al-23 and astrophysical consequences

    NASA Astrophysics Data System (ADS)

    Zhai, Yongjun

    Motivated by existing nuclear astrophysics problems, the b-decay of the proton rich nucleus 23 Al was studied for the first time with pure samples which were obtained by using the 1 H( 24 Mg, 23 Al)2n reaction and the MARS recoil separator at Texas A&M University. b and b-g coincidence measurements were made with a fast tape-transport system, scintillator, BGO and HPGe g detectors. The experiment allowed us to measure absolute b branching ratios and to determine log ft values for transitions to final states in 23 Mg, including the isobaric analog state (IAS), and, therefore, to determine unambiguously the spin and parity of the 23 Al ground state to be J p = 5/2 + . This work excludes the large increases in the radiative proton capture cross section for the reaction 22 Mg(p,g) 23 Al at astrophysical energies, which were implied by claims that the spin and parity of the 23 Al ground state were J p = 1/2 + . More precise half life and mass determinations of 23 Al were obtained from the experimental data. The log ft for the Fermi transition to its isobaric analog state in 23 Mg was also determined for the first time. This IAS and a state 16 keV below it were observed, well separated in the same experiment for the first time. The b- decay scheme of the proton rich nucleus 23 Al was established. We can now solve a number of inconsistencies in the literature, exclude strong isospin mixing claimed before, and obtain a new determination of the resonance strength. The IAS and the state 16 keV below it are resonances in the 22 Na(p,g) 23 Mg reaction at energies that are important in novae. This second state turns out to be the resonance that gives the most important contribution in the depletion of 22Na from novae. Both of the reactions of 22 Mg(p,g) 23 Al and 22 Na(p,g) 23 Mg have been suggested as possible candidates for diverting some of the flux in oxygen-neon novae explosions from the A=22 into the A=23 mass chain.

  11. Synoptic GNIRS XD Spectra ToO Novae

    NASA Astrophysics Data System (ADS)

    Woodward, Chick; Helton, Andrew; Spitzer/Chandra Team

    2007-02-01

    Novae are important contributors to galactic chemical enrichment on local scales. NIR spectroscopy of novae provides information about the elemental abundances of the gas and dust in the ejecta dispersing into the ISM as well as kinematic information related to the outburst. We propose to obtain synoptic GNIRS spectra of select Target of Opportunity (ToO) novae in the Magellanic Clouds (MC) and the galaxy to study the dynamics of the ejecta, to determine the temporal evolution of coronal lines and recombination lines (measuring their strength and velocity profiles), and to determine abundances. Being all equidistant, MC nova permit a more robust analysis of distant-dependent physical parameters of outburst than is generally possible for Galactic novae. The GNIRS data will provide critical spectral coverage and synoptic data to complement extant Spitzer and Chandra nova programs. Triggering of the GNIRS program will occur when a nova becomes brighter than V=12 mag, (assuming that adequate PWFS guide stars exist) as reported in the IAUC or CBET.

  12. Review: Progress in rotational ground-motion observations from explosions and local earthquakes in Taiwan

    USGS Publications Warehouse

    Lee, William H K.; Huang, Bor-Shouh; Langston, Charles A.; Lin, Chin-Jen; Liu, Chun-Chi; Shin, Tzay-Chyn; Teng, Ta-Liang; Wu, Chien-Fu

    2009-01-01

    Rotational motions generated by large earthquakes in the far field have been successfully measured, and observations agree well with the classical elasticity theory. However, recent rotational measurements in the near field of earthquakes in Japan and in Taiwan indicate that rotational ground motions are 10 to 100 times larger than expected from the classical elasticity theory. The near-field strong-motion records of the 1999 Mw 7.6 Chi-Chi, Taiwan, earthquake suggest that the ground motions along the 100 km rupture are complex. Some rather arbitrary baseline corrections are necessary in order to obtain reasonable displacement values from double integration of the acceleration data. Because rotational motions can contaminate acceleration observations due to the induced perturbation of the Earth’s gravitational field, we started a modest program to observe rotational ground motions in Taiwan.Three papers have reported the rotational observations in Taiwan: (1) at the HGSD station (Liu et al., 2009), (2) at the N3 site from two TAiwan Integrated GEodynamics Research (TAIGER) explosions (Lin et al., 2009), and (3) at the Taiwan campus of the National Chung-Cheng University (NCCU) (Wu et al., 2009). In addition, Langston et al. (2009) reported the results of analyzing the TAIGER explosion data. As noted by several authors before, we found a linear relationship between peak rotational rate (PRR in mrad/sec) and peak ground acceleration (PGA in m/sec2) from local earthquakes in Taiwan, PRR=0.002+1.301 PGA, with a correlation coefficient of 0.988.

  13. The origins of cosmic rays and quantum effects on gravity

    NASA Technical Reports Server (NTRS)

    Tomozawa, Y.

    1985-01-01

    The energy spectrum of primary cosmic rays is explained by particles emitted during a thermal expansion of explosive objects inside and near the galaxy, remnants of which may be supernova and/or active talaxies, or even stars or galaxies that disappeared from our sight after the explosion. A power law energy spectrum for cosmic rays, E to the (-alpha -1, is obtained from an expansion rate T is proportional to R to the alpha. Using the solution of the Einstein equation, we obtain a spectrum which agrees very well with experimental data. The implication of an inflationary early universe on the cosmic ray spectrum is also discussed. It is also suggested that the conflict between this model and the singularity theorem in classical general relativity may be eliminated by quantum effects.

  14. Explosion safety in industrial electrostatics

    NASA Astrophysics Data System (ADS)

    Szabó, S. V.; Kiss, I.; Berta, I.

    2011-01-01

    Complicated industrial systems are often endangered by electrostatic hazards, both from atmospheric (lightning phenomenon, primary and secondary lightning protection) and industrial (technological problems caused by static charging and fire and explosion hazards.) According to the classical approach protective methods have to be used in order to remove electrostatic charging and to avoid damages, however no attempt to compute the risk before and after applying the protective method is made, relying instead on well-educated and practiced expertise. The Budapest School of Electrostatics - in close cooperation with industrial partners - develops new suitable solutions for probability based decision support (Static Control Up-to-date Technology, SCOUT) using soft computing methods. This new approach can be used to assess and audit existing systems and - using the predictive power of the models - to design and plan activities in industrial electrostatics.

  15. Nova Discovery Efficiency 1890-2014; Only 43%±6% of the Brightest Nova Are Discovered

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.

    2014-06-01

    Galactic nova discovery has always been the domain of the best amateur astronomers, with the only substantial exception being the use of the Harvard plates from 1890-1947. (Modern CCD surveys have not produced any significant nova discoveries.) From 1890-1946, novae were discovered by gentlemen who deeply knew the stars in the sky and who checked for new stars on every clear night. This all changed when war surplus binoculars became commonly available, so the various organizations (e.g., AAVSO, BAA) instructed their hunters to use binoculars to regularly search small areas of the Milky Way. In the 1970s the hunters largely switched to blinking photographs, while they switched to CCD images in the 1990s, all exclusively in Milky Way regions. Currently, most hunters use 'go-to' scopes to look deeply only in the Milky Way, use weekly or monthly cadences, never go outside to look up at the light-polluted skies, and do not have the stars memorized at all. This situation is good for catching many faint novae, but is inefficient for catching the more isotropic and systematically-fast bright novae.I have made an exhaustive analysis of all known novae to isolate the effects on the relative discovery efficiency as a function of decade, the elongation from the Sun, the Moon's phase, the declination, the peak magnitude, and the duration of the peak. For example, the relative efficiency for novae south of declination -33° is 0.5 before 1953, 0.2 from 1953-1990, and 0.8 after 1990. My analysis gives the overall discovery efficiency to be 43%±6%, 30%, 22%, 12%, and 6% for novae peaking brighter than 2, 4, 6, 8, and 10 mag. Thus, the majority of first magnitude novae are being missed. The bright novae are lost because they are too close to the Sun, in the far south, and/or very fast. This is illustrated by the discovery rate for Vpeak<2 novae being once every five years before 1946, yet only one such nova (V1500 Cyg) has been seen in the last 68 years. A critical consequence of this result is that the nova rate for our Milky Way has doubled.

  16. A Twenty-Year Survey of Novae in M31

    NASA Astrophysics Data System (ADS)

    Crayton, Hannah; Rector, Travis A.; Walentosky, Matthew J.; Shafter, Allen W.; Lauber, Stephanie; Pilachowski, Catherine A.; RBSE Nova Search Team

    2018-06-01

    Numerous surveys of M31 in search of extragalactic novae have been completed over the last century, with a total of more than 1000 having been discovered during this time. From these surveys it has been estimated that the number of novae that occur in M31 is approximately 65 yr-1 (Darnley et al. 2006). A fraction of these are recurrent novae that recur on the timescales of years to decades (Shafter et al. 2015). From 1997 to 2017 we completed observations of M31 with the KPNO/WIYN 0.9-meter telescope, which offers a wide field of view suitable for surveying nearly all of the bulge and much of the disk of M31. Observations were completed in Hα so as to better detect novae in the bulge of the galaxy, where most novae reside. Our survey achieves a limiting absolute magnitude per epoch of MHα ∼ 7.5 mag, which prior M31 nova surveys in Hα (e.g., Ciardullo et al. 1987; Shafter & Irby 2001) have shown to be sufficiently deep to detect a typical nova several months after eruption. By completing nearly all of the observations with the same telescope, cameras, and filters we were able to obtain a remarkably consistent dataset.Our survey offers several benefits as compared to prior surveys. Nearly 200 epochs of observations were completed during the survey period. Observations were typically completed on a monthly basis; although on several occasions we completed weekly and nightly observations to search for novae with faster decay rates. Thus we were sensitive to most of the novae that erupted in M31 during the survey period.Over twenty years we detected 316 novae. Our survey found 85% of the novae in M31 that were reported by other surveys completed during the same time range and in the same survey area as ours (Pietsch et al. 2007). We also discovered 39 novae that were not found by other surveys. We present the complete catalog of novae from our survey, along with example light curves. Among other uses, our catalog will be useful for improving estimates of nova rate in M31. We also identify 72 standard stars within the survey area that will be useful for future surveys.

  17. Models for various aspects of dwarf novae and nova-like stars

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1993-01-01

    The first attempts to explain the nature of dwarf novae were based on the assumption of single-star phenomena, in which emission lines were assumed to be caused by circumstellar gas shells. The outburst behavior was tentatively ascribed to the kind of (also not understood) mechanism leading to nova outbursts. The realization that some, and possibly all, dwarf novae and nova-like stars (and novae) are binaries eventually led to models which bore more and more similarities to the modern interpretation on the basis of the Roche model. Not all cataclysmic variables are known binaries. In fact, with respect to the entire number of known objects, the proven binaries are still the minority, but all the brightest variables are in fact known to binaries. Not a single system is known which exhibits the usual characteristics of a cataclysmic variable and at the same time can be declared with certainty to be a single star. Two systems are known, the dwarf nova EY Cyg and the recurrent nova V1017 Sgr, in which, in spite of intensive search, no radial velocity variations have been found; but they still exhibit composite spectra consisting of a bright continuum, an emission spectrum, and a cool absorption spectrum. If the Roche model is correct, it is to be expected that a small percentage of objects is viewed pole-on, so orbital motions do not make themselves felt as Doppler shifts of spectral lines. So even these two systems support the hypothesis that all cataclysmic variables (with the possible exception of symbiotic stars) are binaries. In cataclysmic variables, it seems that the brightness changes observed in dwarf novae and nova-like stars in the optical and the UV are due directly to changes in the accretion disks. The study and understanding of accretion disks in these systems can bear potentially valuable consequences for many other fields in astronomy. The observed spectra of dwarf novae and nova-like stars comprise a fairly large range: pure emission spectra, pure absorption spectra, a mixture of both, asymmetric line profiles, very different slopes of the continuous flux distribution -- and one single system may exhibit all of these features at different times. Agreement and disagreement between computed and observed spectra should show whether or not the Roche model is applicable and where it probably will have to be modified and improved. Except for their outburst behavior and its immediate consequences, novae, dwarf novae, and nova-like stars cannot be physically distinguished from each other.

  18. BVRI Hα Photometric Evolution of Nova 2007 IN M 33

    NASA Astrophysics Data System (ADS)

    Munari, U.; Siviero, A.; Henden, A.; Dintinjana, B.; Mikuž, H.; Ochner, P.; Tomasoni, S.

    The BVRCIC and Hα light curves of Nova 2007, located in the galaxy M 33, are presented. They display the fastest decline ever observed for a nova in this galaxy (Δ B = 0.40 ± 0.01 mag/day). Color indices of the nova match those of its counterparts in the Galaxy. The nova was discovered when it was already two magnitudes down from maximum (estimated to have occurred on September 13 at B = 15.5 mag).

  19. Search for Gamma-Ray Emission from Galactic Novae using Fermi-LAT Pass 8

    NASA Astrophysics Data System (ADS)

    Buson, Sara; Franckowiak, Anna; Cheung, Teddy; Jean, Pierre; Fermi-LAT Collaboration

    2016-01-01

    Recently Galactic novae have been identified as a new class of GeV gamma-ray emitters, with 6 detected so far with the Fermi Large Area Telescope (Fermi-LAT) data. Based on optical observations we have compiled a catalog of ~70 Galactic novae, which peak (in optical) during the operations of the Fermi mission. Based on the properties of known gamma-ray novae we developed a search procedure that we apply to all novae in the catalog to detect these slow transient sources or set flux upper limits using the Fermi-LAT Pass 8 data set. This is the first time a large sample of Galactic novae has been uniformly studied.

  20. School Psychology in Nova Scotia

    ERIC Educational Resources Information Center

    King, Sara; McGonnell, Melissa; Noyes, Amira

    2016-01-01

    Registration as a psychologist in Nova Scotia can be at the master's or doctoral level; however, the Nova Scotia Board of Examiners in Psychology has announced a move to the doctoral degree as the entry-level to practice. Many school psychologists in Nova Scotia practice at the master's level; therefore, this change could affect school psychology…

  1. A Search for Ultrafast Novae in M31

    NASA Astrophysics Data System (ADS)

    Sola, Nicole; Rector, Travis A.; Shafter, Allen W.; Horst, Chuck; Igarashi, Amy; Henze, Martin; Pilachowski, Catherine A.

    2018-06-01

    Numerous surveys in search of extragalactic novae have been completed over the last century. From Local Group surveys it has been estimated that the number of novae that occur in M31 is approximately 65 yr-1 (Darnley et al. 2006), with a total of more than 1000 having been discovered over the past century. A fraction of these are recurrent novae that recur on the timescales of years to decades (Shafter et al. 2015).Novae typically fade from view on timescales of weeks to months. However, Shara et al. (2017) present models that predict the existence of "ultrafast" novae that have two-magnitude decay times (t2) of less than a day. The remarkable recurrent nova M31N 2008-12a has a t2 time of ~2 days (e.g., Darnley et al. 2016). None faster than this have been seen in M31; however, most surveys of extragalactic novae use cadences of a day or longer, meaning such novae could be missed.In October 2017 we completed a two-week search for ultrafast novae in M31 with the WIYN 0.9m telescope. The telescope's Half-Degree Imager provided a field of view of a quarter square degree, which covers most of M31's bulge and part of the disk. Weather hampered observations on some nights, but for most nights we were able to obtain multiple observations of M31 on a near hourly basis. We present the results of our search.

  2. Naval Observatory Vector Astrometry Software (NOVAS) Version 3.1:Fortran, C, and Python Editions

    NASA Astrophysics Data System (ADS)

    Kaplan, G. H.; Bangert, J. A.; Barron, E. G.; Bartlett, J. L.; Puatua, W.; Harris, W.; Barrett, P.

    2012-08-01

    The Naval Observatory Vector Astrometry Software (NOVAS) is a source - code library that provides common astrometric quantities and transformations to high precision. The library can supply, in one or two subroutine or function calls, the instantaneous celestial position of any star or planet in a variety of coordinate systems. NOVAS also provides access to all of the building blocks that go into such computations. NOVAS is used for a wide variety of applications, including the U.S. portions of The Astronomical Almanac and a number of telescope control systems. NOVAS uses IAU recommended models for Earth orientation, including the IAU 2006 precession theory, the IAU 2000A and 2000B nutation series, and diurnal rotation based on the celestial and terrestrial intermediate origins. Equinox - based quantities, such as sidereal time, are also supported. NOVAS Earth orientation calculations match those from SOFA at the sub - microarcsecond level for comparable transformations. NOVAS algorithms for aberration an d gravitational light deflection are equivalent, at the microarcsecond level, to those inherent in the current consensus VLBI delay algorithm. NOVAS can be easily connected to the JPL planetary/lunar ephemerides (e.g., DE405), and connections to IMCCE and IAA planetary ephemerides are planned. NOVAS Version 3.1 introduces a Python edition alongside the Fortran and C editions. The Python edition uses the computational code from the C edition and currently mimics the function calls of the C edition. Future versions will expand the functionality of the Python edition to exploit the object - oriented features of Python. In the Version 3.1 C edition, the ephemeris - access functions have been revised for use on 64 - bit systems and for improved performance in general. NOVAS source code, auxiliary files, and documentation are available from the USNO website (http://aa.usno.navy.mil/software/novas/novas_info.php).

  3. Core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Mueller, Bernhard

    2017-01-01

    Core-collapse supernovae, the deaths of massive stars, are among the most spectacular phenomena in astrophysics: Not only can supernovae outshine their host galaxy for weeks; they are also laboratories for the behavior of matter at supranuclear densities, and one of the few environments where collective neutrino effects can become important. Moreover, supernovae play a central role in the cosmic matter cycle, e.g., as the dominant producers of oxygen in the Universe. Yet the mechanism by which massive stars explode has eluded us for decades, partly because classical astronomical observations across the electromagnetic spectrum cannot directly probe the supernovae ``engine''. Numerical simulations are thus our primary tool for understanding the explosion mechanism(s) of massive stars. Rigorous modeling needs to take a host of important physical ingredients into account, such as the emission and partial reabsorption of neutrinos from the young proto-neutron star, multi-dimensional fluid motions, general relativistic gravity, the equation of state of nuclear matter, and magnetic fields. This is a challenging multi-physics problem that has not been fully solved yet. Nonetheless, as I shall argue in this talk, recent first-principle 3D simulations have gone a long way towards demonstrating the viability of the most popular explosion scenario, the ``neutrino-driven mechanism''. Focusing on successful explosion models of the MPA-QUB-Monash collaboration, I will discuss possible requirements for robust explosions across a wide range of progenitors, such as accurate neutrino opacities, stellar rotation, and seed asymmetries from convective shell burning. With the advent of successful explosion models, supernova theory can also be confronted with astronomical observations. I will show that recent 3D models come closer to matching observed explosion parameters (explosion energies, neutron star kicks) than older 2D models, although there are still discrepancies. This work has been supported by the ARC (grant DE150101145), NSF (PHY-1430152, JINA-CEE) and the supercomputing centers/initiatives NCI, Pawsey, and DiRAC.

  4. Nova M33N 2012-10a

    NASA Astrophysics Data System (ADS)

    Alothman, Nourah

    In this thesis I present a study and measurement of a Nova in M33 galaxy type N 2012-10a (which is type of binary star) using data that were collected by the ROTSE IIIb robotic telescope and another observatory. I study the fundamental properties of the light curve and determined the brightness and the velocity of this type of nova. I analyzed the spectra that were measured by the Hobby-Eberly Telescope (HET) at the McDonald Observatory. In addition, I compared this type of nova to other types of Novae.

  5. Nova-driven winds in globular clusters

    NASA Technical Reports Server (NTRS)

    Scott, E. H.; Durisen, R. H.

    1978-01-01

    Recent sensitive searches for H-alpha emission from ionized intracluster gas in globular clusters have set upper limits that conflict with theoretical predictions. It is suggested that nova outbursts heat the gas, producing winds that resolve this discrepancy. The incidence of novae in globular clusters, the conversion of kinetic energy of the nova shell to thermal energy of the intracluster gas, and the characteristics of the resultant winds are discussed. Calculated emission from the nova-driven models does not conflict with any observations to date. Some suggestions are made concerning the most promising approaches for future detection of intracluster gas on the basis of these models. The possible relationship of nova-driven winds to globular cluster X-ray sources is also considered.

  6. Parameterization of strombolian explosions: constraint from simultaneous physical and geophysical measurements (Invited)

    NASA Astrophysics Data System (ADS)

    gurioli, L.; Harris, A. J.

    2013-12-01

    Strombolian activity is the most common type of explosive eruption (by frequency) experienced by Earth's volcanoes. It is commonly viewed as consisting of a succession of short discrete explosions where fragments of incandescent magma are ejected a few tens to hundreds meters into the air. This kind of activity is generally restricted to basaltic or basaltic-andesitic magmas because these systems have the sufficiently low viscosities so as to allow gas coalescence and decoupled slug ascent. Mercalli (1907) proposed one of the first formal classifications of explosive activity based on the character of the erupted products and descriptions of case-type eruptions. Later, Walker (1973) devised a classification based on grain size and dispersion, within which strombolian explosions formed the low-to-middle end of the classification. Other classifications have categorized strombolian activity on the basis of erupted magnitude and/or intensity, such as Newhall and Self's (1982) Volcanic Explosivity Index (VEI). Classification can also be made on the basis of explosion mechanism, where strombolian eruptions have become associated with bursting of large gas bubbles, as opposed to release of locked in bubble populations in rapidly ascending magma that feed sustained fountains. Finally, strombolian eruptions can be defined on the basis of geophysical metrics for the explosion source and plume ascent dynamics. Recently, the volcanology community has begun to discuss the difficulty of actually placing strombolian explosions within the compartments defined by each scheme. New sampling strategies in active strombolian volcanic fields have allowed us to parameterize these mildly explosive events both physically and geophysically. Our data show that individual 'normal' and "major" explosions at Stromboli are extremely small, meaning that the classical deposit-based classification thresholds need to be reduced, or a new category defined, if the 'strombolian' eruption style at Stromboli, and other volcanoes like it, are to plot in the strombolian fields of deposit-based classifications. We also quenched a number of bombs soon explosion at Stromboli. This enabled us to quantify the degassing history and rheology of the magma(s) resident in the shallow, near-surface, system. The different textural facies observed in these bombs showed that fresh magma, mingled with partially or completely degassed, oxidized, re-crystallized, evolved and high viscosity magma, was ejected. The degassed magma appears to sit at the top of the conduit, playing only a passive role in the explosive process. Our best model, is that the degassed, oxidized magma forms a plug, or rheologically defined layer, at the top of the conduit, through which the fresh magma bursts. Integration of geophysical measurements with sample analyses, indicates that popular (bubble-bursting) models may not fit this case, thus also changeling the model-based definition of this eruption type.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taddia, Francesco; Sollerman, J.; Fremling, C.

    Context. Supernova (SN) 1987A was a peculiar hydrogen-rich event with a long-rising (~84 d) light curve, stemming from the explosion of a compact blue supergiant star. Only a few similar events have been presented in the literature in recent decades. Aims. We present new data for a sample of six long-rising Type II SNe (SNe II), three of which were discovered and observed by the Palomar Transient Factory (PTF) and three observed by the Caltech Core-Collapse Project (CCCP). Our aim is to enlarge this small family of long-rising SNe II, characterizing their differences in terms of progenitor and explosion parameters.more » We also study the metallicity of their environments. Methods. Optical light curves, spectra, and host-galaxy properties of these SNe are presented and analyzed. Detailed comparisons with known SN 1987A-like events in the literature are shown, with particular emphasis on the absolute magnitudes, colors, expansion velocities, and host-galaxy metallicities. Bolometric properties are derived from the multiband light curves. By modeling the early-time emission with scaling relations derived from the SuperNova Explosion Code (SNEC) models of MESA progenitor stars, we estimate the progenitor radii of these transients. The modeling of the bolometric light curves also allows us to estimate other progenitor and explosion parameters, such as the ejected 56Ni mass, the explosion energy, and the ejecta mass. Results. We present PTF12kso, a long-rising SN II that is estimated to have the largest amount of ejected 56Ni mass measured for this class. PTF09gpn and PTF12kso are found at the lowest host metallicities observed for this SN group. The variety of early light-curve luminosities depends on the wide range of progenitor radii of these SNe, from a few tens of R ⊙ (SN 2005ci) up to thousands (SN 2004ek) with some intermediate cases between 100 R ⊙ (PTF09gpn) and 300 R ⊙ (SN 2004em). Conclusions. We confirm that long-rising SNe II with light-curve shapes closely resembling that of SN 1987A generally arise from blue supergiant (BSG) stars. However, some of them, such as SN 2004em, likely have progenitors with larger radii (~300 R ⊙, typical of yellow supergiants) and can thus be regarded as intermediate cases between normal SNe IIP and SN 1987A-like SNe. Some extended red supergiant (RSG) stars such as the progenitor of SN 2004ek can also produce long-rising SNe II if they synthesized a large amount of 56Ni in the explosion. Lastly, low host metallicity is confirmed as a characteristic of the SNe arising from compact BSG stars.« less

  8. Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project

    DOE PAGES

    Taddia, Francesco; Sollerman, J.; Fremling, C.; ...

    2016-03-09

    Context. Supernova (SN) 1987A was a peculiar hydrogen-rich event with a long-rising (~84 d) light curve, stemming from the explosion of a compact blue supergiant star. Only a few similar events have been presented in the literature in recent decades. Aims. We present new data for a sample of six long-rising Type II SNe (SNe II), three of which were discovered and observed by the Palomar Transient Factory (PTF) and three observed by the Caltech Core-Collapse Project (CCCP). Our aim is to enlarge this small family of long-rising SNe II, characterizing their differences in terms of progenitor and explosion parameters.more » We also study the metallicity of their environments. Methods. Optical light curves, spectra, and host-galaxy properties of these SNe are presented and analyzed. Detailed comparisons with known SN 1987A-like events in the literature are shown, with particular emphasis on the absolute magnitudes, colors, expansion velocities, and host-galaxy metallicities. Bolometric properties are derived from the multiband light curves. By modeling the early-time emission with scaling relations derived from the SuperNova Explosion Code (SNEC) models of MESA progenitor stars, we estimate the progenitor radii of these transients. The modeling of the bolometric light curves also allows us to estimate other progenitor and explosion parameters, such as the ejected 56Ni mass, the explosion energy, and the ejecta mass. Results. We present PTF12kso, a long-rising SN II that is estimated to have the largest amount of ejected 56Ni mass measured for this class. PTF09gpn and PTF12kso are found at the lowest host metallicities observed for this SN group. The variety of early light-curve luminosities depends on the wide range of progenitor radii of these SNe, from a few tens of R ⊙ (SN 2005ci) up to thousands (SN 2004ek) with some intermediate cases between 100 R ⊙ (PTF09gpn) and 300 R ⊙ (SN 2004em). Conclusions. We confirm that long-rising SNe II with light-curve shapes closely resembling that of SN 1987A generally arise from blue supergiant (BSG) stars. However, some of them, such as SN 2004em, likely have progenitors with larger radii (~300 R ⊙, typical of yellow supergiants) and can thus be regarded as intermediate cases between normal SNe IIP and SN 1987A-like SNe. Some extended red supergiant (RSG) stars such as the progenitor of SN 2004ek can also produce long-rising SNe II if they synthesized a large amount of 56Ni in the explosion. Lastly, low host metallicity is confirmed as a characteristic of the SNe arising from compact BSG stars.« less

  9. Nova-like variables

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1993-01-01

    On grounds of different observable characteristics five classes of nova-like objects are distinguished: the UX Ursae Majoris stars, the antidwarf novae, the DQ Herculis stars, the AM Herculis stars, and the AM Canum Venaticorum stars. Some objects have not been classified specifically. Nova-like stars share most observable features with dwarf novae, except for the outburst behavior. The understanding is that dwarf novae, UX Ursae Majoris stars, and anti-dwarf novae are basically the same sort of objects. The difference between them is that in UX Ursae Majoris stars the mass transfer through the accretion disc always is high so the disc is stationary all the time; in anti-dwarf novae for some reason the mass transfer occasionally drops considerably for some time, and in dwarf novae it is low enough for the disc to undergo semiperiodic changes between high and low accretion events. DQ Herculis stars are believed to possess weakly magnetic white dwarfs which disrupt the inner disc at some distance from the central star; the rotation of the white dwarf can be seen as an additional photometric period. In AM Herculis stars, a strongly magnetic white dwarf entirely prevents the formation of an accretion disk and at the same time locks the rotation of the white dwarf to the binary orbit. Finally, AM Canum Venaticorum stars are believed to be cataclysmic variables that consist of two white dwarf components.

  10. A hydrodynamic study of a slow nova outburst. [computerized simulation of thermonuclear runaway in white dwarf envelope

    NASA Technical Reports Server (NTRS)

    Sparks, W. M.; Starrfield, S.; Truran, J. W.

    1978-01-01

    The paper reports use of a Lagrangian implicit hydrodynamics computer code incorporating a full nuclear-reaction network to follow a thermonuclear runaway in the hydrogen-rich envelope of a 1.25 solar-mass white dwarf. In this evolutionary sequence the envelope was assumed to be of normal (solar) composition and the resulting outburst closely resembles that of the slow nova HR Del. In contrast, previous CNO-enhanced models resemble fast nova outbursts. The slow-nova model ejects material by radiation pressure when the high luminosity of the rekindled hydrogen shell source exceeds the local Eddington luminosity of the outer layers. This is in contrast to the fast nova outburst where ejection is caused by the decay of the beta(+)-unstable nuclei. Nevertheless, radiation pressure probably plays a major role in ejecting material from the fast nova remnants. Therefore, the sequence from slow to fast novae can be interpreted as a sequence of white dwarfs with increasing amounts of enhanced CNO nuclei in their hydrogen envelopes, although other parameters such as the white-dwarf mass and accretion rate probably contribute to the observed variation between novae.

  11. NovaSearch Online: Research Experience in Astronomy 101

    NASA Astrophysics Data System (ADS)

    Pilachowski, C. A.; Rector, T.; Morris, F.; Tebbe, H.

    2003-12-01

    A new website at the University of Indiana Bloomington allows undergraduate, introductory astronomy students to participate in original research, discovering novae in the Andromeda Galaxy. Sequences of CCD images obtained with the WIYN 0.9-m telescope at Kitt Peak of the central region of Andromeda are displayed on the Web as Flash movies, allowing students to identify novae as new, blinking stars. Tools are provided to estimate the magnitude of the novae and to determine the Julian date of observations, so that students can plot light curves. The goal of NovaSearch is to engage students in the process of discovery, applying the content they learn from textbooks and lectures to real observations and the creation of new knowledge. NovaSearch is supplemented with live video interactions with on-site observers and remote observing at the 0.9-m telescope. For many students, NovaSearch is their first experience with science as a creative, human activity. NovaSearch is available for examination and use at www.astro.indiana.edu/novasearch/ Support from the SBC Fellows program at Indiana University, as well as from the National Science Foundation through grant ESI 0101982 to the National Optical Astronomy Observatory, is gratefully acknowledged.

  12. Progenitor constraints for core-collapse supernovae from Chandra X-ray observations

    NASA Astrophysics Data System (ADS)

    Heikkilä, T.; Tsygankov, S.; Mattila, S.; Eldridge, J. J.; Fraser, M.; Poutanen, J.

    2016-03-01

    The progenitors of hydrogen-poor core-collapse supernovae (SNe) of Types Ib, Ic and IIb are believed to have shed their outer hydrogen envelopes either by extremely strong stellar winds, characteristic of classical Wolf-Rayet stars, or by binary interaction with a close companion star. The exact nature of the progenitors and the relative importance of these processes are still open questions. One relatively unexplored method to constrain the progenitors is to search for high-mass X-ray binaries (HMXBs) at SN locations in pre-explosion X-ray observations. In an HMXB, one star has already exploded as a core-collapse SN, producing a neutron star or a stellar mass black hole. It is likely that the second star in the system will also explode as an SN, which should cause a detectable long-term change in the system's X-ray luminosity. In particular, a pre-explosion detection of an HMXB coincident with an SN could be informative about the progenitor's nature. In this paper, we analyse pre-explosion ACIS observations of 18 nearby Type Ib, Ic and IIb SNe from the Chandra X-ray observatory public archive. Two sources that could potentially be associated with the SN are identified in the sample. Additionally we make similar post-explosion measurements for 46 SNe. Although our modelling indicates that progenitor systems with compact binary companions are probably quite rare, studies of this type can in the future provide more stringent constraints as the number of discovered nearby SNe and suitable pre-explosion X-ray data are both increasing.

  13. Can isolated single black holes produce X-ray novae?

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tatsuya; Teraki, Yuto; Ioka, Kunihito

    2018-03-01

    Almost all black holes (BHs) and BH candidates in our Galaxy have been discovered as soft X-ray transients, so-called X-ray novae. X-ray novae are usually considered to arise from binary systems. Here, we propose that X-ray novae are also caused by isolated single BHs. We calculate the distribution of the accretion rate from interstellar matter to isolated BHs, and find that BHs in molecular clouds satisfy the condition of the hydrogen-ionization disc instability, which results in X-ray novae. The estimated event rate is consistent with the observed one. We also check an X-ray novae catalogue (Corral-Santana et al.) and find that 16/59 ˜ 0.27 of the observed X-ray novae are potentially powered by isolated BHs. The possible candidates include IGR J17454-2919, XTE J1908-094, and SAX J1711.6-3808. Near-infrared photometric and spectroscopic follow-ups can exclude companion stars for a BH census in our Galaxy.

  14. Detecting Nova Shells around known Cataclysmic Variable systems

    NASA Astrophysics Data System (ADS)

    Xhakaj, Enia; Kupfer, Thomas; Prince, Thomas A.

    2017-01-01

    Nova shells are hydrogen-rich nebulae around Cataclysmic Variables that are created when a Nova outburst takes place. Learning more about Nova shells can help us get a better understanding of the long-term evolution of white dwarfs in active Cataclysmic Variables. In this project, we present the search for Nova shells around 1700 Cataclysmic Variables, using Hα images from the Palomar Transient Factory (PTF) survey. The PTF Hα survey started in 2009 using the 48’’ Oschin telescope at Palomar Observatory and is the first of its type covering the whole northern hemisphere while reaching 18 mags in 60 seconds of exposure. We concentrated our search on the IAU catalogue of Historical Novae, as well as on the SDSS and the Ritter-Kolb catalogue of Cataclysmic Variables. We numerically analyzed radial profiles centered on the target sources to search for excess emission potentially associated with the shells. Out of 1700 Cataclysmic Variables present in these catalogues, we detected 25 Nova shells, out of which 20 are not observed before.

  15. Fritz Zwicky: Novae Become Supernovae

    NASA Astrophysics Data System (ADS)

    Koenig, T.

    2005-12-01

    The Swiss physicist Fritz Zwicky (1898-1974) dabbled in a plethora of disciplines, including astronomy and astrophysics. His dabblings were with vested interest and he has left quite an impact. His first great success was his nova research. In the early 1930s, while supermarkets and Superman were flying, he labelled the distinctly brighter nova Supernova. It had been believed that novae were the collision of two stars, but Zwicky came to recognize supernovae as a phenomenon quite distinct from novae. He and Walter Baade explained supernova by melding astronomy and physics and in this aim they created neutron stars, explained the origin of cosmic rays, initiated the first sky survey, and confirmed that a number of historical novae were indeed supernovae. This was truly an important work in the history of astrophysics.

  16. Discovery of an old nova shell surrounding the cataclysmic variable V1315 Aql

    NASA Astrophysics Data System (ADS)

    Sahman, D. I.; Dhillon, V. S.; Littlefair, S. P.; Hallinan, G.

    2018-07-01

    Following our tentative discovery of a faint shell around V1315 Aql reported in Sahman et al., we undertook deep Hα imaging and intermediate-resolution spectroscopy of the shell. We find that the shell has its geometric centre located on V1315 Aql. The mass, spectral features, and density of the shell are consistent with other nova shells, rather than planetary nebulae or supernova remnants. The radial velocity of the shell is consistent with the systemic velocity of V1315 Aql. We believe this evidence strongly suggests that the shell originates from an earlier nova event. This is the first nova shell discovered around a nova-like and supports the theory of nova-induced cycles in mass transfer rates (hibernation theory) first proposed by Shara et al.

  17. Observations and simulations of nova Vul 1984 no. 2: A nova with ejecta rich in oxygen, neon, and magnesium

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Sonneborn, G.; Stryker, L. L.; Sparks, Warren M.; Truran, James W.; Ferland, Gary; Wagner, R. M.; Gallagher, J. S.; Wade, R.; Williams, R. E.

    1988-01-01

    Nova Vul 1984 no. 2 was observed with IUE from Dec. 1984 through Nov. 1987. The spectra are characterized by strong lines from Mg, Ne, C, Si, O, N, and other elements. Data obtained in the ultraviolet, infrared, and optical show that this nova is ejecting material rich in oxygen, neon, and magnesium.

  18. Naval Observatory Vector Astrometry Software (NOVAS) Version 3.1, Introducing a Python Edition

    NASA Astrophysics Data System (ADS)

    Barron, Eric G.; Kaplan, G. H.; Bangert, J.; Bartlett, J. L.; Puatua, W.; Harris, W.; Barrett, P.

    2011-01-01

    The Naval Observatory Vector Astrometry Software (NOVAS) is a source-code library that provides common astrometric quantities and transformations. NOVAS calculations are accurate at the sub-milliarcsecond level. The library can supply, in one or two subroutine or function calls, the instantaneous celestial position of any star or planet in a variety of coordinate systems. NOVAS also provides access to all of the building blocks that go into such computations. NOVAS Version 3.1 introduces a Python edition alongside the Fortran and C editions. The Python edition uses the computational code from the C edition and, currently, mimics the function calls of the C edition. Future versions will expand the functionality of the Python edition to harness the object-oriented nature of the Python language, and will implement the ability to handle large quantities of objects or observers using the array functionality in NumPy (a third-party scientific package for Python). NOVAS 3.1 also adds a module to transform GCRS vectors to the ITRS; the ITRS to GCRS transformation was already provided in NOVAS 3.0. The module that corrects an ITRS vector for polar motion has been modified to undo that correction upon demand. In the C edition, the ephemeris-access functions have been revised for use on 64-bit systems and for improved performance in general. NOVAS, including documentation, is available from the USNO website (http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas).

  19. Life after eruption VII: A search for stunted outbursts in thirteen post-novae

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Tappert, C.; Puebla, E. C.; Fuentes-Morales, I.; Ederoclite, A.; Schmidtobreick, L.

    2018-06-01

    The results of a photometric campaign during three observing seasons 2013 - 2016 at the Cerro Tololo International Observatory (1.3-meter SMARTS telescope) are presented. The aim was to detect "stunted" outbursts in a total of 13 post novae more than 38 years after maximum brightness registered in their nova eruption light curve. In six of the targets (V728 Sco 1862, V1059 Sgr 1898, V849 Oph 1919, V363 Sgr 1927, HS Pup 1963 and V2572 Sgr 1969) we detected such dwarf nova-like mini-outbursts, with mean amplitudes between 0.2m and 2.2m and typical FWHM of 4-11 days, repeating every 9-32 days. The most regular outburst behavior is present in the eclipsing post-nova V728 Sco. In our sample there is no significant correlation between the occurrences of stunted outbursts and the time passed since the nova eruption maximum. However, considering all 15 post-novae that have been reported to show stunted outbursts we found a possible tendency for increasing outburst amplitudes at the rate 0.52 ± 0.23 mag/century during 30 - 250 years after nova eruption. This tendency is still doubtful due to the low number of cases available. If the stunted outburst activity is related to the mass transfer rate \\dot{M}, we conclude that the secular decrease of \\dot{M} predicted by the hibernation scenario must be at much longer time scales than ˜200 years actually covered with post-nova observations.

  20. Near-Infrared Emission Lines of Nova Cassiopeiae 1995

    NASA Astrophysics Data System (ADS)

    Rudy, R. J.; Lynch, D. K.; Mazuk, S. M.; Venturini, C. C.; Puetter, R. C.

    2000-12-01

    The slow nova V 723 Cas (Nova Cas 1995) exhibits comparatively narrow emission features (FWHM 500 km sec-1) that make it ideal for classifying weak lines and lines blended with stronger features. We present spectra from 0.8-2.5 microns that track the gradual incrase in excitation of Nova Cas and discuss the emission lines that were present. During the period encompassed by these observations Nova Cas reached only moderate excitation-the most energetic coronal lines were [S VIII] 9913 and [Al IX] 20444; lines such as [S IX] 12523 that are prominent in some novae were not detected. Additional coronal lines present include [Si VI] 19641, [Ca VIII] 23205, and [Si VII] 24807. New lines identified include features of [Fe V], [Fe VI]. These iron features are not coronal lines, arising from transitions among low-lying terms rather than within the ground term itself. Also detected was [Ti VI] 17151 that was first identified in V1974 Cygni (Nova Cyg 1992), and possibly [Ti VII] 22050. Accurate wavelengths for a number of unidentified lines are also presented. These unidentified features are discussed with regard to their likely level of excitation and their presence in other novae. This work was supported by the IR&D program of the Aerospace Corporation. RCP acknowledges support from NASA.

  1. Laying the foundation for a digital Nova Scotia

    NASA Astrophysics Data System (ADS)

    Bond, J.

    2016-04-01

    In 2013, the Province of Nova Scotia began an effort to modernize its coordinate referencing infrastructure known as the Nova Scotia Coordinate Referencing System (NSCRS). At that time, 8, active GPS stations were installed in southwest Nova Scotia to evaluate the technology's ability to address the Province's coordinate referencing needs. The success of the test phase helped build a business case to implement the technology across the entire Province. It is anticipated that by the end of 2015, 40 active GPS stations will be in place across Nova Scotia. This infrastructure, known as the Nova Scotia Active Control Stations (NSACS) network, will allow for instantaneous, centimetre level positioning across the Province. Originally designed to address the needs of the surveying community, the technology has also proven to have applications in mapping, machine automation, agriculture, navigation, emergency response, earthquake detection and other areas. In the foreseeable future, all spatial data sets captured in Nova Scotia will be either directly or indirectly derived from the NSACS network. The technology will promote high accuracy and homogenous spatial data sets across the Province. The technology behind the NSACS and the development of the system are described. Examples of how the technology is contributing to a digital Nova Scotia are presented. Future applications of the technology are also considered.

  2. Final Technical Report for Award DE-FG02-98ER41080

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Alan

    The prime motivation of the project at McMaster University was to carry out the critical evaluation and compilation of Nuclear Structure and Decay data, and of nuclear astrophysics data with continued participation in the United States Nuclear Data Program (US-NDP). A large body of evaluated and compiled structure data were supplied for databases such as ENSDF, XUNDL, NSR, etc. residing on webpage of National Nuclear Data Center of the Brookhaven National Laboratory, Upton, New York, USA. Thermonuclear reaction rates of importance to stellar explosions, such as novae, x-ray bursts and supernovae, were evaluated as well. This effort was closely coupledmore » to our ongoing experimental effort, which took advantage of radioactive ion beam and stable beam facilities worldwide to study these key reaction rates. This report contains brief descriptions of the various activities together with references to all the publications in peer-reviewed journals which were the result of work carried out with the award DE-FG02-98-ER41080, during 1998-2013.« less

  3. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flumerfelt, Eric Lewis

    2015-08-01

    The NOvA (NuMI Off-axis v e [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through anmore » initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.« less

  4. β decay of proton-rich nucleus Al23 and astrophysical consequences

    NASA Astrophysics Data System (ADS)

    Iacob, V. E.; Zhai, Y.; Al-Abdullah, T.; Fu, C.; Hardy, J. C.; Nica, N.; Park, H. I.; Tabacaru, G.; Trache, L.; Tribble, R. E.

    2006-10-01

    We present the first study of the β decay of Al23 undertaken with pure samples. The study was motivated by nuclear astrophysics questions. Pure samples of Al23 were obtained from the momentum achromat recoil separator (MARS) of Texas A&M University, collected on a fast tape-transport system, and moved to a shielded location where β and β-γ coincidence measurements were made. We deduced β branching ratios and log ft values for transitions to states in Mg23, and from them determined unambiguously the spin and parity of the Al23 ground state to be Jπ=5/2+. We discuss how this excludes the large increases in the radiative proton capture cross section for the reaction Mg22(p,γ)Al23 at astrophysical energies, which were implied by claims that the spin and parity is Jπ=1/2+. The log ft for the Fermi transition to its isobaric analog state (IAS) in Mg23 is also determined for the first time. This IAS and a state 16 keV below it are observed, well separated in the same experiment for the first time. We can now solve a number of inconsistencies in the literature, exclude strong isospin mixing claimed before, and obtain a new determination of the resonance strength. Both states are resonances in the Na22(p,γ)Mg23 reaction at energies important in novae. The reactions Mg22(p,γ)Al23 and Na22(p,γ)Mg23 have both been suggested as possible candidates for diverting some of the flux in oxygen-neon novae explosions from the A=22 into the A=23 mass chain.

  5. M31N 2008-12a-The Remarkable Recurrent Nova in M31-Panchromatic Observations of the 2015 Eruption

    NASA Technical Reports Server (NTRS)

    Darnley, M. J.; Henze, M.; Bode, M. F.; Hachisu, I.; Hernanz, M.; Hornoch, K.; Hounsell, R.; Kato, M.; Ness, J.- U.; Osborne, J. P.; hide

    2016-01-01

    The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption 10 times, including yearly eruptions from 2008 to 2014. With a measured recurrence period of Prec = 351+/-13 days (we believe the true value to be half of this) and a white dwarf very close to the Chandrasekhar limit, M31N 2008-12a has become the leading pre-explosion supernova type Ia progenitor candidate. Following multi-wavelength follow-up observations of the 2013 and 2014 eruptions, we initiated a campaign to ensure early detection of the predicted 2015 eruption, which triggered ambitious ground- and space-based follow-up programs. In this paper we present the 2015 detection, visible to near-infrared photometry and visible spectroscopy, and ultraviolet and X-ray observations from the Swift observatory. The LCOGT 2 m (Hawaii) discovered the 2015 eruption, estimated to have commenced at August 28.28 +/- 0.12 UT. The 2013-2015 eruptions are remarkably similar at all wavelengths. New early spectroscopic observations reveal short-lived emission from material with velocities approx. 13,000 km/s, possibly collimated outflows. Photometric and spectroscopic observations of the eruption provide strong evidence supporting a red giant donor. An apparently stochastic variability during the early supersoft X-ray phase was comparable in amplitude and duration to past eruptions, but the 2013 and 2015 eruptions show evidence of a brief flux dip during this phase. The multi-eruption Swift/XRT spectra show tentative evidence of high-ionization emission lines above a high-temperature continuum. Following Henze et al. (2015a), the updated recurrence period based on all known eruptions is Prec 174 +/- 10 days, and we expect the next eruption of M31N 2008-12a to occur around 2016 mid-September.

  6. Origin of asymmetries in X-ray emission lines from the blast wave of the 2014 outburst of nova V745 Sco

    NASA Astrophysics Data System (ADS)

    Orlando, Salvatore; Drake, Jeremy J.; Miceli, Marco

    2017-02-01

    The symbiotic nova V745 Sco was observed in outburst on 2014 February 6. Its observations by the Chandra X-ray Observatory at days 16 and 17 have revealed a spectrum characterized by asymmetric and blueshifted emission lines. Here we investigate the origin of these asymmetries through 3D hydrodynamic simulations describing the outburst during the first 20 d of evolution. The model takes into account thermal conduction and radiative cooling, and assumes that a blast wave propagates through an equatorial density enhancement (EDE). From these simulations, we synthesize the X-ray emission and derive the spectra as they would be observed with Chandra. We find that both the blast wave and the ejecta distribution are efficiently collimated in polar directions due to the presence of the EDE. The majority of the X-ray emission originates from the interaction of the blast with the EDE and is concentrated on the equatorial plane as a ring-like structure. Our `best-fitting' model requires a mass of ejecta in the outburst Mej ≈ 3 × 10-7 M⊙ and an explosion energy Eb ≈ 3 × 1043 erg, and reproduces the distribution of emission measure versus temperature and the evolution of shock velocity and temperature inferred from the observations. The model predicts asymmetric and blueshifted line profiles similar to those observed and explains their origin as due to substantial X-ray absorption of redshifted emission by ejecta material. The comparison of predicted and observed Ne and O spectral line ratios reveals no signs of strong Ne enhancement and suggests that the progenitor is a CO white dwarf.

  7. Shock wave physics and detonation physics — a stimulus for the emergence of numerous new branches in science and engineering

    NASA Astrophysics Data System (ADS)

    Krehl, Peter O. K.

    2011-07-01

    In the period of the Cold War (1945-1991), Shock Wave Physics and Detonation Physics (SWP&DP) — until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) — quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycleand the Research& Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period(from 1808) and further extended in the Post-Classic Period(from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective.

  8. Boundary layers in cataclysmic variables: The HEAO-1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1983-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated.

  9. Radio Observations of Nova Muscae 2018 and Nova Carinae 2018 (ASASSN-18fv)

    NASA Astrophysics Data System (ADS)

    Ryder, S. D.; Kool, E. C.; Chomiuk, L.

    2018-04-01

    The two optically-bright Galactic novae in Musca (CBET #4473, ATel #11183, #11201, #11212, #11296) and in Carina (ATel #11454, #11456, #11457, #11460, #11468) were observed at radio wavelengths using the Australia Telescope Compact Array (ATCA) on 2018 Apr 3.3 UT. Nova Muscae 2018 has faded by a factor of 3 at 9.0 and 5.5 GHz since peaking at > 30 mJy/bm in mid-March.

  10. Nova Mus 2008 = QY Mus

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2008-10-01

    Nova Mus 2008 = QY Mus was discovered by William Liller, Vina del Mar, Chile, on 2008 September 28.998 UT at magnitude 8.6 (Tech Pan film + orange filter). The position is RA = 13h 16m 36.44s , Dec = -67d 36m 47.8s (from P. Nelson). This object was announced as a nova in IAU Circular 8990 (Daniel W.E. Green, editor). The nova classification was determined using low-resolution spectra by W. Liller indicating the presence of broad H-alpha lines at least 2300 angstroms wide. Several observers confirmed the nova and provided photometry. The position above was provided by Peter Nelson (Ellinbank, Vic., Aus.), and is averaged from four separate exposures (rms error approx. 0.4 arcseconds). The GCVS team have formally designated Nova Mus 2008 as QY MUS. Observations should be reported to the AAVSO International Database as QY MUS.

  11. Communication: Two-step explosion processes of highly charged fullerene cations C{sub 60}{sup q+} (q = 20–60)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Kaoru; Nakamura, Takashi; Kanno, Manabu

    2014-09-28

    To establish the fundamental understanding of the fragmentation dynamics of highly positive charged nano- and bio-materials, we carried out on-the-fly classical trajectory calculations on the fragmentation dynamics of C{sub 60}{sup q+} (q = 20–60). We used the UB3LYP/3-21G level of density functional theory and the self-consistent charge density-functional based tight-binding theory. For q ≥ 20, we found that a two-step explosion mechanism governs the fragmentation dynamics: C{sub 60}{sup q+} first ejects singly and multiply charged fast atomic cations C{sup z+} (z ≥ 1) via Coulomb explosions on a timescale of 10 fs to stabilize the remaining core cluster. Thermal evaporationsmore » of slow atomic and molecular fragments from the core cluster subsequently occur on a timescale of 100 fs to 1 ps. Increasing the charge q makes the fragments smaller. This two-step mechanism governs the fragmentation dynamics in the most likely case that the initial kinetic energy accumulated upon ionization to C{sub 60}{sup q+} by ion impact or X-ray free electron laser is larger than 100 eV.« less

  12. Unorthodox bubbles when boiling in cold water.

    PubMed

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  13. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer H. S.

    2016-07-01

    This dissertation uses radio observations with the Karl G. Jansky Very Large Array (VLA) to investigate the mechanisms that power and shape accreting white dwarfs (WD) and their ejecta. We test the predictions of both simple spherical and steady-state radio emission models by examining nova V1723 Aql, nova V5589 Sgr, symbiotic CH Cyg, and two small surveys of symbiotic binaries. First, we highlight classical nova V1723 Aql with three years of radio observations alongside optical and X-ray observations. We use these observations to show that multiple outflows from the system collided to create early non-thermal shocks with a brightness temperature of ≥106 K. While the late-time radio light curve is roughly consistent an expanding thermal shell of mass 2x10-4 M⊙ solar masses, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months, much like what is seen in gamma-ray producing nova V959 Mon, suggesting similar structures in the two systems. Next, we examine nova V5589 Sgr, where we find that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. We additionally find roughly 10-5 M⊙ solar masses of thermal bremsstrahlung emitting material, all at a distance of ~4 kpc. The similarities in the evolution of both V1723 Aql and V5589 Sgr to that of nova V959 Mon suggest that these systems may all have dense equatorial tori shaping faster flows at their poles. Turning our focus to symbiotic binaries, we first use our radio observations of CH Cyg to link the ejection of a collimated jet to a change of state in the accretion disk. We additionally estimate the amount of mass ejected during this period (10-7 M⊙ masses), and improve measurements of the period of jet precession (P=12013 ± 74 days). We then use our survey of eleven accretion-driven symbiotic systems to determine that the radio brightness of a symbiotic system could potentially be used as an indicator of w hether a symbiotic is powered predominantly by shell burning on the surface of the WD or by accretion. We additionally make the first ever radio detections of seven of the targets in our survey. Our survey of seventeen radio bright symbiotics, comparing observations before and after the upgrades to the VLA, shows the technological feasibility to resolve the nebulae of nearby symbiotic binaries, opening the door for new lines of research. We spatially resolve extended structure in several symbiotic systems in radio for the first time. Additionally, our observations reveal extreme radio variability in symbiotic BF Cyg before and after the production of a jet from the system. Our results from our surveys of symbiotics provide some support for the model of radio emission where the red giant wind is photoionized by the WD, and suggests that there may be a greater population of radio faint, accretion driven symbiotic systems. This work emphasizes the powerful nature of radio observations as a tool for understanding eruptive WD binaries and their outflows.

  14. Cecilia Payne-Gaposchkin, Henry Norris Russell Lecture: Fifty Years of Novae

    NASA Astrophysics Data System (ADS)

    Burbidge, E. M.

    1999-05-01

    It is easy to pick out my most memorable meeting of the AAS: the 149th meeting held in January, 1977, and hosted by the University of Hawaii, in Honolulu, HI. It was the meeting at which two traditions of the Society were broken, and we moved into the era of equal opportunity for women astronomers. Cecilia Payne-Gaposchkin received the highest award of the AAS: the Henry Norris Russell Lectureship. This award had never before been available to women, otherwise Cecilia would, years earlier, have been honored for the many achievements in her lifetime of renowned astronomical research. And I, the first woman to be elected President of the AAS, had the honor of presenting the illuminated scroll to Cecilia, and of introducing her on the platform where she delivered the Henry Norris Russell Prize Lecture, entitled ``Fifty Years of Novae"(1) . Cecilia opened by comparing the experience of young and old scientists in achieving exciting results from their research, and then led us through the history of the discoveries of and about some famous novae. She described the physical picture that emerged from studies of their light curves, their spectra, and the discovery of their binary nature. Three important tables were included, listing data on cataclysmic binaries (dwarf novae) and their link to the nova phenomenon in general. She recalled that she and Sergei Gaposchkin had hesitated between the names catastrophic and cataclysmic for the dwarf novae, and decided on the latter, from the dictionary definitions of those two terms: ``a cataclysm is a great and general flood" while a catastrophe ``is a final event". The nova phenomenon is recurrent, as are the dwarf novae, and both involve an outpouring of a flood of energy. She concluded by describing her 50 years' experience with novae as presenting ``the contemporary portrait of a nova", rather than a final picture, and by forecasting that the next 50 years of discovering and studying novae will be as full of surprises as the last. (1) Cecilia H. Payne-Gaposchkin, 1977, AJ, 82, 665.

  15. Discovery of an Apparent Nova in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; Kucakova, H.; Williams, S. C.; Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Sin, P.; Meusinger, H.; Darnley, M. J.; Kaur, A.; Hartmann, D. H.; Shafter, A. W.

    2017-12-01

    The M81 nova monitoring collaboration reports the discovery of an apparent nova in M81 on a co-added 3150-s unfiltered CCD frame taken on 2017 Dec. 2.127 UT with the 0.65-m telescope at Ondrejov (OND).

  16. Discovery of a Probable Nova in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; Kucakova, H.; Williams, S. C.; Henze, M.; Sala, G.; Jose, J.; Meusinger, H.; Darnley, M. J.; Kaur, A.; Hartmann, D. H.; Shafter, A. W.

    2018-01-01

    The M81 nova monitoring collaboration reports the discovery of a probable nova in M81 on a co-added 3150-s unfiltered CCD frame taken on 2018 Jan. 30.776 UT with the 0.65-m telescope at Ondrejov (OND).

  17. Discovery of two Probable Novae in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; Kucakova, H.; Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Sin, P.; Hernanz, M.; Williams, S. C.; Meusinger, H.; Darnley, M. J.; Kaur, A.; Hartmann, D. H.; Shafter, A. W.

    2017-09-01

    The M81 nova monitoring collaboration reports the discovery of two probable novae in M81 on a co-added 2700-s unfiltered CCD frame taken on 2017 Sep. 18.129 UT with the 0.65-m telescope at Ondrejov (OND).

  18. Discovery of a Probable Nova in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; Kucakova, H.; Williams, S. C.; Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Sin, P.; Meusinger, H.; Darnley, M. J.; Kaur, A.; Hartmann, D. H.; Shafter, A. W.

    2017-12-01

    The M81 nova monitoring collaboration reports the discovery of a probable nova in M81 on a co-added 2610-s unfiltered CCD frame taken on 2017 Dec. 26.016 UT with the 0.65-m telescope at Ondrejov (OND).

  19. Spectroscopic confirmation and photometry of the first reported nova in NGC 147

    NASA Astrophysics Data System (ADS)

    Fabrika, S.; Vinokurov, A.; Solovyeva, Yu.; Valeev, A. F.; Makarov, D. I.; Hornoch, K.; Kucakova, H.; Korotkiy, S.; Henze, M.; Shafter, A. W.

    2017-12-01

    We report optical spectroscopic confirmation of the recent nova TCP J00333837+4836022 in the Local Group dwarf spheroidal galaxy NGC 147. The nova was discovered 2017 Dec. 22.4056 UT by K. Itagaki (Yamagata, Japan).

  20. Dwarf novae

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1993-01-01

    Dwarf novae are defined on grounds of their semi-regular brightness variations of some two to five magnitudes on time scales of typically 10 to 100 days. Historically several different classification schemes have been used. Today, dwarf novae are divided into three sub-classes: the U Geminorum stars, the SU Ursae Majoris stars, and the Z Camelopardalis stars. Outbursts of dwarf novae occur at semi-periodic intervals of time, typically every 10 to 100 days; amplitudes range from typically 2 to 5 mag. Within certain limits values are characteristic for each object. Relations between the outburst amplitude, or the total energy released during outburst, and the recurrence time have been found, as well as relations between the orbital period and the outburst decay time, the absolute magnitude during outburst maximum, and the widths of long and short outbursts, respectively. Some dwarf novae are known to have suspended their normal outburst activity altogether for a while. They later resumed it without having undergone any observable changes. The optical colors of dwarf novae all are quite similar during outburst, considerably bluer than during the quiescent state. During the outburst cycle, characteristic loops in the two color diagram are performed. At a time resolution on the order of minutes, strictly periodic photometric changes due to orbital motion become visible in the light curves of dwarf novae. These are characteristic for each system. Remarkably little is known about orbital variations during the course of an outburst. On time-scales of minutes and seconds, further more or less periodic types of variability are seen in dwarf novae. Appreciable flux is emitted by dwarf novae at all wavelengths from the X-rays to the longest IR wavelengths, and in some cases even in the radio. Most dwarf novae exhibit strong emission line spectra in the optical and UV during quiescence, although some have only very weak emissions in the optical and/or weak absorptions at UV wavelengths.

  1. Research Developments in Li-Paczyński Novae (II): Observational Aspect

    NASA Astrophysics Data System (ADS)

    Shan-qin, Wang; Zi-gao, Dai; Xue-feng, Wu

    2016-10-01

    Since the LP-Nova models were proposed, and the short gamma-ray burst (SGRB) afterglows were confirmed, people have actively made searches for the evidence of the existence of LP-Novae among the optical (or near-infrared) counterparts of SGRBs. In this paper, we first summarize these observational progresses before 2012 in Section 2. In Section 3 and 4, we respectively introduce the basic properties of GRBs 130603B and 060614, as well as the theoretical interpretation for their near-infrared (NIR) counterparts, and their NIR excess may be the signature of the existence of LP-Novae. In Section 5, we describe the basic properties of GRB 080503, and the theoretical interpretation for its optical and X-ray counterparts, and the later re-brightening of its optical and X-ray light curves is explained as the ejecta radiation (merger-nova radiation) of magnetar heating after the neutron star merging. If the interpretations for the SGRB-associated optical and infrared counterparts are correct, they may provide the first series of direct evidence to show that SGRBs and some special LGRBs are originated from the compact star mergers. Besides LP-novae (and merger-novae), the high-speed orbital motion before the compact star merging and the merger itself will produce strong gravitational-wave bursts (GWBs). In the coming era of gravitational wave detection, the theoretical and observational studies on the electromagnetic counterparts of compact star mergers will receive more and more attentions. Due to the larger uncertainty of GWB's location, the LP-Novae associated with GWBs can serve as the best candidates for the precise location of GWBs. The fast developing high-cadence and wide-field optical-NIR surveys will make effective explorations on the LP-Novae and similar phenomena, and interact the detection and research of gravitational waves. Therefore, in the last section we present the methods for the future detections of LP-Novae, and the prospect of their multi-messenger detections.

  2. Independent Discovery of a Probable Nova in M81

    NASA Astrophysics Data System (ADS)

    Kucakova, H.; Hornoch, K.; Williams, S. C.; Henze, M.; Sala, G.; Jose, J.; Meusinger, H.; Darnley, M. J.; Kaur, A.; Hartmann, D. H.; Shafter, A. W.

    2018-03-01

    The M81 nova monitoring collaboration reports the independent discovery of a probable nova in M81 on a co-added 1350-s unfiltered CCD frame taken on 2018 Mar. 21.952 UT with the 0.65-m telescope at Ondrejov.

  3. Independent Discovery of a Probable Nova in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; Kucakova, H.; Williams, S. C.; Henze, M.; Sala, G.; Jose, J.; Meusinger, H.; Darnley, M. J.; Kaur, A.; Hartmann, D. H.; Shafter, A. W.

    2018-04-01

    The M81 nova monitoring collaboration reports the independent discovery of a probable nova in M81 on a co-added 2700-s unfiltered CCD frame taken on 2018 Apr. 2.815 UT with the 0.65-m telescope at Ondrejov.

  4. Independent Discovery of an Apparent Nova in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; Kucakova, H.; Williams, S. C.; Henze, M.; Sala, G.; Jose, J.; Meusinger, H.; Darnley, M. J.; Kaur, A.; Hartmann, D. H.; Shafter, A. W.

    2018-02-01

    The M81 nova monitoring collaboration reports the independent discovery of an apparent nova in M81 on a co-added 2700-s unfiltered CCD frame taken on 2018 Feb. 19.039 UT with the 0.65-m telescope at Ondrejov (OND).

  5. NOVA Fall 2002 Teacher's Guide.

    ERIC Educational Resources Information Center

    Ransick, Kristina; Rosene, Dale; Sammons, James; Turck, Mary

    This NOVA teacher's guide presents activities, information, and teaching ideas from the Public Broadcasting System's (PBS) NOVA television program series. Episodes include: (1) "Mysterious Life of Caves" which investigates the role microbes play in the creation of some limestone caves; (2) "Lost Roman Treasure" which follows…

  6. Boundary layers in cataclysmic variables - The HEAO 1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1984-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated. Previously announced in STAR as N84-13046

  7. Phreatic and Hydrothermal Explosions: A Laboratory Approach

    NASA Astrophysics Data System (ADS)

    Scheu, B.; Dingwell, D. B.

    2010-12-01

    Phreatic eruptions are amongst the most common eruption types on earth. They might be precursory to another type of volcanic eruption but often they stand on their one. Despite being the most common eruption type, they also are one of the most diverse eruptions, in appearance as well as on eruption mechanism. Yet steam is the common fuel behind all phreatic eruptions. The steam-driven explosions occur when water beneath the ground or on the surface is heated by magma, lava, hot rocks, or fresh volcanic deposits (such as ignimbrites, tephra and pyroclastic-flow deposits) and result in crater, tuff rings and debris avalanches. The intense heat of such material may cause water to boil and flash to steam, thereby generating an explosion of steam, water, ash, blocks, and bombs. Another wide and important field affected by phreatic explosions are hydrothermal areas; here phreatic explosions occur every few months creating explosion craters and resemble a significant hazard to hydrothermal power plants. Despite of their hazard potential, phreatic explosions have so far been overlooked by the field of experimental volcanology. A part of their hazard potential in owned by the fact that phreatic explosions are hardly predictable in occurrence time and size as they have manifold triggers (variances in groundwater and heat systems, earthquakes, material fatigue, water level, etc..) A new set of experiments has been designed to focus on this phreatic type of steam explosion, whereas classical phreatomagmatic experiments use molten fuel-coolant interaction (e.g., Zimanowski, et al., 1991). The violent transition of the superheated water to vapour adds another degree of explosivity to the dry magmatic fragmentation, driven mostly by vesicle bursting due to internal gas overpressure. At low water fractions the fragmentation is strongly enforced by the mixture of these two effects and a large fraction of fine pyroclasts are produced, whereas at high water fraction in the sample the fragmentation is less violent as its dry counterpart. The experimental conditions used it this study (varying degree of water saturation, moderate overpressure, 200- 300°C) applies e.g. to volcanic rocks as well as country rocks at depth of about 100-800 m in a conduit or dome bearing a fraction of ground water and being heated from magma rising beneath (150-400°C). The diversity of phreatic eruptions at a volcanic system (vent) arises from the variety of host rocks, ways to seal the conduit, and to alter this material depending on the composition of volcanic gases. Here, we assess the influence of rapid decompression of the supercritical water phase in the pore space of samples, on the fragmentation behaviour. This will enable us to elucidate the characteristics of the different “fuels” for explosive fragmentation (gas overpressure, steam flashing), as well as their interplay.

  8. Petrographic, geochemical and isotopic evidence of crustal assimilation processes in the Ponte Nova alkaline mafic-ultramafic massif, SE Brazil

    NASA Astrophysics Data System (ADS)

    Azzone, Rogério Guitarrari; Montecinos Munoz, Patricio; Enrich, Gaston Eduardo Rojas; Alves, Adriana; Ruberti, Excelso; Gomes, Celsode Barros

    2016-09-01

    Crustal assimilation plus crystal fractionation processes of different basanite magma batches control the evolution of the Ponte Nova cretaceous alkaline mafic-ultramafic massif in SE Brazil. This massif is composed of several intrusions, the main ones with a cumulate character. Disequilibrium features in the early-crystallized phases (e.g., corrosion and sieve textures in cores of clinopyroxene crystals, spongy-cellular-textured plagioclase crystals, gulf corrosion texture in olivine crystals) and classical hybridization textures (e.g., blade biotite and acicular apatite crystals) provide strong evidence of open-system behavior. All samples are olivine- and nepheline-normative rocks with basic-ultrabasic and potassic characters and variable incompatible element enrichments. The wide ranges of whole-rock 87Sr/86Sri and 143Nd/144Ndi ratios (0.70432-0.70641 and 0.512216-0.512555, respectively) are indicative of crustal contribution from the Precambrian basement host rocks. Plagioclase and apatite 87Sr/86Sr ratios (0.70422-0.70927) obtained for the most primitive samples of each intrusion indicate disequilibrium conditions from early- to principal-crystallization stages. Isotope mixing-model curves between the least contaminated alkaline basic magma and heterogeneous local crustal components indicate that each intrusion of the massif is differentiated from the others by varied degrees of crustal contribution. The primary mechanisms of crustal contribution to the Ponte Nova massif involve the assimilation of host rock xenoliths during the development of the chamber environment and the assimilation of partial melts from the surrounding host rocks. Thermodynamic models using the melts algorithm indicate that parental alkaline basic magmas can be strongly affected by contamination processes subsequently to their initial stages of crystallization when there is sufficient energy to assimilate partial melts of crustal host rocks. The assimilation processes are considered to be responsible for the increse in the K2O/Na2O, Ba/Sr and Rb/Sr ratios. This enrichment was associated with the relevant role of biotite breakdown in the assimilated host rock partial melts. The petrological model for the Ponte Nova massif is explained as repeated influxes of antecryst-laden basanite magmas that deposited most of their suspended crystals on the floor of the upper-crust magma chamber. Each intrusion is representative of relatively primitive olivine- and clinopyroxene-phyric basanites that had assimilated different degrees of partial melts of heterogeneous host rocks. This study reveals the relevant role of crustal assimilation processes in the magmatic evolution of nepheline-normative rocks, especially in upper-crust chamber environments.

  9. Comparison of nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 (COX-2) inhibitors use in Australia and Nova Scotia (Canada)

    PubMed Central

    Barozzi, Nadia; Sketris, Ingrid; Cooke, Charmaine; Tett, Susan

    2009-01-01

    AIMS Cyclooxygenase-2 (COX-2) inhibitors were marketed aggressively and their rapid uptake caused safety concerns and budgetary challenges in Canada and Australia. The objectives of this study were to compare and contrast COX-2 inhibitors and nonselective nonsteroidal anti-inflammatory drug (ns-NSAID) use in Nova Scotia (Canada) and Australia and to identify lessons learned from the two jurisdictions. METHODS Ns-NSAID and COX-2 inhibitor Australian prescription data (concession beneficiaries) were downloaded from the Medicare Australia website (2001–2006). Similar Pharmacare data were obtained for Nova Scotia (seniors and those receiving Community services). Defined daily doses per 1000 beneficiaries day−1 were calculated. COX-2 inhibitors/all NSAIDs ratios were calculated for Australia and Nova Scotia. Ns-NSAIDs were divided into low, moderate and high risk for gastrointestinal side-effects and the proportions of use in each group were determined. Which drugs accounted for 90% of use was also calculated. RESULTS Overall NSAID use was different in Australia and Nova Scotia. However, ns-NSAID use was similar. COX-2 inhibitor dispensing was higher in Australia. The percentage of COX-2 inhibitor prescriptions over the total NSAID use was different in the two countries. High-risk NSAID use was much higher in Australia. Low-risk NSAID prescribing increased in Nova Scotia over time. The low-risk/high-risk ratio was constant throughout over the period in Australia and increased in Nova Scotia. CONCLUSIONS There are significant differences in Australia and Nova Scotia in use of NSAIDs, mainly due to COX-2 prescribing. Nova Scotia has a higher proportion of low-risk NSAID use. Interventions to provide physicians with information on relative benefits and risks of prescribing specific NSAIDs are needed, including determining their impact. PMID:19660008

  10. Multiwavelength observations of nova SMCN 2016-10a - one of the brightest novae ever observed

    NASA Astrophysics Data System (ADS)

    Aydi, E.; Page, K. L.; Kuin, N. P. M.; Darnley, M. J.; Walter, F. M.; Mróz, P.; Buckley, D. A. H.; Mohamed, S.; Whitelock, P.; Woudt, P.; Williams, S. C.; Orio, M.; Williams, R. E.; Beardmore, A. P.; Osborne, J. P.; Kniazev, A.; Ribeiro, V. A. R. M.; Udalski, A.; Strader, J.; Chomiuk, L.

    2018-02-01

    We report on multiwavelength observations of nova Small Magellanic Cloud Nova 2016-10a. The present observational set is one of the most comprehensive for any nova in the Small Magellanic Cloud, including low-, medium-, and high-resolution optical spectroscopy and spectropolarimetry from Southern African Large Telescope, Folded Low-Order Yte-Pupil Double-Dispersed Spectrograph, and Southern Astrophysical Research; long-term Optical Gravitational Lensing Experiment V- and I-bands photometry dating back to 6 yr before eruption; Small and Moderate Aperture Research Telescope System optical and near-IR photometry from ˜11 d until over 280 d post-eruption; Swift satellite X-ray and ultraviolet observations from ˜6 d until 319 d post-eruption. The progenitor system contains a bright disc and a main sequence or a sub-giant secondary. The nova is very fast with t2 ≃ 4.0 ± 1.0 d and t3 ≃ 7.8 ± 2.0 d in the V band. If the nova is in the SMC, at a distance of ˜61 ± 10 kpc, we derive MV, max ≃ -10.5 ± 0.5, making it the brightest nova ever discovered in the SMC and one of the brightest on record. At day 5 post-eruption the spectral lines show a He/N spectroscopic class and an Full Width at Half Maximum of ˜3500 km s-1, indicating moderately high ejection velocities. The nova entered the nebular phase ˜20 d post-eruption, predicting the imminent super-soft source turn-on in the X-rays, which started ˜28 d post-eruption. The super-soft source properties indicate a white dwarf mass between 1.2 and 1.3 M⊙ in good agreement with the optical conclusions.

  11. The Radio Light Curve of the Gamma-Ray Nova in V407 CYG: Thermal Emission from the Ionized Symbiotic Envelope, Devoured from Within by the Nova Blast

    NASA Technical Reports Server (NTRS)

    Chomiuk, Laura; Krauss, Miriam I.; Rupen, Michael P.; Nelson, Thomas; Roy, Nirupam; Sokoloski, Jennifer L.; Mukai, Koji; Munari, Ulisse; Mioduszewski, Amy; Weston, Jeninfer; hide

    2012-01-01

    We present multi-frequency radio observations of the 2010 nova event in the symbiotic binary V407 Cygni, obtained with the Karl G. Jansky Very Large Array (VLA) and spanning 1.45 GHz and 17.770 days following discovery. This nova.the first ever detected in gamma rays.shows a radio light curve dominated by the wind of the Mira giant companion, rather than the nova ejecta themselves. The radio luminosity grewas the wind became increasingly ionized by the nova outburst, and faded as the wind was violently heated from within by the nova shock. This study marks the first time that this physical mechanism has been shown to dominate the radio light curve of an astrophysical transient. We do not observe a thermal signature from the nova ejecta or synchrotron emission from the shock, due to the fact that these components were hidden behind the absorbing screen of the Mira wind. We estimate a mass-loss rate for the Mira wind of .Mw approximately equals 10(exp -6) Solar mass yr(exp -1). We also present the only radio detection of V407 Cyg before the 2010 nova, gleaned from unpublished 1993 archival VLA data, which shows that the radio luminosity of the Mira wind varies by a factor of 20 even in quiescence. Although V407 Cyg likely hosts a massive accreting white dwarf, making it a candidate progenitor system for a Type Ia supernova, the dense and radially continuous circumbinary material surrounding V407 Cyg is inconsistent with observational constraints on the environments of most Type Ia supernovae.

  12. Current problems in applied mathematics and mathematical physics

    NASA Astrophysics Data System (ADS)

    Samarskii, A. A.

    Papers are presented on such topics as mathematical models in immunology, mathematical problems of medical computer tomography, classical orthogonal polynomials depending on a discrete variable, and boundary layer methods for singular perturbation problems in partial derivatives. Consideration is also given to the computer simulation of supernova explosion, nonstationary internal waves in a stratified fluid, the description of turbulent flows by unsteady solutions of the Navier-Stokes equations, and the reduced Galerkin method for external diffraction problems using the spline approximation of fields.

  13. Independent Discovery of a Probable Luminous Nova in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; Kucakova, H.; Williams, S. C.; Henze, M.; Sala, G.; Jose, J.; Meusinger, H.; Darnley, M. J.; Kaur, A.; Hartmann, D. H.; Shafter, A. W.

    2018-04-01

    The M81 nova monitoring collaboration reports the independent discovery of a probable luminous nova in M81 on a co-added 4410-s unfiltered CCD frame taken on 2018 Apr. 9.044 UT with the 0.65-m telescope at Ondrejov.

  14. RECURRENT NOVAE IN M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafter, A. W.; Henze, M.; Rector, T. A.

    2015-02-01

    The reported positions of 964 suspected nova eruptions in M31 recorded through the end of calendar year 2013 have been compared in order to identify recurrent nova (RN) candidates. To pass the initial screen and qualify as a RN candidate, two or more eruptions were required to be coincident within 0.′1, although this criterion was relaxed to 0.′15 for novae discovered on early photographic patrols. A total of 118 eruptions from 51 potential RN systems satisfied the screening criterion. To determine what fraction of these novae are indeed recurrent, the original plates and published images of the relevant eruptions havemore » been carefully compared. This procedure has resulted in the elimination of 27 of the 51 progenitor candidates (61 eruptions) from further consideration as RNe, with another 8 systems (17 eruptions) deemed unlikely to be recurrent. Of the remaining 16 systems, 12 candidates (32 eruptions) were judged to be RNe, with an additional 4 systems (8 eruptions) being possibly recurrent. It is estimated that ∼4% of the nova eruptions seen in M31 over the past century are associated with RNe. A Monte Carlo analysis shows that the discovery efficiency for RNe may be as low as 10% that for novae in general, suggesting that as many as one in three nova eruptions observed in M31 arise from progenitor systems having recurrence times ≲100 yr. For plausible system parameters, it appears unlikely that RNe can provide a significant channel for the production of Type Ia supernovae.« less

  15. Spectroscopic and Photometric Behaviour of Nova Cygni 1992 IN the First Nine Months Following Outburst

    NASA Astrophysics Data System (ADS)

    Chochol, D.; Hric, L.; Urban, Z.; Komzik, R.; Grygar, J.; Papousek, J.

    1993-09-01

    We present the results of UBV photometry and high dispersion 360-500 nm spectroscopy of Nova Cygni 1992 (= V 1974 Cyg), obtained between February 25 and November 9, 1992. Our data cover the early decline, transition and nebular stages of the evolution of the nova. We discuss the photometric and spectroscopic behaviour of the star during the first nine months after outburst and briefly compare our findings with the data already published by other authors. We have classified the nova as a fast one with t2,V = 16 d, t2,B = 23 d, and t3,V = 42 d, t3,B = 51 d. We have derived the absolute magnitudes of the nova at maximum to be M0,V = -7.67 and M0,B = -7.49. The latter value yields a mass of 0.83 Msun for the white dwarf component. The values of the distance modulus 12.23 and the colour excess EB-V = +0.32 correspond to a distance r = 1.77 kpc. We have found a period of 0.814 days by period analysis of photoelectric V data obtained before the nova declined 3m. During the nebular stage, forbidden lines of highly ionized neon were prominent, confirming the 0-Ne-Mg classification of the nova. The outburst of Nova Cygni 1992 was apparently caused by a super-Eddington thermonuclear runaway on the surface of an evolutionarily eroded O-Ne-Mg white dwarf.

  16. PTF11mnb: First analog of supernova 2005bf: Long-rising, double-peaked supernova Ic from a massive progenitor*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taddia, F.; Sollerman, J.; Fremling, C.

    The aim is to study PTF11mnb, a He-poor supernova (SN) whose light curves resemble those of SN 2005bf, a peculiar double-peaked stripped-envelope (SE) SN, until the declining phase after the main peak. We investigate the mechanism powering its light curve and the nature of its progenitor star. Methods. Optical photometry and spectroscopy of PTF11mnb are presented. We compared light curves, colors and spectral properties to those of SN 2005bf and normal SE SNe. We built a bolometric light curve and modeled this light curve with the SuperNova Explosion Code (SNEC) hydrodynamical code explosion of a MESA progenitor star and semi-analyticmore » models. Results. The light curve of PTF11mnb turns out to be similar to that of SN 2005bf until ~50 d when the main (secondary) peaks occur at -18.5 mag. The early peak occurs at ~20 d and is about 1.0 mag fainter. After the main peak, the decline rate of PTF11mnb is remarkably slower than what was observed in SN 2005bf, and it traces well the 56Co decay rate. The spectra of PTF11mnb reveal a SN Ic and have no traces of He unlike in the case of SN Ib 2005bf, although they have velocities comparable to those of SN 2005bf. The whole evolution of the bolometric light curve is well reproduced by the explosion of a massive (M ej = 7.8 M ⊙ ), He-poor star characterized by a double-peaked 56 Ni distribution, a total 56 Ni mass of 0.59 M ⊙ , and an explosion energy of 2.2 × 10 51 erg. Alternatively, a normal SN Ib/c explosion (M( 56Ni) = 0.11 M ⊙ , E K = 0.2 × 10 51 erg, M ej = 1 M ⊙ ) can power the first peak while a magnetar, with a magnetic field characterized by B = 5.0 × 10 14 G, and a rotation period of P = 18.1 ms, provides energy for the main peak. The early g-band light curve can be fit with a shock-breakout cooling tail or an extended envelope model from which a radius of at least 30 R ⊙ is obtained. Conclusions. We presented a scenario where PTF11mnb was the explosion of a massive, He-poor star, characterized by a double-peaked 56Ni distribution. In this case, the ejecta mass and the absence of He imply a large ZAMS mass (~85 M ⊙) for the progenitor, which most likely was a Wolf-Rayet star, surrounded by an extended envelope formed either by a pre-SN eruption or due to a binary configuration. Alternatively, PTF11mnb could be powered by a SE SN with a less massive progenitor during the first peak and by a magnetar afterward.« less

  17. Supervised Learning Based Hypothesis Generation from Biomedical Literature.

    PubMed

    Sang, Shengtian; Yang, Zhihao; Li, Zongyao; Lin, Hongfei

    2015-01-01

    Nowadays, the amount of biomedical literatures is growing at an explosive speed, and there is much useful knowledge undiscovered in this literature. Researchers can form biomedical hypotheses through mining these works. In this paper, we propose a supervised learning based approach to generate hypotheses from biomedical literature. This approach splits the traditional processing of hypothesis generation with classic ABC model into AB model and BC model which are constructed with supervised learning method. Compared with the concept cooccurrence and grammar engineering-based approaches like SemRep, machine learning based models usually can achieve better performance in information extraction (IE) from texts. Then through combining the two models, the approach reconstructs the ABC model and generates biomedical hypotheses from literature. The experimental results on the three classic Swanson hypotheses show that our approach outperforms SemRep system.

  18. Each Week, A Science Adventure. Settle Down in Front of the TV and See What NOVA Has for You This Time

    ERIC Educational Resources Information Center

    MOSAIC, 1975

    1975-01-01

    Describes how NOVA filmmakers developed a storyline about San Francisco Bay and captured it on film. Presents the criteria for topic selection by NOVA and the reception the program has had by viewing audiences. (GS)

  19. ASASSN-18gb: Discovery of A Probable Nova in NGC 3109

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.

    2018-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, we discovered a new transient source, most likely a nova, in the Local Group galaxy NGC 3109.

  20. NOVA, A BRIEF .....

    ERIC Educational Resources Information Center

    WHITING, RICHARD; AND OTHERS

    NOVA IS AN EXPERIMENTAL, 6-YEAR JUNIOR-SENIOR HIGH SCHOOL. ASPECTS OF THE PROGRAM INCLUDE THE TRIMESTER SYSTEM, THE CONTINUOUS PROGRESS CURRICULUM, TEAM TEACHING, A CLASS SCHEDULE OF FOUR 70-MINUTE PERIODS PER WEEK, THE USE OF DATA-PROCESSING EQUIPMENT, AND MODERN INSTRUCTIONAL AIDS. NOVA IS ORGANIZED CAMPUS-STYLE WITH INDIVIDUAL BUILDINGS DEVOTED…

  1. Dust formation in Nova Oph 2017 (TCP J17394608-2457555)

    NASA Astrophysics Data System (ADS)

    Joshi, Vishal; Banerjee, D. P. K.; Srivastava, Mudit

    2017-06-01

    Ongoing NIR observations of Nova Oph 2017 indicate the possible onset of dust formation in Nova Oph 2017. Monitoring in the JHKs bands shows a steady rise in the J-K color from around 1.4 on 5 June 2017 to 2.0 on 13 June 2017.

  2. Liverpool Telescope Spectroscopy of the Nova Eruption from V392 Persei

    NASA Astrophysics Data System (ADS)

    Darnley, M. J.; Copperwheat, C. M.; Harvey, E. J.; Healy, M. W.

    2018-05-01

    Here we report Liverpool Telescope (LT; Steele et al. 2004) spectroscopy of the recent nova eruption (ATel #11588) from the known dwarf nova system V392 Per. A Fermi & gamma;-ray detection of the eruption has also been reported (ATel #11590) along with additional photometry (ATel #11594).

  3. Microstructures of Rare Silicate Stardust from Nova and Supernovae

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S

    2011-01-01

    Most silicate stardust analyzed in the laboratory and observed around stellar environments derives from O-rich red giant and AGB stars [1,2]. Supernova (SN) silicates and oxides are comparatively rare, and fewer than 10 grains from no-va or binary star systems have been identified to date. Very little is known about dust formation in these stellar environments. Mineralogical studies of only three O-rich SN [3-5] and no nova grains have been performed. Here we report the microstructure and chemical makeup of two SN silicates and one nova grain.

  4. Liquid Scintillator Production for the NOvA Experiment

    DOE PAGES

    Mufson, S.; Baugh, B.; Bower, C.; ...

    2015-04-15

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  5. Discovery of an old nova shell surrounding the cataclysmic variable V1315 Aql

    NASA Astrophysics Data System (ADS)

    Sahman, D. I.; Dhillon, V. S.; Littlefair, S. P.; Hallinan, G.

    2018-04-01

    Following our tentative discovery of a faint shell around V1315 Aql reported in Sahman et al. (2015), we undertook deep Hα imaging and intermediate-resolution spectroscopy of the shell. We find that the shell has its geometric centre located on V1315 Aql. The mass, spectral features and density of the shell are consistent with other nova shells, rather than planetary nebulae or supernova remnants. The radial velocity of the shell is consistent with the systemic velocity of V1315 Aql. We believe this evidence strongly suggests that the shell originates from an earlier nova event. This is the first nova shell discovered around a novalike, and supports the theory of nova-induced cycles in mass transfer rates (hibernation theory) first proposed by Shara et al. (1986).

  6. Evolution of Nova-Dependent Splicing Regulation in the Brain

    PubMed Central

    Živin, Marko; Darnell, Robert B

    2007-01-01

    A large number of alternative exons are spliced with tissue-specific patterns, but little is known about how such patterns have evolved. Here, we study the conservation of the neuron-specific splicing factors Nova1 and Nova2 and of the alternatively spliced exons they regulate in mouse brain. Whereas Nova RNA binding domains are 94% identical across vertebrate species, Nova-dependent splicing silencer and enhancer elements (YCAY clusters) show much greater divergence, as less than 50% of mouse YCAY clusters are conserved at orthologous positions in the zebrafish genome. To study the relation between the evolution of tissue-specific splicing and YCAY clusters, we compared the brain-specific splicing of Nova-regulated exons in zebrafish, chicken, and mouse. The presence of YCAY clusters in lower vertebrates invariably predicted conservation of brain-specific splicing across species, whereas their absence in lower vertebrates correlated with a loss of alternative splicing. We hypothesize that evolution of Nova-regulated splicing in higher vertebrates proceeds mainly through changes in cis-acting elements, that tissue-specific splicing might in some cases evolve in a single step corresponding to evolution of a YCAY cluster, and that the conservation level of YCAY clusters relates to the functions encoded by the regulated RNAs. PMID:17937501

  7. Stellar Origins of C-13 and N-15-Enriched Presolar SiC Grains

    NASA Technical Reports Server (NTRS)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua; Pignatari, Marco; Jose, Jordi; Nguyen, Ann

    2016-01-01

    Extreme excesses of 13 C ( C (12 C/ 13 C<10) and 15 N ( N (14 N/ 15 N< 20) in rare presolar SiC 20) in rare presolar SiClar SiC grains have been considered diagnostic of an origin in classical novae [1], though an origin in core-collapse supernovae (CCSNe) has also been proposed [2]. We report multi-element isotopic data for 19 13 C- and 15 N-enriched presolar SiC grains(12 C/13 C<16 and 14 N/ 15 N<150) from an acid resistant residue of the Murchison meteorite. These grains are enriched in 13 C and15 N, but with quite diverse Si isotopic signatures. Four grains with isotopic signatures. Four grains with isotopic signatures. Four grains with isotopic signatures. Four grains with isotopic signatures.

  8. 15 CFR 904.102 - Procedures upon receipt of a NOVA.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS CIVIL PROCEDURES Civil Penalties § 904.102 Procedures upon receipt of a NOVA. (a) The respondent has 30 days from... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Procedures upon receipt of a NOVA. 904...

  9. 15 CFR 904.102 - Procedures upon receipt of a NOVA.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS CIVIL PROCEDURES Civil Penalties § 904.102 Procedures upon receipt of a NOVA. (a) The respondent has 30 days from... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Procedures upon receipt of a NOVA. 904...

  10. The Potential of NovaNET Communications for Education and Instruction.

    ERIC Educational Resources Information Center

    Steinberg, Esther R.

    Intended to suggest ways of implementing the potential of NovaNet beyond its current applications, this report begins with an overview of current educational applications of telecommunications systems. It is noted that NovaNET is not only a successful computer system for presenting instructional courseware, but that it also supports…

  11. Art Education, Romantic Idealism, and Work: Comparing Ruskin's Ideas to Those Found in Nineteenth Century Nova Scotia.

    ERIC Educational Resources Information Center

    Amburgy, Patricia; Soucy, Donald

    1989-01-01

    Examines the relationship between romantic idealism and vocational goals of art education in nineteenth-century Nova Scotia, Canada. Compares these ideas with those of John Ruskin concerning art and morality. Discusses the views of the Nova Scotian educators relative to issues of contemporary art education. (KO)

  12. Detection of Highly-Absorbed X-rays from Nova Mus 2018 with Swift

    NASA Astrophysics Data System (ADS)

    Nelson, Thomas; Kuin, Paul; Mukai, Koji; Page, Kim; Chomiuk, Laura; Kawash, Adam; Sokoloski, J. L.; Linford, Justin; Rupen, Michael P.; Mioduszewski, Amy

    2018-03-01

    We report the detection of X-rays from Nova Mus 2018 with the Swift XRT instrument. We have been carrying out weekly monitoring of the nova with Swift since its discovery on 2018 Jan 15 (see ATel #11220), and observations up to 2018 Feb 24 yielded X-ray non-detections.

  13. π0 mass reconstruction in NOvA Far Detector.

    NASA Astrophysics Data System (ADS)

    Edayath, Sijith

    2017-01-01

    NOvA is a long-baseline neutrino oscillation experiment with functionally identical, segmented, tracking calorimeter Near and Far detectors. The detectors lie 14.6 mrad off-axis from the Fermilab NuMI beam, with a well-defined peak in neutrino energy at 2 GeV. The absolute calibration of the energy scale of the detectors is a major systematic uncertainty in long-baseline oscillation search in NOvA. Neutrino detectors make use of some standard candles for absolute energy calibration. Stopping muon energy distributions, Michel electron energy distributions, and invariant π0 mass are among them. In this talk, we cover NOvA's use of a new method to identify π0 with cosmic origins in the NOvA Far Detector. We employ a computer vision based particle identifier using convolutional neural networks (CVN) to identify π0s, complementing an existing strategy to identify π0 from the neutrino beam using more traditional methods in the Near Detector. Registered for PhD at Cochin University of Science and Technology, India and doing research in NOvA experiment at Fermilab.

  14. Optical and Near-infrared Study of Nova V2676 Oph 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, A.; Das, R. K.; Walter, F. M., E-mail: ashish.raj@iiap.res.in

    2017-02-01

    We present optical spectrophotometric and near-infrared (NIR) photometric observations of the nova V2676 Oph covering the period from 2012 March 29 through 2015 May 8. The optical spectra and photometry of the nova have been taken from SMARTS and Asiago; the NIR photometry was obtained from SMARTS and Mt. Abu. The spectra were dominated by strong H i lines from the Balmer series, Fe ii, N i, and [O i] lines in the initial days, typical of an Fe ii type nova. The measured FWHM for the H β and H α lines was 800–1200 km s{sup −1}. There wasmore » pronounced dust formation starting 90 days after the outburst. The J − K color was the largest among recent dust-forming novae.« less

  15. Constraints on the neutrino flux in NOvA using the near detector data

    DOE PAGES

    Maan, Kuldeep K.

    2016-12-19

    NOvA, a long-baseline neutrino oscillation experiment at Fermilab, is designed to measure electron-neutrino appearance and muon-neutrino disappearance in the NuMI beam. NOvA comprises of two finely segmented liquid scintillator detectors at 14 mrad off-axis in the NuMI beam. An accurate prediction of the neutrino flux is needed for precision oscillation and cross-section measurements. Data from the hadron-production experiments and, importantly, from the NOvA Near Detector provide powerful constraints on the muon-neutrino and electron-neutrino fluxes. In particular, the measurement of the neutrino-electron elastic scattering provides an in situ constraint on the absolute flux. Lastly, this poster presents the data-driven predictions ofmore » the NOvA muonneutrino and electron-neutrino flux, and outlines future improvements in the flux determination.« less

  16. Efficacy and patient satisfaction after NovaSure and Minerva endometrial ablation for treating abnormal uterine bleeding: a retrospective comparative study.

    PubMed

    Scordalakes, Constantine; delRosario, Robert; Shimer, Andrew; Stankiewicz, Russell

    2018-01-01

    Compare amenorrhea rate, menstrual symptoms, patient satisfaction, and adverse events in women who underwent endometrial ablation with the NovaSure versus the Minerva radiofrequency ablation systems. We surveyed 189 premenopausal women (mean 40.8±6.2 years old) who underwent endometrial ablation for abnormal uterine bleeding using the NovaSure (n=97) or Minerva (n=92) systems, at four private US gynecology clinics, and whose procedure date was after July 2015 with follow-up ≥3 months. Women were surveyed an average of 11.3±3.9 months (range 137-532 days) after ablation. The subject-reported amenorrhea rate was 52% higher in NovaSure subjects than Minerva subjects (64% and 42%, respectively; p =0.004). Age and bleeding cyclicity did not affect amenorrhea rate in either group. Normal-to-no bleeding was reported by >90% of subjects after either treatment. NovaSure was significantly more effective than Minerva at reducing pad/tampon use in women with any residual bleeding (2.4±5.2 items/day versus 4.7±5.5 items/day, p =0.049). NovaSure was significantly more effective than Minerva at reducing premenstrual syndrome (PMS) symptoms ( p =0.019) and menstrual pain ( p =0.003), and more NovaSure subjects (94%) than Minerva subjects (78%) were satisfied with clinical outcomes ( p =0.003). Adverse events did not differ by treatment; three women in each group progressed to hysterectomy. While overall bleeding reduction in premenopausal women with abnormal uterine bleeding was excellent with either endometrial ablation system, NovaSure treatment resulted in a higher patient-reported 1-year amenorrhea rate, and women with residual bleeding used fewer pads and tampons than Minerva-treated women. Additionally, NovaSure subjects reported better menstrual-related life quality and PMS symptom alleviation, and greater satisfaction with outcomes than Minerva-treated women.

  17. Shoreface translation and the Holocene stratigraphic record: Examples from Nova Scotia, the Mississippi Delta and eastern Australia

    USGS Publications Warehouse

    Boyd, Ron; Penland, S.

    1984-01-01

    Classic descriptive models of barrier sedimentation have been developed with data from the Atlantic and Gulf coasts of the United States. These models are dominated by low to moderate rates of relative sea level (RSL) rise and wave energy. Barriers respond by landward recycling of sediment through the mechanism of shoreface retreat. Sedimentation processes on the central coast of New South Wales (N.S.W.), Australia, consist of rapid RSL rise in early Holocene times followed by a stillstand since 6500 B.P. Wave energy is relatively high year-round and sand sources for barrier formation are only found on the inner shelf. Barrier sedimentation on the central coast of N.S.W. exhibits a thick, composite sequence composed of a basal marine transgressive sand overlain by regressive beach and dune facies. The Louisiana coast surrounding the Mississippi delta is underlain by compacting deltaic muds which generate very rapid rates of RSL rise. The Louisiana coast experiences low wave energy punctuated by high-energy tropical and extra-tropical storm events. Barrier sediments accumulate from the erosion of deltaic headlands and undergo a transformation from subaerial barrier island systems to subaqueous shoals located on the inner shelf. Drumlins experience coastal erosion on the Eastern Shore of Nova Scotia and provide a sediment source for compartmented estuary mouth barriers. An ongoing, moderate rise of RSL results from the passage of a glacial forebulge. Wave energy is intermediate between Louisiana and N.S.W. and displays a seasonal pattern dominated by frequent winter storms. Coastal barrier sedimentation is episodic, consisting of a period of beach ridge progradation followed by barrier destruction and re-establishment further landward. The three contrasting sedimentary sequences found in examples from Louisiana, N.S.W. and Nova Scotia indicate that presently available sedimentation models from locations such as the middle Atlantic or Texas coasts of the United States may only represent well-documented regional case studies. A true generalised coastal sedimentation model is required which can identify the parameters controlling vertical and horizontal translation of the depositional surface and provide relationships between these parameters which quantitatively predict the genesis, distribution and geometry of coastal sedimentary facies. ?? 1984.

  18. Recent Results on SNRs and PWNe from the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Hays, Elizabeth

    2010-01-01

    a) Symbiotic Binary System: White dwarf + red giant system. b) Nova: White dwarf builds up mass envelope to the point of thermonuclear fusion. c) Dramatic increase in visual magnitude. d) Recurrent Nova? e) Hints but no strong confirmation of previous nova f) Pre-nova activity: 1) White dwarf shows ongoing variability at level of several in magnitude. 2) V407 Cyg companion is a Mira star showing variability at level of several in magnitude. g) Origin of the gamma rays? 1) Strong shock propagating into dense medium around giant star land stellar wind. 2) Pion decay or electron processes?

  19. X-ray Novae and Related Systems

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig; Kim, Soonwook; Mineshige, Shin

    1992-01-01

    Accretion disk thermal instability models have been successful in accounting for the basic observations of dwarf novae and the steady behavior of nova-like systems. Models for the dwarf-nova like variability of the old nova and intermediate polar GK Per give good agreement with the burst amplitude, profile and recurrence time in the optical and UV. A month-long 'precursor plateau' in the UV is predicted for the expected 1992 outburst prior to the rise to maximum in the optical and UV. The models for the time scales of the outbursts and corresponding UV spectra at maximum are consistent with the inner edge of the accretion disk being essentially constant between quiescence and outburst and a factor of four larger than the co-rotation radius. These conclusions represent a challenge to the standard theory of magnetic accretion. Disk instability models have also given a good representation of the soft X-ray and optical outbursts of the X-ray novae A0620-00 and GS2000+25. Formation of coronae above the disk, heated by magneto-acoustic flux from the disk, may account for the temporal and spectral properties of the hard X-ray and gamma ray emission of related sources such as Cyg X-1, GS 2023+33 (V404 Cyg), IE 1740.7-2942 (the 'Galactic Center' Einstein Source), and GS 1124-683 (Nova Muscae).

  20. Downy mildew disease of New England aster (Symphyotrichum novae-angliae) caused by Basidiophora simplex in New York

    USDA-ARS?s Scientific Manuscript database

    The native perennial New England aster (Symphyotrichum novae-angliae; syn.=Aster novae-anglicae) is ubiquitous throughout most of the United States, as they self-seed and are well-adapted to many environments. New England asters are valued for their prominent dense clusters of purple flowers that at...

  1. Innovation and Skills Development in the Rural Voluntary Sector in Nova Scotia

    ERIC Educational Resources Information Center

    Canadian Rural Partnership, 2002

    2002-01-01

    This report is a summary of discussions that took place at the Rural Voluntary Sector Leaders' Dialogue, entitled "Innovation and Skills Development in the Rural Voluntary Sector in Nova Scotia", held in Truro, Nova Scotia on September 20, 2002. Many of the discussions took place in brainstorming sessions at which no limits were placed…

  2. Results of Statewide TerraNova Testing, Fall 1998.

    ERIC Educational Resources Information Center

    La Marca, Paul M.

    This summary provides key findings about state, district, and school level performance on the TerraNova examinations (CTB/McGraw Hill) in Nevada in 1998-1999. The TerraNova tests are used to assess students in grades 4, 8, and 10 as stipulated by Nevada law. Within this summary, a description of performance as measured by national percentile…

  3. An Emerging Wine Region in Nova Scotia, Canada: Terroir Trials and Tribulations

    NASA Astrophysics Data System (ADS)

    Cameron, B. I.; Ketter, B. S.; Karakis, S.

    2012-12-01

    Nova Scotia, strategically located on Canada's east coast, is an emerging wine region, whose distinctive wines are garnering international acclaim. Nova Scotia has a long and rich tradition of growing grapes for wine dating back as far as 1611. Nova Scotia's mesoclimates, glacial soils, and proximity to the Atlantic Ocean form a complex alliance to create a unique and expressive terroir. Tidal Bay is a new appellation wine for Nova Scotia stylistically defined as a fresh, crisp and high-acid blend of white grapes. There are four main wine-growing regions in Nova Scotia, all influenced by the warming effects of the Bay of Fundy and Atlantic Ocean: Malagash Peninsula, Annapolis Valley, Bear River Valley and the South Shore. Nova Scotia currently has 14 producing wineries with many more in the development stage. Nova Scotia grape growers not only have had success developing mature and consistent hybrids, but in recent years several vinifera have flourished in this cool climate area. The white hybrids include L'Acadie Blanc, New York Muscat, Seyval Blanc, and Vidal Blanc. The white vinifera include chardonnay, riesling, pinot gris, and sauvignon blanc. Red hybrids are Baco Noir, Leon Millet, Lucie Kuhlmann, and Marechal Foch, whereas the only red vinifera is pinot noir. Nova Scotia has nearly perfect climatic conditions for making world class icewines and sparkling wines. A preliminary GIS analysis of climate, topographic, geology and soil data helps to define Nova Scotia's terroir. Annual precipiatation varies from 10 to 21.6 cm/year with a vast majority of the wineries located in regions with the lowest rainfall. Daily average temperature ranges from 5.5 to 7.5°C, degree growing days above 5°C from 1382 to 1991, and mean August temperature from 15.6 to 19.3 °C. Wineries cluster in the warmest regions based on these temperature measures to assist grape ripening. Soils in these diverse wine regions can range from silty, sandy and clay loams to more gravel-rich sandy loams. In the Gaspereaux Valley, a sub-valley of the Annapolis Valley, relatively fertile silty and clay loams dominate on the south-facing slope, but well-drained, gravel-rich glacial soils on the north-facing slope impart a complex and mineral flavor profile to the wines. Detailed soil profiles from select vineyards along with studies of soil texture and chemistry highlight differences in terroirs in the four wine regions. This terroir study assists the expanding, but young wine industry in Nova Scotia to ideally match grape variety to vineyard block.

  4. Uncertainties in the production of p nuclides in thermonuclear supernovae determined by Monte Carlo variations

    NASA Astrophysics Data System (ADS)

    Nishimura, N.; Rauscher, T.; Hirschi, R.; Murphy, A. St J.; Cescutti, G.; Travaglio, C.

    2018-03-01

    Thermonuclear supernovae originating from the explosion of a white dwarf accreting mass from a companion star have been suggested as a site for the production of p nuclides. Such nuclei are produced during the explosion, in layers enriched with seed nuclei coming from prior strong s processing. These seeds are transformed into proton-richer isotopes mainly by photodisintegration reactions. Several thousand trajectories from a 2D explosion model were used in a Monte Carlo approach. Temperature-dependent uncertainties were assigned individually to thousands of rates varied simultaneously in post-processing in an extended nuclear reaction network. The uncertainties in the final nuclear abundances originating from uncertainties in the astrophysical reaction rates were determined. In addition to the 35 classical p nuclides, abundance uncertainties were also determined for the radioactive nuclides 92Nb, 97, 98Tc, 146Sm, and for the abundance ratios Y(92Mo)/Y(94Mo), Y(92Nb)/Y(92Mo), Y(97Tc)/Y(98Ru), Y(98Tc)/Y(98Ru), and Y(146Sm)/Y(144Sm), important for Galactic Chemical Evolution studies. Uncertainties found were generally lower than a factor of 2, although most nucleosynthesis flows mainly involve predicted rates with larger uncertainties. The main contribution to the total uncertainties comes from a group of trajectories with high peak density originating from the interior of the exploding white dwarf. The distinction between low-density and high-density trajectories allows more general conclusions to be drawn, also applicable to other simulations of white dwarf explosions.

  5. Safety and Effectiveness of NovaSure® Endometrial Ablation After Placement of Essure® Micro-Inserts

    PubMed Central

    Price, Pamela; Burkhart, Jamie; Johnson, Jamie

    2012-01-01

    Abstract Objective: In-office NovaSure® after Essure® is a clinical paradigm for which physicians are seeking information. A PubMed search (July 2011) revealed no peer-reviewed articles describing this treatment sequence. To address the paucity of data on this topic, patients who had undergone Essure followed by NovaSure in a private practice office between July 1, 2008 and December 31, 2009 were evaluated. The objective was to evaluate safety and feasibility of in-office NovaSure after Essure, and to determine if the effectiveness of either procedure was altered by this treatment sequence. Design: This was a retrospective cohort study of 117 women (ages 24–52). Methods: Patients underwent Essure followed by NovaSure in two in-office sessions, separated by a median of 14 days. All patients had menorrhagia and desired permanent sterilization. A postprocedure patient questionnaire was administered to assess satisfaction and perceived effectiveness. Results: Among patients who underwent Essure followed by NovaSure, 83/117 (71%) returned for a 3-month hysterosalpingogram (HSG). Satisfactory placement and tubal occlusion were noted in 79/83 (95%) of these patients. Amenorrhea or spotting was observed in 72/97 (74%) of patients, 22/97 (23%) reported a satisfactory decrease in menstrual flow, and 3/97 (3%) reported ablation failure. Essure followed by NovaSure did not decrease the effectiveness of either procedure, and no adverse events were attributed to the combination of the two procedures. Patients reported high levels of satisfaction with both procedures. Conclusions: In women seeking permanent birth control and menorrhagia reduction, in-office Essure followed by NovaSure appeared to be safe, effective, and associated with high patient satisfaction. (J GYNECOL SURG 28:1) PMID:24761128

  6. A Search for Novae in the M31 Globular Cluster System

    NASA Astrophysics Data System (ADS)

    Tomaney, Austin; Crotts, Arlin; Shafter, Allen

    1992-12-01

    Roughly 10% of all low mass X-ray binaries (LMXB's, neutron star - low mass sequence close binaries) are found in Galactic globular clusters (GC's) implying an enhancement per unit mass of roughly three orders of magnitude of these objects inside GC's compared with the field. Fabian, Pringle and Rees (1975) suggested that these lcose binary systems may be formed via tidal capture in the dense cluster cores. Similar arguments are likely to apply to nova systems which are cataclysmic variables (CV's) consisting of a close binary white dwarf - low mass main sequence star. Supporting arguments include the discovery over the past century of two novae in Galactic GC's, and the existence of low luminosity X-ray sources in GC's (Hertz and Grindlay 1983). In addition, surveys for novae in M31 indicate that the specfic density of novae in its bulge is an order of magnitude higher than its disk and it has been argued by Ciardullo et al. (1987) that novae in the bulge of M31 have been spawned inside GC's and subsequently ejected into the field. We present the results of a search (during 1988 and 1989) of over 200 M31 GC's using a fibre multi-object spectrograph to detect Hα emission, a signature of a potential nova eruptions. No eruptions were detected over an effective survey time of one year for the entire known M31 GC system. Although the lower mass of white dwarfs compared with neutron stars implies their effective capture cross section is smaller, we argue that since novae occur much more frequently on high mass white dwarfs this survey provides a sensitive test to the number of high mass CV's in GC's and their enhancement is unlikely to be as high as LMXB's.

  7. Copernicus observations of Nova Cygni 1975

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Snow, T. P.; Upson, W. L.; Anderson, R.; Starrfield, S. G.; Gallagher, J. S.; Friedjung, M.; Linsky, J. L.; Henry, R. C.; Moos, H. W.

    1977-01-01

    Near-ultraviolet radiation from Nova Cygni 1975 was detected by the Copernicus satellite on five occasions from 1975 September 1 to 1975 September 9. The nova was not seen in the UV after this date. The principal result was the observation of a broad emission feature from the Mg II doublet at 2800 A. The absence of strong UV radiation at shorter wavelengths suggests that these lines are produced by collisional excitation in the outer layers of an expanding shell with electron temperature of approximately 4000 K. The absence of observed emission lines from highly ionized species indicates that the amount of material with log T between 4.4 and 5.7 is less than 0.001 times that which produces the Mg II emission. The continuum flux in the near-UV decreased as the nova evolved, showing that the total luminosity decreased as the nova faded in the visible.

  8. Dust Evolution in Nova Cassiopeia 1993

    NASA Astrophysics Data System (ADS)

    Eyres, S. P. S.; Evans, A.; Geballe, T. R.; Davies, J. K.; Rawlings, J. M. C.

    1997-07-01

    We present UKIRT spectroscopy of Nova Cassiopeia 1993 (= V705 Cas) in KLNQ bands, taken in 1994 and 1995. Fitting the continuum indicates a dust temperature T ˜ 740 750 K in the latter part of 1994; this is similar to earlier measurements, and consistent with the “isothermal” behaviour observed in novae with optically thick dust shells. The β-index drops from 0.8 to 0.4 over the same period. This suggests grain growth; grain diameter increases from < 0.54 µm around day 256, to > 0.57 µm by day 342. The UIR features differ from those in other Galactic sources, and are similar to those in V842 Cen. This suggests fundamental differences between the UIR carriers, or environments, in novae and other Galactic sources. The silicate feature is consistent with an amorphous structure, in contrast to previous novae. We believe that grains in V705 Cas form two populations: silicates, and hydrocarbons.

  9. HITS-CLIP yields genome-wide insights into brain alternative RNA processing

    NASA Astrophysics Data System (ADS)

    Licatalosi, Donny D.; Mele, Aldo; Fak, John J.; Ule, Jernej; Kayikci, Melis; Chi, Sung Wook; Clark, Tyson A.; Schweitzer, Anthony C.; Blume, John E.; Wang, Xuning; Darnell, Jennifer C.; Darnell, Robert B.

    2008-11-01

    Protein-RNA interactions have critical roles in all aspects of gene expression. However, applying biochemical methods to understand such interactions in living tissues has been challenging. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova revealed extremely reproducible RNA-binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova-RNA interactions in 3' untranslated regions, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo.

  10. New sidescan sonar and gravity evidence that the Nova-Canton Trough is a fracture zone

    NASA Astrophysics Data System (ADS)

    Joseph, Devorah; Taylor, Brian; Shor, Alexander N.

    1992-05-01

    A 1990 sidescan sonar survey in the eastern region of the Nova-Canton Trough mapped 138°-striking abyssal-hill fabric trending into 70°-striking trough structures. The location and angle of intersection of the abyssal hills with the eastern Nova-Canton Trough effectively disprove a spreading-center origin of this feature. Free-air gravity anomalies derived from satellite altimetry data show continuity, across the Line Islands, of the Nova-Canton Trough with the Clipperton Fracture Zone. The Canton-Clipperton trend is copolar, about a pole at 30°S, 152°W, with other coeval Pacific-Farallon fracture-zone segments, from the Pau to Marquesas fracture zones. This copolarity leads us to postulate a Pacific-Farallon spreading pattern for the magnetic quiet zone region north and east of the Manihiki Plateau, with the Nova-Canton Trough originating as a transform fault in this system.

  11. Integration of the Super Nova early warning system with the NOvA Trigger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habig, Alec; Zirnstein, Jan

    The NOvA experiment, with a baseline of 810km, samples Fermilab’s upgraded NuMI beam with a Near Detector on-site and a Far Detector (FD) at Ash River, MN, to observe oscillations of muon neutrinos. The 344,064 liquid scintillator-filled cells of the 14 kton FD provide high granularity of a large detector mass and enable us to also study non-accelerator based neutrinos with our Data Driven Trigger framework. This paper will focus on the real time integration of the SNEWS with the NOvA Trigger where we have set up an XML-RPC based messaging system to inject the SNEWS signal directly into ourmore » trigger. In conclusion, this presents a departure from the E-Mail based notification mechanism used by SNEWS in the past and allows NOvA more control over propagation and transmission timing.« less

  12. Integration of the Super Nova early warning system with the NOvA Trigger

    DOE PAGES

    Habig, Alec; Zirnstein, Jan

    2015-12-23

    The NOvA experiment, with a baseline of 810km, samples Fermilab’s upgraded NuMI beam with a Near Detector on-site and a Far Detector (FD) at Ash River, MN, to observe oscillations of muon neutrinos. The 344,064 liquid scintillator-filled cells of the 14 kton FD provide high granularity of a large detector mass and enable us to also study non-accelerator based neutrinos with our Data Driven Trigger framework. This paper will focus on the real time integration of the SNEWS with the NOvA Trigger where we have set up an XML-RPC based messaging system to inject the SNEWS signal directly into ourmore » trigger. In conclusion, this presents a departure from the E-Mail based notification mechanism used by SNEWS in the past and allows NOvA more control over propagation and transmission timing.« less

  13. Faint Object Camera observations of a globular cluster nova field

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Anderson, Scott F.; Downes, Ronald A.; Bohlin, Ralph C.; Jakobsen, Peter

    1991-01-01

    The Faint Object Camera onboard Hubble Space Telescope has obtained U and B images of the field of Nova Ophiuchi 1938 in the globular cluster M14 (NGC 6402). The candidate for the quiescent nova suggested by Shara et al. (1986) is clearly resolved into at least six separate images, probably all stellar, in a region of 0.5 arcsec. Although two of these objects are intriguing as they are somewhat ultraviolet, the actual nova counterpart remains ambiguous, as none of the images in the field has a marked UV excess. Many stars within the 1.4 arcsec (2 sigma) uncertainty of the nova outburst position are viable counterparts if only astrometric criteria are used for selection. The 11 x 11 arcsec frames easily resolve several hundred stars in modest exposures, implying that HST even in its current optical configuration will be unique for studies of very crowded fields at moderate (B = 22) limiting magnitudes.

  14. Observations and Analysis of the GK Persei Nova Shell and its "Jet-like" Feature

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Redman, M. P.; Boumis, P.; Akras, S.

    2015-12-01

    GK Persei (1901, the "Firework Nebula") is an old but bright nova remnant that offers a chance to probe the physics and kinematics of nova shells. The kinematics in new and archival longslit optical echelle spectra were analysed using the SHAPE software. New imaging from the Aristarchos telescope continues to track the proper motion, extinction and structural evolution of the knots, which have been observed intermittently over several decades. We present for the first time, kinematical constraints on a large faint "jet" feature, that was previously detected beyond the shell boundary. These observational constraints allow for the generation of models for individual knots, interactions within knot complexes, and the "jet" feature. Put together, and taking into account dwarf-nova accelerated winds emanating from the central source, these data and models give a deeper insight into the GK Per nova remnant as a whole.

  15. No hot and luminous progenitor for Tycho's supernova

    NASA Astrophysics Data System (ADS)

    Woods, T. E.; Ghavamian, P.; Badenes, C.; Gilfanov, M.

    2017-11-01

    Type Ia supernovae have proven vital to our understanding of cosmology, both as standard candles and for their role in galactic chemical evolution; however, their origin remains uncertain. The canonical accretion model implies a hot and luminous progenitor that would ionize the surrounding gas out to a radius of 10-100 pc for 100,000 years after the explosion. Here, we report stringent upper limits on the temperature and luminosity of the progenitor of Tycho's supernova (SN 1572), determined using the remnant itself as a probe of its environment. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the radius of the present remnant ( 3 pc) can thus be excluded. This conclusively rules out steadily nuclear-burning white dwarfs (supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting approximately greater than 10-8 M⊙ yr-1 (recurrent novae; M⊙ is equal to one solar mass). The lack of a surrounding Strömgren sphere is consistent with the merger of a double white dwarf binary, although other more exotic scenarios may be possible.

  16. Earth observations taken during STS-83 mission

    NASA Image and Video Library

    2016-08-12

    STS083-747-088 (4-8 April 1997)--- Mayon Volcano with a Plume, Luzon, the Philippines Mayon has the classic conical shape of a strato volcano. It is the most active volcano in the Philippines and continues to be active as demonstrated by the plume in the photo. Since 1616, Mayon has erupted 47 times. The most recent major eruption, in 1993, began unexpectedly with an explosion. The initial eruption lasted only 30 minutes but it generated pyroclastic flows that killed 68 people and prompted the evacuation of 60,000 others.

  17. Achievements of ITEP astrophysicists

    NASA Astrophysics Data System (ADS)

    Baklanov, P. V.; Blinnikov, S. I.; Manukovskiy, K. V.; Nadyozhin, D. K.; Panov, I. V.; Utrobin, V. P.; Yudin, A. V.

    2016-08-01

    Astrophysical research at the Institute for Theoretical and Experimental Physics (ITEP) is examined historically over a period of more than 30 years. The primary focus is on the supernova problem, starting with how it was approached in the classical pioneering work of Imshennik and Nadyozhin and ending with present-day models of these most powerful star explosions in the Universe. The paper also reviews work in other areas of astrophysics, including chemical nucleosynthesis, the cosmological use of type-IIn supernovae and dark matter models. The paper was written as a contribution to the 70th anniversary of ITEP.

  18. Using the information of cosmic rays to predict influence epidemic

    NASA Astrophysics Data System (ADS)

    Yu, Z. D.

    1985-08-01

    A correlation between the incidence of influenza pandemics and increased cosmic ray activity is made. A correlation is also made between the occurrence of these pandemics and the appearance of bright novae, e.g., Nova Eta Car. Four indices based on increased cosmic ray activity and novae are proposed to predict future influenza pandemics and viral antigenic shifts.

  19. Using the information of cosmic rays to predict influence epidemic

    NASA Technical Reports Server (NTRS)

    Yu, Z. D.

    1985-01-01

    A correlation between the incidence of influenza pandemics and increased cosmic ray activity is made. A correlation is also made between the occurrence of these pandemics and the appearance of bright novae, e.g., Nova Eta Car. Four indices based on increased cosmic ray activity and novae are proposed to predict future influenza pandemics and viral antigenic shifts.

  20. NovaNET 2008-09 Evaluation. Impact Evaluation. E&R Report No. 09.36

    ERIC Educational Resources Information Center

    Bulgakov-Cook, Dina

    2010-01-01

    NovaNET is a technology-based teacher-facilitated educational approach used at schools to support students at risk of not meeting graduation requirements to accrue credits in a variety of subjects. NovaNET contributes to the WCPSS goal of closing achievement gaps and creating opportunities for all students to graduate on time. In 2008-09, 38…

  1. Beyond an Operational Reserve

    DTIC Science & Technology

    2013-05-01

    Background, and Bibliography, (New York: Nova Science Pub Inc, 2002), 72. 46 components, the first in 1993 and later in 1997, to discuss the...8 George Bennett, The United States Army: Issues, Background, and Bibliography, (New York: Nova Science Pub Inc, 2002), 71...George Bennett, The United States Army: Issues, Background, and Bibliography, (New York: Nova Science Pub Inc, 2002), 74. 11 Angelo, M. Reserve

  2. The Recurrent Nova Candidate M31N 1966-08a = 1968-10c is a Galactic Flare Star

    NASA Astrophysics Data System (ADS)

    Shafter, A. W.; Henze, M.; Darnley, M. J.; Ciardullo, R.; Davis, B. D.; Hawley, S. L.

    2017-12-01

    A spectrum of the quiescent counterpart of the Recurrent Nova candidate M31N 1966-08a (= M31N 1968-10c) obtained with LRS2 on the Hobby-Eberly Telescope reveals the object to be a foreground Galactic dMe flare star, and not a nova in M31.

  3. New insights from a statistical analysis of IUE spectra of dwarf novae and nova-like stars. I - Inclination effects in lines and continua

    NASA Technical Reports Server (NTRS)

    La Dous, Constanze

    1991-01-01

    IUE observations of dwarf novae at maximum at quiescence and novalike objects at the high brightness state are analyzed for effects of the inclination angle on the emitted continuum and line radiation. A clear pattern in the continuum flux distribution is exhibited only by dwarf novae at maximum where some 80 percent of the non-double-eclipsing systems show essentially identical distributions. This result is not in disagreement with theoretical expectations. All classes of objects exhibit a clear, but in each case different, dependence of the line radiation on the inclination angle.

  4. Are supernovae recorded in indigenous astronomical traditions?

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2014-07-01

    Novae and supernovae are rare astronomical events that would have had an influence on the skywatching peoples who witnessed them. Although several bright novae/supernovae have been visible during recorded human history, there are many proposed but no confirmed accounts of supernovae in indigenous oral traditions or material culture. Criteria are established for confirming novae/supernovae in oral traditions and material culture, and claims from around the world are discussed to determine if they meet these criteria. Aboriginal Australian traditions are explored for possible descriptions of novae/supernovae. Although representations of supernovae may exist in Aboriginal traditions, there are currently no confirmed accounts of supernovae in Indigenous Australian oral or material traditions.

  5. Ultraviolet spectroscopy of old novae and symbiotic stars

    NASA Technical Reports Server (NTRS)

    Lambert, D. L.; Slovak, M. H.; Shields, G. A.; Ferland, G. J.

    1981-01-01

    The IUE spectra are presented for two old novae and for two of the symbiotic variables. Prominent emission line spectra are revealed as a continuum whose appearance is effected by the system inclination. These data provide evidence for hot companions in the symbiotic stars, making plausible the binary model for these peculiar stars. Recent IUE spectra of dwarf novae provide additional support for the existence of optically thick accretion disks in active binary systems. The ultraviolet data of the eclipsing dwarf novae EX Hya and BV Cen appear flatter than for the noneclipsing systems, an effect which could be ascribed to the system inclination.

  6. Evaluating local food programs: the case of Select Nova Scotia.

    PubMed

    Knight, Andrew J

    2013-02-01

    This study evaluated the effectiveness of the buy local food program Select Nova Scotia; a government program with the goal to increase awareness and consumption of Nova Scotia produced and processed agri-food products by Nova Scotians and visitors. The evaluation methodology was based on prior evaluation resources and local food consumer research. Data were gathered through a web panel survey; 877 respondents completed the survey in June 2010. The results suggest that the program is reaching a wider audience than just those predisposed to local food initiatives. In addition, awareness of Select Nova was related to perceptions of local benefits and barriers, as well as purchase motivation and behavior. Respondents who were aware of Select Nova Scotia rated societal benefits as more important and viewed location and price as less of a barrier; they were also more likely to be highly motivated to purchase local foods. This study also informs results found in previous consumer research studies and identifies marketing opportunities to enhance the effectiveness of local food programs. The results suggest that societal benefits might be used as a way to differentiate products with similar attributes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Synthetic Spectral Analysis of the Far Ultraviolet Spectra of the Old Nova HR Del

    NASA Astrophysics Data System (ADS)

    Robertson, Jordan; Sion, E.

    2012-05-01

    We present a synthetic spectral analysis of the archival IUE far ultraviolet spectra of the post-nova, HR Del (Nova Del 1967). The system has an estimated white dwarf mass of 0.55 Msun (Ritter and Kolb 2003), orbital period P_orb = 0.214165 days, estimated orbital inclination of 40 degrees (Keurster 1988) and distance determinations in the literature ranging from 970 pc to 285 pc. The spectra reveal P Cygni profiles indicative of wind outflow from the disk and closely resemble the IUE spectra of UX UMa nova-likes, which have never had recorded outbursts. We de-reddened the archival IUE spectra using E(B-V) = 0.16. Our synthetic spectral analysis utilized optically thick, steady state accretion disk models and white dwarf model atmospheres that we constructed using TLUSTY and SYNSPEC (Hubeny 1988, Hubeny and Lanz (1995). Our input parameters were the white dwarf mass, inclination and a range of accretion rates for which we found the best-fitting model. We report the results of our model fitting and compare HR Del with other post-novae at comparable times past their nova outburst. This work was supported by NSF grant 0807892 to Villanova University

  8. Inertial Confinement Fusion Annual Report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, Robert L.

    The ICF Program has undergone a significant change in 1999 with the decommissioning of the Nova laser and the transfer of much of the experimental program to the OMEGA laser at the University of Rochester. The Nova laser ended operations with the final experiment conducted on May 27, 1999. This marked the end to one of DOE's most successful experimental facilities. Since its commissioning in 1985, Nova performed 13,424 experiments supporting ICF, Defense Sciences, high-power laser research, and basic science research. At the time of its commissioning, Nova was the world's most powerful laser. Its early experiments demonstrated that 3ωmore » light could produce high-drive, low-preheat environment required for indirect-drive ICE. In the early 1990s, the technical program on Nova for indirect drive ignition was defined by the Nova technical contract established by National Academy Review of ICF in 1990. Successful completion of this research program contributed significantly to the recommendation by the ICF Advisory Committee in 1995 to proceed with the construction of the National Ignition Facility? Nova experiments also demonstrated the utility of high-powered lasers for studying the physics of interest to Defense Sciences. Now, high-powered lasers along with pulsed-power machines are the principal facilities for studying high energy density science in DOE's Stockpile Stewardship Program (SSP). In 1997, one beam of Nova was converted to a short pulsed beam producing a petawatt of power in subpicosecond pulses. The petawatt beam was used for pioneering research in short-pulse laser-matter interactions relevant to fast ignitor ICF and short pulsed x-ray, electron, and particle production for use as probes. Nova is being disassembled and the space is being used to support NIF construction. Nova components are being distributed to a number of other laser laboratories around the world for reuse as determined by DOE. This report summarizes the research performed by the ICF Program in FY1999. The report is divided into five sections corresponding to the major areas of program activities. These are sections on (1) ignition target physics experiments theory and modeling, (2) high energy density experimental science, (3) target development, fabrication, and handling, (4) NIF laser development, and (5) optics technology development.« less

  9. Modelling the structure and kinematics of the Firework nebula: The nature of the GK Persei nova shell and its jet-like feature

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Redman, M. P.; Boumis, P.; Akras, S.

    2016-10-01

    Aims: The shaping mechanisms of old nova remnants are probes for several important and unexplained processes, such as dust formation and the structure of evolved star nebulae. To gain a more complete understanding of the dynamics of the GK Per (1901) remnant, an examination of symmetry of the nova shell is explored, followed by a kinematical analysis of the previously detected jet-like feature in the context of the surrounding fossil planetary nebula. Methods: Faint-object high-resolution echelle spectroscopic observations and imaging were undertaken covering the knots which comprise the nova shell and the surrounding nebulosity. New imaging from the Aristarchos telescope in Greece and long-slit spectra from the Manchester Echelle Spectrometer instrument at the San Pedro Mártir observatory in Mexico were obtained, supplemented with archival observations from several other optical telescopes. Position-velocity arrays are produced of the shell, and also individual knots, and are then used for morpho-kinematic modelling with the shape code. The overall structure of the old knotty nova shell of GK Per and the planetary nebula in which it is embedded is then analysed. Results: Evidence is found for the interaction of knots with each other and with a wind component, most likely the periodic fast wind emanating from the central binary system. We find that a cylindrical shell with a lower velocity polar structure gives the best model fit to the spectroscopy and imaging. We show in this work that the previously seen jet-like feature is of low velocity. Conclusions: The individual knots have irregular tail shapes; we propose here that they emanate from episodic winds from ongoing dwarf nova outbursts by the central system. The nova shell is cylindrical, not spherical, and the symmetry axis relates to the inclination of the central binary system. Furthermore, the cylinder axis is aligned with the long axis of the bipolar planetary nebula in which it is embedded. Thus, the central binary system is responsible for the bipolarity of the planetary nebula and the cylindrical nova shell. The gradual planetary nebula ejecta versus sudden nova ejecta is the reason for the different degrees of bipolarity. We propose that the "jet" feature is an illuminated lobe of the fossil planetary nebula that surrounds the nova shell.

  10. Toxicity assessment in marine sediment for the Terra Nova environmental effects monitoring program (1997-2010)

    NASA Astrophysics Data System (ADS)

    Whiteway, Sandra A.; Paine, Michael D.; Wells, Trudy A.; DeBlois, Elisabeth M.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory

    2014-12-01

    This paper discusses toxicity test results on sediments from the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland (Canada). The amphipod (Rhepoxynius abronius) survival and solid phase luminescent bacteria (Vibrio fischeri, or Microtox) assays were conducted on sediment samples collected from approximately 50 stations per program year around Terra Nova during baseline (1997), prior to drilling, and in 2000, 2001, 2002, 2004, 2006, 2008 and 2010 after drilling began. The frequency of toxic responses in the amphipod toxicity test was low. Of the ten stations that were toxic in environmental effects monitoring (EEM) years, only one (station 30(FE)) was toxic in more than one year and could be directly attributed to Terra Nova project activities. In contrast, 65 (18%) of 364 EEM samples were toxic to Microtox. Microtox toxicity in EEM years was not related to distance from Terra Nova drill centres or concentrations of >C10-C21 hydrocarbons or barium, the primary constituents of the synthetic-based drill muds used at Terra Nova. Of the variables tested, fines and strontium levels showed the strongest (positive) correlations with toxicity. Neither fines nor strontium levels were affected by drill cuttings discharge at Terra Nova, except at station 30(FE) (and that station was not toxic to Microtox). Benthic macro-invertebrate abundance, richness and diversity were greater in toxic than in non-toxic sediments. Therefore, Microtox responses indicating toxicity were associated with positive biological responses in the field. This result may have been an indirect function of the increased abundance of most invertebrate taxa in less sandy sediments with higher gravel content, where fines and strontium levels and, consequently, toxicity to Microtox were high; or chemical substances released by biodegradation of organic matter, where invertebrates are abundant, may be toxic to Microtox. Given the lack of association between Microtox results and discharge from Terra Nova, coupled with the confounding effects of other variables, the usefulness of Microtox toxicity tests within the context of environmental monitoring for the Terra Nova and, potentially, other offshore oil operations needs to be questioned. The amphipod toxicity tests showed that sediments in the vicinity of discharges of synthetic-based drilling mud cuttings are rarely toxic.

  11. 0935+05 Supernova 1995D in NGC 2962

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    1995-02-01

    Reiki Kushida of Yatsugatake South Base Observatory discovers 0935+05 Supernova 1995D in NGC 2962. Magnitude 14.0. Position RA 09h 40m 54.79s DEC +5° 08' 26.6" (2000). Nova AQL 95 confirmed spectroscopically "as a slow 'FE II'-class nova in its post-maximum phase of development. Requests continue to monitor 1436-63 Nova Cir 95.

  12. Educational Technology Program for Nova Scotia: Initial Phase. A Report on the Federal-Provincial Study of Educational Technology in Nova Scotia.

    ERIC Educational Resources Information Center

    deVille, Barry, Ed.

    This is a preliminary examination of the present status and future prospects of educational technology in Nova Scotian schools. It is aimed at developing a plan to enhance the quality of educational technology by concentrating on systems which will be conducive to realizing educational goals at a reasonable cost. An overview of the institutional…

  13. The electrification of Nova Scotia, 1884--1973: Technological modernization as a response to regional disparity

    NASA Astrophysics Data System (ADS)

    King, Lionel Bradley

    This dissertation investigates local attempts to use technology as a force for regional rehabilitation in the economically-depressed Maritime region of Canada. At the time of Confederation in 1867, the Maritime province of Nova Scotia was prosperous, progressive, and cultured. By the end of the 1910s, the province had entered a long period of economic and social decline. Recent historiography has shown that, far from passively accepting their fate, Nova Scotians and other Maritimers, actively resisted marginalization with political, cultural, or social action. The thesis expands upon that literature by exploring technology-based strategies of provincial rehabilitation using Thomas P. Hughes's systems perspective and David E. Nye's semiotic approach. In doing so, it applies methods from the social constructivist school of the history of technology to the larger concerns of Maritime Canadian historiography. In large part, the North American culture of technology determined the ways in which Nova Scotians applied technological solutions to provincial concerns. Technology has long been central to the Western idea of progress. As the "high technology" of the late nineteenth and early twentieth centuries, electricity reinforced that view: its ephemeral nature and silent efficiency led people to endow it with transformative, even mystical, powers. As a result, Nova Scotians, adopted a program of electrical modernization in the late 1910s as a remedy for regional disparity. The Nova Scotia government's first step was the creation of an Ontario-style hydroelectric commission designed to bring order to the province's fragmented and inefficient electrical network. Over the next few decades, the Nova Scotia Power Commission implemented rural electrification, home modernization, and regional system-building models that had already proven successful in Ontario and the United States. The system-building philosophies behind these programs were adapted to local conditions and disseminated throughout the province by politicians, engineers, businesspeople, and social reformers. Although electrical modernization failed to address the structural reasons for the province's decline, Nova Scotians continued to include it in their provincial rehabilitation plans until the 1960s. In sum, the electrification of Nova Scotia was not merely a technical event, but was shaped by the province's aspiration to regain its prior position in Confederation.

  14. An extensive optical study of V2491 Cyg (Nova Cyg 2008 N.2), from maximum brightness to return to quiescence

    NASA Astrophysics Data System (ADS)

    Munari, U.; Siviero, A.; Dallaporta, S.; Cherini, G.; Valisa, P.; Tomasella, L.

    2011-04-01

    The photometric and spectroscopic evolution of the He/N and very fast Nova Cyg 2008 N.2 (V2491 Cyg) is studied in detail. A primary maximum was reached at V = 7.45 ± 0.05 on April 11.37 (±0.1) 2008 UT, followed by a smooth decline characterized by t2V=4.8 days, and then a second maximum was attained at V = 9.49 ± 0.03, 14.5 days after the primary one. This is the only third nova to have displayed a secondary maximum, after V2362 Cyg and V1493 Aql. The development and energetics of the secondary maximum is studied in detail. The smooth decline that followed was accurately monitored until day +144 when the nova was 8.6 mag fainter than maximum brightness, well into its nebular phase, with its line and continuum emissivity declining as t-3. The reddening affecting the nova was EB- V = 0.23 ± 0.01, and the distance of 14 kpc places the nova at a height above the galactic plane of 1.1 kpc, larger than typical for He/N novae. The expansion velocity of the bulk of ejecta was 2000 km/s, with complex emission profiles and weak P-Cyg absorptions during the optically thick phase, and saddle-like profiles during the nebular phase. Photo-ionization analysis of the emission line spectrum indicates that the mass ejected by the outburst was 5.3 × 10 -6 M ⊙ and the mass fractions to be X = 0.573, Y = 0.287, Z = 0.140, with those of individual elements being N = 0.074, O = 0.049, Ne = 0.015. The metallicity of the accreted material was [Fe/H] = -0.25, in line with ambient value at the nova galacto-centric distance. Additional spectroscopic and photometric observations at days +477 and +831 show the nova returned to the brightness level of the progenitor and to have resumed the accretion onto the white dwarf.

  15. Studies of Transient X-Ray Sources with the Ariel 5 All-Sky Monitor. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.

    1977-01-01

    The All-Sky Monitor, an imaging X-ray detector launched aboard the Ariel 5 satellite, was used to obtain detailed light curves of three new sources. Additional data essential to the determination of the characteristic luminosities, rates of occurrence (and possible recurrence), and spatial distribution of these objects was also obtained. The observations are consistent with a roughly uniform galactic disk population consisting of at least two source sub-classes, with the second group (Type 2) at least an order of magnitude less luminous and correspondingly more frequent than the first (Type 1). While both subtypes are probably unrelated to the classical optical novae (or supernovae), they are most readily interpreted within the standard mass exchange X-ray binary model, with outbursts triggered by Roche-lobe overflow (Type 1) or enhancements in the stellar wind density of the companion (Type 2), respectively.

  16. The influence of grain growth in circumstellar dust envelopes on observed colors and polarization of some eruptive stars

    NASA Technical Reports Server (NTRS)

    Efimov, Yu. S.

    1989-01-01

    R CrB stars are classical examples of stars where dust envelope formation takes place. Dust envelope formation was detected around the Kuwano-Honda object (PU Vul) in 1980 to 1981 when the star's brightness fell to 8(sup m). Such envelopes are also formed at nova outbursts. The process of dust envelope formation leads to appreciable variations in optical characteristics, which are seen in specific color and polarization variations in the course of light fading and the appearance of IR radiation. It is shown that the model of a circumstellar dust envelope with aligned particles of changing size can be successfully applied to explain most phenomena observed at the time of light minima for a number of eruptive stars. The polarization may arise in a nonspherical dust envelope or be produced by alignment of nonspherical particles.

  17. THM determination of the 65 keV resonance strength intervening in the {sup 17}O(p,α){sup 14}N reaction rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergi, M. L.; La Cognata, M.; Pizzone, R. G.

    2015-02-24

    The {sup 17}O(p,α){sup 14}N reaction is of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RG), asymptotic giant branch (AGB) stars, massive stars and classical novae. We report on the indirect study of the {sup 17}O(p,α){sup 14}N reaction via the Trojan Horse Method by applying the approach recently developed for extracting the resonance strength of the narrow resonance at E{sub c.m.}{sup R} = 65 keV (E{sub X} =5.673 MeV). The strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonancemore » strength in the {sup 17}O+p radiative capture channel.« less

  18. Statistical methods for thermonuclear reaction rates and nucleosynthesis simulations

    NASA Astrophysics Data System (ADS)

    Iliadis, Christian; Longland, Richard; Coc, Alain; Timmes, F. X.; Champagne, Art E.

    2015-03-01

    Rigorous statistical methods for estimating thermonuclear reaction rates and nucleosynthesis are becoming increasingly established in nuclear astrophysics. The main challenge being faced is that experimental reaction rates are highly complex quantities derived from a multitude of different measured nuclear parameters (e.g., astrophysical S-factors, resonance energies and strengths, particle and γ-ray partial widths). We discuss the application of the Monte Carlo method to two distinct, but related, questions. First, given a set of measured nuclear parameters, how can one best estimate the resulting thermonuclear reaction rates and associated uncertainties? Second, given a set of appropriate reaction rates, how can one best estimate the abundances from nucleosynthesis (i.e., reaction network) calculations? The techniques described here provide probability density functions that can be used to derive statistically meaningful reaction rates and final abundances for any desired coverage probability. Examples are given for applications to s-process neutron sources, core-collapse supernovae, classical novae, and Big Bang nucleosynthesis.

  19. Neutrino Physics in the NOvA Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Mayly

    2016-09-19

    The objective of the experimental neutrino physics program at ISU is to contribute to the NOvA experiment in order to enable the measurement of the unknown neutrino parameters: the CP violation phase and the mass hierarchy. In the Summer of 2015, the NOvA Collaboration released results from the first year of data collected by the experiment. The ISU group played an important role in various aspects of these results including authoring one of the two resulting publications. During this project period and with the support of this grant the PI and her group made leading contributions both in data analysismore » and operations to the NOvA experiment.« less

  20. An X-ray survey of nine historical novae. [HEAO 2 observations

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Marshall, F. E.

    1980-01-01

    The Einstein Observatory imaging proportional counter was used to search for X-ray emission from nine nearby historical novae. Six of the novae were detected with estimated X-ray intensities between .1 to 4 keV of 10 to the -13th power to 10 to the -11th power ergs/sq cm-s, comparable to the intensities of previously detected cataclysmic variables. The X-ray intensity of one of the novae, V603 Aql, varies over times of several hundred seconds. The data suggest a correlation between the decay rate of the historical outburst and the current X-ray luminosity. Alternatively, the X-ray luminosity may be related to the inclination of the binary system.

  1. The distances of the Galactic Novae

    NASA Astrophysics Data System (ADS)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  2. PTF11mnb: First analog of supernova 2005bf. Long-rising, double-peaked supernova Ic from a massive progenitor

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Sollerman, J.; Fremling, C.; Karamehmetoglu, E.; Quimby, R. M.; Gal-Yam, A.; Yaron, O.; Kasliwal, M. M.; Kulkarni, S. R.; Nugent, P. E.; Smadja, G.; Tao, C.

    2018-01-01

    Aims: We study PTF11mnb, a He-poor supernova (SN) whose light curves resemble those of SN 2005bf, a peculiar double-peaked stripped-envelope (SE) SN, until the declining phase after the main peak. We investigate the mechanism powering its light curve and the nature of its progenitor star. Methods: Optical photometry and spectroscopy of PTF11mnb are presented. We compared light curves, colors and spectral properties to those of SN 2005bf and normal SE SNe. We built a bolometric light curve and modeled this light curve with the SuperNova Explosion Code (SNEC) hydrodynamical code explosion of a MESA progenitor star and semi-analytic models. Results: The light curve of PTF11mnb turns out to be similar to that of SN 2005bf until 50 d when the main (secondary) peaks occur at -18.5 mag. The early peak occurs at 20 d and is about 1.0 mag fainter. After the main peak, the decline rate of PTF11mnb is remarkably slower than what was observed in SN 2005bf, and it traces well the 56Co decay rate. The spectra of PTF11mnb reveal a SN Ic and have no traces of He unlike in the case of SN Ib 2005bf, although they have velocities comparable to those of SN 2005bf. The whole evolution of the bolometric light curve is well reproduced by the explosion of a massive (Mej = 7.8 M⊙), He-poor star characterized by a double-peaked 56Ni distribution, a total 56Ni mass of 0.59 M⊙, and an explosion energy of 2.2 × 1051 erg. Alternatively, a normal SN Ib/c explosion (M(56Ni) = 0.11 M⊙, EK = 0.2 × 1051 erg, Mej = 1 M⊙) can power the first peak while a magnetar, with a magnetic field characterized by B = 5.0 × 1014 G, and a rotation period of P = 18.1 ms, provides energy for the main peak. The early g-band light curve can be fit with a shock-breakout cooling tail or an extended envelope model from which a radius of at least 30 R⊙ is obtained. Conclusions: We presented a scenario where PTF11mnb was the explosion of a massive, He-poor star, characterized by a double-peaked 56Ni distribution. In this case, the ejecta mass and the absence of He imply a large ZAMS mass ( 85 M⊙) for the progenitor, which most likely was a Wolf-Rayet star, surrounded by an extended envelope formed either by a pre-SN eruption or due to a binary configuration. Alternatively, PTF11mnb could be powered by a SE SN with a less massive progenitor during the first peak and by a magnetar afterward. Photometric tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A106

  3. Selections from 2016: A Connection Between Solar Explosions and Dimming on the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.The Nature of CME-Flare-Associated Coronal DimmingPublished June2016Main takeaway:The Solar Dynamics Observatory (SDO) observed a large solar eruption at the end of December 2011. Scientists Jianxia Cheng (Shanghai Astronomical Observatory and the Chinese Academy of Sciences) and Jiong Qiu (Montana State University) studied this coronal mass ejection and the associated flaring on the Suns surface. They found that this activity was accompanied by dimming in the Suns corona near the ends of the flare ribbons.Why its interesting:The process of coronal dimming isnt fully understood, but Cheng and Qius observations provide a clear link between coronal dimming and eruptions of plasma and energy from the Sun. The locations of the dimming the footpoints of the two flare ribbons and the timing relative to the eruption suggests that coronal dimming is caused by the ejection of hot plasma from the Suns surface.How this process was studied:There are a number of satellites dedicated to observing the Sun, and several of them were used to study this explosion. Data from SDOs Atmospheric Imaging Assembly (which images in extreme ultraviolet) and its Helioseismic and Magnetic Imager (which measures magnetic fields) were used as well as observations from STEREO, the pair of satellites orbiting the Sun at 90 from SDO.CitationJ. X. Cheng and J. Qiu 2016 ApJ 825 37. doi:10.3847/0004-637X/825/1/37

  4. The secondary maxima in black hole X-ray nova light curves - Clues toward a complete picture

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Livio, Mario; Gehrels, Neil

    1993-01-01

    We study the secondary maxima observed commonly in the X-ray/optical light curves of black hole X-ray novae and show that they can play an important role in our understanding of the X-ray nova phenomenon. We discuss the observational characteristics of the secondary maxima and possible mechanisms to produce them. We propose a complete scenario for black hole X-ray nova events. The main outburst is caused by a disk instability. The second maximum is caused by X-ray evaporation of the matter near the inner Lagrangian (L1) region when the disk becomes optically thin. The third maximum (or the final minioutburst) is due to a mass transfer instability caused by hard X-ray heating of the subphotospheric layers of the secondary during the outburst. We predict that the newly discovered X-ray nova GRO J0422 + 32 may develop a final minioutburst in early 1993 and that its binary orbital period is less than 7 hr.

  5. On the Accretion Rates of SW Sextantis Nova-like Variables

    NASA Astrophysics Data System (ADS)

    Ballouz, Ronald-Louis; Sion, Edward M.

    2009-06-01

    We present accretion rates for selected samples of nova-like variables having IUE archival spectra and distances uniformly determined using an infrared method by Knigge. A comparison with accretion rates derived independently with a multiparametric optimization modeling approach by Puebla et al. is carried out. The accretion rates of SW Sextantis nova-like systems are compared with the accretion rates of non-SW Sextantis systems in the Puebla et al. sample and in our sample, which was selected in the orbital period range of three to four and a half hours, with all systems having distances using the method of Knigge. Based upon the two independent modeling approaches, we find no significant difference between the accretion rates of SW Sextantis systems and non-SW Sextantis nova-like systems insofar as optically thick disk models are appropriate. We find little evidence to suggest that the SW Sex stars have higher accretion rates than other nova-like cataclysmic variables (CVs) above the period gap within the same range of orbital periods.

  6. Slow magnetic monopoles search in NOvA

    NASA Astrophysics Data System (ADS)

    Antoshkin, Alexander; Frank, Martin

    2018-04-01

    The NOvA far detector is well suited for finding exotic particles due to its technical features (see [1]). One type of those exotic particles is a "slow" magnetic monopole. It is assumed that the energy deposition of such monopoles should be enough to be registered (see [2]). Measurement of the expected signals was performed on the NOvA test bench at JINR (see [3]). Result of this measurement allows us to perform slow monopole's research using NOvA software and hardware with high efficiency. As a whole, the research can lead to a discovery, or it can limit the existence of monopoles in a wide range of parameters, previously unreachable in other experiments (MACRO, SLIM, RICE, IceCube). Several special software tools have been developed. Slow Monopole Trigger has been created and implemented in the NOvA Data-Driven-Trigger system. Also, an online reconstruction algorithm has been developed and tested on 5% of the data. A technical description of these tools and current results of the analysis are presented in this work.

  7. Field experience silvicultural cleaning project in young spruce and fir stands in central Nova Scotia

    Treesearch

    Theodore C. Tryon; Thomas W. Hartranft

    1977-01-01

    Silvicultural cleaning production varied from .15 to .34 acres per man day using light weight chain saws in young Spruce and Fir stands in Central Nova Scotia. Direct labor and saw costs, in cleaning young softwood stands in Nova Scotia, can be expected to range generally from $55.00 to $90.00 per acre, depending on crew experience, stand density, and equipment used....

  8. Swift observation of Nova Ophiuchi 2018 No.2 = PNV J17140261-2849237 = TCP J17140253-2849233

    NASA Astrophysics Data System (ADS)

    Sokolovsky, K.

    2018-03-01

    The nova candidate PNV J17140261-2849237 = TCP J17140253-2849233 was discovered by H. Nishimura, T. Kojima, K. Nishiyama and F. Kabashima. A. Takao reports the transient (9.5mag) visible at unfiltered images obtained on 2018-03-10.753 UT. Spectroscopic observations with the 2m Liverpool Telescope confirmed the transient to be a Fe II type nova (ATel #11398).

  9. Outburst of the recurrent nova V745 Sco

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2014-02-01

    The outburst of the recurrent nova V745 Sco (Nova Sco 1937) by Rod Stubbings (Tetoora Road, VIC, Australia) at visual magnitude 9.0 on 2014 February 6.694 UT is reported. This recurrent nova is fading quickly. Follow-up observations of all types (visual, CCD, DSLR) are strongly encouraged, as is spectroscopy; fast time-series of this nova may be useful to detect possible flaring activity as was observed during the outburst of U Scorpii in 2010. Coincident time-series by multiple observers would be most useful for such a study, with a V-filter being preferred. Observations reported to the AAVSO International Database show V745 Sco at visual mag. 10.2 on 2014 Feb. 07.85833 UT (A. Pearce, Nedlands, W. Australia). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. Previous outbursts occurred in 1937 and 1989. The 1937 outburst was detected in 1958 (in decline at magnitude 11.0 on 1937 May 11.1 UT; outburst had occurred within the previous 19 days) by Lukas Plaut on plates taken by Hendrik van Gent at the Leiden Observatory; the object was announced as Nova Sco 1937 and later assigned the GCVS name V745 Sco. The 1989 outburst was detected on 1989 August 1.55 UT by Mati Morel (MMAT, Thornton, NSW, Australia) at visual magnitude 10.4 and in decline. Dr. Bradley Schaefer (Louisiana State University) reports (2010ApJS..187..275S) in his comprehensive analysis of the 10 known galactic recurrent novae (including V745 Sco) that the median interval between recurrent novae outbursts is 24 years. The interval since the 1989 outburst of V745 Sco is 24.10 years. See the Alert Notice for additional visual and multicolor photometry and for more details.

  10. Explosive X-point collapse in relativistic magnetically dominated plasma

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  11. Probing the DPRK nuclear test-site to low magnitude using seismic pattern detectors

    NASA Astrophysics Data System (ADS)

    Kvaerna, T.; Gibbons, S. J.; Mykkeltveit, S.

    2017-12-01

    Six declared nuclear explosions at North Korea's Punggye-ri test-site between October 2006 and September 2017 were detected seismically both at regional and teleseismic distances. The similarity of body-wave signals from explosion to explosion allows us to locate these events relative to each other with high accuracy. Greater uncertainty in the relative time measurements for the most recent test on 3 September 2017 results in a greater uncertainty in the relative location estimate for this event, although it appears to have taken place below optimal overburden close to the peak of Mount Mantap. A number of smaller events, detected mainly at regional distances, have been identified as being at, or very close to, the test site. Due to waveform differences and available station coverage, a simple double-difference relative location is often not possible. In addition to the apparent collapse event some 8 minutes after the declared nuclear test, small seismic events have been detected on 25 May 2014, 11 September 2016, 23 September 2017, and 12 October 2017. The signals from these events differ significantly from those from the declared nuclear tests with far weaker Pn and far stronger Lg phases. Multi-channel correlation analysis and empirical matched field processing allow us to categorize these weaker seismic events with far greater confidence than classical waveform analysis allows.

  12. The Stony Brook/SMARTS Atlas of (mostly) Southern Novae

    NASA Astrophysics Data System (ADS)

    Walter, F. M.

    2014-12-01

    The Stony Brook/SMARTS Atlas of (mostly) Southern Novae is an on-line compendium of data on 69 novae, mostly in the southern hemisphere, observed since 2003 April. The data consist of low resolution spectra (400< R <4000) and optical and near-IR photometry obtained with the SMARTS telescopes. I shall describe the atlas and the data, and then present some examples of the data analyzes being undertaken with this synoptic data set.

  13. An Estimate of Nova Southeastern University's Impact on Florida's Economy in 2010: Contributions from the Planned $500 Million Medical and Research-Intensive Academic Village and from Projected Student Enrollment. Report 04-02

    ERIC Educational Resources Information Center

    MacFarland, Thomas W.

    2004-01-01

    Nova Southeastern University is the 10th largest private, not-for-profit, postsecondary institution in the United States, based on Fall Term 2002 unduplicated enrollment statistics reported to the National Center for Education Statistics. It was recently announced that Nova Southeastern University plans to build a $500 million academic village,…

  14. Ultrastructure of extrusomes in hypotrichous ciliate Pseudourostyla nova

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Wang, Zhengjun; Zhang, Jun; Gu, Fukang

    2011-01-01

    The ultrastructure of extrusomes of the hypotrichous ciliate Pseudourostyla nova was observed in scanning and transmission electron microscopy and enzyme-cytochemistry. The results show that the distribution, morphological characteristics, morphogenesis process, and extrusive process of the extrusomes in P. nova are different from the trichocysts in Paramecium, suggesting that the extrusomes of P. nova can respond to environmental stimuli, play an important role in the defense of this species, and cannot be regarded as "trichocysts". The results also suggest that the extrusomes might be originated from the Golgi apparatus and mature in the cytoplasm; after the extrusion of mature extrusomes, the residual substance might be reabsorbed and reused by the ciliate cell via food vacuoles, and take part in material recycling of the cell.

  15. Model Atmospheres for Novae in Outburst: Summary of Research

    NASA Technical Reports Server (NTRS)

    Hauschildt, Peter H.

    1999-01-01

    This paper presents a final report and summary of research on Model Atmospheres for Novae in Outburst. Some of the topics include: 1) Detailed NLTE (non-local thermodynamic equilibrium) Model Atmospheres for Novae during Outburst: II. Modeling optical and ultraviolet observations of Nova LMC 1988 #1; 2) A Non-LTE Line-Blanketed Stellar Atmosphere Model of the Early B Giant epsilon CMa; 3) Spectroscopy of Low Metallicity Stellar atmospheres; 4) Infrared Colors at the Stellar/Substellar Boundary; 5) On the abundance of Lithium in T CrB; 6) Numerical Solution of the Expanding Stellar Atmosphere Problem; and 7) The NextGen Model Atmosphere grid for 3000 less than or equal to T (sub eff) less than or equal to 10000K.

  16. High Energy Neutrino Physics with NOvA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coan, Thomas

    2016-09-09

    Knowledge of the position of energy deposition in “hit” detector cells of the NOvA neutrino detector is required by algorithms for pattern reconstruction and particle identification necessary to interpret the raw data. To increase the accuracy of this process, the majority of NOvA's 350 000 far detector cell shapes, including distortions, were measured as they were constructed. Using a special laser scanning system installed at the site of the NOvA far detector in Ash River, MN, we completed algorithmic development and measured shape parameters for the far detector. The algorithm and the measurements are “published” in NOνA’s document database (docmore » #10389, “Cell Center Finder for the NOνA Far Detector Modules”).« less

  17. The inter-outburst behavior of cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Szkody, Paula; Mattei, Janet A.; Waagen, Elizabeth O.; Stablein, Clay

    1990-01-01

    Existing International Ultraviolet Explorer (IUE) and American Association of Variable Star Observers (AAVSO) archive data was used to accomplish a large scale study of what happens to the ultraviolet flux of accretion disk systems during the quiescent intervals between outbursts and how it relates to the preceding outburst characteristics of amplitude and width. The data sample involved multiple IUE observations for 16 dwarf novae and 8 novae along with existing optical coverage. Results indicate that most systems show correlated ultraviolet (UV) flux behavior with interoutburst phase, with 60 percent of the dwarf novae and 50 percent of the novae having decreasing flux trends while 33 percent of the dwarf novae and 38 percent of the novae show rising UV flux during the quiescent interval. All of the dwarf novae with decreasing UV fluxes at 1475A have orbital periods longer than 4.4 hours, while all (except BV Cen) with flat or rising fluxes at 1475A have orbital periods less than two hours. There are not widespread correlations of the UV fluxes with the amplitude of the preceding outburst and no correlations with the width of the outburst. From a small sample (7) that have relatively large quiescent V magnitude changes between the IUE observations, most show a strong correlation between the UV and optical continuum. Interpretation of the results is complicated by not being able to determine how much the white dwarf contributes to the ultraviolet flux. However, it is now evident that noticeable changes are occurring in the hot zones in accreting systems long after the outburst, and not only for systems that are dominated by the white dwarf. Whether these differences are due to different outburst mechanisms or to changes on white dwarfs which provide varying contributions to the UV flux remains to be determined.

  18. ASASSN-16eg: New candidate for a long-period WZ Sge-type dwarf nova

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Yasuyuki; Isogai, Keisuke; Kimura, Mariko; Kato, Taichi; Vanmunster, Tonny; Stone, Geoff; Tordai, Tamás; Richmond, Michael; Miller, Ian; Oksanen, Arto; Itoh, Hiroshi; Akazawa, Hidehiko; Kiyota, Seiichiro; de Miguel, Enrique; Pavlenko, Elena P.; Antonyuk, Kirill A.; Antonyuk, Oksana I.; Neustroev, Vitaly V.; Sjoberg, George; Dubovsky, Pavol A.; Pickard, Roger D.; Nogami, Daisaku

    2017-12-01

    We report on our photometric observations of the 2016 superoutburst of ASASSN-16eg. This object showed a WZ Sge-type superoutburst with prominent early superhumps with a period of 0.075478(8) d and a post-superoutburst rebrightening. During the superoutburst plateau, it showed ordinary superhumps with a period of 0.077880(3) d and a period derivative of 10.6(1.1) × 10-5 in stage B. The orbital period (Porb), which is almost identical with the period of the early superhumps, is exceptionally long for a WZ Sge-type dwarf nova. The mass ratio (q = M2/M1) estimated from the period of developing (stage A) superhumps is 0.166(2), which is also too large for a WZ Sge-type dwarf nova. This suggests that the 2 : 1 resonance can be reached in such high-q systems, contrary to our expectation. Such conditions are considered to be achieved if the mass-transfer rate is much lower than those in typical SU UMa-type dwarf novae that have comparable orbital periods to ASASSN-16eg, and a resultant accumulation of a large amount of matter on the disk is realized at the onset of an outburst. We examined other candidates for long-period WZ Sge-type dwarf novae for their supercycles, which are considered to reflect the mass-transfer rate, and found that V1251 Cyg and RZ Leo have longer supercycles than those of other WZ Sge-type dwarf novae. This result indicates that these long-period objects including ASASSN-16eg have a low mass-transfer rate in comparison to other WZ Sge-type dwarf novae.

  19. The geographic accessibility of pharmacies in Nova Scotia

    PubMed Central

    Heard, Deborah; Fisher, Judith; Douillard, Jay; Muzika, Greg; Sketris, Ingrid S.

    2013-01-01

    Introduction: Geographic proximity is an important component of access to primary care and the pharmaceutical services of community pharmacies. Variations in access to primary care have been found between rural and urban areas in Canadian and international jurisdictions. We studied access to community pharmacies in the province of Nova Scotia. Methods: We used information on the locations of 297 community pharmacies operating in Nova Scotia in June 2011. Population estimates at the census block level and network analysis were used to study the number of Nova Scotia residents living within 800 m (walking) and 2 km and 5 km (driving) distances of a pharmacy. We then simulated the impact of pharmacy closures on geographic access in urban and rural areas. Results: We found that 40.3% of Nova Scotia residents lived within walking distance of a pharmacy; 62.6% and 78.8% lived within 2 km and 5 km, respectively. Differences between urban and rural areas were pronounced: 99.2% of urban residents lived within 5 km of a pharmacy compared with 53.3% of rural residents. Simulated pharmacy closures had a greater impact on geographic access to community pharmacies in rural areas than urban areas. Conclusion: The majority of Nova Scotia residents lived within walking or short driving distance of at least 1 community pharmacy. While overall geographic access appears to be lower than in the province of Ontario, the difference appears to be largely driven by the higher proportion of rural dwellers in Nova Scotia. Further studies should examine how geographic proximity to pharmacies influences patients’ access to traditional and specialized pharmacy services, as well as health outcomes and adherence to therapy. Can Pharm J 2013;146:39-46. PMID:23795168

  20. The geographic accessibility of pharmacies in Nova Scotia.

    PubMed

    Law, Michael R; Heard, Deborah; Fisher, Judith; Douillard, Jay; Muzika, Greg; Sketris, Ingrid S

    2013-01-01

    Geographic proximity is an important component of access to primary care and the pharmaceutical services of community pharmacies. Variations in access to primary care have been found between rural and urban areas in Canadian and international jurisdictions. We studied access to community pharmacies in the province of Nova Scotia. We used information on the locations of 297 community pharmacies operating in Nova Scotia in June 2011. Population estimates at the census block level and network analysis were used to study the number of Nova Scotia residents living within 800 m (walking) and 2 km and 5 km (driving) distances of a pharmacy. We then simulated the impact of pharmacy closures on geographic access in urban and rural areas. We found that 40.3% of Nova Scotia residents lived within walking distance of a pharmacy; 62.6% and 78.8% lived within 2 km and 5 km, respectively. Differences between urban and rural areas were pronounced: 99.2% of urban residents lived within 5 km of a pharmacy compared with 53.3% of rural residents. Simulated pharmacy closures had a greater impact on geographic access to community pharmacies in rural areas than urban areas. The majority of Nova Scotia residents lived within walking or short driving distance of at least 1 community pharmacy. While overall geographic access appears to be lower than in the province of Ontario, the difference appears to be largely driven by the higher proportion of rural dwellers in Nova Scotia. Further studies should examine how geographic proximity to pharmacies influences patients' access to traditional and specialized pharmacy services, as well as health outcomes and adherence to therapy. Can Pharm J 2013;146:39-46.

  1. Kernel methods for large-scale genomic data analysis

    PubMed Central

    Xing, Eric P.; Schaid, Daniel J.

    2015-01-01

    Machine learning, particularly kernel methods, has been demonstrated as a promising new tool to tackle the challenges imposed by today’s explosive data growth in genomics. They provide a practical and principled approach to learning how a large number of genetic variants are associated with complex phenotypes, to help reveal the complexity in the relationship between the genetic markers and the outcome of interest. In this review, we highlight the potential key role it will have in modern genomic data processing, especially with regard to integration with classical methods for gene prioritizing, prediction and data fusion. PMID:25053743

  2. Isospin mixing reveals 30P(p, γ) 31S resonance influencing nova nucleosynthesis

    DOE PAGES

    Bennett, M. B.; Wrede, C.; Brown, B. A.; ...

    2016-03-08

    Here, the thermonuclear 30P(p, γ) 31S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key 31S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of 31Cl, we have observed the β-delayed γ decay of a 31S state at E x = 6390.2(7) keV, with a 30P(p, γ) 31S resonance energymore » of E r = 259.3(8) keV, in the middle of the 30P(p, γ) 31S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at E x = 6279.0(6) keV, giving it an unambiguous spin and parity of 3/2 + and making it an important l = 0 resonance for proton capture on 30P.« less

  3. The 2011 outburst of recurrent nova T PYX: Radio observations reveal the ejecta mass and hint at complex mass loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Thomas; Chomiuk, Laura; Roy, Nirupam

    2014-04-10

    Despite being the prototype of its class, T Pyx is arguably the most unusual and poorly understood recurrent nova. Here, we use radio observations from the Karl G. Jansky Very Large Array to trace the evolution of the ejecta over the course of the 2011 outburst of T Pyx. The radio emission is broadly consistent with thermal emission from the nova ejecta. However, the radio flux began rising surprisingly late in the outburst, indicating that the bulk of the radio-emitting material was either very cold, or expanding very slowly, for the first ∼50 days of the outburst. Considering a plausiblemore » range of volume filling factors and geometries for the ejecta, we find that the high peak flux densities of the radio emission require a massive ejection of (1-30) × 10{sup –5} M {sub ☉}. This ejecta mass is much higher than the values normally associated with recurrent novae, and is more consistent with a nova on a white dwarf well below the Chandrasekhar limit.« less

  4. Suzaku Observation of the Dwarf Nova V893 Scorpii: The Discovery of a Partial X-Ray Eclipse

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Zietsman, E.; Still, M.

    2008-01-01

    V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an RXTE all-sky slew survey (XSS) source. Here we report on the po inted X-ray observations of this object using Suzaku. We confirm V893 Sco to be X-ray bright, whose spectrum is highly absorbed for a dwar f nova. We have also discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in Xray light c urves of a dwarf nova. We have successfully modeled the gross features of the optical and X-ray eclipse light curves using a boundary layer geometry of the X-ray emission region. Future observations may lead to confirmation of this basic picture, and allow us to place tight co nstraints on the size of the X-ray emission region. The partial X-ray eclipse therefore should make V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova.

  5. The Nova Upgrade Facility for ICF ignition and gain

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Campbell, E. M.; Hunt, J. T.; Murray, J. R.; Storm, E.; Tobin, M. T.; Trenholme, J. B.

    1992-01-01

    Research on Inertial Confinement Fusion (ICF) is motivated by its potential defense and civilian applications, including ultimately the generation of electric power. The U.S. ICF Program was reviewed recently by the National Academy of Science (NAS) and the Fusion Policy Advisory Committee (FPAC). Both committees issued final reports in 1991 which recommended that first priority in the ICF program be placed on demonstrating fusion ignition and modest gain (G less than 10). The U.S. Department of Energy and Lawrence Livermore National Laboratory (LLNL) have proposed an upgrade of the existing Nova Laser Facility at LLNL to accomplish these goals. Both the NAS and FPAC have endorsed the upgrade of Nova as the optimal path to achieving ignition and gain. Results from Nova Upgrade Experiments will be used to define requirements for driver and target technology both for future high-yield military applications, such as the Laboratory Microfusion Facility (LMF) proposed by the Department of Energy, and for high-gain energy applications leading to an ICF engineering test facility. The central role and modifications which Nova Upgrade would play in the national ICF strategy are described.

  6. First Neutrino Oscillation Results from the NOvA experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachdev, Kanika

    2016-11-29

    NOvA is a long-baseline neutrino oscillation experiment on the NuMI muon neutrino beam at Fermilab. It consists of two functionally identical, nearly fully-active liquid-scintillator tracking calorimeters. The Near Detector (ND) at Fermilab is used to study the neutrino beam spectrum and composition before oscillations occur. The Far Detector in northern Minnesota, 810 km away, observes the oscillated beam and is used to extract the oscillation parameters. NOvA is designed to observe oscillations in two channels: disappearance channel ( ν μ → ν μ ) and ν e appearance channel ( ν μ → ν e ). This paper reports themore » measurements of both these channels based on the first NOvA data taken from February 16, 2014 till May 15, 2015« less

  7. Is drag luminosity effective in recurrent novae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Mariko; Hachisu, Izumi

    1991-06-01

    A study has been made of the efficiency of frictional processes in common envelope phase at outbursts of three recurrent novae T Pyx, U Sco, and RS Oph, by using steady-state wind models. The drag luminosity is found to depend strongly on the envelope mass. It may play an important role for a relatively massive envelope of about 0.0001 solar mass or more. For recurrent novae, however, acceleration due to the drag force is not important to eject the envelope mass because of its small envelope mass. Since the drag luminosity can be neglected at the extended phase of novamore » outburst, the light curves of these recurrent novae are determined only by the wind-driven mass loss as shown by Kato (1990). 23 refs.« less

  8. The Convolutional Visual Network for Identification and Reconstruction of NOvA Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Psihas, Fernanda

    In 2016 the NOvA experiment released results for the observation of oscillations in the vμ and ve channels as well as ve cross section measurements using neutrinos from Fermilab’s NuMI beam. These and other measurements in progress rely on the accurate identification and reconstruction of the neutrino flavor and energy recorded by our detectors. This presentation describes the first application of convolutional neural network technology for event identification and reconstruction in particle detectors like NOvA. The Convolutional Visual Network (CVN) Algorithm was developed for identification, categorization, and reconstruction of NOvA events. It increased the selection efficiency of the ve appearancemore » signal by 40% and studies show potential impact to the vμ disappearance analysis.« less

  9. Very high-energy γ -ray observations of novae and dwarf novae with the MAGIC telescopes

    DOE PAGES

    Ahnen, M. L.

    2015-10-01

    In the last five years the Fermi Large Area Telescope (LAT) instrument detected GeV γ-ray emission from five novae. The GeV emission can be interpreted in terms of an inverse Compton process of electrons accelerated in a shock. In this case it is expected that protons in the same conditions can be accelerated to much higher energies. Consequently they may produce a second component in the γ-ray spectrum at TeV energies.

  10. Spectroscopic confirmation and photometry of the Fe II novae M31N 2017-11a (AT2017hvi) and M31N 2017-11c

    NASA Astrophysics Data System (ADS)

    Fabrika, S.; Sholukhova, O.; Vinokurov, A.; Valeev, A. F.; Solovyeva, Yu.; Hornoch, K.; Henze, M.; Shafter, A. W.

    2017-11-01

    We report optical spectroscopic confirmation of the two recent M31 nova candidates M31N 2017-11a (AT2017hvi) and M31N 2017-11c. The first nova was discovered on 2017-11-04.695 by PMO-Tsinghua Supernova Survey (PTSS-17zap); the second was discovered on 2017-11-12.465 by K. Nishiyama and F. Kabashima (=TCP J00414435+4108287).

  11. Spectroscopy of the nova candidate M31-2008-10b

    NASA Astrophysics Data System (ADS)

    Di Mille, F.; Ciroi, S.; Orio, M.; Rafanelli, P.; Bianchini, A.; Nelson, T.; Andreuzzi, G.

    2008-10-01

    We obtained a low resolution spectrum of the nova candidate M31-2008-10b ( see CBAT M31 nova page) on 2008 October 26.12 UT. The observations were performed with TNG + DOLORES spectrograph 20 days after the first detection (see Atel #1790 ). The spectrum (in the 330-790 nm range, with resolution 1 nm) shows strong Balmer lines superimposed on a flat continuum.

  12. Comparison of College Performance of General Educational Development (GED) and High School Diploma Students in Nova Scotia and PEI. Now and Tomorrow Excellence in Everything We Do. SP-978-01-11E

    ERIC Educational Resources Information Center

    Penner, Audrey J.

    2011-01-01

    The purpose of this study was to identify differences in performance if any, between learners with a high school diploma, and those with a GED credential, at two postsecondary institutions, Holland College on Prince Edward Island (PEI) and Nova Scotia Community College in Nova Scotia (NS). Of interest is how these adults perform in a postsecondary…

  13. PAH emission from Nova Cen 1986

    NASA Technical Reports Server (NTRS)

    Hyland, A. R. Harry; Mcgregor, P. J.

    1989-01-01

    The discovery of broad emission features between 3.2 and 3.6 microns were reported in the spectrum of Nova Cen 1986 (V842 Cen) some 300 days following outburst and remaining prominent for several months. The general characteristics of these features are similar to those attributed to polycyclic hydrocarbon (PAH) molecules in other dusty sources, although the relative strengths are different, and these observations provide the first clear evidence for molecular constituents other than graphite particles in the ejecta of novae.

  14. Metalliferous coals of the Westphalian A Joggins Formation, Cumberland basin, Nova Scotia, Canada: Petrology, geochemistry, and palynology

    USGS Publications Warehouse

    Hower, J.C.; Calder, J.H.; Eble, C.F.; Scott, A.C.; Robertson, J.D.; Blanchard, L.J.

    2000-01-01

    Five coals of Westphalian A (early Middle Pennsylvanian) age were sampled from the Joggins Formation section exposed along Chignecto Bay at Joggins, Nova Scotia. Coal beds along the bay were mined beginning in the early 17th century, yet there have been few detailed published investigation of the coal beds of this classic section. The lowermost coal, the Upper Coal 28 (Upper Fundy), is a high-vitrinite coal with a spore assemblage dominated by arboreous lycopsid spores with tree ferns subdominant. The upper portions of the coal bed have the highest ratio of well-preserved to poorly-preserved telinite of any of the coals investigated. Coal 19 ('clam coal') has 88% total vitrinite but, unlike the Fundy coal bed, the telinite has a poor preservation ratio and half the total vitrinite population comprises gelocollinite and vitrodetrinite. The latter coal bed is directly overlain by a basin-wide limestone bed. The Lower Kimberly coal shows good preservation of vitrinite with relatively abundant telinite among the total vitrinite. The Middle Kimberly coal, which underlies the tetrapod-bearing lycopsid trees found by Lyell and Dawson in 1852, exhibits an upward decrease in arboreous lycopod spores and an upward increase in the tree fern spore Punctatisporites minutus. Telinite preservation increases upwards in the Middle Kimberly but overall is well below the preservation ratio of the Upper Fundy coal bed. The coals all have high sulfur contents, yielding up to 13.7% total sulfur for the lower lithotype of the Upper Fundy coal bed. The Kimberly coals are not only high in total and pyritic sulfur, but also have high concentrations of chalcophile elements. Zinc, ranging up to 15,000 ppm (ash basis), is present as sphalerite in fusain lumens. Arsenic and lead each exceed 6000 ppm (ash basis) in separate lithotypes of the Kimberly coals. Together these data are consistent with elevated pH in planar mires. The source of the elemental enrichment in this presumed continental section is enigmatic. (C) 2000 Elsevier Science B.V. All rights reserved.Five coals of Westphalian A (early Middle Pennsylvanian) age were sampled from the Joggins Formation section exposed along Chigneto Bay at Joggins, Nova Scotia. All the coals were found to have high sulfur contents. Overall, the data obtained are consistent with elevated pH in planar mires.

  15. A Classical and a Relativistic Law of Motion for Spherical Supernovae

    NASA Astrophysics Data System (ADS)

    Zaninetti, Lorenzo

    2014-11-01

    In this paper we derive some first order differential equations which model the classical and the relativistic thin layer approximations. The circumstellar medium is assumed to follow a density profile of the Plummer type, the Lane-Emden (n = 5) type, or a power law. The first order differential equations are solved analytically, numerically, by a series expansion, or by recursion. The initial conditions are chosen in order to model the temporal evolution of SN 1993J over 10 yr and a smaller chi-squared is obtained for the Plummer case with η = 6. The stellar mass ejected by the SN progenitor prior to the explosion, expressed in solar mass, is identified with the total mass associated with the selected density profile and varies from 0.217 to 0.402 when the central number density is 107 particles per cubic centimeter. The FWHM of the three density profiles, which can be identified with the size of the pre-SN 1993J envelope, varies from 0.0071 pc to 0.0092 pc.

  16. Three-dimensional structure of a variant `Termamyl-like' Geobacillus stearothermophilus α-amylase at 1.9 Å resolution.

    PubMed

    Offen, Wendy A; Viksoe-Nielsen, Anders; Borchert, Torben V; Wilson, Keith S; Davies, Gideon J

    2015-01-01

    The enzyme-catalysed degradation of starch is central to many industrial processes, including sugar manufacture and first-generation biofuels. Classical biotechnological platforms involve steam explosion of starch followed by the action of endo-acting glycoside hydrolases termed α-amylases and then exo-acting α-glucosidases (glucoamylases) to yield glucose, which is subsequently processed. A key enzymatic player in this pipeline is the `Termamyl' class of bacterial α-amylases and designed/evolved variants thereof. Here, the three-dimensional structure of one such Termamyl α-amylase variant based upon the parent Geobacillus stearothermophilus α-amylase is presented. The structure has been solved at 1.9 Å resolution, revealing the classical three-domain fold stabilized by Ca2+ and a Ca2+-Na+-Ca2+ triad. As expected, the structure is similar to the G. stearothermophilus α-amylase but with main-chain deviations of up to 3 Å in some regions, reflecting both the mutations and differing crystal-packing environments.

  17. Radical formation, chemical processing, and explosion of interstellar grains

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1976-01-01

    The ultraviolet radiation in interstellar space is shown to create a sufficient steady-state density of free radicals in the grain mantle material consisting of oxygen, carbon, nitrogen, and hydrogen to satisfy the critical condition for initiation of chain reactions. The criterion for minimum critical particle size for maintaining the chain reaction is of the order of the larger grain sizes in a distribution satisfying the average extinction and polarization measures. The triggering of the explosion of interstellar grains leading to the ejection of complex interstellar molecules is shown to be most probable where the grains are largest and where radiation is suddenly introduced; i.e., in regions of new star formation. Similar conditions prevail at the boundaries between very dark clouds and H II regions. When the energy released by the chemical activity of the free radicals is inadequate to explode the grain, the resulting mantle material must consist of extremely large organic molecules which are much more resistant to the hostile environment of H II regions than the classical dirty-ice mantles made up of water, methane, and ammonia.

  18. Biological control via "ecological" damping: An approach that attenuates non-target effects.

    PubMed

    Parshad, Rana D; Quansah, Emmanuel; Black, Kelly; Beauregard, Matthew

    2016-03-01

    In this work we develop and analyze a mathematical model of biological control to prevent or attenuate the explosive increase of an invasive species population, that functions as a top predator, in a three-species food chain. We allow for finite time blow-up in the model as a mathematical construct to mimic the explosive increase in population, enabling the species to reach "disastrous", and uncontrollable population levels, in a finite time. We next improve the mathematical model and incorporate controls that are shown to drive down the invasive population growth and, in certain cases, eliminate blow-up. Hence, the population does not reach an uncontrollable level. The controls avoid chemical treatments and/or natural enemy introduction, thus eliminating various non-target effects associated with such classical methods. We refer to these new controls as "ecological damping", as their inclusion dampens the invasive species population growth. Further, we improve prior results on the regularity and Turing instability of the three-species model that were derived in Parshad et al. (2014). Lastly, we confirm the existence of spatiotemporal chaos. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. JAGUAR Procedures for Detonation Behavior of Explosives Containing Boron

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest; Capellos, Christos

    2009-06-01

    The JAGUAR product library was expanded to include boron and boron containing products. Relationships of the Murnaghan form for molar volumes and derived properties were implemented in JAGUAR. Available Hugoniot and static volumertic data were analyzed to obtain constants of the Murnaghan relationship for solid boron, boron oxide, boron nitride, boron carbide, and boric acid. Experimental melting points were also utilized with optimization procedures to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX - boron mixtures calculated with these relationships using JAGUAR are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that boron mixtures may exhibit eigenvalue detonation behavior, as observed by aluminized combined effects explosives, with higher detonation velocities than would be achieved by a classical Chapman-Jouguet detonation. Analyses of calorimetric measurements for RDX - boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the energy output obtained from the detonation of the formulation.

  20. The Multi-Dimensional Structure of Radiative Shocks: Suppressed Thermal X-rays and Relativistic Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Steinberg, Elad; Metzger, Brian D.

    2018-06-01

    Radiative shocks, behind which gas cools faster than the dynamical time, play a key role in many astrophysical transients, including classical novae and young supernovae interacting with circumstellar material. The dense layer behind high Mach number M ≫ 1 radiative shocks is susceptible to thin-shell instabilities, creating a "corrugated" shock interface. We present two and three-dimensional hydrodynamical simulations of optically-thin radiative shocks to study their thermal radiation and acceleration of non-thermal relativistic ions. We employ a moving-mesh code and a specialized numerical technique to eliminate artificial heat conduction across grid cells. The fraction of the shock's luminosity Ltot radiated at X-ray temperatures kT_sh ≈ (3/16)μ m_p v_sh2 expected from a one-dimensional analysis is suppressed by a factor L(>T_sh/3)/L_tot ≈ 4.5/M^{4/3} for M ≈ 4-36. This suppression results in part from weak shocks driven into under-pressured cold filaments by hot shocked gas, which sap thermal energy from the latter faster than it is radiated. Combining particle-in-cell simulation results for diffusive shock acceleration with the inclination angle distribution across the shock (relative to an upstream magnetic field in the shock plane-the expected geometry for transient outflows), we predict the efficiency and energy spectrum of ion acceleration. Though negligible acceleration is predicted for adiabatic shocks, the corrugated shock front enables local regions to satisfy the quasi-parallel magnetic field geometry required for efficient acceleration, resulting in an average acceleration efficiency of ɛnth ˜ 0.005 - 0.02 for M ≈ 12-36, in agreement with modeling of the gamma-ray nova ASASSN-16ma.

  1. Argonne's Vilas Pol on NOVA!

    ScienceCinema

    None

    2018-05-18

    Can innovations in materials science help clean up our world? Argonne's material scientist Vilas Pol guest starred on NOVA's "Making Stuff: Cleaner," where David Pogue explored the rapidly-developing science and business of clean energy.

  2. Identification of Upward-going Muons for Dark Matter Searches at the NOvA Experiment

    NASA Astrophysics Data System (ADS)

    Xiao, Liting

    2014-03-01

    We search for energetic neutrinos that could originate from dark matter particles annihilating in the core of the Sun using the newly built NOvA Far Detector at Fermilab. Only upward-going muons produced via charged-current interactions are selected as signal in order to eliminate backgrounds from cosmic ray muons, which dominate the downward-going flux. We investigate several algorithms so as to develop an effective way of reconstructing the directionality of cosmic tracks at the trigger level. These studies are a crucial part of understanding how NOvA may compete with other experiments that are performing similar searches. In order to be competitive NOvA must be capable of rejecting backgrounds from downward-going cosmic rays with very high efficiency while accepting most upward-going muons. Acknowledgements: The Jefferson Trust, Fermilab, UVA Department of Physics.

  3. Experimental measurements of hydrodynamic instabilities on NOVA of relevance to astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budil, K S; Cherfils, C; Drake, R P

    1998-09-11

    Large lasers such as Nova allow the possibility of achieving regimes of high energy densities in plasmas of millimeter spatial scales and nanosecond time scales. In those plasmas where thermal conductivity and viscosity do not play a significant role, the hydrodynamic evolution is suitable for benchmarking hydrodynamics modeling in astrophysical codes. Several experiments on Nova examine hydrodynamically unstable interfaces. A typical Nova experiment uses a gold millimeter-scale hohlraum to convert the laser energy to a 200 eV blackbody source lasting about a nanosecond. The x-rays ablate a planar target, generating a series of shocks and accelerating the target. The evolvingmore » area1 density is diagnosed by time-resolved radiography, using a second x-ray source. Data from several experiments are presented and diagnostic techniques are discussed.« less

  4. The 21 Na (p,γ) 22 Mg reaction from Ec.m. =200 to 1103 keV in novae and x-ray bursts

    NASA Astrophysics Data System (ADS)

    D'Auria, J. M.; Azuma, R. E.; Bishop, S.; Buchmann, L.; Chatterjee, M. L.; Chen, A. A.; Engel, S.; Gigliotti, D.; Greife, U.; Hunter, D.; Hussein, A.; Hutcheon, D.; Jewett, C. C.; José, J.; King, J. D.; Laird, A. M.; Lamey, M.; Lewis, R.; Liu, W.; Olin, A.; Ottewell, D.; Parker, P.; Rogers, J.; Ruiz, C.; Trinczek, M.; Wrede, C.

    2004-06-01

    The long-lived radioactive nuclide 22 Na ( t1/2 =2.6 yr) is an astronomical observable for understanding the physical processes of oxygen-neon novae. Yields of 22Na in these events are sensitive to the unknown total rate of the 21 Na (p,γ) 22 Mg reaction. Using a high intensity 21 Na beam at the TRIUMF-ISAC facility, the strengths of seven resonances in 22 Mg , of potential astrophysical importance, have been directly measured at center of mass energies from Ec.m. =200 to 1103 keV . We report the results obtained for these resonances and their respective contributions to the 21 Na (p,γ) 22 Mg rate in novae and x-ray bursts, and their impact on 22 Na production in novae.

  5. Unusual ``Stunted'' Outbursts in Old Novae and Nova-Like Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Honeycutt, R. K.; Robertson, J. W.; Turner, G. W.

    1998-06-01

    Outbursts averaging 0.6 mag in amplitude and 10 days in width are described in five old novae and nova-like cataclysmic variables: UU Aqr, Q Cyg, CP Lac, X Ser, and RW Sex. These stars are thought to be high mass transfer rate systems for which the accretion disk is expected to be stable against the thermal instability responsible for dwarf nova outbursts. The widths and spacings of these events are similar to those of dwarf nova eruptions, but the amplitudes are significantly smaller, or ``stunted.'' The outbursts are sometimes accompanied by dips. These dips have amplitudes that are similar to the outbursts' but have shapes that scatter significantly more than the shapes of the outbursts. The outbursts and dips sometimes occur as pairs and are sometimes isolated. We are not able at this time to determine a single common mechanism for this behavior, or even to conclude that some mechanisms are preferred. Rather, we characterize these phenomena with regard to outburst shapes and frequency of occurrence and explore a range of possible causes, including truncated disks, mass transfer modulations, and Z Camelopardalis type behavior. Arguments are assembled for and against such possible mechanisms, and key observations are suggested. It appears unlikely that accretion disk instabilities are the single common cause of these phenomena, and we are left with either a combination of accretion disk and mass transfer events or a situation in which mass transfer events are somehow responsible for all these varied behaviors.

  6. Coordinated Analysis of Two Graphite Grains from the CO3.0 LAP 031117 Meteorite: First Identification of a CO Nova Graphite and a Presolar Iron Sulfide Subgrain

    NASA Astrophysics Data System (ADS)

    Haenecour, Pierre; Floss, Christine; José, Jordi; Amari, Sachiko; Lodders, Katharina; Jadhav, Manavi; Wang, Alian; Gyngard, Frank

    2016-07-01

    Presolar grains constitute the remnants of stars that existed before the formation of the solar system. In addition to providing direct information on the materials from which the solar system formed, these grains provide ground-truth information for models of stellar evolution and nucleosynthesis. Here we report the in situ identification of two unique presolar graphite grains from the primitive meteorite LaPaz Icefield 031117. Based on these two graphite grains, we estimate a bulk presolar graphite abundance of {5}-3+7 ppm in this meteorite. One of the grains (LAP-141) is characterized by an enrichment in 12C and depletions in 33,34S, and contains a small iron sulfide subgrain, representing the first unambiguous identification of presolar iron sulfide. The other grain (LAP-149) is extremely 13C-rich and 15N-poor, with one of the lowest 12C/13C ratios observed among presolar grains. Comparison of its isotopic compositions with new stellar nucleosynthesis and dust condensation models indicates an origin in the ejecta of a low-mass CO nova. Grain LAP-149 is the first putative nova grain that quantitatively best matches nova model predictions, providing the first strong evidence for graphite condensation in nova ejecta. Our discovery confirms that CO nova graphite and presolar iron sulfide contributed to the original building blocks of the solar system.

  7. RZ Leonis Minoris bridging between ER Ursae Majoris-type dwarf nova and nova-like system

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Ishioka, Ryoko; Isogai, Keisuke; Kimura, Mariko; Imada, Akira; Miller, Ian; Masumoto, Kazunari; Nishino, Hirochika; Kojiguchi, Naoto; Kawabata, Miho; Sakai, Daisuke; Sugiura, Yuki; Furukawa, Hisami; Yamamura, Kenta; Kobayashi, Hiroshi; Matsumoto, Katsura; Wang, Shiang-Yu; Chou, Yi; Ngeow, Chow-Choong; Chen, Wen-Ping; Panwar, Neelam; Lin, Chi-Sheng; Hsiao, Hsiang-Yao; Guo, Jhen-Kuei; Lin, Chien-Cheng; Omarov, Chingis; Kusakin, Anatoly; Krugov, Maxim; Starkey, Donn R.; Pavlenko, Elena P.; Antonyuk, Kirill A.; Sosnjvskij, Aleksei A.; Antonyuk, Oksana I.; Pit, Nikolai V.; Baklanov, Alex V.; Babina, Julia V.; Itoh, Hiroshi; Padovan, Stefano; Akazawa, Hidehiko; Kafka, Stella; de Miguel, Enrique; Pickard, Roger D.; Kiyota, Seiichiro; Shugarov, Sergey Yu.; Chochol, Drahomir; Krushevska, Viktoriia; Sekeráš, Matej; Pikalova, Olga; Sabo, Richard; Dubovsky, Pavol A.; Kudzej, Igor; Ulowetz, Joseph; Dvorak, Shawn; Stone, Geoff; Tordai, Tamás; Dubois, Franky; Logie, Ludwig; Rau, Steve; Vanaverbeke, Siegfried; Vanmunster, Tonny; Oksanen, Arto; Maeda, Yutaka; Kasai, Kiyoshi; Katysheva, Natalia; Morelle, Etienne; Neustroev, Vitaly V.; Sjoberg, George

    2016-12-01

    We observed RZ LMi, which is renowned for its extremely short (˜19 d) supercycle and is a member of a small, unusual class of cataclysmic variables called ER UMa-type dwarf novae, in 2013 and 2016. In 2016, the supercycles of this object substantially lengthened in comparison to the previous measurements to 35, 32, and 60 d for three consecutive superoutbursts. We consider that the object virtually experienced a transition to the nova-like state (permanent superhumper). This observed behavior reproduced the prediction of the thermal-tidal instability model extremely well. We detected a precursor in the 2016 superoutburst and detected growing (stage A) superhumps with a mean period of 0.0602(1) d in 2016 and in 2013. Combined with the period of superhumps immediately after the superoutburst, the mass ratio is not as small as in WZ Sge-type dwarf novae, having orbital periods similar to RZ LMi. By using least absolute shrinkage and selection operator (Lasso) two-dimensional power spectra, we detected possible negative superhumps with a period of 0.05710(1) d. We estimated an orbital period of 0.05792 d, which suggests a mass ratio of 0.105(5). This relatively large mass ratio is even above that of ordinary SU UMa-type dwarf novae, and it is also possible that the exceptionally high mass-transfer rate in RZ LMi may be a result of a stripped secondary with an evolved core in a system evolving toward an AM CVn-type object.

  8. SIMULATIONS OF THE SYMBIOTIC RECURRENT NOVA V407 CYG. I. ACCRETION AND SHOCK EVOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E., E-mail: kuo-chuan.pan@unibas.ch, E-mail: pmricker@illinois.edu, E-mail: r-taam@northwestern.edu, E-mail: taam@asiaa.sinica.edu.tw

    2015-06-10

    The shock interaction and evolution of nova ejecta with wind from a red giant (RG) star in a symbiotic binary system are investigated via three-dimensional hydrodynamics simulations. We specifically model the 2010 March outburst of the symbiotic recurrent nova V407 Cygni from its quiescent phase to its eruption phase. The circumstellar density enhancement due to wind–white-dwarf interaction is studied in detail. It is found that the density-enhancement efficiency depends on the ratio of the orbital speed to the RG wind speed. Unlike another recurrent nova, RS Ophiuchi, we do not observe a strong disk-like density enhancement, but instead observe anmore » aspherical density distribution with ∼20% higher density in the equatorial plane than at the poles. To model the 2010 outburst, we consider several physical parameters, including the RG mass-loss rate, nova eruption energy, and ejecta mass. A detailed study of the shock interaction and evolution reveals that the interaction of shocks with the RG wind generates strong Rayleigh–Taylor instabilities. In addition, the presence of the companion and circumstellar density enhancement greatly alter the shock evolution during the nova phase. Depending on the model, the ejecta speed after sweeping out most of the circumstellar medium decreases to ∼100–300 km s{sup −1}, which is consistent with the observed extended redward emission in [N ii] lines in 2011 April.« less

  9. M31N 2008-12a: The Remarkable Recurrent Nova in the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Shafter, Allen W.; Darnley, Matthew; Henze, Martin; Williams, Steven C.

    2017-08-01

    The recurrent nova M31N 2008-12a in M31 has the shortest interoutburst time of any known recurrent nova. Since its discovery in December 2008 by two Japanese amateur astronomers, Koichi Nishiyama and Fujio Kabashima, a total of 8 subsequent outbursts have been observed. The mean time between observed eruptions (all observed between late August and December) is 364+/-52 days. M31 is close to the sun in March through May, so it is likely that any eruptions that may have occurred during this period have been missed and the recurrence period could be as short as 6 months. Models of thermonuclear runaways on white dwarfs show that only near Chandrasekhar mass white dwarfs accreting at a few times 10-7 solar masses per year can produce nova outbursts with a recurrence time of a year, or less. Furthermore, the models show that during the interval between each nova event the accreted mass is expected to be greater than the expelled mass. The white dwarf mass must therefore be growing, and is predicted to reach the Chandrasekhar mass in of order 500,000 years. Thus, M31N 2008-12a is destined either to become a Type Ia supernova (if the white dwarf has a CO composition) or to form a neutron star in an accretion-induced collapse (if the white dwarf has an ONe composition). In this poster, I will describe the latest observations of this fascinating nova.

  10. Interpretation of ANA Indirect Immunofluorescence Test Outside the Darkroom Using NOVA View Compared to Manual Microscopy

    PubMed Central

    Copple, Susan S.; Jaskowski, Troy D.; Giles, Rashelle; Hill, Harry R.

    2014-01-01

    Objective. To evaluate NOVA View with focus on reading archived images versus microscope based manual interpretation of ANA HEp-2 slides by an experienced, certified medical technologist. Methods. 369 well defined sera from: 44 rheumatoid arthritis, 50 systemic lupus erythematosus, 35 scleroderma, 19 Sjögren's syndrome, and 10 polymyositis patients as well as 99 healthy controls were examined. In addition, 12 defined sera from the Centers for Disease Control and 100 random patient sera sent to ARUP Laboratories for ANA HEp-2 IIF testing were included. Samples were read using the archived images on NOVA View and compared to results obtained from manual reading. Results. At a 1 : 40/1 : 80 dilution the resulting comparison demonstrated 94.8%/92.9% positive, 97.4%/97.4% negative, and 96.5%/96.2% total agreements between manual IIF and NOVA View archived images. Agreement of identifiable patterns between methods was 97%, with PCNA and mixed patterns undetermined. Conclusion. Excellent agreements were obtained between reading archived images on NOVA View and manually on a fluorescent microscope. In addition, workflow benefits were observed which need to be analyzed in future studies. PMID:24741573

  11. Full STEAM Ahead with the NASA Opportunities in Visualization, Art, and Science (NOVAS) Program

    NASA Astrophysics Data System (ADS)

    Zevin, D.; Croft, S.; Thrall, L.; Fillingim, M.; Cook, L. R.

    2015-11-01

    There has been increasing interest in the use of art as a new tool in the teaching of Science, Technology, Engineering, and Mathematics (STEM). The concept has received major consideration by our federal government, design colleges, art institutes, and leading universities. Many have, in fact, fully embraced this concept, and it's not unusual today to see “Art” added to STEM to get STEAM. On August 5, 2014, the NASA-funded NASA Opportunities in Visualization, Art, and Science (NOVAS) program team provided a professional development workshop at the Astronomical Society of the Pacific's 2014 Annual Meeting. In this two-hour workshop, participants learned about the rise of STEAM and were shown valuable skills and techniques used by the NOVAS program for the application of STEAM in a variety of out-of-school time (OST) settings. The workshop highlighted how OST and other informal educators can use art and digital media to help teach about current, cutting-edge STEM investigations, and why scientists need artists to help visualize and communicate their research. Although NASA science and project outcomes from the NOVAS program were emphasized, participants also discussed how NOVAS' methodologies could be applied to other STEM subjects and OST formats.

  12. WD+RG systems as the progenitors of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Han, Zhan-Wen

    2010-03-01

    Type Ia supernovae (SNe Ia) play an important role in the study of cosmic evolution, especially in cosmology. There are several progenitor models for SNe Ia proposed in the past years. By considering the effect of accretion disk instability on the evolution of white dwarf (WD) binaries, we performed detailed binary evolution calculations for the WD + red-giant (RG) channel of SNe Ia, in which a carbon-oxygen WD accretes material from a RG star to increase its mass to the Chandrasekhar mass limit. According to these calculations, we mapped out the initial and final parameters for SNe Ia in the orbital period-secondary mass (log Pi - Mi2) plane for various WD masses for this channel. We discussed the influence of the variation of the duty cycle value on the regions for producing SNe Ia. Similar to previous studies, this work also indicates that the long-period dwarf novae offer possible ways for producing SNe Ia. Meanwhile, we find that the surviving companion stars from this channel have a low mass after the SN explosion, which may provide a means for the formation of the population of single low-mass WDs (<0.45 Modot).

  13. A high-velocity black hole on a Galactic-halo orbit in the solar neighbourhood.

    PubMed

    Mirabel, I F; Dhawan, V; Mignani, R P; Rodrigues, I; Guglielmetti, F

    2001-09-13

    Only a few of the dozen or so known stellar-mass black holes have been observed away from the plane of the Galaxy. Those few could have been ejected from the plane as a result of a 'kick' received during a supernova explosion, or they could be remnants of the population of massive stars formed in the early stages of evolution of the Galaxy. Determining their orbital motion should help to distinguish between these options. Here we report the transverse motion (in the plane of the sky) for the black-hole X-ray nova XTE J1118+480 (refs 2, 3, 4, 5), from which we derive a large space velocity. This X-ray binary system has an eccentric orbit around the Galactic Centre, like most objects in the halo of the Galaxy, such as ancient stars and globular clusters. The properties of the system suggest that its age is comparable to or greater than the age of the Galactic disk. Only an extraordinary 'kick' from a supernova could have launched the black hole into an orbit like this from a birthplace in the disk of the Galaxy.

  14. Fingerprints of carbon, nitrogen, and silicon isotopes in small interstellar SiC grains from the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Hoppe, Peter; Geiss, Johannes; Buehler, Fritz; Neuenschwander, Juerg; Amari, Sachiko; Lewis, Roy S.

    1993-01-01

    We report ion microprobe determinations of the carbon, nitrogen, and silicon isotopic compositions of small SiC grains from the Murchison CM2 chondrite. Analyses were made on samples containing variable numbers of grains and on 14 individual grains. In some cases the multiple-grain sample compositions were probably dominated by only one or two grains. Total ranges observed are given. Only a few grains show values near the range limits. Both the total ranges of carbon and nitrogen isotopic compositions, and even the narrower ranges typical for the majority of the grains, are similar to those observed for larger SiC grains. Two rare components appear to be present in the smaller-size fraction, one characterized by C-12/C-13 about 12-16 and the other by very heavy nitrogen. The carbon and nitrogen isotopic compositions qualitatively may reflect hydrostatic H-burning via the CNO cycle and He-burning in red giants, as well as explosive H-burning in novae. The silicon isotopic compositions of most grains qualitatively show what is the signature of He-burning. The silicon isotopic composition of one grain, however, suggests a different process.

  15. Photoacoustic spectroscopy for trace vapor detection and standoff detection of explosives

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Marcus, Logan S.; Pellegrino, Paul M.

    2016-05-01

    The Army is investigating several spectroscopic techniques (e.g., infrared spectroscopy) that could allow for an adaptable sensor platform. Current sensor technologies, although reasonably sized, are geared to more classical chemical threats, and the ability to expand their capabilities to a broader range of emerging threats is uncertain. Recently, photoacoustic spectroscopy (PAS), employed in a sensor format, has shown enormous potential to address these ever-changing threats. PAS is one of the more flexible IR spectroscopy variants, and that flexibility allows for the construction of sensors that are designed for specific tasks. PAS is well suited for trace detection of gaseous and condensed media. Recent research has employed quantum cascade lasers (QCLs) in combination with MEMS-scale photoacoustic cell designs. The continuous tuning capability of QCLs over a broad wavelength range in the mid-infrared spectral region greatly expands the number of compounds that can be identified. We will discuss our continuing evaluation of QCL technology as it matures in relation to our ultimate goal of a universal compact chemical sensor platform. Finally, expanding on our previously reported photoacoustic detection of condensed phase samples, we are investigating standoff photoacoustic chemical detection of these materials. We will discuss the evaluation of a PAS sensor that has been designed around increasing operator safety during detection and identification of explosive materials by performing sensing operations at a standoff distance. We investigate a standoff variant of PAS based upon an interferometric sensor by examining the characteristic absorption spectra of explosive hazards collected at 1 m.

  16. Cross Check of NOvA Oscillation Probabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parke, Stephen J.; Messier, Mark D.

    2018-01-12

    In this note we perform a cross check of the programs used by NOvA to calculate the 3-flavor oscillation probabilities with a independent program using a different method. The comparison is performed at 6 significant figures and the agreement,more » $$|\\Delta P|/P$$ is better than $$10^{-5}$$, as good as can be expected with 6 significant figures. In addition, a simple and accurate alternative method to calculate the oscillation probabilities is outlined and compared in the L/E range and matter density relevant for the NOvA experiment.« less

  17. NOVA: A new multi-level logic simulator

    NASA Technical Reports Server (NTRS)

    Miles, L.; Prins, P.; Cameron, K.; Shovic, J.

    1990-01-01

    A new logic simulator that was developed at the NASA Space Engineering Research Center for VLSI Design was described. The simulator is multi-level, being able to simulate from the switch level through the functional model level. NOVA is currently in the Beta test phase and was used to simulate chips designed for the NASA Space Station and the Explorer missions. A new algorithm was devised to simulate bi-directional pass transistors and a preliminary version of the algorithm is presented. The usage of functional models in NOVA is also described and performance figures are presented.

  18. Progress of the Charged Pion Semi-Inclusive Neutrino Charged Current Cross Section in NOvA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsaris, Aristeidis

    2017-10-09

    The NOvA experiment is a long-baseline neutrino oscillation experiment designed to measure the rates of electron neutrino appearance and muon neutrino disappearance. The NOvA near detector is located at Fermilab, 800 m from the primary target and provides an excellent platform to measure and study neutrino-nucleus interactions. We present the status of the measurement of the double differential cross section with respect to muon kinematics for interactions involving charged pions in the final state,more » $$\

  19. ASASSN-18ca: Discovery of A Probable Nova in M31

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, we discovered a new transient source, most likely a nova, in the nearby galaxy M31. ASASSN-18ca (AT 2018pp) was discovered in images obtained on UT 2018-02-08.07 at g 16.5 mag. We do not detect (g > 18.6) the object in images taken on UT 2018-02-06.12 and before.

  20. Spectroscopy of the novae M31N_2008-08a and M31N_2008-08b

    NASA Astrophysics Data System (ADS)

    Di Mille, F.; Ciroi, S.; Orio, M.; Rafanelli, P.; Bianchini, A.; Nelson, T.; Andreuzzi, G.

    2008-09-01

    We obtained low resolution spectra of the two optical nova candidates in M31 (see ATEL #1654). The spectra were obtained with the 3.5-m Telescopio Nazionale Galileo of INAF equipped with the DOLORES spectrograph and camera (spectral range 330-790 nm, resolution 1.2 nm) on Aug 17.13 for 2008-08a and on Aug 17.17 for 2008-08b (8 days after the discovery of both novae, which were below the detection limits 2 days earlier).

  1. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  2. The Nova-Canton Trough and the Late Cretaceous evolution of the central Pacific

    NASA Astrophysics Data System (ADS)

    Joseph, Devorah; Taylor, Brain; Shor, Alexander N.; Yamazaki, Toshitsugu

    Free-air gravity anomalies derived from satellite altimetry data show that the major Pacific fracture zones, from the Pau to Marquesas, are co-polar about an Euler pole located at 150.5°W, 34.6°S for the period preceding chron 33 and including a large portion of the Cretaceous Normal Superchron. They also show continuity of the Clipperton Fracture Zone through the Line Islands to the Nova-Canton ridge and trough; this Canton-Clipperton trend is co-polar to the same pole. Sidescan-sonar and bathymetry data in the Nova-Canton Trough region reveal N140°E-striking abyssal hill topography south of the N70°E-striking structures of the Nova-Canton Trough and crustal fabric striking normal to the trough (N160°E) to the north. We conclude that the Nova-Canton Trough is the Middle Cretaceous extension of the Clipperton Fracture Zone. We propose that the anomalous depths (7000-8400 m) of the trough between 167°30'-168°30'W are the result of a complex plate reorganization. Conjugate magnetic anomaly lineations M1-M3 in the Phoenix lineations between the Central Pacific Fracture Zone and the Phoenix Fracture Zone and the absence of lineations younger than anomaly M3 west of the Phoenix Fracture Zone suggest that spreading may have gradually ceased along the Pacific-Phoenix system from west to east. We infer that the remaining active segment of the Pacific-Phoenix spreading system after anomaly M1 time was the easternmost section of the Phoenix lineations. At ˜M0 time, the Pacific-Phoenix spreading axis stretched from lineated bathymetric depressions lying between 180°W and the Phoenix Islands to ˜168°W and included the western deep of the Nova-Canton Trough. We hypothesize that accretion terminated on the Pacific-Phoenix spreading axis shortly after M0 time and that the absence of an M0 isochron in the region between the eastern Phoenix lineations and the Nova-Canton Trough, or along the Nova-Canton Trough itself, may be due to a decrease in spreading rate prior to termination. We concur with previous hypotheses that portions of the Phoenix plate were trapped on the Pacific plate by a ridge jump south to the nascent Manihiki Plateau; some portions were overprinted by the Aptian volcanism that formed the Manihiki Plateau and Robbie Ridge. Pacific-Farallon spreading south of the Nova-Canton Trough jumped westwards, initiating transcurrent motion along the easternmost section of the failed ˜M0 spreading axis (the western deep of the Nova-Canton Trough) which subsequently became the western end of the Clipperton (Pacific-Farallon) transform. In our reconstruction, the northeast and southeast margins of the Manihiki Plateau are rifted margins that form the western limit of Pacific-Farallon spreading between the Clipperton, Galapagos, and Marquesas fracture zones.

  3. "I feel like I am surviving the health care system": understanding LGBTQ health in Nova Scotia, Canada.

    PubMed

    Colpitts, Emily; Gahagan, Jacqueline

    2016-09-22

    Currently, there is a dearth of baseline data on the health of lesbian, gay, bisexual, transgender, and queer (LGBTQ) populations in the province of Nova Scotia, Canada. Historically, LGBTQ health research has tended to focus on individual-level health risks associated with poor health outcomes among these populations, which has served to obscure the ways in which they maintain their own health and wellness across the life course. As such, there is an urgent need to shift the focus of LGBTQ health research towards strengths-based perspectives that explore the complex and resilient ways in which LGBTQ populations promote their health. This paper discusses the findings of our recent scoping review as well as the qualitative data to emerge from community consultations aimed at developing strengths-based approaches to understanding and advancing LGBTQ pathways to health across Nova Scotia. Our scoping review findings demonstrated the lack of strengths-based research on LGBTQ health in Nova Scotia. Specifically, the studies examined in our scoping review identified a number of health-promoting factors and a wide variety of measurement tools, some of which may prove useful for future strengths-based health research with LGBTQ populations. In addition, our community consultations revealed that many participants had negative experiences with health care systems and services in Nova Scotia. However, participants also shared a number of factors that contribute to LGBTQ health and suggestions for how LGBTQ pathways to health in Nova Scotia can be improved. There is an urgent need to conduct research on the health needs, lived experiences, and outcomes of LGBTQ populations in Nova Scotia to address gaps in our knowledge of their unique health needs. In moving forward, it is important that future health research take an intersectional, strengths-based perspective in an effort to highlight the factors that promote LGBTQ health and wellness across the life course, while taking into account the social determinants of health.

  4. A Light-curve Analysis of Gamma-Ray Nova V959 Mon: Distance and White Dwarf Mass

    NASA Astrophysics Data System (ADS)

    Hachisu, Izumi; Kato, Mariko

    2018-05-01

    V959 Mon is a nova detected in gamma-rays. It was discovered optically about 50 days after the gamma-ray detection owing to its proximity to the Sun. The nova’s speed class is unknown because of the lack of the earlier half of its optical light curve and a short supersoft X-ray phase due to eclipse by the disk rim. Using the universal decline law and time-stretching method, we analyzed the data on V959 Mon and obtained nova parameters. We estimated the distance modulus in the V band to be (m ‑ M) V = 13.15 ± 0.3 for the reddening of E(B ‑ V) = 0.38 ± 0.01 by directly comparing it with novae of a similar type—LV Vul, V1668 Cyg, IV Cep, and V1065 Cen. The distance to V959 Mon is 2.5 ± 0.5 kpc. If we assume that the early phase of the light curve of V959 Mon is the same as that of time-stretched light curves of LV Vul, our model fitting of the light curve suggests that the white dwarf (WD) mass is 0.9–1.15 M ⊙, which is consistent with a neon nova identification. At the time of gamma-ray detection the photosphere of the nova envelope extends to 5–8 R ⊙ (about two or three times the binary separation) and the wind mass-loss rate is (3{--}4)× {10}-5 {M}ȯ yr‑1. The period of hard X-ray emission is consistent with the time of appearance of the companion star from the nova envelope. The short supersoft X-ray turnoff time is consistent with the epoch when the WD photosphere shrank to behind the rising disk rim, which occurred 500 days before nuclear burning turned off.

  5. The Dwarf Nova SY Cancri and its Environs

    NASA Astrophysics Data System (ADS)

    Landolt, A. U.; Clem, J. L.

    2018-06-01

    Multicolor UBVRI photometry, collected intermittedly over a period of 22 years, is presented for the dwarf nova SY Cancri. Additional UBVRI photometry for a handful of sequence stars in the vicinity of SY Cancri is also presented.

  6. V2676 Oph: Estimating Physical Parameters of a Moderately Fast Nova

    NASA Astrophysics Data System (ADS)

    Raj, A.; Pavana, M.; Kamath, U. S.; Anupama, G. C.; Walter, F. M.

    2018-03-01

    Using our previously reported observations, we derive some physical parameters of the moderately fast nova V2676 Oph 2012 #1. The best-fit Cloudy model of the nebular spectrum obtained on 2015 May 8 shows a hot white dwarf source with TBB≍1.0×105 K having a luminosity of 1.0×1038 erg/s. Our abundance analysis shows that the ejecta are significantly enhanced relative to solar, He/H=2.14, O/H=2.37, S/H=6.62 and Ar/H=3.25. The ejecta mass is estimated to be 1.42×10-5 M⊙. The nova showed a pronounced dust formation phase after 90 d from discovery. The J-H and H-K colors were very large as compared to other molecule- and dust-forming novae in recent years. The dust temperature and mass at two epochs have been estimated from spectral energy distribution fits to infrared photometry.

  7. A randomized trial of three copper IUDs (MLCu250, MLCu375 and Nova-T).

    PubMed

    Bratt, H; Skjeldestad, F E; Cullberg Valentin, K

    1988-01-01

    A randomized prospective trial of three copper IUDs, Nova-T, MLCu375 and MLCu250, including 200 of each, is presented. Insertion was done at the hospital outpatient clinic on normally menstruating women and on women in puerperio. Follow-up was scheduled after 12, 24 and 36 months. Pregnancy rates were low for all 3 models. Pearl indices after 3 years were 0.5, 0.9 and 0.8 for Nova-T, MLCu375 and MLCu250 respectively (NS). Abnormal bleeding and/or pain was the most frequent termination cause. Minor differences in the termination rates because of abnormal bleeding and/or pain were found and are discussed. The continuation rates based on all medically relevant IUD removals were 74%, 73% and 81% after 3 years for Nova-T, MLCu375 and MLCu250 respectively. No important difference in clinical performance between the three copper IUDs could be demonstrated.

  8. Muon Neutrino Disappearance in NOvA with a Deep Convolutional Neural Network Classifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocco, Dominick Rosario

    2016-03-01

    The NuMI Off-axis Neutrino Appearance Experiment (NOvA) is designed to study neutrino oscillation in the NuMI (Neutrinos at the Main Injector) beam. NOvA observes neutrino oscillation using two detectors separated by a baseline of 810 km; a 14 kt Far Detector in Ash River, MN and a functionally identical 0.3 kt Near Detector at Fermilab. The experiment aims to provide new measurements of Δm 2 and θ23 and has potential to determine the neutrino mass hierarchy as well as observe CP violation in the neutrino sector. Essential to these analyses is the classification of neutrino interaction events in NOvA detectors.more » Raw detector output from NOvA is interpretable as a pair of images which provide orthogonal views of particle interactions. A recent advance in the field of computer vision is the advent of convolutional neural networks, which have delivered top results in the latest image recognition contests. This work presents an approach novel to particle physics analysis in which a convolutional neural network is used for classification of particle interactions. The approach has been demonstrated to improve the signal efficiency and purity of the event selection, and thus physics sensitivity. Early NOvA data has been analyzed (2.74×10 20 POT, 14 kt equivalent) to provide new best- fit measurements of sin 2(θ23) = 0.43 (with a statistically-degenerate compliment near 0.60) and |Δm2 | = 2.48 × 10 -3 eV 2.« less

  9. First measurement of the 34S(p ,γ )35Cl reaction rate through indirect methods for presolar nova grains

    NASA Astrophysics Data System (ADS)

    Gillespie, S. A.; Parikh, A.; Barton, C. J.; Faestermann, T.; José, J.; Hertenberger, R.; Wirth, H.-F.; de Séréville, N.; Riley, J. E.; Williams, M.

    2017-08-01

    Sulphur isotopic ratio measurements may help to establish the astrophysical sites in which certain presolar grains were formed. Nova model predictions of the 34S/32S ratio are, however, unreliable due to the lack of an experimental 34S(p ,γ )35Cl reaction rate. To this end, we have measured the 34S(3He,d )35Cl reaction at 20 MeV using a high resolution quadrupole-dipole-dipole-dipole magnetic spectrograph. Twenty-two levels over 6.2 MeV

  10. Remineralization Effect of Topical NovaMin Versus Sodium Fluoride (1.1%) on Caries-Like Lesions in Permanent Teeth

    PubMed Central

    Vahid Golpayegani, M.; Sohrabi, A.; Biria, M.; Ansari, G.

    2012-01-01

    Objective: NovaMin, a synthetic mineral composed of calcium, sodium, phosphorous and silica releases deposits of crystalline hydroxyl-carbonate apatite (HCA) structurally similar to tooth mineral composition. The aim of this investigation was to compare the potential remineralization effect of topical NovaMin and Sodium Fluoride gel on caries like lesions in permanent teeth. Materials and Methods: A total of 60 sound human freshly extracted teeth were subjected to a pH-cycling protocol. Specimens were randomly assigned to one of the two treatment groups with NovaMin contained dentifrice applied to group 1, while group 2 received a dentifrice containing 1.1% neutral Sodium Fluoride. Pastes were applied five times after the samples received a demineralization from an earlier cariogenic challenge. Specimens were then evaluated by a Surface Micro Hardness test (SMH, 25G, 5s). Post-treatment SMH measurements were conducted and Mann Whitney test was employed for statistical analysis. Results: Mean post lesion SMH values were 221.99±26.27 and 224.50±28.64 for the first and second groups, respectively. Post treatment SMH values were 232.52±24.34 for NovaMin and 232.03 ±24.46 for the fluoride group. Two way ANOVA test showed a highly significant difference between the two different treatment protocols (p<0.001). Conclusion: NovaMin dentifrice appears to have a greater effect on remineralization of carious-like lesions when compared to that of fluoride containing dentifrice in permanent teeth. PMID:22924104

  11. A new catalogue of Galactic novae: investigation of the MMRD relation and spatial distribution

    NASA Astrophysics Data System (ADS)

    Özdönmez, Aykut; Ege, Ergün; Güver, Tolga; Ak, Tansel

    2018-05-01

    In this study, a new Galactic novae catalogue is introduced collecting important parameters of these sources such as their light-curve parameters, classifications, full width half-maximum (FWHM) of Hα line, distances and interstellar reddening estimates. The catalogue is also published on a website with a search option via a SQL query and an online tool to re-calculate the distance/reddening of a nova from the derived reddening-distance relations. Using the novae in the catalogue, the existence of a maximum magnitude-rate of decline (MMRD) relation in the Galaxy is investigated. Although an MMRD relation was obtained, a significant scattering in the resulting MMRD distribution still exists. We suggest that the MMRD relation likely depends on other parameters in addition to the decline time, as FWHM Hα, the light-curve shapes. Using two different samples depending on the distances in the catalogue and from the derived MMRD relation, the spatial distributions of Galactic novae as a function of their spectral and speed classes were studied. The investigation on the Galactic model parameters implies that best estimates for the local outburst density are 3.6 and 4.2 × 10-10 pc-3 yr-1 with a scale height of 148 and 175 pc, while the space density changes in the range of 0.4-16 × 10-6 pc-3. The local outburst density and scale height obtained in this study infer that the disc nova rate in the Galaxy is in the range of ˜20 to ˜100 yr-1 with an average estimate 67^{+21}_{-17} yr-1.

  12. Nova Superposed on Yavine Corona

    NASA Image and Video Library

    1998-06-04

    The view from NASA's Magellan spacecraft shows a 100-km-wide nova superposed on Yavine Corona. Coronae are roughly circular, volcanic features believed to form over hot upwellings of magma within the Venusian mantle. http://photojournal.jpl.nasa.gov/catalog/PIA00150

  13. NOVA.

    ERIC Educational Resources Information Center

    WGBH-TV, Boston, MA.

    News clippings, reviews, and feature articles about the Public Broadcasting System science-adventure series "Nova" are collected here. Included are comments from the New York Times, Washington Post, Christian Science Monitor, and TV Guide. Commentaries are primarily favorable and include synopses of various episodes. (DGC)

  14. Hunting Elusive SPRITEs with Spitzer

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    In recent years, astronomers have developed many wide-field imaging surveys in which the same targets are observed again and again. This new form of observing has allowed us to discover optical and radio transients explosive or irregular events with durations ranging from seconds to years. The dynamic infrared sky, however, has remained largely unexplored until now.Infrared ExplorationExample of a transient: SPIRITS 14ajc was visible when imaged by SPIRITS in 2014 (left) but it wasnt there during previous imaging between 2004 and 2008 (right). The bottom frame shows the difference between the two images. [Adapted from Kasliwal et al. 2017]Why hunt for infrared transients? Optical wavelengths dont allow us to observe events that are obscured, such that their own structure or their surroundings hide them from our view. Both supernovae and luminous red novae (associated with stellar mergers) are discoverable as infrared transients, and there may well be new types of transients in infrared that we havent seen before!To explore this uncharted territory, a team of scientists developed SPIRITS, the Spitzer Infrared Intensive Transients Survey. Begun in 2014, SPIRITS is a five-year long survey that uses the Spitzer Space Telescope to conduct a systematic search for mid-infrared transients in nearby galaxies.In a recent publication led by Mansi Kasliwal (Caltech and the Carnegie Institution for Science), the SPIRITS team has now detailed how their survey works and what theyve discovered in its first year.The light curves of SPRITEs (red stars) lie in the mid-infared luminosity gap between novae (orange) and supernovae (blue). [Kasliwal et al. 2017]Mystery TransientsKasliwal and collaborators used Spitzer to monitor 190 nearby galaxies. In SPIRITS first year, they found over 1958 variable stars and 43 infrared transient sources. Of these 43 transients, 21 were known supernovae, 4 were in the luminosity range of novae, and 4 had optical counterparts. The remaining 14 events were designated eSPecially Red Intermediate-luminosity Transient Events, or SPRITEs.SPRITEs are unusual infrared transients that lie in the luminosity gap between novae and supernovae, and they have no optical counterparts. They all occur in star-forming galaxies.Search for the CauseWhats the physical origin of these phenomena? The authors explore a number of possible sources, including obscured supernovae, stellar mergers with dusty winds, collapse of extreme stars, or even weak shocks in failed supernovae.Spitzer image of M83, one of the closest barred spiral galaxies in the sky. SPIRITS 14ajc was discovered in one of M83s spiral arms. [NASA/JPL-Caltech]In one case, SPIRITS 14ajc, the SPRITEs spectrum shows signs of excited molecular hydrogen lines, which are indicative of a shock. Based on the data, Kasliwal and collaborators propose that the shock might have been driven into a molecular cloud after it was triggered by the decay of a system of massive stars that either passed closely or collided and merged.The other SPRITEs may all have different origins, however, and in general the infrared photometric data isnt sufficient to identify which model fits each transient. Future technology, like spectroscopy with the James Webb Space Telescope, may help us to better understand the origins of these elusive transients, though. And future surveying with projects like SPIRITS will help us to discover more SPRITE-like events, expanding our understanding of the dynamic infrared sky.CitationMansi M. Kasliwal et al 2017 ApJ 839 88. doi:10.3847/1538-4357/aa6978

  15. Evolution of the symbiotic binary system AG Pegasi - The slowest classical nova eruption ever recorded

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Mikolajewska, Joanna; Mikolajewski, Maciej; Polidan, Ronald S.; Slovak, Mark H.

    1993-01-01

    We present an analysis of new and existing photometric and spectroscopic observations of the ongoing eruption in the symbiotic star AG Pegasi, showing that this binary has evolved considerably since the turn of the century. Recent dramatic changes in both the UV continuum and the wind from the hot component allow a more detailed analysis than in previous papers. AG Peg is composed of a normal M3 giant and a hot, compact star embedded in a dense, ionized nebula. The hot component powers the activity observed in this system, including a dense wind and a photoionized region within the outer atmosphere of the red giant. The hot component contracted in radius at roughly constant luminosity from 1850 to 1985. Its bolometric luminosity declined by a factor of about 4 during the past 5 yr. Both the mass loss rate from the hot component and the emission activity decreased in step with the hot component's total luminosity, while photospheric radiation from the red giant companion remained essentially constant.

  16. Study of the 26Alm (d ,p )27Al Reaction and the Influence of the 26 0+ Isomer on the Destruction of 26Al in the Galaxy

    NASA Astrophysics Data System (ADS)

    Almaraz-Calderon, S.; Rehm, K. E.; Gerken, N.; Avila, M. L.; Kay, B. P.; Talwar, R.; Ayangeakaa, A. D.; Bottoni, S.; Chen, A. A.; Deibel, C. M.; Dickerson, C.; Hanselman, K.; Hoffman, C. R.; Jiang, C. L.; Kuvin, S. A.; Nusair, O.; Pardo, R. C.; Santiago-Gonzalez, D.; Sethi, J.; Ugalde, C.

    2017-08-01

    The existence of 26 (t1 /2=7.17 ×105 yr ) in the interstellar medium provides a direct confirmation of ongoing nucleosynthesis in the Galaxy. The presence of a low-lying 0+ isomer (26m ), however, severely complicates the astrophysical calculations. We present for the first time a study of the 26Al m(d ,p ) 27Al reaction using an isomeric 26Al beam. The selectivity of this reaction allowed the study of ℓ=0 transfers to T =1 /2 , and T =3 /2 states in 27Al. Mirror symmetry arguments were then used to constrain the 26Al m(p ,γ ) 27Si reaction rate and provide an experimentally determined upper limit of the rate for the destruction of isomeric 26Al via radiative proton capture reactions, which is expected to dominate the destruction path of 26Alm in asymptotic giant branch stars, classical novae, and core collapse supernovae.

  17. Ocean and Coastal Acidification off New England and Nova Scotia

    EPA Science Inventory

    New England coastal and adjacent Nova Scotia shelf waters have a reduced buffering capacity because of significant freshwater input, making the region’s waters potentially more vulnerable to coastal acidification. Nutrient loading and heavy precipitation events further acid...

  18. NovaChip pilot project : Route 5, Waterboro, Brownfield, & Fryeburg.

    DOT National Transportation Integrated Search

    2011-02-01

    In July & August, 2010, MaineDOT conducted experimental applications of NovaChip on 16 miles : of highway in western Maine. Novachip is a proprietary pavement process that applies an ultrathin, : gap-graded, hot mix wearing course over a polymer rich...

  19. NOVA[R] Spring 2002 Teacher's Guide.

    ERIC Educational Resources Information Center

    Armstrong, Peter; Ransick, Kristi; Rosene, Dale; Sammons, James

    The guide presents lesson plans from "NOVA" which targets middle school and junior high school students and meet the National Science Education Standards. Lessons include: (1) "Neanderthals on Trial"; (2) "Fireworks"; (3) "Secrets, Lies and Atomic Spies"; (4) "Bioterror"; (5) "The Missing…

  20. Orbital phase dependent IUE spectra of the nova like binary II Arietis

    NASA Technical Reports Server (NTRS)

    Guinan, E. F.; Sion, E. M.

    1981-01-01

    Nine low dispersion IUE spectra of the nova like binary TT Ari over its 3h17m orbital period were obtained. Four short wave spectra and five long wave spectra exhibit marked changes in line strength and continuum shape with orbital phase. The short wave spectra show the presence in absorption of C III, Lyman alpha, SiIII, NV, SiIV, CIV, HeII, AlIII, and NIV. The CIV shows a P Cygni profile on two of the spectra. Implications of these spectra for the nature of nova like variables are discussed.

Top