Classical novae and recurrent novae: General properties
NASA Technical Reports Server (NTRS)
Hack, Margherita; Selvelli, Pierluigi; Duerbeck, Hilmar W.
1993-01-01
We describe the observable characteristics of classical novae and recurrent novae obtained by different techniques (photometry, spectroscopy, and imaging) in all the available spectral ranges. We consider the three stages in the life of a nova: quiescence (pre- and post-outburst), outburst, final decline and nebular phase. We describe the photometric properties during the quiescent phase. We describe the photometric properties during outburst, the classification according the rate of decline (magnitudes per day), which permits us to define very fast, fast, intermediate, slow, and very slow novae and the correlation between luminosity and speed class. We report the scanty data on the spectra of the few known prenovae and those on the spectra of old novae and those of dwarf novae and nova-like, which, however, are almost undistinguishable. We describe the typical spectra appearing from the beginning of the outburst, just before maximum, up to the nebular phase and the correlation between spectral type at maximum, expansional velocity, and speed class of the nova. We report the existing infrared observations, which permit us to explain some of the characteristics of the outburst light curve, and give evidence of the formation of a dust shell in slow and intermediate novae (with the important exception of the very slow nova HR Del 1967) and its absence or quasi-absence in fast novae. The ultraviolet and X-ray observations are described. The X ray observations of novae, mainly from the two satellites EINSTEIN and EXOSAT, are reported. Observations of the final decline and of the envelopes appearing several months after outburst are also reported.
Proper-motion age dating of the progeny of Nova Scorpii AD 1437.
Shara, M M; Iłkiewicz, K; Mikołajewska, J; Pagnotta, A; Bode, M F; Crause, L A; Drozd, K; Faherty, J; Fuentes-Morales, I; Grindlay, J E; Moffat, A F J; Pretorius, M L; Schmidtobreick, L; Stephenson, F R; Tappert, C; Zurek, D
2017-08-30
'Cataclysmic variables' are binary star systems in which one star of the pair is a white dwarf, and which often generate bright and energetic stellar outbursts. Classical novae are one type of outburst: when the white dwarf accretes enough matter from its companion, the resulting hydrogen-rich atmospheric envelope can host a runaway thermonuclear reaction that generates a rapid brightening. Achieving peak luminosities of up to one million times that of the Sun, all classical novae are recurrent, on timescales of months to millennia. During the century before and after an eruption, the 'novalike' binary systems that give rise to classical novae exhibit high rates of mass transfer to their white dwarfs. Another type of outburst is the dwarf nova: these occur in binaries that have stellar masses and periods indistinguishable from those of novalikes but much lower mass-transfer rates, when accretion-disk instabilities drop matter onto the white dwarfs. The co-existence at the same orbital period of novalike binaries and dwarf novae-which are identical but for their widely varying accretion rates-has been a longstanding puzzle. Here we report the recovery of the binary star underlying the classical nova eruption of 11 March AD 1437 (refs 12, 13), and independently confirm its age by proper-motion dating. We show that, almost 500 years after a classical-nova event, the system exhibited dwarf-nova eruptions. The three other oldest recovered classical novae display nova shells, but lack firm post-eruption ages, and are also dwarf novae at present. We conclude that many old novae become dwarf novae for part of the millennia between successive nova eruptions.
Outbursts in Symbiotic Binaries
NASA Technical Reports Server (NTRS)
Sonneborn, George (Technical Monitor); Keyes, Charles
2005-01-01
A major question for symbiotic stars concerns the nature and cause of their outbursts. A small subset of symbiotics, the slow novae are fairly well established as thermonuclear events that last on the order of decades. The several symbiotic recurrent novae, which are much shorter and last on the order of months, are also thought to be thermonuclear runaways. Yet the majority of symbiotics are neither slow novae nor recurrent novae. These are the so-called classical symbiotics, many of which show outbursts whose cause is not well understood. In some cases, jets are produced in association with an outburst, therefore an investigation into the causes of outbursts will yield important insights into the production of collimated outflows. To investigate the cause and nature of classical symbiotic outbursts, we initiated a program of multiwavelength observations of these events. In FUSE Cycle 2, we obtained six observational epochs of the 2000-2002 classic symbiotic outburst in the first target of our campaign - class prototype, Z Andromedae. That program was part of a coordinated multi-wavelength Target-of-Opportunity (TOO) campaign with FUSE, XMM, Chandra, MERLIN, the VLA, and ground-based spectroscopic and high time-resolution photometric observations. Our campaign proved the concept, utility, and need for coordinated multi-wavelength observations in order to make progress in understanding the nature of the outburst mechanisms in symbiotic stars. Indeed, the FUSE data were the cornerstone of this project
Gamma Rays from Classical Novae
NASA Technical Reports Server (NTRS)
1997-01-01
NASA at the University of Chicago, provided support for a program of theoretical research into the nature of the thermonuclear outbursts of the classical novae and their implications for gamma ray astronomy. In particular, problems which have been addressed include the role of convection in the earliest stages of nova runaway, the influence of opacity on the characteristics of novae, and the nucleosynthesis expected to accompany nova outbursts on massive Oxygen-Neon-Magnesium (ONeMg) white dwarfs. In the following report, I will identify several critical projects on which considerable progress has been achieved and provide brief summaries of the results obtained:(1) two dimensional simulation of nova runaway; (2) nucleosynthesis of nova modeling; and (3) a quasi-analytic study of nucleosynthesis in ONeMg novae.
X ray and gamma ray emission from classical nova outbursts
NASA Technical Reports Server (NTRS)
Truran, James W.; Starrfield, Sumner; Sparks, Warren M.
1992-01-01
The outbursts of classical novae are now recognized to be consequences of thermonuclear runaways proceeding in accreted hydrogen-rich shells on white dwarfs in close binary systems. For the conditions that are known to exist in these environments, it is expected that soft x-rays can be emitted, and indeed x-rays were detected from a number of novae. The circumstances for which we expect novae to produce significant x-ray fluxes and provide estimates of the luminosities and effective temperatures are described. It is also known that at the high temperatures that are known to be achieved in this explosive hydrogen-burning environment, significant production of both Na-22 and Al-26 will occur. In this context, we identify the conditions for which gamma-ray emission may be expected to result from nova outbursts.
Restablished Accretion in Post-outburst Classical Novae Revealed by X-rays
NASA Astrophysics Data System (ADS)
Hernanz, Margarita; Ferri, Carlo; Sala, Glòria
2009-05-01
Classical novae are explosions on accreting white dwarfs (hereinafter WDs) in cataclysmic variables (hereinafter CVs) a hydrogen thermonuclear runaway on top of the WD is responsible for the outburst. X-rays provide a unique way to study the turn-off of H-burning, because super soft X-rays reveal the hot WD photosphere, but also to understand how accretion is established again in the binary system. Observations with XMM-Newton of some post-outburst novae have revealed such a process, but a coverage up to larger energies -as Simbol-X will provide- is fundamental to well understand the characteristics of the binary system and of the nova ejecta. We present a brief summary of our results up to now and prospects for the Simbol-X mission.
Outbursts in Symbiotic Binaries: Z and Continued Observation
NASA Technical Reports Server (NTRS)
Sonneborn, George (Technical Monitor); Keyes, Charles
2005-01-01
A major question for symbiotic stars concerns the nature and cause of their outbursts. A small subset of symbiotics, the "slow novae" are fairly well established as thermonuclear events that last on the order of decades. The several symbiotic "recurrent novae", which are much shorter and last on the order of months, are also thought to be thermonuclear runaways. Yet the majority of symbiotics are neither slow novae nor recurrent novae. These are the so-called "classical symbiotics," many of which show outbursts whose cause is not well understood. In some cases, jets are produced in association with an outburst, therefore an investigation into the causes of outbursts will yield important insights into the production of collimated outflows. To investigate the cause and nature of classical symbiotic outbursts, we initiated a program of multi- wavelength observations of these events. First of all in FUSE Cycle 2, we obtained six observational epochs of the 2000-2002 classic symbiotic outburst in the first target of our campaign - class prototype, Z Andromedae. That program was part of a coordinated multi-wavelength Target-of-Opportunity (TOO) campaign with FUSE, XMM, Chandra, MERLIN, the VLA, and ground-based spectroscopic and high time-resolution photometric observations. Our campaign proved the concept, utility, and need for coordinated multi-wavelength observations in order to make progress in understanding the nature of the outburst mechanisms in symbiotic stars. Indeed, the FUSE data were the cornerstone of this project. The present program is a continuation of that cycle 2 effort. Indeed, the observations acquired in this program are vital to the proper interpretation of the material acquired in cycle 2 as the new data cover the critical time period when the star continues to decline from outburst and actually returns to quiescence. The utilization of these data have allowed us to refine and complete description of our new model for classical symbiotic system outbursts.
The Masses and Accretion Rates of White Dwarfs in Classical and Recurrent Novae
NASA Astrophysics Data System (ADS)
Shara, Michael M.; Prialnik, Dina; Hillman, Yael; Kovetz, Attay
2018-06-01
Models have long predicted that the frequency-averaged masses of white dwarfs (WDs) in Galactic classical novae are twice as large as those of field WDs. Only a handful of dynamically well-determined nova WDs masses have been published, leaving the theoretical predictions poorly tested. The recurrence time distributions and mass accretion rate distributions of novae are even more poorly known. To address these deficiencies, we have combined our extensive simulations of nova eruptions with the Strope et al. and Schaefer databases of outburst characteristics of Galactic classical and recurrent novae (RNe) to determine the masses of 92 WDs in novae. We find that the mean mass (frequency-averaged mean mass) of 82 Galactic classical novae is 1.06 (1.13) M ⊙, while the mean mass of 10 RNe is 1.31 M ⊙. These masses, and the observed nova outburst amplitude and decline time distributions allow us to determine the long-term mass accretion rate distribution of classical novae. Remarkably, that value is just 1.3 × 10‑10 M ⊙ yr‑1, which is an order of magnitude smaller than that of cataclysmic binaries in the decades before and after classical nova eruptions. This predicts that old novae become low-mass transfer rate systems, and hence dwarf novae, for most of the time between nova eruptions. We determine the mass accretion rates of each of the 10 known Galactic recurrent nova, finding them to be in the range of 10‑7–10‑8 M ⊙ yr‑1. We are able to predict the recurrence time distribution of novae and compare it with the predictions of population synthesis models.
On the long term evolution of white dwarfs in cataclysmic variables and their recurrence times
NASA Technical Reports Server (NTRS)
Sion, E. M.; Starrfield, S. G.
1985-01-01
The relevance of the long term quasi-static evolution of accreting white dwarfs to the outbursts of Z Andromeda-like symbiotics; the masses and accretion rates of classical nova white dwarfs; and the observed properties of white dwarfs detected optically and with IUE in low M dot cataclysmic variables is discussed. A surface luminosity versus time plot for a massive, hot white dwarf bears a remarkable similarity to the outburst behavior of the hot blue source in Z Andromeda. The long term quasi-static models of hot accreting white dwarfs provide convenient constraints on the theoretically permissible parameters to give a dynamical (nova-like) outburst of classic white dwarfs.
NASA Technical Reports Server (NTRS)
Matese, John J.; Whitmire, D. P.; Reynolds, R. T.
1989-01-01
The problem of grain nucleation during novae outbursts is a major obstacle to our understanding of dust formation in these systems. How nucleation seeds can form in the hostile post-outburst environment remains an unresolved matter. It is suggested that the material for seeding the condensation of ejecta outflow is stored in a primordial disk of icy planetesimals surrounding the system. Evidence is presented that the requisite number of nucleation seeds can be released by sublimation of the planetesimals during outbursts.
NASA Astrophysics Data System (ADS)
Tomaney, Austin Bede
Results are presented from a three year (1987 to 1989) spectroscopic and photometric survey of novae in M3l's bulge, the first comprehensive study of novae outside the Galactic and Magellanic Cloud systems. Nine novae were detected and monitored and their spectra cover a range of outburst states from early decline to the early nebular phases. Broad agreement in spectral morphology and evolution is found with Galactic novae. Since Galactic novae are mainly disk objects, this indicates that novae outburst properties are not critically dependent on the metallicity of the progenitor population. However, in this sample, and in a sample of four M31 nova spectra taken in 1983, no fast, violent outbursts frequently associated with nova systems containing ONeMg white dwarfs were found, suggestive of a systematic difference between the observed proportion of such outbursts between Galactic and M31 bulge novae. Three novae in the sample were observed on succeeding nights during the transition phase of their evolution. Extraordinary variations in some nightly line strengths, particularly the N III lines, were discovered. It is argued that this variability reflects the deposition of drag energy by the secondary star during the common envelope phase of nova evolution and is indicative of a key phase in mass loss from nova systems. Observations include the spectroscopic coverage of an extremely slow nova from 1987 to l990, during the object's evolution in the nebula phase. This provided a unique opportunity to make the first detailed comparison of the evolution and properties of an extra galactic nova with those in our own Galaxy. The roughly solar abundances obtained are typical of similar slow Galactic novae. Further observations are also presented of a unique outburst in 1988 that was independently discovered and reported by Rich et al. These data confirm the inferences of other observers that the outburst differed markedly from that of a typical classical nova. Finally an extensive spectroscopic survey of the M31 globular cluster system was made in an effort to find evidence of a previously suggested enhanced nova rate in these objects. No outbursts were detected during an effective survey time of one year for the entire system.
Orbital eccentricity in classical novae
NASA Technical Reports Server (NTRS)
Edwards, D. A.; Pringle, J. E.
1987-01-01
The effect on the orbital parameters of a classical nova of the ejection of mass during the nova explosion is considered. The most easily observable consequence is the generation of a small eccentricity in the orbit which leads to a luminosity modulation at a period just longer than the orbital period. Observation of such an effect would have implications not just for interpreting the dynamics of the explosion but also for measuring the secular effect of tidal interaction after the outburst.
AT Cnc: A SECOND DWARF NOVA WITH A CLASSICAL NOVA SHELL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shara, Michael M.; Mizusawa, Trisha; Zurek, David
2012-10-20
We are systematically surveying all known and suspected Z Cam-type dwarf novae for classical nova shells. This survey is motivated by the discovery of the largest known classical nova shell, which surrounds the archetypal dwarf nova Z Camelopardalis. The Z Cam shell demonstrates that at least some dwarf novae must have undergone classical nova eruptions in the past, and that at least some classical novae become dwarf novae long after their nova thermonuclear outbursts, in accord with the hibernation scenario of cataclysmic binaries. Here we report the detection of a fragmented 'shell', 3 arcmin in diameter, surrounding the dwarf novamore » AT Cancri. This second discovery demonstrates that nova shells surrounding Z Cam-type dwarf novae cannot be very rare. The shell geometry is suggestive of bipolar, conical ejection seen nearly pole-on. A spectrum of the brightest AT Cnc shell knot is similar to that of the ejecta of the classical nova GK Per, and of Z Cam, dominated by [N II] emission. Galaxy Evolution Explorer FUV imagery reveals a similar-sized, FUV-emitting shell. We determine a distance of 460 pc to AT Cnc, and an upper limit to its ejecta mass of {approx}5 Multiplication-Sign 10{sup -5} M {sub Sun }, typical of classical novae.« less
Synthesis of C-rich dust in CO nova outbursts
NASA Astrophysics Data System (ADS)
José, Jordi; Halabi, Ghina M.; El Eid, Mounib F.
2016-09-01
Context. Classical novae are thermonuclear explosions that take place in the envelopes of accreting white dwarfs in stellar binary systems. The material transferred onto the white dwarf piles up under degenerate conditions, driving a thermonuclear runaway. In these outbursts, about 10-7-10-3 M⊙, enriched in CNO and sometimes other intermediate-mass elements (e.g., Ne, Na, Mg, or Al for ONe novae) are ejected into the interstellar medium. The large concentrations of metals spectroscopically inferred in the nova ejecta reveal that the solar-like material transferred from the secondary mixes with the outermost layers of the underlying white dwarf. Aims: Most theoretical models of nova outbursts reported to date yield, on average, outflows characterized by O > C, from which, in principle, only oxidized condensates (e.g., O-rich grains) would be expected. Methods: To specifically address whether CO novae can actually produce C-rich dust, six different hydrodynamic nova models have been evolved, from accretion to the expansion and ejection stages, with different choices for the composition of the substrate with which the solar-like accreted material mixes. Updated chemical profiles inside the H-exhausted core have been used, based on stellar evolution calculations for a progenitor of 8 M⊙ through H- and He-burning phases. Results: We show that these profiles lead to C-rich ejecta after the nova outburst. This extends the possible contribution of novae to the inventory of presolar grains identified in meteorites, particularly in a number of carbonaceous phases (I.e., nanodiamonds, silicon carbides, and graphites).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hachisu, Izumi; Kato, Mariko, E-mail: hachisu@ea.c.u-tokyo.ac.jp, E-mail: mariko@educ.cc.keio.ac.jp
We identified a general course of classical nova outbursts in the B – V versus U – B color-color diagram. It is reported that novae show spectra similar to those of A-F supergiants near optical light maximum. However, they do not follow the supergiant sequence in the color-color diagram, neither the blackbody nor the main-sequence sequence. Instead, we found that novae evolve along a new sequence in the pre-maximum and near-maximum phases, which we call 'the nova-giant sequence'. This sequence is parallel to but Δ(U – B) ≈ –0.2 mag bluer than the supergiant sequence. This is because the massmore » of a nova envelope is much (∼10{sup –4} times) less than that of a normal supergiant. After optical maximum, its color quickly evolves back blueward along the same nova-giant sequence and reaches the point of free-free emission (B – V = –0.03, U – B = –0.97), which coincides with the intersection of the blackbody sequence and the nova-giant sequence, and remains there for a while. Then the color evolves leftward (blueward in B – V but almost constant in U – B), owing mainly to the development of strong emission lines. This is the general course of nova outbursts in the color-color diagram, which was deduced from eight well-observed novae in various speed classes. For a nova with unknown extinction, we can determine a reliable value of the color excess by matching the observed track of the target nova with this general course. This is a new and convenient method for obtaining the color excesses of classical novae. Using this method, we redetermined the color excesses of 20 well-observed novae. The obtained color excesses are in reasonable agreement with the previous results, which in turn support the idea of our general track of nova outbursts. Additionally, we estimated the absolute V magnitudes of about 30 novae using a method for time-stretching nova light curves to analyze the distance-reddening relations of the novae.« less
ASAS-SN Discovery of a Possible Galactic Nova ASASSN-18ix
NASA Astrophysics Data System (ADS)
Stanek, K. Z.; Kochanek, C. S.; Shields, J. V.; Thompson, T. A.; Chomiuk, L.; Strader, J.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Dong, Subo; Stritzinger, M.
2018-04-01
During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from multiple ASAS-SN telescopes, we detect a new bright transient source, possibly a classical nova, but it might also be a young, large amplitude outburst of a cataclysmic variable Object RA (J2000) DEC (J2000) Gal l (deg) Gal b (deg) Disc.
On Presolar Stardust Grains from CO Classical Novae
NASA Astrophysics Data System (ADS)
Iliadis, Christian; Downen, Lori N.; José, Jordi; Nittler, Larry R.; Starrfield, Sumner
2018-03-01
About 30%–40% of classical novae produce dust 20–100 days after the outburst, but no presolar stardust grains from classical novae have been unambiguously identified yet. Although several studies claimed a nova paternity for certain grains, the measured and simulated isotopic ratios could only be reconciled, assuming that the grains condensed after the nova ejecta mixed with a much larger amount of close-to-solar matter. However, the source and mechanism of this potential post-explosion dilution of the ejecta remains a mystery. A major problem with previous studies is the small number of simulations performed and the implied poor exploration of the large nova parameter space. We report the results of a different strategy, based on a Monte Carlo technique, that involves the random sampling over the most important nova model parameters: the white dwarf composition; the mixing of the outer white dwarf layers with the accreted material before the explosion; the peak temperature and density; the explosion timescales; and the possible dilution of the ejecta after the outburst. We discuss and take into account the systematic uncertainties for both the presolar grain measurements and the simulation results. Only those simulations that are consistent with all measured isotopic ratios of a given grain are accepted for further analysis. We also present the numerical results of the model parameters. We identify 18 presolar grains with measured isotopic signatures consistent with a CO nova origin, without assuming any dilution of the ejecta. Among these, the grains G270_2, M11-334-2, G278, M11-347-4, M11-151-4, and Ag26 have the highest probability of a CO nova paternity.
The awakening of a classical nova from hibernation.
Mróz, Przemek; Udalski, Andrzej; Pietrukowicz, Paweł; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Poleski, Radosław; Kozłowski, Szymon; Skowron, Jan; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał
2016-09-29
Cataclysmic variable stars-novae, dwarf novae, and nova-likes-are close binary systems consisting of a white dwarf star (the primary) that is accreting matter from a low-mass companion star (the secondary). From time to time such systems undergo large-amplitude brightenings. The most spectacular eruptions, with a ten-thousandfold increase in brightness, occur in classical novae and are caused by a thermonuclear runaway on the surface of the white dwarf. Such eruptions are thought to recur on timescales of ten thousand to a million years. In between, the system's properties depend primarily on the mass-transfer rate: if it is lower than a billionth of a solar mass per year, the accretion becomes unstable and the matter is dumped onto the white dwarf during quasi-periodic dwarf nova outbursts. The hibernation hypothesis predicts that nova eruptions strongly affect the mass-transfer rate in the binary, keeping it high for centuries after the event. Subsequently, the mass-transfer rate should significantly decrease for a thousand to a million years, starting the hibernation phase. After that the nova awakes again-with accretion returning to the pre-eruption level and leading to a new nova explosion. The hibernation model predicts cyclical evolution of cataclysmic variables through phases of high and low mass-transfer. The theory gained some support from the discovery of ancient nova shells around the dwarf novae Z Camelopardalis and AT Cancri, but direct evidence for considerable mass-transfer changes prior, during and after nova eruptions has not hitherto been found. Here we report long-term observations of the classical nova V1213 Cen (Nova Centauri 2009) covering its pre- and post-eruption phases and precisely documenting its evolution. Within the six years before the explosion, the system revealed dwarf nova outbursts indicative of a low mass-transfer rate. The post-nova is two orders of magnitude brighter than the pre-nova at minimum light with no trace of dwarf nova behaviour, implying that the mass-transfer rate increased considerably as a result of the nova explosion.
NASA Astrophysics Data System (ADS)
Thipboon, Ritthichai; Kaewrakmuk, Metichai; Surina, Farung; Sanguansak, Nuanwan
2017-09-01
Recurrent novae (RNe) are novae with multiple recorded outbursts powered by a thermonuclear runaway. The outburst occurs on the surface of the white dwarf which accompanies with a late type main-sequence or giant secondary star transferring material onto the white dwarf primary star. They resemble classical novae (CNe) outbursts but only RNe has more than one recorded outbursts. RNe play an important role as one of the suspected progenitor systems of Type Ia supernovae (SNe) which are used as primary distance indicators in cosmology. Thus, it is important to investigate the outburst type of CNe and RNe and finally ascertain the population of objects that might ultimately be candidates for Type Ia SNe explosions. The proposal that RNe occupy a region separated from CNe in an outburst amplitude versus speed class diagram was adopted. Since the low amplitude results from the existence of an evolved secondary and/or high mass transfer rate in the quiescent system, RNe candidates should accordingly have low amplitude. We selected 3 preliminary targets including T Pyx, BT Mon and V574 Pup. Their amplitudes are not that low but the lowest amplitude that can be observed with Thai National Telescope (TNT). We obtained their magnitudes at quiescence using ULTRASPEC camera on the 2.4-m TNT. The positions of three targets on optical and near-infrared color-magnitude diagrams suggest that all three should have main-sequence secondary stars. This is true for T Pyx, whose secondary star has been confirmed its spectroscopy to be a main-sequence star, but not yet confirmed for BT Mon and V574 Pup.
Multiwavelength Modeling of Nove Atmospheres
NASA Technical Reports Server (NTRS)
Huschildt, P. H.
2001-01-01
LMC 1988 #1 was a slow, CO type, dust forming classical nova. It was the first extragalactic nova to be observed with the IUE satellite. We have successfully fitted observed ultraviolet and optical spectra of LMC 1988 #1 taken within the first two months of its outburst (when the atmosphere was still optically thick) with synthetic spectra computed using PHOENIX nova model atmospheres. The synthetic spectra reproduce most of the features seen in the spectra and provide V band magnitudes consistent with the observed light curve. The fits are improved by increasing the CNO abundances to 10 times the solar values. The bolometric luminosity of LMC 1988 #1 was approximately constant at 2 x 10(exp 38) ergs per second at a distance of 47.3 kpc for the first 2 months of the outburst until the formation of the dust shell.
Research activities in nuclear astrophysics and related areas
NASA Technical Reports Server (NTRS)
1996-01-01
NASA/GRO grant NAG 5-2081, at the University of Chicago, has provided support for a broad program of theoretical research in nuclear astrophysics and related areas, with regard to gamma-ray and hard X-ray emission from classical nova explosions. This research emphasized the possible detection of 22Na gamma-ray line emission from nearby novae involving ONeMg white dwarfs, the detailed examination of 26Al production in novae, and the possible detection of the predicted early gamma ray emission from novae that arises from the decay of the short lived, positron emitting isotopes of CNO elements. Studies of nova related problems have consumed an increasing fraction of the Principal Investigator's research efforts over the past decade. Current research addresses problems associated with the standard model for the outbursts of the classical novae: the occurrence of thermonuclear runaways (TNR) in the accreted hydrogen rich envelopes on white dwarfs in close binary systems (see, e.g., the reviews by Truran 1982; and Shara 1989). Research in progress and planned for the next three years has three main objectives: (1) to gain an improved understanding of the early evolution of the light curves of, particularly, the fastest novae; (2) to gain an improved understanding of the relative importance of the various possible mechanisms of envelope hydrogen depletion (e.g. winds, common envelope driven mass loss, and nuclear burning) to the long term evolution of novae in outburst; and (3) to seek to provide a somewhat more definitive statement of the role of classical novae in nucleosynthesis. Our proposed 2-D studies of convection during the early phases of the TNR and our systematic attempt to incorporate an improved treatment of radiation hydrodynamics into the hydrodynamic code utilized in our calculations, are particularly relevant to the first of these objectives. Further 2-D studies of the effects of common envelope evolution are intended to provide more realistic constraints on the mass depletion mechanisms. Finally, detailed calculations of the thermonuclear history of the matter ejected in novae will be carried out for representative nova configurations involving both carbon-oxygen (CO) and oxygen-neon-magnesium (ONeMg) white dwarfs.
A UNIVERSAL DECLINE LAW OF CLASSICAL NOVAE. IV. V838 HER (1991): A VERY MASSIVE WHITE DWARF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Mariko; Hachisu, Izumi; Cassatella, Angelo, E-mail: mariko@educ.cc.keio.ac.j, E-mail: hachisu@ea.c.u-tokyo.ac.j, E-mail: cassatella@fis.uniroma3.i
2009-10-20
We present a unified model of optical and ultraviolet (UV) light curves for one of the fastest classical novae, V838 Herculis (Nova Herculis 1991), and estimate its white dwarf (WD) mass. Based on an optically thick wind theory of nova outbursts, we model the optical light curves with free-free emission and the UV 1455 A light curves with blackbody emission. Our models of 1.35 +- 0.02 M {sub sun} WD simultaneously reproduce the optical and UV 1455 A observations. The mass lost by the wind is DELTAM {sub wind} approx 2 x 10{sup -6} M {sub sun}. We provide newmore » determinations of the reddening, E(B - V) = 0.53 +- 0.05, and of the distance, 2.7 +- 0.5 kpc.« less
Life after eruption VII: A search for stunted outbursts in thirteen post-novae
NASA Astrophysics Data System (ADS)
Vogt, N.; Tappert, C.; Puebla, E. C.; Fuentes-Morales, I.; Ederoclite, A.; Schmidtobreick, L.
2018-06-01
The results of a photometric campaign during three observing seasons 2013 - 2016 at the Cerro Tololo International Observatory (1.3-meter SMARTS telescope) are presented. The aim was to detect "stunted" outbursts in a total of 13 post novae more than 38 years after maximum brightness registered in their nova eruption light curve. In six of the targets (V728 Sco 1862, V1059 Sgr 1898, V849 Oph 1919, V363 Sgr 1927, HS Pup 1963 and V2572 Sgr 1969) we detected such dwarf nova-like mini-outbursts, with mean amplitudes between 0.2m and 2.2m and typical FWHM of 4-11 days, repeating every 9-32 days. The most regular outburst behavior is present in the eclipsing post-nova V728 Sco. In our sample there is no significant correlation between the occurrences of stunted outbursts and the time passed since the nova eruption maximum. However, considering all 15 post-novae that have been reported to show stunted outbursts we found a possible tendency for increasing outburst amplitudes at the rate 0.52 ± 0.23 mag/century during 30 - 250 years after nova eruption. This tendency is still doubtful due to the low number of cases available. If the stunted outburst activity is related to the mass transfer rate \\dot{M}, we conclude that the secular decrease of \\dot{M} predicted by the hibernation scenario must be at much longer time scales than ˜200 years actually covered with post-nova observations.
The Early Spectral Evolution of the Classical Nova ASASSN-15th in M33
NASA Astrophysics Data System (ADS)
Wagner, R. Mark; Neric, Marko; Darnley, Matt J.; Williams, Steven; Starrfield, Sumner; Woodward, Charles E.; Prieto, Jose Luis
2016-06-01
During the course of the All Sky Automated Survey for SuperNovae (ASAS-SN) a new transient source designated ASASSN-15th was identified on images of the nearby galaxy M33 obtained with the 14 cm Brutus telescope in Haleakala, Hawaii on 2015 Dec 1.4 UT at V ~ 16.5 mag. Given the location of the transient in M33 and its apparent V magnitude at discovery, the implied absolute visual magnitude was about -8.5 mag suggesting that the transient was a new classical nova outburst in M33. Optical spectroscopy obtained by us on 2015 Dec 2.3 showed broad emission lines of Balmer, Fe II, and Na I D with P Cygni-type line profiles superposed on a blue continuum. The spectrum was consistent with a Fe II-type classical nova in M33 discovered early in the outburst. Subsequent spectra obtained by us on 2015 Dec 10.9 UT showed significant evolution since our first spectrum in that the deep P Cygni-type line profiles seen earlier were now extremely shallow or had almost completely disappeared with the emission component growing in strength. Additional emission lines from O I, Si II, and possibly He I were also present. We obtained optical spectroscopy of ASASSN-15th on 17 epochs between 2015 Dec 1 and 2016 Feb 11 UT with the 2.4 m Hiltner telescope (+OSMOS) of the MDM Observatory, the 2 m fully robotic Liverpool Telescope (+SPRAT), and the 2 x 8.4 m Large Binocular Telescope (+MODS). We will present our spectroscopy and discuss the early evolution of ASASSN-15th in the context of Galactic Fe II-class novae.
NASA Technical Reports Server (NTRS)
Ladous, Constanze
1993-01-01
Dwarf novae are defined on grounds of their semi-regular brightness variations of some two to five magnitudes on time scales of typically 10 to 100 days. Historically several different classification schemes have been used. Today, dwarf novae are divided into three sub-classes: the U Geminorum stars, the SU Ursae Majoris stars, and the Z Camelopardalis stars. Outbursts of dwarf novae occur at semi-periodic intervals of time, typically every 10 to 100 days; amplitudes range from typically 2 to 5 mag. Within certain limits values are characteristic for each object. Relations between the outburst amplitude, or the total energy released during outburst, and the recurrence time have been found, as well as relations between the orbital period and the outburst decay time, the absolute magnitude during outburst maximum, and the widths of long and short outbursts, respectively. Some dwarf novae are known to have suspended their normal outburst activity altogether for a while. They later resumed it without having undergone any observable changes. The optical colors of dwarf novae all are quite similar during outburst, considerably bluer than during the quiescent state. During the outburst cycle, characteristic loops in the two color diagram are performed. At a time resolution on the order of minutes, strictly periodic photometric changes due to orbital motion become visible in the light curves of dwarf novae. These are characteristic for each system. Remarkably little is known about orbital variations during the course of an outburst. On time-scales of minutes and seconds, further more or less periodic types of variability are seen in dwarf novae. Appreciable flux is emitted by dwarf novae at all wavelengths from the X-rays to the longest IR wavelengths, and in some cases even in the radio. Most dwarf novae exhibit strong emission line spectra in the optical and UV during quiescence, although some have only very weak emissions in the optical and/or weak absorptions at UV wavelengths.
A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray-luminous Classical Nova to Date
NASA Astrophysics Data System (ADS)
Finzell, Thomas; Chomiuk, Laura; Metzger, Brian D.; Walter, Frederick M.; Linford, Justin D.; Mukai, Koji; Nelson, Thomas; Weston, Jennifer H. S.; Zheng, Yong; Sokoloski, Jennifer L.; Mioduszewski, Amy; Rupen, Michael P.; Dong, Subo; Starrfield, Sumner; Cheung, C. C.; Woodward, Charles E.; Taylor, Gregory B.; Bohlsen, Terry; Buil, Christian; Prieto, Jose; Wagner, R. Mark; Bensby, Thomas; Bond, I. A.; Sumi, T.; Bennett, D. P.; Abe, F.; Koshimoto, N.; Suzuki, D.; Tristram, P. J.; Christie, Grant W.; Natusch, Tim; McCormick, Jennie; Yee, Jennifer; Gould, Andy
2018-01-01
It has recently been discovered that some, if not all, classical novae emit GeV gamma-rays during outburst, but the mechanisms involved in the production ofgamma-rays are still not well understood. We present here a comprehensive multiwavelength data set—from radio to X-rays—for the most gamma-ray-luminous classical nova to date, V1324 Sco. Using this data set, we show that V1324 Sco is a canonical dusty Fe II-type nova, with a maximum ejecta velocity of 2600 km s‑1 and an ejecta mass of a few × {10}-5 {M}ȯ . There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324 Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324 Sco with other gamma-ray-detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma-rays in novae.
3D Hydrodynamic Simulation of Classical Novae Explosions
NASA Astrophysics Data System (ADS)
Kendrick, Coleman J.
2015-01-01
This project investigates the formation and lifecycle of classical novae and determines how parameters such as: white dwarf mass, star mass and separation affect the evolution of the rotating binary system. These parameters affect the accretion rate, frequency of the nova explosions and light curves. Each particle in the simulation represents a volume of hydrogen gas and are initialized randomly in the outer shell of the companion star. The forces on each particle include: gravity, centrifugal, coriolis, friction, and Langevin. The friction and Langevin forces are used to model the viscosity and internal pressure of the gas. A velocity Verlet method with a one second time step is used to compute velocities and positions of the particles. A new particle recycling method was developed which was critical for computing an accurate and stable accretion rate and keeping the particle count reasonable. I used C++ and OpenCL to create my simulations and ran them on two Nvidia GTX580s. My simulations used up to 1 million particles and required up to 10 hours to complete. My simulation results for novae U Scorpii and DD Circinus are consistent with professional hydrodynamic simulations and observed experimental data (light curves and outburst frequencies). When the white dwarf mass is increased, the time between explosions decreases dramatically. My model was used to make the first prediction for the next outburst of nova DD Circinus. My simulations also show that the companion star blocks the expanding gas shell leading to an asymmetrical expanding shell.
NASA Technical Reports Server (NTRS)
Nelson, Thomas; Donato, Davide; Mukai, Koji; Sokoloski, Jennifer; Chomiuk, Laura
2012-01-01
Classical nova events in symbiotic stars, although rare, offer a unique opportunity to probe the interaction between ejecta and a dense environment in stellar explosions. In this work, we use X-ray data obtained with Swift and Suzaku during the recent classical nova outburst in V407 Cyg to explore such an interaction. We find evidence of both equilibrium and non-equilibrium ionization plasmas at the time of peak X-ray brightness, indicating a strong asymmetry in the density of the emitting region. Comparing a simple model to the data, we find that the X-ray evolution is broadly consistent with nova ejecta driving a forward shock into the dense wind of the Mira companion. We detect a highly absorbed soft X-ray component in the spectrum during the first 50 days of the outburst that is consistent with supersoft emission from the nuclear burning white dwarf. The high temperature and short turn off time of this emission component, in addition to the observed breaks in the optical and UV lightcurves, indicate that the white dwarf in the binary is extremely massive. Finally, we explore the connections between the X-ray and GeV-ray evolution, and propose that the gamma ray turn-off is due to the stalling of the forward shock as the ejecta reach the red giant surface.
FUSE Observations of Galactic and LMC Novae in Outburst
NASA Technical Reports Server (NTRS)
Huschildt, P. H.
2001-01-01
This document is a collection of five abstracts from papers written on the 'FUSE Observations of Galactic and LMC Novae in Outburst'. The titles are the following: (1) Analyzing FUSE Observations of Galactic and LMC Novae; (2) Detailed NLTE Model Atmospheres for Novae during Outburst: Modeling Optical and Ultraviolet Observations for Nova LMC 1988; (3) Numerical Solution of the Expanding Stellar Atmosphere Problem; (4) A Non-LTE Line-Blanketed Expanding Atmosphere Model for A-supergiant Alpha Cygni; and (5) Non-LTE Model Atmosphere Analysis of the Early Ultraviolet Spectra of Nova Andromedae 1986. A list of journal publications is also included.
Modeling SOFIA/FORCAST spectra of the classical nova V5568 Sgr with 3D pyCloudy
NASA Astrophysics Data System (ADS)
Calvén, Emilia; Helton, L. Andrew; Sankrit, Ravi
2017-06-01
We present our first results modelling Nova V5668 Sgr using the pseudo-3D photoionization code pyCloudy (Morisset 2013). V5668 Sgr is a classical nova of the FeII class (Williams et al. 2015; Seach 2015) showing signs of a bipolar flow (Banerjee et al. 2015). We construct a grid of models, which use hour-glass morphologies and a range of C, N, O and Ne abundances, to fit a suite of spectroscopic data in the near and mid-IR obtained between 82 to 556 days after outburst. The spectra were obtained using the FORCAST mid-IR instrument onboard the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) and the 1.2m near-IR telescope of the Mount Abu Infrared Observatory. Additional photometric data from FORCAST, The STONY BROOK/SMARTS Atlas of (mostly) Southern Novae (Walter et al., 2012) and the American Association of Variable Star Observers (AAVSO) were used to supplement the spectral data to obtain the SED of the nova at different times during its evolution. The work presented here is the initial step towards developing a large database of 1D and 3D models that may be used to derive the elemental abundances and dust properties of classical novae.
Hydrodynamic studies of oxygen, neon, and magnesium novae
NASA Technical Reports Server (NTRS)
Starrfield, Sumner; Sparks, W. M.; Truran, J. W.
1987-01-01
Results are presented from recent theoretical studies that have examined the properties of nova outbursts on ONeMg white dwarfs. These outbursts are much more violent and occur much more frequently than outbursts on CO white dwarfs. Hydrodynamic simulations of both kinds of outbursts are in excellent agreement with the observations.
Serendipitous discovery of a dwarf Nova in the Kepler field near the G dwarf KIC 5438845
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Alexander; Ayres, Thomas R.; Neff, James E.
2015-02-01
The Kepler satellite provides a unique window into stellar temporal variability by observing a wide variety of stars with multi-year, near-continuous, high precision, optical photometric time series. While most Kepler targets are faint stars with poorly known physical properties, many unexpected discoveries should result from a long photometric survey of such a large area of sky. During our Kepler Guest Observer programs that monitored late-type stars for starspot and flaring variability, we discovered a previously unknown dwarf nova that lies within a few arcseconds of the mid-G dwarf star KIC 5438845. This dwarf nova underwent nine outbursts over a 4more » year time span. The two largest outbursts lasted ∼17–18 days and show strong modulations with a 110.8 minute period and a declining amplitude during the outburst decay phase. These properties are characteristic of an SU UMa-type cataclysmic variable. By analogy with other dwarf nova light curves, we associate the 110.8 minute (1.847 hr) period with the superhump period, close to but slightly longer than the orbital period of the binary. No precursor outbursts are seen before the super-outbursts and the overall super-outburst morphology corresponds to Osaki and Meyer “Case B” outbursts, which are initiated when the outer edge of the disk reaches the tidal truncation radius. “Case B” outbursts are rare within the Kepler light curves of dwarf novae. The dwarf nova is undergoing relatively slow mass transfer, as evidenced by the long intervals between outbursts, but the mass transfer rate appears to be steady, because the smaller “normal” outbursts show a strong correlation between the integrated outburst energy and the elapsed time since the previous outburst. At super-outburst maximum the system was at V ∼ 18, but in quiescence it is fainter than V ∼ 22, which will make any detailed quiescent follow-up of this system difficult.« less
Outburst of the recurrent nova V745 Sco
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2014-02-01
The outburst of the recurrent nova V745 Sco (Nova Sco 1937) by Rod Stubbings (Tetoora Road, VIC, Australia) at visual magnitude 9.0 on 2014 February 6.694 UT is reported. This recurrent nova is fading quickly. Follow-up observations of all types (visual, CCD, DSLR) are strongly encouraged, as is spectroscopy; fast time-series of this nova may be useful to detect possible flaring activity as was observed during the outburst of U Scorpii in 2010. Coincident time-series by multiple observers would be most useful for such a study, with a V-filter being preferred. Observations reported to the AAVSO International Database show V745 Sco at visual mag. 10.2 on 2014 Feb. 07.85833 UT (A. Pearce, Nedlands, W. Australia). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. Previous outbursts occurred in 1937 and 1989. The 1937 outburst was detected in 1958 (in decline at magnitude 11.0 on 1937 May 11.1 UT; outburst had occurred within the previous 19 days) by Lukas Plaut on plates taken by Hendrik van Gent at the Leiden Observatory; the object was announced as Nova Sco 1937 and later assigned the GCVS name V745 Sco. The 1989 outburst was detected on 1989 August 1.55 UT by Mati Morel (MMAT, Thornton, NSW, Australia) at visual magnitude 10.4 and in decline. Dr. Bradley Schaefer (Louisiana State University) reports (2010ApJS..187..275S) in his comprehensive analysis of the 10 known galactic recurrent novae (including V745 Sco) that the median interval between recurrent novae outbursts is 24 years. The interval since the 1989 outburst of V745 Sco is 24.10 years. See the Alert Notice for additional visual and multicolor photometry and for more details.
Unusual ``Stunted'' Outbursts in Old Novae and Nova-Like Cataclysmic Variables
NASA Astrophysics Data System (ADS)
Honeycutt, R. K.; Robertson, J. W.; Turner, G. W.
1998-06-01
Outbursts averaging 0.6 mag in amplitude and 10 days in width are described in five old novae and nova-like cataclysmic variables: UU Aqr, Q Cyg, CP Lac, X Ser, and RW Sex. These stars are thought to be high mass transfer rate systems for which the accretion disk is expected to be stable against the thermal instability responsible for dwarf nova outbursts. The widths and spacings of these events are similar to those of dwarf nova eruptions, but the amplitudes are significantly smaller, or ``stunted.'' The outbursts are sometimes accompanied by dips. These dips have amplitudes that are similar to the outbursts' but have shapes that scatter significantly more than the shapes of the outbursts. The outbursts and dips sometimes occur as pairs and are sometimes isolated. We are not able at this time to determine a single common mechanism for this behavior, or even to conclude that some mechanisms are preferred. Rather, we characterize these phenomena with regard to outburst shapes and frequency of occurrence and explore a range of possible causes, including truncated disks, mass transfer modulations, and Z Camelopardalis type behavior. Arguments are assembled for and against such possible mechanisms, and key observations are suggested. It appears unlikely that accretion disk instabilities are the single common cause of these phenomena, and we are left with either a combination of accretion disk and mass transfer events or a situation in which mass transfer events are somehow responsible for all these varied behaviors.
Kepler Observations of V447 Lyr: an Eclipsing U Gem Cataclysmic Variable
NASA Technical Reports Server (NTRS)
Ramsay, Gavin; Cannizzo, John K.; Howell, Steve B.; Wood, Matt A.; Still, Martin; Barclay, Thomas; Smale, Alan
2012-01-01
We present the results of an analysis of Kepler data covering 1.5 yr of the dwarf nova V447 Lyr. We detect eclipses of the accretion disc by the mass donating secondary star every 3.74 h which is the binary orbital period. V447 Lyr is therefore the first dwarf nova in the Kepler field to show eclipses.We also detect five long outbursts and six short outbursts showing V447 Lyr is a U Gem-type dwarf nova. We show that the orbital phase of the mid-eclipse occurs earlier during outbursts compared to quiescence and that the width of the eclipse is greater during outburst. This suggests that the bright spot is more prominent during quiescence and that the disc is larger during outburst than quiescence. This is consistent with an expansion of the outer disc radius due to the presence of high viscosity material associated with the outburst, followed by a contraction in quiescence due to the accretion of low angular momentum material. We note that the long outbursts appear to be triggered by a short outburst, which is also observed in the super-outbursts of SU UMa dwarf novae as observed using Kepler.
A survey of IRAS data on 41 classical novae
NASA Astrophysics Data System (ADS)
Harrison, T. E.; Gehrz, R. D.
1988-09-01
The IRAS database has been searched for detections of 41 classical novae using coadditions of survey scans; 15 were detected. IRAS temporal observations of novae in outburst are discussed. The observed long-wavelength infrared distributions of DQ Her, and possibly HR Del, can be explained by emission from small (a of about 0.1 microns) dust grains heated by the central object. An alternative explanation for the energy distributions of DQ Her and HR Del is emission from fine-structure lines. FH Ser and LW Ser display energy distributions that have color temperatures much too hot to be due to heating of dust by the central source in any plausible scenario. Line emission is probably the best explanation of their observed energy distributions. The novae NQ Vul and LV Vul have energy distributions that may be contaminated by emission from galactic cirrus. The unusual object PL 1547.3-5612 exhibits an energy distribution that does not resemble those of planetary nebulae or other novae detected in this sample. An IRAS low-resolution spectrum of RR Tel shows the 10-micron silicate emission feature.
Beryllium detection in the very fast nova ASASSN-16kt (V407 Lupi)
NASA Astrophysics Data System (ADS)
Izzo, L.; Molaro, P.; Bonifacio, P.; Della Valle, M.; Cano, Z.; de Ugarte Postigo, A.; Prieto, J. L.; Thöne, C.; Vanzi, L.; Zapata, A.; Fernandez, D.
2018-02-01
We present high-resolution spectroscopic observations of the fast nova ASASSN-16kt (V407 Lup). A close inspection of spectra obtained at early stages has revealed the presence of low-ionization lines, and among the others we have identified the presence of the ionised 7Be doublet in a region relatively free from possible contaminants. After studying their intensities, we have inferred that ASASSN-16kt has produced (5.9 - 7.7)× 10-9 M⊙ of 7Be. The identification of bright Ne lines may suggest that the nova progenitor is a massive (1.2 M⊙) oxygen-neon white dwarf. The high outburst frequency of oxygen-neon novae implies that they likely produce an amount of Be similar, if not larger, to that produced by carbon-oxygen novae, then confirming that classical novae are among the main factories of lithium in the Galaxy.
The inter-outburst behavior of cataclysmic variables
NASA Technical Reports Server (NTRS)
Szkody, Paula; Mattei, Janet A.; Waagen, Elizabeth O.; Stablein, Clay
1990-01-01
Existing International Ultraviolet Explorer (IUE) and American Association of Variable Star Observers (AAVSO) archive data was used to accomplish a large scale study of what happens to the ultraviolet flux of accretion disk systems during the quiescent intervals between outbursts and how it relates to the preceding outburst characteristics of amplitude and width. The data sample involved multiple IUE observations for 16 dwarf novae and 8 novae along with existing optical coverage. Results indicate that most systems show correlated ultraviolet (UV) flux behavior with interoutburst phase, with 60 percent of the dwarf novae and 50 percent of the novae having decreasing flux trends while 33 percent of the dwarf novae and 38 percent of the novae show rising UV flux during the quiescent interval. All of the dwarf novae with decreasing UV fluxes at 1475A have orbital periods longer than 4.4 hours, while all (except BV Cen) with flat or rising fluxes at 1475A have orbital periods less than two hours. There are not widespread correlations of the UV fluxes with the amplitude of the preceding outburst and no correlations with the width of the outburst. From a small sample (7) that have relatively large quiescent V magnitude changes between the IUE observations, most show a strong correlation between the UV and optical continuum. Interpretation of the results is complicated by not being able to determine how much the white dwarf contributes to the ultraviolet flux. However, it is now evident that noticeable changes are occurring in the hot zones in accreting systems long after the outburst, and not only for systems that are dominated by the white dwarf. Whether these differences are due to different outburst mechanisms or to changes on white dwarfs which provide varying contributions to the UV flux remains to be determined.
NASA Technical Reports Server (NTRS)
Sparks, W. M.; Starrfield, S.; Truran, J. W.
1978-01-01
The paper reports use of a Lagrangian implicit hydrodynamics computer code incorporating a full nuclear-reaction network to follow a thermonuclear runaway in the hydrogen-rich envelope of a 1.25 solar-mass white dwarf. In this evolutionary sequence the envelope was assumed to be of normal (solar) composition and the resulting outburst closely resembles that of the slow nova HR Del. In contrast, previous CNO-enhanced models resemble fast nova outbursts. The slow-nova model ejects material by radiation pressure when the high luminosity of the rekindled hydrogen shell source exceeds the local Eddington luminosity of the outer layers. This is in contrast to the fast nova outburst where ejection is caused by the decay of the beta(+)-unstable nuclei. Nevertheless, radiation pressure probably plays a major role in ejecting material from the fast nova remnants. Therefore, the sequence from slow to fast novae can be interpreted as a sequence of white dwarfs with increasing amounts of enhanced CNO nuclei in their hydrogen envelopes, although other parameters such as the white-dwarf mass and accretion rate probably contribute to the observed variation between novae.
Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae
NASA Astrophysics Data System (ADS)
Wu, C.; Wang, B.; Liu, D.; Han, Z.
2017-07-01
Context. Type Ia supernovae (SNe Ia) play a crucial role in studying cosmology and galactic chemical evolution. They are thought to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs) when their masses reach the Chandrasekar mass limit in binaries. Previous studies have suggested that He novae may be progenitor candidates of SNe Ia. However, the mass retention efficiencies during He nova outbursts are still uncertain. Aims: In this article, we aim to study the mass retention efficiencies of He nova outbursts and to investigate whether SNe Ia can be produced through He nova outbursts. Methods: Using the stellar evolution code Modules for Experiments in Stellar Astrophysics, we simulated a series of multicycle He-layer flashes, in which the initial WD masses range from 0.7 to 1.35 M⊙ with various accretion rates. Results: We obtained the mass retention efficiencies of He nova outbursts for various initial WD masses, which can be used in the binary population synthesis studies. In our simulations, He nova outbursts can increase the mass of the WD to the Chandrasekar mass limit and the explosive carbon burning can be triggered in the center of the WD; this suggests that He nova outbursts can produce SNe Ia. Meanwhile, the mass retention efficiencies in the present work are lower than those of previous studies, which leads to a lower birthrates of SNe Ia through the WD + He star channel. Furthermore, we obtained the elemental abundances distribution at the moment of explosive carbon burning, which can be used as the initial input parameters in studying explosion models of SNe Ia.
100y DASCH Search for historical outbursts of Black Hole Low Mass X-ray Binaries
NASA Astrophysics Data System (ADS)
Grindlay, Jonathan E.; Miller, George; Gomez, Sebastian
2018-01-01
Black Hole Low mass X-ray binaries (BH-LMXBs) are all transients, although several (e.g. GRS1915+109 and GX339-4) are quasi-persistent. All of the now 22 dynamically confirmed BH-LMXBs were discovered by their luminous outbursts, reaching Lx ~10^37 ergs/s, with outburst durations of typically ~1-3 months. These systems then (with few exceptions) return to a deep quiescent state, with Lx reduced by factors ~10^5-6 and hard X-ray spectra. The X-ray outbursts are accompanied by optical outbursts (if not absorbed by Galactic extinction) with ~6-9 magnitude increases and similar lightcurve shapes and durations as the X-ray (discovery) outburst. Prior to this work, only 3 BH-LMXBs have had historical (before the X-ray discovery) outbursts found in the archival data: A0620-00, the first BH-LMXB to be so identified, V404 Cyg (discoverd as "Nova Cyg" in 1938 and regarded as a classical nova), and V4641-Sgr which was given its variable star name when first noted in 1975. We report on the historical outbursts now discovered from the DASCH (Digital Access to a Sky Century @ Harvard) data from scanning and digitizing the now ~210,000 glass plates in the northern Galactic Hemisphere. This was one of the primary motivations for the DASCH project: to use the detection (or lack threof) of historic outbursts to measure or constrain the Duty Cycle of the accreting black holes in these systems. This, in turn, allows the total population of BH-LMXBs to be estimated and compared with that for the very similar systems containing neutron stars as the accretor (NS-LMXBs). Whereas the ratio of BHs/NSs from stellar evolution and IMFs is expected to be <<1, the DASCH results on half the sky point to an excess of BH-LMXBs. This must constrain the formation process for these systems, of importance for understanding both BH formation and compact binary evolution.
A deep optical imaging study of the nebular remnants of classical novae
NASA Astrophysics Data System (ADS)
Slavin, A. J.; O'Brien, T. J.; Dunlop, J. S.
1995-09-01
An optical imaging study of old nova remnants has revealed previously unobserved features in the shells of 13 classical novae - DQ Her, FH Ser, HR Del, GK Per, V1500 Cyg, T Aur, V533 Her, NQ Vul, V476 Cyg, DK Lac, LV Vul, RW UMi and V450 Cyg. These data indicate a possible correlation between nova speed class and the ellipticity of the resulting remnants - those of faster novae tend to comprise randomly distributed clumps of ejecta superposed on spherically symmetric diffuse material, whilst slower novae produce more structured ellipsoidal remnants with at least one and sometimes several rings of enhanced emission. By measuring the extent of the resolved shells and combining this information with previously published ejection speeds, we use expansion parallax to estimate distances for the 13 novae. Whilst we are able to deduce new information about every nova, it is notable that these observations include the first detections of shells around the old novae V450 Cyg and NQ Vul, and that velocity-resolved images of FH Ser and DQ Her have enabled us to estimate their orbital inclinations. Our observations of DQ Her also show that the main ellipsoidal shell is constricted by three rings and surrounded by a faint halo; this halo contains long tails extending outwards from bright knots, perhaps indicating that during or after outburst a fast inner wind has broken through the fractured principal shell.
The Shape of Long Outbursts in U Gem Type Dwarf Novae from AAVSO Data
NASA Technical Reports Server (NTRS)
Cannizzo, John K.
2012-01-01
We search the American Association of Variable Star Observers (AAVSO) archives of the two best studied dwarf novae in an attempt to find light curves for long out bursts that are extremely well-characterized. The systems are U Gem and S8 Cyg. Our goal is to search for embedded precursors such as those that have been found recently in the high fidelity Kepler data for superoutbursts of some members of the 8U UMa subclass of dwarf novae. For the vast majority of AAV80 data, the combination of low data cadence and large errors associated with individual measurements precludes one from making any strong statement about the shape of the long outbursts. However, for a small number of outbursts, extensive long term monitoring with digital photometry yields high fidelity light curves. We report the finding of embedded precursors in two of three candidate long outbursts. This reinforces van Paradijs' finding that long outbursts in dwarf novae above the period gap and superoutbursts in systems below the period gap constitute a unified class. The thermal-tidal instability to account for superoutbursts in the SU UMa stars predicts embedded precursors only for short orbital period dwarf novae, therefore the presence of embedded precursors in long orbital period systems - U Gem and SS Cyg - argues for a more general mechanism to explain long outbursts.
Identification of Recurrent Novae in M31
NASA Astrophysics Data System (ADS)
Shafter, Allen W.; Rector, T. A.; Schweizer, F.; Bryan, J.
2014-01-01
Over roughly the past century a total of more than 900 optical transient events have been recorded in M31, the vast majority of which are believed to represent eruptions of classical novae. The impressive dataset of nova positions put together by Pietsch (http://www.mpe.mpg.de m31novae/opt/m31/) provides the opportunity to search for multiple nova outbursts from the same progenitor system, and thus to characterize the population of recurrent novae (RNe) in M31. In order to identify RNe candidates, we have searched for spatial near coincidences among the 945 recorded novae given in the Pietsch catalog through the end of August 2013. Given that the positions of many of the early novae are quite uncertain, we have set our initial screen to include nova pairs with nominal separations less than or equal to 6 arcsec. We have identified a total of 102 novae that pass this coarse screen. Of these, 78 novae form 39 pairs, 15 form five triples, four novae are part of a quad, and five novae form a quint. As demonstrated by Shafter, Rice and Daub (2009, presented at the "Wild Stars in the Old West II" conference, mintaka.sdsu.edu/faculty/shafter/extragalactic_novae/RNePoster4.pdf), the majority of the 102 novae surviving our initial screen are expected to be associated with chance positional near coincidences (especially near the nucleus), and are not RNe. To decide which candidates are indeed RNe, we have undertaken a study to locate the original discovery plates, CCD images or published finding charts, and to perform the necessary astrometry to identify which of our candidate RNe are chance positional coincidences, and which are RNe. For each candidate, we estimate the probability that the object is a chance positional coincidence as in Shafter et al. (2009). To date, we have been successful in identifying finding charts or original images for most of the candidates, and have found a total of 23 nova outbursts in M31 associated with 10 systems that are almost certainly RNe.
Nonradial Pulsations in Post-outburst Novae
NASA Astrophysics Data System (ADS)
Wolf, William M.; Townsend, Richard H. D.; Bildsten, Lars
2018-03-01
After an optical peak, a classical or recurrent nova settles into a brief (days to years) period of quasi-stable thermonuclear burning in a compact configuration nearly at the white dwarf (WD) radius. During this time, the underlying WD becomes visible as a strong emitter of supersoft X-rays. Observations during this phase have revealed oscillations in the X-ray emission with periods on the order of tens of seconds. A proposed explanation for the source of these oscillations is internal gravity waves excited by nuclear reactions at the base of the hydrogen-burning layer. In this work, we present the first models exhibiting unstable surface g-modes with periods similar to oscillation periods found in galactic novae. However, when comparing mode periods of our models to the observed oscillations of several novae, we find that the modes that are excited have periods shorter than that observed.
EVERY INTERACTING DOUBLE WHITE DWARF BINARY MAY MERGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Ken J.
2015-05-20
Interacting double white dwarf (WD) binaries can give rise to a wide variety of astrophysical outcomes ranging from faint thermonuclear and Type Ia supernovae to the formation of neutron stars and stably accreting AM Canum Venaticorum systems. One key factor affecting the final outcome is whether mass transfer remains dynamically stable or instead diverges, leading to the tidal disruption of the donor and the merger of the binary. It is typically thought that for low ratios of the donor mass to the accretor mass, mass transfer remains stable, especially if accretion occurs via a disk. In this Letter, we examinemore » low mass ratio double WD binaries and find that the initial phase of hydrogen-rich mass transfer leads to a classical nova-like outburst on the accretor. Dynamical friction within the expanding nova shell shrinks the orbit and causes the mass transfer rate to increase dramatically above the accretor's Eddington limit, possibly resulting in a binary merger. If the binary survives the first hydrogen-rich nova outbursts, dynamical friction within the subsequent helium-powered nova shells pushes the system even more strongly toward merger. While further calculations are necessary to confirm this outcome for the entire range of binaries previously thought to be dynamically stable, it appears likely that most, if not all, interacting double WD binaries will merge during the course of their evolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Thomas; Chomiuk, Laura; Roy, Nirupam
2014-04-10
Despite being the prototype of its class, T Pyx is arguably the most unusual and poorly understood recurrent nova. Here, we use radio observations from the Karl G. Jansky Very Large Array to trace the evolution of the ejecta over the course of the 2011 outburst of T Pyx. The radio emission is broadly consistent with thermal emission from the nova ejecta. However, the radio flux began rising surprisingly late in the outburst, indicating that the bulk of the radio-emitting material was either very cold, or expanding very slowly, for the first ∼50 days of the outburst. Considering a plausiblemore » range of volume filling factors and geometries for the ejecta, we find that the high peak flux densities of the radio emission require a massive ejection of (1-30) × 10{sup –5} M {sub ☉}. This ejecta mass is much higher than the values normally associated with recurrent novae, and is more consistent with a nova on a white dwarf well below the Chandrasekhar limit.« less
Model Atmospheres for Novae in Outburst: Summary of Research
NASA Technical Reports Server (NTRS)
Hauschildt, Peter H.
1999-01-01
This paper presents a final report and summary of research on Model Atmospheres for Novae in Outburst. Some of the topics include: 1) Detailed NLTE (non-local thermodynamic equilibrium) Model Atmospheres for Novae during Outburst: II. Modeling optical and ultraviolet observations of Nova LMC 1988 #1; 2) A Non-LTE Line-Blanketed Stellar Atmosphere Model of the Early B Giant epsilon CMa; 3) Spectroscopy of Low Metallicity Stellar atmospheres; 4) Infrared Colors at the Stellar/Substellar Boundary; 5) On the abundance of Lithium in T CrB; 6) Numerical Solution of the Expanding Stellar Atmosphere Problem; and 7) The NextGen Model Atmosphere grid for 3000 less than or equal to T (sub eff) less than or equal to 10000K.
A LIGHT CURVE ANALYSIS OF CLASSICAL NOVAE: FREE-FREE EMISSION VERSUS PHOTOSPHERIC EMISSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hachisu, Izumi; Kato, Mariko, E-mail: hachisu@ea.c.u-tokyo.ac.jp, E-mail: mariko@educ.cc.keio.ac.jp
2015-01-10
We analyzed light curves of seven relatively slower novae, PW Vul, V705 Cas, GQ Mus, RR Pic, V5558 Sgr, HR Del, and V723 Cas, based on an optically thick wind theory of nova outbursts. For fast novae, free-free emission dominates the spectrum in optical bands rather than photospheric emission, and nova optical light curves follow the universal decline law. Faster novae blow stronger winds with larger mass-loss rates. Because the brightness of free-free emission depends directly on the wind mass-loss rate, faster novae show brighter optical maxima. In slower novae, however, we must take into account photospheric emission because of theirmore » lower wind mass-loss rates. We calculated three model light curves of free-free emission, photospheric emission, and their sum for various white dwarf (WD) masses with various chemical compositions of their envelopes and fitted reasonably with observational data of optical, near-IR (NIR), and UV bands. From light curve fittings of the seven novae, we estimated their absolute magnitudes, distances, and WD masses. In PW Vul and V705 Cas, free-free emission still dominates the spectrum in the optical and NIR bands. In the very slow novae, RR Pic, V5558 Sgr, HR Del, and V723 Cas, photospheric emission dominates the spectrum rather than free-free emission, which makes a deviation from the universal decline law. We have confirmed that the absolute brightnesses of our model light curves are consistent with the distance moduli of four classical novae with known distances (GK Per, V603 Aql, RR Pic, and DQ Her). We also discussed the reason why the very slow novae are about ∼1 mag brighter than the proposed maximum magnitude versus rate of decline relation.« less
Models of classical and recurrent novae
NASA Technical Reports Server (NTRS)
Friedjung, Michael; Duerbeck, Hilmar W.
1993-01-01
The behavior of novae may be divided roughly into two separate stages: quiescence and outburst. However, at closer inspection, both stages cannot be separated. It should be attempted to explain features in both stages with a similar model. Various simple models to explain the observed light and spectral observations during post optical maximum activity are conceivable. In instantaneous ejection models, all or nearly all material is ejected in a time that is short compared with the duration of post optical maximum activity. Instantaneous ejection type 1 models are those where the ejected material is in a fairly thin shell, the thickness of which remains small. In the instantaneous ejection type 2 model ('Hubble Flow'), a thick envelope is ejected instantaneously. This envelope remains thick as different parts have different velocities. Continued ejection models emphasize the importance of winds from the nova after optical maximum. Ejection is supposed to occur from one of the components of the central binary, and one can imagine a general swelling of one of the components, so that something resembling a normal, almost stationary, stellar photosphere is observed after optical maximum. The observed characteristics of recurrent novae in general are rather different from those of classical novae, thus, models for these stars need not be the same.
Late stages in the evolution of classical novae
NASA Technical Reports Server (NTRS)
Starrfield, S.; Krautter, J.; Sonneborn, G.; Shore, S. N.; Wagner, R. M.; Austin, S.; Saizar, P.; Ferland, G.; Wade, R.; Gehrz, R. D.
1990-01-01
We have begun a study of the long term evolution of novae in outburst in order to determine the means by which they return in quiescence when nuclear burning has ended. This project involves both IUE and optical observations and theoretical predictions. Recently, in the initial observational part of this project, we have obtained IUE Short Wavelength Prime (SWP) spectra of GQ Mus 1983 and QU Vul 1984. Each spectrum was a 16 hour exposure using a combined US1 plus Vilspa shift. No novae have been studied in the UV for as long as QU Vul and GQ Mus and observations of their spectral evolution are providing unique data on the turn-off time scale. We have also obtained the spectra of old novae from the IUE archives in order to compare and contrast the existing spectra with those of GQ Mus and Qu Vul. The theoretical prediction is that a nova should be very hot just before turnoff but x ray observations from EXOSAT do not confirm this prediction.
Exquisite Nova Light Curves from the Solar Mass Ejection Imager (SMEI)
NASA Astrophysics Data System (ADS)
Hounsell, R.; Bode, M. F.; Hick, P. P.; Buffington, A.; Jackson, B. V.; Clover, J. M.; Shafter, A. W.; Darnley, M. J.; Mawson, N. R.; Steele, I. A.; Evans, A.; Eyres, S. P. S.; O'Brien, T. J.
2010-11-01
We present light curves of three classical novae (CNe; KT Eridani, V598 Puppis, V1280 Scorpii) and one recurrent nova (RS Ophiuchi) derived from data obtained by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. SMEI provides near complete skymap coverage with precision visible-light photometry at 102 minute cadence. The light curves derived from these skymaps offer unprecedented temporal resolution around, and especially before, maximum light, a phase of the eruption normally not covered by ground-based observations. They allow us to explore fundamental parameters of individual objects including the epoch of the initial explosion, the reality and duration of any pre-maximum halt (found in all three fast novae in our sample), the presence of secondary maxima, speed of decline of the initial light curve, plus precise timing of the onset of dust formation (in V1280 Sco) leading to estimation of the bolometric luminosity, white dwarf mass, and object distance. For KT Eri, Liverpool Telescope SkyCamT data confirm important features of the SMEI light curve and overall our results add weight to the proposed similarities of this object to recurrent rather than to CNe. In RS Oph, comparison with hard X-ray data from the 2006 outburst implies that the onset of the outburst coincides with extensive high-velocity mass loss. It is also noted that two of the four novae we have detected (V598 Pup and KT Eri) were only discovered by ground-based observers weeks or months after maximum light, yet these novae reached peak magnitudes of 3.46 and 5.42, respectively. This emphasizes the fact that many bright novae per year are still overlooked, particularly those of the very fast speed class. Coupled with its ability to observe novae in detail even when relatively close to the Sun in the sky, we estimate that as many as five novae per year may be detectable by SMEI.
X-ray Novae and Related Systems
NASA Technical Reports Server (NTRS)
Wheeler, J. Craig; Kim, Soonwook; Mineshige, Shin
1992-01-01
Accretion disk thermal instability models have been successful in accounting for the basic observations of dwarf novae and the steady behavior of nova-like systems. Models for the dwarf-nova like variability of the old nova and intermediate polar GK Per give good agreement with the burst amplitude, profile and recurrence time in the optical and UV. A month-long 'precursor plateau' in the UV is predicted for the expected 1992 outburst prior to the rise to maximum in the optical and UV. The models for the time scales of the outbursts and corresponding UV spectra at maximum are consistent with the inner edge of the accretion disk being essentially constant between quiescence and outburst and a factor of four larger than the co-rotation radius. These conclusions represent a challenge to the standard theory of magnetic accretion. Disk instability models have also given a good representation of the soft X-ray and optical outbursts of the X-ray novae A0620-00 and GS2000+25. Formation of coronae above the disk, heated by magneto-acoustic flux from the disk, may account for the temporal and spectral properties of the hard X-ray and gamma ray emission of related sources such as Cyg X-1, GS 2023+33 (V404 Cyg), IE 1740.7-2942 (the 'Galactic Center' Einstein Source), and GS 1124-683 (Nova Muscae).
Atypical dust species in the ejecta of classical novae
NASA Astrophysics Data System (ADS)
Helton, L. A.; Evans, A.; Woodward, C. E.; Gehrz, R. D.
2011-03-01
A classical nova outburst arises from a thermonuclear runaway in the hydrogen-rich material accreted onto the surface of a white dwarf in a binary system. These explosions can produce copious amounts of heavy element enriched material that are ejected violently into the surrounding interstellar medium. In some novae, conditions in the ejecta are suitable for the formation of dust of various compositions, including silicates, amorphous carbon, silicon carbide, and hydrocarbons. Multiple dust grain types are sometimes produced in the same system. CO formation in novae may not reach saturation, thus invalidating the usual paradigm in which the C:O ratio determines the dust species. A few novae, such as V705 Cas and DZ Cru, have exhibited emission features near 6, 8, and 11 μmthat are similar to "Unidentified Infrared" (UIR) features, but with significant differences in position and band structure. Here, we present Spitzer IRS spectra of two recent dusty novae, V2361 Cyg and V2362 Cyg, that harbor similar peculiar emission structures superimposed on features arising from carbonaceous grains. In other astronomical objects, such as star forming regions and young stellar objects, emission peaks at 6.2, 7.7, and 11.3 μmhave been associated with polycyclic aromatic hydrocarbon (PAH) complexes. We suggest that hydrogenated amorphous carbon (HAC) may be the source of these features in novae based upon the spectral behavior of the emission features and the conditions under which the dust formed.
On the implications of the period distributions of subclasses of cataclysmic variables
NASA Astrophysics Data System (ADS)
Verbunt, Frank
1997-09-01
The period distributions of dwarf novae and nova-like variables above the period gap are different if the VY Scl systems are classed with the nova-like variables, but the same when the VY Scl phenomenon is classed with the dwarf nova outbursts. For the remaining nova-like variables, the period gap is no longer significant. Classification of the VY Scl phenomenon with dwarf novae suggests that dwarf nova outbursts are caused by variation in mass transfer from the donor. Absence of the period gap obviates the need for models explaining it, and invalidates one piece of evidence for the importance of magnetic braking for the evolution of cataclysmic variables and of low-mass binaries in general.
NASA Astrophysics Data System (ADS)
Shara, Michael M.; Drissen, Laurent; Martin, Thomas; Alarie, Alexandre; Stephenson, F. Richard
2017-02-01
The Z Cam-type dwarf nova AT Cancri (AT Cnc) displays a classical nova (CN) shell, demonstrating that mass transfer in cataclysmic binaries decreases substantially after a CN eruption. The hibernation scenario of cataclysmic binaries predicts such a decrease, on a time-scale of a few centuries. In order to measure the time since AT Cnc's last CN eruption, we have measured the radial velocities of a hundred clumps in its ejecta with SITELLE, Canada-France-Hawaii Telescope's recently commissioned imaging Fourier transform spectrometer. These range from -455 to +490 km s-1. Coupled with the known distance to AT Cnc of 460 pc, the size of AT Cnc's shell, and a simple model of nova ejecta deceleration, we determine that the last CN eruption of this system occurred 330_{-90}^{+135} yr ago. This is the most rapid transition from a high mass-transfer rate, nova-like variable to a low mass-transfer rate, dwarf nova yet measured, and in accord with the hibernation scenario of cataclysmic binaries. We conclude by noting the similarity in the deduced outburst date (within a century of 1686 CE) of AT Cnc to a `guest star' reported in the constellation Cancer by Korean observers in 1645 CE.
Turbulent fluctuations and the excitation of Z Cam outbursts
NASA Astrophysics Data System (ADS)
Ross, Johnathan; Latter, Henrik N.
2017-09-01
Z Cam variables are a subclass of dwarf nova that lie near a global bifurcation between outbursting ('limit cycle') and non-outbursting ('standstill') states. It is believed that variations in the secondary star's mass-injection rate instigate transitions between the two regimes. In this paper, we explore an alternative trigger for these transitions: stochastic fluctuations in the disc's turbulent viscosity. We employ simple one-zone and global viscous models which, though inappropriate for detailed matching to observed light curves, clearly indicate that turbulent disc fluctuations induce outbursts when the system is sufficiently close to the global bifurcation point. While the models easily produce the observed 'outburst/dip' pairs exhibited by Z Cam and Nova-like variables, they struggle to generate long trains of outbursts. We conclude that mass transfer variability is the dominant physical process determining the overall Z Cam standstill/outburst pattern, but that viscous stochasticity provides an additional ingredient explaining some of the secondary features observed.
DYNAMICAL FRAGMENTATION OF THE T PYXIDIS NOVA SHELL DURING RECURRENT ERUPTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toraskar, Jayashree; Mac Low, Mordecai-Mark; Shara, Michael M.
2013-05-01
Hubble Space Telescope images of the ejecta surrounding the nova T Pyxidis resolve the emission into more than 2000 bright knots. We simulate the dynamical evolution of the ejecta from T Pyxidis during its multiple eruptions over the last 150 years using the adaptive mesh refinement code Ramses. We demonstrate that the observed knots are the result of Richtmyer-Meshkov gas dynamical instabilities (the equivalent of Rayleigh-Taylor instabilities in an accelerated medium). These instabilities are caused by the overrunning of the ejecta from the classical nova of 1866 by fast-moving ejecta from the six subsequent recurrent nova outbursts. Magnetic fields maymore » play a role in determining knot scale and preventing their conductive evaporation. The model correctly predicts the observed expansion and dimming of the T Pyx ejecta as well as the knotty morphology. The model also predicts that deeper, high-resolution imagery will show filamentary structure connecting the knots. We show reprocessed Hubble Space Telescope imagery that shows the first hints of such a structure.« less
ToO Galactic Nova -- Michelle ``Quick Response''
NASA Astrophysics Data System (ADS)
Helton, L. Andrew; Woodward, Chick; Evans, Nye; Geballe, Tom; Spitzer Nova Team
2006-08-01
Stars are the engines of energy production and chemical evolution in our Universe, depositing radiative and mechanical energy into their environments and enriching the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CN) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. We propose to obtain mid-IR spectra of a new galactic CN in outburst to investigate aspects of the CN phenomenon including the in situ formation and mineralogy of nova dust and the elemental abundances resulting from thermonuclear runaway. Synoptic, high S/N Michelle spectra permit: 1) determination of the grain size distribution and mineral composition of nova dust; 2) estimation of chemical abundances of nova ejecta from coronal and other emission line spectroscopy; and 3) measurement of the density and masses of the ejecta. This Gemini `Target of Opportunity' initiative (trigger K=5- 8 mag, assuming adequate PWFS guide stars exist) complements our extensive Spitzer, Chandra, Swift, XMM-Newton CN DDT/ToO programs.
Synoptic Mid-IR Spectra ToO Novae
NASA Astrophysics Data System (ADS)
Helton, L. Andrew; Woodward, Chick; Evans, Nye; Geballe, Tom; Spitzer Nova Team
2007-02-01
Stars are the engines of energy production and chemical evolution in our Universe, depositing radiative and mechanical energy into their environments and enriching the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CN) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. We propose to obtain mid-IR spectra of a new galactic CN in outburst to investigate aspects of the CN phenomenon including the in situ formation and mineralogy of nova dust and the elemental abundances resulting from thermonuclear runaway. Synoptic, high S/N Michelle spectra permit: 1) determination of the grain size distribution and mineral composition of nova dust; 2) estimation of chemical abundances of nova ejecta from coronal and other emission line spectroscopy; and 3) measurement of the density and masses of the ejecta. This Gemini `Target of Opportunity' initiative (trigger K=5- 8 mag, assuming adequate PWFS guide stars exist) complements our extensive Spitzer, Chandra, Swift, XMM-Newton CN DDT/ToO programs.
Eclipse Mapping Experiments in Dwarf Novae Outbursts
NASA Astrophysics Data System (ADS)
Borges, B. W.; Baptista, R.
2006-06-01
In this work, we report the eclipse mapping analysis of CCD photometric data of two short period dwarf novae - V4140 Sgr (Borges & Baptista 2005) and HT Cas (Borges, Baptista & Catalán, in preparation) - during observed outburst events. The analysis of the observations of V4140 Sgr, done between 1991 and 2001, reveals that the object was in the decline from an outburst in 1992 and again in outburst in 2001. A distance of d = 170+/-30 pc is obtained from a method similar to that used to constrain the distance to open clusters. From this distance, disc radial brightness temperature distributions are determined, and the disc temperatures remain below the critical effective temperature T_{crit} at all disc radii during the outburst. The distributions in quiescence and in outburst are significantly different from those of other dwarf novae of similar orbital period. These results cannot be explained within the framework of the disc instability model and the small amplitude outbursts of V4140 Sgr can be due bursts of enhanced mass transfer rate from the secondary star. Our HT Cas data consist of V and R CCD photometric observations done in 2005 November with the 0.95-m James Gregory Telescope (JGT) and cover a outburst cycle. We used the entropy associated to the eclipse maps to obtain the semi-opening disc angle α evolution throught the outburst. The obtained angles are systematically lower than those obtained by Ioannou et al. (1999) and we can conclude that the outburst radial profiles must be flatter than the the T ∝ r^{-3/4} law of steady state dics, against the expectations of the disc instability model. Our intensity radial distributions presents the same ``outside-in'' outburst behavior as obtained by the referred author.
NASA Astrophysics Data System (ADS)
Brown, Shannon; Moon, Dae-Sik; Ni, Yuan Qi; Drout, Maria; Antoniadis, John; Afsariardchi, Niloufar; Cha, Sang-Mok; Lee, Yongseok
2018-06-01
We report multicolor BVI monitoring and spectroscopic classification of the dwarf nova KSP-OT-201503a. The transient was detected by the Korean Microlensing Telescope Network (KMTNet) Supernova Program (KSP) in 2015 March, reached a peak apparent magnitude V ≃ 17.3 mag from a quiescent magnitude V ≃ 22.6 mag, and lasted for approximately 17 days. Our high-cadence sampling allows us to identify distinctive phases consisting of a rapid ascent, a main outburst composed of a flat plateau followed by a gradual dimming, and a quick decline. We observe the sharp transition between the ascent phase and main outburst phase, likely related to the deceleration of the heating front as it passes through the accretion disk. These features in the light curves indicate that the outburst is outside-in. Archival data reveal the outburst history of the source, showing at least three outbursts between 2011 and 2015. These are equally separated by approximately 25 months, though we find a recurrence time as short as 189 days is compatible with the archival data. An optical spectrum obtained 701 days from outburst peak shows prominent Balmer emission lines superimposed on a blue continuum, consistent with a cataclysmic variable in quiescence. The outburst properties of KSP-OT-201503a closely resemble those of U Gem-type dwarf novae usually associated with younger, longer-period systems above the period gap of 2–3 hr observed in cataclysmic variables. This suggests that the source may be a rare U Gem-type dwarf nova with a long recurrence time, though we are unable to rule out the possibility that KSP-OT-201503a lies below the period gap.
A transient radio jet in an erupting dwarf nova.
Körding, Elmar; Rupen, Michael; Knigge, Christian; Fender, Rob; Dhawan, Vivek; Templeton, Matthew; Muxlow, Tom
2008-06-06
Astrophysical jets seem to occur in nearly all types of accreting objects, from supermassive black holes to young stellar objects. On the basis of x-ray binaries, a unified scenario describing the disc/jet coupling has evolved and been extended to many accreting objects. The only major exceptions are thought to be cataclysmic variables: Dwarf novae, weakly accreting white dwarfs, show similar outburst behavior to x-ray binaries, but no jet has yet been detected. Here we present radio observations of a dwarf nova in outburst showing variable flat-spectrum radio emission that is best explained as synchrotron emission originating in a transient jet. Both the inferred jet power and the relation to the outburst cycle are analogous to those seen in x-ray binaries, suggesting that the disc/jet coupling mechanism is ubiquitous.
Three-dimensional simulations of turbulent convective mixing in ONe and CO classical nova explosions
Casanova, Jordi; José, Jordi; García-Berro, Enrique; ...
2016-10-25
Classical novae are thermonuclear explosions that take place in the envelopes of accreting white dwarfs in binary systems. The material piles up under degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures of ~(1-4) × 10 8 K. During these events, about 10 -3-10 -7 M ⊙, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, Al) are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, the high concentrations of metalsmore » spectroscopically inferred in the ejecta), models require mixing between the (solar-like) material transferred from the secondary and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Recent multidimensional simulations have demonstrated that Kelvin-Helmholtz instabilities can naturally produce self-enrichment of the accreted envelope with material from the underlying white dwarf at levels that agree with observations. However, the feasibility of this mechanism has been explored in the framework of CO white dwarfs, while mixing with different substrates still needs to be properly addressed. We performed three-dimensional simulations of mixing at the core-envelope interface during nova outbursts with the multidimensional code FLASH, for two types of substrates: CO- and ONe-rich. We also show that the presence of an ONe-rich substrate, as in “neon novae”, yields higher metallicity enhancements in the ejecta than CO-rich substrates (i.e., non-neon novae). Finally, a number of requirements and constraints for such 3D simulations (e.g., minimum resolution, size of the computational domain) are also outlined.« less
Early X- and HE γ-ray emission from the symbiotic recurrent novae V745 Sco & RS Oph.
NASA Astrophysics Data System (ADS)
Delgado, L.; Hernanz, M.
2017-10-01
RS Oph was the first nova for which evidence of particle acceleration during its 2006 outburst was found. In recent years, several nova explosions - eight classical and two symbiotic recurrent novae - have been detected by Fermi/LAT at E>100 MeV. In most cases, this emission has been observed early after the explosion, around the optical maximum, and for a short period of time. The high-energy γ-ray emission is a consequence of π^{0} decay and/or Inverse Compton, which are related to particle (p and e^{-}) acceleration in the strong shock between the nova ejecta and the circumstellar matter. Our aim is to understand the acceleration process through the analysis of contemporaneous X-ray emission, and in particular, through the evolution of the shock wave. A deep analysis of early X-ray observations of the symbiotic recurrent novae V745 Sco (2014) by Swift/XRT, Chandra/HETG and NuStar, and RS Oph (2006) by XMM-Newton/EPIC and RGS, Swift/XRT and BAT and RXTE/PCA is presented taking into account the contemporaneous information from the IR and radio observations. This provides for the first time a global view of the early evolution of a nova remnant and its relationship with particle acceleration.
Nova Delphini 2013: Backyard Analysis of a Classical Nova
NASA Astrophysics Data System (ADS)
Reid, Piper
2014-01-01
On August 14, 2013, Nova Delphini was discovered by Koichi Itagaki. This nova erupted to a maximum brightness of magnitude 4.4 by August 16, 2013. The extraordinary brightness of this event has allowed many amateur astronomers to have the chance to study it. More than 750 amateur astronomers have contributed to the AAVSO photometry database of Nova Delphini.1 The amount and quality of spectroscopic data gathered is unprecedented as well, as over 700 individual spectra have been collected so far in the ARAS database.2 A nova is a class of variable star that undergoes a cataclysmic eruption, which can be observed through a sudden increase in brightness that declines over a series of months or years. At the center of a nova is an accreting white dwarf star which is collecting hydrogen from its surroundings. The accreting mass causes a nuclear reaction on the surface of the white dwarf and as the pressure increases the reaction becomes super-critical and a thermonuclear runaway is ignited causing the brightness increase as well as triggering the ejection of a shell of material form the star. The stages of a classical nova outburst are outlined along with techniques available to amateur astronomers for study of these phenomena. The author’s equipment and software setup are detailed. Results obtained using a low resolution grating, Schmidt-cassegrain telescope and CCD camera that were acquired while Nova Delphini was in the “fireball stage” 3 and subsequent “iron curtain phase”3 are compared and discussed. Results obtained using a high resolution spectroscope, Schmidt-cassegrain telescope and CCD camera that were acquired during the “lifting of the iron curtain phase”3 are also presented. References 1. Turner, Rebecca. “AAVSO - Nova Del 2013” 20 Aug 2013 Web. 8 Sep 2013
The orbital period of the dwarf nova AF Camelopardalis
NASA Astrophysics Data System (ADS)
Szkody, Paula; Howell, Steve B.
1989-04-01
Time-resolved optical spectroscopy of the dwarf nova AF Cam for 4.5 hr during a decline from outburst reveals that the orbital period is relatively long (5-6 hr). CCD photometry at quiescence also supports this finding. This rules out the previously observed 67-76 min modulations (evident in IR photometric measurements at quiescence and optical photometry at outburst) as orbital in nature.
Synoptic GNIRS XD Spectra ToO Novae
NASA Astrophysics Data System (ADS)
Woodward, Chick; Helton, Andrew; Spitzer/Chandra Team
2007-02-01
Novae are important contributors to galactic chemical enrichment on local scales. NIR spectroscopy of novae provides information about the elemental abundances of the gas and dust in the ejecta dispersing into the ISM as well as kinematic information related to the outburst. We propose to obtain synoptic GNIRS spectra of select Target of Opportunity (ToO) novae in the Magellanic Clouds (MC) and the galaxy to study the dynamics of the ejecta, to determine the temporal evolution of coronal lines and recombination lines (measuring their strength and velocity profiles), and to determine abundances. Being all equidistant, MC nova permit a more robust analysis of distant-dependent physical parameters of outburst than is generally possible for Galactic novae. The GNIRS data will provide critical spectral coverage and synoptic data to complement extant Spitzer and Chandra nova programs. Triggering of the GNIRS program will occur when a nova becomes brighter than V=12 mag, (assuming that adequate PWFS guide stars exist) as reported in the IAUC or CBET.
NASA Astrophysics Data System (ADS)
Mason, Elena; Shore, Steven N.; De Gennaro Aquino, Ivan; Izzo, Luca; Page, Kim; Schwarz, Greg J.
2018-01-01
Nova Cen 2013 (V1369 Cen) is the fourth bright nova observed panchromatically through high-resolution UV+optical multiepoch spectroscopy. It is also the nova with the richest set of spectra (in terms of both data quality and number of epochs) thanks to its exceptional brightness. Here, we use the late nebular spectra taken between day ∼250 and day ∼837 after outburst to derive the physical, geometrical, and kinematical properties of the nova. We compare the results with those determined for the other panchromatic studies in this series: T Pyx, V339 Del (nova Del 2013), and V959 Mon (nova Mon 2012). From this we conclude that in all these novae the ejecta geometry and phenomenology can be consistently explained by clumpy gas expelled during a single, brief ejection episode and in ballistic expansion, and not by a wind. For V1369 Cen the ejecta mass (∼1 × 10‑4 M⊙) and filling factor (0.1 ≤ f ≤ 0.2) are consistent with those of classical novae but larger (by at least an order of magnitude) than those of T Pyx and the recurrent novae. V1369 Cen has an anomalously high (relative to solar) N/C ratio that is beyond the range currently predicted for a CO nova, and the Ne emission line strengths are dissimilar to those of typical ONe or CO white dwarfs.
Infrared photometry of the dwarf nova V2051 Ophiuchi - I. The mass-donor star and the distance
NASA Astrophysics Data System (ADS)
Wojcikiewicz, Eduardo; Baptista, Raymundo; Ribeiro, Tiago
2018-04-01
We report the analysis of time series of infrared JHKs photometry of the dwarf nova V2051 Oph in quiescence. We modelled the ellipsoidal variations caused by the distorted mass-donor star to infer its JHKs fluxes. From its infrared colours, we estimate a spectral type of M(8.0 ± 1.5) and an equivalent blackbody temperature of TBB = (2700 ± 270) K. We used the Barnes & Evans relation to infer a photometric parallax distance of dBE = (102 ± 16) pc to the binary. At this short distance, the corresponding accretion disc temperatures in outburst are too low to be explained by the disc-instability model for dwarf nova outbursts, underscoring a previous suggestion that the outbursts of this binary are powered by mass-transfer bursts.
NASA Astrophysics Data System (ADS)
Chochol, D.; Hric, L.; Urban, Z.; Komzik, R.; Grygar, J.; Papousek, J.
1993-09-01
We present the results of UBV photometry and high dispersion 360-500 nm spectroscopy of Nova Cygni 1992 (= V 1974 Cyg), obtained between February 25 and November 9, 1992. Our data cover the early decline, transition and nebular stages of the evolution of the nova. We discuss the photometric and spectroscopic behaviour of the star during the first nine months after outburst and briefly compare our findings with the data already published by other authors. We have classified the nova as a fast one with t2,V = 16 d, t2,B = 23 d, and t3,V = 42 d, t3,B = 51 d. We have derived the absolute magnitudes of the nova at maximum to be M0,V = -7.67 and M0,B = -7.49. The latter value yields a mass of 0.83 Msun for the white dwarf component. The values of the distance modulus 12.23 and the colour excess EB-V = +0.32 correspond to a distance r = 1.77 kpc. We have found a period of 0.814 days by period analysis of photoelectric V data obtained before the nova declined 3m. During the nebular stage, forbidden lines of highly ionized neon were prominent, confirming the 0-Ne-Mg classification of the nova. The outburst of Nova Cygni 1992 was apparently caused by a super-Eddington thermonuclear runaway on the surface of an evolutionarily eroded O-Ne-Mg white dwarf.
NASA Astrophysics Data System (ADS)
Lipunov, V. M.; Blinnikov, S.; Gorbovskoy, E.; Tutukov, A.; Baklanov, P.; Krushinski, V.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Gorbunov, I.; Shumkov, V.; Vladimirov, V.; Gress, O.; Budnev, N. M.; Ivanov, K.; Tlatov, A.; Gabovich, A.; Yurkov, V.; Sergienko, Yu.; Zalozhnykh, I.
2017-09-01
We report the discovery and multicolour (VRIW) photometry of the rare explosive star MASTER OT J004207.99+405501.1 - a luminous red nova - in the Andromeda galaxy M31N2015-01a. We use our original light curve acquired with identical MASTER Global Robotic Net telescopes in one photometric system: VRI during the first 30 d and W (unfiltered) during 70 d. Also, we added published multicolour photometry data to estimate the mass and energy of the ejected shell and we discuss the likely formation scenarios of outbursts of this type. We propose an interpretation of the explosion that is consistent with an evolutionary scenario where the merging of stellar components or the disruption of the common envelope of a close binary can explain some luminous red novae. Radiative hydrodynamic simulations of a luminous red nova were carried out in extended parameter space to fit its light curves. We find that the multicolour passband light curves of the luminous red nova are consistent with an initial common envelope radius of 10 R⊙, a merger mass of 3 M⊙ and an explosion energy of 3 × 1048 erg. As a result, the phenomenon of novae consists of two classes: classical nuclear novae and more rare events (red novae) connected with the loss of compact common envelopes.
Superhumps and Repetitive Rebrightenings of the WZ Sge-Type Dwarf Nova, EG Cancri
NASA Astrophysics Data System (ADS)
Kato, Taichi; Nogami, Daisaku; Matsumoto, Katsura; Baba, Hajime
2004-03-01
We report on time-resolved photometric observations of the WZ Sge-type dwarf nova, EG Cnc (Huruhata's variable), during its superoutburst in 1996-1997. EG Cnc, after the main superoutburst accompanied by the development of superhumps typical of a WZ Sge-type dwarf nova, exhibited a series of six major rebrightenings. During these rebrightenings and the following long fading tail, EG Cnc persistently showed superhumps having a period equal to the superhump period observed during the main superoutburst. The persistent superhumps had a constant superhump flux with respect to the rebrightening phase. These findings suggest that the superhumps observed during the rebrightening stage and the fading tail are a ``remnant'' of the usual superhumps, and are not newly triggered by rebrightenings. By a comparison with the 1977 outburst of this object and outbursts of other WZ Sge-type dwarf novae, we propose an activity sequence of WZ Sge-type superoutbursts, in which the current outburst of EG Cnc is placed between a single-rebrightening event and distinct outbursts separated by a dip. The post-superoutburst behavior of WZ Sge-type dwarf novae can be understood in the presence of a considerable amount of remnant matter behind the cooling front in the outer accretion disk, even after the main superoutburst. We consider that a premature quenching of the hot state due to the weak tidal effect under the extreme mass ratio of the WZ Sge-type binary is responsible for the origin of the remnant mass.
Dust clouds around red giant stars - Evidence of sublimating comet disks?
NASA Technical Reports Server (NTRS)
Matese, John J.; Whitmire, Daniel P.; Reynolds, Ray T.
1989-01-01
The dust production by disk comets around intermediate mass stars evolving into red giants is studied, focusing on AGB supergiants. The model of Iben and Renzini (1983) is used to study the observed dust mass loss for AGB stars. An expression is obtained for the comet disk net dust production rate and values of the radius and black body temperature corresponding to peak sublimation are calculated for a range of stellar masses. Also, the fractional amount of dust released from a cometesimal disk during a classical nova outburst is estimated.
NuSTAR and Swift Observations of the Dwarf Nova Z Camelpardalis in a Standstill
NASA Astrophysics Data System (ADS)
Mukai, Koji; Sokoloski, Jennifer; Nelson, Thomas; Luna, Gerardo Juan Manuel; Ringwald, Frederick
2018-01-01
Dwarf nova outbursts are dramatic increases in the optical/UV emission from the accretion disks surrounding non-magnetic, or weakly magnetic, white dwarfs, and they are believed to be caused by disk instabilities. During the optical outburst, the optically thin X-rays originating from the boundary layer between the disk and the white dwarf are known to become fainter and softer. However, during an outburst, neither the disk nor the boundary layer has the time to settle into a steady state, exhibiting clear hysteresis effects instead. The Z Cam-type dwarf novae exhibit a rare, third state called standstill, lasting several months to several years, at an optical brightness roughly one magnitude below outburst peak. A standstill is therefore an ideal opportunity to study a high-state disk while minimizing the hysteresis effects. Here we report our NuSTAR and Swift observations of the prototype, Z Cam, in late September, 2017, roughly 6 months into its most recent standstill episode. To the best of our knowledge, this is the first pointed X-ray observation of a Z Cam-type object in a standstill, and our preliminary analysis suggests Z Cam in standstill has X-ray properties broadly similar to those seen during past outbursts. We will describe these results and discuss implications for the disk physics.
Identifying and quantifying recurrent novae masquerading as classical novae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagnotta, Ashley; Schaefer, Bradley E., E-mail: pagnotta@amnh.org
2014-06-20
Recurrent novae (RNe) are cataclysmic variables with two or more nova eruptions within a century. Classical novae (CNe) are similar systems with only one such eruption. Many of the so-called CNe are actually RNe for which only one eruption has been discovered. Since RNe are candidate Type Ia supernova progenitors, it is important to know whether there are enough in our Galaxy to provide the supernova rate, and therefore to know how many RNe are masquerading as CNe. To quantify this, we collected all available information on the light curves and spectra of a Galactic, time-limited sample of 237 CNemore » and the 10 known RNe, as well as exhaustive discovery efficiency records. We recognize RNe as having (1) outburst amplitude smaller than 14.5 – 4.5 × log (t {sub 3}), (2) orbital period >0.6 days, (3) infrared colors of J – H > 0.7 mag and H – K > 0.1 mag, (4) FWHM of Hα > 2000 km s{sup –1}, (5) high excitation lines, such as Fe X or He II near peak, (6) eruption light curves with a plateau, and (7) white dwarf mass greater than 1.2 M {sub ☉}. Using these criteria, we identify V1721 Aql, DE Cir, CP Cru, KT Eri, V838 Her, V2672 Oph, V4160 Sgr, V4643 Sgr, V4739 Sgr, and V477 Sct as strong RN candidates. We evaluate the RN fraction among the known CNe using three methods to get 24% ± 4%, 12% ± 3%, and 35% ± 3%. With roughly a quarter of the 394 known Galactic novae actually being RNe, there should be approximately a hundred such systems masquerading as CNe.« less
NASA Astrophysics Data System (ADS)
Figueira, Joana; José, Jordi; García-Berro, Enrique; Campbell, Simon W.; García-Senz, Domingo; Mohamed, Shazrene
2018-05-01
Context. Classical novae are thermonuclear explosions hosted by accreting white dwarfs in stellar binary systems. Material piles up on top of the white dwarf star under mildly degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope, mostly proton-capture reactions and β+-decays, heats the material up to peak temperatures ranging from 100 to 400 MK. In these events, about 10-3-10-7 M⊙, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, and Al) are ejected into the interstellar medium. Aims: To date, most of the efforts undertaken in the modeling of classical nova outbursts have focused on the early stages of the explosion and ejection, ignoring the interaction of the ejecta, first with the accretion disk orbiting the white dwarf and ultimately with the secondary star. Methods: A suite of 3D, smoothed-particle hydrodynamics (SPH) simulations of the interaction between the nova ejecta, accretion disk, and stellar companion were performed to fill this gap; these simulations were aimed at testing the influence of the model parameters—that is, the mass and velocity of the ejecta, mass and the geometry of the accretion disk—on the dynamical and chemical properties of the system. Results: We discuss the conditions that lead to the disruption of the accretion disk and to mass loss from the binary system. In addition, we discuss the likelihood of chemical contamination of the stellar secondary induced by the impact with the nova ejecta and its potential effect on the next nova cycle. Movies showing the full evolution of several models are available online at http://https://www.aanda.org and at http://www.fen.upc.edu/users/jjose/Downloads.html
Is drag luminosity effective in recurrent novae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Mariko; Hachisu, Izumi
1991-06-01
A study has been made of the efficiency of frictional processes in common envelope phase at outbursts of three recurrent novae T Pyx, U Sco, and RS Oph, by using steady-state wind models. The drag luminosity is found to depend strongly on the envelope mass. It may play an important role for a relatively massive envelope of about 0.0001 solar mass or more. For recurrent novae, however, acceleration due to the drag force is not important to eject the envelope mass because of its small envelope mass. Since the drag luminosity can be neglected at the extended phase of novamore » outburst, the light curves of these recurrent novae are determined only by the wind-driven mass loss as shown by Kato (1990). 23 refs.« less
2015-07-02
In Hollywood blockbusters, explosions are often among the stars of the show. In space, explosions of actual stars are a focus for scientists who hope to better understand their births, lives, and deaths and how they interact with their surroundings. Using NASA’s Chandra X-ray Observatory, astronomers have studied one particular explosion that may provide clues to the dynamics of other, much larger stellar eruptions. A team of researchers pointed the telescope at GK Persei, an object that became a sensation in the astronomical world in 1901 when it suddenly appeared as one of the brightest stars in the sky for a few days, before gradually fading away in brightness. Today, astronomers cite GK Persei as an example of a “classical nova,” an outburst produced by a thermonuclear explosion on the surface of a white dwarf star, the dense remnant of a Sun-like star.
The orbital and superhump periods of the deeply eclipsing dwarf nova SDSS J150240.98+333423.9
NASA Astrophysics Data System (ADS)
Shears, J.; Campbell, T.; Foote, J.; Garrett, R.; Hager, T.; Mack Julian, W.; Kemp, J.; Masi, G.; Miller, I.; Patterson, J.; Richmond, M.; Ringwald, F.; Roberts, G.; Ruiz, J.; Sabo, R.; Stein, W.
2011-04-01
During 2009 July we observed the first confirmed superoutburst of the eclipsing dwarf nova SDSS J150240.98+333423.9 using CCD photometry. The outburst amplitude was at least 3.9 magnitudes and it lasted at least 16 days. Superhumps having up to 0.35 mags peak-to-peak amplitude were present during the outburst, thereby establishing it to be a member of the SU UMa family. The mean superhump period during the first 4 days of the outburst was Psh= 0.06028(19)d, although it increased during the outburst with dPsh/dt= +2.8(1.0)?10^-4. The orbital period was measured as Porb= 0.05890946(5)d from times of eclipses measured during outburst and quiescence. Based on the mean superhump period, the superhump period excess was e= 0.023(3). The FWHM eclipse duration declined from a maximum of 10.5 min at the peak of the outburst to 3.5 min later in the outburst. The eclipse depth increased from ~0.9 mag to 2.1 mag over the same period. Eclipses in quiescence were 2.7 min in duration and 2.8 mag deep.
NASA Astrophysics Data System (ADS)
Helton, Lorren Andrew
2010-12-01
Classical novae (CNe) are violent thermonuclear explosions arising on the surface of white dwarfs in binary systems and are contributors to the chemical evolution of the interstellar medium through the production and ejection of copious amounts of metal-rich material. Observations and modeling of CNe eruptions illuminate numerous fundamental processes of astrophysical interest, including non-equilibrium thermonuclear runaway, radiative processes in dynamic nebular environments, binary star interaction, as well as dust condensation and grain growth. Here I summarize key findings from selected Galactic CNe observed as part of a 5 year, panchromatic optical/infrared observing campaign using Spitzer, Gemini, and other ground based optical facilities. In particular, I present detailed analysis of nova V1065 Centauri, including photoionization analysis of the emission lines, which enabled the derivation of abundances in the ejecta, and radiative transport modeling of the dust emission features, which allowed determination of the composition and characteristics of the dust in this system. I present analysis of three novae, V1974 Cygni, V382 Velorum, and V1494 Aquilae, observed from 4.4--15.5 years after outburst, discuss the characteristics of the nebulae at these late times, and estimate the abundances in their ejecta. In the case of V1494 Aql, I also report the first detection of neon. Finally, I present observations of three novae, DZ Crucis, V2361 Cygni, and V2362 Cygni, that exhibited unidentified infrared (UIR) features in their mid-infrared spectra, which exhibited unusual characteristics. I relate these features to other dusty novae in which features with similar characteristics were observed, and discuss possible sources for the UIR carriers. Analysis of the data obtained in the CNe monitoring campaign presented here highlights the need for synoptic observations obtained with broad wavelength coverage. Observations of V1065 Cen, which exhibited spectra rich in metals (e.g O, Ne, Mg, S, Ar, and Fe) produced during the thermonuclear runaway and through dredge up from the surface layers of the underlying WD, yielded robust estimates of WD composition, ejecta mass, and absolute abundances in the ejecta. Dusty novae such as V1065 Cen, V2362 Cyg, and V2361 Cyg, produced a variety of grain types as revealed by emission features characteristic of silicates, hydrogenated amorphous carbon dust, and PAH-like molecules, often in the same system. This data set is exceptional in that observations of many targets commenced immediately after eruption and followed the development for hundreds of days post-outburst providing unique insight into the evolution of conditions within the ejecta including the complete cycle of growth, processing, and dissipation of dust grains.
Nova Sagittarii 2014 = PNV J18250860-2236024 AND Erratum
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2014-02-01
Details of discovery of Nova Sagittarii 2014 (PNV J18250860-2236024) and procedures for observing and reporting observations are announced. Discovered by Sigeru Furuyama (Tone-machi, Ibaraki-ken, Japan) andreported by S. Nakano (Sumoto, Japan) at unfiltered CCD magnitude 8.7 on 2014 Jan. 26.857 UT. Coordinates: R.A. 18 25 08.60 Decl. = -22 36 02.4 (2000.0). Nova Sgr 2014 is Fe II-type classical nova past maximum, per low-resolution spectra obtained by A. Arai on 2014 Jan. 30.87 UT. Announced in IAU CBAT CBET 3802 (D. W. E. Green, ed.). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations. Also, an Erratum is reported. In AAVSO Alert Notice 496, Mati Morel (MMAT, Thornton, NSW, Australia) was credited with the discovery of the 1989 outburst of V745 Sco. The discoverer was William Liller (LIW, Vina del Mar, Chile), who observed V745 Sco on 1989 July 30.08 UT at magnitude 9.7 (PROBLICOM discovery using 2415 film with orange filter).
NASA Technical Reports Server (NTRS)
Fertig, D.; Mukai, K.; Nelson, T.; Cannizzo, J. K.
2011-01-01
In a dwarf nova, the accretion disk around the white dwarf is a source of ultraviolet, optical, and infrared photons, but is never hot enough to emit X-rays. Observed X-rays instead originate from the boundary layer between the disk and the white dwarf. As the disk switches between quiescence and outburst states, the 2-10 keV X-ray flux is usually seen to be anti-correlated with the optical brightness. Here we present RXTE monitoring observations of two dwarf novae, VW Hyi and WW Cet, confirming the optical/X-ray anti-correlation in these two systems. However, we do not detect any episodes of increased hard X-ray flux on the rise (out of two possible chances for WW Cet) or the decline (two for WW Cet and one for VW Hyi) from outburst, attributes that are clearly established in SS Cyg. The addition of these data to the existing literature establishes the fact that the behavior of SS Cyg is the exception, rather than the archetype as is often assumed. We speculate that only dwarf novae with a massive white dwarf may show these hard X-ray spikes.
Multiwavelength monitoring of the dwarf nova VW Hydri. IV - Voyager observations
NASA Technical Reports Server (NTRS)
Polidan, R. S.; Holberg, J. B.
1987-01-01
Results from Voyager far-ultraviolet (500-1200 A) observations of the dwarf nova VW Hyi are presented as part of a coordinated, multiwavelength program. Data from one normal outburst and one superoutburst are discussed in detail. Far-ultraviolet (1050 A) light curves are produced showing a significant delay (0.5 day) in the rise to maximum at 1050 A with respect to optical wavelength, followed by a simultaneous decline. The superoutburst data show a distinct double-peaked light curve with the first rise and decline closely resembling that of a normal outburst. These data suggest that the rise to supermaximum in the far-ultraviolet is also delayed with respect to optical wavelengths. The spectral distribution of VW Hyi shows the steeply falling spectrum shortward of 1200 A, characteristic of dwarf novae in outburst and absorption features at 985 (N III, C III and Ly gamma) and 1030 (Ly beta and O VI). No flux shortward of 912 A was detected in VW Hyi.
Outburst-related period changes of recurrent nova CI aquilae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, R. E.; Honeycutt, R. K., E-mail: honey@astro.indiana.edu, E-mail: rewilson@ufl.edu
2014-11-01
Pre-outburst and post-outburst light curves and post-outburst eclipse timings are analyzed to measure any period (P) change related to nova CI Aql's outburst of early 2000 and a mean post-outburst dP/dt, which then lead to estimates of the accreting component's rate of mass (M) change and its overall outburst-related change of mass over roughly a decade of observations. We apply a recently developed procedure for unified analysis of three timing-related data types (light curves, radial velocities, and eclipse timings), although with only light curves and timings in this case. Fits to the data are reasonably good without need for amore » disk in the light-curve model, although the disk certainly exists and has an important role in our post-outburst mass flow computations. Initial experiments showed that, although there seems to be an accretion hot spot, it has essentially no effect on derived outburst-related ΔP or on post-outburst dP/dt. Use of atomic time (HJED) in place of HJD also has essentially nil effect on ΔP and dP/dt. We find ΔP consistently negative in various types of solutions, although at best only marginally significant statistically in any one experiment. Pre-outburst HJD {sub 0} and P results are given, as are post-outburst HJD {sub 0}, P, and dP/dt, with light curves and eclipse times as joint input, and also with only eclipse time input. Post-outburst dP/dt is negative at about 2.4σ. Explicit formulae for mass transfer rates and epoch-to-epoch mass change are developed and applied. A known offset in the magnitude zero point for 1991-1994 is corrected.« less
The secondary maxima in black hole X-ray nova light curves - Clues toward a complete picture
NASA Technical Reports Server (NTRS)
Chen, Wan; Livio, Mario; Gehrels, Neil
1993-01-01
We study the secondary maxima observed commonly in the X-ray/optical light curves of black hole X-ray novae and show that they can play an important role in our understanding of the X-ray nova phenomenon. We discuss the observational characteristics of the secondary maxima and possible mechanisms to produce them. We propose a complete scenario for black hole X-ray nova events. The main outburst is caused by a disk instability. The second maximum is caused by X-ray evaporation of the matter near the inner Lagrangian (L1) region when the disk becomes optically thin. The third maximum (or the final minioutburst) is due to a mass transfer instability caused by hard X-ray heating of the subphotospheric layers of the secondary during the outburst. We predict that the newly discovered X-ray nova GRO J0422 + 32 may develop a final minioutburst in early 1993 and that its binary orbital period is less than 7 hr.
Suzaku Observation of the Classical Nova V2491 Cyg in Quiescence
NASA Technical Reports Server (NTRS)
Zemko, P.; Mukai, K.; Orio, M.
2015-01-01
We present Suzaku XIS observation of V2491 Cyg (Nova Cyg 2008 No. 2) obtained in quiescence, more than two years after the outburst. The nova was detected as a very luminous source in a wide spectral range from soft to hard X-rays. A very soft blackbody-like component peaking at 0.5 keV indicates that either we observe remaining, localized hydrogen burning on the surface of the white dwarf, or accretion onto a magnetized polar cap. In the second case, V2491 Cyg is a candidate "soft intermediate polar". We obtained the best fit for the X-ray spectra with several components: two of thermal plasma, a blackbody and a complex absorber. The later is typical of intermediate polars. The X-ray light-curve shows a modulation with an approximately 38 min period. The amplitude of this modulation is strongly energy dependent and reaches maximum in the 0.8-2.0 keV range. We discuss the origin of the X-ray emission and pulsations, and the likelihood of the intermediate polar scenario.
IUE observations of the 1987 superoutburst of the dwarf nova Z Cha
NASA Technical Reports Server (NTRS)
Harlaftis, E.; Hassall, B. J. M.; Sonneborn, G.; Naylor, T.; Charles, P. A.
1988-01-01
Low resolution IUE observations of the dwarf nova Z Cha during superoutburst are presented. These cover most of the development of the outburst and have sufficient time resolution to probe continuum and line behavior on orbital phase. The observed modulation on this phase is very similar to that observed in the related object OY Car. The results imply the presence of a cool spot on the edge of the edge of the accretion disk, which periodically occults the brighter inner disk. Details of the line behavior suggest that the line originated in an extended wind-emitting region. In contrast to archive spectra obtained in normal outburst, the continuum is fainter and redder, indicating that the entire superoutburst disk may be geometrically thicker than during a normal outburst.
NASA Astrophysics Data System (ADS)
Bond, Howard
2017-08-01
Our team is using Spitzer in a long-term search for extragalactic mid-infrared (MIR) variable stars and transients-the SPIRITS project (SPitzer InfraRed Intensive Transients Survey). In this first exploration of luminous astrophysical transients in the infrared, we have discovered a puzzling new class. We call them SPRITEs: eSPecially Red Intermediate-luminosity Transient Events. They have maximum MIR luminosities between supernovae and classical novae, but are not detected in the optical to deep limits. To date, we have discovered more than 50 SPRITEs in galaxies out to 17 Mpc. In this Archival Research proposal, we request support in order to investigate the pre-eruption sites in HST images of some 3 dozen SPRITEs discovered to date, and an additional 2 dozen that we are likely to find until the end of Spitzer observing in late 2018. Our aims are (1) characterize the pre-outburst environments at HST resolution in the visible and near-IR, to understand the stellar populations, stellar ages and masses, and interstellar medium at the outburst sites; (2) search for progenitors; (3) help prepare the way for a better understanding of the nature of extragalactic IR transients that will be investigated by JWST.
Superhumps in cataclysmic variables: I. T. Leonis
NASA Astrophysics Data System (ADS)
Lemm, Kristi; Patterson, Joseph; Thomas, Gino; Skillman, David R.
1993-10-01
We report photometry of the dwarf nova T Leonis during its 1993 supermaximum. The principle outburst lasted approximately 20 days, during which large-amplitude superhumps were consistently seen in the light curve. The mean period was 86.7 + or - 0.1 min, about 2.4% longer than the orbital period determined from radial-velocity measurements. Analysis of data obtained during the 1987 supermaximum implies that the superhump period decreased slowly, with dP/dt = - 6 x 10-5, or dP/dm = -0.6 min. mag. These are typical values for SU Ursae Majoris-type dwarf novae. At the end of the outburst, the star suddenly brightened again to magnitude 13, from which it declined on a time scale of about 1 day and without superhumps. It is possible that this event was a normal outburst. This suggests that superoutbursts can trigger normal outbursts, and may explain the 'bump' frequently found in the light curves of SU UMa stars very late in a superoutburst.
Overshoot Convective Mixing in Nova Outbursts
NASA Astrophysics Data System (ADS)
Glasner, A. S.; Livne, E.; Truran, J. W.
2014-12-01
We present a 2D study of the overshoot convective mechanism in nova outbursts for a wide range of possible compositions of the layer underlying the accreted envelope. Previous surveys studied this mechanism only for solar composition matter accreted on top of carbon oxygen (CO) white dwarfs. Since, during the runaway, mixing with carbon enhances the hydrogen burning rates dramatically, one should question whether significant enrichment of the ejecta is possible also for other underlying compositions (He, O, Ne, Mg) predicted by stellar evolution models. When needed we upgraded our reaction network and simulated several non-carbon cases. Despite large differences in rates, time scales and energetics, our results show that the convective dredge up mechanism predicts significant enrichment in all cases, including that of helium enrichment in recurrent novae.
Models for various aspects of dwarf novae and nova-like stars
NASA Technical Reports Server (NTRS)
Ladous, Constanze
1993-01-01
The first attempts to explain the nature of dwarf novae were based on the assumption of single-star phenomena, in which emission lines were assumed to be caused by circumstellar gas shells. The outburst behavior was tentatively ascribed to the kind of (also not understood) mechanism leading to nova outbursts. The realization that some, and possibly all, dwarf novae and nova-like stars (and novae) are binaries eventually led to models which bore more and more similarities to the modern interpretation on the basis of the Roche model. Not all cataclysmic variables are known binaries. In fact, with respect to the entire number of known objects, the proven binaries are still the minority, but all the brightest variables are in fact known to binaries. Not a single system is known which exhibits the usual characteristics of a cataclysmic variable and at the same time can be declared with certainty to be a single star. Two systems are known, the dwarf nova EY Cyg and the recurrent nova V1017 Sgr, in which, in spite of intensive search, no radial velocity variations have been found; but they still exhibit composite spectra consisting of a bright continuum, an emission spectrum, and a cool absorption spectrum. If the Roche model is correct, it is to be expected that a small percentage of objects is viewed pole-on, so orbital motions do not make themselves felt as Doppler shifts of spectral lines. So even these two systems support the hypothesis that all cataclysmic variables (with the possible exception of symbiotic stars) are binaries. In cataclysmic variables, it seems that the brightness changes observed in dwarf novae and nova-like stars in the optical and the UV are due directly to changes in the accretion disks. The study and understanding of accretion disks in these systems can bear potentially valuable consequences for many other fields in astronomy. The observed spectra of dwarf novae and nova-like stars comprise a fairly large range: pure emission spectra, pure absorption spectra, a mixture of both, asymmetric line profiles, very different slopes of the continuous flux distribution -- and one single system may exhibit all of these features at different times. Agreement and disagreement between computed and observed spectra should show whether or not the Roche model is applicable and where it probably will have to be modified and improved. Except for their outburst behavior and its immediate consequences, novae, dwarf novae, and nova-like stars cannot be physically distinguished from each other.
Kelvin-Helmholtz instabilities as the source of inhomogeneous mixing in nova explosions.
Casanova, Jordi; José, Jordi; García-Berro, Enrique; Shore, Steven N; Calder, Alan C
2011-10-19
Classical novae are thermonuclear explosions in binary stellar systems containing a white dwarf accreting material from a close companion star. They repeatedly eject 10(-4)-10(-5) solar masses of nucleosynthetically enriched gas into the interstellar medium, recurring on intervals of decades to tens of millennia. They are probably the main sources of Galactic (15)N, (17)O and (13)C. The origin of the large enhancements and inhomogeneous distribution of these species observed in high-resolution spectra of ejected nova shells has, however, remained unexplained for almost half a century. Several mechanisms, including mixing by diffusion, shear or resonant gravity waves, have been proposed in the framework of one-dimensional or two-dimensional simulations, but none has hitherto proven successful because convective mixing can only be modelled accurately in three dimensions. Here we report the results of a three-dimensional nuclear-hydrodynamic simulation of mixing at the core-envelope interface during nova outbursts. We show that buoyant fingering drives vortices from the Kelvin-Helmholtz instability, which inevitably enriches the accreted envelope with material from the outer white-dwarf core. Such mixing also naturally produces large-scale chemical inhomogeneities. Both the metallicity enhancement and the intrinsic dispersions in the abundances are consistent with the observed values.
Synthetic Spectral Analysis of the Far Ultraviolet Spectra of the Old Nova HR Del
NASA Astrophysics Data System (ADS)
Robertson, Jordan; Sion, E.
2012-05-01
We present a synthetic spectral analysis of the archival IUE far ultraviolet spectra of the post-nova, HR Del (Nova Del 1967). The system has an estimated white dwarf mass of 0.55 Msun (Ritter and Kolb 2003), orbital period P_orb = 0.214165 days, estimated orbital inclination of 40 degrees (Keurster 1988) and distance determinations in the literature ranging from 970 pc to 285 pc. The spectra reveal P Cygni profiles indicative of wind outflow from the disk and closely resemble the IUE spectra of UX UMa nova-likes, which have never had recorded outbursts. We de-reddened the archival IUE spectra using E(B-V) = 0.16. Our synthetic spectral analysis utilized optically thick, steady state accretion disk models and white dwarf model atmospheres that we constructed using TLUSTY and SYNSPEC (Hubeny 1988, Hubeny and Lanz (1995). Our input parameters were the white dwarf mass, inclination and a range of accretion rates for which we found the best-fitting model. We report the results of our model fitting and compare HR Del with other post-novae at comparable times past their nova outburst. This work was supported by NSF grant 0807892 to Villanova University
A 60-NIGHT Campaign on Dwarf Novae - Part One - Photometric Variability of Su-Ursae and Yz-Cancri
NASA Astrophysics Data System (ADS)
van Paradijs, J.; Charles, P. A.; Harlaftis, E. T.; Arevalo, M. J.; Baruch, J. E. F.; Callanan, P. J.; Casares, J.; Dhillon, V. S.; Gimenez, A.; Gonzalez, R.; Matinez-Pais, I. G.; Jones, D. H. P.; Hassall, B. J. M.; Hellier, C.; Kidger, M. R.; Lazaro, C.; Marsh, T. R.; Mason, K. O.; Mukai, K.; Naylor, T.; Reglero, V.; Rutten, R. G. M.; Smith, R. C.
1994-04-01
A 60-night campaign on SU UMa, YZ Cnc and some secondary targets was carried out during 1988 December and 1989 January at the Observatorio del Roque de Los Muchachos (the 1988 International Time Project). The aim was to study the behaviour of these dwarf novae through their outburst cycle. Here we present the overall light curves of the main targets, SU UMa and YZ Cnc, which show that the optical fluxes continue to decrease after the end of the outburst. For YZ Cnc we find that, during quiescence, orbital variability is present, which may be interpreted as modulation caused by the bright-spot region. Near the end of an outburst, a weak, sinusoidal variation is observed; we discuss the possibility that this arises either from the secondary star or the accretion disc.
ASASSN-17oz: Discovery of an Unusual, Ongoing Stellar Outburst
NASA Astrophysics Data System (ADS)
Jayasinghe, T.; Stanek, K. Z.; Kochanek, C. S.; Prieto, J. L.; Shields, J. V.; Thompson, T. A.; Dong, Subo; Shappee, B. J.; Holoien, T. W.-S.; Falco, E.; Leadbeater, R.; Rupert, J.; Brimacombe, J.; Koff, R. A.; Post, R. S.
2017-11-01
During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014, Kochanek et al. 2017), using data from the quadruple 14-cm "Brutus" (Haleakala, Hawaii) and "Leavitt" (Fort Davis, Texas) telescopes, we discovered an unusual transient source that is indicative of a stellar outburst.
The 1991-2012 light curve of the old nova HR Lyrae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honeycutt, R. K.; Shears, J.; Kafka, S.
2014-05-01
The 22 yr light curve of HR Lyr, acquired with a typical cadence of 2-6 days, is examined for periodic and quasi-periodic variations. No persistent periodicities are revealed. Rather, the light curve variations often take the form of nearly linear rises and falls having typical e-folding times of about 100 days. Occasional ∼0.6 mag outbursts are also seen, with properties similar to those of small outbursts found in some nova-like cataclysmic variables. When the photometry is formed into yearly averages, a decline of 0.012 ± 0.005 mag yr{sup –1} is apparent, consistent with the fading of irradiation-induced M-dot following themore » nova. The equivalent width of Hα is tabulated at three epochs over the interval 1986-2008 in order to compare with a recent result for DK Lac in which Hα was found to be fading 50 yr after the nova. However, our results for such a fading in HR Lyr are inconclusive.« less
Hydrodynamic models for novae with ejecta rich in oxygen, neon and magnesium
NASA Technical Reports Server (NTRS)
Starrfield, S.; Sparks, W. M.; Truran, J. W.
1985-01-01
The characteristics of a new class of novae are identified and explained. This class consists of those objects that have been observed to eject material rich in oxygen, neon, magnesium, and aluminum at high velocities. We propose that for this class of novae the outburst is occurring not on a carbon-oxygen white dwarf but on an oxygen-neon-magnesium white dwarf which has evolved from a star which had a main sequence mass of approx. 8 solar masses to approx. 12 solar masses. An outburst was simulated by evolving 1.25 solar mass white dwarfs accreting hydrogen rich material at various rates. The effective enrichment of the envelope by ONeMg material from the core is simulated by enhancing oxygen in the accreted layers. The resulting evolutionary sequences can eject the entire accreted envelope plus core material at high velocities. They can also become super-Eddington at maximum bolometric luminosity. The expected frequency of such events (approx. 1/4) is in good agreement with the observed numbers of these novae.
NASA Technical Reports Server (NTRS)
Chomiuk, Laura; Nelson, Thomas; Mukai, Koji; Solokoski, J. L.; Rupen, Michael P.; Page, Kim L.; Osborne, Julian P.; Kuulkers, Erik; Mioduszewski, Amy J.; Roy, Nirupam;
2014-01-01
The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign.We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (approximately 45 electron volts) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (approximately 1 M). The late turn-on time of the super-soft component yields a large nova ejecta mass (approximately greater than 10(exp -5) solar mass), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a approximately 1 kiloelectron volt thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chomiuk, Laura; Nelson, Thomas; Mukai, Koji
2014-06-20
The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign. We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (∼45 eV) and implies that the white dwarf in T Pyx is significantly below themore » Chandrasekhar mass (∼1 M {sub ☉}). The late turn-on time of the super-soft component yields a large nova ejecta mass (≳ 10{sup –5} M {sub ☉}), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a ∼1 keV thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.« less
Disc structure and variability in dwarf novae
NASA Astrophysics Data System (ADS)
Harlaftis, Emilios Theofanus
An introduction is given to dwarf novae reviewing the current research status in the field. We present IUE observations of Z Cha which support the mass transfer instability as the cause of the superoutbursts observed in SU UMa type dwarf novae. Comparison between the superoutburst and a normal outburst of Z Cha shows that the disc is flatter and has significantly less azimuthal structure than during superoutburst. Z Cha exhibits a soft x-ray deficit during superoutburst compared to OY Car. We find that the secondary star of Z Cha contributes approximately 30 percent of the infrared flux at peak of outburst. The second part of the thesis presents results from the 1988 International Time Project at the Observatorio del Roque de los Muchachos. Investigation of the behavior of SU UMa and YZ Cnc is carried out through the outburst cycle. The secular changes of the equivalent widths of both systems shows an increasing trend even during quiescence and are caused by the continuum decrease. Both systems show a low-velocity emission component which contaminates the wings of the H(alpha) profile. In addition to doppler broadening, the Stark effect is found to cause significant broadening to the line profile. The radial dependence of the emission lines is discussed in relation to other cataclysmic variables. H(alpha) emission from the secondary star of YZ Cnc is found during superoutburst, during outburst and during quiescence after outburst. Photometry during late decline of outburst shows a sinusoidal, weak variation peaking at 0.5 orbital phase and which is related to heating of the red star or to a transient disc event. During quiescence, the flickering is found to be caused by the bright spot. This modulation increases with time and is maximum before the outburst. Doppler tomography of IP Peg during quiescence reveals an emission line distribution not consistent to the standard model. We find Balmer emission from the secondary star, at a level of only 2.5 percent of the total flux during quiescence. Simultaneously to this, line emission from the outer disc decreases by approximately 70 percent 5 days before an outburst.
Superhumps in a Peculiar SU Ursae Majoris-Type Dwarf Nova, ER Ursae Majoris.
Gao; Li; Wu; Zhang; Li
1999-12-10
We report the photometry of a peculiar SU Ursae Majoris-type dwarf nova, ER Ursae Majoris, for 10 nights during 1998 December and 1999 March, covering a complete rise to the supermaximum and a normal outburst cycle. Superhumps have been found during the rise to the superoutburst. A negative superhump appeared in the December 22 light curve, while the superhump on the next night became positive and had a large-amplitude waveform distinct from that of the previous night. In the normal outbursts we captured, superhumps with larger or smaller amplitudes seem to always exist, although it is not necessarily true for every normal outburst. These results show great resemblance to V1159 Ori. It is more likely that superhumps occasionally exist at essentially all phases of the eruption cycles of ER UMa stars, which should be considered in modeling.
GW LIBRAE: STILL HOT EIGHT YEARS POST-OUTBURST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szkody, Paula; Mukadam, Anjum S.; Gänsicke, Boris T.
We report continued Hubble Space Telescope ( HST ) ultraviolet spectra and ground-based optical photometry and spectroscopy of GW Librae eight years after its largest known dwarf nova outburst in 2007. This represents the longest cooling timescale measured for any dwarf nova. The spectra reveal that the white dwarf still remains about 3000 K hotter than its quiescent value. Both ultraviolet and optical light curves show a short period of 364–373 s, similar to one of the non-radial pulsation periods present for years prior to the outburst, and with a similar large UV/optical amplitude ratio. A large modulation at amore » period of 2 hr (also similar to that observed prior to outburst) is present in the optical data preceding and during the HST observations, but the satellite observation intervals did not cover the peaks of the optical modulation, and so it is not possible to determine its corresponding UV amplitude. The similarity of the short and long periods to quiescent values implies that the pulsating, fast spinning white dwarf in GW Lib may finally be nearing its quiescent configuration.« less
XMM-Newton X-ray spectra of V407 Lup (Nova Lup 2016)
NASA Astrophysics Data System (ADS)
Ness, Jan-Uwe; Starrfield, Sumner; Woodward, Chick E.; Kuin, Paul; Page, Kim; Beardmore, Andy; Osborne, Julian; Sala, Gloria; Hernanz, Margarita; Orio, Marina; Williams, Bob
2017-09-01
Nova Lup 2016 (V407 Lup) was observed by XMM-Newton from 11 March 2017, 11:45 to 17:08 UT, 168 days after outburst (ATel #9538) with an exposure duration of 23,000 s. The EPIC pn was operated in Timing Mode with Medium filter.
Accretional Heating by Periodic Dwarf Nova Outburst Events
NASA Astrophysics Data System (ADS)
Godon, P.; Sion, E. M.
2001-12-01
We carry out simulations of evolutionary models of accreting white dwarfs in dwarf novae to assess the combined effect of boundary layer irradiation and compressional heating on the accreting star. We focus on the behavior of the surface observables of the accreting white dwarf for different value of the mass accretion rate and accretor mass. Outburst of days to weeks are followed by a shut off of the radial infall during quiescences lasting weeks to months. Preliminary results indicate that after a long evolution time of many accretion cycles, the effective surface temperature of the white dwarf will increase substantially. The purpose of this work is to generate a grid of models that will then be used to compared with observations of white dwarf heating and cooling in dwarf nova systems. This work is supported by NASA HST grant GO-8139 and in part by NSF grant AST99-01955 and NASA grant NAG5-8388.
Monitoring of RU Peg requested for Swift observations
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2012-06-01
Dr. Koji Mukai (Universities Space Research Association/NASA Goddard Space Flight Center) has requested AAVSO observers' assistance in monitoring the SS Cyg-type dwarf nova RU Peg in support of target-of-opportunity observations with the NASA Swift satellite during an outburst. His observations will be targeted during the rise to outburst and during late decline from outburst. Thus, your prompt notification to AAVSO Headquarters of activity in RU Peg will be crucial to the success of this campaign. Dr. Mukai writes: "In the famous AAVSO/EUVE/RXTE campaign on SS Cyg (Mattei et al. 2000JAVSO..28..160M), the hard X-ray flux went up (with a delay) during the rise, then suddenly dropped; there was a corresponding flux enhancement episode during the decline. We know that, during the peak of the outburst, many dwarf novae are hard X-ray fainter than in quiescence (with a few exceptions, like U Gem). However, the hard X-ray enhancement episodes seen in SS Cyg have never been obs! erved in other dwarf novae. We have proposed a hypothesis that this is related to the mass of the accreting white dwarf; only dwarf novae with a relatively massive white dwarf show the hard X-ray enhancement. If that's true, we may well see similar enhancement in RU Peg, which is thought to have a massive white dwarf. Even if this hypothesis is completely wrong, RU Peg is a good target for an SS Cyg-like campaign, since it's X-ray bright during quiescence." Visual and CCD observations (filtered preferred to unfiltered) are appropriate for this campaign. Observers are requested to monitor RU Peg duning minimum, throughout the next outburst, and after return to minimym, and report their observations in a timely manner. If RU Peg appears to be brightening from minimum, please report your observations immediately to the AAVSO. If it is brighter than magnitude 12.3, please also send an email report to Elizabeth Waagen (eowaagen@aavso.org) and Matthew Templeton (matthewt@aavso.org). Please be aware that there is a ~12.5-magnitude star 11" NE of RU Peg.
Thermonuclear runaways in nova outbursts. 2: Effect of strong, instantaneous, local fluctuations
NASA Technical Reports Server (NTRS)
Shankar, Anurag; Arnett, David
1994-01-01
In an attempt to understand the manner in which nova outbursts are initiated on the surface of a white dwarf, we investigate the effects fluctuations have on the evolution of a thermonuclear runaway. Fluctuations in temperature density, or the composition of material in the burning shell may arise due to the chaotic flow field generated by convection when it occurs, or by the accretion process itself. With the aid of two-dimensional reactive flow calculations, we consider cases where a strong fluctutation in temperature arises during the early, quiescent accretion phase or during the later, more dynamic, explosion phase. In all cases we find that an instantaneous, local temperature fluctuation causes the affected material to become Rayleigh-Taylor unstable. The rapid rise and subsequent expansion of matter immediately cools the hot blob, which prevents the lateral propagation of burning. This suggests that local temperature fluctuations do not play a significant role in directly initiating the runaway, especially during the early stages. However, they may provide an efficient mechanism of mixing core material into the envelope (thereby pre-enriching the fuel for subsequent episodes of explosive hydrogen burning) and of mixing substantial amounts of the radioactive nucleus N-13 into the surface layers, making novae potential gamma-ray sources. This suggests that it is the global not the local, evolution of the core-envelope interface to high temperatures which dominates the development of the runaway. We also present a possible new scenario for the initiation of nova outbursts based on our results.
The active quiescence of HR Del (Nova Del 1967). The ex-nova HR Del
NASA Astrophysics Data System (ADS)
Selvelli, P.; Friedjung, M.
2003-04-01
This new UV study of the ex-nova HR Del is based on all of the data obtained with the International Ultraviolet Explorer (IUE) satellite, and includes the important series of spectra taken in 1988 and 1992 that have not been analyzed so far. This has allowed us to make a detailed study of both the long-timescale and the short-timescale UV variations, after the return of the nova, around 1981-1982, to the pre-outburst optical magnitude. After the correction for the reddening (EB-V=0.16), adopting a distance d =850 pc we have derived a mean UV luminosity close to LUV ~ 56 Lsun, the highest value among classical novae in ``quiescence". Also the ``average" optical absolute magnitude (Mv=+2.30) is indicative of a bright object. The UV continuum luminosity, the HeII 1640 Å emission line luminosity, and the optical absolute magnitude all give a mass accretion rate dot {M} very close to 1.4x 10-7 Msun yr-1, if one assumes that the luminosity of the old nova is due to a non-irradiated accretion disk. The UV continuum has declined by a factor less than 1.2 over the 13 years of the IUE observations, while the UV emission lines have faded by larger factors. The continuum distribution is well fitted with either a black body of 33 900 K, or a power-law Flambda ~ lambda -2.20. A comparison with the grid of models of Wade & Hubeny (\\cite{Wade}) indicates a low M1 value and a relatively high dot {M} but the best fittings to the continuum and the line spectrum come from different models. We show that the ``quiescent" optical magnitude at mv ~ 12 comes from the hot component and not from the companion star. Since most IUE observations correspond to the ``quiescent" magnitude at mv ~ 12, the same as in the pre-eruption stage, we infer that the pre-nova, for at least 70 years prior to eruption, was also very bright at near the same LUV, Mv, dot {M}, and T values as derived in the present study for the ex-nova. The wind components in the P Cyg profiles of the CIV 1550 Å and NV 1240 Å resonance lines are strong and variable on short timescales, with vedge up to -5000 km s-1, a remarkably high value. The phenomenology of the short-time variations of the wind indicates the presence of an inhomogeneous outflow. We discuss the nature of the strong UV continuum and wind features and the implications of the presence of a ``bright" state a long time before and after outburst on our present knowledge of the pre-nova and post-nova behavior. Based on observations made with the International Ultraviolet Explorer and de-archived from the ESA VILSPA Database. }
NASA Technical Reports Server (NTRS)
Shore, S. N.; Wahlgren, G. M.; Augusteijn, T.; Liimets, T.; Koubsky, P.; Slechta, M.; Votruba, V.
2011-01-01
The nova outburst of V407 Cyg in 2010 Mar. 10 was the first observed for this star but its close resemblance to the well known symbiotic-like recurrent nova RS Oph suggests that it is also a member of this rare type of Galactic novae. The nova was the first detected at gamma-ray energies and is the first known nova explosion for this system. The extensive multiwavelength coverage of this outburst makes it an ideal comparison with the few other outbursts known for similar systems. We extend our previous analysis of the Mira and the expanding shock from the explosion to detail the time development of the photoionized Mira wind, circumstellar medium, and shocked circumstellar environment to derive their physical parameters and how they relate to large scale structure of the environment, extending the previous coverage to more than 500 days after outburst. We use optical spectra obtained at high resolution with the Nordic Optical Telescope (NOT) (R approx. =.45000 to 65000) and medium resolution Ondrejov Observatory (R approx. = 12000) data and compare the line variations with publicly available archival measurements at 30 GHz OVNR and at X-rays with Swift during the first four months of the outburst, through the end of the epoch of strong XR emission. We use nebular diagnostics and high resolution profile variations to derive the densities and locations of the extended emission. We find that the higher the ionization and/or the higher the excitation energy, the more closely the profiles resemble the He II/Ca V-type high velocity shock profile discussed in Paper I. This also accounts for the comparative development of the [N II] and [O III] isoelectronic transitions: the [O III] 4363A profile does not show the low velocity peaks while the excited [N II] 5754A does. If nitrogen is mainly N(+3) or higher in the shock, the upper state of the [N II] nebular lines will contribute but if the oxygen is O(+2) then this line is formed by recombination, masking the nebular contributor, and the lower states are collisionally quenched but emit from the low density surroundings. Absorption lines of Fe-peak ions formed in the Mira wind were visible as P Cyg profiles at low velocity before Day 69, around the time of the X-ray peak and we identified many absorption transitions without accompanying emission for metal lines. The H Balmer lines showed strong P Cyg absorption troughs that weakened during the 2010 observing period, through Day 128. The Fe-peak line profiles and flux variations were different for permitted and forbidden transitions: the E1 transitions were not visible after Day 128 but had shown a narrow peak superimposed on an extended (200 km/s) blue wing, while the M1 and E2 transitions persisted to Day 529, the last observation, and showed extended redshifted wings up of the same velocity. We distinguish the components from the shock, the photoionized environment, and the chromosphere and inner Mira wind using spectra taken more than one year after outburst. The multiple shells and radiative excitation phenomenology are similar to those recently cited for GRBs and SNIa .
Galex and Optical Observations of GW Librae during the Long Decline from Superoutburst
NASA Technical Reports Server (NTRS)
Bullock, Eric; Szkody, Paula; Mukadam, Anjum S.; Borges, Bernardo W.; Fraga, Luciano; Gansicke, Boris T.; Harrison, Thomas E.; Henden, Arne; Holtzman, Jon; Howell, Steve B.;
2011-01-01
The prototype of accreting, pulsating white dwarfs (GW Lib) underwent a large amplitude dwarf nova outburst in 2007. We used ultraviolet data from Galaxy Evolution Explorer and ground-based optical photometry and spectroscopy to follow GW Lib for three years following this outburst. Several variations are apparent during this interval. The optical shows a superhump modulation in the months following outburst, while a 19 minute quasi-periodic modulation lasting for several months is apparent in the year after outburst. A long timescale (about 4 hr) modulation first appears in the UV a year after outburst and increases in amplitude in the following years. This variation also appears in the optical two years after outburst but is not in phase with the UV. The pre-outburst pulsations are not yet visible after three years, likely indicating the white dwarf has not returned to its quiescent state.
New outburst of the symbiotic nova AG Pegasi after 165 yr
NASA Astrophysics Data System (ADS)
Skopal, A.; Shugarov, S. Yu.; Sekeráš, M.; Wolf, M.; Tarasova, T. N.; Teyssier, F.; Fujii, M.; Guarro, J.; Garde, O.; Graham, K.; Lester, T.; Bouttard, V.; Lemoult, T.; Sollecchia, U.; Montier, J.; Boyd, D.
2017-08-01
Context. AG Peg is known as the slowest symbiotic nova, which experienced its nova-like outburst around 1850. After 165 yr, during June of 2015, it erupted again showing characteristics of the Z And-type outburst. Aims: The primary objective is to determine basic characteristics, the nature and type of the 2015 outburst of AG Peg. Methods: We achieved this aim by modelling the spectral energy distribution using low-resolution spectroscopy (330-750 nm; R = 500-1000), medium-resolution spectroscopy (420-720 nm; R 11 000), and UBVRCIC photometry covering the 2015 outburst with a high cadence. Optical observations were complemented with the archival HST and FUSE spectra from the preceding quiescence. Results: During the outburst, the luminosity of the hot component was in the range of 2-11 × 1037 (d/ 0.8 kpc)2 erg s-1, being in correlation with the light curve (LC) profile. To generate the maximum luminosity by the hydrogen burning, the white dwarf (WD) had to accrete at 3 × 10-7 M⊙ yr-1, which exceeds the stable-burning limit and thus led to blowing optically thick wind from the WD. We determined its mass-loss rate to a few × 10-6 M⊙ yr-1. At the high temperature of the ionising source, 1.5-2.3 × 105 K, the wind converted a fraction of the WD's photospheric radiation into the nebular emission that dominated the optical. A one order of magnitude increase of the emission measure, from a few × 1059 (d/ 0.8 kpc)2 cm-3 during quiescence, to a few × 1060 (d/ 0.8 kpc)2 cm-3 during the outburst, caused a 2 mag brightening in the LC, which is classified as the Z And-type of the outburst. Conclusions: The very high nebular emission and the presence of a disk-like H I region encompassing the WD, as indicated by a significant broadening and high flux of the Raman-scattered O vi 6825 Å line during the outburst, is consistent with the ionisation structure of hot components in symbiotic stars during active phases. Full Table 1 and Table 6 are only available at the CDS are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A48
Dust, Abundances, and the Evolution of Novae
NASA Astrophysics Data System (ADS)
Woodward, Charles; Bode, Michael; Evans, Anuerin; Geballe, Thomas; Gehrz, Robert; Helton, Andrew; Krautter, Joachim; Lynch, David; Ness, Jan-Uwe; Rudy, Richard; Schwarz, Greg; Shore, Steve; Starrfield, Sumner; Truran, James; Vanlandingham, Karen; Wagner, R. Mark
2008-03-01
Evolved stars are the engines of energy production and chemical evolution in our Universe. They deposit radiative and mechanical energy into their environments. They enrich the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CNe) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. Our capstone study of 10 CNe will provide an ensemble of objects, well-populated in CNe parameter space (fast, slow, 'coronal', dusty) for detailed photoionization modeling and analysis. CNe are laboratories in which several poorly-understood astrophysical processes (e.g., mass transfer, thermonuclear runaway, optically thick winds, common envelope evolution, molecule and grain formation, coronal emission) may be observed. With Spitzer's unique wavelength coverage and point-source sensitivity we can: (i) investigate the in situ formation, astromineralogy, and processing of nova dust, (ii) determine the ejecta elemental abundances resulting from thermonuclear runaway, (iii) constrain the correlation of ejecta mass with progenitor type, (iv) measure the bolometric luminosity of the outburst, and (v) characterize the kinematics and structure of the ejected envelopes. Extensive ground-based and space-based (Chandra, Swift, XMM-Newton) programs led by team CoIs will complement Spitzer CNe observations.
PAH emission from Nova Cen 1986
NASA Technical Reports Server (NTRS)
Hyland, A. R. Harry; Mcgregor, P. J.
1989-01-01
The discovery of broad emission features between 3.2 and 3.6 microns were reported in the spectrum of Nova Cen 1986 (V842 Cen) some 300 days following outburst and remaining prominent for several months. The general characteristics of these features are similar to those attributed to polycyclic hydrocarbon (PAH) molecules in other dusty sources, although the relative strengths are different, and these observations provide the first clear evidence for molecular constituents other than graphite particles in the ejecta of novae.
Nova-driven winds in globular clusters
NASA Technical Reports Server (NTRS)
Scott, E. H.; Durisen, R. H.
1978-01-01
Recent sensitive searches for H-alpha emission from ionized intracluster gas in globular clusters have set upper limits that conflict with theoretical predictions. It is suggested that nova outbursts heat the gas, producing winds that resolve this discrepancy. The incidence of novae in globular clusters, the conversion of kinetic energy of the nova shell to thermal energy of the intracluster gas, and the characteristics of the resultant winds are discussed. Calculated emission from the nova-driven models does not conflict with any observations to date. Some suggestions are made concerning the most promising approaches for future detection of intracluster gas on the basis of these models. The possible relationship of nova-driven winds to globular cluster X-ray sources is also considered.
Time-Resolved Photometry of V458 Vul
NASA Astrophysics Data System (ADS)
Bouzid, Samia; Garnavich, P.
2011-01-01
We observed V458 Vul (Nova Vul 2007) over four nights in June, 2010, nearly three years after its nova outburst. Time-resolved photometry was obtained at the Vatican Advanced Technology Telescope (VATT) on Mt. Graham, Arizona, covering 2 to 4 hour spans with a cadence of 30 sec. The first night of data shows a clear 20 minute periodicity with a 0.1 magnitude amplitude. On subsequent nights, power-spectral analysis continues to show variations with a time scale of 20 minutes, but the irregularity of the signal suggests that this is a quasi-periodic oscillation. The 98-minute orbital period is not evident in our observations. V458 Vul is the central star of a planetary nebula. Combining our CCD images suggests a light echo from the nova outburst is scattering off of material in the nebula to the northwest of the central star. Appreciation goes to the National Science Foundation for supporting this project through the Research Experience for Undergraduates program at Notre Dame.
NASA Astrophysics Data System (ADS)
De Gennaro Aquino, I.; Shore, S. N.; Schwarz, G. J.; Mason, E.; Starrfield, S.; Sion, E. M.
2014-02-01
We continue the analysis of the multiwavelength evolution of the recurrent nova T Pyx during its 2011 outburst, focussing on the spectral development on the 1150-3000 Å region. This extraordinary data set presents the longest temporal baseline high resolution view of the ultraviolet for any nova to date (classical or recurrent). The observations cover the early Fe-curtain stage, when the UV was completely optically thick, to 834 days after discovery when the outburst was effectively over. We present an analysis of dynamics and abundances of the interstellar species whose resonance lines are accessible in the UV. The Lyα profile is consistent with only interstellar absorption at all epochs and agrees with the H I 21 cm column density. The distance obtained to T Pyx is about 5 kpc, based on the ISM analysis. For the ejecta evolution we have been able to follow the changes in ionization and structure with previously unobtained resolution and cadence. The excited state isoelectronic transitions of C III, N IV], and O V displayed the same detached absorption lines as the optical He I transitions during the optical maximum. This is explained as resonance absorption within the ejecta of FUV ground state lines from the 300-1000 Å range. The resonance lines of all species showed absorption components between -1000 and -3000 km s-1 as soon as the Fe-curtain turned transparent (from day 105); these persisted at the same velocities and varied in strength from one ion to another through day 834. The last ultraviolet spectrum, taken more than 800 days after outburst, showed the same absorption lines on N V and C IV as day 105. There was no evidence of circumstellar absorbers. This and the related observations of profile evolution effectively rule out any wind model for the spectrum. The picture that emerges is of ejecta that became optically thin after visual maximum as the X-ray emission became visible following an outwardly propagating ionization front and for which the ionization stages froze because of ejecta expansion after the end of the soft X-ray illumination. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.
The large outbursts studied by small telescopes - the case of RS Oph
NASA Astrophysics Data System (ADS)
Kundra, E.; Hric, L.
2014-03-01
Cataclysmic variables (CVs) are one of the dominant part in astronomical research. Small telescopes are widely used to search for the sudden brightening of such stars. We present our experience with observations of the RS Ophiuchi (RS Oph) and analyses of the light curves. RS Oph is a binary system with 6 recorded outbursts classified as a recurrent nova (RN). We used the telescopes of AI SAS to measure the brightness of RS Oph after its last outburst occurred on February 12, 2006. The new observations indicate the ongoing mass transfer. % and the estimation of the mass transfer rate allow to make a prediction of the %next outburst of this RN.
SIMULATIONS OF THE SYMBIOTIC RECURRENT NOVA V407 CYG. I. ACCRETION AND SHOCK EVOLUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E., E-mail: kuo-chuan.pan@unibas.ch, E-mail: pmricker@illinois.edu, E-mail: r-taam@northwestern.edu, E-mail: taam@asiaa.sinica.edu.tw
2015-06-10
The shock interaction and evolution of nova ejecta with wind from a red giant (RG) star in a symbiotic binary system are investigated via three-dimensional hydrodynamics simulations. We specifically model the 2010 March outburst of the symbiotic recurrent nova V407 Cygni from its quiescent phase to its eruption phase. The circumstellar density enhancement due to wind–white-dwarf interaction is studied in detail. It is found that the density-enhancement efficiency depends on the ratio of the orbital speed to the RG wind speed. Unlike another recurrent nova, RS Ophiuchi, we do not observe a strong disk-like density enhancement, but instead observe anmore » aspherical density distribution with ∼20% higher density in the equatorial plane than at the poles. To model the 2010 outburst, we consider several physical parameters, including the RG mass-loss rate, nova eruption energy, and ejecta mass. A detailed study of the shock interaction and evolution reveals that the interaction of shocks with the RG wind generates strong Rayleigh–Taylor instabilities. In addition, the presence of the companion and circumstellar density enhancement greatly alter the shock evolution during the nova phase. Depending on the model, the ejecta speed after sweeping out most of the circumstellar medium decreases to ∼100–300 km s{sup −1}, which is consistent with the observed extended redward emission in [N ii] lines in 2011 April.« less
M31N 2008-12a: The Remarkable Recurrent Nova in the Andromeda Galaxy
NASA Astrophysics Data System (ADS)
Shafter, Allen W.; Darnley, Matthew; Henze, Martin; Williams, Steven C.
2017-08-01
The recurrent nova M31N 2008-12a in M31 has the shortest interoutburst time of any known recurrent nova. Since its discovery in December 2008 by two Japanese amateur astronomers, Koichi Nishiyama and Fujio Kabashima, a total of 8 subsequent outbursts have been observed. The mean time between observed eruptions (all observed between late August and December) is 364+/-52 days. M31 is close to the sun in March through May, so it is likely that any eruptions that may have occurred during this period have been missed and the recurrence period could be as short as 6 months. Models of thermonuclear runaways on white dwarfs show that only near Chandrasekhar mass white dwarfs accreting at a few times 10-7 solar masses per year can produce nova outbursts with a recurrence time of a year, or less. Furthermore, the models show that during the interval between each nova event the accreted mass is expected to be greater than the expelled mass. The white dwarf mass must therefore be growing, and is predicted to reach the Chandrasekhar mass in of order 500,000 years. Thus, M31N 2008-12a is destined either to become a Type Ia supernova (if the white dwarf has a CO composition) or to form a neutron star in an accretion-induced collapse (if the white dwarf has an ONe composition). In this poster, I will describe the latest observations of this fascinating nova.
The disappearance and reformation of the accretion disc during a low state of FO Aquarii
NASA Astrophysics Data System (ADS)
Hameury, J.-M.; Lasota, J.-P.
2017-09-01
Context. FO Aquarii, an asynchronous magnetic cataclysmic variable (intermediate polar) went into a low state in 2016, from which it slowly and steadily recovered without showing dwarf nova outbursts. This requires explanation since in a low state, the mass-transfer rate is in principle too low for the disc to be fully ionised and the disc should be subject to the standard thermal and viscous instability observed in dwarf novae. Aims: We investigate the conditions under which an accretion disc in an intermediate polar could exhibit a luminosity drop of two magnitudes in the optical band without showing outbursts. Methods: We use our numerical code for the time evolution of accretion discs, including other light sources from the system (primary, secondary, hot spot). Results: We show that although it is marginally possible for the accretion disc in the low state to stay on the hot stable branch, the required mass-transfer rate in the normal state would then have to be extremely high, of the order of 1019 g s-1 or even larger. This would make the system so intrinsically bright that its distance should be much larger than allowed by all estimates. We show that observations of FO Aqr are well accounted for by the same mechanism that we have suggested as explaining the absence of outbursts during low states of VY Scl stars: during the decay, the magnetospheric radius exceeds the circularisation radius, so that the disc disappears before it enters the instability strip for dwarf nova outbursts. Conclusions: Our results are unaffected, and even reinforced, if accretion proceeds both via the accretion disc and directly via the stream during some intermediate stages; the detailed process through which the disc disappears still requires investigation.
Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other.
NASA Technical Reports Server (NTRS)
2002-01-01
Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other. Panel 2: The red giant sheds much of its outer layers in a stellar wind. The white dwarf helps concentrate the wind along a thin equatorial plane. The white dwarf accretes some of this escaping gas forming a disk around the itself. Panel 3: When enough gas accumulates on the white dwarf's surface it explodes as a nova outburst. Most of the hot gas forms a pair of expanding bubbles above and below the equatorial disk. Panel 4: A few thousand years after the bubbles expand into space, the white dwarf goes through another nova outburst and makes another pair of bubbles, which form a distinctive hourglass shape.
The Kepler Light Curve of V344 LYR: Constraining the Thermal-Viscous Limit Cycle Instability
NASA Technical Reports Server (NTRS)
Cannizzo, J. K.; Still, M. D.; Howell, S. B.; Wood, M. A.; Smale, A. P.
2010-01-01
We present time dependent modeling based on the accretion disk limit cycle model for a 90 d light curve of the short period SU UMa-type dwarf nova V344 Lyr taken by Kepler. The unprecedented precision and cadence (1 minute) far surpass that generally available for long term light curves. The data encompass a super outburst, preceded by three normal (i.e., short) outbursts and followed by two normal outbursts. The main decay of the super outburst is nearly perfectly exponential, decaying at a rate approx.12 d/mag, while the much more rapid decays of the normal outbursts exhibit a faster-than-exponential shape. We show that the standard limit cycle model can account for the light curve, without the need for either the thermal-tidal instability or enhanced mass transfer.
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2005-06-01
AAVSO Alert Notice 317 has three topics. First: Drs. Christopher Mauche (Lawrence Livermore National Laboratory), Peter Wheatley (Univ. of Leicester), and Koji Mukai (NASA GSFC) have obtained time on XMM-Newton to observe HT Cas, Z Cha, or OY Car in outburst. AAVSO assistance is requested in monitoring these stars closely so we can inform them promptly when any of them go into outburst. Very prompt notification is essential, because the satellite requires 2-4 days to move to the target after the observations are triggered, and the superoutbursts of OY Car and Z Cha last only about 10 days, while the HT Cas outbursts last only a little more than 2 days. Second: Dr. Darren Baskill (Univ. of Leicester) has requested optical observations of LS Peg (currently suspected as being a DQ Her nova-like) to coincide with upcoming observations by XMM-Newton. Observations are requested from now until July 8, with time series 12 hours before and after, and also during the XMM observation. Use an Ic or V filter (Ic preferred), maximum time precision, S/N=100. Third: Dr. Alon Retter (Penn State Univ.) has requested AAVSO assistance in observing V378 Ser (Nova Serpentis 2005). Please monitor V378 Ser over the coming weeks as the nova fades and report your observations to the AAVSO. Both visual and CCD observations are encouraged. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
An Accreting White Dwarf near the Chandrasekhar Limit in the Andromeda Galaxy
NASA Technical Reports Server (NTRS)
Tang, Sumin; Bildsten, Lars; Wolf, William M.; Li, K. L.; Kong, Albert K. H.; Cao, Yi; Cenko, S. Bradley; De Cia, Annalisa; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.;
2014-01-01
The iPTF (Intermediate Palomar Transient Factory) detection of the most recent outburst of the recurrent nova system RX J0045.4+4154 in the Andromeda Galaxy has enabled the unprecedented study of a massive (mass is greater than 1.3 solar masses) accreting white dwarf (WD). We detected this nova as part of the near daily iPTF monitoring of M31 to a depth of R (red band-pass filter) approximately equal to magnitude 21 and triggered optical photometry, spectroscopy and soft X-ray monitoring of the outburst. Peaking at an absolute magnitude of MR (red, mid-infrared band-pass filter) equals magnitude -6.6, and with a decay time of 1 magnitude per day, it is a faint and very fast nova. It shows optical emission lines of He/N and expansion velocities of 1900 to 2600 kilometers per second 1-4 days after the optical peak. The Swift monitoring of the X-ray evolution revealed a supersoft source (SSS) with kT (energy: Boltzmann constant times temperature) (sub eff (effective)) approximately equal to 90-110 electronvolts that appeared within 5 days after the optical peak, and lasted only 12 days. Most remarkably, this is not the first event from this system, rather it is a recurrent nova with a time between outbursts of approximately 1 year, the shortest known. Recurrent X-ray emission from this binary was detected by ROSAT in 1992 and 1993, and the source was well characterized as a mass greater than 1.3 solar masses WD SSS. Based on the observed recurrence time between different outbursts, the duration and effective temperature of the SS phase, MESA models of accreting WDs allow us to constrain the accretion rate to mass greater than 1.7x10 (sup -7) solar masses per year and WD mass greater than 1.30 solar masses. If the WD keeps 30 percent of the accreted material, it will take less than a million years to reach core densities high enough for carbon ignition (if made of C/O) or electron capture (if made of O/Ne) to end the binary evolution.
A new catalogue of Galactic novae: investigation of the MMRD relation and spatial distribution
NASA Astrophysics Data System (ADS)
Özdönmez, Aykut; Ege, Ergün; Güver, Tolga; Ak, Tansel
2018-05-01
In this study, a new Galactic novae catalogue is introduced collecting important parameters of these sources such as their light-curve parameters, classifications, full width half-maximum (FWHM) of Hα line, distances and interstellar reddening estimates. The catalogue is also published on a website with a search option via a SQL query and an online tool to re-calculate the distance/reddening of a nova from the derived reddening-distance relations. Using the novae in the catalogue, the existence of a maximum magnitude-rate of decline (MMRD) relation in the Galaxy is investigated. Although an MMRD relation was obtained, a significant scattering in the resulting MMRD distribution still exists. We suggest that the MMRD relation likely depends on other parameters in addition to the decline time, as FWHM Hα, the light-curve shapes. Using two different samples depending on the distances in the catalogue and from the derived MMRD relation, the spatial distributions of Galactic novae as a function of their spectral and speed classes were studied. The investigation on the Galactic model parameters implies that best estimates for the local outburst density are 3.6 and 4.2 × 10-10 pc-3 yr-1 with a scale height of 148 and 175 pc, while the space density changes in the range of 0.4-16 × 10-6 pc-3. The local outburst density and scale height obtained in this study infer that the disc nova rate in the Galaxy is in the range of ˜20 to ˜100 yr-1 with an average estimate 67^{+21}_{-17} yr-1.
NASA Technical Reports Server (NTRS)
Shore, S.N.; Genovali, K.; Wahlgren, G. M.
2013-01-01
We present some results of an ongoing study of the long-term spectroscopic variations of AG Dra, a prototypical eruptive symbiotic system. We discuss the effects of the environment and orbital modulation in this system and some of the physical processes revealed by a comparison with the nova outburst of the symbiotic-like recurrent nova V407 Cyg 2010.
A White Dwarf at the Limit: V838 Herculis 25 Years After Its Nova Outburst
NASA Astrophysics Data System (ADS)
Garnavich, Peter; Kennedy, Mark; Littlefield, Colin; Szkody, Paula; Mukadam, Anjum
2018-01-01
We present time-resolved photometry and spectroscopy of V838 Her (aka Nova Herculis 1991) a quarter of a century after its unique nova outburst. No new optical observations of the star have been published since the early 1990s. Here, we confirm the presence of deep primary eclipses with a period of 7.14 hours and we detect clear secondary minima. Night-to-night changes of 30% in the system brightness suggests the mass transfer rate is not stable. Spectroscopy reveals absorption features from the secondary star consistent with a K4±1.5 spectral type. From the velocity amplitudes we directly measure the mass ratio of the binary to be q=0.73±0.04. Assuming the secondary is filling its Roche lobe, we estimate the white dwarf mass to be 1.38±0.13 M⊙, consistent with the indirect mass indicators such as the early light curve decay rate and metal abundance in the nebular phase. The mass of the secondary star is also quite high at 1.01±0.06 M⊙. We estimate that the luminosity of the nova peaked at MV = –9.1±0.4 mag, and that its current luminosity is MV = 6.5±0.4 mag.
An Update on the Quirks of Pulsating, Accreting White Dwarfs
NASA Astrophysics Data System (ADS)
Szkody, Paula; Mukadam, Anjum S.; Gänsicke, Boris T.; Hermes, J. J.; Toloza, Odette
2015-06-01
At the 18th European White Dwarf Workshop, we reported results for several dwarf novae containing pulsating white dwarfs that had undergone an outburst in 2006-2007. HST and optical data on the white dwarfs in GW Lib, EQ Lyn and V455 And all showed different behaviors in the years following their outbursts. We continued to follow these objects for the last 2 years, providing timescales of 6-7 years past outburst. All three reached their optical quiescent values within 4 years but pulsational stability has not returned. EQ Lyn showed its pre-outburst pulsation period after 3 years, but it continues to show photometric variability that alternates between pulsation and disk superhump periods while remaining at quiescence. V455 And has almost reached its pre-outburst pulsation period, while GW Lib still remains heated and with a different pulsation spectrum than at quiescence. These results indicate that asteroseismology provides a unique picture of the effects of outburst heating on the white dwarf.
An X-ray survey of nine historical novae. [HEAO 2 observations
NASA Technical Reports Server (NTRS)
Becker, R. H.; Marshall, F. E.
1980-01-01
The Einstein Observatory imaging proportional counter was used to search for X-ray emission from nine nearby historical novae. Six of the novae were detected with estimated X-ray intensities between .1 to 4 keV of 10 to the -13th power to 10 to the -11th power ergs/sq cm-s, comparable to the intensities of previously detected cataclysmic variables. The X-ray intensity of one of the novae, V603 Aql, varies over times of several hundred seconds. The data suggest a correlation between the decay rate of the historical outburst and the current X-ray luminosity. Alternatively, the X-ray luminosity may be related to the inclination of the binary system.
Outburst Cycle of the Dwarf Nova SS Cygni
NASA Astrophysics Data System (ADS)
Voikhanskaya, N. F.
2018-01-01
Extensive observational data obtained to date is analyzed with special attention given to space observations. The spectral type of the white dwarf is estimated and it is concluded that accretion of matter on it is the only source of the x-ray flux in the system. The rotation of the secondary is shown to be synchronous and therefore its illumination by hard x-rays results in the formation of stellar wind. This is the main mechanism of mass transfer onto the white dwarf. The geometry of the system prevents the formation of the disk by stellar wind. Instead, stellar wind forms a quasispherical envelope whose variability influences the outburst process. Based on these conclusions, the properties of the system are interpreted, which so far have remained unexplained: short-term appearance of peculiar spectrum during the rising phase of the outburst, rather constant width of absorption lines during the outburst, decrease of the width of emission lines during the outburst, variation of the x-ray and ultraviolet fluxes during ordinary and low-amplitude anomalous outbursts, and, finally, the quasiperiodicity of the outbursts.
Nucleosynthesis and the nova outburst
NASA Technical Reports Server (NTRS)
Starrfield, S.; Truran, J.W.; Wiescher, M.; Sparks, W.M.
1995-01-01
A nova outburst is the consequence of the accretion of hydrogen rich material onto a white dwarf and it can be considered as the largest hydrogen bomb in the Universe. The fuel is supplied by a secondary star in a close binary system while the strong degeneracy of the massive white dwarf acts to contain the gas during the early stages of the explosion. The containment allows the temperature in the nuclear burning region to exceed 10(sup 8)K under all circumstances. As a result a major fraction of CNO nuclei in the envelope are transformed into (beta)(sup +)-unstable nuclei. We discuss the effects of these nuclei on the evolution. Recent observational studies have shown that there are two compositional classes of novae; one which occurs on carbon-oxygen white dwarfs, and a second class that occurs on oxygen-neon-magnesium white dwarfs. In this review we will concentrate on the latter explosions since they produce the most interesting nucleosynthesis. We report both on the results of new observational determinations of nova abundances and, in addition, new hydrodynamic calculations that examine the consequences of the accretion process on 1.0M(sub (circle dot)), 1.25M(sub (circle dot)), and 1.35M(sub (circle dot)) white dwarfs. Our results show that novae can produce (sup 22)Na, (sup 26)Al, and other intermediate mass nuclei in interesting amounts. We will present the results of new calculations, done with updated nuclear reaction rates and opacities, which exhibit quantitative differences with respect to published work.
ASASSN-17fp rebrightening event and ongoing monitoring
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2017-05-01
ASASSN-17fp, discovered on 2017 April 28 and classified as a helium dwarf nova, was observed to be in outburst again on May 16 after fading 2.5 magnitudes from its original outburst. Dr. Tom Marsh (University of Warwick) and Dr. Elme Breedt (University of Cambridge) requested immediate time-series coverage. Dr. Breedt wrote: "The transient was identified as a helium dwarf nova (also known as an AMCVn star) from a spectrum taken by the PESSTO survey and reported in ATel #10334. Since then, we have been observing the target using the New Technology Telescope on La Silla in Chile. We measured a photometric period of 51 minutes in the first few nights during which the object was bright at g=16.03 (Marsh et al., ATel #10354), and then it faded to about g 18. However last night [ May 16] it brightened back to g 16 again, apparently starting a second outburst. Time series observations during this bright state would be very valuable to determine whether the 51 min period we saw in earlier data returns, and whether it is the orbital period of the binary or related to the distortion of the accretion disc in outburst (superhumps). If the 51 min signal is the orbital period or close to it, this would be the helium dwarf nova with the longest orbital period known. Multiple successive outbursts are not uncommon in binaries like this..." Observers should continue to monitor ASASSN-17fp with nightly snapshots for two weeks after it fades, in case it rebrightens again. It appears to have faded, according to an observation in the AAVSO International Database by F.-J. Hambsch (HMB, Mol, Belgium), who observed it remotely from Chile on 2017 May 24.2252 UT at magnitude 19.944 CV ± 0.595. Continue nightly snapshots through June 6 at least, and if it brightens again, resume time series. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Databa! se. See full Alert Notice for more details.
NASA Technical Reports Server (NTRS)
Hack, Margherita; Selvelli, Pierluigi
1993-01-01
Recurrent novae seem to be a rather inhomogeneous group: T CrB is a binary with a M III companion; U Sco probably has a late dwarf as companion. Three are fast novae; two are slow novae. Some of them appear to have normal chemical composition; others may present He and CNO excess. Some present a mass-loss that is lower by two orders of magnitude than classical novae. However, our sample is too small for saying whether there are several classes of recurrent novae, which may be related to the various classes of classical novae, or whether the low mass-loss is a general property of the class or just a peculiarity of one member of the larger class of classical novae and recurrent novae.
NASA Astrophysics Data System (ADS)
Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; Wagner, R. Mark; Woodward, Charles E.; Jose', Jordi; Hernanz, Margarita
2018-01-01
We have continued our studies of Classical Nova explosions by following the evolution of thermonuclear runaways (TNRs) on Carbon Oxygen white dwarfs (WDs). We have varied both the mass of the WD and the composition of the accreted material. We now rely on the results of multi-D studies of TNRs in WDs that accrete only Solar matter. They find that mixing with the core occurs after the TNR is well underway, reaching enrichment levels in agreement with observations of the ejecta abundances. We, therefore, accrete only Solar matter with NOVA (our 1-D, fully implicit, hydro code) until the TNR is initiated and then switch the accreted composition to a mixed composition: either 25% core and 75% Solar or 50% core and 50% Solar. Because the amount of accreted material is inversely proportional to the initial 12C abundance, by accreting Solar matter the amount of material taking part in the outburst is larger than if we had used mixed material from the beginning. We follow the TNR through the peak and tabulate the amount of ejected gases, their velocities and abundances. We also predict the amount of 7Li and 7Be produced and ejected by the explosion and compare our predictions to the observations in a companion poster describing the LBT measurements of 7Li in V5668 Sgr. We also compare our abundance predictions to those measured in pre-solar grains that may arise from Classical Nova explosions. Our predictions are also compared to results with SHIVA (Josè and Hernanz). Finally, many of these simulations eject significantly less mass than accreted and, therefore, the WD is growing in mass toward the Chandrasekhar Limit. This suggests that the single degenerate scenario is still a viable option for SN Ia progenitors. This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. Our results benefitted from collaborations and/or information exchange within NASA's Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA's Science Mission Directorate.
Novae as a Class of Transient X-ray Sources
NASA Technical Reports Server (NTRS)
Mukai, K.; Orio, M.; Valle, M. Della
2007-01-01
Motivated by the recently discovered class of faint (10(exp 34)-10(exp 35) ergs/s) X-ray transients in the Galactic Center region, we investigate the 2-10 keV properties of classical and recurrent novae. Existing data are consistent with the idea that all classical novae are transient X-ray sources with durations of months to years and peak luminosities in the 10(exp 34)-10(exp 35)ergs/s range. This makes classical novae a viable candidate class for the faint Galactic Center transients. We estimate the rate of classical novae within a 15 arcmin radius region centered on the Galactic Center (roughly the field of view of XMM-Newton observations centered on Sgr A*) to be approx.0.1 per year. Therefore, it is plausible that some of the Galactic Center transients that have been announced to date are unrecognized classical novae. The continuing monitoring of the Galactic Center region carried out by Chandra and XMM-Newton may therefore provide a new method to detect classical novae in this crowded and obscured region, an
One Thousand New Dwarf Novae from the OGLE Survey
NASA Astrophysics Data System (ADS)
Mróz, P.; Udalski, A.; Poleski, R.; Pietrukowicz, P.; Szymański, M. K.; Soszyński, I.; Wyrzykowski, Ł.; Ulaczyk, K.; Kozłowski, S.; Skowron, J.
2015-12-01
We present one of the largest collections of dwarf novae (DNe) containing 1091 objects that have been discovered in the long-term photometric data from the Optical Gravitational Lensing Experiment (OGLE) survey. They were found in the OGLE fields toward the Galactic bulge and the Magellanic Clouds. We analyze basic photometric properties of all systems and tentatively find a population of DNe from the Galactic bulge. We identify several dozen of WZ Sge-type DN candidates, including two with superhump periods longer than 0.09 d. Other interesting objects include SU UMa-type stars with "early" precursor outbursts or a Z Cam-type star showing outbursts during standstills. We also provide a list of DNe which will be observed during the K2 Campaign 9 microlensing experiment in 2016. Finally, we present the new OGLE-IV real-time data analysis system: CVOM, which has been designed to provide continuous real time photometric monitoring of selected CVs.
Detection of the supercycle in V4140 Sagittarii: First eclipsing ER Ursae Majoris-like object
NASA Astrophysics Data System (ADS)
Kato, Taichi; Hambsch, Franz-Josef; Cook, Lewis M.
2018-05-01
We observed the deeply eclipsing SU UMa-type dwarf nova V4140 Sgr and established the very short supercycle of 69.7(3) d. There were several short outbursts between superoutbursts. These values, together with the short orbital period (0.06143 d), were similar to, but not as extreme as, those of ER UMa-type dwarf novae. The object is thus the first, long sought, eclipsing ER UMa-like object. This ER UMa-like nature can naturally explain the high (apparent) quiescent viscosity and unusual temperature profile in quiescence, which were claimed observational features against the thermal-tidal instability model. The apparently unusual outburst behavior can be reasonably explained by a combination of this ER UMa-like nature and the high orbital inclination, and there is no need to introduce mass transfer bursts from its donor star.
Detection of the supercycle in V4140 Sagittarii: First eclipsing ER Ursae Majoris-like object
NASA Astrophysics Data System (ADS)
Kato, Taichi; Hambsch, Franz-Josef; Cook, Lewis M.
2018-06-01
We observed the deeply eclipsing SU UMa-type dwarf nova V4140 Sgr and established the very short supercycle of 69.7(3) d. There were several short outbursts between superoutbursts. These values, together with the short orbital period (0.06143 d), were similar to, but not as extreme as, those of ER UMa-type dwarf novae. The object is thus the first, long sought, eclipsing ER UMa-like object. This ER UMa-like nature can naturally explain the high (apparent) quiescent viscosity and unusual temperature profile in quiescence, which were claimed observational features against the thermal-tidal instability model. The apparently unusual outburst behavior can be reasonably explained by a combination of this ER UMa-like nature and the high orbital inclination, and there is no need to introduce mass transfer bursts from its donor star.
Analysis of observations of the dwarf nova pegasi 2010
NASA Astrophysics Data System (ADS)
Shimansky, V. V.; Mitrofanova, A. A.; Borisov, N. V.; Gabdeev, M. M.
2013-06-01
Analysis of photometric and spectroscopic observations of GSC 02197-00886 at the outburst maximum (on May 8, 2010) and at the stage of relaxation towards the quiescent (on August 4, 2010) was performed. Radiation of an optically thick accretion disc with a hot boundary layer dominates the spectra, which are consistent with the spectra of a WZ Sge-type dwarf novae. In the relaxation phase, an optically thin accretion disc with radiation in the HI and HeI emission lines is observed against the background of the absorption spectrum of a white dwarf. The parameters of GSC 02197-00886, which were determined by combining the radial velocities of the components with the assumption that the secondary component is close to mainsequence stars, differ significantly from the parameters that characterize other WZ Sge-type systems. We hypothesize that the secondary component was excited in the course of the outburst and experienced long-lasting relaxation towards the main-sequence state.
High-velocity winds from a dwarf nova during outburst
NASA Technical Reports Server (NTRS)
Cordova, F. A.; Mason, K. O.
1982-01-01
An ultraviolet spectrum of the dwarf nova TW Vir during an optical outburst shows shortward-shifted absorption features with edge velocities as high as 4800 km/s, about the escape velocity of a white dwarf. A comparison of this spectrum with the UV spectra of other cataclysmic variables suggests that mass loss is evident only for systems with relatively high luminosities (more than about 10 solar luminosities) and low inclination angles with respect to the observer's line of sight. The mass loss rate for cataclysmic variables is of order 10 to the -11th solar mass per yr; this is from 0.01 to 0.001 of the mass accretion rate onto the compact star in the binary. The mass loss may occur by a mechanism similar to that invoked for early-type stars, i.e., radiation absorbed in the lines accelerates the accreting gas to the high velocities observed.
Optical and Near-infrared Study of Nova V2676 Oph 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raj, A.; Das, R. K.; Walter, F. M., E-mail: ashish.raj@iiap.res.in
2017-02-01
We present optical spectrophotometric and near-infrared (NIR) photometric observations of the nova V2676 Oph covering the period from 2012 March 29 through 2015 May 8. The optical spectra and photometry of the nova have been taken from SMARTS and Asiago; the NIR photometry was obtained from SMARTS and Mt. Abu. The spectra were dominated by strong H i lines from the Balmer series, Fe ii, N i, and [O i] lines in the initial days, typical of an Fe ii type nova. The measured FWHM for the H β and H α lines was 800–1200 km s{sup −1}. There wasmore » pronounced dust formation starting 90 days after the outburst. The J − K color was the largest among recent dust-forming novae.« less
Optical and X-ray rebrightening in NS X-ray Nova Aql X-1
NASA Astrophysics Data System (ADS)
Meshcheryakov, A.; Bikmaev, I.; Irtuganov, E.; Sakhibullin, N.; Vlasyuk, V. V.; Spiridonova, O. I.; Khamitov, I.; Medvedev, P.; Pavlinsky, M. N.; Tsygankov, S. S.
2017-06-01
The current outburst in NS X-ray Nova Aql X-1 has started 28 May 2017, as it was reported earlier (see ATel#10441, #10450, #10452). During optical monitoring campaign of Aql X-1, performed at 1.5-m Russian-Turkish telescope (TUBITAK National Observatory) and 1-m SAO RAS optical telescope (Special Astrophysical Observatory) we report a substantial increase of optical brightness of Aql X-1 in the last few days.
FUSE SPECTROSCOPIC ANALYSIS OF THE SLOWEST SYMBIOTIC NOVA AG PEG DURING QUIESCENCE
NASA Astrophysics Data System (ADS)
Sion, Edward Michael; Godon, Patrick; Katynski, Marcus; Mikolajewska, Joanna
2018-01-01
We present a far ultraviolet spectroscopic analysis of the slowest known symbiotic nova AG Peg (MIII giant + hot white dwarf; P_orb = 818.4 days) which underwent a nova explosion in 1850 followed by a very slow decline that did not end until ~ 1996, marking the beginning of queiscence. Eight years of quiescence ended in June 2015, when AG Peg exhibited a Z And-type outburst with an optical amplitude of ~ 3 magnitudes. We have carried out accretion disk and WD photosphere synthetic spectral modeling of a FUSE spectrum (Froning et al. 2014) obtained on June 5.618, 2003 during the quiescence intervai ~ 12 years before the 2015 outburst. The spectrum is heavily affected by ISM absorption as well as strong broad emission lines. We de-reddened the FUSE fluxes with E(B-V) = 0.10 which is the maximum galactic reddening in the direction of AG Peg and took the distance of 800 pc (Kenyon et al. 1993) but used a range of white dwarf masses, surface temperatures and disk inclination angles. Our analysis also incororates archival HST FOS spectra obtained in 1996 at the onset of quiescence, 147 years after the 1850 nova explosion. The results of our analysis are presented and implications are discussed.This work is supported in part by NASA ADP grant NNX17AF36G to Villanova University.
Detecting Nova Shells around known Cataclysmic Variable systems
NASA Astrophysics Data System (ADS)
Xhakaj, Enia; Kupfer, Thomas; Prince, Thomas A.
2017-01-01
Nova shells are hydrogen-rich nebulae around Cataclysmic Variables that are created when a Nova outburst takes place. Learning more about Nova shells can help us get a better understanding of the long-term evolution of white dwarfs in active Cataclysmic Variables. In this project, we present the search for Nova shells around 1700 Cataclysmic Variables, using Hα images from the Palomar Transient Factory (PTF) survey. The PTF Hα survey started in 2009 using the 48’’ Oschin telescope at Palomar Observatory and is the first of its type covering the whole northern hemisphere while reaching 18 mags in 60 seconds of exposure. We concentrated our search on the IAU catalogue of Historical Novae, as well as on the SDSS and the Ritter-Kolb catalogue of Cataclysmic Variables. We numerically analyzed radial profiles centered on the target sources to search for excess emission potentially associated with the shells. Out of 1700 Cataclysmic Variables present in these catalogues, we detected 25 Nova shells, out of which 20 are not observed before.
CI Aql monitoring needed to support HST observations
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2016-10-01
Dr. Edward Sion (Villanova University) has requested AAVSO observers' assistance in monitoring the recurrent nova CI Aql in support of observations with the Hubble Space Telescope Cosmic Origins Spectrograph scheduled for October 31 - November 2, 2016, and November 3 - November 5, 2016. These observations are part of a study on short orbital period recurrent novae as Supernovae Type Ia progenitors. It is essential to know 24 hours prior to the HST COS observations that CI Aql is not in outburst, in order to protect the instrumentation. Observers are asked to keep an eye on CI Aql with nightly snapshot images (V preferred) from now until November 12, and to report their observations promptly. It will be especially important to know the brightness of CI Aql each night for October 28 through November 7 UT. Visual observations are welcome. CI Aql (Nova Aql 1917) has had recurrent outbursts in 1941 and 2000, brightening to V 8.5. At minimum it is V 16-16.5 or fainter. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
NASA Technical Reports Server (NTRS)
Drechsel, H. (Editor); Rahe, J. (Editor); Kondo, Y. (Editor)
1987-01-01
Papers are presented on the formation and evolution of low-mass close binaries with compact components, the periods of cataclysmic variables, multiwavelength observations of dwarf novae during outbursts, and radio emission from cataclysmic variables. Also considered are long-term optical photometry of the dwarf nova VW Hyi, periodic modulations in the optical light curves of EX Hydrae, and Echelle-Mepsicron time-resolved spectroscopy of the dwarf nova SS Cygni. Other topics include UV and X-ray observations of cataclysmic variables, new EXOSAT observations of TV Columbae, accretion disk evolution, and the boundary layer in cataclysmic variables.
The supersoft X-ray source in V5116 Sagittarii. I. The high resolution spectra
NASA Astrophysics Data System (ADS)
Sala, G.; Ness, J. U.; Hernanz, M.; Greiner, J.
2017-05-01
Context. Classical nova explosions occur on the surface of an accreting white dwarf in a binary system. After ejection of a fraction of the envelope and when the expanding shell becomes optically thin to X-rays, a bright source of supersoft X-rays arises, powered by residual H burning on the surface of the white dwarf. While the general picture of the nova event is well established, the details and balance of accretion and ejection processes in classical novae are still full of unknowns. The long-term balance of accreted matter is of special interest for massive accreting white dwarfs, which may be promising supernova Ia progenitor candidates. Nova V5116 Sgr 2005b was observed as a bright and variable supersoft X-ray source by XMM-Newton in March 2007, 610 days after outburst. The light curve showed a periodicity consistent with the orbital period. During one third of the orbit the luminosity was a factor of seven brighter than during the other two thirds of the orbital period. Aims: In the present work we aim to disentangle the X-ray spectral components of V5116 Sgr and their variability. Methods: We present the high resolution spectra obtained with XMM-Newton RGS and Chandra LETGS/HRC-S in March and August 2007. Results: The grating spectrum during the periods of high-flux shows a typical hot white dwarf atmosphere dominated by absorption lines of N VI and N VII. During the low-flux periods, the spectrum is dominated by an atmosphere with the same temperature as during the high-flux period, but with several emission features superimposed. Some of the emission lines are well modeled with an optically thin plasma in collisional equilibrium, rich in C and N, which also explains some excess in the spectra of the high-flux period. No velocity shifts are observed in the absorption lines, with an upper limit set by the spectral resolution of 500 km s-1, consistent with the expectation of a non-expanding atmosphere so late in the evolution of the post-nova. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.
Optical and Infrared Spectroscopy of Nova Ophiuchi 2018 No.2
NASA Astrophysics Data System (ADS)
Rudy, R. J.; Mauerhan, J. C.; Russell, R. W.; Subasavage, J. P.; Wiktorowicz, S. J.; Kim, D. L.; Sitko, M. L.
2018-05-01
Over a two week period coming approximately two months after outburst, Nova Ophiuchi 2018, No.2 (CBET 4492) was observed spectroscopically using instruments from three different facilities: 2018 May 6, using the Spex instrument at the Infrared Telescope Facility (0.7-2.5 microns); 2018 May 14, using the Broadband Array Spectrograph System on the 3.6 meter Advanced Electro-Optical Systems telescope (3-13 microns); 2018 May 19, with the VNIRIS spectrograph on the Aerospace Corporation's one meter telescope (0.47-2.5 microns).
Faint Object Camera observations of a globular cluster nova field
NASA Technical Reports Server (NTRS)
Margon, Bruce; Anderson, Scott F.; Downes, Ronald A.; Bohlin, Ralph C.; Jakobsen, Peter
1991-01-01
The Faint Object Camera onboard Hubble Space Telescope has obtained U and B images of the field of Nova Ophiuchi 1938 in the globular cluster M14 (NGC 6402). The candidate for the quiescent nova suggested by Shara et al. (1986) is clearly resolved into at least six separate images, probably all stellar, in a region of 0.5 arcsec. Although two of these objects are intriguing as they are somewhat ultraviolet, the actual nova counterpart remains ambiguous, as none of the images in the field has a marked UV excess. Many stars within the 1.4 arcsec (2 sigma) uncertainty of the nova outburst position are viable counterparts if only astrometric criteria are used for selection. The 11 x 11 arcsec frames easily resolve several hundred stars in modest exposures, implying that HST even in its current optical configuration will be unique for studies of very crowded fields at moderate (B = 22) limiting magnitudes.
Ultraviolet observations of the symbiotic star AS 296
NASA Technical Reports Server (NTRS)
Gutierrez-Moreno, A.; Moreno, H.; Feibelman, W. A.
1992-01-01
AS 296 is a well-known S-type symbiotic star which underwent an optical outburst during 1988. In this paper, UV data based on IUE observations obtained both during the quiescent and outburst stages are presented and discussed, correlating them to observations made in the optical region. It is concluded that the object is a symbiotic nova, in which the outburst is due to a thermonuclear runaway produced in the hydrogen-burning shell of a white dwarf with M of about 0.5 solar masses, accreting from the late-type giant at a rate M(acc) of about 9.7 x 10 exp -9 solar mass/year. It is not possible to determine from the observations if the hydrogen flash is degenerate or nondegenerate.
Studies of Transient X-Ray Sources with the Ariel 5 All-Sky Monitor. Ph.D. Thesis - Maryland Univ.
NASA Technical Reports Server (NTRS)
Kaluzienski, L. J.
1977-01-01
The All-Sky Monitor, an imaging X-ray detector launched aboard the Ariel 5 satellite, was used to obtain detailed light curves of three new sources. Additional data essential to the determination of the characteristic luminosities, rates of occurrence (and possible recurrence), and spatial distribution of these objects was also obtained. The observations are consistent with a roughly uniform galactic disk population consisting of at least two source sub-classes, with the second group (Type 2) at least an order of magnitude less luminous and correspondingly more frequent than the first (Type 1). While both subtypes are probably unrelated to the classical optical novae (or supernovae), they are most readily interpreted within the standard mass exchange X-ray binary model, with outbursts triggered by Roche-lobe overflow (Type 1) or enhancements in the stellar wind density of the companion (Type 2), respectively.
NASA Technical Reports Server (NTRS)
Efimov, Yu. S.
1989-01-01
R CrB stars are classical examples of stars where dust envelope formation takes place. Dust envelope formation was detected around the Kuwano-Honda object (PU Vul) in 1980 to 1981 when the star's brightness fell to 8(sup m). Such envelopes are also formed at nova outbursts. The process of dust envelope formation leads to appreciable variations in optical characteristics, which are seen in specific color and polarization variations in the course of light fading and the appearance of IR radiation. It is shown that the model of a circumstellar dust envelope with aligned particles of changing size can be successfully applied to explain most phenomena observed at the time of light minima for a number of eruptive stars. The polarization may arise in a nonspherical dust envelope or be produced by alignment of nonspherical particles.
NASA Astrophysics Data System (ADS)
Kinsman, J. H.; Asher, D. J.
2017-09-01
No firm evidence has existed that the ancient Maya civilization recorded specific occurrences of meteor showers or outbursts in the corpus of Maya hieroglyphic inscriptions. In fact, there has been no evidence of any pre-Hispanic civilization in the Western Hemisphere recording any observations of any meteor showers on any specific dates. The authors numerically integrated meteoroid-sized particles released by Comet Halley as early as 1404 BC to identify years within the Maya Classic Period, AD 250-909, when Eta Aquariid outbursts might have occurred. Outbursts determined by computer model were then compared to specific events in the Maya record to see if any correlation existed between the date of the event and the date of the outburst. The model was validated by successfully explaining several outbursts around the same epoch in the Chinese record. Some outbursts observed by the Maya were due to recent revolutions of Comet Halley, within a few centuries, and some to resonant behavior in older Halley trails, of the order of a thousand years. Examples were found of several different Jovian mean motion resonances as well as the 1:3 Saturnian resonance that have controlled the dynamical evolution of meteoroids in apparently observed outbursts.
The X-Ray Evolution of the Symbiotic Star V 407 Cygni During Its 2010 Outburst
NASA Technical Reports Server (NTRS)
Mukai, K.; Nelson, T.; Chomiuk, L.; Donato, D.; Sokoloski, J.
2011-01-01
We present a summary of Swift and Suzaku X-ray observations of the 2010 nova outburst of the symbiotic star, V 407 Cyg. The Suzaku spectrum obtained on day 30 indicates the presence of the supersoft component from the white dwarf surface, as well as optically thin component from the shock between the nova ejecta and the Mira wind. The Swift observations then allow us to track the evolution of both components from day 4 to day 150. Most notable is the sudden brightening of the optically think component around day 20. We identify this as the time when the blast wave reached the immediate vicinity of the photosphere of the Mira. We have developed a simplified model of the blast wave-wind interaction that can reproduce the gross features of the X-ray evolution of V407 Cyg. If the model is correct, the binary separation is likely to be large and the mass loss rate of the Mira is likely to be relatively low.
The X-Ray Evolution of the Symbiotic Star V407 Cygni During Its 2010 Outburst
NASA Technical Reports Server (NTRS)
Mukai, K.; Nelson, T.; Chomiuk, L.; Donato, D.; Sokoloski, J.
2011-01-01
We present a summary of Swift and Suzaku X-ray observations of the 2010 nova outburst of the symbiotic star, V407 Cyg. The Suzaku spectrum obtained on day 30 indicates the presence of the supersoft component from the white dwarf surface, as well as optically thin component from the shock between the nova ejecta and the Mira wind. The Swift observations then allow us to track the evolution of both components from day 4 to day 150. Most notable is the sudden brightening of the optically think component around day 20. We identify this as the time when the blast wave reached the immediate vicinity of the photosphere of the Mira. We have developed a simplified model of the blast wave-wind interaction that can reproduce the gross features of the X-ray evolution of V407 Cyg. If the model is correct, the binary separation is likely to be large and the mass loss rate of the Mira is likely to be relatively low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, S.-B.; Han, Z.-T.; Zhang, B.
1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is notmore » accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L {sub 1} region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.« less
NASA Astrophysics Data System (ADS)
Qian, S.-B.; Han, Z.-T.; Zhang, B.; Zejda, M.; Michel, R.; Zhu, L.-Y.; Zhao, E.-G.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H.
2017-10-01
1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is not accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L 1 region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.
Recent progress in understanding the eruptions of classical novae
NASA Technical Reports Server (NTRS)
Shara, Michael M.
1988-01-01
Dramatic progress has occurred in the last two decades in understanding the physical processes and events leading up to, and transpiring during the eruption of a classical nova. The mechanism whereby a white dwarf accreting hydrogen-rich matter from a low-mass main-sequence companion produces a nova eruption has been understood since 1970. The mass-transferring binary stellar configuration leads inexorably to thermonuclear runaways detected at distances of megaparsecs. Summarized here are the efforts of many researchers in understanding the physical processes which generate nova eruptions; the effects upon nova eruptions of different binary-system parameters (e.g., chemical composition or mass of the white dwarf, different mass accretion rates); the possible metamorphosis from dwarf to classical novae and back again; and observational diagnostics of novae, including x ray and gamma ray emission, and the characteristics and distributions of novae in globular clusters and in extragalactic systems. While the thermonuclear-runaway model remains the successful cornerstone of nova simulation, it is now clear that a wide variety of physical processes, and three-dimensional hydrodynamic simulations, will be needed to explain the rich spectrum of behavior observed in erupting novae.
Impact of convection and resistivity on angular momentum transport in dwarf novae.
NASA Astrophysics Data System (ADS)
Scepi, N.; Lesur, G.; Dubus, G.; Flock, M.
2017-12-01
The eruptive cycles of dwarf novae are thought to be due to a thermal-viscous instability in the accretion disk surrounding the white dwarf. This model has long been known to imply enhanced angular momentum transport in the accretion disk during outburst. This is measured by the stress to pressure ratio α, with α≈ 0.1 required in outburst compared to α≈ 0.01 in quiescence. Such an enhancement in α has recently been observed in simulations of turbulent transport driven by the magneto-rotational instability (MRI) when convection is present, without requiring a net magnetic flux. We independently recover this result by carrying out PLUTO MHD simulations of vertically stratified, radiative, shearing boxes with the thermodynamics and opacities appropriate to dwarf novae. The results are robust against the choice of vertical boundary conditions. In the quiescent state, the disk is only very weakly ionized so, in the second part of our work, we studied the impact of resistive MHD on transport.We find that the MRI-driven transport is quenched (α≈ 0) below the critical density at which the magnetic Reynolds number R_{m}≤ 10^4. This is problematic because the X-ray emission observed in quiescent systems requires ongoing accretion onto the white dwarf.
X-ray nova MAXI J1828-249. Evolution of the broadband spectrum during its 2013-2014 outburst
NASA Astrophysics Data System (ADS)
Grebenev, S. A.; Prosvetov, A. V.; Burenin, R. A.; Krivonos, R. A.; Mescheryakov, A. V.
2016-02-01
Based on data from the SWIFT, INTEGRAL, MAXI/ISS orbital observatories, and the ground-based RTT-150 telescope, we have investigated the broadband (from the optical to the hard X-ray bands) spectrum of the X-ray nova MAXI J1828-249 and its evolution during the outburst of the source in 2013-2014. The optical and infrared emissions from the nova are shown to be largely determined by the extension of the power-law component responsible for the hard X-ray emission. The contribution from the outer cold regions of the accretion disk, even if the X-ray heating of its surface is taken into account, turns out to be moderate during the source's "high" state (when a soft blackbody emission component is observed in the X-ray spectrum) and is virtually absent during its "low" ("hard") state. This result suggests that much of the optical and infrared emissions from such systems originates in the same region of main energy release where their hard X-ray emission is formed. This can be the Compton or synchro-Compton radiation from a high-temperature plasma in the central accretion disk region puffed up by instabilities, the synchrotron radiation from a hot corona above the disk, or the synchrotron radiation from its relativistic jets.
Discovery of a New Photometric Sub-class of Faint and Fast Classical Novae
NASA Astrophysics Data System (ADS)
Kasliwal, M. M.; Cenko, S. B.; Kulkarni, S. R.; Ofek, E. O.; Quimby, R.; Rau, A.
2011-07-01
We present photometric and spectroscopic follow-up of a sample of extragalactic novae discovered by the Palomar 60 inch telescope during a search for "Fast Transients In Nearest Galaxies" (P60-FasTING). Designed as a fast cadence (1 day) and deep (g < 21 mag) survey, P60-FasTING was particularly sensitive to short-lived and faint optical transients. The P60-FasTING nova sample includes 10 novae in M 31, 6 in M 81, 3 in M 82, 1 in NGC 2403, and 1 in NGC 891. This significantly expands the known sample of extragalactic novae beyond the Local Group, including the first discoveries in a starburst environment. Surprisingly, our photometry shows that this sample is quite inconsistent with the canonical maximum-magnitude-rate-of-decline (MMRD) relation for classical novae. Furthermore, the spectra of the P60-FasTING sample are indistinguishable from classical novae. We suggest that we have uncovered a sub-class of faint and fast classical novae in a new phase space in luminosity-timescale of optical transients. Thus, novae span two orders of magnitude in both luminosity and time. Perhaps the MMRD, which is characterized only by the white dwarf mass, was an oversimplification. Nova physics appears to be characterized by a relatively rich four-dimensional parameter space in white dwarf mass, temperature, composition, and accretion rate.
An accreting white dwarf near the Chandrasekhar limit in the Andromeda galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Sumin; Bildsten, Lars; Wolf, William M.
The intermediate Palomar Transient Factory (iPTF) detection of the most recent outburst of the recurrent nova (RN) system RX J0045.4+4154 in the Andromeda galaxy has enabled the unprecedented study of a massive (M > 1.3 M {sub ☉}) accreting white dwarf (WD). We detected this nova as part of the near-daily iPTF monitoring of M31 to a depth of R ≈ 21 mag and triggered optical photometry, spectroscopy and soft X-ray monitoring of the outburst. Peaking at an absolute magnitude of M{sub R} = –6.6 mag, and with a decay time of 1 mag per day, it is a faintmore » and very fast nova. It shows optical emission lines of He/N and expansion velocities of 1900-2600 km s{sup –1} 1-4 days after the optical peak. The Swift monitoring of the X-ray evolution revealed a supersoft source (SSS) with kT {sub eff} ≈ 90-110 eV that appeared within 5 days after the optical peak, and lasted only 12 days. Most remarkably, this is not the first event from this system, rather it is an RN with a time between outbursts of approximately 1 yr, the shortest known. Recurrent X-ray emission from this binary was detected by ROSAT in 1992 and 1993, and the source was well characterized as a M > 1.3 M {sub ☉} WD SSS. Based on the observed recurrence time between different outbursts, the duration and effective temperature of the SS phase, MESA models of accreting WDs allow us to constrain the accretion rate to M-dot >1.7×10{sup −7} M{sub ⊙} yr{sup −1} and WD mass >1.30 M {sub ☉}. If the WD keeps 30% of the accreted material, it will take less than a Myr to reach core densities high enough for carbon ignition (if made of C/O) or electron capture (if made of O/Ne) to end the binary evolution.« less
Swift observations of nova V407 Lup: detection of a UV period at 1.1 or 3.6 hours
NASA Astrophysics Data System (ADS)
Beardmore, A. P.; Page, K. L.; Osborne, J. P.; Orio, M.
2017-08-01
V407 Lup (also known as Nova Lup 2016 and ASASSN-16kt) was reported to be in outburst on 2016-Sep-24.0 by Stanek et al. (ATel #9538 and ATel #9539). Although Swift observations started 2 days later, the source was too bright at the time for the UVOT to observe, and was not detectable in X-rays by the XRT, before the object came too close to the Sun on 2016-Oct-14 to be safely observed by Swift.
Orbital period determination in an eclipsing dwarf nova HT Cas
NASA Astrophysics Data System (ADS)
Bąkowska, Karolina; Olech, Arkadiusz
2014-09-01
HT Cassiopeiae was discovered over seventy years ago (Hoffmeister 1943). Unfortunately, for 35 years this object did not receive any attention, until the eclipses of HT Cas were observed by Bond. After a first analysis, Patterson (1981) called HT Cas "a Rosetta stone among dwarf novae". Since then, the literature on this star is still growing, reaching several dozens of publications. We present an orbital period determination of HT Cas during the November 2010 super-outburst, but also during a longer time span, to check its stability.
Highlights of Odessa Branch of AN in 2017
NASA Astrophysics Data System (ADS)
Andronov, I. L.
2017-12-01
An annual report with a list of publications. Our group works on the variable star research within the international campaign "Inter-Longitude Astronomy" (ILA) based on temporarily working groups in collaboration with Poland, Slovakia, Korea, USA and other countries. A recent self-review on highlights was published in 2017. Our group continues the scientific school of Prof. Vladymir P. Tsesevich (1907 - 1983). Another project we participate is "AstroInformatics". The unprecedented photo-polarimetric monitoring of a group of AM Her - type magnetic cataclysmic variable stars was carried out since 1989 (photometry in our group - since 1978). A photometric monitoring of the intermediate polars (MU Cam, V1343 Her, V2306 Cyg et al.) was continued to study rotational evolution of magnetic white dwarfs. The super-low luminosity state was discovered in the outbursting intermediate polar = magnetic dwarf nova DO Dra. Previously typical low state was some times interrupted by outbursts, which are narrower than usual dwarf nova outbursts. Once there were detected TPO - "Transient Periodic Oscillations". The orbital and quasi-periodic variability was recently studied. Such super-low states are characteristic for nova-like variables (e.g. MV Lyr, TT Ari) or intermediate polars, but unusual for the dwarf novae. The electronic "Catalogue of Characteristics and Atlas of the Light Curves of Newly-Discovered Eclipsing Binary Stars" was compiled and is being prepared for publication. The software NAV ("New Algol Variable") with specially developed algorithms was used. It allows to determine the begin and end of the eclipses even in EB and EW - type stars, whereas the current classification (GCVS, VSX) claims that the begin and end of eclipses only in the EA - type objects. The further improvements of the NAV algorithm were comparatively studied. The "Wall-Supported Polynomial" (WSP) algoritms were implemented in the software MAVKA for statistically optimal modeling of flat eclipses and exoplanet transitions. MAVKA was used for studies of effects of the mass transfer and presence of the third components in close binary stellar systems and analysis of the poorly studied eclipsing binary 2MASS J20355082+5242136. Atlas of the Light Curves and Phase Plane Portraits of Selected Long-Period Variables was compiled.
The cataclysmic variables from the Palomar-Green survey
NASA Astrophysics Data System (ADS)
Ringwald, F. A.
1993-09-01
This thesis explores the cataclysmic variables (CVs) found by the Palomar-Green (PG) survey. This is the first compilation of a statistically complete sample of CVs found by ultraviolet color excess, and not outburst behavior. Blue and red follow-up spectrophotometry suggests that 22 of 68 objects classified originally as CVs are hot subdwarfs. Cool companions may be mimicking CVs' flat energy distributions, although the possibility remains that some are face-on CVs. Spectra taken with the International Ultraviolet Explorer satellite prove useful for distinguishing difficult cases. With the CV sample defined, the orbital periods for eleven systems are investigated with radial velocity studies. At 16th magnitude, CV number counts increase by 2.3 mag-1, although this may level off. The luminosity function is examined for the first time, and a trend toward higher space density at low luminosity is suspected. Outburst properties are compiled, and low-luminosity dwarf novae inflate the total space density to 6 x 10-6 pc-3. I describe all the PG CVs and candidate objects, and show spectra for most. This sample should be useful for population studies, such as measuring the space density with trigonometric parallaxes, or finding the fraction of eclipsing CVs. A new class of nova-likes, the SW Sextantis stars, is characterized by absorption events of the emission lines at spectroscopic phase 0.5, accompanied by large phase lags between the lightcurves and the radial velocity curves and strong high-excitation emission. There are at least six such CVs in this sample of 33, so this mysterious behavior must be common and not peculiar, as previously thought. Five of these six objects eclipse. Serendipitous results for individual CVs include finding low-frequency quasi-periodic variations in the radial velocity curve of the dwarf nova BZ Ursae Majoris. While erratic from epoch to epoch, these are too coherent to be pure noise. Another dwarf nova, HX Pegasi, is caught with time-resolved spectrophotometry on the rise to outburst. This is the second-ever such observation, and the first with red spectra. HX Pegasi is also confirmed as having a novel subdwarf-K red star.
NASA Astrophysics Data System (ADS)
Kato, Taichi; Pavlenko, Elena P.; Shchurova, Alisa V.; Sosnovskij, Aleksei A.; Babina, Julia V.; Baklanov, Aleksei V.; Shugarov, Sergey Yu.; Littlefield, Colin; Dubovsky, Pavol A.; Kudzej, Igor; Pickard, Roger D.; Isogai, Keisuke; Kimura, Mariko; de Miguel, Enrique; Tordai, Tamás; Chochol, Drahomir; Maeda, Yutaka; Cook, Lewis M.; Miller, Ian; Itoh, Hiroshi
2016-04-01
We observed the 2015 July-August long outburst of V1006 Cyg and established this object to be an SU UMa-type dwarf nova in the period gap. Our observations have confirmed that V1006 Cyg is the second established object showing three types of outbursts (normal, long normal, and superoutbursts) after TU Men. We have succeeded in recording the growing stage of superhumps (stage A superhumps) and obtained a mass ratio of 0.26-0.33, which is close to the stability limit of tidal instability. This identification of stage A superhumps demonstrates that superhumps indeed slowly grow in systems near the stability limit, the idea first introduced by Kato et al. (2014, PASJ, 66, 90). The superoutburst showed a temporary dip followed by a rebrightening. The moment of the dip coincided with the stage transition of superhumps, and we suggest that stage C superhumps are related to the start of the cooling wave in the accretion disk. We interpret that the tidal instability was not strong enough to maintain the disk in the hot state when the cooling wave started. We propose that the properties commonly seen in the extreme ends of mass ratios (WZ Sge-type objects and long-period systems) can be understood as a result of weak tidal effect.
Hysteresis and thermal limit cycles in MRI simulations of accretion discs
NASA Astrophysics Data System (ADS)
Latter, H. N.; Papaloizou, J. C. B.
2012-10-01
The recurrentoutbursts that characterize low-mass binary systems reflect thermal state changes in their associated accretion discs. The observed outbursts are connected to the strong variation in disc opacity as hydrogen ionizes near 5000 K. This physics leads to accretion disc models that exhibit bistability and thermal limit cycles, whereby the disc jumps between a family of cool and low-accreting states and a family of hot and efficiently accreting states. Previous models have parametrized the disc turbulence via an alpha (or 'eddy') viscosity. In this paper we treat the turbulence more realistically via a suite of numerical simulations of the magnetorotational instability (MRI) in local geometry. Radiative cooling is included via a simple but physically motivated prescription. We show the existence of bistable equilibria and thus the prospect of thermal limit cycles, and in so doing demonstrate that MRI-induced turbulence is compatible with the classical theory. Our simulations also show that the turbulent stress and pressure perturbations are only weakly dependent on each other on orbital times; as a consequence, thermal instability connected to variations in turbulent heating (as opposed to radiative cooling) is unlikely to operate, in agreement with previous numerical results. Our work presents a first step towards unifying simulations of full magnetohydrodynamic turbulence with the correct thermal and radiative physics of the outbursting discs associated with dwarf novae, low-mass X-ray binaries and possibly young stellar objects.
NASA Astrophysics Data System (ADS)
Orlando, Salvatore; Drake, Jeremy J.; Miceli, Marco
2017-02-01
The symbiotic nova V745 Sco was observed in outburst on 2014 February 6. Its observations by the Chandra X-ray Observatory at days 16 and 17 have revealed a spectrum characterized by asymmetric and blueshifted emission lines. Here we investigate the origin of these asymmetries through 3D hydrodynamic simulations describing the outburst during the first 20 d of evolution. The model takes into account thermal conduction and radiative cooling, and assumes that a blast wave propagates through an equatorial density enhancement (EDE). From these simulations, we synthesize the X-ray emission and derive the spectra as they would be observed with Chandra. We find that both the blast wave and the ejecta distribution are efficiently collimated in polar directions due to the presence of the EDE. The majority of the X-ray emission originates from the interaction of the blast with the EDE and is concentrated on the equatorial plane as a ring-like structure. Our `best-fitting' model requires a mass of ejecta in the outburst Mej ≈ 3 × 10-7 M⊙ and an explosion energy Eb ≈ 3 × 1043 erg, and reproduces the distribution of emission measure versus temperature and the evolution of shock velocity and temperature inferred from the observations. The model predicts asymmetric and blueshifted line profiles similar to those observed and explains their origin as due to substantial X-ray absorption of redshifted emission by ejecta material. The comparison of predicted and observed Ne and O spectral line ratios reveals no signs of strong Ne enhancement and suggests that the progenitor is a CO white dwarf.
Superoutburst of CR Bootis: Estimation of mass ratio of a typical AM CVn star by stage A superhumps
NASA Astrophysics Data System (ADS)
Isogai, Keisuke; Kato, Taichi; Ohshima, Tomohito; Kasai, Kiyoshi; Oksanen, Arto; Masumoto, Kazunari; Fukushima, Daiki; Maeda, Kazuki; Kawabata, Miho; Matsuda, Risa; Kojiguchi, Naoto; Sugiura, Yuki; Takeda, Nao; Matsumoto, Katsura; Itoh, Hiroshi; Pavlenko, Elena P.; Antonyuk, Kirill; Antonyuk, Oksana; Pit, Nikolai; Sosnovskij, Aleksei; Baklanov, Alex; Babina, Julia; Sklyanov, Aleksandr; Kiyota, Seiichiro; Hambsch, Franz-Josef; Littlefield, Colin; Maeda, Yutaka; Cook, Lewis M.; Masi, Gianluca; Dubovsky, Pavol A.; Novák, Rudolf; Dvorak, Shawn; Imada, Akira; Nogami, Daisaku
2016-08-01
We report on two superoutbursts of the AM CVn-type object CR Boo in 2014 April-March and 2015 May-June. A precursor outburst accompanied both of these superoutbursts. During the rising branch of the main superoutburst in 2014, we detected growing superhumps (stage A superhumps) whose period was 0.017669(24) d. Assuming that this period reflects the dynamical precession rate at the radius of the 3:1 resonance, we could estimate the mass ratio (q = M2/M1) of 0.101(4) by using the stage A superhump period and the orbital period of 0.0170290(6) d. This mass ratio is consistent with that expected from the theoretical evolutionary model of AM CVn-type objects. The detection of precursor outbursts and stage A superhumps is the second case in AM CVn-type objects. There are two interpretations of the outbursts of AM CVn-type objects. One is a dwarf nova (DN) outbursts analogy, which suggets that the outbursts are caused by thermal and tidal instabilities. Another is the VY Scl-type variation, which suggests that the outbursts are caused by the variation of the mass-transfer rate of the secondary.This detection of the superhump variations strongly supports the former interpretation.
Fermi-LAT Gamma-Ray Detections of Classical Novae V1369 Centauri 2013 and V5668 Sagittarii 2015
NASA Astrophysics Data System (ADS)
Cheung, C. C.; Jean, P.; Shore, S. N.; Stawarz, Ł.; Corbet, R. H. D.; Knödlseder, J.; Starrfield, S.; Wood, D. L.; Desiante, R.; Longo, F.; Pivato, G.; Wood, K. S.
2016-08-01
We report the Fermi Large Area Telescope (LAT) detections of high-energy (>100 MeV) γ-ray emission from two recent optically bright classical novae, V1369 Centauri 2013 and V5668 Sagittarii 2015. At early times, Fermi target-of-opportunity observations prompted by their optical discoveries provided enhanced LAT exposure that enabled the detections of γ-ray onsets beginning ˜2 days after their first optical peaks. Significant γ-ray emission was found extending to 39-55 days after their initial LAT detections, with systematically fainter and longer-duration emission compared to previous γ-ray-detected classical novae. These novae were distinguished by multiple bright optical peaks that encompassed the time spans of the observed γ-rays. The γ-ray light curves and spectra of the two novae are presented along with representative hadronic and leptonic models, and comparisons with other novae detected by the LAT are discussed.
NASA Astrophysics Data System (ADS)
Munari, U.; Banerjee, D. P. K.
2018-03-01
Pre-outburst 2MASS and WISE photometry of Nova Sco 2014 (V1534 Sco) has suggested the presence of a cool giant at the location of the nova in the sky. The spectral evolution recorded for the nova did not, however, support a direct partnership because no flash-ionized wind and no deceleration of the ejecta were observed, contrary to the behaviour displayed by other novae which erupted within symbiotic binaries like V407 Cyg or RS Oph. We have therefore obtained 0.8-2.5 μm spectra of the remnant of Nova Sco 2014 in order to ascertain if a cool giant is indeed present and if it is physically associated with the nova. The spectrum shows the presence of a M6III giant, reddened by E(B - V) = 1.20, displaying the typical and narrow emission-line spectrum of a symbiotic star, including He I 1.0830 μm with a deep P-Cyg profile. This makes Nova Sco 2014 a new member of the exclusive club of novae that erupt within a symbiotic binary. Nova Sco 2014 shows that a nova erupting within a symbiotic binary does not always come with a deceleration of the ejecta, contrary to the common belief. Many other similar systems may lay hidden in past novae, especially in those that erupted prior to the release of the 2MASS all-sky infrared survey, which could be profitably cross-matched now against them.
Fermi Establishes Classical Novae as a Distinct Class of Gamma-ray Sources
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.;
2014-01-01
A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in gamma rays and stood in contrast to the first gamma-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient gamma-ray sources detected over 2-3 week durations. The gamma-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic gamma-ray sources.
Fermi establishes classical novae as a distinct class of gamma-ray sources
Cheung, C. C.
2014-07-31
A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in γ rays and stood in contrast to the first γ-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient γ-ray sources detected over 2-3 week durations. The γ-ray detections point to unexpected high-energy particle acceleration processes linkedmore » to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic γ-ray sources.« less
Oscillations of Accretion Disks in Cataclysmic Variable Stars
NASA Astrophysics Data System (ADS)
Osaki, Y.
2013-12-01
The disk instability model for the outbursts of dwarf novae is reviewed, with particular attention given to the superoutburst of SU UMa stars. Two intrinsic instabilities in accretion disks of dwarf novae are known; the thermal instability and the tidal instability. The thermal-tidal instability model (abbreviated the TTI model), which combines these two instabilities, was first proposed in 1989 by Osaki (1989) to explain the superoutburst phenomenon of SU UMa stars. Recent Kepler observations of one SU UMa star, V1504 Cyg, have dramatically demonstrated that the superoutburst phenomenon of the SU UMa stars is explained by the thermal-tidal instability model.
On the decay of outbursts in dwarf novae nad X-ray novae
NASA Technical Reports Server (NTRS)
Cannizzo, John K.
1994-01-01
We perform computations using a time-dependent model for the accretion disk limit-cycle mechanism to examine the decay of the optical light following the peak of a dwarf nova outburst. We present the results of a parameter study of the physical input variables which affect the decay rate. In the model, the decay is brought about by a cooling transition front which begins at large radii in the disk and moves inward. The nature of the decay is strongly influenced by the radial dependence of the accretion disk viscosity parameter alpha. To obtain exponential decays for typical dwarf nova parameters, we require alpha proportional to r(exp epsilon(sub 0)), where epsilon(sub 0) approximately = 0.3-0.4. The exact value of epsilon(sub 0) which produces exponential decays depends on factors such as the mass of the accreting star and the inner radius of the accretion disk. Therefore, the observed ubiquity of exponential decays in two different types of systems (dwarf novae and X-ray novae) leads us to believe that alpha is an unnatural scaling for the viscosity. The physics of the cooling transition front must be self-regulating in that the timescale (-parital derivative of lnSigma(r)/partial derivative +)(exp -1) (where Sigma is the surface density) for mass extraction across the front remains constant. This may be consistent with a scaling alpha proportional to (h/r)(exp n), where h is the local disk semi-thickness and n approximately 1-2. As regards the speed of the cooling front, we find v(sub F)(r) proportional to r(exp p), where p approximately 3 at large radii, with an abrupt transition to p approximately 0 at some smaller radius. The r(exp 3) dependence is much steeper than has been found by previous workers and appears to result from the strong variation of specific heat within the cooling front when the front resides at a large radius in the disk. The outflow of disk material across the cooling front causes a significant departure of dln T(sub dff0/dln r from the standard value of -0.75 (expected from steady state accretion) within about 0.2 dex in radius of the break associated with the cooling front -- T(sub eff) aproximately 10(exp 3.9) K (r/10(exp 10 cm)) (exp -0.1). These effects should be observable with eclipse mapping. Finally, it appears that the relatively slow decay rate for the optical flux in the 1975 outburst of A0620-00 can be accounted for if the primary is a approximately 10 Solar mass black hole.
Binary Orbits as the Driver of Gamma-Ray Emission and Mass Ejection in Classical Novae
NASA Technical Reports Server (NTRS)
Chomiuk, Laura; Linford, Justin D.; Yang, Jun; O'Brien, T. J.; Paragi, Zsolt; Mioduszewski, Amy J.; Beswick, R. J.; Cheung, C. C.; Mukai, Koji; Nelson, Thomas
2014-01-01
Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10 (sup -4) solar masses of material at velocities exceeding 1,000 kilometers per second.However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at giga-electronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion..At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters.
The scientific results of the low energy portion of A-2
NASA Technical Reports Server (NTRS)
Garmire, G.
1979-01-01
Galactic phenomena observed using the HEAO 1 detectors are discussed. A source map of the soft X-ray sky is presented. Specific topics covered include the optical outburst of U Geminorum, low energy RS CVn stars, and the dwarf nova SS Cygni. Aspects of the SS Cygni pulsations are analyzed.
Optical Photometry of the Nova Outburst TCP J04432130+4721280 (V392 Per)
NASA Astrophysics Data System (ADS)
Konyves-Toth, R.; Csak, B.; Pal, A.; Vinko, J.
2018-05-01
We obtained new photometric observations of TCP J04432130+4721280 (V392 Per, ATel #11588, #11590), R.A = 04:43:21.38, Dec = +47:21:25.9, on 2018-04-30.80 UT. The data were taken with the 60/90 cm Schmidt telescope at Konkoly Observatory, Piszkesteto, Hungary.
Twenty Years of Work with Janet Mattei on Cataclysmic Variables
NASA Astrophysics Data System (ADS)
Szkody, P.
2005-08-01
Janet Mattei and the AAVSO database have had a large impact on the field of cataclysmic variables, especially in the areas of outburst light curves of dwarf novae and ground-based support of space observations. A summary of some of the major results from AAVSO data during the last 20 years is presented.
Simultaneous IUE and Ground Based Observations of SS Cygni and HL Canis Majoris
NASA Astrophysics Data System (ADS)
Mansperger, C. S.; Kaitchuck, R. H.; Garnavich, P.; Dinshaw, N.
1993-05-01
SS Cyg and HL CMa were observed by IUE for three consecutive nights in November of 1992. During the first two nights, simultaneous photometric ground based observations of SS Cyg were made at the Ball State University Observatory. SS Cyg and HL CMa were observed simultaneously with the 90-inch telescope at the Steward Observatory on the last two nights of this run. These spectroscopic observations covered the wavelength range of 4100 Angstroms to 5000 Angstroms, while the spectra taken with the short wavelength camera on IUE resulted in wavelength coverage from 1150 Angstroms to 1980 Angstroms. SS Cyg is a U Gem type dwarf nova with an orbital period of 6.6 hours. Good simultaneous UV and optical orbital coverage was obtained for this system. HL CMa is a Z Cam type dwarf nova with an outburst period of 18 days. The AAVSO reports that this system was in outburst 4 days after the observing run. Therefore, HL CMa may have been in a preoutburst state during these observations. The C IV and H \\beta emission lines appeared to have weakened during this time.
New Southern Cataclysmic Variables: Discoveries from MASTER-SAAO
NASA Astrophysics Data System (ADS)
Buckley, D. A. H.; Potter, S. B.; Kniazev, A.; Lipunov, V.; Gorbovskoy, E.; Tiurina, N.
2017-03-01
In this paper we report on new cataclysmic variables (CVs) discovered by the first local optical transient detection system established at the SAAO Sutherland station, namely MASTER-SAAO. The characteristics of the MASTER-SAAO system are described and the parameters of the survey compared to the Catalina Real Time Survey (CRTS). To date MASTER-SAAO has discovered over 200 (non-Solar System) optical transients with about 75% of these being likely new CVs, most being dwarf novae (DNe). Approximately 50% of the DNe have outburst amplitudes in excess of 4 magnitudes, with some extreme amplitude (> 7 mag), probable WZ Sge systems. The MASTER-SAAO detection limit of B = 19-20 is comparable to the ˜20 magnitude limit of the CRTS (depending on CV colour). Based on the CV detection statistics of CRTS, we believe that MASTER-SAAO is detecting essentially the same CV population as CRTS, for a detection outburst amplitude threshold >2.2 magnitudes. We also present results of the initial follow-up program on CVs discovered by MASTER, including dwarf novae, a bright new VY Scl system and a new eclipsing polar.
NASA Technical Reports Server (NTRS)
Ladous, Constanze
1993-01-01
On grounds of different observable characteristics five classes of nova-like objects are distinguished: the UX Ursae Majoris stars, the antidwarf novae, the DQ Herculis stars, the AM Herculis stars, and the AM Canum Venaticorum stars. Some objects have not been classified specifically. Nova-like stars share most observable features with dwarf novae, except for the outburst behavior. The understanding is that dwarf novae, UX Ursae Majoris stars, and anti-dwarf novae are basically the same sort of objects. The difference between them is that in UX Ursae Majoris stars the mass transfer through the accretion disc always is high so the disc is stationary all the time; in anti-dwarf novae for some reason the mass transfer occasionally drops considerably for some time, and in dwarf novae it is low enough for the disc to undergo semiperiodic changes between high and low accretion events. DQ Herculis stars are believed to possess weakly magnetic white dwarfs which disrupt the inner disc at some distance from the central star; the rotation of the white dwarf can be seen as an additional photometric period. In AM Herculis stars, a strongly magnetic white dwarf entirely prevents the formation of an accretion disk and at the same time locks the rotation of the white dwarf to the binary orbit. Finally, AM Canum Venaticorum stars are believed to be cataclysmic variables that consist of two white dwarf components.
Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013).
Tajitsu, Akito; Sadakane, Kozo; Naito, Hiroyuki; Arai, Akira; Aoki, Wako
2015-02-19
The origin of lithium (Li) and its production process have long been uncertain. Li could be produced by Big Bang nucleosynthesis, interactions of energetic cosmic rays with interstellar matter, evolved low-mass stars, novae, and supernova explosions. Chemical evolution models and observed stellar Li abundances suggest that at least half the Li may have been produced in red giants, asymptotic giant branch (AGB) stars, and novae. No direct evidence, however, for the supply of Li from evolved stellar objects to the Galactic medium has hitherto been found. Here we report the detection of highly blue-shifted resonance lines of the singly ionized radioactive isotope of beryllium, (7)Be, in the near-ultraviolet spectra of the classical nova V339 Del (Nova Delphini 2013) 38 to 48 days after the explosion. (7)Be decays to form (7)Li within a short time (half-life of 53.22 days). The (7)Be was created during the nova explosion via the alpha-capture reaction (3)He(α,γ)(7)Be (ref. 5). This result supports the theoretical prediction that a significant amount of (7)Li is produced in classical nova explosions.
HUBBLE SPACE TELESCOPE FAR ULTRAVIOLET SPECTROSCOPY OF THE RECURRENT NOVA T PYXIDIS
Godon, Patrick; Sion, Edward M.; Starrfield, Sumner; Livio, Mario; Williams, Robert E.; Woodward, Charles E.; Kuin, Paul; Page, Kim L.
2018-01-01
With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis (T Pyx) is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few ~10−5 M⊙ to 3.3 × 10−4 M⊙, and assuming a mass accretion rate of 10−8−10−7 M⊙ yr−1 for 44 yr, it has been concluded that the white dwarf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8 kpc, larger than the previous 3.5 kpc estimate), our derived reddening of E(B − V) = 0.35 (based on combined IUE and GALEX spectra), and NLTE disk modeling (compared to blackbody and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 ≤ E(B−V) ≤ 0.50) and white dwarf mass (0.70 M⊙ ≤ Mwd ≤ 1.35 M⊙) the accreted mass is larger than the ejected mass. Only for a low reddening (~0.25 and smaller) combined with a large white dwarf mass (0.9 M⊙ and larger) is the ejected mass larger than the accreted one. However, the best results are obtained for a larger value of reddening. PMID:29430290
HUBBLE SPACE TELESCOPE FAR ULTRAVIOLET SPECTROSCOPY OF THE RECURRENT NOVA T PYXIDIS.
Godon, Patrick; Sion, Edward M; Starrfield, Sumner; Livio, Mario; Williams, Robert E; Woodward, Charles E; Kuin, Paul; Page, Kim L
2014-04-01
With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis (T Pyx) is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few ~10 -5 M ⊙ to 3.3 × 10 -4 M ⊙ , and assuming a mass accretion rate of 10 -8 -10 -7 M ⊙ yr -1 for 44 yr, it has been concluded that the white dwarf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8 kpc, larger than the previous 3.5 kpc estimate), our derived reddening of E ( B - V ) = 0.35 (based on combined IUE and GALEX spectra), and NLTE disk modeling (compared to blackbody and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 ≤ E ( B - V ) ≤ 0.50) and white dwarf mass (0.70 M ⊙ ≤ M wd ≤ 1.35 M ⊙ ) the accreted mass is larger than the ejected mass. Only for a low reddening (~0.25 and smaller) combined with a large white dwarf mass (0.9 M ⊙ and larger) is the ejected mass larger than the accreted one. However, the best results are obtained for a larger value of reddening.
HUBBLE SPACE TELESCOPE AND GROUND-BASED OBSERVATIONS OF V455 ANDROMEDAE POST-OUTBURST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szkody, Paula; Mukadam, Anjum S.; Brown, Justin
2013-09-20
Hubble Space Telescope spectra obtained in 2010 and 2011, 3 and 4 yr after the large amplitude dwarf nova outburst of V455 And, were combined with optical photometry and spectra to study the cooling of the white dwarf, its spin, and possible pulsation periods after the outburst. The modeling of the ultraviolet (UV) spectra shows that the white dwarf temperature remains ∼600 K hotter than its quiescent value at 3 yr post-outburst, and still a few hundred degrees hotter at 4 yr post-outburst. The white dwarf spin at 67.6 s and its second harmonic at 33.8 s are visible inmore » the optical within a month of outburst and are obvious in the later UV observations in the shortest wavelength continuum and the UV emission lines, indicating an origin in high-temperature regions near the accretion curtains. The UV light curves folded on the spin period show a double-humped modulation consistent with two-pole accretion. The optical photometry 2 yr after outburst shows a group of frequencies present at shorter periods (250-263 s) than the periods ascribed to pulsation at quiescence, and these gradually shift toward the quiescent frequencies (300-360 s) as time progresses past outburst. The most surprising result is that the frequencies near this period in the UV data are only prominent in the emission lines, not the UV continuum, implying an origin away from the white dwarf photosphere. Thus, the connection of this group of periods with non-radial pulsations of the white dwarf remains elusive.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasliwal, M. M.; Kulkarni, S. R.; Ofek, E. O.
We present photometric and spectroscopic follow-up of a sample of extragalactic novae discovered by the Palomar 60 inch telescope during a search for 'Fast Transients In Nearest Galaxies' (P60-FasTING). Designed as a fast cadence (1 day) and deep (g < 21 mag) survey, P60-FasTING was particularly sensitive to short-lived and faint optical transients. The P60-FasTING nova sample includes 10 novae in M 31, 6 in M 81, 3 in M 82, 1 in NGC 2403, and 1 in NGC 891. This significantly expands the known sample of extragalactic novae beyond the Local Group, including the first discoveries in a starburstmore » environment. Surprisingly, our photometry shows that this sample is quite inconsistent with the canonical maximum-magnitude-rate-of-decline (MMRD) relation for classical novae. Furthermore, the spectra of the P60-FasTING sample are indistinguishable from classical novae. We suggest that we have uncovered a sub-class of faint and fast classical novae in a new phase space in luminosity-timescale of optical transients. Thus, novae span two orders of magnitude in both luminosity and time. Perhaps the MMRD, which is characterized only by the white dwarf mass, was an oversimplification. Nova physics appears to be characterized by a relatively rich four-dimensional parameter space in white dwarf mass, temperature, composition, and accretion rate.« less
Fermi-LAT gamma ray detections of classical novae V1369 centauri 2013 and V5668 Sagittarii 2015
Cheung, C. C.; Jean, P.; Shore, S. N.; ...
2016-07-27
Here, we report the Fermi Large Area Telescope (LAT) detections of high-energy (>100 MeV) γ-ray emission from two recent optically bright classical novae, V1369 Centauri 2013 and V5668 Sagittarii 2015. Furthermore, at early times, Fermi target-of-opportunity observations prompted by their optical discoveries provided enhanced LAT exposure that enabled the detections of γ-ray onsets beginning ~2 days after their first optical peaks. Significant γ-ray emission was found extending to 39–55 days after their initial LAT detections, with systematically fainter and longer-duration emission compared to previous γ-ray-detected classical novae. These novae were distinguished by multiple bright optical peaks that encompassed the timemore » spans of the observed γ-rays. Finally, we discussed the γ-ray light curves and spectra of the two novae are presented along with representative hadronic and leptonic models, and comparisons with other novae detected by the LAT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shara, Michael M.; Doyle, Trisha; Lauer, Tod R.
The extensive grid of numerical simulations of nova eruptions first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giant elliptical galaxy M87 as they are inmore » the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10 –7–10 –8 M ⊙, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. As a result, these same models predict the existence of ultrafast novae that display decline times, t 2, to be as short as five hours. We outline a strategy for their future detection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shara, Michael M.; Doyle, Trisha; Zurek, David
The extensive grid of numerical simulations of nova eruptions from the work of Yaron et al. first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giantmore » elliptical galaxy M87 as they are in the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10{sup −7}–10{sup −8} M {sub ⊙}, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. These same models predict the existence of ultrafast novae that display decline times, t {sub 2,} to be as short as five hours. We outline a strategy for their future detection.« less
Shara, Michael M.; Doyle, Trisha; Lauer, Tod R.; ...
2017-04-20
The extensive grid of numerical simulations of nova eruptions first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giant elliptical galaxy M87 as they are inmore » the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10 –7–10 –8 M ⊙, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. As a result, these same models predict the existence of ultrafast novae that display decline times, t 2, to be as short as five hours. We outline a strategy for their future detection.« less
Monitoring of V2487 Oph requested
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2016-10-01
Dr. Ashley Pagnotta (Louisiana State University) has requested AAVSO assistance in monitoring the recurrent nova V2487 Oph in order to catch and observe its next outburst. Pagnotta writes: "V2487 Oph is a recurrent nova that was first seen to erupt in 1998. During a search of the Harvard College Observatory plate archives for previous eruptions, we found one that was recorded in 1900. Based on the speed and magnitude of the eruption, and the coverage of the archival plates and other detection sources, we calculated how often V2487 Oph would have to erupt for us to have actually detected one random outburst on the plates, which is about once every 18-20 years (for more, Pagnotta et al. 2009AJ....138.1230P). As we are now 18 years from the previous (1998) eruption, we request regular AAVSO observations to help us detect the next eruption of V2487 Oph. Because V2487 Oph is a very fast nova, we are requesting a high cadence [when the outburst occurs. Previous outbursts have been as bright as V=9.5.]...Once the eruption has been confirmed (likely by other AAVSO observers, thanks to the flexibility of your observing programs), we will notify collaborators and invoke ToO observations to observe the eruption as comprehensively as possible." Observers are requested to make nightly observations in V or Clear. If V2487 Oph is brighter than V=17.5, please report the observation(s) to the AAVSO immediately and switch to multi-color (UBVRI or Sloan equivalents; Clear if other filters are not available) and high (fast) cadence time-series - exposures of a few minutes, with a S/N of at least 40-50. Continue at high cadence until the decline is underway. Time-series observations during the decline are not absolutely essential, but they would be useful to continue to look for flares and the late time dips that were seen in U Sco around days 41-61. Nightly observations as before should be continued until the star has faded to V=17.5, and then for two weeks m! ore. Finder charts with sequence may be created using the AAVS! O Variab le Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
NASA Astrophysics Data System (ADS)
Patterson, J.; Oksanen, A.; Monard, B.; Rea, R.; Hambsch, F.; McCormick, J.; Nelson, P.; Kemp, J.; Allen, W.; Krajci, T.; Lowther, S.; Dvorak, S.; Richards, T.; Myers, G.; Bolt, G.
2014-12-01
We report a long campaign to track the 1.8 hr photometric wave in the recurrent nova T Pyxidis, using the global telescope network of the Center for Backyard Astrophysics. During 1996-2011, that wave was highly stable in amplitude and waveform, resembling the orbital wave commonly seen in supersoft binaries. The period, however, was found to increase on a timescale P/P =3 ×105 yr. This suggests a mass transfer rate of ˜ 10-7 M⊙/yr in quiescence. The orbital signal became vanishingly weak (< 0.003 mag) near maximum light of the 2011 eruption. After it returned to visibility near V=11, the orbital period had increased by 0.0054(6) %. This is a measure of the mass ejected in the nova outburst. For a plausible choice of binary parameters, that mass is at least 3×10-5 M⊙, and probably more. This represents > 300 yr of accretion at the pre-outburst rate, but the time between outbursts was only 45 yr. Thus the erupting white dwarf seems to have ejected at least 6 × more mass than it accreted. If this eruption is typical, the white dwarf must be eroding, rather than growing, in mass — dashing the star's hopes of ever becoming famous via a supernova explosion. Instead, it seems likely that the binary dynamics are basically a suicide pact between the eroding white dwarf and the low-mass secondary, excited and rapidly whittled down, probably by the white dwarf's EUV radiation.
The Expanding Bipolar Shell of the Helium Nova V445 Puppis
NASA Astrophysics Data System (ADS)
Woudt, P. A.; Steeghs, D.; Karovska, M.; Warner, B.; Groot, P. J.; Nelemans, G.; Roelofs, G. H. A.; Marsh, T. R.; Nagayama, T.; Smits, D. P.; O'Brien, T.
2009-11-01
From multi-epoch adaptive optics imaging and integral field unit spectroscopy, we report the discovery of an expanding and narrowly confined bipolar shell surrounding the helium nova V445 Puppis (Nova Puppis 2000). An equatorial dust disc obscures the nova remnant, and the outflow is characterized by a large polar outflow velocity of 6720 ± 650 km s-1 and knots moving at even larger velocities of 8450 ± 570 km s-1. We derive an expansion parallax distance of 8.2 ± 0.5 kpc and deduce a pre-outburst luminosity of the underlying binary of log L/L sun = 4.34 ± 0.36. The derived luminosity suggests that V445 Puppis probably contains a massive white dwarf accreting at high rate from a helium star companion making it part of a population of binary stars that potentially lead to supernova Ia explosions due to accumulation of helium-rich material on the surface of a massive white dwarf.
A search for novae in M 31 globular clusters
NASA Astrophysics Data System (ADS)
Ciardullo, Robin; Tamblyn, Peter; Phillips, A. C.
1990-10-01
By combining a local sky-fitting algorithm with a Fourier point-spread-function matching technique, nova outbursts have been searched for inside 54 of the globular clusters contained on the Ciardullo et al. (1987 and 1990) H-alpha survey frames of M 31. Over a mean effective survey time of about 2.0 years, no cluster exhibited a magnitude increase indicative of a nova explosion. If the cataclysmic variables (CVs) contained within globular clusters are similar to those found in the field, then these data imply that the overdensity of CVs within globulars is at least several times less than that of the high-luminosity X-ray sources. If tidal capture is responsible for the high density of hard binaries within globulars, then the probability of capturing condensed objects inside globular clusters may depend strongly on the mass of the remnant.
Gamma-ray emission from internal shocks in novae
NASA Astrophysics Data System (ADS)
Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.
2018-04-01
Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity <2000 km s-1 and a mass-loss rate of 10-4-10-3 M⊙ yr-1 declining over a time scale of a few days. Because of the large uncertainties in the measurements, many parameters of the problem are degenerate and/or poorly constrained except for the wind velocity, the relatively low values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main features in the observations of the recent gamma-ray nova ASASSN-16ma. Conclusions: The internal shock model can account for the gamma-ray emission of the novae detected by Fermi LAT. Gamma-ray observations hold potential for probing the mechanism of mass ejection in novae, but should be combined to diagnostics of the thermal emission at lower energies to be more constraining.
Optical spectroscopy of the recurrent nova RS Ophiuchi - from the outburst of 2006 to quiescence
NASA Astrophysics Data System (ADS)
Mondal, Anindita; Anupama, G. C.; Kamath, U. S.; Das, Ramkrishna; Selvakumar, G.; Mondal, Soumen
2018-03-01
Optical spectra of the 2006 outburst of RS Ophiuchi beginning one day after discovery to over a year after the outburst are presented here. The spectral evolution is found to be similar to that in previous outbursts. The early-phase spectra are dominated by hydrogen and helium (I and II) lines. Coronal and nebular lines appear in the later phases. Emission line widths are found to narrow with time, which is interpreted as a shock expanding into the red giant wind. Using the photoionization code CLOUDY, spectra at nine epochs spanning 14 months after the outburst peak, thus covering a broad range of ionization and excitation levels in the ejecta, are modelled. The best-fitting model parameters indicate the presence of a hot white dwarf source with a roughly constant luminosity of 1.26 × 1037 erg s-1. During the first three months, the abundances (by number) of He, N, O, Ne, Ar, Fe, Ca, S and Ni are found to be above solar abundances; the abundances of these elements decreased in the later phase. Also presented are spectra obtained during quiescence. A photoionization model of the quiescent spectrum indicates the presence of a low-luminosity accretion disc. The helium abundance is found to be subsolar at quiescence.
NASA Astrophysics Data System (ADS)
Šimon, V.
2015-03-01
Context. GK Per is an intermediate polar that has been displaying dwarf nova outbursts since the middle of the twentieth century. Aims: I analyzed a series of such outbursts in the optical and X-ray bands. I pay attention to the relation of intensities of the optical and X-ray emissions, and its reproducibility in a series of these consecutive outbursts. Methods: This analysis uses the data from the BAT/Swift, ASM/RXTE, AAVSO, and AFOEV databases. It investigates the relation of the time evolution of the profiles of outbursts in the individual bands (hard X-ray, medium/hard X-ray, and optical). Results: This analysis shows that the X-ray intensity steeply rises only in the start of the optical outburst and steeply declines only when the optical outburst comes to its end. However, the 1.5-50 keV band intensity saturates and balances on a plateau during the outburst. (The longer the outburst, the longer its plateau.) The peak X-ray intensities of this series display a significantly narrower range than the optical ones (a factor of about two versus a factor of about eight). This implies a discrepancy between the mass flow through the disk and the production of the X-ray emission via bremsstrahlung at the polar caps of the white dwarf. This discrepancy is the largest in the time of the peak optical intensity when the whole disk (or at least its inner part) is in the hot state and the flow of matter through the disk is the greatest. This study shows that a series of outbursts constitutes more general properties of this discrepancy. I argue that the saturation of the X-ray luminosity in outburst cannot be caused by a dominant increase in X-ray absorption. In the interpretation, large structural changes of the accreting regions at the magnetic poles of the white dwarf occur during the outburst. A buried shock proposed by some authors for polars is also promising for explaining the X-ray light curves of outbursts of GK Per. This research made use of the BAT/Swift, ASM/RXTE, AAVSO, and AFOEV databases.
Discovery of a New Classical Nova Shell Around a Nova-like Cataclysmic Variable
NASA Astrophysics Data System (ADS)
Guerrero, Martín A.; Sabin, Laurence; Tovmassian, Gagik; Santamaría, Edgar; Michel, Raul; Ramos-Larios, Gerardo; Alarie, Alexandre; Morisset, Christophe; Bermúdez Bustamante, Luis C.; González, Chantal P.; Wright, Nicholas J.
2018-04-01
The morphology and optical spectrum of IPHASX J210204.7+471015, a nebula classified as a possible planetary nebula are, however, strikingly similar to those of AT Cnc, a classical nova shell around a dwarf nova. To investigate its true nature, we have obtained high-resolution narrowband [O III] and [N II] images and deep optical spectra. The nebula shows an arc of [N II]-bright knots notably enriched in nitrogen, while an [O III]-bright bow shock is progressing throughout the ISM. Diagnostic line ratios indicate that shocks are associated with the arc and bow shock. The central star of this nebula has been identified by its photometric variability. Time-resolved photometric and spectroscopic data of this source reveal a period of 4.26 hr, which is attributed to a binary system. The optical spectrum is notably similar to that of RW Sex, a cataclysmic variable star (CV) of the UX UMa nova-like (NL) type. Based on these results, we propose that IPHASX J210204.7 + 471015 is a classical nova shell observed around a CV-NL system in quiescence.
MAXI/GSC detection of a new outburst from the black hole candidate H 1743-322
NASA Astrophysics Data System (ADS)
Shidatsu, M.; Nakahira, S.; Negoro, H.; Ueno, S.; Tomida, H.; Ishikawa, M.; Sugawara, Y.; Nakagawa, Y. E.; Mihara, T.; Sugizaki, M.; Serino, M.; Iwakiri, W.; Sugimoto, J.; Takagi, T.; Matsuoka, M.; Kawai, N.; Isobe, N.; Sugita, S.; Yoshii, T.; Tachibana, Y.; Ono, Y.; Fujiwara, T.; Harita, S.; Muraki, Y.; Yoshida, A.; Sakamoto, T.; Kawakubo, Y.; Kitaoka, Y.; Tsunemi, H.; Shomura, R.; Nakajima, M.; Tanaka, K.; Masumitsu, T.; Kawase, T.; Ueda, Y.; Kawamuro, T.; Hori, T.; Tanimoto, A.; Oda, S.; Tsuboi, Y.; Nakamura, Y.; Sasaki, R.; Yamauchi, M.; Furuya, K.; Yamaoka, K.
2016-11-01
The MAXI/GSC nova-alert system detected an X-ray brightening of the Galactic black hole candidate H 1743-322 in November 6, UT 03:01. The 2-20 keV flux increased from 12 +- 3 mCrab on November 4 (MJD 57696) to 37 +- 5 mCrab on November 6 (MJD 57698).
Typical examples of classical novae
NASA Technical Reports Server (NTRS)
Hack, Margherita; Selvelli, Pierluigi; Bianchini, Antonio; Duerbeck, Hilmar W.
1993-01-01
Because of the very complicated individualistic behavior of each nova, we think it necessary to review the observations of a few well-observed individuals. We have selected a few objects of different speed classes, which have been extensively observed. They are: V1500 Cygni 1975, a very fast nova; V603 Aql 1918, fast nova; CP Pup 1942, fast nova; GK Per 1901, fast nova; V 1668 Cyg 1979, moderately fast nova; FH Ser 1970, slow nova; DQ Her 1934, slow nova; T Aur 1891, slow nova; RR Pic 1925, slow nova; and HR Del 1967, very slow nova.
Typical examples of classical novae
NASA Astrophysics Data System (ADS)
Hack, Margherita; Selvelli, Pierluigi; Bianchini, Antonio; Duerbeck, Hilmar W.
1993-09-01
Because of the very complicated individualistic behavior of each nova, we think it necessary to review the observations of a few well-observed individuals. We have selected a few objects of different speed classes, which have been extensively observed. They are: V1500 Cygni 1975, a very fast nova; V603 Aql 1918, fast nova; CP Pup 1942, fast nova; GK Per 1901, fast nova; V 1668 Cyg 1979, moderately fast nova; FH Ser 1970, slow nova; DQ Her 1934, slow nova; T Aur 1891, slow nova; RR Pic 1925, slow nova; and HR Del 1967, very slow nova.
Magnetic activity of red secondaries: clues from the outburst cycle variations of dwarf novae
NASA Astrophysics Data System (ADS)
Chinarova, L. L.
Photometric variations of 6 dwarf novae stars are studied based on the photographic observations from the Odessa, Moscow and Sonneberg plate collections and published visual monitoring data from the AFOEV database (Schweitzer E.: 1993, Bull. AFOEV, 64, 14). The moments of maxima are determined by using the "running parabola" fit (Andronov I.L., 1990, Kinematika Fizika Nebesn. Tel., v.6,,N 6, 87) with automatically determined filter half-width (Andronov I.L., 1997, As.Ap. Suppl., in press). All investigated stars exhibit significant changes not only from cycle-to-cycle, but from season-to-season as well. Secondary decade-scale cycles of smooth variations (Bianchini A., 1990, AJ 99, 1941) and abrupt switchings (Andronov I.L., Shakun L.I., 1990, ASS 169, 237) were interpreted by a solar-type activity of the red dwarf secondary in a binary system and may argue for existence of two different subgroups of the dwarf novae.
VERITAS Observations of the Nova in V407 Cygni
NASA Technical Reports Server (NTRS)
Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.;
2012-01-01
We report on very high energy (E > 100 GeV) gamma-ray observations of V407 Cygni, a symbiotic binary that underwent a nova outburst producing 0.1- 10 GeV gamma rays during 2010 March 10-26. Observations were made with the Very Energetic Radiation Imaging Telescope Array System during 2010 March 19-26 at relatively large zenith angles, due to the position of V407 Cyg. An improved reconstruction technique for large zenith angle observations is presented and used to analyze the data. We do not detect V407 Cygni and place a differential upper limit on the flux at 1.6 TeV of 2.3 10(exp -12) erg/sq cm/s (at the 95% confidence level). When considered jointly with data from Fermi-LAT, this result places limits on the acceleration of very high energy particles in the nova.
Monitoring of Northern dwarf novae for radio jets campaign
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2014-10-01
Ms. Deanne Coppejans (PhD candidate, Radboud University Nijmegen (Netherlands) and University of Cape Town) and colleagues have requested AAVSO observer assistance in monitoring nine Northern dwarf novae in support of their campaign to observe them in outburst with the Very Large Array (VLA) to search for radio jets. They will observe 5 targets from the following list: U Gem*, EX Dra, Z Cam*, RX And*, EM Cyg, AB Dra, SY Cnc, SU UMa*, and YZ Cnc*. Stars with an asterisk (*) will be given higher priority. The campaign will begin now, starting with monitoring of RX And and EM Cyg, and run through September 2015, or until all five VLA triggers have been used. This campaign is similar to previous AAVSO campaigns, namely the 2007 campaign to monitor a sample of 10 dwarf novae (AAVSO Alert Notice 345), which resulted in the first detection of a radio jet in a dwarf nova system (Koerding et al. 2008, Science, 320, 1318), and the ones carried out at the request of Dr. James Miller-Jones and colleagues on SS Cyg in 2010-2011 (AAVSO Special Notices #204, #206, Alert Notice 445). The latter resulted in an accurate distance determination to SS Cyg, thereby reconciling its behavior with our understanding of accretion disc theory in accreting compact objects (Miller-Jones et al. 2013, Science, 340, 950). Ms. Coppejans writes: "The relation between accretion and outflow is one of the basic problems in modern astrophysics. It has long been thought that CVs are the only accreting systems that do not produce jets, and this notion has even been used to constrain jet models. However, there are now some indications that CVs do show jets, possibly allowing a universal link between accretion and ejection. Radio observations provide the best unambiguous tracer of the corresponding jet or directed outflow, but there are only two clear detections. By observing a more extensive sample of cataclysmic variables in outburst we will determine the existence of jets or other outflows in these accreting binary systems. These observations will decide if either CVs do show jets and thus support a universal link between accretion and ejection, or if they do not show jets, further constraining future jet models." The radio jet, if it exists in any of these nine systems, is expected to be seen shortly after the beginning of the outburst (as it was in SS Cyg). Catching the outburst as it is just starting and reporting that information to AAVSO HQ immediately is crucial, as the astronomers need to be alerted, make their decision whether to trigger the VLA observations, and allow enough time for the VLA to start the observations. Please observe these systems NIGHTLY (visual, CCD V) and report all observations as soon as is practical. In the event of an outburst, please report your observations as quickly as you can via WebObs, and also notify Dr. Matthew Templeton and Elizabeth Waagen at AAVSO Headquarters and Deanne Coppejans. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and information on the targets.
Cataclysmic variables and related objects
NASA Technical Reports Server (NTRS)
Hack, Margherita; Ladous, Constanze; Jordan, Stuart D. (Editor); Thomas, Richard N. (Editor); Goldberg, Leo; Pecker, Jean-Claude
1993-01-01
This volume begins with an introductory chapter on general properties of cataclysmic variables. Chapters 2 through 5 of Part 1 are devoted to observations and interpretation of dwarf novae and nova-like stars. Chapters 6 through 10, Part 2, discuss the general observational properties of classical and recurrent novae, the theoretical models, and the characteristics and models for some well observed classical novae and recurrent novae. Chapters 11 through 14 of Part 3 are devoted to an overview of the observations of symbiotic stars, to a description of the various models proposed for explaining the symbiotic phenomenon, and to a discussion of a few selected objects, respectively. Chapter 15 briefly examines the many unsolved problems posed by the observations of the different classes of cataclysmic variables and symbiotic stars.
The Orbital Period of the Classical Nova V458 Vul
NASA Astrophysics Data System (ADS)
Goranskij, V. P.; Metlova, N. V.; Barsukova, E. A.; Burenkov, A. N.; Soloviev, V. Ya.
2008-07-01
Classical nova V458 Vul (N Vul 2007 No.1) was detected as a supersoft X-ray source (SSS) by the Swift XRT several times in the time range between 2007 October 18 and 2008 June 18 (J. Drake et al., ATel #1246 and #1603). Our V photometry shows the plateau in the light curve continued since January till June 2008. This feature accompanies usually the SSS phases in some classical novae. The fragmentary monitoring during plateau shows night- to-night variability with the amplitudes between 1.2 and 0.4 mag and rapid variability by 0.1 mag in the time scale of an hour.
β Decay as a Probe of Explosive Nucleosynthesis in Classical Novae
NASA Astrophysics Data System (ADS)
Wrede, C.; Bennett, M. B.; Liddick, S. N.; Bardayan, D. W.; Bowe, A.; Brown, B. A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Fry, C.; Glassman, B.; Irvine, D.; José, J.; Langer, C.; Larson, N.; McNeice, E. I.; Meisel, Z.; Montes, F.; Naqvi, F.; Pain, S. D.; O'Malley, P.; Ortez, R.; Ong, W.; Pereira, J.; Pérez-Loureiro, D.; Prokop, C.; Quaglia, J.; Quinn, S.; Santia, M.; Schatz, H.; Schwartz, S. B.; Simon, A.; Shanab, S.; Spyrou, A.; Suchyta, S.; Thiagalingam, E.; Thompson, P.; Walters, M.
Classical novae are common thermonuclear explosions in the Milky Way galaxy, occurring on the surfaces of white-dwarf stars that are accreting hydrogen-rich material from companion stars. Nucleosynthesis in classical novae depends on radiative proton-capture reaction rates on radioactive nuclides. Many of these reactions cannot be measured directly at current accelerator facilities due to the lack of intense, high-quality, radioactive-ion beams at the relevant energies. Since most of these reactions proceed via resonant capture, their rates can be determined indirectly by measuring the properties of the resonances. At the National Superconducting Cyclotron Laboratory, we have used the β-delayed γ decays of 26P and 31Cl to populate resonances in 26Si and 31S and study the radiative proton captures on 25Al and 30P, respectively. These were two out of the three most important nuclear-physics uncertainties associated with the observable products of nova nucleosynthesis. The 26P experiment has enabled a more accurate estimate of the nova contribution to the long-lived Galactic 26Al detected with γ-ray telescopes. The 31Cl experiment, currently under analysis, will calibrate potential nova thermometers and mixing meters based on elemental abundance ratios, and facilitate the identification of pre-solar nova grain candidates found in primitive meteorites based on isotopic ratios.
Estimate of the Chinese astronomy development through the descriptions of nova observations
NASA Astrophysics Data System (ADS)
Nickiforov, Mihael G.
More than a hundred descriptions of guest stars observations made by Chinese, Korean and Japanese astronomers from 6th till 17th centuries are examined in this work. The comparison of the distribution of star outbursts on galactic latitudes from the Chinese sources with the modern data casts doubt on the reliability of the ancient observations. The text analysis shows that the technique of the descriptions of the places of outbursts of new stars does not change from the first ancient observations till the 16th century. This is a sign of a lack of precise instrumental measurements until the arrival of the Jesuits, in 16th century, and of a lack of Chinese star catalog in the medieval China.
X-ray Modeling of Classical Novae
NASA Astrophysics Data System (ADS)
Nemeth, Peter
2010-01-01
It has been observed and theoretically supported in the last decade that the peak of the spectral energy distribution of classical novae gradually shifts to higher energies at constant bolometric luminosity after a nova event. For this reason, comprehensive evolutionary studies require spectral analysis in multiple spectral bands. After a nova explosion, the white dwarf can maintain stable surface hydrogen burning, the duration of which strongly correlates with the white dwarf mass. During this stage the peak of the luminosity is in the soft X-ray band (15 - 60 Angstroms). By extending the modeling range of TLUSTY/SYNSPEC, I analyse the luminosity and abundance evolution of classical novae. Model atoms required for this work were built using atomic data from NIST/ASD and TOPBASE. The accurate but incomplete set of energy levels and radiative transitions in NIST were completed with calculated data from TOPBASE. Synthetic spectra were then compared to observed data to derive stellar parameters. I show the capabilities and validity of this project on the example of V4743 Sgr. This nova was observed with both Chandra and XMM-Newton observatories and has already been modeled by several scientific groups (PHOENIX, TMAP).
Infrared photometry of Nova Delphini 2013 (=V339 Del) in the first sixty days after its outburst
NASA Astrophysics Data System (ADS)
Taranova, O. G.; Tatarnikov, A. M.; Shenavrin, V. I.; Tatarnikova, A. A.
2014-02-01
The results of JHKLM photometry for Nova Delphini 2013 obtained in the first sixty days after its outburst are analyzed. Analysis of the energy distribution in a wide spectral range (0.36-5 µm) has shown that the source mimics the emission of normal supergiants of spectral types B5 and A0 for two dates near its optical brightness maximum, August 15.94 UT and August 16.86 UT, respectively. The distance to the nova has been estimated to be D ≈ 3 kpc. For these dates, the following parameters have been estimated: the source's bolometric fluxes ˜9 × 10-7 and ˜7.2 × 10-7 erg s-1 cm-2, luminosities L ≈ 2.5 × 105 L ⊙ and ≈2 × 105 L ⊙, and radii R ≈ 6.3 × 1012 and ≈1.2 × 1013 cm. The nova's expansion velocity near its optical brightness maximum was ˜700 km s-1. An infrared (IR) excess associated with the formation of a dust shell is shown to have appeared in the energy distribution one month after the optical brightness maximum. The parameters of the dust component have been estimated for two dates of observations, JD2456557.28 (September 21, 2013) and JD2456577.18 (October 11, 2013). For these dates, the dust shell parameters have been estimated: the color temperatures ≈1500 and ≈1200 K, radii ≈6.5 × 1013 and 1.7 × 1014 cm, luminosities ˜4 × 103 L ⊙ and ˜1.1 × 104 L ⊙, and the dust mass ˜1.6 × 1024 and ˜1025 g. The total mass of the material ejected in twenty days (gas + dust) could reach ˜1.1 × 10-6 M ⊙. The rate of dust supply to the nova shell was ˜8 × 10-8 M ⊙ yr-1. The expansion velocity of the dust shell was about 600 km s-1.
Optical Photometric Observations of M31N 2008-12a: Pre- and Post-maximum of the 2017 Eruption
NASA Astrophysics Data System (ADS)
Naito, H.; Watanabe, F.; Sano, Y.; Kuramoto, K.; Itagaki, K.; Kiyota, S.; Arai, A.; Maehara, H.; Matsumoto, K.; Fukui, A.; Nishiyama, K.; Kabashima, F.; Henze, M.; Darnley, M. J.; Shafter, A. W.; Kato, M.; et al.
2018-01-01
We report additional multicolor photometry of the 2017 outburst of the remarkable recurrent nova M31N 2008-12a (ATels #11116, #11117, #11118, #11121, #11124, #11125, #11126, #11130, see Darnley et al. 2014, 2015, 2016 and Henze et al. 2014, 2015a, 2015b for comprehensive multi-wavelength light curves of previous eruptions).
SN2018cnf (ASASSN-18mr) is a type IIn supernova with an outburst in 2015 (PS15dkt)
NASA Astrophysics Data System (ADS)
Prentice, S. J.; Maguire, K.; Pastorello, A.; Tomasella, L.; Reguitti, A.; Morales-Garoffolo, A.; Geier, S.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Schultz, A.; Lowe, T.; Magnier, E.; Waters, C.; Wainscoat, R. J.
2018-06-01
ASASSN-18mr (TNS #19408) is a g=17.7 mag transient in the host galaxy 2MASX J23393156-0308565, at a distance of 96 Mpc (z=0.023763) discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN, Holoien, et al. 2017, MNRAS, 464, 2672) on 2018-06-14.
IX Draconis - a curious ER UMa-type dwarf nova
NASA Astrophysics Data System (ADS)
Otulakowska-Hypka, M.; Olech, A.; de Miguel, E.; Rutkowski, A.; Koff, R.; Bąkowska, K.
2013-02-01
We report results of an extensive worldwide observing campaign devoted to a very active dwarf nova star - IX Draconis. We investigated photometric behaviour of the system to derive its basic outburst properties and understand peculiarities of IX Draconis as well as other active cataclysmic variables, in particular dwarf novae of the ER UMa type. In order to measure fundamental parameters of the system, we carried out analyses of the light curve, O - C diagram, and power spectra. During over two months of observations, we detected two superoutbursts and several normal outbursts. The V magnitude of the star varied in the range 14.6-18.2 mag. Superoutbursts occur regularly with the supercycle length (Psc) of 58.5 ± 0.5 d. When analysing data over the past 20 years, we found that Psc is increasing at a rate of dot{P} = 1.8 × 10^{-3}. Normal outbursts appear to be irregular, with typical occurrence times in the range 3.1-4.1 d. We detected a double-peaked structure of superhumps during superoutburst, with the secondary maximum becoming dominant near the end of the superoutburst. The mean superhump period observed during superoutbursts is Psh = 0.066982(36) d (96.45 ± 0.05 min), which is constant over the last two decades of observations. Based on the power spectrum analysis, the evaluation of the orbital period was problematic. We found two possible values: the first one, 0.066 41(3) d (95.63 ± 0.04 min), which is in agreement with previous studies and our O - C analysis [0.06646(2) d, 95.70 ± 0.03 min], and the second one, 0.06482(3) d (93.34 ± 0.04 min), which is less likely. The evolutionary status of the object depends dramatically on the choice between these two values. A spectroscopic determination of the orbital period is needed. We updated available information on ER UMa-type stars and present a new set of their basic statistics. Thereby, we provide evidence that this class of stars is not uniform.
FROM X-RAY DIPS TO ECLIPSE: WITNESSING DISK REFORMATION IN THE RECURRENT NOVA U Sco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, J.-U.; Talavera, A.; Gonzalez-Riestra, R.
2012-01-20
The tenth recorded outburst of the recurrent eclipsing nova U Sco was observed simultaneously in X-ray, UV, and optical by XMM-Newton on days 22.9 and 34.9 after the outburst. Two full passages of the companion in front of the nova ejecta were observed, as was the reformation of the accretion disk. On day 22.9, we observed smooth eclipses in UV and optical but deep dips in the X-ray light curve that disappeared by day 34.9, yielding clean eclipses in all bands. X-ray dips can be caused by clumpy absorbing material that intersects the line of sight while moving along highlymore » elliptical trajectories. Cold material from the companion could explain the absence of dips in UV and optical light. The disappearance of X-ray dips before day 34.9 implies significant progress in the formation of the disk. The X-ray spectra contain photospheric continuum emission plus strong emission lines, but no clear absorption lines. Both continuum and emission lines in the X-ray spectra indicate a temperature increase from day 22.9 to day 34.9. We find clear evidence in the spectra and light curves for Thompson scattering of the photospheric emission from the white dwarf. Photospheric absorption lines can be smeared out during scattering in a plasma of fast electrons. We also find spectral signatures of resonant line scattering that lead to the observation of the strong emission lines. Their dominance could be a general phenomenon in high-inclination systems such as Cal 87.« less
Shara, Michael M.; Doyle, Trisha F.; Lauer, Tod R.; ...
2016-11-08
The Hubble Space Telescope has imaged the central part of M87 over a 10 week span, leading to the discovery of 32 classical novae (CNe) and nine fainter, likely very slow, and/or symbiotic novae. In this first paper of a series, we present the M87 nova finder charts, and the light and color curves of the novae. We demonstrate that the rise and decline times, and the colors of M87 novae are uncorrelated with each other and with position in the galaxy. The spatial distribution of the M87 novae follows the light of the galaxy, suggesting that novae accreted by M87 during cannibalistic episodes are well-mixed. Conservatively using only the 32 brightest CNe we derive a nova rate for M87:more » $${363}_{-45}^{+33}$$ novae yr –1. We also derive the luminosity-specific classical nova rate for this galaxy, which is $${7.88}_{-2.6}^{+2.3}\\,{\\mathrm{yr}}^{-1}/{10}^{10}\\,{L}_{\\odot }{,}_{K}$$. Both rates are 3–4 times higher than those reported for M87 in the past, and similarly higher than those reported for all other galaxies. As a result, we suggest that most previous ground-based surveys for novae in external galaxies, including M87, miss most faint, fast novae, and almost all slow novae near the centers of galaxies.« less
2017-12-08
Nova Stars are essentially giant fusion reactions occurring in the vacuum of space. Because stars have so much mass, they possess powerful gravitational force—but they don’t collapse because of the outward force generated by nuclear fusion, continually converting hydrogen atoms to helium. Sometimes stars begin orbiting each other, forming a binary star system. Typically this involves a white dwarf star and a red giant. Orbiting the red giant like a moon, the dwarf star rips matter from its companion until it essentially gags on the excess, coughing hot gas and radiation into space. This dramatic phenomenon is relatively common, and the white dwarf is not destroyed in the resulting nova. To learn more about x-ray emissions, read about NASA’s Chandra mission: www.nasa.gov/mission_pages/chandra/main/ --- Original caption: In Hollywood blockbusters, explosions are often among the stars of the show. In space, explosions of actual stars are a focus for scientists who hope to better understand their births, lives, and deaths and how they interact with their surroundings. Using NASA’s Chandra X-ray Observatory, astronomers have studied one particular explosion that may provide clues to the dynamics of other, much larger stellar eruptions. A team of researchers pointed the telescope at GK Persei, an object that became a sensation in the astronomical world in 1901 when it suddenly appeared as one of the brightest stars in the sky for a few days, before gradually fading away in brightness. Today, astronomers cite GK Persei as an example of a “classical nova,” an outburst produced by a thermonuclear explosion on the surface of a white dwarf star, the dense remnant of a Sun-like star. Read Full Article: www.nasa.gov/mission_pages/chandra/mini-supernova-explosi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Eclipse studies of the dwarf nova EX Draconis
NASA Astrophysics Data System (ADS)
Baptista, R.; Catalán, M. S.; Costa, L.
2000-08-01
We report on V and R high-speed photometry of the dwarf nova EX Draconis (EX Dra) in quiescence and in outburst. The analysis of the outburst light curves indicates that the outbursts do not start in the outer disc regions. The disc expands during the rise to maximum and shrinks during decline and along the following quiescent period. The decrease in brightness at the later stages of the outburst is due to the fading of the light from the inner disc regions. At the end of two outbursts the system was seen to go through a phase of lower brightness, characterized by an out-of-eclipse level ~=15 per cent lower than the typical quiescent level and by the fairly symmetric eclipse of a compact source at disc centre with little evidence of a bright spot at disc rim. New eclipse timings were measured from the light curves taken in quiescence and a revised ephemeris was derived. The residuals with respect to the linear ephemeris are well described by a sinusoid of amplitude 1.2min and period ~=4yr and are possibly related to a solar-like magnetic activity cycle in the secondary star. Eclipse phases of the compact central source and of the bright spot were used to derive the geometry of the binary. By constraining the gas stream trajectory to pass through the observed position of the bright spot, we find q=0.72+/-0.06 and i85+3-2 degrees. The binary parameters were estimated by combining the measured mass ratio with the assumption that the secondary star obeys an empirical main-sequence mass-radius relation. We find M1=0.75+/-0.15Msolar and M2=0.54+/-0.10Msolar. The results indicate that the white dwarf at disc centre is surrounded by an extended and variable atmosphere or boundary layer of at least three times its radius and a temperature of T~=28000K. The fluxes at mid-eclipse yield an upper limit to the contribution of the secondary star and lead to a lower limit photometric parallax distance of D=290+/-80pc. The fluxes of the secondary star are well-matched by those of a M0+/-2 main-sequence star.
Light Curves Analysis of Deeply Eclipsed Dwarf Nova GY Cnc
NASA Astrophysics Data System (ADS)
Voloshina, I.; Khruzina, T.
2017-03-01
The results of photometric observations of the dwarf nova GY Cnc in the Rc filter in 2013-2016 are presented, including observations during its outburst in April 2014. The orbital ephemerides of the system have been determined more accurately using these numerous data. The orbital period has not significantly changed during the ˜ 30000 orbital cycles since the earlier observations; no systematic variations of O-C were found out. The fluctuations within the limits 0.004d on a timescale of 1500-2000 Porb were detected. A combined model is used to solve for the parameters of GY Cnc for both states of the system. The donor star temperature, T2˜ 3667 K (Sp M0.2 V) varies between 3440 and 3900 K (Sp K8.8-M1.7 V). The semi-major axis of the disk is a˜0.22a0, on average. In quiet state, a varies within ˜ 40%. The disk has a considerable eccentricity (e˜0.2-0.3) for the small a values, a≤0.2a0. With increasing a the disk shape becomes more circular (e<0.1). The GY Cnc outburst is due to a sharp growth of the disk luminosity because of a diminution of αg parameter (which is related to the viscosity of the disk material) up to 0.1-0.2, and the temperature of the disk interiors increasing twofold to Tin ˜ 95000 K. These changes were probably due to infall of matter onto the surface of white dwarf as the outburst developed. For all accretion disk parameters in a quiet state considerable variations about their mean values are typical.
X-ray nova and LMXB V404 Cyg in rare outburst
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2015-06-01
V404 Cyg, an X-ray nova and a low mass X-ray binary (LMXB) with black hole component, is undergoing its first reported X-ray and optical outburst since 1989. Large scale, rapid variations are being reported in wavelengths from X-ray to radio by professional and amateur astronomers worldwide. Satellite and ground-based observations have been and are continuing to be made by many members of the professional community, including S. D. Barthelmy et al. (GCN Circular 17929, 15 June 2015, Swift BAT initial detection); H. Negoro et al. (ATel #7646, 17 Jun 2015); E. Kuulkers et al. (ATel #7647, 17 June 2015, Swift observations); K. Gazeas et al. (ATel #7650, 17 June 2015, optical photometry); R. M. Wagner et al. (ATel #7655, 18 June, optical spectroscopy); K. Mooley et al. (ATel #7658, 18 June, radio observations). T. Munoz-Darias et al. report P Cyg profiles were seen on 18 Jun 2015 (ATel #7659). They note that P-Cyg profiles were also observed during the 1989 outburst (Casares et al. 1991, MNRAS, 250, 712), and that V404 Cyg is so far the only black hole X-ray transient that has shown this phenomenology. Observations in all bands are requested. Filtered observations are preferred. Please use a cadence as high as possible while obtaining a suitable s/n. If spectroscopy is possible with your equipment, it is requested. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. Precise observing instructions and other details are given in the full Alert Notice.
NASA Astrophysics Data System (ADS)
Shara, Michael M.; Doyle, Trisha F.; Lauer, Tod R.; Zurek, David; Neill, J. D.; Madrid, Juan P.; Mikołajewska, Joanna; Welch, D. L.; Baltz, Edward A.
2016-11-01
The Hubble Space Telescope has imaged the central part of M87 over a 10 week span, leading to the discovery of 32 classical novae (CNe) and nine fainter, likely very slow, and/or symbiotic novae. In this first paper of a series, we present the M87 nova finder charts, and the light and color curves of the novae. We demonstrate that the rise and decline times, and the colors of M87 novae are uncorrelated with each other and with position in the galaxy. The spatial distribution of the M87 novae follows the light of the galaxy, suggesting that novae accreted by M87 during cannibalistic episodes are well-mixed. Conservatively using only the 32 brightest CNe we derive a nova rate for M87: {363}-45+33 novae yr‑1. We also derive the luminosity-specific classical nova rate for this galaxy, which is {7.88}-2.6+2.3 {yr}}-1/{10}10 {L}ȯ {,}K. Both rates are 3–4 times higher than those reported for M87 in the past, and similarly higher than those reported for all other galaxies. We suggest that most previous ground-based surveys for novae in external galaxies, including M87, miss most faint, fast novae, and almost all slow novae near the centers of galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
First optical candidate for a recovered classical nova in a globular cluster - Nova 1938 in M14
NASA Technical Reports Server (NTRS)
Shara, Michael M.; Potter, Michael; Moffat, Anthony F. J.; Hogg, Helen S.; Wehlau, Amelia
1986-01-01
U, B, V, R, and H-alpha CCD frames of the field of the nova which appeared in the globular cluster M14 in 1938 have been compared with the nova discovery images. On the basis of positional coincidence, brightness, and blue color, a candidate nova was identified and its right ascension and declination to within 1 arcsec each. Confirmation of the candidate and detailed study of the quiescent nova will probably require Hubble Space Telescope observations.
Expanded Very Large Array Nova Project Observations of the Classical Nova V1723 Aquilae
NASA Astrophysics Data System (ADS)
Krauss, Miriam I.; Chomiuk, Laura; Rupen, Michael; Roy, Nirupam; Mioduszewski, Amy J.; Sokoloski, J. L.; Nelson, Thomas; Mukai, Koji; Bode, M. F.; Eyres, S. P. S.; O'Brien, T. J.
2011-09-01
We present radio light curves and spectra of the classical nova V1723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists utilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of V1723 Aql span 1-37 GHz in frequency, and we report on data from 14 to 175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of V1723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.
Expanded Very Large Array Nova Project Observations of the Classical NovaV1723 Aquilae
NASA Technical Reports Server (NTRS)
Krauss, Miriam I.; Chomiuk, Laura; Rupen, Michael; Roy, Nirupam; Mioduszewski, Amy J.; Sokoloski, J. L.; Nelson, Thomas; Mukai, Koji; Bode, M. F.; Eyres, S. P. S.;
2011-01-01
We present radio light curves and spectra of the classical nova VI723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists utilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of VI723 Aql span 1-37 GHz in frequency, and we report on data from 14 to 175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of VI723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.
Thermonuclear runaways in nova outbursts
NASA Technical Reports Server (NTRS)
Shankar, Anurag; Arnett, David; Fryxell, Bruce A.
1992-01-01
Results of exploratory, two-dimensional numerical calculations of a local thermonuclear runaway on the surface of a white dwarf are reported. It is found that the energy released by the runaway can induce a significant amount of vorticity near the burning region. Such mass motions account naturally for mixing of core matter into the envelope during the explosion. A new mechanism for the lateral spread of nuclear burning is also discussed.
No Expanding Fireball: Resolving the Recurrent Nova RS Ophiuchi with Infrared Interferometry
NASA Astrophysics Data System (ADS)
Monnier, J. D.; Barry, R. K.; Traub, W. A.; Lane, B. F.; Akeson, R. L.; Ragland, S.; Schuller, P. A.; Le Coroller, H.; Berger, J.-P.; Millan-Gabet, R.; Pedretti, E.; Schloerb, F. P.; Koresko, C.; Carleton, N. P.; Lacasse, M. G.; Kern, P.; Malbet, F.; Perraut, K.; Kuchner, M. J.; Muterspaugh, M. W.
2006-08-01
Following the recent outburst of the recurrent nova RS Oph on 2006 February 12, we measured its near-infrared size using the IOTA, Keck, and PTI Interferometers at multiple epochs. The characteristic size of ~3 mas hardly changed over the first 60 days of the outburst, ruling out currently popular models whereby the near-infrared emission arises from hot gas in the expanding shock. The emission was also found to be significantly asymmetric, evidenced by nonzero closure phases detected by IOTA. The physical interpretation of these data depends strongly on the adopted distance to RS Oph. Our data can be interpreted as the first direct detection of the underlying RS Oph binary, lending support to the recent ``reborn red giant'' models of Hachisu & Kato. However, this result hinges on an RS Oph distance of <~540 pc, in strong disagreement with the widely adopted distance of ~1.6 kpc. At the farther distance, our observations imply instead the existence of a nonexpanding, dense, and ionized circumbinary gaseous disk or reservoir responsible for the bulk of the near-infrared emission. Longer baseline infrared interferometry is uniquely suited to distinguish between these models and to ultimately determine the distance, binary orbit, and component masses for RS Oph, one of the closest known (candidate) Type 1a supernova progenitor systems.
White Dwarfs in Cataclysmic Variables: An Update
Sion, Edward M.; Godon, Patrick
2018-01-01
In this review, we summarize what is currently known about the surface temperatures of accreting white dwarfs in non-magnetic and magnetic cataclysmic variables (CVs) based upon synthetic spectral analyses of far ultraviolet data. We focus only on white dwarf surface temperatures, since in the area of chemical abundances, rotation rates, WD masses and accretion rates, relatively little has changed since our last review, pending the results of a large HST GO program involving 48 CVs of different CV types. The surface temperature of the white dwarf in SS Cygni is re-examined in the light of its revised distance. We also discuss new HST spectra of the recurrent nova T Pyxidis as it transitioned into quiescence following its April 2011 nova outburst. PMID:29505036
Observations of the peculiar object MWC 560 in outburst
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Maran, S. P.; Oliversen, R. J.; Bopp, B.; Kontizas, E.
1991-01-01
The results of ultraviolet spectroscopy, photoelectric photometry, and supplemental high-resolution H(alpha) spectroscopy of a photometric outburst of MWC 560 are discussed. Ultraviolet spectra are shown to be consistent with the ejection of an optically thick shell that produced strong absorption blends of Fe II and Cr II. The velocities reported exceed by far those previously found in symbiotic stars or recurrent novas. In addition to the variable high-velocity system of broad absorption features, a relatively stable system of Mg II, Mg I, Fe II, Cr II, and other ionic absorptions is observed. It is pointed out that the spectroscopic phenomena in MWC 560 resemble those found in XX Ophiuchi, but the velocities in the MWC 560 are an order of magnitude higher than those found in XX Oph.
NASA Technical Reports Server (NTRS)
Chomiuk, Laura; Krauss, Miriam I.; Rupen, Michael P.; Nelson, Thomas; Roy, Nirupam; Sokoloski, Jennifer L.; Mukai, Koji; Munari, Ulisse; Mioduszewski, Amy; Weston, Jeninfer;
2012-01-01
We present multi-frequency radio observations of the 2010 nova event in the symbiotic binary V407 Cygni, obtained with the Karl G. Jansky Very Large Array (VLA) and spanning 1.45 GHz and 17.770 days following discovery. This nova.the first ever detected in gamma rays.shows a radio light curve dominated by the wind of the Mira giant companion, rather than the nova ejecta themselves. The radio luminosity grewas the wind became increasingly ionized by the nova outburst, and faded as the wind was violently heated from within by the nova shock. This study marks the first time that this physical mechanism has been shown to dominate the radio light curve of an astrophysical transient. We do not observe a thermal signature from the nova ejecta or synchrotron emission from the shock, due to the fact that these components were hidden behind the absorbing screen of the Mira wind. We estimate a mass-loss rate for the Mira wind of .Mw approximately equals 10(exp -6) Solar mass yr(exp -1). We also present the only radio detection of V407 Cyg before the 2010 nova, gleaned from unpublished 1993 archival VLA data, which shows that the radio luminosity of the Mira wind varies by a factor of 20 even in quiescence. Although V407 Cyg likely hosts a massive accreting white dwarf, making it a candidate progenitor system for a Type Ia supernova, the dense and radially continuous circumbinary material surrounding V407 Cyg is inconsistent with observational constraints on the environments of most Type Ia supernovae.
Non-LTE model atmosphere analysis of Nova Cygni 1992
NASA Technical Reports Server (NTRS)
Hauschildt, P. H.; Starrfield, S.; Austin, S.; Wagner, R. M.; Shore, S. N.; Sonneborn, G.
1994-01-01
We use spherically symmetric non-local thermodynamic equilibrium (non-LTE), line-blanketed, expanding model atmospheres to analyze the International Ultraviolet Explorer (IUE) and optical spectra of Nova Cygni 1992 during the early phases of its outburst. We find that the first IUE spectrum obtained just after discovery on 1992 February 20, is best reproduced by a model atmosphere with a steep density gradient and homologous expansion, whereas the IUE and optical spectra obtained on February 24 show an extended, optically thick, wind structure. Therefore, we distinguish two phases of the early evolution of the nova photosphere: the initial, rapid, 'fireball' phase and the subsequent, much longer, optically thick 'wind' phase. The importance of line-blanketing in nova spectra is demonstrated. Our preliminary abundance analysis implies that hydrogen is depeleted in the ejecta, corresponding to abundance enhancements of Fe by a factor of approximately 2 and of CNO by more than a factor of 10 when compared to solar abundances. The synthetic spectra reproduce both the observed pseudo-continua as well as most of the observed features from the UV to the optical spectral range and demonstrate the importance of obtaining nearly simultaneous UV and optical spectra for performing accurate analyses of expanding stellar atmospheres (for both novae and supernovae).
Breaking the Habit - The peculiar 2016 eruption of the remarkable recurrent nova M31N 2008-12a
NASA Astrophysics Data System (ADS)
Henze, Martin; M31N 2008-12a Monitoring Collaboration
2018-01-01
Since its discovery in 2008, the Andromeda galaxy nova M31N 2008-12a has been observed in eruption every year. This makes it the most extreme member of the new class of Rapidly Recurring Novae (RRN) which show repeated eruptions within a time span of a decade or less. Such frequent outbursts indicate a high mass accretion rate onto a white dwarf that is extremely close to the Chandrasekhar limit, thereby making RRN the most promising observable candidates for the progenitors of type-Ia supernovae currently known.The previous three eruptions of M31N 2008-12a have displayed remarkably homogeneous multi-wavelength properties. From a relatively faint peak brightness the optical light curve declined rapidly by two magnitudes in less than two days. Early spectra showed high velocities that declined significantly within days and displayed clear helium and nitrogen lines throughout. The supersoft X-ray source phase of the nova began extremely early, around day six after eruption, and only lasted for about two weeks.In contrast, the delayed 2016 eruption showed significant deviations from the established pattern. In this talk, I will discuss the observational results and their impact on our understanding of the physics and evolution of this unique nova.
NASA Technical Reports Server (NTRS)
Livio, Mario; Truran, James W.
1994-01-01
We reexamine the question of the frequency of occurrence of oxygen-neon-magnesium (ONeMg) degenerate dwarfs in classical nova systems, in light of recent observations which have been interpreted as suggesting that 'neon novae' can be associated with relatively low mass white dwarfs. Determinations of heavy-element concentrations in nova ejecta are reviewed, and possible interpretations of their origin are examined. We conclude that, of the 18 classical novae for which detailed abundance analyses are availble, only two (or possibly three) seem unambiguously to demand the presence of an underlying ONeMg white dwarf: V693 CrA 1981, V1370 Aql 1982, and possibly QU Vul 1984. Three other novae which exhibit significant neon enrichments, relative to their total heavy-element concentrations, are RR Pic 1925, V977, Sco 1989, and LMC 1990 No. 1. This result is entirely consistent with present frequency estimates, and our interpretation of the lower levels of enrichment in other systems explains, in a natural way, the existence of relatively low mass white dwarfs in some of the 'neon' novae.
OGLE ATLAS OF CLASSICAL NOVAE. II. MAGELLANIC CLOUDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mróz, P.; Udalski, A.; Poleski, R.
2016-01-15
The population of classical novae in the Magellanic Clouds was poorly known because of a lack of systematic studies. There were some suggestions that nova rates per unit mass in the Magellanic Clouds were higher than in any other galaxy. Here, we present an analysis of data collected over 16 years by the OGLE survey with the aim of characterizing the nova population in the Clouds. We found 20 eruptions of novae, half of which are new discoveries. We robustly measure nova rates of 2.4 ± 0.8 yr{sup −1} (LMC) and 0.9 ± 0.4 yr{sup −1} (SMC) and confirm that the K-band luminosity-specific novamore » rates in both Clouds are 2–3 times higher than in other galaxies. This can be explained by the star formation history in the Magellanic Clouds, specifically the re-ignition of the star formation rate a few Gyr ago. We also present the discovery of the intriguing system OGLE-MBR133.25.1160, which mimics recurrent nova eruptions.« less
Here Today, Gone Tomorrow: the Story of U Sco
NASA Astrophysics Data System (ADS)
Menke, John L.
The normally 18th mag eclipsing binary star, U Scorpii, is one of a handful of recurrent nova with a history of outbursts approximately every 20-30 years. In 2005, Brad Schaefer, a professional astronomer, evaluated the mass transfer processes and predicted an outburst on 2009.3 ± 1 yr and contacted the AAVSO for amateur assistance in monitoring the star. On the morning of 2010 Jan 28, Barbara Harris in Florida made the first observation of the outburst at V ~ 8, with U Sco already fading. Professionals and amateurs went into action, observing the object in every way possible, with Brad Schaefer serving as a clearing house for much of the work. With two observatories, I was able to follow the fading star using both photometric and spectroscopic methods. This paper describes the observing techniques I used and modifications to the spectrometer and associated software that allowed me to follow the fading star even as the spectrum dropped 20x below the local light pollution! I also describe my experience in working with Brad Schaefer, and ultimately, in providing finished data for his analysts to use in evaluating the U Sco outburst along with the satisfaction of being told "..your data are as good as the professionals.."
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2007-06-01
Nova Normae 2007 was discovered photographically by William Liller on June 15.086 UT at magnitude 9.4. Precise position measured by G. Bolt from his unfiltered CCD image of June 16.7 UT: 16:32:11.51 -45:09:13.4 (2000.0). Giorgio Di Scala reported to the AAVSO that a low-resolution spectrum indicates a nova a week or so after outburst, with strong H-alpha emission. E. Kazarovets, Sternberg Astronomical Institute, reports that N Nor 07 has been assigned the name V390 Nor. Discovery originally announced in IAU Central Bureau Electronic Telegram 982 (Daniel W. E. Green) and AAVSO Special Notice #49 (Arne Henden). Information in this Alert Notice was received at AAVSO from William Liller, Giorgio Di Scala, or via IAU Circular No. 8850, ed. Daniel W. E. Green. A chart for V390 Nor is available via the Variable Star Plotter (VSP). Go to: http://www.aavso.org/observing/charts/vsp/ and enter the name V390 NOR.
X-rays Provide a New Way to Investigate Exploding Stars
NASA Astrophysics Data System (ADS)
2007-05-01
The European Space Agency's X-ray observatory XMM-Newton has revealed a new class of exploding stars - where the X-ray emission 'lives fast and dies young'. The identification of this particular class of explosion gives astronomers a valuable new constraint to help them understand stellar explosions. Exploding stars called novae remain a puzzle to astronomers. "Modelling these outbursts is very difficult," says Wolfgang Pietsch, Max Planck Institut für Extraterrestrische Physik. Now, ESA's XMM-Newton and NASA's Chandra have provided valuable information about when individual novae emit X-rays. Between July 2004 and February 2005, the X-ray observatories watched the heart of the nearby Andromeda Galaxy, known to astronomers as M31. During that time, Pietsch and his colleagues monitored novae, looking for the X-rays. X-ray Image of Andromeda Galaxy (M31) Chandra X-ray Image of Andromeda Galaxy (M31) They detected that eleven out of the 34 novae that had exploded in the galaxy during the previous year were shining X-rays into space. "X-rays are an important window onto novae. They show the atmosphere of the white dwarf," says Pietsch. White dwarfs are hot stellar corpses left behind after the rest of the star has been ejected into space. A typical white dwarf contains about the mass of the Sun, in a spherical volume little bigger than the Earth. It has a strong pull of gravity and, if it is in orbit around a normal star, can rip gas from it. This material builds up on the surface of the white dwarf until it reaches sufficient density to nuclear detonate. The resultant explosion creates a nova. However, these particular events are not strong enough to destroy the underlying white dwarf. The X-ray emission becomes visible some time after the detonation, when the matter ejected by the nova thins out enough to allow astronomers to peer down to the nuclear burning white dwarf atmosphere beneath. At the end of the process, the X-ray emission stops when the fuel is exhausted. The duration of this X-ray emission traces the amount of material left on the white dwarf after the nova explosion. Optical Image of Andromeda Galaxy (M31) Optical Image of Andromeda Galaxy (M31) A well determined start time of the optical nova outburst and the X-ray turn-on and turn-off times are therefore important benchmarks for replication in computer models of novae. Whilst monitoring the M31 novae, frequently over several months, for the appearance and subsequent disappearance of the X-rays, Pietsch made an important discovery. Some novae start to emit X-rays and then turn them off again within just a few months. "These novae are a new class. They would have been overlooked before," says Pietsch. That's because previous surveys looked only every six months or so. Within that time, the fast X-ray novae could have blinked both on and off. In addition to discovering the short-lived ones, the new survey also confirms that other novae generate X-rays over a much longer time. XMM-Newton detected seven novae that were still shining X-rays into space, up to a decade after the original eruption. The differing lengths of times are thought to reflect the masses of the white dwarfs at the heart of the nova explosion. The fastest evolving novae are thought to be those coming from the most massive white dwarfs. To investigate further, the team have been awarded more XMM-Newton and Chandra observing time. They now plan to monitor M31's novae every ten days for several months, starting in November 2007 to glean more information about these puzzling stellar explosions. Notes for editors: X-ray monitoring of optical novae in M31 from July 2004 to February 2005 by W. Pietsch et al. is published in Astronomy and Astrophysics, 465, 375-392 (2007). For more information: Wolfgang Pietsch wnp@mpe.mpg.de Norbert Schartel Norbert.Schartel@sciops.esa.int
Binary supersoft X-ray sources and the supernova Ia progenitor problem
NASA Astrophysics Data System (ADS)
Nelson, Thomas John
In this thesis I present a study of several binary supersoft X-ray sources in order to assess their properties and to determine whether they may be supernova Ia (SN Ia) progenitors. The first chapter is an introduction to the problem and the sources of interest. In the second and third chapters I present an X-ray spectroscopic study of the recurrent nova RS Ophiuchi (RS Oph) during and after its 2006 outburst, carried out with Chandra and XMM-Newton. I discuss the physical origins of the X-ray emission at each stage of the outburst and place the first direct constraints on the mass of the white dwarf, which is very close to the Chandrasekhar limit. I also show that the surface composition of the white dwarf during the supersoft phase is consistent with nuclear processed material, indicating that RS Oph retains mass after each outburst and is likely growing in mass with time, and is therefore a potential SN Ia progenitor. I discuss the lack of accretion signatures in the quiescent emission from RS Oph, which are at odds with the high frequency of nova outbursts, and explore the possibility that an alternative accretion model may account for the quiescent X-ray properties in the system. Finally, in the fourth chapter, I examine the supersoft X-ray source (SSS) population in the nearby galaxy M31 at X-ray, ultraviolet (UV) and optical wavelengths. I explore the long-term behavior of these objects, and find that a much smaller fraction are persistent or recurrent X-ray sources than in the Magellanic Clouds. I carry out a search for counterparts of the SSS using the Galactic Evolution Explorer (GALEX) satellite and the WIYN 3.5m telescope, and find that the majority of sources do not have any UV counterparts. For those that do, I find that the UV sources have properties consistent with young, massive stars in M31. I find indications that some SSS may be in high mass binaries. If these sources are nuclear burning white dwarfs, then they may be the progenitors of the SNe Ia that appear to be associated with recent star formation.
ASAS-SN Discovery of ASASSN-18dw, a 4+ Magnitudes Stellar Outburst Towards Orion
NASA Astrophysics Data System (ADS)
Stanek, K. Z.; Kochanek, C. S.; Shields, J. V.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Dong, Subo; Stritzinger, M.
2018-02-01
During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Paczynski" telescope in Cerro Tololo, Chile, we detect a bright, rapidly raising transient source Object RA (J2000) DEC (J2000) Disc.
NASA Astrophysics Data System (ADS)
Zemko, Polina; Orio, Marina
2016-07-01
We present the results of optical and X-ray observations of two quiescent novae, V2491 Cyg and V4743 Sgr. Our observations suggest the intriguing possibility of localization of hydrogen burning in magnetic novae, in which accretion is streamed to the polar caps. V2491 Cyg was observed with Suzaku more than 2 years after the outburst and V4743 Sgr was observed with XMM Newton 2 and 3.5 years after maximum. In the framework of a monitoring program of novae previously observed as super soft X-ray sources we also obtained optical spectra of V4743 Sgr with the SALT telescope 11.5 years after the eruption and of V2491 Cyg with the 6m Big Azimutal Telescope 4 and 7 years post-outburst. In order to confirm the possible white dwarf spin period of V2491 Cyg measured in the Suzaku observations we obtained photometric data using the 90cm WIYN telescope at Kitt Peak and the 1.2 m telescope in Crimea. We found that V4743 Sgr is an intermediate polar (IP) and V2491 Cyg is a strong IP candidate. Both novae show modulation of their X-ray light curves and have X-ray spectra typical of IPs. The Suzaku and XMM Newton exposures revealed that the spectra of both novae have a very soft blackbody-like component with a temperature close to that of the hydrogen burning white dwarfs in their SSS phases, but with flux by at least two orders of magnitude lower, implying a possible shrinking of emitting regions in the thin atmosphere that is heated by nuclear burning underneath it. In quiescent IPs, independently of the burning, an ultrasoft X-ray flux component originates at times in the polar regions irradiated by the accretion column, but the soft component of V4743 Sgr disappeared in 2006, indicating that the origin may be different from accretion. We suggest it may have been due to an atmospheric temperature gradient on the white dwarf surface, or to continuing localized thermonuclear burning at the bottom of the envelope, before complete turn-off. The optical spectra of V2491 Cyg and V4743 Sgr showed the prominent He II 4686 A line and the Bowen blend, which indicate a hot region, with peak temperature in the ultraviolet range. This may be the same region that previously emitted supersoft X-rays, and later cooled shifting the peak of emission to the ultraviolet.
SALT high-resolution spectroscopy of nova PNV J15384000-4744500
NASA Astrophysics Data System (ADS)
Aydi, E.; Buckley, D. A. H.; Mohamed, S.; Whitelock, P. A.
2018-06-01
We report on high-resolution spectroscopy of PNV J15384000-4744500 which was reported as a possible nova by Rob Kaufman (Bright, Victoria, Australia; CBAT follow-up: http://www.cbat.eps.harvard.edu/unconf/followups/J15384000-4744500.html) and confirmed as a classical nova by F. Walter (ATel #11681).
NASA Astrophysics Data System (ADS)
Knigge, Christian; Long, Knox S.; Blair, William P.; Wade, Richard A.
1997-02-01
We present a far-ultraviolet spectrum of the dwarf nova Z Cam near the peak of a normal outburst as observed with the Hopkins Ultraviolet Telescope (HUT) on the Astro-2 mission. The continuum shape and luminosity are almost identical to an Astro-1 HUT spectrum of the same object in a similar state obtained about 4 years or 50 outburst episodes earlier. This suggests that, following the onset of an outburst, the system quickly reaches a (quasi-) steady state that is insensitive to the interoutburst history. A variance analysis of the Astro-2 data reveals no evidence for spectral variability on a timescale of minutes. The rms amplitude of any intrinsic fluctuations is <5% of the flux in both continuum and lines. Z Cam's continuum can be described moderately well in terms of an optically thick, steady state accretion disk with Ṁacc ~= 3 × 1017 g s-1 if the disk is assumed to radiate as an ensemble of stellar atmospheres. This type of model reproduces the turnover in the data at about 1050 Å, but the predicted spectrum is somewhat too blue at longer wavelengths, causing it to underpredict the flux longward of about 1500 Å. This discrepancy appears to be resistant to all potential remedies we have tested, which include differential limb-darkening, reddening, and white dwarf, boundary layer, or hot spot spectral components. This suggests either that our modeling of the standard accretion disk picture is too simplistic--the effects of radial interactions and disk irradiation, for example, have been ignored--or that the standard picture itself may require modification. Blackbody disk models actually match the data better at longer HUT wavelengths, but the redder color of these models is a direct consequence of the neglect of all radiative transfer effects. The same neglect prevents blackbody models from reproducing the turnover in the spectrum and causes them to overpredict the accretion rate. We use a Monte Carlo line profile synthesis code to model five of the high-ionization lines in Z Cam's spectrum in terms of a simple, kinematic description of a rotating, biconical accretion disk wind. Adopting the picture of such an outflow that has recently been proposed for another cataclysmic variable, UX UMa, we find that acceptable fits to the data can be obtained. The relative mean ionization fractions we derive for the ionic species included in our wind modeling appear to be consistent with photoionization by a radiation field with T ~ 1.2 × 105 K. This temperature is within the range that has recently been inferred for Z Cam's soft X-ray component from ROSAT data and similar to the boundary layer temperature that has been derived on the basis of Extreme-Ultraviolet Explorer (EUVE) observations for the dwarf nova U Gem in outburst. An important feature of our adopted outflow model is the existence of a vertically extended, dense, slow-moving ``transition region'' between the disk photosphere and the fast-moving wind. Using a static LTE slab to crudely model this region, we find many of the absorption features in Z Cam's line spectrum that we have not modeled with our Monte Carlo code. The physical conditions expected in the extended disk atmosphere--ne ~ 1012 cm-3, NH ~ 1022 cm-2, and T ~= few × 104 K--are similar to those in the ``Fe II curtain'' that has been found to veil the white dwarf in the dwarf nova OY Car in quiescence. Based on observations obtained with the Hopkins Ultraviolet Telescope as part of the Astro-2 mission.
The Evolution of NR TrA (Nova TrA 2008) from 2008 through 2017
NASA Astrophysics Data System (ADS)
Walter, Frederick M.; Burwitz, Vadim; Kafka, Stella
2018-06-01
The classical nova NR TrA was discovered as an O-type optically-thick classical nova. There is no evidence that it formed dust. Within four years the envelope became sufficiently thin to reveal an eclipsing accretion disk-dominated system with orbitally-modulated permitted lines of C IV, N V, and O VI. XMM observations reveal a non-eclipsing soft X-ray source and a deeply-eclipsing UV continuum. We will present the first ten years of optical spectral evolution of this system accompanied by ten years of BVRIJHK photometry, with an eye to deciphering the current nature of the system.
ORIGINS OF ABSORPTION SYSTEMS OF CLASSICAL NOVA V2659 CYG (NOVA CYG 2014)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arai, A.; Kawakita, H.; Shinnaka, Y.
2016-10-10
We report on high-dispersion spectroscopy results of a classical nova V2659 Cyg (Nova Cyg 2014) that are taken 33.05 days after the V -band maximum. The spectrum shows two distinct blueshifted absorption systems originating from H i, Fe ii, Ca ii, etc. The radial velocities of the absorption systems are −620 km s{sup −1}, and −1100 to −1500 km s{sup −1}. The higher velocity component corresponds to the P-Cygni absorption features frequently observed in low-resolution spectra. Much larger numbers of absorption lines are identified at the lower velocity. These mainly originate from neutral or singly ionized Fe-peak elements (Fe i,more » Ti ii, Cr ii, etc.). Based on the results of our spectroscopic observations, we discuss the structure of the ejecta of V2659 Cyg. We conclude that the low- and high-velocity components are likely to be produced by the outflow wind and the ballistic nova ejecta, respectively.« less
Impact of convection and resistivity on angular momentum transport in dwarf novae
NASA Astrophysics Data System (ADS)
Scepi, N.; Lesur, G.; Dubus, G.; Flock, M.
2018-01-01
The eruptive cycles of dwarf novae are thought to be due to a thermal-viscous instability in the accretion disk surrounding the white dwarf. This model has long been known to imply enhanced angular momentum transport in the accretion disk during outburst. This is measured by the stress to pressure ratio α, with α ≈ 0.1 required in outburst compared to α ≈ 0.01 in quiescence. Such an enhancement in α has recently been observed in simulations of turbulent transport driven by the magneto-rotational instability (MRI) when convection is present, without requiring a net magnetic flux. We independently recover this result by carrying out PLUTO magnetohydrodynamic (MHD) simulations of vertically stratified, radiative, shearing boxes with the thermodynamics and opacities appropriate to dwarf novae. The results are robust against the choice of vertical boundary conditions. The thermal equilibrium solutions found by the simulations trace the well-known S-curve in the density-temperature plane that constitutes the core of the disk thermal-viscous instability model. We confirm that the high values of α ≈ 0.1 occur near the tip of the hot branch of the S-curve, where convection is active. However, we also present thermally stable simulations at lower temperatures that have standard values of α ≈ 0.03 despite the presence of vigorous convection. We find no simple relationship between α and the strength of the convection, as measured by the ratio of convective to radiative flux. The cold branch is only very weakly ionized so, in the second part of this work, we studied the impact of non-ideal MHD effects on transport. Ohmic dissipation is the dominant effect in the conditions of quiescent dwarf novae. We include resistivity in the simulations and find that the MRI-driven transport is quenched (α ≈ 0) below the critical density at which the magnetic Reynolds number Rm ≤ 104. This is problematic because the X-ray emission observed in quiescent systems requires ongoing accretion onto the white dwarf. We verify that these X-rays cannot self-sustain MRI-driven turbulence by photo-ionizing the disk and discuss possible solutions to the issue of accretion in quiescence.
Chandra Discovers Eruption and Pulsation in Nova Outburst
NASA Astrophysics Data System (ADS)
2001-09-01
NASA's Chandra X-ray Observatory has discovered a giant outburst of X-rays and unusual cyclical pulsing from a white dwarf star that is closely orbiting another star -- the first time either of these phenomena has been seen in X-rays. The observations are helping scientists better understand the thermonuclear explosions that occur in certain binary star systems. The observations of Nova Aquilae were reported today at the "Two Years of Science with Chandra" symposium by an international team led by Sumner Starrfield of Arizona State University. "We found two important results in our Chandra observations. The first was an underlying pulsation every 40 minutes in the X-ray brightness, which we believe comes from the cyclical expansion and contraction of the outer layers of the white dwarf," said Starrfield. "The other result was an enormous flare of X-rays that lasted for 15 minutes. Nothing like this has been seen before from a nova, and we don't know how to explain it." Novas occur on a white dwarf (a star which used up all its nuclear fuel and shrank to roughly the size of the Earth) that is orbiting a normal size star. Strong gravity tides drag hydrogen gas off the normal star and onto the white dwarf, where it can take more than 100,000 years for enough hydrogen to accumulate to ignite nuclear fusion reactions. Gradually, these reactions intensify until a cosmic-sized hydrogen bomb blast results. The outer layers of the white dwarf are then blown away, producing a nova outburst that can be observed for a period of months to years as the material expands into space. "Chandra has allowed us to see deep into the gases ejected by this giant explosion and extract unparalleled information on the evolution of the white dwarf whose surface is exploding," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics. The brightening of Nova Aquilae was first detected by optical astronomers in December 1999. "Although this star is at a distance of more than 6,000 light years, it could be seen with the naked eye for about a month, during which it was about 100,000 times brighter than our own Sun," said R. Mark Wagner of the University of Arizona. Nova Aquilae Chandra observed the nova, so-called because early astronomers believed they heralded the appearance of a new star, four times from April 2000 through October 2000. "Our first Chandra observations showed that the expanding gas around Nova Aquilae was hot and nearly opaque," said Joachim Krautter of the State Observatory in Heidelberg, Germany. "When we looked months later with Chandra, the expanding gases cleared enough for us to see through them to the underlying star on which the explosion occurred." The latter Chandra X-ray data revealed the cyclical changes in brightness are due to the white dwarf expanding and shrinking over a 40-minute period. They also showed that the temperature on the surface of the white dwarf was 300,000 degrees Celsius, making Nova Aquilae one of the hottest stars ever observed to undergo such pulsations. "The observations told us that thermonuclear fusion reactions were still occurring on the surface layers of the white dwarf - more than eight months after the explosion first began!" said Robert Gehrz of the University of Minnesota. Other members of the team are Howard Bond (Space Telescope Science Institute), Yousaf Butt (Harvard-Smithsonian Center for Astrophysics), Koji Mukai (Goddard Space Flight Center), Peter Hauschildt (University of Georgia), Margarida Hernanz (Institute for Space Studies, Catalonia, Spain), Marina Orio (University of Wisconsin and the Torino Observatory in Italy), and Charles Woodward (University of Minnesota). Chandra observed Nova Aquilae for a total of 10 hours with the High Resolution Camera (HRC) and the Advanced CCD Imaging Spectrometer (ACIS). The HRC was built for NASA by the Smithsonian Astrophysical Observatory, Cambridge, MA. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
Outbursts and Disk Variability in Be Stars
NASA Astrophysics Data System (ADS)
Labadie-Bartz, Jonathan; Chojnowski, S. Drew; Whelan, David G.; Pepper, Joshua; McSwain, M. Virginia; Borges Fernandes, Marcelo; Wisniewski, John P.; Stringfellow, Guy S.; Carciofi, Alex C.; Siverd, Robert J.; Glazier, Amy L.; Anderson, Sophie G.; Caravello, Anthoni J.; Stassun, Keivan G.; Lund, Michael B.; Stevens, Daniel J.; Rodriguez, Joseph E.; James, David J.; Kuhn, Rudolf B.
2018-02-01
In order to study the growth and evolution of circumstellar disks around classical Be stars, we analyze optical time-series photometry from the KELT survey with simultaneous infrared and visible spectroscopy from the Apache Point Observatory Galactic Evolution Experiment survey and Be Star Spectra database for a sample of 160 Galactic classical Be stars. The systems studied here show variability including transitions from a diskless to a disk-possessing state (and vice versa), and persistent disks that vary in strength, being replenished at either regularly or irregularly occurring intervals. We detect disk-building events (outbursts) in the light curves of 28% of our sample. Outbursts are more commonly observed in early- (57%), compared to mid- (27%) and late-type (8%) systems. A given system may show anywhere between 0 and 40 individual outbursts in its light curve, with amplitudes ranging up to ∼0.5 mag and event durations between ∼2 and 1000 days. We study how both the photometry and spectroscopy change together during active episodes of disk growth or dissipation, revealing details about the evolution of the circumstellar environment. We demonstrate that photometric activity is linked to changes in the inner disk, and show that, at least in some cases, the disk growth process is asymmetrical. Observational evidence of Be star disks both growing and clearing from the inside out is presented. The duration of disk buildup and dissipation phases are measured for 70 outbursts, and we find that the average outburst takes about twice as long to dissipate as it does to build up in optical photometry. Our analysis hints that dissipation of the inner disk occurs relatively slowly for late-type Be stars.
ASASSN-16eg: New candidate for a long-period WZ Sge-type dwarf nova
NASA Astrophysics Data System (ADS)
Wakamatsu, Yasuyuki; Isogai, Keisuke; Kimura, Mariko; Kato, Taichi; Vanmunster, Tonny; Stone, Geoff; Tordai, Tamás; Richmond, Michael; Miller, Ian; Oksanen, Arto; Itoh, Hiroshi; Akazawa, Hidehiko; Kiyota, Seiichiro; de Miguel, Enrique; Pavlenko, Elena P.; Antonyuk, Kirill A.; Antonyuk, Oksana I.; Neustroev, Vitaly V.; Sjoberg, George; Dubovsky, Pavol A.; Pickard, Roger D.; Nogami, Daisaku
2017-12-01
We report on our photometric observations of the 2016 superoutburst of ASASSN-16eg. This object showed a WZ Sge-type superoutburst with prominent early superhumps with a period of 0.075478(8) d and a post-superoutburst rebrightening. During the superoutburst plateau, it showed ordinary superhumps with a period of 0.077880(3) d and a period derivative of 10.6(1.1) × 10-5 in stage B. The orbital period (Porb), which is almost identical with the period of the early superhumps, is exceptionally long for a WZ Sge-type dwarf nova. The mass ratio (q = M2/M1) estimated from the period of developing (stage A) superhumps is 0.166(2), which is also too large for a WZ Sge-type dwarf nova. This suggests that the 2 : 1 resonance can be reached in such high-q systems, contrary to our expectation. Such conditions are considered to be achieved if the mass-transfer rate is much lower than those in typical SU UMa-type dwarf novae that have comparable orbital periods to ASASSN-16eg, and a resultant accumulation of a large amount of matter on the disk is realized at the onset of an outburst. We examined other candidates for long-period WZ Sge-type dwarf novae for their supercycles, which are considered to reflect the mass-transfer rate, and found that V1251 Cyg and RZ Leo have longer supercycles than those of other WZ Sge-type dwarf novae. This result indicates that these long-period objects including ASASSN-16eg have a low mass-transfer rate in comparison to other WZ Sge-type dwarf novae.
Ultraviolet spectrophotometry and optical and infrared photometry of the old nova GK Persei
NASA Technical Reports Server (NTRS)
Wu, Chi-Chao; Holm, Albert V.; Panek, Robert J.; Raymond, John C.; Hartmann, Lee W.; Swank, Jean H.
1989-01-01
IUE observations in the 1150-3250-A region were obtained of GK Per during the rise, at the maximum, and during the decline of the 2.5-mag optical outburst in 1981. The results support previous predictions for the interaction of an accretion disk with the magnetic field of an accretion star. The luminosity at minimum is found to be 2.3 solar luminosities, with 1/3 of this being attributed to the cool secondary star.
The Kepler Light Curves of V1504 Cygni and V344 Lyrae: A Study of the Outburst Properties
NASA Technical Reports Server (NTRS)
Cannizzo, John K.; Smale, Alan P.; Still, Martin D.; Wood, Matt A.; Howell, Steve B.
2011-01-01
We examine the Kepler light curves of V1504 Cyg and V344 Lyr, encompassing approximately 460 d at 1 min cadence. During this span each system exhibited approximately 40 outbursts, including four superoutbursts. We find that, in both systems, the normal outbursts lying between two superoutbursts increase in duration by a factor approximately 1.2 - 1.7, and then reset to a small value after the following superoutburst. In V344 Lyr the trend of quiescent intervals between normal outbursts is to increase to a local maximum about half way through the supercycle the interval from one superoutburst to the next - and then to decrease back to a small value by the time of the next superoutburst, whereas for V1504 Cyg the quiescent intervals are relatively constant during the supercycle. Both of these trends are inconsistent with the Osaki's thermal-tidal model, which robustly predicts a secular increase in the quiescent intervals between normal outbursts during a supercycle. Also, most of the normal outbursts have an asymmetric, fast-rise/slower-decline shape, which would be consistent with outbursts triggered at large radii. The exponential rate of decay of the plateau phase of the superoutbursts is 8 d mag(sup -1) for approximately 1504 Cyg and 12 d mag(sup -1) for V344 Lyr. This time scale gives a direct measure of the VISCOUS time scale III the outer accretion disk given the expectation that the entire disk is in the hot, viscous state during superoutburst. The resulting constraint on the Shakura-Sunyaev parameter, alpha(sub hot) approximately equal to 0.1, is consistent with the value inferred from the fast dwarf nova decays. By looking at the slow decay rate for superoutbursts, which occur in systems below the period gap, in combination with the slow decay rate in one long outburst above the period gap (in U Gem), we infer a steep dependence of the decay rate on orbital period for long outbursts. We argue that this relation implies a steep dependence of alpha(sub cold) on orbital period, which may be consistent with recent findings of Patterson, and is consistent with tidal torquing as being the dominant angular momentum transport mechanism in quiescent disks in interacting binary systems.
The Swift Supergiant Fast X-ray Transient Project
NASA Astrophysics Data System (ADS)
Romano, P.; Barthelmy, S.; Bozzo, E.; Burrows, D.; Ducci, L.; Esposito, P.; Evans, P.; Kennea, J.; Krimm, H.; Vercellone, S.
2017-10-01
We present the Swift Supergiant Fast X-ray Transients project, a systematic study of SFXTs and classical supergiant X-ray binaries (SGXBs) through efficient long-term monitoring of 17 sources including SFXTs and classical SGXBs across more than 4 orders of magnitude in X-ray luminosity on timescales from hundred seconds to years. We derived dynamic ranges, duty cycles, and luminosity distributions to highlight systematic differences that help discriminate between different theoretical models proposed to explain the differences between the wind accretion processes in SFXTs and classical SGXBs. Our follow-ups of the SFXT outbursts provide a steady advancement in the comprehension of the mechanisms triggering the high X-ray level emission of these sources. In particular, the observations of the outburst of the SFXT prototype IGR J17544-2619, when the source reached a peak X-ray luminosity of 3×10^{38} erg s^{-1}, challenged for the first time the maximum theoretical luminosity achievable by a wind-fed neutron star high mass X-ray binary. We propose that this giant outburst was due to the formation of a transient accretion disc around the compact object. We also created a catalogue of over 1000 BAT flares which we use to predict the observability and perspectives with future missions.
One-Proton Breakup of 18F and the 17O(p,γ)18F Reaction in Classical Novae
NASA Astrophysics Data System (ADS)
Isherwood, Bryan; Banu, A.; E491 Collaboration
2013-10-01
Classical nova studies are of considerable interest for understanding the chemical evolution of the Galaxy. They have been proposed as the most significant source for the nucleosynthesis of the isotopes 13C, 15N, and 17O in the Universe. Novae are also likely to synthesize the short-lived radioisotope 18F (T1/2 = 110 min), which is expected to be the most important contributor to the observed emission of 511 keV gamma radiation by space-based γ-ray telescopes. This emission is produced by electron-positron annihilation following the beta + decay of radioactive nuclei. A detection of these gamma rays could significantly constrain the nova simulation models. 18F nucleosynthesis in classical novae strongly depends on the thermonuclear rate of the 17O(p,γ)18F reaction, which is part of the CNO cycle. This work presents preliminary results toward determination of the 17O(p,γ)18F reaction cross section, which was measured by the indirect method of one-proton nuclear breakup at intermediate energies. The experiment was carried out at GANIL using a beam of 18F at 40 MeV/u impinging on a carbon target. Longitudinal momentum distributions of the 17O breakup fragments were measured in coincidence with γ-rays emitted by 17O residues.
Recent developments on SU UMa stars - theory vs. observation
NASA Astrophysics Data System (ADS)
Cannizzo, John K.
2015-01-01
Kepler light curves of short period dwarf novae have resparked interest in the nature of superoutbursts and led to the question: Is the thermal-tidal instability needed, or can the plain vanilla version of the accretion disk limit cycle do the job all by itself? A detailed time-resolved study of an eclipsing SU UMa system during superoutburst onset should settle the question - if there is a dramatic contraction of the disk at superoutburst onset, Osaki's thermal-tidal model would be preferred; if not, the plain disk instability model would be sufficient. I will present recent results that support the contention by Osaki & Kato that the time varying negative superhump frequencies can be taken as a surrogate for the outer disk radius variations. Finally, it may be necessaryto look beyond the short period dwarf novae to gain perspective on the nature of embedded precursors in long outbursts.
SALT confirmation of PNV J17244011-2421463 as a classical nova
NASA Astrophysics Data System (ADS)
Aydi, E.; Buckley, D. A. H.; Mohamed, S.; Whitelock, P. A.
2018-02-01
We report on high-resolution spectroscopy of PNV J17244011-2421463 which was reported as a possible nova by T. Kojima, Gunma-ken, Japan (CBAT follow-up: http://www.cbat.eps.harvard.edu/unconf/followups/J17244011-2421463.html).
EVIDENCE FOR AN FU ORIONIS-LIKE OUTBURST FROM A CLASSICAL T TAURI STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Adam A.; Poznanski, Dovi; Silverman, Jeffrey M.
2011-04-01
We present pre- and post-outburst observations of the new FU Orionis-like young stellar object PTF 10qpf (also known as LkH{alpha} 188-G4 and HBC 722). Prior to this outburst, LkH{alpha} 188-G4 was classified as a classical T Tauri star (CTTS) on the basis of its optical emission-line spectrum superposed on a K8-type photosphere and its photometric variability. The mid-infrared spectral index of LkH{alpha} 188-G4 indicates a Class II-type object. LkH{alpha} 188-G4 exhibited a steady rise by {approx}1 mag over {approx}11 months starting in August 2009, before a subsequent more abrupt rise of >3 mag on a timescale of {approx}2 months. Observationsmore » taken during the eruption exhibit the defining characteristics of FU Orionis variables: (1) an increase in brightness by {approx}>4 mag, (2) a bright optical/near-infrared reflection nebula appeared, (3) optical spectra are consistent with a G supergiant and dominated by absorption lines, the only exception being H{alpha} which is characterized by a P Cygni profile, (4) near-infrared spectra resemble those of late K-M giants/supergiants with enhanced absorption seen in the molecular bands of CO and H{sub 2}O, and (5) outflow signatures in H and He are seen in the form of blueshifted absorption profiles. LkH{alpha} 188-G4 is the first member of the FU Orionis-like class with a well-sampled optical to mid-infrared spectral energy distribution in the pre-outburst phase. The association of the PTF 10qpf outburst with the previously identified CTTS LkH{alpha} 188-G4 (HBC 722) provides strong evidence that FU Orionis-like eruptions represent periods of enhanced disk accretion and outflow, likely triggered by instabilities in the disk. The early identification of PTF 10qpf as an FU Orionis-like variable will enable detailed photometric and spectroscopic observations during its post-outburst evolution for comparison with other known outbursting objects.« less
The Distance to Nova V959 Mon from VLA Imaging
NASA Astrophysics Data System (ADS)
Linford, J. D.; Ribeiro, V. A. R. M.; Chomiuk, L.; Nelson, T.; Sokoloski, J. L.; Rupen, M. P.; Mukai, K.; O'Brien, T. J.; Mioduszewski, A. J.; Weston, J.
2015-06-01
Determining reliable distances to classical novae is a challenging but crucial step in deriving their ejected masses and explosion energetics. Here we combine radio expansion measurements from the Karl G. Jansky Very Large Array with velocities derived from optical spectra to estimate an expansion parallax for nova V959 Mon, the first nova discovered through its γ-ray emission. We spatially resolve the nova at frequencies of 4.5-36.5 GHz in nine different imaging epochs. The first five epochs cover the expansion of the ejecta from 2012 October to 2013 January, while the final four epochs span 2014 February-May. These observations correspond to days 126 through 199 and days 615 through 703 after the first detection of the nova. The images clearly show a non-spherical ejecta geometry. Utilizing ejecta velocities derived from three-dimensional modeling of optical spectroscopy, the radio expansion implies a distance between 0.9 ± 0.2 and 2.2 ± 0.4 kpc, with a most probable distance of 1.4 ± 0.4 kpc. This distance implies a γ-ray luminosity of 0.6× {{10}35} erg s-1, which is much less than the prototype γ-ray-detected nova, V407 Cyg, possibly due to the lack of a red giant companion in the V959 Mon system. V959 Mon also has a much lower γ-ray luminosity than other classical novae detected in γ-rays to date, indicating a range of at least a factor of 10 in the γ-ray luminosities for these explosions.
Orbital Period Change in Outburst: T Pyx Goes Rogue
NASA Astrophysics Data System (ADS)
Patterson, J.; Oksanen, A.; Monard, B.
2013-01-01
We summarize the results of our 1996-2013 study of the light curve of the recurrent nova T Pyx, based on ~3000 hours of coverage with small (0.3 m) telescopes. The star's light curve at quiescence (V=15, Mv=+1) is essentially that reported in our first paper (Patterson et al. 1998, PASP 110, 380): a broad and shallow (0.1 mag) dip occurring strictly on schedule with a mean period of 0.07622 d, but with period increasing smoothly on a timescale of 3x105 yrs.
NASA Astrophysics Data System (ADS)
Munari, U.; Siviero, A.; Dallaporta, S.; Cherini, G.; Valisa, P.; Tomasella, L.
2011-04-01
The photometric and spectroscopic evolution of the He/N and very fast Nova Cyg 2008 N.2 (V2491 Cyg) is studied in detail. A primary maximum was reached at V = 7.45 ± 0.05 on April 11.37 (±0.1) 2008 UT, followed by a smooth decline characterized by t2V=4.8 days, and then a second maximum was attained at V = 9.49 ± 0.03, 14.5 days after the primary one. This is the only third nova to have displayed a secondary maximum, after V2362 Cyg and V1493 Aql. The development and energetics of the secondary maximum is studied in detail. The smooth decline that followed was accurately monitored until day +144 when the nova was 8.6 mag fainter than maximum brightness, well into its nebular phase, with its line and continuum emissivity declining as t-3. The reddening affecting the nova was EB- V = 0.23 ± 0.01, and the distance of 14 kpc places the nova at a height above the galactic plane of 1.1 kpc, larger than typical for He/N novae. The expansion velocity of the bulk of ejecta was 2000 km/s, with complex emission profiles and weak P-Cyg absorptions during the optically thick phase, and saddle-like profiles during the nebular phase. Photo-ionization analysis of the emission line spectrum indicates that the mass ejected by the outburst was 5.3 × 10 -6 M ⊙ and the mass fractions to be X = 0.573, Y = 0.287, Z = 0.140, with those of individual elements being N = 0.074, O = 0.049, Ne = 0.015. The metallicity of the accreted material was [Fe/H] = -0.25, in line with ambient value at the nova galacto-centric distance. Additional spectroscopic and photometric observations at days +477 and +831 show the nova returned to the brightness level of the progenitor and to have resumed the accretion onto the white dwarf.
NASA Astrophysics Data System (ADS)
Joshi, Vishal; Banerjee, D. P. K.; Srivastava, Mudit
2017-12-01
We present a series of near-infrared spectra of Nova Ophiuchus 2017 in the K band that record the evolution of the first overtone CO emission in unprecedented detail. Starting from 11.7 days after maximum, when CO is first detected at great strength, the spectra track the CO emission to +25.6 days by which time it is found to have rapidly declined in strength by almost a factor of ∼35. The cause for the rapid destruction of CO is examined in the framework of different mechanisms for CO destruction, namely, an increase in photoionizating flux, chemical pathways of destruction, or destruction by energetic nonthermal particles created in shocks. From LTE modeling of the CO emission, the 12C/13C ratio is determined to be 1.6 ± 0.3. This is consistent with the expected value of this parameter from nucleosynthesis theory for a nova eruption occuring on a low mass (∼ 0.6 {M}ȯ ) carbon–oxygen core white dwarf. The present 12C/13C estimate constitutes one of the most secure estimates of this ratio in a classical nova.
Local Thermonuclear Runaways in Dwarf Novae?
NASA Astrophysics Data System (ADS)
Shara, Michael
2012-10-01
We have no hope of understanding the structure and evolution of a class of astrophysical objects if we cannot identify the dominant energy source of those objects.The Disk Instability Model {DIM} postulates that Dwarf Nova {DN} outbursts are powered by runaway accretion from an accretion disk onto a White Dwarf {WD} in a red dwarf-WD mass transferring binary. Ominously, HST observations {e.g. Sion et al. 2001} of WD surface abundances hint at a significant shortcoming of the DIM. The data from the present proposal will be able to unequivocally demonstrate if the observed highly Carbon-depleted and Nitrogen-enhanced abundances on WD surfaces {NOT predicted by DIM} vary with binary orbital phase, or throughout a DN quiescence cycle, or from cycle to cycle. These same data will test if predicted {but never observed} Local Thermonuclear Runaways {"Nuclear-powered mini-novas"} occur on the WDs of DN. Such events could trigger or even power DN, providing the long-sought physical mechanism of DN eruptions that DIM lacks. As a "free" bonus, the same data may also directly detect the diffusion of accreted metals in a WD atmosphere for the first time, or provide significant limits on the diffusion rate.
NASA Technical Reports Server (NTRS)
Kaaret, Philip
1995-01-01
This grant covers work on the Compton phase 3 investigation, 'Shock High Energy Emission from the Be- Star/Pulsar System PSR 1259-63' and cycle 4 investigations 'Diffuse Gamma-Ray Emission at High Latitudes' and 'Echoes in X-Ray Novae'. Work under the investigation 'Diffuse Gamma-Ray Emission at High Latitudes' has lead to the publication of a paper (attached), describing gamma-ray emissivity variations in the northern galactic hemisphere. Using archival EGRET data, we have found a large irregular region of enhanced gamma-ray emissivity at energies greater 100 MeV. This is the first observation of local structure in the gamma-ray emissivity. Work under the investigation 'Echoes in X-Ray Novae' is proceeding with analysis of data from OSSE from the transient source GRO J1655-40. The outburst of this source last fall triggered this Target of Opportunity investigation. Preliminary spectral analysis shows emission out to 600 keV and a pure power low spectrum with no evidence of an exponential cutoff. Work is complete on the analysis of BATSE data from the Be-Star/Pulsar Sustem PSR 1259-63.
SOFIA: A Promising Resource for Future Nova Studies
NASA Astrophysics Data System (ADS)
Helton, L. A.; Sofia Science Team
2014-12-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5-m telescope carried on board a Boeing 747-SP aircraft. Optimized for observations from infrared through sub-mm wavelengths, SOFIA observes from an altitude of 37,000 - 45,000 feet, above 99% of the atmospheric water vapor. The Observatory's complement of instruments possesses a broad range of capabilities, many of which are especially well suited for observations of classical novae, recurrent novae, and other cataclysmic variables. Here we present a selection of the instruments available on board SOFIA that may prove to be very useful for future novae studies.
Monitoring the Galaxy - Highlights from the MAXI mission
NASA Astrophysics Data System (ADS)
Mihara, Tatehiro
Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky monitor on the International Space Station. It is equipped with Gas Slit Camera (GSC) and Solid-state Slit Camera (SSC). Since it was mounted to the Japanese experimental module in 2009, it has been scanning the whole sky in every 92 minutes with ISS rotation. The data are processed automatically and distributed through http://maxi.riken.jp homepage. MAXI issued 136 to Astronomers Telegram and 47 to Gamma-ray burst Coordinated Network so far. There are many transient X-ray sources in our galaxy. The most remarkable one is a new source. MAXI discovered 12 MAXI sources, 6 of which are blackhole binaries. MAXI J0158-744 was a source in a new category (Morii et al. 2013). It was a very bright (10(40) erg s(-1) ) and very rapid (< 1 hour) nova consisting of a unusual pair of binary, which was a Ne-white dwarf and a Be star. The monitoring results are published as the 37-month catalog (Hiroi et al. 2012) which contains 500 sources above 0.6 mCrab in 4-10 keV in high Galactic-latitude (|b| > 10 deg). SSC with X-ray CCD has detected diffuse soft X-rays in the all-sky, such as Cygnus super bubble (Kimura et al. 2013) and north polar spur, as well as it found Ne line from the rapid soft X-ray nova MAXI J0158-744. Be X-ray binary pulsars (BeXBP) are also transients. They have outbursts at the periastron passage. However, the outburst does not occur in every orbit. Some sources stay in quiescence for tens of years, then suddenly start outbursts repeating for several years. All-sky monitor is then essential to study such kinds of sources. For example, cyclotron feature is often seen in the high energy X-ray band of BeXBP, from which magnetic fields of the poles are measured. MAXI detection of outburst and following SUZAKU pointing observation are very effective. We observed two BeXBP, GX 304-1 in 2010 and GRO J1008-57 in 2012 in MAXI-Suzaku collaboration and succeeded to catch them at the outburst peaks (600mCrab and 450mCrab) to detect cyclotron feature at 54 keV (Yamamoto et al. 2011) and 76 keV (Yamamoto et al. 2014), respectively. Those are top 1 and 3 of the highest magnetic fields among XBP. Transient low-mass X-ray binaries (LMXB), containing a neutron star or a black hole are also transients. The instability of the acretion disks are proposed to explain the random appearance. The long-term monitoring is also essential to study super orbital modulations of such as supergiant XBP (SMC X-1, LMC X-4 etc.) and LMXB (4U 1820-30 etc.). Monitoring is also useful to detect a rare state, such as a quenched-radio state of Cyg X-3 and rapid end of outburst of Cir X-1.
Measuring the Spin Rate Change of V455 And
NASA Astrophysics Data System (ADS)
Szkody, Paula; Mukadam, Anjum S.; Gaensicke, Boris T; Hermes, JJ
2014-06-01
V455 And (HS2331+3905) is an unusual cataclysmic variable that displays both an orbital (81 min) and a spin (67s) period, thus classifying it as an Intermediate Polar. The magnetic field of this interacting white dwarf channels the accretion stream from the secondary towards the white dwarf poles, which become heated, resulting in the visibility of both the spin period and its harmonic in the lightcurves of V455 And. Our group has been observing this object since its discovery. In 2007, V455 And underwent a large amplitude dwarf nova outburst. This provided an unique opportunity to gauge the overall angular momentum gain due to its long-term accretion as well as its 2007 outburst. Using these data that span the timebase of a decade from 2003 to 2013, we constrain the rate of change of its spin period with time to be dP/dt = (-6.8 +/- 4.8) 10^{-15} s/s for the spin period of 67.61970396 +/- 0.00000024s. We were able to fit the pre- and post-outburst data together because we did not find any evidence for a significant discontinuity in the O-C diagram due to the 2007 outburst. This implies that the magnetic field couples the angular momentum gain to the white dwarf interior. Our next goal is to constrain the angular momentum evolution of a non-magnetic accreting white dwarf to probe how the gain in angular momentum due to accretion is transferred to the envelope and core of the white dwarf.
NASA Astrophysics Data System (ADS)
Bernhard, Klaus; Otero, Sebastián; Hümmerich, Stefan; Kaltcheva, Nadejda; Paunzen, Ernst; Bohlsen, Terry
2018-05-01
We present an investigation of a large sample of confirmed (N=233) and candidate (N=54) Galactic classical Be stars (mean V magnitude range of 6.4 to 12.6 mag), with the main aim of characterizing their photometric variability. Our sample stars were preselected among early-type variables using light curve morphology criteria. Spectroscopic information was gleaned from the literature, and archival and newly-acquired spectra. Photometric variability was analyzed using archival ASAS-3 time series data. To enable a comparison of results, we have largely adopted the methodology of Labadie-Bartz et al. (2017), who carried out a similar investigation based on KELT data. Complex photometric variations were established in most stars: outbursts on different time-scales (in 73±5 % of stars), long-term variations (36±6 %), periodic variations on intermediate time-scales (1±1 %) and short-term periodic variations (6±3 %). 24±6 % of the outbursting stars exhibit (semi)periodic outbursts. We close the apparent void of rare outbursters reported by Labadie-Bartz et al. (2017), and show that Be stars with infrequent outbursts are not rare. While we do not find a significant difference in the percentage of stars showing outbursts among early-type, mid-type and late-type Be stars, we show that early-type Be stars exhibit much more frequent outbursts. We have measured rising and falling times for well-covered and well-defined outbursts. Nearly all outburst events are characterized by falling times that exceed the rising times. No differences were found between early-, mid- and late-type stars; a single non-linear function adequately describes the ratio of falling time to rising time across all spectral subtypes, with the ratio being larger for short events.
NASA Astrophysics Data System (ADS)
Harvey, E.; Redman, M. P.; Boumis, P.; Akras, S.
2016-10-01
Aims: The shaping mechanisms of old nova remnants are probes for several important and unexplained processes, such as dust formation and the structure of evolved star nebulae. To gain a more complete understanding of the dynamics of the GK Per (1901) remnant, an examination of symmetry of the nova shell is explored, followed by a kinematical analysis of the previously detected jet-like feature in the context of the surrounding fossil planetary nebula. Methods: Faint-object high-resolution echelle spectroscopic observations and imaging were undertaken covering the knots which comprise the nova shell and the surrounding nebulosity. New imaging from the Aristarchos telescope in Greece and long-slit spectra from the Manchester Echelle Spectrometer instrument at the San Pedro Mártir observatory in Mexico were obtained, supplemented with archival observations from several other optical telescopes. Position-velocity arrays are produced of the shell, and also individual knots, and are then used for morpho-kinematic modelling with the shape code. The overall structure of the old knotty nova shell of GK Per and the planetary nebula in which it is embedded is then analysed. Results: Evidence is found for the interaction of knots with each other and with a wind component, most likely the periodic fast wind emanating from the central binary system. We find that a cylindrical shell with a lower velocity polar structure gives the best model fit to the spectroscopy and imaging. We show in this work that the previously seen jet-like feature is of low velocity. Conclusions: The individual knots have irregular tail shapes; we propose here that they emanate from episodic winds from ongoing dwarf nova outbursts by the central system. The nova shell is cylindrical, not spherical, and the symmetry axis relates to the inclination of the central binary system. Furthermore, the cylinder axis is aligned with the long axis of the bipolar planetary nebula in which it is embedded. Thus, the central binary system is responsible for the bipolarity of the planetary nebula and the cylindrical nova shell. The gradual planetary nebula ejecta versus sudden nova ejecta is the reason for the different degrees of bipolarity. We propose that the "jet" feature is an illuminated lobe of the fossil planetary nebula that surrounds the nova shell.
Bipolar gas outflow from the nova V458 Vul
NASA Astrophysics Data System (ADS)
Goranskij, V. P.; Barsukova, E. A.; Fatkhullin, T. A.
2010-06-01
Classical nova V458 Vul (N Vul 2007 No.1) was detected as a supersoft X-ray source by the Swift XRT (ATel#1246, #1603). This star is interesting with its spectral class change: features of Fe II class nova completely changed by features of He/N class in the SSS phase (T.N. Tarasova, IBVS No.5807). We performed spectral observations of V458 Vul with the Russian 6-m telescope BTA and spectral camera SCORPIO on 2010 June 9.84 UT.
Optical Spectroscopy of Nova Ophiuchi 2015 (PNV J17291350-1846120)
NASA Astrophysics Data System (ADS)
Danilet, A. B.; Holoien, T. W.-S.; Wagner, R. M.; Woodward, C. E.; Starrfield, S.; Wilber, A.; Walter, F.; Shore, S.
2015-04-01
Following the discovery by Y. Sakurai (Ibaraki-ken, Japan) on 2015 Mar. 29.766 UT of a new stellar object of magnitude 12.2 in Ophiuchus (S. Nakano, CBET 4086) and its subsequent confirmation as a likely He/N classical nova (K Ayani, CBET 4086), we obtained a spectrum (range: 398-685 nm; resolution 0.3 nm) of Nova Oph 2015 on 2015 April 1.459 UT with the 2.4 m Hiltner telescope (+OSMOS) of the MDM Observatory on Kitt Peak.
Photometric long-term variations and superhump occurrence in the Classical Nova RR Pictoris
NASA Astrophysics Data System (ADS)
Fuentes-Morales, I.; Vogt, N.; Tappert, C.; Schmidtobreick, L.; Hambsch, F.-J.; Vučković, M.
2018-02-01
We present an analysis of all available time-resolved photometry from the literature and new light curves obtained in 2013-2014 for the old nova RR Pictoris. The well-known hump light curve phased with the orbital period reveals significant variations over the last 42 yr in shape, amplitude and other details which apparently are caused by long-term variations in the disc structure. In addition, we found evidence for the presence of superhumps in 2007, with the same period ( ˜ 9 per cent longer than the orbital period), as reported earlier by other authors from observations in 2005. Possibly, superhumps arise quickly in RR Pic, but are sporadic events, because in all the other observing runs analysed no significant superhump signal was detected. We also determined an actual version of the Stolz-Schoembs relation between superhump period and orbital period, analysing separately dwarf novae, classical novae and nova-like stars, and conclude that this relation is of general validity for all superhumpers among the cataclysmic variables (CVs), in spite of small but significant differences among the sub-types mentioned above. We emphasize the importance of such a study in context with the still open question of the interrelation between the different sub-classes of CVs, crucial for our understanding of the long-term CV evolution.
Disk irradiation and light curves of x ray novae
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Wheeler, J. C.; Mineshige, S.
1994-01-01
We study the disk instability and the effect of irradiation on outbursts in the black hole X-ray nova system. In both the optical and soft X-rays, the light curves of several X-ray novae, A0620-00, GH 2000+25, Nova Muscae 1991 (GS 1124-68), and GRO J0422+32, show a main peak, a phase of exponential decline, a secondary maximum or reflare, and a final bump in the late decay followed by a rapid decline. Basic disk thermal limit cycle instabilities can account for the rapid rise and overall decline, but not the reflare and final bump. The rise time of the reflare, about 10 days, is too short to represent a viscous time, so this event is unlikely to be due to increased mass flow from the companion star. We explore the possibility that irradiation by X-rays produced in the inner disk can produce these secondary effects by enhancing the mass flow rate within the disk. Two plausible mechanisms of irradiation of the disk are considered: direct irradiation from the inner hot disk and reflected radiation from a corona or other structure above the disk. Both of these processes will be time dependent in the context of the disk instability model and result in more complex time-dependent behavior of the disk structure. We test both disk instability and mass transfer burst models for the secondary flares in the presence of irradiation.
OV Bootis: Forty Nights Of World-Wide Photometry
NASA Astrophysics Data System (ADS)
Patterson, Joseph; de Miguel, Enrique; Barret, Douglas; Brincat, Stephen; Boardman, James, Jr.; Buczynski, Denis; Campbell, Tut; Cejudo, David; Cook, Lew; Cook, Michael J.; Collins, Donald; Cooney, Walt; Dubois, Franky; Dvorak, Shawn; Halpern, Jules P.; Kroes, Anthony J.; Lemay, Damien; Licchelli, Domenico; Mankel, Dylan; Marshall, Matt; Novak, Rudolf; Oksanen, Arto; Roberts, George; Seargeant, Jim; Sears, Huei; Silcox, Austin; Slauson, Douglas; Stone, Geoff; Thorstensen, J. R.; Ulowetz, Joe; Vanmunster, Tonny; Wallgren, John; Wood, Matt
2017-06-01
Among the 1000 known cataclysmic variables, only one appears to belong to the "Galactic halo" - the Population II stars. We report round-the-world photometry of this star (OV Boo) during March-April 2017, when it staged its first certified dwarf-nova outburst. The star is remarkable for its short binary period (66 minutes), high proper motion, metal-poor composition, substellar secondary, sharp white-dwarf eclipses, and nonradial pulsations. Something for everybody...... and it even had the good manners to erupt in northern springtime, when it transits near local midnight. Move over, SS Cyg and WZ Sge; there's a new celebrity in town!
Discovery of a cool expanding shell at -1200 kilometers per second around V471 Tauri
NASA Technical Reports Server (NTRS)
Sion, Edward M.; Bruhweiler, Fred C.; Mullan, Dermott; Carpenter, Ken
1989-01-01
High-resolution IUE spectra of V471 Tauri reveal the presence of a very-high-velocity cool expanding gas in the line of sight to the binary system with an expansion velocity of -1200 km/s. The summed strength of the coadded absorption is 125 mA + or - 25 mA, with FWHM = 30 km/s. It is suggested that the observed absorption may be related to the narrow coadded absorption at -590 km/s noted by Bruhweiler and Sion (1966). The large expansion velocity suggests a possible association with an ancient nova outburst.
Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. II The Second Year (2009-2010)
NASA Astrophysics Data System (ADS)
Kato, Taichi; Maehara, Hiroyuki; Uemura, Makoto; Henden, Arne; de Miguel, Enrique; Miller, Ian; Dubovsky, Pavol A.; Kudzej, Igor; Kiyota, Seiichiro; Hambsch, Franz-Josef; Tanabe, Kenji; Imamura, Kazuyoshi; Kunitomi, Nanae; Takagi, Ryosuke; Nose, Mikiha; Akazawa, Hidehiko; Masi, Gianluca; Nakagawa, Shinichi; Iino, Eriko; Noguchi, Ryo; Matsumoto, Katsura; Fujii, Daichi; Kobayashi, Hiroshi; Ogura, Kazuyuki; Ohtomo, Sachi; Yamashita, Kousei; Yanagisawa, Hirofumi; Itoh, Hiroshi; Bolt, Greg; Monard, Berto; Ohshima, Tomohito; Shears, Jeremy; Ruiz, Javier; Imada, Akira; Oksanen, Arto; Nelson, Peter; Gomez, Tomas L.; Staels, Bart; Boyd, David; Voloshina, Irina B.; Krajci, Thomas; Crawford, Tim; Stockdale, Chris; Richmond, Michael; Morelle, Etienne; Novák, Rudolf; Nogami, Daisaku; Ishioka, Ryoko; Brady, Steve; Simonsen, Mike; Pavlenko, Elena P.; Ringwald, Frederick A.; Kuramoto, Tetsuya; Miyashita, Atsushi; Pickard, Roger D.; Hynek, Tomáš; Dvorak, Shawn; Stubbings, Rod; Muyllaert, Eddy
2010-12-01
Continued from Kato et al. (2009, PASJ, 61, S395), we collected the times of superhump maxima for 68 SU UMa-type dwarf novae, mainly observed during the 2009-2010 season. The newly obtained data confirmed the basic findings reported in Kato et al. (ibid.): the presence of stages A-C and the predominance of positive period derivatives during stage B in systems with superhump periods shorter than 0.07 d. There was a systematic difference in the period derivatives for the systems with superhump periods longer than 0.075 d between this study and Kato et al. (ibid.). We suggest that this difference was possibly caused by a relative lack of frequently outbursting SU UMa-type dwarf novae in this period regime in the present study. We recorded a strong beat phenomenon during the 2009 superoutburst of IY UMa. A close correlation between the beat period and the superhump period suggests that the changing angular velocity of the apsidal motion of the elliptical disk is responsible for the variation of the superhump periods. We also described three new WZ Sge-type objects with established early superhumps and one with likely early superhumps. We suggest that two systems, VX For and EL UMa, are WZ Sge-type dwarf novae with multiple rebrightenings. The O - C variation in OT J213806.6+261957 suggests that the frequent absence of rebrightenings in very short-Porb objects can be the result of a sustained superoutburst plateau at the epoch when usual SU UMa-type dwarf novae return to quiescence, preceding a rebrightening. We also present a formulation for a variety of Bayesian extensions to traditional period analyses.
Ultraviolet photometry of Nova Cygni 1992 obtained with the high speed photometer
NASA Technical Reports Server (NTRS)
Taylor, M.; Bless, R. C.; Oegelman, H.; Elliot, J. L.; Gallagher, J. S.; Nelson, M. J.; Percival, J. W.; Robinson, E. L.; Van Citters, G. W.
1994-01-01
In this Letter we present the first high-speed ultraviolet photometry of an active, classical nova, Nova Cygni 1992. The 45 minute observation shows significant evidence for power at frequencies that correspond to periods of about 565 and 900 s. Each of these periods has an amplitude of about 3 mmag. Since this data set is short, we cannot establish the nature of the detected variability and so, we discuss possible physical mechanisms ranging from short-lived phenomena to stable periodic modulations that could result in the observed variations.
Polarimetry and spectroscopy of the "oxygen flaring" DQ Herculis-like nova: V5668 Sagittarii (2015)
NASA Astrophysics Data System (ADS)
Harvey, E. J.; Redman, M. P.; Darnley, M. J.; Williams, S. C.; Berdyugin, A.; Piirola, V. E.; Fitzgerald, K. P.; O'Connor, E. G. P.
2018-03-01
Context. Classical novae are eruptions on the surface of a white dwarf in a binary system. The material ejected from the white dwarf surface generally forms an axisymmetric shell of gas and dust around the system. The three-dimensional structure of these shells is difficult to untangle when viewed on the plane of the sky. In this work a geometrical model is developed to explain new observations of the 2015 nova V5668 Sagittarii. Aim. We aim to better understand the early evolution of classical nova shells in the context of the relationship between polarisation, photometry, and spectroscopy in the optical regime. To understand the ionisation structure in terms of the nova shell morphology and estimate the emission distribution directly following the light curve's dust-dip. Methods: High-cadence optical polarimetry and spectroscopy observations of a nova are presented. The ejecta is modelled in terms of morpho-kinematics and photoionisation structure. Results: Initially observational results are presented, including broadband polarimetry and spectroscopy of V5668 Sgr nova during eruption. Variability over these observations provides clues towards the evolving structure of the nova shell. The position angle of the shell is derived from polarimetry, which is attributed to scattering from small dust grains. Shocks in the nova outflow are suggested in the photometry and the effect of these on the nova shell are illustrated with various physical diagnostics. Changes in density and temperature as the super soft source phase of the nova began are discussed. Gas densities are found to be of the order of 109 cm-3 for the nova in its auroral phase. The blackbody temperature of the central stellar system is estimated to be around 2.2 × 105 K at times coincident with the super soft source turn-on. It was found that the blend around 4640 Å commonly called "nitrogen flaring" is more naturally explained as flaring of the O II multiplet (V1) from 4638-4696 Å, i.e. "oxygen flaring". Conclusions: V5668 Sgr (2015) was a remarkable nova of the DQ Her class. Changes in absolute polarimetric and spectroscopic multi-epoch observations lead to interpretations of physical characteristics of the nova's evolving outflow. The high densities that were found early-on combined with knowledge of the system's behaviour at other wavelengths and polarimetric measurements strongly suggest that the visual "cusps" are due to radiative shocks between fast and slow ejecta that destroy and create dust seed nuclei cyclically.
Improving the {sup 33}S(p,{gamma}){sup 34}Cl Reaction Rate for Models of Classical Nova Explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parikh, A.; Faestermann, Th.; Kruecken, R.
2011-10-28
Reduced uncertainty in the thermonuclear rate of the {sup 33}S(p,{gamma}){sup 34}Cl reaction would help to improve our understanding of nucleosynthesis in classical nova explosions. At present, models are generally in concordance with observations that nuclei up to roughly the calcium region may be produced in these explosive phenomena; better knowledge of this rate would help with the quantitative interpretation of nova observations over the S-Ca mass region, and contribute towards the firm establishment of a nucleosynthetic endpoint. As well, models find that the ejecta of nova explosions on massive oxygen-neon white dwarfs may contain as much as 150 times themore » solar abundance of {sup 33}S. This characteristic isotopic signature of a nova explosion could possibly be observed through the analysis of microscopic grains formed in the environment surrounding a nova and later embedded within primitive meteorites. An improved {sup 33}S(p,{gamma}){sup 34}Cl rate (the principal destruction mechanism for {sup 33}S in novae) would help to ensure a robust model prediction for the amount of {sup 33}S that may be produced. Finally, constraining this rate could confirm or rule out the decay of an isomeric state of {sup 34}Cl(E{sub x} = 146 keV, t{sub 1/2} = 32 m) as a source for observable gamma-rays from novae. We have performed several complementary experiments dedicated to improving our knowledge of the {sup 33}S(p,{gamma}){sup 34}Cl rate, using both indirect methods (measurement of the {sup 34}S({sup 3}He,t){sup 34}Cl and {sup 33}S({sup 3}He,d){sup 34}Cl reactions with the Munich Q3D spectrograph) and direct methods (in normal kinematics at CENPA, University of Washington, and in inverse kinematics with the DRAGON recoil mass separator at TRIUMF). Our results will be used with nova models to facilitate comparisons of model predictions with present and future nova observables.« less
Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters
NASA Astrophysics Data System (ADS)
Tang, Xiaping; Churazov, Eugene
2017-07-01
We consider the evolution of an outburst in a uniform medium under spherical symmetry, having in mind active galactic nucleus feedback in the intracluster medium. For a given density and pressure of the medium, the spatial structure and energy partition at a given time tage (since the onset of the outburst) are fully determined by the total injected energy Einj and the duration tb of the outburst. We are particularly interested in the late phase evolution when the strong shock transforms into a sound wave. We studied the energy partition during such transition with different combinations of Einj and tb. For an instantaneous outburst with tb → 0, which corresponds to the extension of classic Sedov-Taylor solution with counter-pressure, the fraction of energy that can be carried away by sound waves is ≲12 per cent of Einj. As tb increases, the solution approaches the 'slow piston' limit, with the fraction of energy in sound waves approaching zero. We then repeat the simulations using radial density and temperature profiles measured in Perseus and M87/Virgo clusters. We find that the results with a uniform medium broadly reproduce an outburst in more realistic conditions once proper scaling is applied. We also develop techniques to map intrinsic properties of an outburst (Einj, tb and tage) to the observables like the Mach number of the shock and radii of the shock and ejecta. For the Perseus cluster and M87, the estimated (Einj, tb and tage) agree with numerical simulations tailored for these objects with 20-30 per cent accuracy.
Stellar explosions from accreting white dwarfs
NASA Astrophysics Data System (ADS)
Moore, Kevin L.
Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off-center ignition of the underlying WD in the double detonation scenario for Type Ia supernovae.
The remarkable outburst of the highly evolved post-period-minimum dwarf nova SSS J122221.7-311525★
NASA Astrophysics Data System (ADS)
Neustroev, V. V.; Marsh, T. R.; Zharikov, S. V.; Knigge, C.; Kuulkers, E.; Osborne, J. P.; Page, K. L.; Steeghs, D.; Suleimanov, V. F.; Tovmassian, G.; Breedt, E.; Frebel, A.; García-Díaz, Ma. T.; Hambsch, F.-J.; Jacobson, H.; Parsons, S. G.; Ryu, T.; Sabin, L.; Sjoberg, G.; Miroshnichenko, A. S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.
2017-05-01
We report extensive 3-yr multiwavelength observations of the WZ Sge-type dwarf nova SSS J122221.7-311525 during its unusual double superoutburst, the following decline and in quiescence. The second segment of the superoutburst had a long duration of 33 d and a very gentle decline with a rate of 0.02 mag d-1, and it displayed an extended post-outburst decline lasting at least 500 d. Simultaneously with the start of the rapid fading from the superoutburst plateau, the system showed the appearance of a strong near-infrared excess resulting in very red colours, which reached extreme values (B - I ≃ 1.4) about 20 d later. The colours then became bluer again, but it took at least 250 d to acquire a stable level. Superhumps were clearly visible in the light curve from our very first time-resolved observations until at least 420 d after the rapid fading from the superoutburst. The spectroscopic and photometric data revealed an orbital period of 109.80 min and a fractional superhump period excess ≲0.8 per cent, indicating a very low mass ratio q ≲ 0.045. With such a small mass ratio the donor mass should be below the hydrogen-burning minimum mass limit. The observed infrared flux in quiescence is indeed much lower than is expected from a cataclysmic variable with a near-main-sequence donor star. This strongly suggests a brown-dwarf-like nature for the donor and that SSS J122221.7-311525 has already evolved away from the period minimum towards longer periods, with the donor now extremely dim.
ON THE HUBBLE SPACE TELESCOPE TRIGONOMETRIC PARALLAX OF THE DWARF NOVA SS CYGNI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelan, Edmund P.; Bond, Howard E., E-mail: nelan@stsci.edu, E-mail: heb11@psu.edu
SS Cygni is one of the brightest dwarf novae (DNe), and one of the best studied prototypes of the cataclysmic variables. Astrometric observations with the Fine Guidance Sensors (FGSs) on the Hubble Space Telescope (HST), published in 2004, gave an absolute trigonometric parallax of 6.06 {+-} 0.44 mas. However, recent very long baseline interferometry (VLBI), obtained during radio outbursts of SS Cyg, has yielded a significantly larger absolute parallax of 8.80 {+-} 0.12 mas, as well as a large difference in the direction of the proper motion (PM) compared to the HST result. The VLBI distance reduces the implied luminositymore » of SS Cyg by about a factor of two, giving good agreement with predictions based on accretion-disk theory in order to explain the observed DN outburst behavior. This discrepancy raises the possibility of significant systematic errors in FGS parallaxes and PMs. We have reanalyzed the archival HST/FGS data, including (1) a critical redetermination of the parallaxes of the background astrometric reference stars, (2) updated input values of the reference-star PMs, and (3) correction of the position measurements for color-dependent shifts. Our new analysis yields a PM of SS Cyg that agrees well with the VLBI motion, and an absolute parallax of 8.30 {+-} 0.41 mas, also statistically concordant with the VLBI result at the {approx}1.2 {sigma} level. Our results suggest that HST/FGS parallaxes are free of large systematic errors, when the data are reduced using high-quality input values for the astrometry of the reference stars, and when instrumental signatures are properly removed.« less
NASA Astrophysics Data System (ADS)
Gehrz, R. D.; Evans, A.; Woodward, C. E.; Helton, L. A.; Banerjee, D. P. K.; Srivastava, M. K.; Ashok, N. M.; Joshi, V.; Eyres, S. P. S.; Krautter, Joachim; Kuin, N. P. M.; Page, K. L.; Osborne, J. P.; Schwarz, G. J.; Shenoy, D. P.; Shore, S. N.; Starrfield, S. G.; Wagner, R. M.
2018-05-01
We present 5–28 μm SOFIA FORECAST spectroscopy complemented by panchromatic X-ray through infrared observations of the CO nova V5668 Sgr documenting the formation and destruction of dust during ∼500 days following outburst. Dust condensation commenced by 82 days after outburst at a temperature of ∼1090 K. The condensation temperature indicates that the condensate was amorphous carbon. There was a gradual decrease of the grain size and dust mass during the recovery phase. Absolute parameter values given here are for an assumed distance of 1.2 kpc. We conclude that the maximum mass of dust produced was 1.2 × 10‑7 M ⊙ if the dust was amorphous carbon. The average grain radius grew to a maximum of ∼2.9 μm at a temperature of ∼720 K around day 113 when the shell visual optical depth was τ v ∼ 5.4. Maximum grain growth was followed by a period of grain destruction. X-rays were detected with Swift from day 95 to beyond day 500. The Swift X-ray count rate due to the hot white dwarf peaked around day 220, when its spectrum was that of a kT = 35 eV blackbody. The temperature, together with the supersoft X-ray turn-on and turn-off times, suggests a white dwarf mass of ∼1.1 M ⊙. We show that the X-ray fluence was sufficient to destroy the dust. Our data show that the post-dust event X-ray brightening is not due to dust destruction, which certainly occurred, as the dust is optically thin to X-rays.
NASA Astrophysics Data System (ADS)
Shara, Michael M.; Doyle, Trisha F.; Pagnotta, Ashley; Garland, James T.; Lauer, Tod R.; Zurek, David; Baltz, Edward A.; Goerl, Ariel; Kovetz, Attay; Machac, Tamara; Madrid, Juan P.; Mikołajewska, Joanna; Neill, J. D.; Prialnik, Dina; Welch, D. L.; Yaron, Ofer
2018-02-01
Ten weeks of daily imaging of the giant elliptical galaxy M87 with the Hubble Space Telescope (HST) has yielded 41 nova light curves of unprecedented quality for extragalactic cataclysmic variables. We have recently used these light curves to demonstrate that the observational scatter in the so-called maximum-magnitude rate of decline (MMRD) relation for classical novae is so large as to render the nova-MMRD useless as a standard candle. Here, we demonstrate that a modified Buscombe-de Vaucouleurs hypothesis, namely that novae with decline times t2 > 10 d converge to nearly the same absolute magnitude about two weeks after maximum light in a giant elliptical galaxy, is supported by our M87 nova data. For 13 novae with daily sampled light curves, well determined times of maximum light in both the F606W and F814W filters, and decline times t2 > 10 d we find that M87 novae display M606W,15 = -6.37 ± 0.46 and M814W,15 = -6.11 ± 0.43. If very fast novae with decline times t2 < 10 d are excluded, the distances to novae in elliptical galaxies with stellar binary populations similar to those of M87 should be determinable with 1σ accuracies of ± 20 per cent with the above calibrations.
Novae as Tevatrons: prospects for CTA and IceCube
NASA Astrophysics Data System (ADS)
Metzger, B. D.; Caprioli, D.; Vurm, I.; Beloborodov, A. M.; Bartos, I.; Vlasov, A.
2016-04-01
The discovery of novae as sources of ˜0.1-1 GeV gamma-rays highlights the key role of shocks and relativistic particle acceleration in these transient systems. Although there is evidence for a spectral cut-off above energies ˜1-100 GeV at particular epochs in some novae, the maximum particle energy achieved in these accelerators has remained an open question. The high densities of the nova ejecta (˜10 orders of magnitude larger than in supernova remnants) render the gas far upstream of the shock neutral and shielded from ionizing radiation. The amplification of the magnetic field needed for diffusive shock acceleration requires ionized gas, thus confining the acceleration process to a narrow photoionized layer immediately ahead of the shock. Based on the growth rate of the hybrid non-resonant cosmic ray current-driven instability (considering also ion-neutral damping), we quantify the maximum particle energy, Emax, across the range of shock velocities and upstream densities of interest. We find values of Emax ˜ 10 GeV-10 TeV, which are broadly consistent with the inferred spectral cut-offs, but which could also in principle lead to emission extending to ≳ 100 GeV accessible to atmosphere Cherenkov telescopes, such as the Cherenkov Telescope Array (CTA). Detecting TeV neutrinos with IceCube is more challenging, although the prospects are improved for a nearby event (≲ kpc) or if the shock power during the earliest, densest phases of the outburst is higher than implied by the GeV light curves, due to downscattering of the gamma-rays within the ejecta.
OV Bootis: Forty Nights of World-Wide Photometry (Abstract)
NASA Astrophysics Data System (ADS)
Patterson, J.; de Miguel, E.; Barret, D.; Brincat, S.; Boardman, J., Jr.; Buczynski, D.; Campbell, T.; Cejudo, D.; Cook, L.; Cook, M. J.; Collins, D.; Cooney, W.; Dubois, F.; Dvorak, S.; Halpern, J. P.; Kroes, A. J.; Lemay, D.; Licchelli, D.; Mankel, D.; Marshall, M.; Novak, R.; Oksanen, A.; Roberts, G.; Seargeant, J.; Sears, H.; Silcox, A.; Slauson, D.; Stone, G.; Thorstensen, J. R.; Ulowetz, J.; Vanmunster, T.; Wallgren, J.; Wood, M.
2017-12-01
(Abstract only) Among the 1000 known cataclysmic variables, only one appears to belong to the "Galactic halo"-the Population II stars. We report round-the-world photometry of this star (OV Boo) during March-April 2017, when it staged its first certified dwarf-nova outburst. The star is remarkable for its short binary period (66 minutes), high proper motion, metal-poor composition, substellar secondary, sharp white-dwarf eclipses, and nonradial pulsations. Something for everybody - and it even had the good manners to erupt in northern springtime, when it transits near local midnight. Move over, SS Cyg and WZ Sge; there's a new celebrity in town!
IOTA: recent science and technology
NASA Astrophysics Data System (ADS)
Schloerb, F. Peter; Berger, J.-P.; Carleton, N. P.; Hagenauer, P.; Kern, P. Y.; Labeye, P. R.; Lacasse, M. G.; Malbet, F.; Millan-Gabet, R.; Monnier, J. D.; Pearlman, M. R.; Pedretti, E.; Rousselet-Perraut, K.; Ragland, S. D.; Schuller, P. A.; Traub, W. A.; Wallace, G.
2006-06-01
We present a brief review of recent scientific and technical advances at the Infrared Optical Telescope Array (IOTA). IOTA is a long-baseline interferometer located atop Mount Hopkins, Arizona. Recent work has emphasized the use of the three-telescope interferometer completed in 2002. We report on results obtained on a range of scientific targets, including AGB stars, Herbig AeBe Stars, binary stars, and the recent outburst of the recurrent nova RS Oph. We report the completion of a new spectrometer which allows visibility measurements at several high spectral resolution channels simultaneously. Finally, it is our sad duty to report that IOTA will be closed this year.
NASA Astrophysics Data System (ADS)
Martin, John C.; Williams, Steven C.; Darnley, Matt; Humphreys, Roberta M.
2017-06-01
In ATEL 10383 we reported the classical Luminous Blue Variable (Humphreys & Davidson, 1994) AF And = J004333.08+411210.3 = Var 19 in M31 (Hubble & Sandage, 1953) has brightened and grown redder over the last 800 days, indicating the start of a possible S Dor outburst.
Shara, Michael M.; Doyle, Trisha F.; Pagnotta, Ashley; ...
2017-11-16
Ten weeks of daily imaging of the giant elliptical galaxy M87 with the Hubble Space Telescope (HST) has yielded 41 nova light curves of unprecedented quality for extragalactic cataclysmic variables. We have recently used these light curves to demonstrate that the observational scatter in the so-called maximum-magnitude rate of decline (MMRD) relation for classical novae is so large as to render the nova-MMRD useless as a standard candle. Here in this paper, we demonstrate that a modified Buscombe–de Vaucouleurs hypothesis, namely that novae with decline times t2 > 10 d converge to nearly the same absolute magnitude about two weeksmore » after maximum light in a giant elliptical galaxy, is supported by our M87 nova data. For 13 novae with daily sampled light curves, well determined times of maximum light in both the F606W and F814W filters, and decline times t 2 > 10 d we find that M87 novae display M606W,15 = -6.37 ± 0.46 and M814W,15 = -6.11 ± 0.43. If very fast novae with decline times t 2 < 10 d are excluded, the distances to novae in elliptical galaxies with stellar binary populations similar to those of M87 should be determinable with 1σ accuracies of ± 20 percent with the above calibrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shara, Michael M.; Doyle, Trisha F.; Pagnotta, Ashley
Ten weeks of daily imaging of the giant elliptical galaxy M87 with the Hubble Space Telescope (HST) has yielded 41 nova light curves of unprecedented quality for extragalactic cataclysmic variables. We have recently used these light curves to demonstrate that the observational scatter in the so-called maximum-magnitude rate of decline (MMRD) relation for classical novae is so large as to render the nova-MMRD useless as a standard candle. Here in this paper, we demonstrate that a modified Buscombe–de Vaucouleurs hypothesis, namely that novae with decline times t2 > 10 d converge to nearly the same absolute magnitude about two weeksmore » after maximum light in a giant elliptical galaxy, is supported by our M87 nova data. For 13 novae with daily sampled light curves, well determined times of maximum light in both the F606W and F814W filters, and decline times t 2 > 10 d we find that M87 novae display M606W,15 = -6.37 ± 0.46 and M814W,15 = -6.11 ± 0.43. If very fast novae with decline times t 2 < 10 d are excluded, the distances to novae in elliptical galaxies with stellar binary populations similar to those of M87 should be determinable with 1σ accuracies of ± 20 percent with the above calibrations.« less
IM Nor monitoring requested for HST COS observations
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2017-02-01
Dr. Ed Sion (Villanova University) and colleagues have requested AAVSO observers' assistance in monitoring the symbiotic-type recurrent nova IM Nor in support of observations with the Hubble Space Telescope Cosmic Origins Spectrograph scheduled for 2017 February 13 - 17 UT. These observations are part of a study on short orbital period recurrent novae as Supernovae Type Ia progenitors. It is essential to know 24 hours prior to the HST COS observations that IM Nor is not in outburst, in order to protect the instrumentation. Also, photometry is needed throughout the HST window to insure knowledge of the brightness of the system. Observers are asked to monitor IM Nor with nightly snapshot images (V preferred) from now through February 20, and to report their observations promptly. It will be especially important to know the brightness of IM Nor each night through February 17 UT. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
Observations of GAIA-identified Cataclysmic Variables Using the TUBITAK National Observatory
NASA Astrophysics Data System (ADS)
Esenoglu, Hasan H.; Kirbiyik, Halil; Kaynar, Suleyman; Okuyan, Oguzhan; Hamitoglu, Irek; Galeev, Almaz; Uluc, Kadir; Kocak, Murat; Kilic, Sila E.; Parmaksizoglu, Murat; Erece, Orhan; Ozisik, Tuncay; Gulsecen, Hulusi
2016-07-01
TUBITAK National Observatory supports the GAIA alerts with observations using three telescopes (RTT150, T100, T60) at the site with a limited time quota. We have observed 10 variable stars among GAIA sources discovered in the years 2014-2016 that may be candidate Cataclysmic Variables (CVs). Our TUG observations at this stage involve photometry and spectroscopy to aid the identification of these sources. The first preliminary result of our observations of Gaia14aat among them showed a dwarf nova outburst with an amplitude of 2.69 mag. We aim to construct a GAIA astrophysics group to study CVs along with supported studies using the SRG (Spectrum Roentgen Gamma astrophysical observatory) after the year of 2016. These observations will basically involve spectroscopy, narrow-band CCD imaging and photometry using several filters to aid the identification of these sources. RTT150 observations with very narrow filters (like H-alpha, SII, OIII with band width of range of 2 to 5 nm) will reveal whether shell around the SRG sources to aid identification novae among them.
Scattering of classical and quantum particles by impulsive fields
NASA Astrophysics Data System (ADS)
Balasin, Herbert; Aichelburg, Peter C.
2018-05-01
We investigate the scattering of classical and quantum particles in impulsive backgrounds fields. These fields model short outbursts of radiation propagating with the speed of light. The singular nature of the problem will be accounted for by the use of Colombeau’s generalized function which however give rise to ambiguities. It is the aim of the paper to show that these ambiguities can be overcome by implementing additional physical conditions, which in the non-singular case would be satisfied automatically. As example we discuss the scattering of classical, Klein–Gordon and Dirac particles in impulsive electromagnetic fields.
NASA Astrophysics Data System (ADS)
Kamae, Tuneyoshi; Lee, Shiu-Hang; Makishima, Kazuo; Shibata, Shinpei; Shigeyama, Toshikazu
2018-03-01
Recent observations found that electrons are accelerated to ˜10 GeV and emit synchrotron hard X-rays in two magnetic white dwarfs (WDs), also known as cataclysmic variables (CVs). In nova outbursts of WDs, multi-GeV gamma-rays were detected, implying that protons are accelerated to 100 GeV or higher. In recent optical surveys, the WD density is found to be higher near the Sun than in the Galactic disk by a factor ˜2.5. The cosmic rays (CRs) produced by local CVs and novae will accumulate in the local bubble for 106-107 yr. On these findings, we search for CRs from historic CVs and novae in the observed CR spectra. We model the CR spectra at the heliopause as sums of Galactic and local components based on observational data as much as possible. The initial Galactic CR electron and proton spectra are deduced from the gamma-ray emissivity, the local electron spectrum from the hard X-ray spectra at the CVs, and the local proton spectrum from gamma-ray spectra at novae. These spectral shapes are then expressed in a simple set of polynomial functions of CR energy and regressively fitted until the high-energy (>100 GeV) CR spectra near Earth and the Voyager-1 spectra at the heliopause are reproduced. We then extend the modeling to nuclear CR spectra and find that one spectral shape fits all local nuclear CRs, and that the apparent hardening of the nuclear CR spectra is caused by the roll-down of local nuclear spectra around 100-200 GeV. All local CR spectra populate a limited energy band below 100-200 GeV and enhance gamma-ray emissivity below ˜10 GeV. Such an enhancement is observed in the inner Galaxy, suggesting the CR fluxes from CVs and novae are substantially higher there.
Spectroscopic Confirmation of TCP J07134590-2112330 as a Galactic Classical Nova in Canis Major
NASA Astrophysics Data System (ADS)
Strader, Jay; Chomiuk, Laura; Bahramian, Arash; Swihart, Sam
2018-03-01
TCP J07134590-2112330 was discovered by Yuji Nakamura on 2018 March 24.5 UT as a 12 mag optical transient. We obtained spectroscopic observations of TCP J07134590-2112330 with the Goodman spectrograph on the 4-m SOAR telescope on 2018 Mar 25.1 UT, with a low-resolution spectrum (R 1200) covering 3850-7850 A. The spectrum indicates that TCP J07134590-2112330 is a young classical nova, with strong hydrogen Balmer emission lines and additional strong lines of [O I] and Fe II. The Balmer lines show P Cygni profiles; the FWHM of the H alpha emission component is 1250 km/s, and the absorption trough extends to -2000 km/s.
Hydrodynamic Simulations of the Consequences of Accretion onto ONe White Dwarfs
NASA Astrophysics Data System (ADS)
Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William Raphael; Woodward, Charles E.; Wagner, Robert M.; José, Jordi; Hernanz, Margarita; Feng, Wanda
2018-06-01
Mass and luminosity variations of the white dwarf, combined with changes in the mass accretion rate and composition of the accreted material affect the evolution of the thermonuclear runaway (TNR) in classical and recurrent novae. Here we highlight continued investigations of these effects on accreting Oxygen-Neon (ONe) white dwarfs. We now use the results of the multi-dimensional studies of TNRs in white dwarfs, accreting only solar matter, which show that sufficient core material is dredged-up during the TNR to agree with the measurements of ejecta abundances in classical nova explosions. Therefore, we first accrete solar material and follow the evolution until a TNR is ongoing. We then switch the composition to a mixture with either 25% core material or 50% core material (plus accreted material) and follow the resulting evolution of the TNR through peak nuclear burning and decline. We use our 1D, Lagrangian, hydrodynamic code: NOVA. We will report on the results of these new simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. We will also compare these results to our companion studies, done in a similar fashion, where we have followed the consequences of accretion onto Carbon-Oxygen white dwarfs. This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics.
Nova Sco 2016 No. 2 = PNV J17225112-3158349 = ASASSN-16kd
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2016-09-01
AAVSO Alert Notice 550 announces the independent discovery of Nova Sco 2016 No. 2 = ASASSN-16kd = PNV J17225112-3158349 = V1656 Sco by Shigehisa Fujikawa (Kan'onji, Kagawa, Japan) at unfiltered CCD magnitude 11.6 on 2016 September 06.481 UT; and by ASAS-SN (Stanek et al., ATel #9469) at 12.13 V on 2016 September 06.00 UT. Spectroscopy indicating that Nova Sco 2016 No. 2 is a highly reddened classical Fe II-type nova was obtained by Arai and Honda (CBET 4320); by Bohlsen (ATel #9477); by Bersier et al. (ATel #9478); and by Prieto et al. (ATel #9479). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
An intermediate luminosity optical transient (ILOTs) model for the young stellar object ASASSN-15qi
NASA Astrophysics Data System (ADS)
Kashi, Amit; Soker, Noam
2017-07-01
We construct a scenario where the outburst of the young stellar object ASASSN-15qi is an intermediate luminosity optical transient (ILOT). In this scenario, a sub-Jupiter young planet was tidally destructed on to a young main-sequence (MS) star. The system is young, and therefore the radius of the planet is larger than its final value; consequently, its density is smaller. The lower density allows the tidal destruction of the young Saturn-like planet on to the MS star of mass ≈2.4 M⊙, resulting in the formation of a disc and a gravitationally powered ILOT. Unlike the case of the more energetic ILOT V838 Mon, the mass of the destructed planet is too low to inflate a giant envelope, and hence the merger remnant remains hot. If our suggested model holds, this ILOT possesses two interesting properties: (I) its luminosity and total energy are below those of novae; (II) it is not as red as other ILOTs. The unusual outburst of ASASSN-15qi - if indeed is an ILOT - further increases the diversity of the already heterogeneous group of ILOTs. We mark the region on the energy-time diagram occupied by such young ILOTs.
Observations of the May 1979 outburst of Centaurus X-4
NASA Technical Reports Server (NTRS)
Blair, W. P.; Raymand, J. C.; Dupree, A. K.
1982-01-01
The IUE spectra of the X-ray transient/X-ray burst source Cen X-4 at three intervals during the peak and decline of the May 1979 transient event were studied. The spectrum is characterized by a blue continuum and strong emission lines of N V lambda 1240, Si IV lambda 1398 and C IV lambda 1550. The origin of these emission components in the context of an X-ray dwarf nova model is investigated. It is suggested that an accretion disk plays a prominent role in the generation of the continuum emission and that X-ray heating of the accretion disk and the companion star may be important in the formation of the emission lines.
High Resolution Optical Spectroscopy of the Classical Nova V5668 Sgr Showing the Presence of Lithium
NASA Astrophysics Data System (ADS)
Wagner, R. Mark; Woodward, Charles E.; Starrfield, Sumner; Ilyin, Ilya; Strassmeier, Klaus
2018-01-01
The classical nova (CN) V5668 Sgr was discovered on 2015 March 15.634 and initial optical spectra implied it was an Fe II-class CN. We obtained high resolution optical spectroscopy on 30 nights between 2015 April 3 and 2016 June 5 with the 2 x 8.4 m Large Binocular Telescope (LBT) and the 1.8 m Vatican Advanced Technology Telescope (VATT) using the Potsdam Echelle Polarimetric Spectroscopic Instrument (PEPSI). The spectra cover all or part of the 3830-9065 Å spectral region at a spectral resolution of up to 270,000 (1 km/s); the highest resolution currently available on any 8-10 m class telescope. The early spectra are dominated by emission lines of the Balmer and Paschen series of hydrogen, Fe II, Ca II, and Na I with P Cyg-type line profiles as well as emission lines of [O I]. Numerous interstellar lines and bands are readily apparent at high spectral resolution. The permitted line profiles show complex and dramatic variations in the multi-component P Cyg-type line profiles with time. We detect a weak blue-shifted absorption line at a velocity consistent with Li I 6708 Å when compared with the line profiles of Hβ, Fe II 5169 Å, and Na I D. This line is present in spectra obtained on 7 of 8 consecutive nights up to day 21 of the outburst; but absent on day 42 when it is evident that the ionization of the ejecta has significantly increased. The equivalent width of the line converted to a column density, and the resulting mass fraction, imply a significant enrichment of 7Li in the ejecta. 7Li is produced by the decay of unstable 7Be created during the thermonuclear runaway. The discovery of the resonance lines of 7Be II in the optical spectra of the recent CNe V339 Del, V2944 Oph, and V5668 Sgr by Tajitsu et al. (2016) and its subsequent decay to 7Li (half life of 53 days) suggests a significant enrichment of 7Li in the Galaxy from CNe is possible. Our observations of the Li I 6708 Å line in the early optical spectra of V5668 Sgr mark the second direct detection of Li in a CN following the detection of Li I in the early optical spectra of V1369 Cen by Izzo et al. (2015). SS acknowledges partial support from NSF and NASA grants to ASU. CEW acknowledges support from NASA.
Measurement of Reactions on 30P for Nova Nucleosynthesis
NASA Astrophysics Data System (ADS)
Ma, Z.; Guidry, M. W.; Hix, W. R.; Smith, M. S.
2003-05-01
Replace these paragraphs with your abstract. We encourage you to include a sentence acknowledging your funding agency. In a recent study the 30P(p,gamma)31S rate played a crucial role in the synthesis of heavier nuclear species, from Si to Ca, in nova outbursts on ONe White Dwarfs [1]. The adopted rate of this reaction, based on a Hauser-Feshbach calculation [2], has a large uncertainty and could be as much as a factor of 100 too high or too low [3]. In their study, Jose et al.[1] varied the 30P(p,gamma)31S reaction rate within this uncertainty and found that, when rate is reduced by a factor of 100, the synthesis of elements above Si is lowered by a factor 10 with respect to the values found with the nominal rate. This has important consequences for nova nucleosynthesis, as overproduction of isotopes in the Si to Ca mass region has been observed in the ejecta from some nova explosions (e.g.,[4,5]). While generally valid at higher temperatures, Hauser-Feshbach calculations of the rates at nova temperatures can have large uncertainties. At these temperatures, the rate is more likely dominated by a few individual nuclear resonances. At present there are about 10 31S resonances known above the 30P + p threshold that may contribute to the 30P(p,gamma)31S reaction rate at nova temperatures. The excitation energies of these levels are known but spins and parities (for all but two) are not. We plan to measure the 30P(p,p)30P and 30P(p,gamma)31S reactions at HRIBF to better determine this reaction rate. A detailed description of the experiments will be given. We are also conducting a new nova nucleosynthesis simulation over multiple spatial zones of the exploding envelope to investigate the influence of the 30P(p,gamma)31S reaction rate on nova nucleosynthesis. The results of these calculations will be discussed. 1. Jose , J., Coc, A., Hernanz, M., Astrophys. J., 560, 897(2001). 2. Thielemann, F.-K et al., 1987, Advances in Nuclear Astrophysics, ed. E. Vangioni-Flam ( Gif-sur-Yvette: Editions Frontiere), 525(SMOKER). 3. Iliadis, C. et al., Astrophys. J. Suppl., 134,151(2001). 4. Snijders et al., 1987 Snijders, M. A. J., et al., Mon. Not. Roy. Astron. Soc., 228, 329(1987). 5. Andrea, J., Drechsel, H., Starrfield, S., Astron. Astrophys., 291,869(1994) *Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.
Bennett, M. B.; Wrede, C.; Chipps, K. A.; ...
2013-12-04
We present that classical novae are expected to contribute to the 1809-keV Galactic γ-ray emission by producing its precursor 26Al, but the yield depends on the thermonuclear rate of the unmeasured 25Al(p,γ) 26Si reaction. Using the β decay of 26P to populate the key J π=3 + resonance in this reaction, we report the first evidence for the observation of its exit channel via a 1741.6±0.6(stat)±0.3(syst) keV primary γ ray, where the uncertainties are statistical and systematic, respectively. By combining the measured γ-ray energy and intensity with other experimental data on 26Si, we find the center-of-mass energy and strength of the resonance to be E r=414.9±0.6(stat)±0.3(syst)±0.6(lit.) keV and ωγ=23±6(stat)more » $$+11\\atop{-10}$$(lit.) meV, respectively, where the last uncertainties are from adopted literature data. Finally, we use hydrodynamic nova simulations to model 26Al production showing that these measurements effectively eliminate the dominant experimental nuclear-physics uncertainty and we estimate that novae may contribute up to 30% of the Galactic 26Al.« less
NASA Astrophysics Data System (ADS)
Oskinova, Lidia M.; Bulik, Tomasz; Gómez-Morán, Ada Nebot
2018-06-01
Context. Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. Aims: We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. Methods: We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Results: Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC 4490-X40 could be a precursor to the SPIRITS 16az event. Among other interesting sources, we suggest that the supernova remnant candidate [BWL2012] 063 might be associated with SPIRITS 16ajc. We also find that two SPIRITS events are likely associated with novae, and seven have potential optical counterparts. Conclusions: The massive binary evolutionary scenarios that involve CE events do not contradict currently available observations of IR transients and HMXBs in star-forming galaxies.
Swift and SALT observations of the multiple outbursts of MAXI J1957+032
NASA Astrophysics Data System (ADS)
Mata Sánchez, D.; Charles, P. A.; Armas Padilla, M.; Buckley, D. A. H.; Israel, G. L.; Linares, M.; Muñoz-Darias, T.
2017-06-01
The new recurrent X-ray transient MAXI J1957+032 has had four X-ray outbursts within 16 months, all very briefly detected (lasting <5 d). During the most recent event (2016 September/October), we obtained with the Southern African Large Telescope the first optical spectrum of the transient counterpart, showing the classic blue continuum of an X-ray irradiated disc in an LMXB and no other features. At high Galactic latitude below the plane (-13°) reddening is low but there is no quiescent counterpart visible on any of the existing sky surveys, nor any other known X-ray source in the region. Swift monitoring of three of the four events is presented, showing rapidly fading X-ray outbursts together with significant UVOT detections in the UV (W1,M2,W2), U and B bands. The optical properties are most like those of the short-period LMXBs, which, combined with the softening witnessed during the decay to quiescence would place the system at d < 13 kpc. The short duration and short recurrence time of the outbursts are reminiscent of the accreting millisecond X-ray pulsars, which exhibit peak luminosities of ˜ 1 per cent LEdd. Assuming this peak luminosity would place MAXI J1957+032 at a distance of d ˜ 5-6 kpc.
A Model for the Quiescent Phase of the Recurrent Nova U Scorpii.
Hachisu; Kato; Kato; Matsumoto; Nomoto
2000-05-10
A theoretical light curve is constructed for the quiescent phase of the recurrent nova U Scorpii in order to resolve the existing distance discrepancy between the outbursts (d approximately 6 kpc) and the quiescences (d approximately 14 kpc). Our U Sco model consists of a very massive white dwarf (WD), an accretion disk (ACDK) with a flaring-up rim, and a lobe-filling, slightly evolved, main-sequence star (MS). The model properly includes an accretion luminosity of the WD, a viscous luminosity of the ACDK, and a reflection effect of the MS and the ACDK irradiated by the WD photosphere. The B light curve is well reproduced by a model of 1.37 M middle dot in circle WD + 1.5 M middle dot in circle MS (0.8-2.0 M middle dot in circle MS is acceptable) with an ACDK having a flaring-up rim and the inclination angle of the orbit i approximately 80&j0;. The calculated color is rather blue (B-V approximately 0.0) for a suggested mass accretion rate of 2.5x10-7 M middle dot in circle yr-1, thus indicating a large color excess of E(B-V) approximately 0.56 with the observational color of B-V=0.56 in quiescence. Such a large color excess corresponds to an absorption of AV approximately 1.8 and AB approximately 2.3, which reduces the distance to 6-8 kpc. This is in good agreement with the distance estimation of 4-6 kpc for the latest outburst. Such a large intrinsic absorption is very consistent with the recently detected period change of U Sco, which is indicating a mass outflow of approximately 3x10-7 M middle dot in circle yr-1 through the outer Lagrangian points in quiescence.
Lessons from accretion disks in cataclysmic variables
NASA Astrophysics Data System (ADS)
Horne, Keith
1998-04-01
We survey recent progress in the interpretation of observations of cataclysmic variables, whose accretion disks are heated by viscous dissipation rather than irradiation. Many features of standard viscous accretion disk models are confirmed by tomographic imaging studies of dwarf novae. Eclipse maps indicate that steady disk temperature structures are established during outbursts. Doppler maps of double-peaked emission lines suggest disk chromospheres heated by magnetic activity. Gas streams impacting on the disk rim leave expected signatures both in the eclipses and emission lines. Doppler maps of dwarf nova IP Peg at the beginning of an outburst show evidence for tidally-induced spiral shocks. While enjoying these successes, we must still face up to the dreaded ``SW Sex syndrome'' which afflicts most if not all cataclysmic variables in high accretion states. The anomalies include single-peaked emission lines with skewed kinematics, flat temperature-radius profiles, shallow offset line eclipses, and narrow low-ionization absorption lines at phase 0.5. The enigmatic behavior of AE Aqr is now largely understood in terms of a magnetic propeller model in which the rapidly spinning white dwarf magnetosphere expels the gas stream out of the system before an accretion disk can form. A final piece in this puzzle is the realization that an internal shock zone occurs in the exit stream at just the right place to explain the anomalous kinematics and violent flaring of the single-peaked emission lines. Encouraged by this success, we propose that disk-anchored magnetic propellers operate in the high accretion rate systems afflicted by the SW Sex syndrome. Magnetic fields anchored in the Keplerian disk sweep forward and apply a boost that expels gas stream material flowing above the disk plane. This working hypothesis offers a framework on which we can hang all the SW Sex anomalies. The lesson for theorists is that magnetic links appear to be transporting energy and angular momentum from the inner disk to distant parts of the flow without associated viscous heating in the disk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.
Extreme excesses of {sup 13}C ({sup 12}C/{sup 13}C < 10) and {sup 15}N ({sup 14}N/{sup 15}N < 20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae, though an origin in core collapse supernovae (CCSNe) has also been proposed. We report C, N, and Si isotope data for 14 submicron- to micron-sized {sup 13}C- and {sup 15}N-enriched presolar SiC grains ({sup 12}C/{sup 13}C < 16 and {sup 14}N/{sup 15}N < ∼100) from Murchison, and their correlated Mg–Al, S, and Ca–Ti isotope data when available. These grains are enriched in {sup 13}C and {sup 15}N,more » but with quite diverse Si isotopic signatures. Four grains with {sup 29,30}Si excesses similar to those of type C SiC grains likely came from CCSNe, which experienced explosive H burning occurred during explosions. The independent coexistence of proton- and neutron-capture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in pre-supernovae. Two of the seven putative nova grains with {sup 30}Si excesses and {sup 29}Si depletions show lower-than-solar {sup 34}S/{sup 32}S ratios that cannot be explained by classical nova nucleosynthetic models. We discuss these signatures within the CCSN scenario. For the remaining five putative nova grains, both nova and supernova origins are viable because explosive H burning in the two stellar sites could result in quite similar proton-capture isotopic signatures. Three of the grains are sub-type AB grains that are also {sup 13}C enriched, but have a range of higher {sup 14}N/{sup 15}N. We found that {sup 15}N-enriched AB grains (∼50 < {sup 14}N/{sup 15}N < ∼100) have distinctive isotopic signatures compared to putative nova grains, such as higher {sup 14}N/{sup 15}N, lower {sup 26}Al/{sup 27}Al, and lack of {sup 30}Si excess, indicating weaker proton-capture nucleosynthetic environments.« less
Optical Spectroscopy of the Classical Novae V339 Del (2013) and V5668 Sgr (2015 No. 2)
NASA Astrophysics Data System (ADS)
Wagner, R. Mark; Woodward, Charles E.; Starrfield, Sumner; Ilyin, Ilya; Strassmeier, Klaus G.; Page, Kim; Osborne, Julian P.; Beardmore, Andrew P.
2016-01-01
We report the results of optical spectroscopy of the gamma-ray classical novae V339 Del (2013) and V5668 Sgr (PNV J18365700-2855420/Nova Sgr 2015 No. 2) supplemented by UV and X-ray observations obtained with Swift. Our spectra were obtained with the Steward Observatory Bok 2.3 m telescope (+B&C), the MDM 2.4 m Hiltner telescope (+OSMOS), the 6.5 m MMT (+BlueChannel), and the 2 x 8.4 m Large Binocular Telescope (+MODS1 and PEPSI) between 2013 August and 2015 September. The PEPSI spectra cover all or part of the 384-907 nm spectral region at a resolution of up to 270,000 (1 km/s). This is the highest resolution available on any 8-10 m class telescope. V339 Del was discovered on 2015 August 14.58 by Itagaki at V about 6.8. This nova reached a peak magnitude of about 4.3 making it one of the brightest novae of this century. Because of its exceptional brightness it has been observed at a variety of wavelengths and by a host of observatories both on the ground and in space. V5668 Sgr was discovered on 2015 March 15.634 by Seach at a magnitude of 6.0. It subsequently reached a maximum brightness of about 4.0 in late March. High resolution PEPSI spectra obtained in early April show dramatic variations in the multi-component P Cygni-type line profiles. V5668 Sgr was observed to form dust in June thereafter fading to about 13th magnitude. Our recent observations show that it has now evolved into the nebular phase. SS acknowledges partial support from NSF and NASA grants to ASU. CEW acknowledges support from NASA.
Superhumps linked to X-ray emission. The superoutbursts of SSS J122221.7-311525 and GW Lib
NASA Astrophysics Data System (ADS)
Neustroev, V. V.; Page, K. L.; Kuulkers, E.; Osborne, J. P.; Beardmore, A. P.; Knigge, C.; Marsh, T.; Suleimanov, V. F.; Zharikov, S. V.
2018-03-01
Context. We present more than 4 years of Swift X-ray observations of the 2013 superoutburst, subsequent decline and quiescence of the WZ Sge-type dwarf nova SSS J122221.7-311525 (SSS J122222) from 6 days after discovery. Aims: Only a handful of WZ Sge-type dwarf novae have been observed in X-rays, and until recently GW Lib was the only binary of this type with complete coverage of an X-ray light curve throughout a superoutburst. We collected extensive X-ray data of a second such system to understand the extent to which the unexpected properties of GW Lib are common to the WZ Sge class. Methods: We collected 60 Swift-XRT observations of SSS J122222 between 2013 January 6 and 2013 July 1. Four follow-up observations were performed in 2014, 2015, 2016 and 2017. The total exposure time of our observations is 86.6 ks. We analysed the X-ray light curve and compared it with the behaviour of superhumps which were detected in the optical light curve. We also performed spectral analysis of the data. The results were compared with the properties of GW Lib, for which new X-ray observations were also obtained. Results: SSS J122222 was variable and around five times brighter in 0.3-10 keV X-rays during the superoutburst than in quiescence, mainly because of a significant strengthening of a high-energy component of the X-ray spectrum. The post-outburst decline of the X-ray flux lasted at least 500 d. The data show no evidence of the expected optically thick boundary layer in the system during the outburst. SSS J122222 also exhibited a sudden X-ray flux change in the middle of the superoutburst, which occurred exactly at the time of the superhump stage transition. A similar X-ray behaviour was also detected in GW Lib. Conclusions: We show that the X-ray flux exhibits changes at the times of changes in the superhump behaviour of both SSS J122222 and GW Lib. This result demonstrates a relationship between the outer disc and the white dwarf boundary layer for the first time, and suggests that models for accretion discs in high mass ratio accreting binaries are currently incomplete. The very long decline to X-ray quiescence is also in strong contrast to the expectation of low viscosity in the disc after outburst.
The early ultraviolet, optical, and radio evolution of the soft X-ray transient GRO J0422+32
NASA Technical Reports Server (NTRS)
Shrader, C. R.; Wagner, R. Mark; Hjellming, R. M.; Han, X. H.; Starrfield, S. G.
1994-01-01
We have monitored the evolution of the transient X-ray source GRO J0422+32 from approximately 2 weeks postdiscovery into its early decline phase at ultraviolet, optical, and radio wavelengths. Optical and ultraviolet spectra exhibit numerous, but relatively weak, high-excitation emission lines such as those arising from He II, N III, N V, and C IV superposed on an intrinsically blue continuum. High-resolution optical spectroscopy reveals line profiles which are double peaked, and in the case of the higher order Balmer lines, superposed on a broad absorption profile. The early outburst optical-ultraviolet continuum energy distribution is well represented by a two power-law fit with a break at approximately equal 4000 A. Radio observations with the Very Large Array (VLA) reveal a flat-spectrum source, slowly increasing in intensity at the earliest epochs observed, followed by an approximate power-law decay light curve with an index of -1. Light curves for each wavelength domain are presented and discussed. Notable are the multiple secondary outbursts seen in the optical more than 1 year postdiscovery, and spectral changes associated with secondary rises seen in the radio and UV. We find that the ultraviolet and optical characteristics of GRO J0422+32 as well as its radio evolution, are similar to other recent well-observed soft X-ray transients (also called X-ray novae) such as Cen X-4, A0620-00 (V616 Mon), and Nova Muscae 1991 (GS 1124-683), suggesting that GRO J0422+32 is also a member of that subclass of low-mass X-ray binaries. We present definitive astrometric determination of the source position, and place an upper limit of R approximately equals 20 from our analysis of the Palomar Observatory Sky Survey (POSS). Additionally, we derive distinct values for color excess from analysis of the optical (E(B-V) = 0.23) and ultraviolet (E(B-V) = 0.4) data, suggesting an intrinsic magnitude of 19-19.5 for the progenitor if it is mid-K dwarf. This leads to a likely range of 2.4-3.0 kpc for the source distance, which is consistent with our separate estimate of 2.4 +/- 0.4 kpc based on measurement of the NaD interstellar line profile. Adopting 2.4 kpc and E(B-V) = 0.23, the outburst absolute magnitude was M approximately equals 0.0, which is a typical value for this class of objects.
X-ray Observations of the Bright Old Nova V603 Aquilae
NASA Technical Reports Server (NTRS)
Mukai, K.; Orio, M.
2004-01-01
We report on our Chandra and RXTE observations of the bright old nova, V603 Aql, performed in 2001 April, supplemented by our analysis of archival X-ray data on this object. We find that the RXTE data are contaminated by the Galactic Ridge X-ray emission. After accounting for this effect, we find a high level of aperiodic variability in the RXTE data, at a level consistent with the uncontaminated Chandra data. The Chandra HETG spectrum clearly originates in a multi-temperature plasma. We constrain the possible emission measure distribution of the plasma through a combination of global and local fits. The X-ray luminosity and the spectral shape of V603 Aql resemble those of SS Cyg in transition between quiescence and outburst. The fact that the X-ray flux variability is only weakly energy dependent can be interpreted by supposing that the variability is due to changes in the maximum temperature of the plasma. The plasma density is likely to be high, and the emission region is likely to be compact. Finally, the apparent overabundance of Ne is consistent with V603 Aql being a young system.
Ultraviolet studies of nova-like variables with the IUE
NASA Technical Reports Server (NTRS)
Guinan, E. F.
1983-01-01
KQ Mon is a new UX UMa-type nova-like variable. Optical spectra taken in 1978 reveal very shallow Balmer absorption lines and He I (wavelength 4471) absorption. There was no evidence of orbital variations but the appearance of the optical spectrum and the presence of low amplitude flickering suggested a strong similarity to CD-42 degrees 14462 (=V3885 Sgr) and other members of the UX UMa class. KQ Mon was observed at low dispersion with the IUE satellite. Six spectra taken with the short wavelength prime (SWP) camera are dominated by strong broad absorption lines due to N V, O I, Si III, Si IV, C IV, He II, N IV, and A1 III. There is little evidence of orbital phase modulation over the time baseline of the observations. Unlike UV observations of other UX UMa-type objects, KQ Mon exhibits no emission lines or P Cygni-type profiles and the velocity displacements appear to be smaller, suggesting the absence of a hot, high velocity wind characterizing other UX UMa stars. The relationship of KQ Mon to other UX UMa disk stars is discussed and a model is suggested to explain their observed properties and the lack of major outbursts.
A Self-consistent Model for a Full Cycle of Recurrent Novae—Wind Mass-loss Rate and X-Ray Luminosity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Mariko; Saio, Hideyuki; Hachisu, Izumi, E-mail: mariko.kato@hc.st.keio.ac.jp
2017-04-01
An unexpectedly slow evolution in the pre-optical-maximum phase was suggested in the very short recurrence period of nova M31N 2008-12a. To obtain reasonable nova light curves we have improved our calculation method by consistently combining optically thick wind solutions of hydrogen-rich envelopes with white dwarf (WD) structures calculated by a Henyey-type evolution code. The wind mass-loss rate is properly determined with high accuracy. We have calculated light curve models for 1.2 M {sub ⊙} and 1.38 M {sub ⊙} WDs with mass accretion rates corresponding to recurrence periods of 10 yr and 1 yr, respectively. The outburst lasts 590/29 days,more » in which the pre-optical-maximum phase is 82/16 days, for 1.2/1.38 M {sub ⊙}, respectively. Optically thick winds start at the end of the X-ray flash and cease at the beginning of the supersoft X-ray phase. We also present supersoft X-ray light curves including a prompt X-ray flash and later supersoft X-ray phase.« less
The physics of black hole x ray novae
NASA Technical Reports Server (NTRS)
Wheeler, J. C.; Kim, S.-W.; Moscoso, M. D.; Mineshige, S.
1994-01-01
X-ray transients that are established or plausible black hole candidates have been discovered at a rate of about one per year in the galaxy for the last five years. There are now well over a dozen black hole candidates, most being in the category of X-ray novae with low-mass companions. There may be hundreds of such transient systems in the galaxy yet to be discovered. Classic black hole candidates like Cygnus X-1 with massive companions are in the minority, and their census in the galaxy and magellanic clouds is likely to be complete. The black hole X-ray novae (BHXN) do not represent only the most common environment in which to discover black holes. Their time dependence gives a major new probe with which to study the physics of accretion into black holes. The BHXN show both a soft X-ray flux from an optically thick disk and a hard power law tail that is reminiscent of AGN spectra. The result may be new insight into the classical systems like Cyg X-1 and LMC X-1 that show similar power law tails, but also to accretion into supermassive black holes and AGN.
Sonification of Kepler Field SU UMa Cataclysmic Variable Stars V344 Lyr and V1504 Cyg
NASA Technical Reports Server (NTRS)
Tutchton, Roxanne M.; Wood, Matt A.; Still, Martin D.; Howell, Steve B.; Cannizzo, John K.; Smale, Alan P.
2012-01-01
Sonification is the conversion of quantitative data into sound. In this work we explain the methods used in the sonification of light curves provided by the Kepler instrument from Q2 through Q6 for the cataclysmic variable systems V344 Lyr and V1504 Cyg . Both systems are SU UMa stars showing dwarf nova outbursts and superoutbursts as well as positive and negative superhumps. Focused sonifications were done from average pulse shapes of each superhump, and separate sonifications of the full, residual light curves were done for both stars. The audio of these data reflected distinct patterns within the evolutions of supercycles and superhumps that matched pervious observations and proved to be effective aids in data analysis.
Common Envelope Ejection for a Luminous Red Nova in M101
Blagorodnova, N.; Kotak, R.; Polshaw, J.; ...
2017-01-06
We present the results of optical, near-infrared, and mid-infrared observations of M101 OT2015-1 (PSN J14021678+5426205), a luminous red transient in the Pinwheel galaxy (M101), spanning a total of 16 years. The light curve showed two distinct peaks with absolute magnitudes M r ≤ -12.4 and M r ~ -12, on 2014 November 11 and 2015 February 17, respectively. The spectral energy distributions during the second maximum show a cool outburst temperature of ≈3700 K and low expansion velocities (≈-300 km s -1) for the H I, Ca II, Ba II, and K I lines. From archival data spanning 15-8 yearsmore » before the outburst, we find a single source consistent with the optically discovered transient, which we attribute to being the progenitor; it has properties consistent with being an F-type yellow supergiant with L ~8.7×10 4 L ⊙, T eff ≈ 7000 K, and an estimated mass of M1 = 18 ± 1 M ⊙ . This star has likely just finished the H-burning phase in the core, started expanding, and is now crossing the Hertzsprung gap. Based on the combination of observed properties, we argue that the progenitor is a binary system, with the more evolved system overfilling the Roche lobe. Comparison with binary evolution mode ls suggests that the outburst was an extremely rare phenomenon, likely associated with the ejection of the common envelope of a massive star. Finally, the initial mass of the primary fills the gap between the merger candidates V838 Mon (5-10 M ⊙) and NGC 4490-OT (30M ⊙).« less
Counter-evidence against multiple frequency nature of 0.75 mHz oscillation in V4743 Sgr
NASA Astrophysics Data System (ADS)
Dobrotka, A.; Ness, J.-U.
2017-06-01
All X-ray light curves of nova V4743 Sgr (2002), taken during and after outburst, contain a 0.75 mHz periodic signal that can most plausibly be interpreted as being excited by the rotation of the white dwarf in an intermediate polar system. This interpretation faces the challenge of an apparent multifrequency nature of this signal in the light curves taken days 180 and 196 after outburst. We show that the multisine fit method, based on a superposition of two sine functions, yields two inherently indistinguishable solutions, I.e. the presence of two close frequencies, or a single signal with constant frequency but variable modulation amplitude. Using a power spectrum time map, we show that on day 180, a reduction of the modulation amplitude of the signal coincides with a substantial overall flux decline, while on day 196, the signal is present only during the first half of the observation. Supported by simulations, we show that such variations in amplitude can lead to false beating, which manifests itself as a multiple signal if computing a periodogram over the full light curve. Therefore, the previously proposed double-frequency nature of both light curves was probably an artefact, while we consider a single signal with frequency equal to the white dwarf rotation as more plausible.
3XMM J185246.6+003317: Another Low Magnetic Field Magnetar
NASA Astrophysics Data System (ADS)
Rea, N.; Viganò, D.; Israel, G. L.; Pons, J. A.; Torres, D. F.
2014-01-01
We study the outburst of the newly discovered X-ray transient 3XMM J185246.6+003317, re-analyzing all available XMM-Newton observations of the source to perform a phase-coherent timing analysis, and derive updated values of the period and period derivative. We find the source rotating at P = 11.55871346(6) s (90% confidence level; at epoch MJD 54728.7) but no evidence for a period derivative in the seven months of outburst decay spanned by the observations. This translates to a 3σ upper limit for the period derivative of \\dot{P}< 1.4\\times 10^{-13} s s-1, which, assuming the classical magneto-dipolar braking model, gives a limit on the dipolar magnetic field of B dip < 4.1 × 1013 G. The X-ray outburst and spectral characteristics of 3XMM J185246.6+003317 confirm its identification as a magnetar, but the magnetic field upper limit we derive defines it as the third "low-B" magnetar discovered in the past 3 yr, after SGR 0418+5729 and Swift J1822.3-1606. We have also obtained an upper limit to the quiescent luminosity (<4 × 1033 erg s-1), in line with the expectations for an old magnetar. The discovery of this new low field magnetar reaffirms the prediction of about one outburst per year from the hidden population of aged magnetars.
The optical re-brightening of nova M31N 2017-11a
NASA Astrophysics Data System (ADS)
Xu, Zhijian; Gao, Xing; Li, Yanxi; Zhao, Jingyuan; Zhang, Mi
2017-12-01
We report the initial discovery of the optical re-brightening of the Fe II class nova M31N 2017-11a (AT2017hvi = PTSS-17zap) which was first reported by PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/ ), (2017, TNS Discovery Report https://wis-tns.weizmann.ac.il/object/2017hvi) at r-Sloan magnitude 18.5 on 2017-11-04 16:41:02 UT. Spectroscopy by Williams & Darnley using the 2-m Liverpool telescope (ATel #10990) on 2017 Nov 20.11 UT, and by Fabrika et al., (ATel #10998) taken two days later at the Russian BTA telescope, showed Balmer emission lines together with numerous strong Fe II lines, confirming its classification as a classical Fe II class nova.
Nova Scorpii 2011 = PNV J16551100-3838120
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2011-06-01
Announces the discovery of Nova Scorpii 2011 = PNV J16551100-3838120 by John Seach (Chatsworth Island, NSW, Australia) on 2011 June 1.40 UT at magnitude 9.5 (DSLR + orange filter). Spectra by Bernard Heathcote (South Yarra, Vic, Australia) on Jun 2.4896 UT, A. Arai, T. Kajikawa, and M. Nagashima (Kyoto Sangyo University, Japan) on 2011 June 2.68 UT, and Masayuki Yamanaka and Ryosuke Itoh (Hiroshima University, Japan) on Jun 2 UT indicate a highly-reddened classical nova. Initially reported to the AAVSO by Seach and announced in AAVSO Special Notice #240 (Arne Henden) and IAU CBET 2735 (Daniel W. E. Green, ed.). The object was designated PNV J18102135-2305306 when posted on the Central Bureau's Transient Objects Confirmation Page (TOCP) webpage. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details, observations, and links to images. [Nova Sco 2011 subsequently assigned the name V1312 Sco
HST/COS Far-ultraviolet Spectroscopic Analysis of U Geminorum Following a Wide Outburst
NASA Astrophysics Data System (ADS)
Godon, Patrick; Shara, Michael M.; Sion, Edward M.; Zurek, David
2017-12-01
We used the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) to obtain a series of four far-ultraviolet (FUV; 915-2148 Å) spectroscopic observations of the prototypical dwarf nova U Geminorum during its cooling following a two-week outburst. Our FUV spectral analysis of the data indicates that the white dwarf (WD) cools from a temperature of ˜41,500 K, 15 days after the peak of the outburst, to ˜36,250 K, 56 days after the peak of the outburst, assuming a massive WD (log(g) = 8.8) and a distance of 100.4 ± 3.7 pc. These results are self-consistent with a ˜1.1 M ⊙ WD with a 5000 ± 200 km radius. The spectra show absorption lines of H I, He II, C II III IV, N III IV, O VI, S IV, Si II III IV, Al III, Ar III, and Fe II, but no emission features. We find suprasolar abundances of nitrogen, confirming the anomalous high N/C ratio. The FUV light curve reveals a ±5% modulation with the orbital phase, showing dips near phases 0.25 and ˜0.75, where the spectra exhibit an increase in the depth of some absorption lines and in particular strong absorption lines from Si II, Al III, and Ar III. The phase dependence we observe is consistent with material overflowing the disk rim at the hot spot, reaching a maximum elevation near phase 0.75, falling back at smaller radii near phase 0.5 where it bounces off the disk surface, and again rising above the disk near phase ˜0.25. There is a large scatter in the absorption lines’ velocities, especially for the silicon lines, while the carbon lines seem to match more closely the orbital velocity of the WD. This indicates that many absorption lines are affected by—or form in—the overflowing stream material veiling the WD, making the analysis of the WD spectra more difficult. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
NASA Astrophysics Data System (ADS)
Kelly, Keegan John
The overall theme of this thesis is the advancement of nuclear astrophysics via the analysis of stellar processes in the presence of varying levels of precision in the available nuclear data. With regard to classical novae, the level of mixing that occurs between the outer layers of the white dwarf core and the solar accreted material in oxygen-neon novae is presently undetermined by stellar models, but the nuclear data relevant to these explosive phenomena are fairly precise. This precision allowed for the identification of a series of elemental ratios indicative of the level of mixing occurring in novae. Direct comparisons of the modelled elemental ratios to observations showed that there is likely to be much less of this mixing than was previously assumed. Thus, our understanding of classical novae was altered via the investigation of the nuclear reactions relevant to this phenomenon. However, this level of experimental precision is rare and large nuclear reaction uncertainties can hinder our understanding of certain astrophysical phenomena. For example, it is commonly believed that uncertainties in the 22Ne(p,g)23Na reaction rate at temperatures relevant to thermally-pulsing asymptotic giant branch stars are largely responsible for our inability to explain the observed sodium-oxygen anti-correlation in globular clusters. With this motivation, resonances in the 22Ne(p,g) 23Na reaction at E_{c.m.} = 458, 417, 178, and 151 keV were measured. The direct-capture contribution was also measured at E_{lab} = 425 keV. It was determined that the 22Ne(p,g)23Na reaction rate in the astrophysically relevant temperature range is dominated by the resonances at 178 and 151 keV and that the total reaction rate is greater than the previously assumed rate by a factor of approximately ˜40 at 0.15 GK. This increased reaction rate impacts the expected nucleosynthesis that occurs in these stars and will shed light onto the origin of this anti-correlation as it is incorporated into sophisticated stellar models in the future. In both of these cases the available nuclear data were used to probe stellar processes. This analysis of stellar processes through nuclear reactions is an extremely useful technique that is crucial for the advancement of astrophysics.
Nova Sco 2011 No. 2 = PNV J16364440-4132340 = PNV J16364300-4132460
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2011-09-01
Announcement of discovery of Nova Sco 2011 No. 2 = PNV J16364440-4132340 = PNV J16364300-4132460. Discovered independently by John Seach (Chatsworth Island, NSW, Australia, on 2011 Sep. 06.37 UT at mag=9.8 (DSLR)) and by Yuji Nakamura (Kameyama, Mie, Japan, on 2011 Sep. 06.4313 UT at mag=9.7 C (CCD)). Posted on the IAU Central Bureau for Astronomical Telegrams Transient Object Confirmation Page (TOCP) as PNV J16364440-4132340 (Nakamura) and PNV J16364300-4132460 (Seach); identifications consolidated in VSX under PNV J16364440-4132340. Spectra obtained by A. Arai et al. on 2011 Sep. 7.42 UT suggest a highly reddened Fe II-type classical nova. Spectra by F. Walter and J. Seron obtained Sep. 2011 8.091 UT confirm a young galactic nova; they report spectra are reminiscent of an early recurrent nova. Initially announced in AAVSO Special Notice #251 (Matthew Templeton) and IAU Central Bureau Electronic Telegram 2813 (Daniel W. E. Green, ed.). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.
Featured Image: Identifying a Glowing Shell
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-05-01
New nebulae are being discovered and classified every day and this false-color image reveals one of the more recent objects of interest. This nebula, IPHASX J210204.7+471015, was recently imaged by the Andalucia Faint Object Spectrograph and Camera mounted on the 2.5-m Nordic Optical Telescope in La Palma, Spain. J210204 was initially identified as a possible planetary nebula a remnant left behind at the end of a red giants lifetime. Based on the above imaging, however, a team of authors led by Martn Guerrero (Institute of Astrophysics of Andalusia, Spain) is arguing that this shell of glowing gas was instead expelled around a classical nova. In a classical nova eruption, a white dwarf and its binary companion come very close together, and mass transfers to form a thin atmosphere of hydrogen around the white dwarf. When this hydrogen suddenly ignites in runaway fusion, this outer atmosphere can be expelled, forming a short-lived nova remnant which is what Guerrero and collaborators think were seeing with J210204. If so, this nebula can reveal information about the novathat caused it. To find out more about what the authors learned from this nebula, check out the paper below.CitationMartn A. Guerrero et al 2018 ApJ 857 80. doi:10.3847/1538-4357/aab669
VizieR Online Data Catalog: Optical to NIR spectra of nova V2676 Oph 2012 (Raj+, 2017)
NASA Astrophysics Data System (ADS)
Raj, A.; Das, R. K.; Walter, F. M.
2017-09-01
Near-infrared observations were obtained using the 1.2m telescope of Mt.Abu Infrared Observatory from 2012 March 29 to June 18 and the SMARTS/CTIO 1.3m telescope. The SMARTS photometry is available on the SMARTS atlas (Walter+, 2012PASP..124.1057W). Optical spectra were obtained with the Asiago 1.22m telescope + B&C spectrograph. Further low-dispersion spectra and photometry were obtained using the SMARTS 1.5m facilities. We obtained 19 spectra on an irregular cadence and with various sky conditions from 2012 April 5 through 2012 June 24. The target was observed using the COSMOS long slit spectrograph at CTIO on 2015 May 8, some three years after the outburst. (3 data files).
A PIONIER and Incisive Look at the Interacting Binary SS Lep
NASA Astrophysics Data System (ADS)
Blind, N.; Boffin, H. M. J.; Berger, J.-P.; Lebouquin, J.-B.; Mérand, A.
2011-09-01
Symbiotic stars are excellent laboratories to study a broad range of poorly understood physical processes, such as mass loss of red giants, accretion onto compact objects, and evolution of nova-like outbursts. As their evolution is strongly influenced by the mass transfer episodes, understanding the history of these systems requires foremost to determine which process is at play: Roche lobe overflow, stellar wind accretion, or some more complex mixture of both. We report here an interferometric study of the symbiotic system SS Leporis, performed with the unique PIONIER instrument. By determining the binary orbit and revisiting the parameters of the two stars, we show that the giant does not fill its Roche lobe, and that the mass transfer most likely occurs via the accretion of an important part of the giant's wind.
Cannibal Stars Cause Giant Explosions in Fornax Cluster Galaxy
NASA Astrophysics Data System (ADS)
2000-07-01
The VLT Observes Most Remote Novae Ever Seen About 70 million years ago, when dinosaurs were still walking on the Earth, a series of violent thermo-nuclear explosions took place in a distant galaxy. After a very long travel across vast reaches of virtually empty space (70 million light-years, or ~ 7 x 10 20 km), dim light carrying the message about these events has finally reached us. It was recorded by the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile) during an observing programme by a group of Italian astronomers [1]. The subsequent analysis has shown that the observers witnessed the most distant nova outbursts ever seen . They were caused by "stellar cannibalism" in binary systems in which one relatively cool star loses matter to its smaller and hotter companion. An instability results that leads to the ignition of a "hydrogen bomb" on the surface of the receiving star. The "Stella Nova" Phenomenon A stellar outburst of the type now observed with the VLT is referred to as a "Stella Nova" ("new star" in Latin), or just "Nova" . Novae caused by explosions in binary stars in our home galaxy, the Milky Way system, are relatively frequent and about every second or third year one of them is bright enough to be easily visible with the naked eye. For our ancestors, who had no means to see the faint binary star before the explosion, it looked as if a new star had been born in the sky, hence the name. The most common nova explosion occurs in a binary stellar system in which a white dwarf (a very dense and hot, compact star with a mass comparable to that of the Sun and a size like the Earth) accretes hydrogen from a cooler and larger red dwarf star [2]. As the hydrogen collects on the surface of the white dwarf star, it becomes progressively hotter until a thermonuclear explosion is ignited at the bottom of the collected gas. A huge amount of energy is released and causes a million-fold increase in the brightness of the binary system within a few hours. After reaching maximum light within some days or weeks, it begins to fade as the hydrogen supply is exhausted and blown into space. The processed material is ejected at high speeds, up to ~1000 km/sec, and may later be visible as an expanding shell of emitting gas. Altogether, the tremendous flash of light involves the release of about 10 45 ergs in a few weeks, or about as much energy as our Sun produces in 10,000 years. Supernovae explosions that completely destroy heavier stars at the end of their lives are even more powerful. However, in contrast to supernovae and despite the colossal energy production, the progenitor of a nova is not destroyed during the explosion. Some time after an outburst, transfer of hydrogen from the companion star begins anew, and the process repeats itself with explosions taking place about once every 100,000 years. The nova star will finally die of "old age" when the cool companion has been completely cannibalized. Novae as Distance Indicators Due to their exceptional luminosity, novae can be used as powerful beacons that allow relative distances to different types of galaxies to be measured. The measurement is based on the assumption that novae of the same type are intrinsically equally bright, together with the physical law that states that an object's observed brightness decreases with the square of the distance to the observer. Thus, if we observe that a nova in a certain galaxy is one million times fainter than a nearby one, we know that it must be one thousand times more distant. In addition, observations of novae in other galaxies shed light on the history of formation of their stars. Despite their scientific importance, surveys of novae in distant, rich clusters of galaxies have not been very popular among astronomers. Major reasons are probably the inherent observational difficulties and the comparatively low rates of discovery. In the past, with 4-m class telescopes, tens of hours of monitoring of several galaxies have indeed been necessary to detect a few distant novae [3]. VLT observations of NGC 1316 in the Fornax Cluster ESO PR Photo 18a/00 ESO PR Photo 18a/00 [Preview - JPEG: 400 x 448 pix - 28k] [Normal - JPEG: 800 x 895 pix - 136k] [Full-Res - JPEG: 1941 x 2172 pix - 904k] Caption : Colour composite photo of the central area of NGC 1316 , a giant elliptical galaxy in the Fornax cluster of galaxies. Many dark dust clouds and lanes are visible. Some of the star-like objects in the field are globular clusters of stars that belong to the galaxy. It is based on CCD exposures, obtained with the 8.2-m VLT/ANTU telescope and the FORS-1 multi-mode instrument through B (blue), V (green-yellow) and I (here rendered as red) filters, respectively. The "pyramids" above and below the bright centre of the galaxy and the vertical lines at some of the brighter stars are caused by overexposure ("CCD bleeding"). The field measures 6.8 x 6.8 arcmin 2 , with 0.2 arcsec/pixel. The image quality of this composite is about 0.9 arcsec. North is up and East is left. NGC 1316 is a giant "dusty" galaxy ( PR Photo 18a/00 ), located in the Fornax cluster seen in the southern constellation of that name ("The Oven"). This galaxy is of special interest in connection with current attempts to establish an accurate distance scale in the Universe. In 1980 and 1981, NGC 1316 was the host of two supernovae of type Ia , a class of object that is widely used as a "cosmological standard candle" to determine the distance to very distant galaxies, cf. ESO PR 21/98. A precise measurement of the distance to NGC 1316 may therefore provide an independent calibration of the intrinsic brightness of these supernovae. The new observations were performed during 8 nights distributed over the period from January 9 to 19, 2000. They were made in service mode at the 8.2-m VLT/ANTU telescope with the FORS-1 multi-mode instrument, using a 2k x 2k CCD camera with 0.2 arcsec pixels and a field of 6.8 x 6.8 arcmin 2. The exposures lasted 20 min and were carried out with three optical filters (B, V and I). The most distant Novae observed so far ESO PR Photo 18b/00 ESO PR Photo 18b/00 [Preview - JPEG: 400 x 452 pix - 83k] [Normal - JPEG: 800 x 904 pix - 224k] ESO PR Photo 18c/00 ESO PR Photo 18c/00 [Preview - JPEG: 400 x 458 pix - 54k] [Normal - JPEG: 800 x 916 pix - 272k] Caption : Images of two of the novae in NGC 1316 that were discovered during the observational programme described in this Press Release. Both composites show the blue images (B-filter) obtained on January 9 (upper left), 12 (upper right), 15 (lower left) and 19 (lower right), 2000, respectively. The decline of the brightness of the objects is obvious. An analysis of the images that were obtained in blue light (B-filter) resulted in the detection of four novae. They were identified because of the typical change of brightness over the observation period, cf. PR Photos 18b-c/00 , as well as their measured colours. Although the time-consuming reduction of the data and the subsequent astrophysical interpretation is still in progress, the astronomers are already now very satisfied with the outcome. In particular, no less than four novae were detected in a single giant galaxy within only 11 days . This implies a rate of approximately 100 novae/year in NGC 1316, or about 3 times larger than the rate estimated for the Milky Way galaxy. This may (at least partly) be due to the fact that NGC 1316 is of a different type and contains more stars than our own galaxy. The novae in NGC 1316 are quite faint, of about magnitude 24 and decreasing towards 25-26 during the period of observation. This corresponds to nearly 100 million times fainter than what can be seen with the naked eye. The corresponding distance to NGC 1316 is found to be about 70 million light-years . Moreover, the discovery of four novae in one galaxy in the Fornax cluster was possible with only 3 hours of observing time per filter. This clearly shows that the new generation of 8-m class telescopes like the VLT, equipped with the new and large detectors, is able to greatly improve the efficiency of this type of astronomical investigations (by a factor of 10 or more) , as compared to previous searches with 4-m telescopes. The road is now open for exhaustive searches for novae in remote galaxies, with all the resulting benefits, also for the accurate determination of the extragalactic distance scale. Notes [1]: The group consists of Massimo Della Valle (Osservatorio Astrofisico di Arcetri, Firenze, Italy), Roberto Gilmozzi and Rodolfo Viezzer (both ESO). [2]: A graphical illustration of the nova phenomenon can be found at this website. [3]: For example, in 1987, Canadian astronomers Christopher Pritchet and Sidney van den Bergh , in an heroic tour de force with the 4-m Canada-France-Hawaii telescope, found 9 novae after 56 hours of monitoring of 3 giant elliptical galaxies in the Virgo cluster of galaxies.
The 1979 X-ray outburst of Centaurus X-4
NASA Technical Reports Server (NTRS)
Kaluzienski, L. J.; Holt, S. S.; Swank, J. H.
1980-01-01
X-ray observations of the first major outburst of the classical transient X-ray source Centaurus X-4 since its discovery in 1969 are presented. The observations were obtained in May, 1979, with the all-sky monitor on board Ariel 5. The flare light curve is shown to exhibit many of the characteristics of other transients, including a double-peaked maximum, as well as significant, apparently random, variations and a lower peak flux and shorter duration than the 1969 event. Application of a standard epoch-folding technique to data corrected for linear decay trends indicates a possible source modulation at 0.3415 days (8.2 hours). Comparison of the results with previous other data on Cen X-4 and the characteristics of the soft X-ray transients allows a total X-ray output of approximately 3 x 10 to the 43rd ergs to be estimated, and reveals the duration and decay time of the 1979 Cen X-4 outburst to be the shortest yet observed from soft X-ray transients. The observations are explained in terms of episodic mass exchange from a late-type dwarf onto a neutron star companion in a relatively close binary system.
Discovery of deep eclipses in the cataclysmic variable IPHAS J051814.33+294113.0
NASA Astrophysics Data System (ADS)
Kozhevnikov, V. P.
2018-06-01
Performing the photometric observations of the cataclysmic variable IPHAS J051814.33+294113.0, we discovered very deep eclipses. The observations were obtained over 14 nights, had a total duration of 56 hours and covered one year. The large time span, during which we observed the eclipses, allowed us to measure the orbital period in IPHAS J051814.33+294113.0 with high precision, P_{orb}=0.20603098± 0.00000025 d. The prominent parts of the eclipses lasted 0.1± 0.01 phases or 30± 3 min. The depth of the eclipses was variable in the range 1.8-2.9 mag. The average eclipse depth was equal to 2.42± 0.06 mag. The prominent parts of the eclipses revealed a smooth and symmetric shape. We derived the eclipse ephemeris, which, according to the precision of the orbital period, has a formal validity time of 500 years. This ephemeris can be useful for future investigations of the long-term period changes. During the latter four observational nights in 2017 January, we observed the sharp brightness decrease of IPHAS J051814.33+294113.0 by 2.3 mag. This brightness decrease imitated the end of the dwarf nova outburst. However, the long-term light curve of IPHAS J051814.33+294113.0 obtained in the course of the Catalina Sky Survey during 8 years showed no dwarf nova outbursts. From this we conclude that IPHAS J051814.33+294113.0 is a novalike variable. Moreover, the sharp brightness decrease, which we observed in IPHAS J051814.33+294113.0, suggests that this novalike variable belongs to the VY Scl-subtype. Due to very deep eclipses, IPHAS J051814.33+294113.0 is suitable to study the accretion disc structure using eclipse mapping techniques. Because this novalike variable has the long orbital period, it is of interest to determine the masses of the stellar components from radial velocity measurements. Then, our precise eclipse ephemeris can be useful to the phasing of spectroscopic data.
Pre-Discovery Detection of ASASSN-18fv by Evryscope
NASA Astrophysics Data System (ADS)
Corbett, H.; Law, N.; Goeke, E.; Ratzloff, J.; Howard, W.; Fors, O.; del Ser, D.; Quimby, R. M.
2018-03-01
We have identified pre-discovery imaging of the probable classical nova ASASSN-18fv by Evryscope-South (http://evryscope.astro.unc.edu/), an array of 6-cm telescopes continuously monitoring 8000 square degrees of sky at 2-minute cadence from CTIO, Chile.
V5588 SGR = Nova Sagittarii 2011 No. 2 = Pnv J18102135-2305306
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2011-04-01
Announces the discovery of Nova Sgr 2011 No. 2 = V5588 SGR = PNV J18102135-2305306 by Koichi Nishiyama (Kurume, Japan) and Fujio Kabashima (Miyaki, Japan) on ~ 2011 March 27.832 UT at unfiltered CCD magnitude mag 11.7. Spectra obtained by A. Arai, M. Nagashima, T. Kajikawa, and C. Naka (Koyama Astronomical Observatory, Kyoto Sangyo University) on Mar. 28.725 UT suggest that the object is a classical nova reddened by interstellar matter. The object was designated PNV J18102135-2305306 when posted on the Central Bureau's Transient Objects Confirmation Page (TOCP) webpage. E. Kazarovets, on behalf of the GCVS team, reports that the name V5588 Sgr has been assigned to this nova. It was nitially announced in CBET 2679 (Daniel W. E. Green, ed.) and AAVSO Special Notice #237 (Waagen). Additional information published in IAU Circular 9203 (Green, ed.). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.
Mixing in classical novae: a 2-D sensitivity study
NASA Astrophysics Data System (ADS)
Casanova, J.; José, J.; García-Berro, E.; Calder, A.; Shore, S. N.
2011-03-01
Context. Classical novae are explosive phenomena that take place in stellar binary systems. They are powered by mass transfer from a low-mass, main sequence star onto a white dwarf. The material piles up under degenerate conditions and a thermonuclear runaway ensues. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures of ~(1-4) × 108 K. During these events, about 10-4-10-5M⊙, enriched in CNO and other intermediate-mass elements, are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, a metallicity enhancement in the ejecta above solar values), numerical models assume mixing between the (solar-like) material transferred from the companion and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Aims: The nature of the mixing mechanism that operates at the core-envelope interface has puzzled stellar modelers for about 40 years. Here we investigate the role of Kelvin-Helmholtz instabilities as a natural mechanism for self-enrichment of the accreted envelope with core material. Methods: The feasibility of this mechanism is studied by means of the multidimensional code FLASH. Here, we present a series of 9 numerical simulations perfomed in two dimensions aimed at testing the possible influence of the initial perturbation (duration, strength, location, and size), the resolution adopted, or the size of the computational domain on the results. Results: We show that results do not depend substantially on the specific choice of these parameters, demonstrating that Kelvin-Helmholtz instabilities can naturally lead to self-enrichment of the accreted envelope with core material, at levels that agree with observations. Movie is only available in electronic form at http://www.aanda.org
Breaking the Habit: The Peculiar 2016 Eruption of the Unique Recurrent Nova M31N 2008-12a
NASA Astrophysics Data System (ADS)
Henze, M.; Darnley, M. J.; Williams, S. C.; Kato, M.; Hachisu, I.; Anupama, G. C.; Arai, A.; Boyd, D.; Burke, D.; Ciardullo, R.; Chinetti, K.; Cook, L. M.; Cook, M. J.; Erdman, P.; Gao, X.; Harris, B.; Hartmann, D. H.; Hornoch, K.; Horst, J. Chuck; Hounsell, R.; Husar, D.; Itagaki, K.; Kabashima, F.; Kafka, S.; Kaur, A.; Kiyota, S.; Kojiguchi, N.; Kučáková, H.; Kuramoto, K.; Maehara, H.; Mantero, A.; Masci, F. J.; Matsumoto, K.; Naito, H.; Ness, J.-U.; Nishiyama, K.; Oksanen, A.; Osborne, J. P.; Page, K. L.; Paunzen, E.; Pavana, M.; Pickard, R.; Prieto-Arranz, J.; Rodríguez-Gil, P.; Sala, G.; Sano, Y.; Shafter, A. W.; Sugiura, Y.; Tan, H.; Tordai, T.; Vraštil, J.; Wagner, R. M.; Watanabe, F.; Williams, B. F.; Bode, M. F.; Bruno, A.; Buchheim, B.; Crawford, T.; Goff, B.; Hernanz, M.; Igarashi, A. S.; José, J.; Motta, M.; O’Brien, T. J.; Oswalt, T.; Poyner, G.; Ribeiro, V. A. R. M.; Sabo, R.; Shara, M. M.; Shears, J.; Starkey, D.; Starrfield, S.; Woodward, C. E.
2018-04-01
Since its discovery in 2008, the Andromeda galaxy nova M31N 2008-12a has been observed in eruption every single year. This unprecedented frequency indicates an extreme object, with a massive white dwarf and a high accretion rate, which is the most promising candidate for the single-degenerate progenitor of a Type Ia supernova known to date. The previous three eruptions of M31N 2008-12a have displayed remarkably homogeneous multiwavelength properties: (i) from a faint peak, the optical light curve declined rapidly by two magnitudes in less than two days, (ii) early spectra showed initial high velocities that slowed down significantly within days and displayed clear He/N lines throughout, and (iii) the supersoft X-ray source (SSS) phase of the nova began extremely early, six days after eruption, and only lasted for about two weeks. In contrast, the peculiar 2016 eruption was clearly different. Here we report (i) the considerable delay in the 2016 eruption date, (ii) the significantly shorter SSS phase, and (iii) the brighter optical peak magnitude (with a hitherto unobserved cusp shape). Early theoretical models suggest that these three different effects can be consistently understood as caused by a lower quiescence mass accretion rate. The corresponding higher ignition mass caused a brighter peak in the free–free emission model. The less massive accretion disk experienced greater disruption, consequently delaying the re-establishment of effective accretion. Without the early refueling, the SSS phase was shortened. Observing the next few eruptions will determine whether the properties of the 2016 outburst make it a genuine outlier in the evolution of M31N 2008-12a.
Dust around the Cool Component of D-Type Symbiotic Binaries
NASA Astrophysics Data System (ADS)
Jurkic, Tomislav; Kotnik-Karuza, Dubravka
2018-04-01
D type symbiotic binaries are an excellent astrophysical laboratory for investigation of the dust properties and dust formation under the influence of theMira stellar wind and nova activity and of the mass loss and mass transfer between components in such a widely separated system. We present a study of the properties of circumstellar dust in symbiotic Miras by use of long-term near-IR photometry and colour indices. The published JHKL magnitudes of o Ceti, RX Pup, KM Vel, V366 Car, V835 Cen, RR Tel, HM Sge and R Aqr have been collected, analyzed and corrected for short-term variations caused by Mira pulsations. Assuming spherical temperature distribution of the dust in the close neighbourhood of the Mira, the DUSTY code was used to solve the radiative transfer in order to determine the dust temperature and its properties in each particular case. Common dust properties of the symbiotic Miras have been found, suggesting similar conditions in the condensation region of the studied symbiotic Miras. Silicate dust with the inner dust shell radius determined by the dust condensation and with the dust temperature of 900-1200 K can fully explain the observed colour indices. R Aqr is an exception and showed lower dust temperature of 650 K. Obscuration events visible in light curves can be explained by variable dust optical depth with minimal variations of other dust properties. More active symbioticMiras that underwent recent nova outbursts showed higher dust optical depths and larger maximum grain sizes of the order of μm, which means that the post-nova activity could stimulate the dust formation and the grain growth. Optically thicker dust shells and higher dust condensation temperatures have been found in symbiotic Miras compared to their single counterparts, suggesting different conditions for dust production.
IRAS observations of binaries with compact objects
NASA Technical Reports Server (NTRS)
Schaefer, B. E.
1986-01-01
The infrared emission data, obtained on 260 binary systems by the all-sky IRAS survey in wavelengths between 12 and 100 microns, are reported. Of all the 260 sources, which contained compact objects including white dwarfs, neutron stars, or possibly black holes, only 32 contained detectable IR radiation. The X-ray emitting Be-type stars (gamma-Cas and X Per) were found to have their energy flux proportional to frequency in the range of the log nu values of 12.7-14.7. However, the GS304-1 flux distribution is unique, in that its flux rises by several orders of magnitude as the wavelength changes from 4000 A to 60 microns. A static dust cloud was detected, with a radius of about 1 AU, which has formed around the classical nova RR Pic since its 1925 eruption. The post-eruption far-IR light curve of a classical nova provides strong evidence for IR emissions from both dust grains formed during the eruption and dust grains existing from previous eruptions.
A black hole nova obscured by an inner disk torus.
Corral-Santana, J M; Casares, J; Muñoz-Darias, T; Rodríguez-Gil, P; Shahbaz, T; Torres, M A P; Zurita, C; Tyndall, A A
2013-03-01
Stellar-mass black holes (BHs) are mostly found in x-ray transients, a subclass of x-ray binaries that exhibit violent outbursts. None of the 50 galactic BHs known show eclipses, which is surprising for a random distribution of inclinations. Swift J1357.2-093313 is a very faint x-ray transient detected in 2011. On the basis of spectroscopic evidence, we show that it contains a BH in a 2.8-hour orbital period. Further, high-time-resolution optical light curves display profound dips without x-ray counterparts. The observed properties are best explained by the presence of an obscuring toroidal structure moving outward in the inner disk, seen at very high inclination. This observational feature should play a key role in models of inner accretion flows and jet collimation mechanisms in stellar-mass BHs.
Clusters in Formation - The Case of 3C61.1 and A Luminous AGN in a Merging Cluster
NASA Astrophysics Data System (ADS)
Kraft, Ralph
2017-09-01
We propose a Chandra investigation of the serendipitously detected cluster, X-CLASS 1835, that hosts the classical FRII radio source 3C61.1 as well as a radiatively efficient, X-ray bright AGN. The cluster exhibits a prominent surface brightness edge which suggests a merger and/or a major AGN outburst. The radio emission from 3C61.1 shows interaction with the hot cluster plasma. We will characterize the merger/outburst by measuring the properties of the surface brightness edge, study the interaction of the FRII radio source (its hotspots, jet, and cocoon) with the ICM, measure spectra of 3C61.1 (nucleus and hotspots) and the AGN to explore their physical properties, and measure the PV work from any detected cavities around 3C61.1 to compare to the radio power.
Cold CO Gas in the Envelopes of FU Orionis-type Young Eruptive Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kóspál, Á.; Ábrahám, P.; Moór, A.
FU Orionis-type objects (FUors) are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX {sup 12}CO and {sup 13}CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets, locate the source of the COmore » emission, and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.« less
St 2-22 - Another Symbiotic Star with High-Velocity Bipolar Jets
NASA Astrophysics Data System (ADS)
Tomov, T.; Zamanov, R.; Gałan, C.; Pietrukowicz, P.
2017-09-01
We report the detection of high-velocity components in the wings of Hα emission line in spectra of symbiotic binary star St 2-22 obtained in 2005. This finding encouraged us to start the present investigation in order to show that this poorly-studied object is a jet-producing system. We have used high-resolution optical and low-resolution near-infrared spectra, as well as available optical and infrared photometry, to evaluate some physical parameters of the St 2-22 components and characteristics of the jets. We confirm that St 2-22 is a S-type symbiotic star. Our results demonstrate that an unnoticed outburst, similar to those in classical symbiotic systems, occurred in the first half of 2005. During the outburst, collimated bipolar jets were ejected by the hot component of St 2-22 with an average velocity of about 1700 km/s.
Ticking Stellar Time Bomb Identified - Astronomers find prime suspect for a Type Ia supernova
NASA Astrophysics Data System (ADS)
2009-11-01
Using ESO's Very Large Telescope and its ability to obtain images as sharp as if taken from space, astronomers have made the first time-lapse movie of a rather unusual shell ejected by a "vampire star", which in November 2000 underwent an outburst after gulping down part of its companion's matter. This enabled astronomers to determine the distance and intrinsic brightness of the outbursting object. It appears that this double star system is a prime candidate to be one of the long-sought progenitors of the exploding stars known as Type Ia supernovae, critical for studies of dark energy. "One of the major problems in modern astrophysics is the fact that we still do not know exactly what kinds of stellar system explode as a Type Ia supernova," says Patrick Woudt, from the University of Cape Town and lead author of the paper reporting the results. "As these supernovae play a crucial role in showing that the Universe's expansion is currently accelerating, pushed by a mysterious dark energy, it is rather embarrassing." The astronomers studied the object known as V445 in the constellation of Puppis ("the Stern") in great detail. V445 Puppis is the first, and so far only, nova showing no evidence at all for hydrogen. It provides the first evidence for an outburst on the surface of a white dwarf [1] dominated by helium. "This is critical, as we know that Type Ia supernovae lack hydrogen," says co-author Danny Steeghs, from the University of Warwick, UK, "and the companion star in V445 Pup fits this nicely by also lacking hydrogen, instead dumping mainly helium gas onto the white dwarf." In November 2000, this system underwent a nova outburst, becoming 250 times brighter than before and ejecting a large quantity of matter into space. The team of astronomers used the NACO adaptive optics instrument [2] on ESO's Very Large Telescope (VLT) to obtain very sharp images of V445 Puppis over a time span of two years. The images show a bipolar shell, initially with a very narrow waist, with lobes on each side. Two knots are also seen at both the extreme ends of the shell, which appear to move at about 30 million kilometres per hour. The shell - unlike any previously observed for a nova - is itself moving at about 24 million kilometres per hour. A thick disc of dust, which must have been produced during the last outburst, obscures the two central stars. "The incredible detail that we can see on such small scales - about hundred milliarcseconds, which is the apparent size of a one euro coin seen from about forty kilometres - is only possible thanks to the adaptive optics technology available on large ground-based telescopes such as ESO's VLT," says Steeghs. A supernova is one way that a star can end its life, exploding in a display of grandiose fireworks. One family of supernovae, called Type Ia supernovae, are of particular interest in cosmology as they can be used as "standard candles" to measure distances in the Universe [3] and so can be used to calibrate the accelerating expansion that is driven by dark energy. One defining characteristic of Type Ia supernovae is the lack of hydrogen in their spectrum. Yet hydrogen is the most common chemical element in the Universe. Such supernovae most likely arise in systems composed of two stars, one of them being the end product of the life of sun-like stars, or white dwarfs. When such white dwarfs, acting as stellar vampires that suck matter from their companion, become heavier than a given limit, they become unstable and explode [4]. The build-up is not a simple process. As the white dwarf cannibalises its prey, matter accumulates on its surface. If this layer becomes too dense, it becomes unstable and erupts as a nova. These controlled, mini-explosions eject part of the accumulated matter back into space. The crucial question is thus to know whether the white dwarf can manage to gain weight despite the outburst, that is, if some of the matter taken from the companion stays on the white dwarf, so that it will eventually become heavy enough to explode as a supernova. Combining the NACO images with data obtained with several other telescopes [5] the astronomers could determine the distance of the system - about 25 000 light-years from the Sun - and its intrinsic brightness - over 10 000 times brighter than the Sun. This implies that the vampire white dwarf in this system has a high mass that is near its fatal limit and is still simultaneously being fed by its companion at a high rate. "Whether V445 Puppis will eventually explode as a supernova, or if the current nova outburst has pre-empted that pathway by ejecting too much matter back into space is still unclear," says Woudt. "But we have here a pretty good suspect for a future Type Ia supernova!" Notes [1] White dwarfs represent the evolutionary end product of stars with initial masses up to a few solar masses. A white dwarf is the burnt-out stellar core that is left behind when a star like the Sun sheds its outer layers towards the end of its active life. It is composed essentially of carbon and oxygen. This process normally also leads to the formation of a surrounding planetary nebula. [2] Adaptive optics is a technique that allows astronomers to obtain an image of an object free from the blurring effect of the atmosphere. See the adaptive optics page at ESO: http://www.eso.org/public/astronomy/technology/adaptive_optics.html [3] See for example http://www.eso.org/~bleibund/papers/EPN/epn.html [4] This Chandrasekhar limit, named after the Indian physicist Subrahmanyan Chandrasekhar, is nearly 1.4 times the mass of the Sun. When a white dwarf reaches a mass above this limit, either by sucking matter from a companion or merging with another white dwarf, it will turn itself into a thermonuclear bomb that will burn carbon and oxygen explosively. [5] The team also used the SOFI instrument on ESO's New Technology Telescope, the IMACS spectrograph on the 6.5-metre Magellan Baade telescope, and the Infrared Survey Facility and the SIRIUS camera at the Sutherland station of the South African Astronomical Observatory. More information This research was presented in a paper to appear in the 20 November 2009 issue of the Astrophysical Journal, vol. 706, p. 738 ("The expanding bipolar shell of the helium nova V445 Puppis", by P. A. Woudt et al.). The team is composed of P. A. Woudt and B. Warner (University of Cape Town, South Africa), D. Steeghs and T. R. Marsh (University of Warwick, UK), M. Karovska and G. H. A. Roelofs (Harvard-Smithsonian Center for Astrophysics, Cambridge MA, USA), P. J. Groot and G. Nelemans (Radboud University Nijmegen, the Netherlands), T. Nagayama (Kyoto University, Japan), D. P. Smits (University of South Africa, South Africa), and T. O'Brien (University of Manchester, UK). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Challenges Facing Guitar Education
ERIC Educational Resources Information Center
Harrison, Eli
2010-01-01
The guitar is an extremely versatile instrument. It can produce complex chords and arpeggiated textures as readily as single-note melodies. In the twentieth century alone, it has appeared in a wide range of genres; classical, jazz, blues, rock, and bossa nova compose a partial list. The guitar is also a difficult instrument. Inconsistencies across…
NASA Astrophysics Data System (ADS)
Caruso, A.; Cherubini, S.; Spitaleri, C.; Crucillà, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Rapisarda, G.; Romano, S.; Sergi, ML.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Wakabayashi, Y.; Iwasa, N.; Kato, S.; Komatsubara, T.; Teranishi, T.; Coc, A.; Hammache, F.; de Séréville, N.
2015-02-01
Novae are astrophysical events (violent explosion) occurring in close binary systems consisting of a white dwarf and a main-sequence star or a star in a more advanced stage of evolution. They are called "narrow systems" because the two components interact with each other: there is a process of mass exchange with resulting in the transfer of matter from the companion star to the white dwarf, leading to the formation of this last of the so-called accretion disk, rich mainly of hydrogen. Over time, more and more material accumulates until the pressure and the temperature reached are sufficient to trigger nuclear fusion reactions, rapidly converting a large part of the hydrogen into heavier elements. The products of "hot hydrogen burning" are then placed in the interstellar medium as a result of violent explosions. Studies on the element abundances observed in these events can provide important information about the stages of evolution stellar. During the outbursts of novae some radioactive isotopes are synthesized: in particular, the decay of short-lived nuclei such as 13N and 18F with subsequent emission of gamma radiation energy below 511 keV. The gamma rays from products electron-positron annihilation of positrons emitted in the decay of 18F are the most abundant and the first observable as soon as the atmosphere of the nova starts to become transparent to gamma radiation. Hence the importance of the study of nuclear reactions that lead both to the formation and to the destruction of 18F . Among these, the 18F(p,α)15O reaction is one of the main channels of destruction. This reaction was then studied at energies of astrophysical interest. The experiment done at Riken, Japan, has as its objective the study of the 18F(p,α)15O reaction, using a beam of 18F produced at CRIB, to derive important information about the phenomenon of novae. In this paper we present the experimental technique and the Monte Carlo code developed to be used in the data analysis process.
NSV 1907 - A new eclipsing, nova-like cataclysmic variable
NASA Astrophysics Data System (ADS)
Hümmerich, Stefan; Gröbel, Rainer; Hambsch, Franz-Josef; Dubois, Franky; Ashley, Richard; Gänsicke, Boris T.; Vanaverbeke, Siegfried; Bernhard, Klaus; Wils, Patrick
2017-01-01
NSV 1907, formerly listed as an irregular variable in variability catalogues, was classified as an Algol-type eclipsing binary in the Catalina Surveys Periodic Variable Star Catalogue. We have identified NSV 1907 as an ultraviolet (UV) bright source using measurements from the GALEX space telescope and detected obvious out-of-eclipse variability in archival photometric data from the Catalina Sky Survey, which instigated a closer examination of the object. A spectrum and extensive multicolour photometric observations were acquired, from which we deduce that NSV 1907 is a deeply eclipsing, nova-like cataclysmic variable. Apart from the orbital variations (deep eclipses with a period of P ≈ 6.63 hours), changes in mean brightness and irregular short-term variability (flickering) were observed. The presence of a secondary minimum at phase φ ≈ 0.5 was established, which indicates a significant contribution of the companion star to the optical flux of the system. We find possible evidence for sinusoidal variations with a period of P ≈ 4.2 d, which we interpret as the nodal precession period of the accretion disc. No outbursts or VY Scl-like drops in brightness were detected either by the CSS or during our photometric monitoring. Because of its spectral characteristics and the observed variability pattern, we propose NSV 1907 as a new moderately bright long-period SW Sextantis star. Further photometric and spectroscopic observations are encouraged.
THE NEW ECLIPSING CV MASTER OTJ192328.22+612413.5—A POSSIBLE SW SEXTANTIS STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, M. R.; Callanan, P.; Bouanane, S.
2016-07-01
We present optical photometry and spectroscopy of the new eclipsing cataclysmic variable MASTER OTJ192328.22+612413.5, discovered by the MASTER team. We find the orbital period to be P = 0.16764612(5) day/4.023507(1) hr. The depth of the eclipse (2.9 ± 0.1 mag) suggests that the system is nearly edge on, and modeling of the system confirms the inclination to be between 81.°3 and 83.°6. The brightness outside the eclipse varies between observations, with a change of 1.6 ± 0.1 mag. Spectroscopy reveals double-peaked Balmer emission lines. By using spectral features matching a late M-type companion, we bound the distance to be 750more » ± 250 pc, depending on the companion’s spectral type. The source displays 2 mag brightness changes on timescales of days. The amplitude of these changes, along with the spectrum at the faint state, suggest that the system is possibly a dwarf nova. The lack of any high-excitation He ii lines suggests that this system is not magnetically dominated. The light curve in both quiescence and outburst resembles that of Lanning 386, implying MASTER OTJ192328.22+612413.5 is a possible cross between a dwarf nova and a SW Sextantis star.« less
A DWARF NOVA IN THE GLOBULAR CLUSTER M13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Servillat, M.; Van den Berg, M.; Grindlay, J.
Dwarf novae (DNe) in globular clusters (GCs) seem to be rare with only 13 detections in the 157 known Galactic GCs. We report the identification of a new DN in M13, the 14th DN identified in a GC to date. Using the 2 m Faulkes Telescope North, we conducted a search for stars in M13 that show variability over a year (2005-2006) on timescales of days and months. This led to the detection of one DN showing several outbursts. A Chandra X-ray source is coincident with this DN and shows both a spectrum and variability consistent with that expected frommore » a DN, thus supporting the identification. We searched for a counterpart in Hubble Space Telescope Advanced Camera for Surveys/Wide Field Camera archived images and found at least 11 candidates, of which we could characterize only the 7 brightest, including one with a 3{sigma} H{alpha} excess and a faint blue star. The detection of one DN when more could have been expected likely indicates that our knowledge of the global Galactic population of cataclysmic variables is too limited. The proportion of DNe may be lower than found in catalogs, or they may have a much smaller mean duty cycle ({approx}1%) as proposed by some population synthesis models and recent observations in the field.« less
BK Lyncis: the oldest old nova and a Bellwether for cataclysmic variable evolution
NASA Astrophysics Data System (ADS)
Patterson, Joseph; Uthas, Helena; Kemp, Jonathan; de Miguel, Enrique; Krajci, Thomas; Foote, Jerry; Hambsch, Franz-Josef; Campbell, Tut; Roberts, George; Cejudo, David; Dvorak, Shawn; Vanmunster, Tonny; Koff, Robert; Skillman, David; Harvey, David; Martin, Brian; Rock, John; Boyd, David; Oksanen, Arto; Morelle, Etienne; Ulowetz, Joseph; Kroes, Anthony; Sabo, Richard; Jensen, Lasse
2013-09-01
We summarize the results of a 20-yr campaign to study the light curves of BK Lyn, a nova-like star strangely located below the 2 to 3 h orbital-period gap in the family of cataclysmic variables (CVs). Two apparent superhumps dominate the nightly light curves, with periods 4.6 per cent longer, and 3.0 per cent shorter, than the orbital period. The first appears to be associated with the star's brighter states (V ˜ 14), while the second appears to be present throughout and becomes very dominant in the low state (V ˜ 15.7). It is plausible that these arise, respectively, from a prograde apsidal precession and a retrograde nodal precession of the star's accretion disc. Starting in the year 2005, the star's light curve became indistinguishable from that of a dwarf nova - in particular, that of the ER UMa subclass. No such clear transition has ever been observed in a CV before. Reviewing all the star's oddities, we speculate: (a) BK Lyn is the remnant of the probable nova on 101 December 30, and (b) it has been fading ever since, but it has taken ˜2000 yr for the accretion rate to drop sufficiently to permit dwarf-nova eruptions. If such behaviour is common, it can explain other puzzles of CV evolution. One: why the ER UMa class even exists (because all members can be remnants of recent novae). Two: why ER UMa stars and short-period nova-likes are rare (because their lifetimes, which are essentially cooling times, are short). Three: why short-period novae all decline to luminosity states far above their true quiescence (because they are just getting started in their post-nova cooling). Four: why the orbital periods, accretion rates and white dwarf temperatures of short-period CVs are somewhat too large to arise purely from the effects of gravitational radiation (because the unexpectedly long interval of enhanced post-nova brightness boosts the mean mass-transfer rate). And maybe even five: why very old, post-period-bounce CVs are hard to find (because the higher mass-loss rates have `burned them out'). These are substantial rewards in return for one investment of hypothesis: that the second parameter in CV evolution, besides orbital period, is time since the last classical-nova eruption.
The Photometric Evolution of the Classical Nova V723 Cassiopeia from 2006 through 2016
NASA Astrophysics Data System (ADS)
Hamilton-Drager, Catrina M.; Lane, Ryan I.; Recine, Kristen A.; Ljungquist, Lindsey S.; Grant, Jacob A.; Shrader, Katherine; Frymark, Derek G.; Dornbush, Eric M.; Richey-Yowell, Tyler; Boyle, Robert J.; Schwarz, Greg J.; Page, Kim L.
2018-02-01
We present photometric data of the classical nova, V723 Cas (Nova Cas 1995), over a span of 10 years (2006 through 2016) taken with the 0.9 m telescope at Lowell Observatory, operated as the National Undergraduate Research Observatory (NURO) on Anderson Mesa near Flagstaff, Arizona. A photometric analysis of the data produced light curves in the optical bands (Bessel B, V, and R filters). The data analyzed here reveal an asymmetric light curve (steep rise to maximum, followed by a slow decline to minimum), the overall structure of which exhibits pronounced evolution including a decrease in magnitude from year to year, at the rate of ∼0.15 mag yr‑1. We model these data with an irradiated secondary and an accretion disk with a hot spot using the eclipsing binary modeling program Nightfall. We find that we can model reasonably well each season of observation by changing very few parameters. The longitude of the hot spot on the disk and the brightness of the irradiated spot on the companion are largely responsible for the majority of the observed changes in the light curve shape and amplitude until 2009. After that, a decrease in the temperature of the white dwarf is required to model the observed light curves. This is supported by Swift/X-Ray Telescope observations, which indicate that nuclear fusion has ceased, and that V723 Cas is no longer detectable in the X-ray.
NASA Astrophysics Data System (ADS)
Ribeiro, V. A. R. M.; Bode, M. F.; Williams, R. E.
2014-12-01
We modelled the late-time Hubble Space Telescope imaging of RS Ophiuchi with models from Ribeiro et al. (2009), which at the time due to the unknown availability of simultaneous ground-based spectroscopy left some open questions as to the evolution of the expanding nebular from the early to the late time observations. Initial emission line identifications suggest that no forbidden lines are present in the spectra and that the emission lines arising in the region of the WFPC2 F502N images are due to N II and He I + Fe II. The best model fit to the spectrum is one where the outer faster moving material expands linearly with time while the inner over-density material either suffered some deceleration or did not change in physical size. The origin of this inner over-density requires further exploration.
VizieR Online Data Catalog: Dwarf novae outbursts properties (Otulakowska-Hypka+, 2016)
NASA Astrophysics Data System (ADS)
Otulakowska-Hypka, M.; Olech, A.; Patterson, J.
2017-11-01
In this study, we used the following available catalogue data sources. The catalogue and atlas of CVs (https://archive.stsci.edu/prepds/cvcat/) by Downes et al. (2001PASP..113..764D, Cat. V/123) which contains 1830 objects that have been classified as a CV before 2006 February 1, when the catalogue was frozen. Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (http://www.mpa-garching.mpg.de/RKcat/) by Ritter & Kolb (2003A&A...404..301R, Cat. B/cb). Although the reference corresponds to a catalogue which is over 10yr old, its newest edition 7.21 (2013 December 31) has been used in this study. This catalogue contains 1094 CVs. Catalogue of J. Patterson, that is the supplementary electronic material to the publication Patterson (2011) containing properties of 292 non-magnetic CVs with orbital periods smaller than 3h (http://cbastro.org/dwarfnovashort/) (1 data file).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sion, Edward M.; Sparks, Warren, E-mail: edward.sion@villanova.edu, E-mail: warrensparks@comcast.net
2014-11-20
The detection of heavy elements at suprasolar abundances in the atmospheres of some accreting white dwarfs in cataclysmic variables (CVs), coupled with the high temperatures needed to produce these elements, requires explosive thermonuclear burning. The central temperatures of any formerly more massive secondary stars in CVs undergoing hydrostatic CNO burning are far too low to produce these elements. Evidence is presented that at least some CVs contain donor secondaries that have been contaminated by white dwarf remnant burning during the common envelope phase and are transferring this material back to the white dwarf. This scenario does not exclude the channelmore » in which formerly more massive donor stars underwent CNO processing in systems with thermal timescale mass transfer. Implications for the progenitors of CVs are discussed and a new scenario for the white dwarf's accretion-nova-outburst is given.« less
NASA Astrophysics Data System (ADS)
Shappee, B. J.; Prieto, J. L.; Grupe, D.; Kochanek, C. S.; Stanek, K. Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B. M.; Pogge, R. W.; Komossa, S.; Im, M.; Jencson, J.; Holoien, T. W.-S.; Basu, U.; Beacom, J. F.; Szczygieł, D. M.; Brimacombe, J.; Adams, S.; Campillay, A.; Choi, C.; Contreras, C.; Dietrich, M.; Dubberley, M.; Elphick, M.; Foale, S.; Giustini, M.; Gonzalez, C.; Hawkins, E.; Howell, D. A.; Hsiao, E. Y.; Koss, M.; Leighly, K. M.; Morrell, N.; Mudd, D.; Mullins, D.; Nugent, J. M.; Parrent, J.; Phillips, M. M.; Pojmanski, G.; Rosing, W.; Ross, R.; Sand, D.; Terndrup, D. M.; Valenti, S.; Walker, Z.; Yoon, Y.
2014-06-01
After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look active galactic nuclei (AGNs)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 107 M ⊙. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.
Nova-like cataclysmic variable TT Arietis. QPO behaviour coming back from positive superhumps
NASA Astrophysics Data System (ADS)
Kim, Y.; Andronov, I. L.; Cha, S. M.; Chinarova, L. L.; Yoon, J. N.
2009-03-01
Aims: We study the variability of the nova-like cataclysmic variable TT Ari, on time-scales of between minutes and months. Methods: The observations in the filter R were obtained at the 40-cm telescope of the Chungbuk National University (Korea), 51 observational runs cover 226 h. The table of individual observations is available electronically. In our analysis, we applied several methods: periodogram, wavelet, and scalegram analysis. Results: TT Ari remained in a “negative superhump” state after its return from the “positive superhump” state, which lasted for 8 years. The ephemeris for 12 of the best pronounced minima is T_min=BJD 2 453 747.0700(47)+0.132322(53)E. The phases of minima may reach 0.2, which reflects the non-eclipse nature of these minima. The quasi-periodic oscillations (QPO) are present with a mean “period” of 21.6 min and mean semi-amplitude of 36 mmag. This value is consistent with the range 15-25 min reported for previous “negative superhump” states and does not support the hypothesis of secular decrease in the QPO period. Either the period, or the semi-amplitude show significant night-to-night variations. According to the position at the two-parameter diagrams (i.e. diagrams of pairs of parameters: time, mean brightness of the system, brightness of the source of QPO, amplitude, and timescale of the QPOs), the interval of observations was divided into 5 parts, showing different characteristics: 1) the “pre-outburst” stage; 2) the “rise to outburst”; 3) “top of the outbursts”; 4) “post-outburst QPO” state; and 5) “slow brightening”. The the QPO source was significantly brighter during the 10-day outburst, than during the preceding interval. However, after the outburst, the large brightness of the QPO source still existed for about 30 days, producing the stage “4”. The diagram for m_QPO(bar{m}) exhibits two groups in the brightness range 10fm6-10fm8, which correspond to larger and smaller amplitudes of the QPO. For the group “5” only, statistically significant correlations were found, for which, with increasing mean brightness, the period, amplitude, and brightness of the of QPO source also increase. The mean brightness at the “negative superhump state” varies within 10fm3-11fm2, so the system is brighter than at the “positive superhump” (11fm3), therefore the “negative superhump” phenomenon may be interpreted by a larger accretion rate. The system is an excellent laboratory for studying processes resulting in variations on timescales of between seconds and decades and needs further monitoring at various states of activity. Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/496/765
NASA Astrophysics Data System (ADS)
Khruzina, T.; Dimitrov, D.; Kjurkchieva, D.
2013-03-01
Context. Cataclysmic variables (CVs) present a short evolutional stage of binary systems. The nova-like stars are rare objects, especially those with eclipses (only several tens). But precisely these allow to determine the global parameters of their configurations and to learn more about the late stage of stellar evolution. Aims: The light curve solution allows one to determine the global parameters of the newly discovered nova-like eclipsing star 2MASS J01074282+4845188 and to estimate the contribution of the different light sources. Methods: We present new photometric and spectral observations of 2MASS J01074282+4845188. To obtain a light curve solution we used a model of a nova-like star whose emission sources are a white dwarf surrounded by an accretion disk, a secondary star filling its Roche lobe, a hot spot and a hot line. The obtained global parameters are compared with those of the eclipsing nova-like UX UMa. Results: 2MASS J01074282+4845188 shows the deepest permanent eclipse among the known nova-like stars. It is reproduced by covering the very bright accretion disk by the secondary component. The luminosity of the disk is much bigger than that of the rest light sources. The determined high temperature of the disk is typical for that observed during the outbursts of CVs. The primary of 2MASS J01074282+4845188 is one of the hottest white dwarfs in CVs. The temperature of 5090 K of its secondary is also quite high and more appropriate for a long-period SW Sex star. It might be explained by the intense heating from the hot white dwarf and the hot accretion disk of the target. Conclusions: The high mass accretion rate Ṁ = 8 × 10-9 M⊙ yr-1, the broad and single-peaked Hα emission profile, and the presence of an S-wave are sure signs for the SW Sex classification of 2MASS J01074282+4845188. The obtained flat temperature distribution along the disk radius as well as the deviation of the energy distribution from the black-body law are evidence of the non-steady emission of the disk. It can be attributed to the low viscosity of the disk matter due to its unusual high temperature. The close values of the disk temperature and the parameter αg of 2MASS J01074282+4845188 and those of the cataclysmic stars at eruptions might be considered as an additional argument for the permanent active state of nova-like stars. Based on data collected with telescopes at Rozhen National Astronomical Observatory.
Strong [Fe X] Emission and Deep Optical Eclipses of the Classical Nova V5593 Sgr 2012 No. 5
NASA Astrophysics Data System (ADS)
Starrfield, Sumner; Wagner, R. Mark; Walter, Frederick M.; Woodward, Charles E.; Schwarz, Greg; Krautter, Joachim
2016-01-01
V5593 Sgr was discovered by T. Kojima on 2012 July 16.512 UT at a magnitude of ~12.6. A low-resolution spectrum obtained by M. Fujii on 2012 July 18.572 UT confirmed that the object was indeed a Classical Nova. The AAVSO V-band light curve showed that the nova peaked near 11th mag on July 23-24 UT and subsequently declined in brightness with a t_2 of about 27 days making it a moderately fast nova. We obtained optical spectroscopy of V5593 Sgr between 2012 July 26 and 2013 February 19 UT with the SMARTS/CTIO 1.5 m telescope (+RC spectrograph) and then between 2014 August 25 and 2015 June 17 UT using the MDM Observatory 2.4 m Hiltner telescope (+CCDS), the 8.4 m Large Binocular Telescope (+MODS1), and the 6.5 m MMT (+BlueChannel). The SMARTS spectra confirmed the Fe II classification but showed that by 2013 February 19 UT the Fe II lines became much weaker and strong He II 468.5 nm and [Fe VII] 608.7 nm became prominent. A spectrum obtained on 2014 August 25 UT exhibited Balmer, He II, and [Fe VII] emission lines, but also for the first time, the presence of strong [Fe X] 637.4 nm emission with an observed intensity ratio with respect to Halpha of about 1.5. Other identified emission lines in our spectra included O VI, [Ca V], [Ca VI], [Ca VII], [Fe VI], [Fe XI], and [Fe XIV]. Surprisingly, [O III] emission was weak or absent. By 2015 June, a spectrum showed that the observed [Fe X]/Halpha intensity ratio had decreased to about 0.74. Contemporaneous optical photometry was obtained with the SMARTS/CTIO 1 m telescope (+ANDICAM) between 2014 March 19 and 2015 September 28 UT in the BVRIJHK bands. In agreement with our spectra in quiescence, V5593 Sgr is very red with (B-V) ~ 1 mag and (V-K) ~ 5 mag. The photometry shows ellipsoidal-like modulations with a peak-to-peak amplitude exceeding 2 mag in R and I. The modulation is seen in B through K; however, the amplitude is lower in JHK. Brief eclipses occur at the minimum of the ellipsoidal variation with a depth of at least 5 mag in R and I. The eclipse is seen in all bands covered by our observations. Two or more candidate periods may be consistent with the data. We will discuss these results in the context of other classical novae including GQ Mus and V723 Cas.
MID-INFRARED SPECTROSCOPIC OBSERVATIONS OF THE DUST-FORMING CLASSICAL NOVA V2676 OPH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakita, Hideyo; Arai, Akira; Shinnaka, Yoshiharu
2017-02-01
The dust-forming nova V2676 Oph is unique in that it was the first nova to provide evidence of C{sub 2} and CN molecules during its near-maximum phase and evidence of CO molecules during its early decline phase. Observations of this nova have revealed the slow evolution of its lightcurves and have also shown low isotopic ratios of carbon ({sup 12}C/{sup 13}C) and nitrogen ({sup 14}N/{sup 15}N) in its envelope. These behaviors indicate that the white dwarf (WD) star hosting V2676 Oph is a CO-rich WD rather than an ONe-rich WD (typically larger in mass than the former). We performed mid-infraredmore » spectroscopic and photometric observations of V2676 Oph in 2013 and 2014 (respectively 452 and 782 days after its discovery). No significant [Ne ii] emission at 12.8 μ m was detected at either epoch. These provided evidence for a CO-rich WD star hosting V2676 Oph. Both carbon-rich and oxygen-rich grains were detected in addition to an unidentified infrared feature at 11.4 μ m originating from polycyclic aromatic hydrocarbon molecules or hydrogenated amorphous carbon grains in the envelope of V2676 Oph.« less
The Early X-ray Emission From V382 Velorum (=Nove Vel 1999): An Internal Shock Model
NASA Technical Reports Server (NTRS)
Mukai, Koji; Ishida, Manabu
2000-01-01
We present the results of ASCA and RXTE observations of the early X-ray emission from the classical nova V382 Velorum. Its ASCA spectrum was hard (kT approximately 10 KeV) with a strong (10(exp 13)/sq cm) intrinsic absorption. In the subsequent RXTE data, the spectra became softer both due to a declining temperature and a diminishing column. We argue that this places the X-ray emission interior to the outermost ejecta produced by V382 Vel in 1999, and therefore must have been the result of a shock internal to the nova ejecta. The weakness of the Fe K.alpha lines probably indicates that the X-ray emitting plasmas are not in ionization equilibrium.
The classical nova hibernation scenario: a definitive confirmation
NASA Astrophysics Data System (ADS)
Gaensicke, Boris
2017-08-01
The detached white dwarf plus M-dwarf binary LL Eri exhibits truly unique behaviour within this class of compact binaries. As part of a COS snapshot survey, we detected large-amplitude variability in the ultraviolet flux of the white dwarf, confirmed by extensive ground-based blue-band photometry. The three independent frequencies detected in the light curves clearly identify this variability as non-radial pulsations of the white dwarf. However, with a hydrogen atmosphere and Teff=17200K, this white dwarf is nearly 5000K hotter than the canonical instability strip.The COS spectrum, albeit noisy, reveals that the metal lines typically detected in this class of stars, arising from material captured from the M-dwarf wind, are very broad. If interpreted as rotationally broadened, they imply a spin of only a few minutes. Such a short period could be explained by a past phase of intense accretion of mass and angular momentum. It has been postulated for over thirty years that classical nova eruptions on the white dwarf could cause such switching from a semi-detached to a detached binary configuration, during which the system hibernates - yet, to date no hibernating nova has been identified. However, the broad lines could also be due to pulsation-driven surface velocity fields, in which case the nature and past evolution of LL Eri would not be easily linked to any exisiting scenario for compact binary evolution. We propose to obtain a deeper COS observations to unambiguosly determine whether the cause of the observed line broadening is due to rapid rotation, which would unequivocally confirm the hibernation scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shappee, B. J.; Kochanek, C. S.; Stanek, K. Z.
2014-06-10
After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ∼70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuummore » blue bump. Such 'changing look active galactic nuclei (AGNs)' are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 10{sup 7} M {sub ☉}. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.« less
Constraining the astrophysical 23Mg(p, γ)24Al reaction rate using the 23Na(d,p)24Na reaction
NASA Astrophysics Data System (ADS)
Bennett, E. A.; Catford, W. N.; Christian, G.; Dede, S.; Hallam, S.; Lotay, G.; Ota, S.; Saastamoinen, A.; Wilkinson, R.
2017-09-01
The 23Mg(p, γ)24Al reaction provides an escape from the Ne-Na cycle in classical novae and is therefore important in understanding nova nucleosynthesis in the A > 20 mass range. Although several resonances may contribute to the overall rate at novae temperatures, the resonance at 475 keV is thought to be dominant. The strength of this resonance has been directly measured using a radioactive 23Mg beam impinging on a windowless H2 gas target; however, recent high-precision 24Al mass measurements have called this result into question. Here we make an indirect measurement using the 23Na(d,p)24Na reaction in inverse kinematics to study the mirror state of the 475 keV resonance in 24Na. The experiment, performed at the Texas A&M Cyclotron Institute, utilized the TIARA silicon array, four HPGe detectors, and the MDM spectrometer to measure the excited states of the 24Na nucleus. Preliminary results from the experiment will be presented along with progress from the ongoing analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caruso, A.; Cherubini, S.; Spitaleri, C.
Novae are astrophysical events (violent explosion) occurring in close binary systems consisting of a white dwarf and a main-sequence star or a star in a more advanced stage of evolution. They are called 'narrow systems' because the two components interact with each other: there is a process of mass exchange with resulting in the transfer of matter from the companion star to the white dwarf, leading to the formation of this last of the so-called accretion disk, rich mainly of hydrogen. Over time, more and more material accumulates until the pressure and the temperature reached are sufficient to trigger nuclearmore » fusion reactions, rapidly converting a large part of the hydrogen into heavier elements. The products of 'hot hydrogen burning' are then placed in the interstellar medium as a result of violent explosions. Studies on the element abundances observed in these events can provide important information about the stages of evolution stellar. During the outbursts of novae some radioactive isotopes are synthesized: in particular, the decay of short-lived nuclei such as {sup 13}N and {sup 18}F with subsequent emission of gamma radiation energy below 511 keV. The gamma rays from products electron-positron annihilation of positrons emitted in the decay of {sup 18}F are the most abundant and the first observable as soon as the atmosphere of the nova starts to become transparent to gamma radiation. Hence the importance of the study of nuclear reactions that lead both to the formation and to the destruction of {sup 18}F. Among these, the {sup 18}F(p,α){sup 15}O reaction is one of the main channels of destruction. This reaction was then studied at energies of astrophysical interest. The experiment done at Riken, Japan, has as its objective the study of the {sup 18}F(p,α){sup 15}O reaction, using a beam of {sup 18}F produced at CRIB, to derive important information about the phenomenon of novae. In this paper we present the experimental technique and the Monte Carlo code developed to be used in the data analysis process.« less
NASA Astrophysics Data System (ADS)
Kilpatrick, Charles D.; Foley, Ryan J.; Drout, Maria R.; Pan, Yen-Chen; Panther, Fiona H.; Coulter, David A.; Filippenko, Alexei V.; Marion, G. Howard; Piro, Anthony L.; Rest, Armin; Seitenzahl, Ivo R.; Strampelli, Giovanni; Wang, Xi E.
2018-02-01
We present multi-epoch, multicolour pre-outburst photometry and post-outburst light curves and spectra of the luminous blue variable (LBV) outburst Gaia16cfr discovered by the Gaia satellite on 2016 December 1 UT. We detect Gaia16cfr in 13 epochs of Hubble Space Telescope imaging spanning phases of 10 yr to 8 months before the outburst and in Spitzer Space Telescope imaging 13 yr before outburst. Pre-outburst optical photometry is consistent with an 18 M⊙ F8 I star, although the star was likely reddened and closer to 30 M⊙. The pre-outburst source exhibited a significant near-infrared excess consistent with a 120 au shell with 4 × 10-6 M⊙ of dust. We infer that the source was enshrouded by an optically thick and compact shell of circumstellar material from an LBV wind, which formed a pseudo-photosphere consistent with S Dor-like variables in their 'maximum' phase. Within a year of outburst, the source was highly variable on 10-30 d time-scales. The outburst light curve closely matches that of the 2012 outburst of SN 2009ip, although the observed velocities are significantly slower than in that event. In H α, the outburst had an excess of blueshifted emission at late times centred around -1500 km s-1, similar to that of double-peaked Type IIn supernovae and the LBV outburst SN 2015bh. From the pre-outburst and post-outburst photometry, we infer that the outburst ejecta are evolving into a dense, highly structured circumstellar environment from precursor outbursts within years of the 2016 December event.
Constraining Calcium Production in Novae
NASA Astrophysics Data System (ADS)
Tiwari, Pranjal; C. Fry, C. Wrede Team; A. Chen, J. Liang Collaboration; S. Bishop, T. Faestermann, D. Seiler Collaboration; R. Hertenberger, H. Wirth Collaboration
2017-09-01
Calcium is an element that can be produced by thermonuclear reactions in the hottest classical novae. There are discrepancies between the abundance of Calcium observed in novae and expectations based on astrophysical models. Unbound states 1 MeV above the proton threshold affect the production of Calcium in nova models because they act as resonances in the 38 K(p , γ) 39 Ca reaction present. This work describes an experiment to measure the energies of the excited states of 39 Ca . We will bombard a thin target of 40 Ca with a beam of 22 MeV deuterons, resulting in tritons and 39Ca. We will use a Q3D magnetic spectrograph from the MLL in Garching, Germany to momenta analyze the tritons to observe the excitation energies of the resulting 39 Ca states. Simulations have been run to determine the optimal spectrograph settings. We decided to use a chemically stable target composed of CaF2 , doing so resulted in an extra contaminant, Fluorine, which is dealt with by measuring the background from a LiF target. These simulations have led to settings and targets that will result in the observation of the 39 Ca states of interest with minimal interference from contaminants. Preliminary results from this experiment will be presented. National Sciences and Engineering Research Council of Canada and U.S. National Science Foundation.
Active Luminous Blue Variables in the Large Magellanic Cloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walborn, Nolan R.; Gamen, Roberto C.; Lajús, Eduardo Fernández
We present extensive spectroscopic and photometric monitoring of two famous and currently highly active luminous blue variables (LBVs) in the Large Magellanic Cloud (LMC), together with more limited coverage of three further, lesser known members of the class. R127 was discovered as an Ofpe/WN9 star in the 1970s but entered a classical LBV outburst in or about 1980 that is still in progress, thus enlightening us about the minimum state of such objects. R71 is currently the most luminous star in the LMC and continues to provide surprises, such as the appearance of [Ca ii] emission lines, as its spectralmore » type becomes unprecedentedly late. Most recently, R71 has developed inverse P Cyg profiles in many metal lines. The other objects are as follows: HDE 269582, now a “second R127” that has been followed from Ofpe/WN9 to A type in its current outburst; HDE 269216, which changed from late B in 2014 to AF in 2016, its first observed outburst; and R143 in the 30 Doradus outskirts. The light curves and spectroscopic transformations are correlated in remarkable detail and their extreme reproducibility is emphasized, both for a given object and among all of them. It is now believed that some LBVs proceed directly to core collapse. One of these unstable LMC objects may thus oblige in the near future, teaching us even more about the final stages of massive stellar evolution.« less
Active Luminous Blue Variables in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Walborn, Nolan R.; Gamen, Roberto C.; Morrell, Nidia I.; Barbá, Rodolfo H.; Fernández Lajús, Eduardo; Angeloni, Rodolfo
2017-07-01
We present extensive spectroscopic and photometric monitoring of two famous and currently highly active luminous blue variables (LBVs) in the Large Magellanic Cloud (LMC), together with more limited coverage of three further, lesser known members of the class. R127 was discovered as an Ofpe/WN9 star in the 1970s but entered a classical LBV outburst in or about 1980 that is still in progress, thus enlightening us about the minimum state of such objects. R71 is currently the most luminous star in the LMC and continues to provide surprises, such as the appearance of [Ca II] emission lines, as its spectral type becomes unprecedentedly late. Most recently, R71 has developed inverse P Cyg profiles in many metal lines. The other objects are as follows: HDE 269582, now a “second R127” that has been followed from Ofpe/WN9 to A type in its current outburst; HDE 269216, which changed from late B in 2014 to AF in 2016, its first observed outburst; and R143 in the 30 Doradus outskirts. The light curves and spectroscopic transformations are correlated in remarkable detail and their extreme reproducibility is emphasized, both for a given object and among all of them. It is now believed that some LBVs proceed directly to core collapse. One of these unstable LMC objects may thus oblige in the near future, teaching us even more about the final stages of massive stellar evolution.
Hydrodynamic Simulations of Classical Novae: Accretion onto CO White Dwarfs as SN Ia Progenitors
NASA Astrophysics Data System (ADS)
Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita
2017-06-01
We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material but chosen to keep the mass accretion rate at 2 x 10^{-10} solar masses per year to obtain the largest amount of accreted material possible with rates near to those observed. We assume either 25% core material or 50% core material has been mixed into the accreting material prior to the explosion. We use our 1D, lagrangian, hydrodynamic code: NOVA. We will report on the results of these simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Jose and Hernanz). We find that in all cases and for all white dwarf masses that less mass is ejected than accreted and, therefore, the white dwarf is growing in mass as a result of the accretion and resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.
Outburst activity of the symbiotic binary AG Dra
NASA Astrophysics Data System (ADS)
Gális, R.; Merc, J.; Leedjärv, L.
2017-04-01
AG Dra regularly undergoes quiescent and active stages which consist of a series of individual outbursts repeating at about a one-year interval. After seven years of flat quiescence following the 2006-08 major outbursts, in the late spring of 2015, AG Dra begun rising again in brightness toward what appeared to be a new minor outburst. The recent outburst activity of AG Dra was definitely confirmed by a more prominent outburst in April 2016. The photometric and spectroscopic observations suggest that these outbursts are of the hot type. Such behaviour is quite unusual, because the major outbursts in the beginning of active stages are usually cool. Can we expect the major cool or minor hot outburst during the spring of 2017? AG Dra demonstrates the importance of long-term monitoring of symbiotic stars in order to disentangle the nature and mechanisms of their active stages and outbursts.
THE SPIN OF THE BLACK HOLE 4U 1543-47
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morningstar, Warren R.; Miller, Jon M., E-mail: wmorning@umich.edu, E-mail: jonmm@umich.edu
2014-10-01
We present a new analysis of Rossi X-Ray Timing Explorer observations of the 2002 outburst of the transient X-ray nova 4U 1543-47. We focus on observations in the high/soft state, and attempt to measure the ''spin'' of the black hole by simultaneously fitting the thermal disk continuum and by modeling the broadened iron k-shell emission lines and additional blurred reflection features. Previous works have found that use of these methods individually returns contradictory values for the dimensionless spin parameter a {sub *} = cJ/GM {sup 2}. We find that when used in conjunction with each other, a moderate spin ismore » obtained (a{sub ∗}=0.43{sub −0.31}{sup +0.22}) that is actually consistent with both other values within errors. We discuss limitations of our analysis, systematic uncertainties, and implications of this measurement, and compare our result to those previously claimed for 4U 1543-47.« less
NASA Astrophysics Data System (ADS)
Tsygankov, S. S.; Doroshenko, V.; Lutovinov, A. A.; Mushtukov, A. A.; Poutanen, J.
2017-09-01
Aims: The magnetic field of accreting neutron stars determines their overall behavior including the maximum possible luminosity. Some models require an above-average magnetic field strength (≳1013 G) in order to explain super-Eddington mass accretion rate in the recently discovered class of pulsating ultraluminous X-ray sources (ULX). The peak luminosity of SMC X-3 during its major outburst in 2016-2017 reached 2.5 × 1039 erg s-1 comparable to that in ULXs thus making this source the nearest ULX-pulsar. Determination of the magnetic field of SMC X-3 is the main goal of this paper. Methods: SMC X-3 belongs to the class of transient X-ray pulsars with Be optical companions, and exhibited a giant outburst in July 2016-March 2017. The source has been observed over the entire outburst with the Swift/XRT and Fermi/GBM telescopes, as well as the NuSTAR observatory. Collected data allowed us to estimate the magnetic field strength of the neutron star in SMC X-3 using several independent methods. Results: Spin evolution of the source during and between the outbursts, and the luminosity of the transition to the so-called propeller regime in the range of (0.3-7) × 1035 erg s-1 imply a relatively weak dipole field of (1-5) × 1012 G. On the other hand, there is also evidence for a much stronger field in the immediate vicinity of the neutron star surface. In particular, transition from super- to sub-critical accretion regime associated with the cease of the accretion column and very high peak luminosity favor a field that is an order of magnitude stronger. This discrepancy makes SMC X-3 a good candidate for possessing significant non-dipolar components of the field, and an intermediate source between classical X-ray pulsars and accreting magnetars which may constitute an appreciable fraction of ULX population.
NOVA - Official Website | Invisible Universe Revealed
): They look like artworks in the heavens. Each one of them is different, like snowflakes. And these are coming to a focus at different points. And that is the classic problem called "spherical aberration chips of paint. They had thrown off the laser-guided measuring tool used to shape the mirror. JIM
Multi-epoch BVRI Photometry of Luminous Stars in M31 and M33
NASA Astrophysics Data System (ADS)
Martin, John C.; Humphreys, Roberta M.
2017-09-01
We present the first four years of BVRI photometry from an on-going survey to annually monitor the photometric behavior of evolved luminous stars in M31 and M33. Photometry was measured for 199 stars at multiple epochs, including 9 classic Luminous Blue Variables (LBVs), 22 LBV candidates, 10 post-RGB A/F type hypergiants, and 18 B[e] supergiants. At all epochs, the brightness is measured in the V-band and at least one other band to a precision of 0.04-0.10 mag down to a limiting magnitude of 19.0-19.5. Thirty three stars in our survey exhibit significant variability, including at least two classic LBVs caught in S Doradus-type outbursts. A hyperlinked version of the photometry catalog is at http://go.uis.edu/m31m33photcat.
NASA Astrophysics Data System (ADS)
Andronov, I. L.; Antoniuk, K. A.; Baklanov, A. V.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Dubovsky, P. A.; Han, W.; Hegedus, T.; Henden, A.; Hric, L.; Chun-Hwey, Kim; Yonggi, Kim; Kolesnikov, S. V.; Kudzej, I.; Liakos, A.; Niarchos, P. G.; Oksanen, A.; Patkos, L.; Petrik, K.; Pit', N. V.; Shakhovskoy, N. M.; Virnina, N. A.; Yoon, J.; Zola, S.
2010-12-01
We present a review of highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types classical, asynchronous, intermedi ate polars with 25 timescales corresponding to differ ent physical mechanisms and their combinations (part "Polar"); negative and positive superhumpers in nova- like and dwarf novae stars ("Superhumper"); symbiotic ("Symbiosis"); eclipsing variables with and without ev idence for a current mass transfer ("Eclipser") with a special emphasis on systems with a direct impact of the stream into the gainor star's atmosphere, which we propose to call "Impactors", or V361 Lyr-type stars. Other parts of the ILA project are "Stellar Bell" (pul sating variables of different types and periods - M, SR, RV Tau, RR Lyr, Delta Sct) and "New Variable".
The Effect of a Tectonic Stress Field on Coal and Gas Outbursts
An, Fenghua; Cheng, Yuanping
2014-01-01
Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions. PMID:24991648
Different Accretion Heating of the Neutron Star Crust during Multiple Outbursts in MAXI J0556–332
NASA Astrophysics Data System (ADS)
Parikh, Aastha S.; Homan, Jeroen; Wijnands, Rudy; Ootes, Laura; Page, Dany; Altamirano, Diego; Degenaar, Nathalie; Brown, Edward F.; Cackett, Edward; Cumming, Andrew; Deibel, Alex; Fridriksson, Joel K.; Lin, Dacheng; Linares, Manuel; Miller, Jon M.
2017-12-01
The transient neutron star (NS) low-mass X-ray binary MAXI J0556‑332 provides a rare opportunity to study NS crust heating and subsequent cooling for multiple outbursts of the same source. We examine MAXI, Swift, Chandra, and XMM-Newton data of MAXI J0556‑332 obtained during and after three accretion outbursts of different durations and brightnesses. We report on new data obtained after outburst III. The source has been tracked up to ∼1800 days after the end of outburst I. Outburst I heated the crust strongly, but no significant reheating was observed during outburst II. Cooling from ∼333 eV to ∼146 eV was observed during the first ∼1200 days. Outburst III reheated the crust up to ∼167 eV, after which the crust cooled again to ∼131 eV in ∼350 days. We model the thermal evolution of the crust and find that this source required a different strength and depth of shallow heating during each of the three outbursts. The shallow heating released during outburst I was ∼17 MeV nucleon‑1 and outburst III required ∼0.3 MeV nucleon‑1. These cooling observations could not be explained without shallow heating. The shallow heating for outburst II was not well constrained and could vary from ∼0 to 2.2 MeV nucleon‑1, i.e., this outburst could in principle be explained without invoking shallow heating. We discuss the nature of the shallow heating and why it may occur at different strengths and depths during different outbursts.
NASA Astrophysics Data System (ADS)
Lanzafame, G.
2009-08-01
Inflow kinematics at the inner Lagrangian point L1, gas compressibility, and physical turbulent viscosity play a fundamental role on accretion disc dynamics and structure in a close binary (CB). Physical viscosity supports the accretion disc development inside the primary gravitational potential well, developing the gas radial transport, converting mechanical energy into heat. The Stellar-Mass-Ratio (SMR) between the compact primary and the secondary star (M1/M2) is also effective, not only in the location of the inner Lagrangian point, but also in the angular kinematics of the mass transfer and in the geometry of the gravitational potential wells. In this work we pay attention in particular to the role of the SMR, evaluating boundaries, separating theoretical domains in compressibility-viscosity graphs where physical conditions allow a well-bound disc development, as a function of mass transfer kinematic conditions. In such domains, the lower is the gas compressibility (the higher the polytropic index γ), the higher is the physical viscosity (α) requested. In this work, we show how the boundaries of such domains vary as a function of M1/M2. Conclusions as far as dwarf novae outbursts are concerned, induced by mass transfer rate variations, are also reported. The smaller M1/M2, the shorter the duration of the active-to-quiet and vice-versa transitional phases. Time-scales are of the order of outburst duration of SU Uma, OY Car, Z Cha and SS Cyg-like objects. Moreover, conclusions as far as active-quiet-active phenomena in a CB, according to viscous-thermal instabilities, in accordance to such domains, are also reported.
Investigating the physical properties of outbursts on comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Lin, Z.-Y.; Knollenberg, J.; Vincent, J.-B.; A'Hearn, M. F.; Ip, W.-H.; Sierks, H.; &. The Osiris Team
2017-09-01
Our measurements of outbursts were based on the outburst sequences scheduled by single-filter observation (UV375 filter in WAC or orange filter in NAC) and pairs of consecutive images obtained in short time interval with NAC orange filter. The main results from the analysis of the images of outbursts from July 29 to September 30, 2015 can be summarized as follows: The calculated excess brightness from these outburst plume ranges from a few percent to ˜28%. In some major outbursts, the contributed brightness from the outburst plume can be one or two times larger than the typical coma jet activities. The strongest one is the perihelion outburst detected just a few hours before the comet reached perihelion. By studying the brightness slope of outburst plume, we interpret the detected transient events as the continuous streams of outflowing gas and dust which are triggered by some particular mechanisms and then remain active for some minutes to less than few hours. The mass ejection rate during a large outburst could reach a few percent of the steady state value of the dust coma.
NASA Astrophysics Data System (ADS)
Ootes, Laura S.; Wijnands, Rudy; Page, Dany; Degenaar, Nathalie
2018-07-01
With our neutron star crust cooling code NSCOOL, we track the thermal evolution of the neutron star in Aql X-1 over the full accretion outburst history from 1996 until 2015. For the first time, we model many outbursts (23 outbursts were detected) collectively and in great detail. This allows us to investigate the influence of previous outbursts on the internal temperature evolution and to test different neutron star crust cooling scenarios. Aql X-1 is an ideal test source for this purpose, because it shows frequent, short outbursts and thermally dominated quiescence spectra. The source goes into outburst roughly once a year for a few months. Assuming that the quiescent Swift/X-Ray Telescope observations of Aql X-1 can be explained within the crust cooling scenario, we find three main conclusions. First, the data are well reproduced by our model if the envelope composition and shallow heating parameters are allowed to change between outbursts. This is not the case if both shallow heating parameters (strength and depth) are tied throughout all accretion episodes, supporting earlier results that the properties of the shallow heating mechanism are not constant between outbursts. Secondly, from our models, shallow heating could not be connected to one specific spectral state during outburst. Thirdly, and most importantly, we find that the neutron star in Aql X-1 does not have enough time between outbursts to cool down to crust-core equilibrium and that heating during one outburst influences the cooling curves of the next.
NASA Astrophysics Data System (ADS)
Mehner, A.; Baade, D.; Groh, J. H.; Rivinius, T.; Hambsch, F.-J.; Bartlett, E. S.; Asmus, D.; Agliozzo, C.; Szeifert, T.; Stahl, O.
2017-12-01
Context. Luminous blue variables (LBVs) are evolved massive stars that exhibit instabilities that are not yet understood. Stars can lose several solar masses during this evolutionary phase. The LBV phenomenon is thus critical to our understanding of the evolution of the most massive stars. Aims: The LBV R71 in the Large Magellanic Cloud is presently undergoing an S Doradus outburst, which started in 2005. To better understand the LBV phenomenon, we determine the fundamental stellar parameters of R71 during its quiescence phase. In addition, we analyze multiwavelength spectra and photometry obtained during the current outburst. Methods: We analyzed pre-outburst CASPEC spectra from 1984-1997, EMMI spectra in 2000, UVES spectra in 2002, and FEROS spectra from 2005 with the radiative transfer code CMFGEN to determine the fundamental stellar parameters of the star. A spectroscopic monitoring program with VLT X-shooter since 2012 secured visual to near-infrared spectra throughout the current outburst, which is well-covered by ASAS and AAVSO photometry. Mid-infrared images and radio data were also obtained. Results: During quiescence, R71 has an effective temperature of Teff = 15 500 K and a luminosity of log(L∗/L⊙) = 5.78. We determine its mass-loss rate to 4.0 × 10-6M⊙ yr-1. We present the spectral energy distribution of R71 from the near-ultraviolet to the mid-infrared during its present outburst. Semi-regular oscillatory variability in the light curve of the star is observed during the current outburst. Absorption lines develop a second blue component on a timescale of twice that length. The variability may consist of one (quasi-)periodic component with P 425/850 d with additional variations superimposed. Conclusions: R71 is a classical LBV, but this star is at the lower luminosity end of this group. Mid-infrared observations suggest that we are witnessing dust formation and grain evolution. During its current S Doradus outburst, R71 occupies a region in the HR diagram at the high-luminosity extension of the Cepheid instability strip and exhibits similar irregular variations as RV Tau variables. LBVs do not pass the Cepheid instability strip because of core evolution, but they develop comparable cool, low-mass, extended atmospheres in which convective instabilities may occur. As in the case of RV Tau variables, the occurrence of double absorption lines with an apparent regular cycle may be due to shocks within the atmosphere and period doubling may explain the factor of two in the lengths of the photometric and spectroscopic cycles. Based on observations collected at ESO's Very Large Telescope under Prog-IDs: 69.D-0390(D), 289.D-5040(A), 290.D-5032(A), 091.D-0116(A, B), 092.D-0024(A), 094.D-0266(A, B, C), 096.D-0043(A, B, C), 097.D-0006(A, B), 598.D-0005(A, B) and at the MPG/ESO 2.2-m Telescope under Prog-IDs: 076.D-0609(A), 078.D-0790(B), 086.D-0997(A, B), 087.D-0946(A), 089.D-0975(A), 094.A-9029(D), 096.A-9039(A), 097.D-0612(A, B), 098.D-0071(A).
An archive study of 18 old novae. I. The UV spectra
NASA Astrophysics Data System (ADS)
Selvelli, P.; Gilmozzi, R.
2013-12-01
Aims: We present an overview of the UV spectral properties of old novae as a class. The data and results of this paper, together with data from the outburst phases, will be utilized in a follow-up study to determine statistical properties and to investigate correlations among the physical parameters of the quiescent and eruptive phases. Methods: All the available IUE, HST, and FUSE archive data for 18 old novae were used to derive accurate and homogeneous estimates of the reddening from the 2175 Å extinction bump and to determine the intrinsic spectral energy distribution corresponding to the utilization of both existing extinction curves. We also measured all the emission and absorption lines. Results: We have found good agreement between spectra taken at different epochs and by different instruments, a clear indication of the near constancy of the SED on timescales of several years. With the possible exception of GK Per, the dereddened UV continua are represented well by a single-curve power-law distribution Fλ ∝ λ- α, with α in the range 0.32-2.55 for one curve and 0.35-2.88 for the other one. The extrapolation of the various UV power laws to the optical range yields values that are in good agreement with the V magnitudes. We interpret this result as evidence that the SED is dominated by the accretion disk in the UV and optical spectral regions. A detailed study of the emission spectrum has led to measuring and identifying more than one hundred features and to detecting several lines that are rather uncommon in other CVs and whose identification is uncertain. Based on INES data from the IUE satellite. Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). Tables 2-7 and 10-14 are available in electronic form at http://www.aanda.orgThe final reduced spectra (FITS files) and full Table 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A49
Circumstellar dust in symbiotic novae
NASA Astrophysics Data System (ADS)
Jurkic, Tomislav; Kotnik-Karuza, Dubravka
2015-08-01
Physical properties of the circumstellar dust and associated physical mechanisms play an important role in understanding evolution of symbiotic binaries. We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the long-term near-IR photometry, infrared ISO spectra and mid-IR interferometry. Pulsation properties and long-term variabilities were found from the near-IR light curves. The dust properties were determined using the DUSTY code which solves the radiative transfer. No changes in pulsational parameters were found, but a long-term variations with periods of 20-25 years have been detected which cannot be attributed to orbital motion.Circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel showed the presence of an optically thin CS dust envelope and an optically thick dust region outside the line of sight, which was further supported by the detailed modelling using the 2D LELUYA code. Obscuration events in RR Tel were explained by an increase in optical depth caused by the newly condensed dust leading to the formation of a compact dust shell. HM Sge showed permanent obscuration and a presence of a compact dust shell with a variable optical depth. Scattering of the near-IR colours can be understood by a change in sublimation temperature caused by the Mira variability. Presence of large dust grains (up to 4 µm) suggests an increased grain growth in conditions of increased mass loss. The mass loss rates of up to 17·10-6 MSun/yr were significantly higher than in intermediate-period single Miras and in agreement with longer-period O-rich AGB stars.Despite the nova outburst, HM Sge remained enshrouded in dust with no significant dust destruction. The existence of unperturbed dust shell suggests a small influence of the hot component and strong dust shielding from the UV flux. By the use of the CLOUDY code, we have showed that a high-density gas region can effectively stop most of the UV flux from the white dwarf and provide the observed dust shielding.
A DOUBLE-PEAKED OUTBURST OF A 0535+26 OBSERVED WITH INTEGRAL, RXTE, AND SUZAKU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caballero, I.; Pottschmidt, K.; Marcu, D. M.
2013-02-20
The Be/X-ray binary A 0535+26 showed a normal (type I) outburst in 2009 August. It is the fourth in a series of normal outbursts associated with the periastron, but is unusual because it presented a double-peaked light curve. The two peaks reached a flux of {approx}450 mCrab in the 15-50 keV range. We present results of the timing and spectral analysis of INTEGRAL, RXTE, and Suzaku observations of the outburst. The energy-dependent pulse profiles and their evolution during the outburst are studied. No significant differences with respect to other normal outbursts are observed. The centroid energy of the fundamental cyclotronmore » line shows no significant variation during the outburst. A spectral hardening with increasing luminosity is observed. We conclude that the source is accreting in the sub-critical regime. We discuss possible explanations for the double-peaked outburst.« less
VizieR Online Data Catalog: Properties of the known Galactic classical novae (Pagnotta+, 2014)
NASA Astrophysics Data System (ADS)
Pagnotta, A.; Schaefer, B. E.
2017-07-01
RNe and CNe have substantial overlap in the observed distributions of their properties. Indeed, this is expected, since many CNe are really RNe. Nevertheless, a variety of properties are greatly different between the CNe and the RNe. For example, most RNe have orbital periods longer than 0.6 days, while most CNe have orbital periods shorter than 0.3 days. Such properties can be used as indicators for recognizing RNe among the CNe. Due to the overlapping distribution of properties, no one property (other than multiple observed nova eruptions) can be used to definitively identify the CN or RN nature of any system. We never prove that a system is an RN by any means other than finding multiple eruptions. The presence of multiple positive indicators, however, especially if none are contrary, can make a strong case for the RN nature of a system. (2 data files).
Various meteor scenes II: Cygnid-Draconid Complex (κ-Cygnids)
NASA Astrophysics Data System (ADS)
Koseki, Masahiro
2014-10-01
Japanese video observers caught a rich `κ-Cygnid' recurrent event in 2007 after an outburst observed by DMS in 1993. Classic `κ-Cygnids' were observed photographically in 1950 and 1957. The shower might be recurrent with a 7 year period. This led to a call for 2014 observations in WGN (42:3, p. 89). The author showed in Paper I (Koseki, 2014) that the perception and the conception of a meteor shower are so different that there are many confused results. `κ-Cygnids' are a good such example and give different impressions from different observational techniques and from different years. It is suggested modern so-called `κ-Cygnids' now are not a single shower but a part of the Cygnids-Draconids Complex (CDC). CDC consists of several minor showers: the classic (photographic) one KCG1, the modern recurrent one KCG2, the one in average years KCG3, and three other activities. `κ-Cygnids' in average years are different from classic `&kappa-Cygnids' and ;DC looks different based on the different conception and the different perception (observing methods) of a meteor shower.
Orbital Light Curves of UU Aquarii in Stunted Outburst
NASA Astrophysics Data System (ADS)
Robertson, J. W.; Honeycutt, R. K.; Henden, A. A.; Campbell, R. T.
2018-02-01
Stunted outbursts are ∼0.ͫ6 eruptions, typically lasting 5–10 days, which are found in some novalike cataclysmic variables, including UU Aqr. The mechanism responsible for stunted outbursts is uncertain but is likely related to an accretion disk instability or to variations in the mass transfer rate. A campaign to monitor the eclipse light curves in UU Aqr has been conducted in order to detect any light curve distortions due to the appearance of a hot spot on the disk at the location of the impact point of the accretion stream. If stunted outbursts are due to a temporary mass transfer enhancement, then predictable deformations of the orbital light curve are expected to occur during such outbursts. This study used 156 eclipses on 135 nights during the years 2000–2012. During this interval, random samples found the system to be in stunted outbursts 4%–5% of the time, yielding ∼7 eclipses obtained during some stage of stunted outburst. About half of the eclipses obtained during stunted outbursts showed clear evidence for hot spot enhancement, providing strong evidence that the stunted outbursts in UU Aqr are associated with mass transfer variations. The other half of the eclipses during stunted outburst showed little or no evidence for hot spot enhancement. Furthermore, there were no systematic changes in the hot spot signature as stunted outbursts progressed. Therefore, we have tentatively attributed the changes in hot spot visibility during stunted outburst to random blobby accretion, which likely further modulates the strength of the accretion stream on orbital timescales.
RXTE spectra of the Galactic microquasar GRO J1655-40 during the 2005 outburst
NASA Astrophysics Data System (ADS)
Saito, Koji; Yamaoka, K.; Fukuyama, M.; Miyakawa, T. G.; Yoshida, A.; Homan, J.
We report on the results of a detailed spectral analysis of 389 RXTE observations of the Galac- tic microquasar GRO J1655-40, performed during its 2005 outburst. The maximum luminosity reached during this outburst was 1.4 times higher than in the previous (1996-1997) outburst. However, the spectral behavior during the two outbursts was very similar. In particular, L disk was 4 proportional to Tin up to the same critical luminosity and in both outbursts there were periods during which the energy spectra were very soft, but could not be fit with standard disk models.
The 1988 glacial lake outburst flood in Guangxieco Lake, Tibet, China
NASA Astrophysics Data System (ADS)
Liu, J.-J.; Cheng, Z.-L.; Li, Y.
2014-11-01
The 1988 glacial lake outburst flood (GLOF) in Guangxieco Lake is studied based on geomorphological evidence, interviews with local residents, field surveys in 1990 and 2007, and satellite images from different years. The findings are as follows. (1) The outburst event was caused by two major factors, namely, intense pre-precipitation and persistent high temperatures before the outburst and the low self-stability of the terminal moraine dam as a result of perennial piping. (2) The GLOF, with the peak discharge rate of 1270 m3 s-1, evolved along Midui Valley in the following order: sediment-laden flow, viscous debris flow, non-viscous debris flow, and sediment-laden flood, which was eventually blocked by Palongzangbu River. (3) A comparison between the conditions during the outburst in 1988 and the present conditions suggests a small possibility of a future outburst unless drastic changes occur in landscape and climate. Reconstructing the outburst conditions and the GLOF processes is helpful in assessing a potential outburst in glacier lakes in Tibet.
On the origin of the HLX-1 outbursts
NASA Astrophysics Data System (ADS)
Sun, Mouyuan; Gu, Wei-Min; Yan, Zhen; Wu, Qingwen; Liu, Tong
2016-11-01
HLX-1, currently the best intermediate-mass black hole candidate, has undergone seven violent outbursts, each with a peak X-ray luminosity of Lpeak,X ˜ 1042 erg s-1. Interestingly, the properties of the HLX-1 outbursts evolve with time. In this work, we aim to constrain the physical parameters of the central engine of the HLX-1 outbursts in the framework of the black hole accretion. We find that the physical properties of the HLX-1 outbursts are consistent with being driven by the radiation pressure instability. This scenario can explain the evolution of the recurrent time-scales of the HLX-1 outbursts as a function of the durations.
The Impact of FU Orionis Outbursts and the Solar Nebula
NASA Technical Reports Server (NTRS)
Bell, Robbins; Young, Richard E. (Technical Monitor)
1998-01-01
Protostellar systems are variable on many timescales. One of the most dramatic forms of variability known to occur in low mass stellar systems is the FU Orionis outburst (Herbig 1977). Throughout a typical outburst lasting several decades, system luminosities may be a hundred times what is typical of the quiesent state. FU Orionis outburst events are thought to have significant impact on the thermal structure of the protosolar nebula; their existence has been used to explain features in the meteoritic record from thermally induced homogenization to the formation of chondrules. Until recently, the magnitude of the likely effect from such outbursts has been largely speculative due to the lack of a detailed understanding of the outburst mechanism. Recent numerical models (Bell\\& Lin 1994) have demonstrated the viability of the observational hypothesis (Hartmann\\& Kenyon 1985) that the radiation observed during outburst is emitted by a luminous circumstellar disk transporting mass at a thousand times the quiesent rate. Light curves and color and line width evolution observed in FU Orionis systems are naturally explained by time dependent outbursting model disks (Bell et al. 1995). The radial temperature structure and shape of the disk during outburst derived from these models may be used to calculate the outburst's expected impact on primitive material at various radii throughout the disk. In this review, we will begin by discussing what is known about the FU Orionis outburst phenomenon from recent observations and theory including statistically deduced outburst timescales and observed peak temperatures. Unless covered by another author, we will discuss the evidence which suggests that outburst radiation is emitted by a circumstellar disk rather than by the star and will briefly review the thermal instability as a mechanism for outburst. We will then report on recent work which investigates the likely heating of solar nebula material due to FU Orionis outbursts including the following effects: (1) heating of the planet forming region by direct radiation from the hot inner nebula; (2) heating by the diffuse radiation field of a coccooning envelope; and (3) time-dependent penetration of the increased luminosity from the above sources into the optically thick nebula. Some of this work is currently in progress. The potential effects on condensation and migration in the nebula and the thermal processing of solids will be evaluated.
MULTIWAVELENGTH PHOTOMETRY AND HUBBLE SPACE TELESCOPE SPECTROSCOPY OF THE OLD NOVA V842 CENTAURUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sion, Edward M.; Szkody, Paula; Mukadam, Anjum
2013-08-01
We present ground-based optical and near infrared photometric observations and Hubble Space Telescope (HST) COS spectroscopic observations of the old nova V842 Cen (Nova Cen 1986). Analysis of the optical light curves reveals a peak at 56.5 {+-} 0.3 s with an amplitude of 8.9 {+-} 4.2 mma, which is consistent with the rotation of a magnetic white dwarf primary in V842 Cen that was detected earlier by Woudt et al., and led to its classification as an intermediate polar. However, our UV lightcurve created from the COS time-tag spectra does not show this periodicity. Our synthetic spectral analysis ofmore » an HST COS spectrum rules out a hot white dwarf photosphere as the source of the FUV flux. The best-fitting model to the COS spectrum is a full optically thick accretion disk with no magnetic truncation, a low disk inclination angle, low accretion rate and a distance less than half the published distance that was determined on the basis of interstellar sodium D line strengths. Truncated accretion disks with truncation radii of 3 R{sub wd} and 5 R{sub wd} yielded unsatisfactory agreement with the COS data. The accretion rate is unexpectedly low for a classical nova only 24 yr after the explosion when the accretion rate is expected to be high and the white dwarf should still be very hot, especially if irradiation of the donor star took place. Our low accretion rate is consistent with those derived from X-ray and ground-based optical data.« less
An eLIMA model for the 67 s X-ray periodicity in CAL 83
NASA Astrophysics Data System (ADS)
Odendaal, A.; Meintjes, P. J.
2017-05-01
Supersoft X-ray sources (SSSs) are characterized by their low effective temperatures and high X-ray luminosities. The soft X-ray emission can be explained by hydrogen nuclear burning on the surface of a white dwarf (WD) accreting at an extremely high rate. A peculiar ˜67 s periodicity (P67) was previously discovered in the XMM-Newton light curves of the SSS CAL 83. P67 was detected in X-ray light curves spanning ˜9 yr, but exhibits variability of several seconds on time-scales as short as a few hours, and its properties are remarkably similar to those of dwarf nova oscillations (DNOs). DNOs are short time-scale modulations (≲1 min) often observed in dwarf novae during outburst. DNOs are explained by the well-established low-inertia magnetic accretor (LIMA) model. In this paper, we show that P67 and its associated period variability can be satisfactorily explained by an application of the LIMA model to the more 'extreme' environment in an SSS (eLIMA), contrary to another recent study attempting to explain P67 and its associated variability in terms of non-radial g-mode oscillations in the extended envelope of the rapidly accreting WD in CAL 83. In the eLIMA model, P67 originates in an equatorial belt in the WD envelope at the boundary with the inner accretion disc, with the belt weakly coupled to the WD core by an ˜105 G magnetic field. New optical light curves obtained with the Sutherland High-speed Optical Camera are also presented, exhibiting quasi-periodic modulations on time-scales of ˜1000 s, compatible with the eLIMA framework.
NASA Astrophysics Data System (ADS)
Debnath, Dipak; Chakrabarti, Sandip. K.; Nandi, Anuj
2015-01-01
The Galactic black hole candidate (BHC) H 1743-322 recently exhibited two outbursts in X-rays in August 2010 & April 2011. The nature (outburst profile, evolution of quasi-periodic oscillation (QPO) frequency and spectral states, etc.) of these two successive outbursts, which continued for around two months each, are very similar. We present the results obtained from a comparative study on the temporal and the spectral properties of the source during these two outbursts. The evolutions of QPOs observed in both the outbursts were well fitted with propagating oscillatory shock (POS) model. During both the outbursts, the observed spectral states (i.e, hard, hard-intermediate, soft-intermediate and soft) follow the `standard' type of hysteresis-loop, which could be explained with two component advective flow (TCAF) model.
The SSS classical nova V5116 Sgr
NASA Astrophysics Data System (ADS)
Sala, G.; Ness, J.; Greiner, J.; Hernanz, M.
2017-10-01
XMM-Newton observed the nova V5116 Sgr during its supersoft phase (SSS). V5116 Sgr showed a decrease of the flux by a factor around 8 during 2/3 of the orbital period. The broad band EPIC spectra remain unchanged during the different flux phases, suggesting an occultation of the central source in a high inclination system. While the global SED does not change significantly, the RGS spectrum is changing between the high and the low flux phases. The non-occultation phase shows a typical white dwarf atmosphere spectrum, dominated by absorption lines. During the low flux periods an extra component of emission lines is superimposed to the soft X-ray continuum. This supports the picture of V5116 Sgr as the clearest example of a system switching between the SSa class of SSS novae, with spectra dominated by absorption lines, and the SSe class, showing an emission lines component. In addition, the simultaneous OM images allow us to find a phase solution for the X-ray light-curve. A thick rim of the accretion disk as the one developed for the SSSs CAL 87, RX J0019.8, and RX J0513.9 could provide a plausible model both for the optical and the X-ray light curve of V5116 Sgr.
NASA Astrophysics Data System (ADS)
Newton, Joseph
Classical novae are explosive binary systems involving the accretion of hydrogen rich material from a main sequence star onto the surface of a white dwarf partner, reaching peak temperatures of T = 0.1-0.4 GK. Observed elemental abundances from the ejecta provide much needed constraints for the modeling of these explosions. Novae are thought to be the most significant source of 15 N and 17 O in the universe. The 17 O(p,g) 18 F and 17 O(p,g) 14 N reactions have an important effect on nucleosynthesis in novae, since they determine the creation and destruction of 17 O and 18 F, which produces detectable g- radiation. The dominant contributor to the 17 O(p,g) 14 N reaction is a resonance at [Special characters omitted.] = 193 keV. The strength of this resonance has been measured and the results are presented. For the 17 O(p,g) 18 F reaction, the dominant contribution comes from the nonresonant direct capture process. The literature direct capture cross sections currently differ by a factor of two. This cross section has been measured in the current work and the results are also presented. New reaction rates have been calculated with these measured cross sections using a new Monte Carlo technique and these new rates have significantly reduced uncertainties compared to the current literature.
Self-Consistent Models of Accretion Disks
NASA Technical Reports Server (NTRS)
Narayan, Ramesh
1997-01-01
The investigations of advection-dominated accretion flows (ADAFs), with emphasis on applications to X-ray binaries containing black holes and neutron stars is presented. This work is now being recognized as the standard paradigm for understanding the various spectral states of black hole X-ray Binaries (BHXBs). Topics discussed include: (1) Problem in BHXBS, namely that several of these binaries have unusually large concentrations of lithium in their companion stars; (2) A novel test to show that black holes have event horizons; (3) Application of the ADAF model to the puzzling X-ray delay in the recent outburst of the BHXB, GRO J1655-40; (4) Description of the various spectral states in BHXBS; (5) Application of the ADAF model to the famous supermassive black hole at the center of our Galaxy, Sgr A(*); (6) Writing down and solving equations describing steady-state, optically thin, advection-dominated accretion onto a Kerr black hole; (7) The effect of "photon bubble" instability on radiation dominated accretion disks; and (8) Dwarf nova disks in quiescence that have rather low magnetic Reynolds number, of order 10(exp 3).
A Classical Nova Explosion in a Binary System with B[e] Star
NASA Astrophysics Data System (ADS)
Filippova, E.; Revnivtsev, M.; Lutovinov, A.
2011-09-01
The description of a thermonuclear runaway on a white dwarf, which causes a Classical Nova (CN) explosion, has several uncertainties. Observational tests of models are challenging because the majority of CNe are observed in optical and NIR spectral bands days after the onset of the explosion. We propose to use the properties of the X-ray emission of CNe for these tests. We have developed a model for the 1998 CN explosion in the binary system CI Cam. According to the adopted model the stellar wind from the optical component (a B[e] star), heated by a strong shock wave that was produced when matter was ejected from the white dwarf as the result of a thermonuclear explosion on its surface, is the source of X-ray emission in the standard X-ray band (˜ 2 - 10 keV). We use this model to explain the behaviour of the X-ray luminosity and of the mean temperature of the heated material during the explosion, and obtain velocity and mass estimates of the ejected matter from the WD surface. Discrepancies between model and observations, for example the slower decline of the theoretical luminosity compared to the observed one, are likely caused by the rough assumption of spherical symmetry. Using 3D calculations we find possible density perturbations (accretion wakes) that can reconcile theory with observations.
The HEPCloud Facility: elastic computing for High Energy Physics - The NOvA Use Case
NASA Astrophysics Data System (ADS)
Fuess, S.; Garzoglio, G.; Holzman, B.; Kennedy, R.; Norman, A.; Timm, S.; Tiradani, A.
2017-10-01
The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a common interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 38 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This paper describes the Fermilab HEPCloud Facility and the challenges overcome for the CMS and NOvA communities.
UV spectroscopy of Z Chamaeleontis. II - The 1988 January normal outburst
NASA Technical Reports Server (NTRS)
Harlaftis, E. T.; Naylor, T.; Hassall, B. J. M.; Charles, P. A.; Sonneborn, G.; Bailey, J.
1992-01-01
IUE observations taken during the 1988 January normal outburst of Z Cha are presented and a detailed comparison with the 1987 April superoutburst is made. The most important difference from the superoutburst is that the normal outburst continuum flux shows less than 10 percent orbital variation away from the eclipse, implying that there is no 'cool' bulge on the disk to occult the brighter inner disk periodically. The implications for the outburst mechanism in the types of outburst are discussed. The evolution of the continuum flux distribution and emission-line fluxes, the modulation of the continuum and line fluxes with orbital phase, and the behavior of the mideclipse spectral during normal outburst are investigated.
GRO J2058+42 Observations with BATSE and RXTE
NASA Technical Reports Server (NTRS)
Wilson, Colleen A.; Finger, M. H.; Scott, D. M.
1999-01-01
GRO J2058+422 is a 196 second pulsar discovered with BATSE during a giant outburst in 1995. It underwent a series of 9 weaker outbursts from 1995 to 1997 which alternated in intensity, with a 110 day cycle in the 20-50 keV band. These outbursts did not show the same, intensity variations in the 2-10 keV observations with the RXTE ASM. Additional outbursts after this series were observed with BATSE, using a more sensitive search method which accounts for excess aperiodic noise from Cygnus X-1, and with the RXTE PCA and ASM. A set of two outbursts, one "periastron" and one "apastron" outburst (assuming a 110 day orbital period) were observed with the RXTE PCA. Pulse shape differences were found between the two outbursts. Histories of pulse frequency, pulsed flux. and total flux are presented. Pulse profiles and spectra from PCA observations are also presented.
NASA Astrophysics Data System (ADS)
Trigo-Rodriguez, Josep M.
2008-10-01
The present outburst experienced by this Centaur (#IAUC 8978) is the brightest detected since September 2004 [for more details see Trigo-Rodriguez et al. (2008) A&A485, pp. 599-606]. In the previously reported work the outburst frequency was established in 7.3 outbursts/year, typically reaching a +13 maximum magnitude or less.
NASA Astrophysics Data System (ADS)
Abraham, Lalitha; Agrawal, V. K.
4U 1630-47 is a soft X-ray transient which is thought to be a blackhole candidate. This source exhibits quasi-periodic outbursts on time scales of 500-700 days. In addition to the normal outbursts which usually last for a few months, the source displays superoutbursts, lasting for one to two years, seen to recur in every 10-12 years. The outburst ephemeris has been studied previously upto 1996 outbursts. In this work we present the updated ephemeris using 16 years data obtained from All Sky Monitor (ASM) onboard RXTE and one years data from MAXI satellite. The data covers 7 outbursts seen from ASM and one outburst seen by MAXI. We study morphology of each of these outbursts. We find that most of the bursts can be classified in basic three categories: flat top, FRED (Fast Rise Exponential Decay) and triangular. We also investigate relation between burst properties with quiescent flux level using Suzaku data, a study which has not been done previously.
FU Orionis Outbursts and the Solar Nebula
NASA Technical Reports Server (NTRS)
Bell, Robbins; Young, Rich (Technical Monitor)
1998-01-01
Protostellar systems are variable on many timescales. The FU Orionis outburst is one of the most drastic forms of variability known to occur in low mass stellar systems. During a typical outburst lasting several decades, system luminosities may be a hundred times what is normal of the quiescent state. FU Orionis outburst events are believed to have significant impacts on the thermal structure of the protosolar nebula. Their existence has been utilized to explain features in the meteoritic record from thermally induced homogenization to chondrule formation. Recent numerical models have shown the viability of the hypothesis that the radiation observed during outburst is emitted by a luminous circumstellar disk transporting mass at a thousand times the quiescent rate. We will begin by describing what is known about the FU Orionis outburst phenomenon from recent observations and theory. We will discuss evidence that suggests that outburst radiation is emitted by a circumstellar disk rather than by the star and will briefly describe the thermal instability as a mechanism for outburst. Additional information is contained in the original extended abstract.
On the morphology of outbursts of accreting millisecond X-ray pulsar Aquila X-1
NASA Astrophysics Data System (ADS)
Güngör, C.; Ekşi, K. Y.; Göğüş, E.
2017-10-01
We present the X-ray light curves of the last two outbursts - 2014 & 2016 - of the well known accreting millisecond X-ray pulsar (AMXP) Aquila X-1 using the monitor of all sky X-ray image (MAXI) observations in the 2-20 keV band. After calibrating the MAXI count rates to the all-sky monitor (ASM) level, we report that the 2016 outburst is the most energetic event of Aql X-1, ever observed from this source. We show that 2016 outburst is a member of the long-high class according to the classification presented by Güngör et al. with ˜ 68 cnt/s maximum flux and ˜ 60 days duration time and the previous outburst, 2014, belongs to the short-low class with ˜ 25 cnt/s maximum flux and ˜ 30 days duration time. In order to understand differences between outbursts, we investigate the possible dependence of the peak intensity to the quiescent duration leading to the outburst and find that the outbursts following longer quiescent episodes tend to reach higher peak energetic.
Properties of the Second Outburst of the Bursting Pulsar (GRO J1744-28) as Observed with BATSE
NASA Technical Reports Server (NTRS)
Woods, P.; Kouveliotou, C.; vanParadijs, J.; Briggs, M. S.; Wilson, C. A.; Deal, K. J.; Harmon, B. A.; Fishman, G. J.; Lewin, W. H.; Kommers, J.
1998-01-01
One year after its discovery, the Bursting Pulsar (GRO J1744-28) went into outburst again, displaying the hard X-ray bursts and pulsations that make this source unique. We report on Burst and Transient Source Experiment (BATSE) observations of both the persistent and burst emission for this second outburst and draw comparisons to the first. The second outburst was smaller than the first in both duration and peak luminosity. The persistent flux, burst peak flux and burst fluence were all reduced in amplitude by a factor approximately 1.7. Despite these differences, the average burst occurrence rate and average burst durations were roughly the same through each outburst. Similar to the first outburst, no spectral evolution was found within bursts and the parameter alpha was very small at the start of the outburst (alpha = 2.1 +/- 1.7 on 1996 December 2). Although no spectral evolution was found within individual bursts, we find evidence for a small (20%) variation of the spectral temperature during the course of the second outburst.
Systematic study of magnetar outbursts
NASA Astrophysics Data System (ADS)
Coti Zelati, Francesco; Rea, Nanda; Pons, José A.; Campana, Sergio; Esposito, Paolo
2018-02-01
We present the results of the systematic study of all magnetar outbursts observed to date, through a reanalysis of data acquired in about 1100 X-ray observations. We track the temporal evolution of the outbursts' soft X-ray spectral properties and the luminosities of the single spectral components as well as of the total emission. We model empirically all outburst light curves, and estimate the characteristic decay time-scales as well as the energetics involved. We investigate the link between different parameters (e.g. the luminosity at the peak of the outburst and in quiescence, the maximum luminosity increase, the decay time-scale and energy of the outburst, the neutron star surface dipolar magnetic field and characteristic age, etc.), and unveil several correlations among these quantities. We discuss our results in the context of the internal crustal heating and twisted bundle models for magnetar outbursts. This study is complemented by the Magnetar Outburst Online Catalogue (http://magnetars.ice.csic.es), an interactive data base where the user can plot any combination of the parameters derived in this work, and download all data.
Comet 17P/Holmes: contrast in activity between before and after the 2007 outburst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiguro, Masateru; Kim, Yoonyoung; Warjurkar, Dhanraj S.
2013-11-20
A Jupiter-family comet, 17P/Holmes, underwent outbursts in 1892 and 2007. In particular, the 2007 outburst is known as the greatest outburst over the past century. However, little is known about the activity before the outburst because it was unpredicted. In addition, the time evolution of the nuclear physical status has not been systematically studied. Here, we study the activity of 17P/Holmes before and after the 2007 outburst through optical and mid-infrared observations. We found that the nucleus was highly depleted in its near-surface icy component before the outburst but that it became activated after the 2007 outburst. Assuming a conventionalmore » 1 μm sized grain model, we derived a surface fractional active area of 0.58% ± 0.14% before the outburst whereas the area was enlarged by a factor of ∼50 after the 2007 outburst. We also found that large (≥1 mm) particles could be dominant in the dust tail observed around aphelion. Based on the size of the particles, the dust production rate was ≳170 kg s{sup –1} at a heliocentric distance of r{sub h} = 4.1 AU, suggesting that the nucleus was still active around the aphelion passage. The nucleus color was similar to that of the dust particles and average for a Jupiter-family comet but different from that of most Kuiper Belt objects, implying that color may be inherent to icy bodies in the solar system. On the basis of these results, we concluded that more than 76 m of surface material was blown off by the 2007 outburst.« less
NASA Astrophysics Data System (ADS)
Forman, William R.; Churazov, Eugene; Jones, Christine; Heinz, Sebastian; Kraft, Ralph P.; Vikhlinin, Alexey
2016-01-01
M87, the bright active galaxy dominating the core of the Virgo cluster, is ideal for studying the interaction of a supermassive black hole with a gas rich environment. We combine results from a deep Chandra observation with a simple shock model to derive the properties of the outburst that created the 13 kpc shock previously reported around M87. The principal constraints for the model are 1) the observed temperature and density profiles, 2) the measured Mach number (about 1.2) and radius of the 13 kpc shock, 3) the observed size of the inner cavity (~3 kpc) that serves as the piston to drive the shock, and 4) the absence of a hot, low density plasma surrounding the central cavity. Qualitatively, the absence of a hot, low density (shocked) region surrounding the inner radio lobes (the piston), requires a "slowly" expanding piston and "long" duration outburst rather than a Sedov-like outburst. Quantitatively, a roughly 5 x 1057 ergs outburst that began about 12 Myr ago and lasted about 2 Myr matches all the constraints. In the context of the model, ~20% of the energy is carried by the shock as it expands to large radii while ~80% of the outburst energy is available to heat the core gas. For an outburst repetition rate of about 12 Myrs (the outburst age), 80% of the outburst energy is sufficient to balance radiative cooling. We discuss the outburst history of M87 as chronicled in its radio and X-ray images and the implications of these outbursts for heating gas rich environments.
Swift/BAT X-ray monitoring indicates a new outburst of the black hole transient H 1743-322
NASA Astrophysics Data System (ADS)
Zhang, Hui; Yu, Wenfei; Yan, Zhen; Lin, Jie
2017-07-01
H 1743-322 is a black hole X-ray binary with frequent outbursts. Recent Swift/BAT monitoring observations (Krimm et al. 2013) show that this source has turned into a new outburst after been in quiescence for about nine months since the most recent outburst in 2016.
Laser-driven planar Rayleigh-Taylor instability experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glendinning, S.G.; Weber, S.V.; Bell, P.
1992-08-24
We have performed a series of experiments on the Nova Laser Facility to examine the hydrodynamic behavior of directly driven planar foils with initial perturbations of varying wavelength. The foils were accelerated with a single, frequency doubled, smoothed and temporally shaped laser beam at 0.8{times}10{sup 14} W/cm{sup 2}. The experiments are in good agreement with numerical simulations using the computer codes LASNEX and ORCHID which show growth rates reduced to about 70% of classical for this nonlinear regime.
Direct measurement of astrophysically important resonances in 38K(p ,γ )39Ca
NASA Astrophysics Data System (ADS)
Christian, G.; Lotay, G.; Ruiz, C.; Akers, C.; Burke, D. S.; Catford, W. N.; Chen, A. A.; Connolly, D.; Davids, B.; Fallis, J.; Hager, U.; Hutcheon, D.; Mahl, A.; Rojas, A.; Sun, X.
2018-02-01
Background: Classical novae are cataclysmic nuclear explosions occurring when a white dwarf in a binary system accretes hydrogen-rich material from its companion star. Novae are partially responsible for the galactic synthesis of a variety of nuclides up to the calcium (A ˜40 ) region of the nuclear chart. Although the structure and dynamics of novae are thought to be relatively well understood, the predicted abundances of elements near the nucleosynthesis endpoint, in particular Ar and Ca, appear to sometimes be in disagreement with astronomical observations of the spectra of nova ejecta. Purpose: One possible source of the discrepancies between model predictions and astronomical observations is nuclear reaction data. Most reaction rates near the nova endpoint are estimated only from statistical model calculations, which carry large uncertainties. For certain key reactions, these rate uncertainties translate into large uncertainties in nucleosynthesis predictions. In particular, the 38K(" close=")p ,γ )">p ,γ 39Ca reaction has been identified as having a significant influence on Ar, K, and Ca production. In order to constrain the rate of this reaction, we have performed a direct measurement of the strengths of three candidate ℓ =0 resonances within the Gamow window for nova burning, at 386 ±10 keV, 515 ±10 keV, and 689 ±10 keV. Method: The experiment was performed in inverse kinematics using a beam of unstable 38K impinged on a windowless hydrogen gas target. The 39Ca recoils and prompt γ rays from 38K, 39Ca reactions were detected in coincidence using a recoil mass separator and a bismuth-germanate scintillator array, respectively. Results: For the 689 keV resonance, we observed a clear recoil-γ coincidence signal and extracted resonance strength and energy values of 120-30+50(stat.)-60 +20(sys .) meV and 679-1+2(stat .) ±1 (sys .) keV , respectively. We also performed a singles analysis of the recoil data alone, extracting a resonance strength of 120 ±20 (stat .)±15 (sys .) meV, consistent with the coincidence result. For the 386 keV and 515 keV resonances, we extract 90 % confidence level upper limits of 2.54 meV and 18.4 meV, respectively. Conclusions: We have established a new recommended 38K(p ,γ ) 39Ca rate based on experimental information, which reduces overall uncertainties near the peak temperatures of nova burning by a factor of ˜250 . Using the rate obtained in this work in model calculations of the hottest oxygen-neon novae reduces overall uncertainties on Ar, K, and Ca synthesis to factors of 15 or less in all cases.
Prevalence and clinical correlates of explosive outbursts in Tourette Syndrome
Chen, Kevin; Budman, Cathy L.; Herrera, Luis Diego; Witkin, Joanna E.; Weiss, Nicholas T.; Lowe, Thomas L.; Freimer, Nelson B.; Reus, Victor I.; Mathews, Carol A.
2012-01-01
The aim of this study was to examine the prevalence and clinical correlates of explosive outbursts in two large samples of individuals with TS, including one collected primarily from non-clinical sources. Participants included 218 TS-affected individuals who were part of a genetic study (N=104 from Costa Rica (CR) and N=114 from the US). The relationship between explosive outbursts and comorbid attention deficit hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), tic severity, and prenatal and perinatal complications were examined using regression analyses. Twenty percent of participants had explosive outbursts, with no significant differences in prevalence between the CR (non-clinical) and the US (primarily clinical) samples. In the overall sample, ADHD, greater tic severity, and lower age of tic onset were strongly associated with explosive outbursts. ADHD, prenatal exposure to tobacco, and male gender were significantly associated with explosive outbursts in the US sample. Lower age of onset and greater severity of tics were significantly associated with explosive outbursts in the CR sample. This study confirms previous studies that suggest that clinically significant explosive outbursts are common in TS and associated with ADHD and tic severity. An additional potential risk factor, prenatal exposure to tobacco, was also identified. PMID:23040794
Radio outbursts in extragalactic sources
NASA Astrophysics Data System (ADS)
Kinzel, Wayne Morris
Three aspects of the flux density variability of extragalactic radio sources were examined: millimeter wavelength short timescale variability, the spectral evolution of outbursts, and whether the outbursts are periodically spaced. Observations of extragalactic radio sources were conducted using the Five College Radio Astronomy Observatory between January and June 1985 at 88.2 GHz and during June and July 1985 at 40.0 GHz. Many of the sources exhibited significant flux density variations during the observing span. In addition, the most rapid variations observed were comparable with those reported in previous works. Two sources, 0355+50 and OJ287, both exhibited outbursts whose rise and fall timescales were less than a month. An anomalous flux density dropout was observed in 3C446 and was interpreted as an occultation event. Data at five frequencies between 2.7 and 89.6 GHz from the Dent-Balonek monitoring program were used to investigate the spectral evolution of eight outbursts. Outburst profile fitting was used to deconvolve the individual outbursts from one another at each frequency. The fit profiles were used to generate multiple epoch spectra to investigate the evolution of the outbursts. A phase residual minimization method was used to examine four sources for periodic behavior.
Measuring Cooling Curves Following Magnetar Outbursts
NASA Astrophysics Data System (ADS)
Kaspi, Victoria
2012-09-01
Magnetars have been observed to increase their flux output by several orders of magnitude in outbursts. Following outbursts they cool on timescales of months to years. We propose to observe two magnetars, Swift J1822.3-1606 and 1E 1547.0-5408, using Chandra as they approach their quiescent state following their recent outbursts in 2011 and 2009, respectively. We will apply a newly developed crustal cooling model to these cooling curves to constrain the properties of the magnetars, such as the crust thickness and heat capacity, and of their outbursts, such as the location of energy deposition.
Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine
Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie
2015-01-01
To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions of coal seams. PMID:26161959
NASA Astrophysics Data System (ADS)
Hajra, R.; Bruce, T.; Pierre, H.; Galand, M. F.; Heritier, K. L.; Edberg, N. J. T.; Burch, J. L.; Broiles, T. W.; Goldstein, R.; Glassmeier, K. H.; Richter, I.; Goetz, C.; Nilsson, H.; Altwegg, K.; Rubin, M.; Tanimori, T.
2016-12-01
Cometary outbursts are one of the most spectacular aspects of comet behavior. They are characterized by an abrupt increase in cometary brightness followed by a gradual fall off to the pre-event brightness. Although there are several studies on outburst events, to our knowledge, no detailed analysis on the variation of the cometary plasma environment during an outburst has ever been reported. On 19 February 2016, when comet 67P/Churyumov-Gerasimenko was at a heliocentric distance of 2.4 AU, an outburst event, characterized by two orders of magnitude increase in coma surface brightness, took place. Rosetta was at a distance of 30 km from the comet nucleus, orbiting with a relative speed of 0.17 m/s. The Rosetta Plasma Consortium (RPC) provided in-situ measurements of the cometary plasma, embedded in the solar wind, and the associated magnetic field during this outburst, as the dust and gas expelled from the comet were passing by the spacecraft. While the neutral density (ROSINA/COPS) at the spacecraft position increased by a factor of 1.5, the local plasma density (RPC/MIP) was found to increase by a factor of 3 during the outburst event, driving the spacecraft potential more negative (RPC/LAP). The event was characterized by the energy degradation of energetic (10s of eV) electrons (RPC/IES). In response to the outburst, the local magnetic field exhibited a slight increase in amplitude and a slow rotation (RPC/MAG). A weakening of 10-100 mHz magnetic field fluctuations was also observed during the outburst. The RPC instruments show that the effects of the outburst on the plasma lasted for about 4 hours, from 1000 UT to 1400 UT. Detailed analyses of the observations made by RPC along with ROSINA/COPS will be presented in the paper.
NASA Astrophysics Data System (ADS)
Hajra, R.; Henri, P.; Vallières, X.; Galand, M.; Héritier, K.; Eriksson, A. I.; Odelstad, E.; Edberg, N. J. T.; Burch, J. L.; Broiles, T.; Goldstein, R.; Glassmeier, K. H.; Richter, I.; Goetz, C.; Tsurutani, B. T.; Nilsson, H.; Altwegg, K.; Rubin, M.
2017-11-01
We present a detailed study of the cometary ionospheric response to a cometary brightness outburst using in situ measurements for the first time. The comet 67P/Churyumov-Gerasimenko (67P) at a heliocentric distance of 2.4 AU from the Sun, exhibited an outburst at 1000 UT on 19 February 2016, characterized by an increase in the coma surface brightness of two orders of magnitude. The Rosetta spacecraft monitored the plasma environment of 67P from a distance of 30 km, orbiting with a relative speed of 0.2 m s-1. The onset of the outburst was preceded by pre-outburst decreases in neutral gas density at Rosetta, in local plasma density, and in negative spacecraft potential at 0950 UT. In response to the outburst, the neutral density increased by a factor of 1.8 and the local plasma density increased by a factor of 3, driving the spacecraft potential more negative. The energetic electrons (tens of eV) exhibited decreases in the flux of factors of 2 to 9, depending on the energy of the electrons. The local magnetic field exhibited a slight increase in amplitude ( 5 nT) and an abrupt rotation ( 36.4°) in response to the outburst. A weakening of 10-100 mHz magnetic field fluctuations was also noted during the outburst, suggesting alteration of the origin of the wave activity by the outburst. The plasma and magnetic field effects lasted for about 4 h, from 1000 UT to 1400 UT. The plasma densities are compared with an ionospheric model. This shows that while photoionization is the main source of electrons, electron-impact ionization and a reduction in the ion outflow velocity need to be accounted for in order to explain the plasma density enhancement near the outburst peak.
A TIGHT CONNECTION BETWEEN GAMMA-RAY OUTBURSTS AND PARSEC-SCALE JET ACTIVITY IN THE QUASAR 3C 454.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorstad, Svetlana G.; Marscher, Alan P.; Agudo, Ivan
2013-08-20
We analyze the multi-frequency behavior of the quasar 3C 454.3 during three prominent {gamma}-ray outbursts: 2009 Autumn, 2010 Spring, and 2010 Autumn. The data reveal a repeating pattern, including a triple flare structure, in the properties of each {gamma}-ray outburst, which implies similar mechanism(s) and location for all three events. The multi-frequency behavior indicates that the lower frequency events are co-spatial with the {gamma}-ray outbursts, although the {gamma}-ray emission varies on the shortest timescales. We determine that the variability from UV to IR wavelengths during an outburst results from a single synchrotron component whose properties do not change significantly overmore » the different outbursts. Despite a general increase in the degree of optical linear polarization during an outburst, the polarization drops significantly at the peak of the {gamma}-ray event, which suggests that both shocks and turbulent processes are involved. We detect two disturbances (knots) with superluminal apparent speeds in the parsec-scale jet associated with the outbursts in 2009 Autumn and 2010 Autumn. The kinematic properties of the knots can explain the difference in amplitudes of the {gamma}-ray events, while their millimeter-wave polarization is related to the optical polarization during the outbursts. We interpret the multi-frequency behavior within models involving either a system of standing conical shocks or magnetic reconnection events located in the parsec-scale millimeter-wave core of the jet. We argue that {gamma}-ray outbursts with variability timescales as short as {approx}3 hr can occur on parsec scales if flares take place in localized regions such as turbulent cells.« less
OUTBURST DUST PRODUCTION OF COMET 29P/SCHWASSMANN-WACHMANN 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosek, Matthew W. Jr.; Blaauw, Rhiannon C.; Cooke, William J.
2013-05-15
Multi-aperture photometry of Comet 29P/Schwassmann-Wachmann 1 was conducted on Johnson-Cousins R-band observations spanning 2011 May 1-9 and 2012 June 6-July 3. The comet was observed in outburst on 2011 May 3 and 2012 July 1, during which its brightness increased by 2.2 and 2.1 mag, respectively, as measured through a 10 arcsec aperture. Dust production before and after each outburst is calculated using the parameter Af {rho}, which is converted to a lower limit on the dust production rate based on dust models and derived nuclear properties from other studies. Both outbursts are accompanied by large increases in dust production,more » Af {rho} by a factor of {approx}6.5-7 and dust production rate by a factor of {approx}18-23. In addition, variations in the dust brightness profile of the coma are examined during the events. The profile is observed to steepen significantly at the beginning of each outburst and then slowly return to pre-outburst values, mirroring the behavior of Af {rho}. The start of an outbound 'ripple' of dust in the profile might be observed as the comet returns to its pre-outburst state, although this cannot be confirmed. Using a simple model of the 2011 May 3 outburst, an estimated lower limit of (2.6 {+-} 0.7) Multiplication-Sign 10{sup 8} kg of dust was released during the event. If this is representative of a typical outburst of 29P, then it is estimated that outbursts account for a lower limit of 80{sub -30}{sup +20}% of the total material ejected by the comet per year.« less
Using XMM-Newton to study the energy-dependent variability of H 1743-322 during its 2014 outburst
NASA Astrophysics Data System (ADS)
Stiele, H.; Yu, W.
2016-08-01
Black hole transients evolve during bright outbursts, showing distinct changes in their spectral and variability properties. These changes are interpreted as evidence for changes in the accretion flow and in the X-ray-emitting regions. We obtained an anticipated XMM-Newton Target of Opportunity observation of H 1743-322 during its outburst in 2014 September. Based on data from eight outbursts observed in the last 10 yr, we expected to catch the start of the hard-to-soft state transition. The fact that neither the general shape of the observed power density spectrum nor the characteristic frequency shows an energy dependence implies that the source remained in the low-hard state at the time of our observation near outburst peak. The spectral properties agree with the source being in the low-hard state, and a Swift/XRT monitoring of the outburst revealed that H 1743-322 stayed in the low-hard state during the entire outburst (known as a `failed outburst'). Here we derive the averaged QPO waveform and obtain phase-resolved spectra. A comparison of the phase-resolved spectra with the phase-averaged energy spectrum reveals spectral pivoting. We compare variability on long and short time-scales using covariance spectra and find that the covariance ratio does not show an increase towards lower energies. In other binaries an increase has been found. There are two possible explanations: either the absence of additional disc variability on longer time-scales is related to the high inclination of H 1743-322 compared with other black hole X-ray binaries, or it is the reason why we observe H 1743-322 during a failed outburst. More data on failed outbursts and on high-inclination sources will be needed in order to investigate these two possibilities further.
Characterizing the 2016 Perseid Meteor Shower Outburst
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Molau, S.; Schult, C.; Stober, G.
2017-01-01
The Perseid meteor shower has been observed for millennia and is known for its visually spectacular meteors and occasional outbursts. Normal activity displays Zenithal Hourly Rates (ZHRs) of approximately100. The Perseids were expected to outburst in 2016, primarily due to particles released during the 1862 and 1479 revolutions of parent Comet Swift-Tuttle. NASA's Meteoroid Environment Office predicted the timing, strength and duration of the outburst for spacecraft risk using the MSFC Meteoroid Stream Model [1]. A double peak was predicted, with an outburst displaying a ZHR of 210 +/- 50 at 00:30 UTC Aug 12 (139.5deg Solar Longitude), and a traditional peak 12 hours later with rates still heightened from the outburst [2]. Video, visual, and radar observations taken worldwide by various entities were used to characterize the shower and compare to predictions.
Discovery of the 198 s X-Ray Pulsar GRO J2058+42
NASA Technical Reports Server (NTRS)
Wilson, Colleen A.; Finger, Mark H.; Harmon, B. Alan; Chakrabarty, Deepto; Strohmayer, Tod
1997-01-01
GRO J2058+42, a transient 198 second x-ray pulsar, was discovered by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory (CGRO), during a "giant" outburst in 1995 September-October. The total flux peaked at about 300 mCrab (20-50 keV) as measured by Earth occultation. The pulse period decreased from 198 s to 196 s during the 46-day outburst. The pulse shape evolved over the course of the outburst and exhibited energy dependent variations. BATSE observed five additional weak outbursts from GRO J2058+427 each with two week duration and peak pulsed flux of about 15 mcrab (20-50 keV), that were spaced by about 110 days. An observation of the 1996 November outburst by the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) localized the source to within a 4' radius error circle (90% confidence) centered on R.A. = 20 h 59 m.0, Decl. = 41 deg 43 min (J2000). Additional shorter outbursts with peak pulsed fluxes of about 8 mCrab were detected by BATSE halfway between the first four 15 mCrab outbursts. The RXTE All-Sky Monitor detected 8 weak outbursts with approximately equal durations and intensities. GRO J2058+42 is most likely a Be/X-ray binary that appears to outburst at periastron and apastron. No optical counterpart has been identified to date and no x-ray source was present in the error circle in archival ROSAT observations.
Discovery of the 198 Second X-Ray Pulsar GRO J2058+42
NASA Technical Reports Server (NTRS)
Wilson, Colleen A.; Finger, Mark H.; Harmon, B. Alan; Chakrabarty, Deepto; Strohmayer, Tod
1998-01-01
GRO J2058+42, a transient 198 s X-ray pulsar, was discovered by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) during a "giant" outburst in 1995 September-October. The total flux peaked at about 300 mcrab (20-50 keV) as measured by Earth occultation. The pulse period decreased from 198 to 196 s during the 46 day outburst. The pulse shape evolved over the course of the outburst and exhibited energy-dependent variations. BATSE observed five additional weak outbursts from GRO J2058 + 42, each with a 2 week duration and a peak-pulsed flux of about 15 mcrab (20-50 keV), that were spaced by about 110 days. An observation of the 1996 November outburst by the Rossi X-Ray Timing Explorer (RXTE) proportional counter array (PCA) localized the source to within a 4 s radius error circle (90% confidence) centered on R.A. = 20h 59m.0, decl. = 41 deg 43 s (J2000). Additional shorter outbursts with peak-pulsed fluxes of about 8 mcrab were detected by BATSE halfway between the first four 15 mcrab outbursts. The RXTE All-Sky Monitor detected all eight weak outbursts with approximately equal durations and intensities. GRO J2058 + 42 is most likely a Be/X-ray binary that appears to outburst at periastron and apastron, No optical counterpart has been identified to date, and no X-ray source was present in the error circle in archival ROSAT observations.
Swift/BAT hard X-ray monitoring: A New Outburst of Black Hole Transient H1743-322
NASA Astrophysics Data System (ADS)
Lin, Jie; Yu, Wenfei; Yan, Zhen; Zhang, Hui; Zhang, Wenda
2016-02-01
H 1743-322 is one of the a few black hole transients which undergo frequent outbursts in the past decade. From December 2009 to June 2015, it has turned into outbursts for at least eight times (ATEL #2364, #2774, #3277, #3842, #4418, #5241, #6474, and #7607), and its outbursts take place rather regularly with recurrence time of about 7-8 months.
The fourth outburst during the present active stage of symbiotic binary AG Dra
NASA Astrophysics Data System (ADS)
Galis, R.; Merc, J.; Vrastak, M.; Teyssier, F.; Lester, T.; Boyd, D.; Sims, W.; Leedjarv, L.
2018-04-01
The symbiotic system AG Dra regularly undergoes quiescent and active stages which consist of several outbursts repeating at about 360d interval (Galis et al. 2017, OEJV 180, 24). After seven years of flat quiescence following the 2006-08 major outbursts, in the late spring of 2015, AG Dra began rising again in brightness toward what appeared to be a new minor outburst (ATel #7582).
Multi-instrumental observations of the 2014 Ursid meteor outburst
NASA Astrophysics Data System (ADS)
Moreno-Ibáñez, Manuel; Trigo-Rodríguez, Josep M.; Madiedo, José María; Vaubaillon, Jérémie; Williams, Iwan P.; Gritsevich, Maria; Morillas, Lorenzo G.; Blanch, Estefanía; Pujols, Pep; Colas, François; Dupouy, Philippe
2017-06-01
The Ursid meteor shower is an annual shower that usually shows little activity. However, its Zenith hourly rate sometimes increases, usually either when its parent comet, 8P/Tuttle, is close to its perihelion or its aphelion. Outbursts when the comet is away from perihelion are not common and outbursts when the comet is close to aphelion are extremely rare. The most likely explanation offered to date is based on the orbital mean motion resonances. The study of the aphelion outburst of 2000 December provided a means of testing that hypothesis. A new aphelion outburst was predicted for 2014 December. The SPanish Meteor Network, in collaboration with the French Fireball Recovery and InterPlanetary Observation Network, set up a campaign to monitor this outburst and eventually retrieve orbital data that expand and confirm previous preliminary results and predictions. Despite unfavourable weather conditions over the south of Europe over the relevant time period, precise trajectories from multistation meteor data recorded over Spain were obtained, as well as orbital and radiant information for four Ursid meteors. The membership of these four meteors to the expected dust trails that were to provoke the outburst is discussed, and we characterize the origin of the outburst in the dust trail produced by the comet in the year ad 1392.
The Long-term Post-outburst Spin Down and Flux Relaxation of Magnetar Swift J1822.3-1606
NASA Astrophysics Data System (ADS)
Scholz, P.; Kaspi, V. M.; Cumming, A.
2014-05-01
The magnetar Swift J1822.3-1606 entered an outburst phase in 2011 July. Previous X-ray studies of its post-outburst rotational evolution yielded inconsistent measurements of the spin-inferred magnetic field. Here we present the timing behavior and flux relaxation from over two years of Swift, RXTE, and Chandra observations following the outburst. We find that the ambiguity in previous timing solutions was due to enhanced spin down that resembles an exponential recovery following a glitch at the outburst onset. After fitting out the effects of the recovery, we measure a long-term spin-down rate of \\dot{\
Optical Studies of 20 Longer-Period Cataclysmic Binaries
NASA Astrophysics Data System (ADS)
Thorstensen, John R.; Peters, Christopher S.; Skinner, Julie N.
2010-11-01
We obtained time-series radial-velocity spectroscopy of 20 cataclysmic variable stars, with the aim of determining orbital periods Porb. All of the stars reported here prove to have Porb > 3.5 h. For 16 of the stars, these are the first available period determinations, and for the remaining four (V709 Cas, AF Cam, V1062 Tau, and RX J2133 + 51), we use new observations to improve the accuracy of previously published periods. Most of the targets are dwarf novae, without notable idiosyncrasies. Of the remainder, three (V709 Cas, V1062 Tau, and RX J2133 + 51) are intermediate polars (DQ Her stars); one (IPHAS 0345) is a secondary-dominated system without known outbursts, similar to LY UMa; one (V1059 Sgr) is an old nova; and two others (V478 Her and V1082 Sgr) are long-period novalike variables. The stars with new periods are IPHAS 0345 (0.314 days) V344 Ori (0.234 days) VZ Sex (0.149 days) NSVS 1057 + 09 (0.376 days) V478 Her (0.629 days) V1059 Sgr (0.286 days) V1082 Sgr (0.868 days) FO Aql (0.217 days) V587 Lyr (0.275 days) V792 Cyg (0.297 days) V795 Cyg (0.181 days) V811 Cyg (0.157 days) V542 Cyg (0.182 days) PQ Aql (0.247 days) V516 Cyg (0.171 days) and VZ Aqr (0.161 days). Noteworthy results on individual stars are as follows. We see no indication of the underlying white dwarf star in V709 Cas, as has been previously claimed; based on the nondetection of the secondary star, we argue that the system is farther away that had been thought and the white dwarf contribution is probably negligible. V478 Her had been classified as an SU UMa-type dwarf nova, but this is incompatible with the long orbital period we find. We report the first secondary-star velocity curve for V1062 Tau. In V542 Cyg, we find a late-type contribution that remains stationary in radial velocity, yet the system is unresolved in a direct image, suggesting that it is a hierarchical triple system. Based on observations obtained at the MDM Observatory, operated by Dartmouth College, Columbia University, Ohio State University, Ohio University, and the University of Michigan.
NASA Astrophysics Data System (ADS)
Kamiński, T.; Menten, K. M.; Tylenda, R.; Karakas, A.; Belloche, A.; Patel, N. A.
2017-11-01
Context. CK Vulpeculae (CK Vul) is an enigmatic star whose outburst was observed in 1670-72. A stellar-merger event was proposed to explain its ancient eruption. Aims: We aim to investigate the composition of the molecular gas recently discovered in the remnant of CK Vul. Deriving the chemical, elemental, and isotopic composition is crucial for identifying the nature of the object and obtaining clues on its progenitor(s). Methods: We observed millimeter and submillimeter-wave spectra of CK Vul using the IRAM 30 m and APEX telescopes. Radiative-transfer modeling of the observed molecular features was performed to yield isotopic ratios for various elements. Results: The spectra of CK Vul reveal a very rich molecular environment of low excitation (Tex ≲ 12 K). Atomic carbon and twenty-seven different molecules, including two ions, were identified. They range from simple diatomic to complex polyatomic species of up to seven atoms large. The chemical composition of the molecular gas is indicative of carbon and nitrogen-driven chemistry but oxides are also present. Additionally, the abundance of fluorine may be enhanced. The spectra are rich in isotopologues that are very rare in most known sources. All stable isotopes of C, N, O, Si, and S are observed and their isotopic ratios are derived. Conclusions: The composition of the remnant's molecular gas is most peculiar and gives rise to a very unique millimeter and submillimeter spectrum. The observation of ions and complex molecules suggests the presence of a photoionizing source but its nature (a central star or shocks) remains unknown. The elemental and isotopic composition of the gas cannot be easily reconciled with standard stellar nucleosynthesis but processing in hot CNO cycles and partial helium burning can explain most of the chemical peculiarities. The isotopic ratios of CK Vul are remarkably close to those of presolar "nova grains" but the link of Nova 1670 to objects responsible for these grains is unclear. The accuracy of isotopic ratios can be improved by future observations at higher angular resolutions and with realistic models of the kinematical structure of the remnant. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A78
High-Resolution N-Band Observations of the Nova RS Ophiuchi with the Keck Interferometer Nuller
NASA Technical Reports Server (NTRS)
Barry, R. K.; Danchi, W. C.; Sokoloski, J. L.; Koresko, C.; Wisniewski, J. P.; Serabyn, E.; Traub, W.; Kuchner, M.; Greenhouse, M. A.
2007-01-01
We report new observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nulling Instrument, approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. The Keck Interferometer Nuller (KIN) operates in K-band from 8 to 12.5 pm in a nulling mode, which means that the central broad-band interference fringe is a dark fringe - with an angular width of 25 mas at mid band - rather than the bright fringe used ill a conventional optical interferometer. In this mode the stellar light itself is suppressed by the destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. By subsequently shifting the neighboring bright fringe onto the center of the source brightness distribution and integrating, a second spatial regime dominated by light from the central portion of the source is almost simultaneously sampled. The nulling technique is the sparse aperture equivalent of the conventional corongraphic technique used in filled aperture telescopes. By fitting the unique KIK inner and outer spatial regime data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0. or 5.4 mas for a disk profile, gaussian profile (fwhm), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission located in the inner spatial regime relative to the outer regime. There is also evidence of a 9.7 micron silicate feature seen outside of this region. Importantly, we see spectral lines excited by the nova flash in the outer region before the blast wave reaches these regions. These lines are from neutral, weakly excited atoms which support the following interpretation. We discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power and potential of the nulling technique which has been developed for the detection of Earth-like planets around nearby stars for the Terrestrial Planet Finder Mission and Darwin missions.
Two More Candidate AM Canum Venaticorum (am CVn) Binaries from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Anderson, Scott F.; Becker, Andrew C.; Haggard, Daryl; Prieto, Jose Luis; Knapp, Gillian R.; Sako, Masao; Halford, Kelly E.; Jha, Saurabh; Martin, Blake; Holtzman, Jon; Frieman, Joshua A.; Garnavich, Peter M.; Hayward, Suzanne; Ivezić, Željko; Mukadam, Anjum S.; Sesar, Branimir; Szkody, Paula; Malanushenko, Viktor; Richmond, Michael W.; Schneider, Donald P.; York, Donald G.
2008-06-01
AM CVn systems are a select group of ultracompact binaries with the shortest orbital periods of any known binary subclass; mass transfer is likely from a low-mass (partially-)degenerate secondary onto a white dwarf primary, driven by gravitational radiation. In the past few years, the Sloan Digital Sky Survey (SDSS) has provided five new AM CVns. Here we report on two further candidates selected from more recent SDSS data. SDSS J1208+3550 is similar to the earlier SDSS discoveries, recognized as an AM CVn via its distinctive spectrum which is dominated by helium emission. From the expanded SDSS Data Release 6 (DR6) spectroscopic area, we provide an updated surface density estimate for such AM CVns of order 10-3.1-10-2.5 deg-2 for 15 < g < 20.5. In addition, we present another new candidate AM CVn, SDSS J2047+0008, which was discovered in the course of follow-up of SDSS-II supernova candidates. It shows nova-like outbursts in multi-epoch imaging data; in contrast to the other SDSS AM CVn discoveries, its (outburst) spectrum is dominated by helium absorption lines, reminiscent of KL Dra, and 2003aw. The variability selection of SDSS J2047+0008 from the 300 deg2 of SDSS Stripe 82 presages further AM CVn discoveries in future deep, multicolor, and time-domain surveys such as the Large Synoptic Survey Telescope (LSST). The new additions bring the total SDSS yield to seven AM CVns thus far, a substantial contribution to this rare subclass, versus the dozen previously known. Includes optical observations obtained with the Sloan Digital Sky Survey I and II and the Apache Point Observatory (APO) 3.5 m telescope which is owned and operated by the Astrophysical Research Consortium (ARC), and the WIYN Observatory which is a joint facility of the University of Wisconsin, Indiana University, Yale University, and NOAO.
THE ERUPTION OF THE CANDIDATE YOUNG STAR ASASSN-15QI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herczeg, Gregory J.; Dong, Subo; Chen, Ping
Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star–disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The ∼3.5 mag brightening in the V band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission frommore » ∼10,000 K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km s{sup −1}. The wind and hot gas both disappeared as the outburst faded and the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10–20 days. Fluorescent excitation of H{sub 2} is detected in emission from vibrational levels as high as v = 11, also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, though the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling.« less
A search for periodicity in the x ray spectrum of black hole candidate A0620-00
NASA Technical Reports Server (NTRS)
Clark, George W.; Plaks, Kenneth
1991-01-01
The archived data from the SAS-3 observations of the X-ray nova A0620-00, the best of the stellar blackhole candidates, were exhaustively examined for evidence of variable phenomena correlated with the orbital motion of the binary system of which it is a member. The original analysis of these data was completed before discovery of the binary companion and determination of the orbital period of the system. New interest was drawn to the task of a reexamination of the archive data by the recent discovery of the massive nature of the X-ray source through analysis of the Doppler variations and ellipsoidal light variations of the faint K-star companion by McClintock and Remillard. The archive research, carried out under the supervision of the principal investigator, was the topic of the thesis submitted to the MIT Department of Physics by Kenneth Plaks in partial fulfillment of the requirements for the degree of Master of Science. Plaks' effort was focused on the elimination of fluctuations in the data due to errors in attitude solutions and other extraneous causes. The first products of his work were long-term light curves of the X-ray intensities in the various energy channels as functions of time during the time from outbursts in August 1975 to quiescence approximately 6 months later. These curves, are refined versions of the preliminary results published in 1976 (Matilsky et al. 1976). Smooth exponentials were fitted to these long term light curves to provide the basis for detrending the data, thereby permitting a calculation of residuals derived by subtracting the fitted curve from the data. The residuals were then analyzed by Fourier analysis to search for variations with the period of the binary orbit, namely 7.75 hours. No evidence of an orbital periodicity was found. However, the refined light curve provides a much clearer picture of the outburst and subsequent decay of the X-ray luminosity. In fact, there were two outbursts, each followed by an exponential decay with similar time constants of about 25 days. Previous evidence of a three-oscillation variation with a 7.8 day period were confirmed. Substantial theoretical effort has been devoted to attempts to account for the decay characteristics as the result of the gradual eating up of an accretion disk by a stellar-mass blackhole (e.g., Huang and Wheeler 1989). The improved decay curves will provide significant new constraints on the theoretical analyses.
Rickman, R.L.; Rosenkrans, D.S.
1997-01-01
McCarthy, Alaska, is on the Kennicott River, about 1 mile from the terminus of Kennicott Glacier in the Wrangell-St. Elias National Park and Preserve. Most visitors to McCarthy and the park cross the West Fork Kennicott River using a hand-pulled tram and cross the East Fork Kennicott River on a temporary footbridge. Outburst floods from glacier-dammed lakes result in channel erosion, aggradation, and migration of the Kennicott River, which disrupt transportation links, destroy property, and threaten life. Hidden Creek Lake, the largest of six glacier-dammed lakes in the Kennicott River Basin, has annual outbursts that cause the largest floods on the Kennicott River. Outbursts from Hidden Creek Lake occur from early fall to mid-summer, and lake levels at the onset of the outbursts have declined between 1909 and 1995. Criteria for impending outbursts for Hidden Creek Lake include lake stage near or above 3,000 to 3,020 feet, stationary or declining lake stage, evidence of recent calving of large ice blocks from the ice margin, slush ice and small icebergs stranded on the lakeshore, and fresh fractures in the ice-margin region. The lower Kennicott Glacier has thinned and retreated since about 1860. The East and West Fork Kennicott River channels migrated in response to changes in the lower Kennicott Glacier. The largest channel changes occur during outburst floods from Hidden Creek Lake, whereas channel changes from the other glacier-dammed lake outbursts are small. Each year, the West Fork Kennicott River conveys a larger percentage of the Kennicott Glacier drainage than it did the previous year. Outburst floods on the Kennicott River cause the river stage to rise over a period of several hours. Smaller spike peaks have a very rapid stage rise. Potential flood magnitude was estimated by combining known maximum discharges from Hidden Creek Lake and Lake Erie outburst floods with a theoretical large regional flood. Flood hazard areas at the transportation corridor were delineated, and possible future geomorphological changes were hypothesized. McCarthy, Alaska, is on the Kennicott River, about 1 mile from the terminus of Kennicott Glacier in the Wrangell-St. Elias National Park and Preserve. Most visitors to McCarthy and the park cross the West Fork Kennicott River using a hand-pulled tram and cross the East Fork Kennicott River on a temporary footbridge. Outburst floods from glacier-dammed lakes result in channel erosion, aggradation, and migration of the Kennicott River, which disrupt transportation links, destroy property, and threaten life. Hidden Creek Lake, the largest of six glacier-dammed lakes in the Kennicott River Basin, has annual outbursts that cause the largest floods on the Kennicott River. Outbursts from Hidden Creek Lake occur from early fall to mid-summer, and lake levels at the onset of the outbursts have declined between 1909 and 1995. Criteria for impending outbursts for Hidden Creek Lake include lake stage near or above 3,000 to 3,020 feet, stationary or declining lake stage, evidence of recent calving of large ice blocks from the ice margin, slush ice and small icebergs stranded on the lakeshore, and fresh fractures in the ice-margin region. The lower Kennicott Glacier has thinned and retreated since about 1860. The East and West Fork Kennicott River channels migrated in response to changes in the lower Kennicott Glacier. The largest channel changes occur during outburst floods from Hidden Creek Lake, whereas channel changes from the other glacier-dammed lake outbursts are small. Each year, the West Fork Kennicott River conveys a larger percentage of the Kennicott Glacier drainage than it did the previous year. Outburst floods on the Kennicott River cause the river stage to rise over a period of several hours. Smaller spike peaks have a very rapid stage rise. Potential flood magnitude was estimated by combining known maximum discharges from Hidden Creek Lake and Lake Erie outburst floods with
Outbursts from the Transient X-Ray Pulsar Cep X-4 (GS 2138+56)
NASA Technical Reports Server (NTRS)
Wilson, Colleen A.; Finger, Mark H.; Scott, D. Matthew
1997-01-01
Cep X-4 was discovered with the Orbiting Solar Observatory (OSO) 7 Satellite in 1973 June-July, but no pulsations were detected. In March 1988, an additional outburst was observed with Gingaq. Pulsations at a period of 66.2490 +/- .0001 s were detected during a month long outburst which peaked at about 100 mCrab (1-20 keV) in early April 1988. The source apparently did not appear again until June 1993 when it was detected by Roentgen Satellite (ROSAT) and Burst and Transient Source Experiment (BATSE). Pulsations at a period of 66.2499 +/- .0007 s were detected by BATSE. The outburst lasted about two weeks and had a peak pulsed flux of 15-20 mCrab (20-50 keV). In July 1997, BATSE and the All-Sky Monitor (ASM) on Rossi X-ray Timing Explorer (RXTE) observed a new outburst from Cep X-4. Pulsations at a period of 66.2743 +/- 0.0005 s were detected by BATSE. This outburst lasted about 2 weeks and peaked at a pulsed flux of about 10-15 mCrab (20-50 keV). Results of a search of BATSE data for additional outbursts will be presented. Pulse frequency and flux histories will be presented and compared to the flux history from the RXTE ASM. Implications of the apparent spin-down between outbursts will be discussed.
Pre-supernova outbursts via wave heating in massive stars - II. Hydrogen-poor stars
NASA Astrophysics Data System (ADS)
Fuller, Jim; Ro, Stephen
2018-05-01
Pre-supernova (SN) outbursts from massive stars may be driven by hydrodynamical wave energy emerging from the core of the progenitor star during late nuclear-burning phases. Here, we examine the effects of wave heating in stars containing little or no hydrogen, i.e. progenitors of Type IIb/Ib SNe. Because there is no massive hydrogen envelope, wave energy is thermalized near the stellar surface where the overlying atmospheric mass is small but the optical depth is large. Wave energy can thus unbind this material, driving an optically thick, super-Eddington wind. Using 1D hydrodynamic MESA simulations of ˜5 M⊙ He stars, we find that wave heating can drive pre-SN outbursts composed of a dense wind whose mass-loss rate can exceed ˜0.1 M⊙ yr-1. The wind terminal velocities are a few 100 km s-1, and outburst luminosities can reach ˜106 L⊙. Wave-driven outbursts may be linked with observed or inferred pre-SN outbursts of Type Ibn/transitional/transformational SNe, and pre-SN wave-driven mass loss is a good candidate to produce these types of SNe. However, we also show that non-linear wave breaking in the core of the star may prevent such outbursts in stars with thick convective helium-burning shells. Hence, only a limited subset of SN progenitors is likely to experience wave-driven pre-SN outbursts.
The Be/X-Ray Binary A0535+26 During Its Recent 2009/2010 Outbursts
NASA Technical Reports Server (NTRS)
Caballero, I.; Pottschmidt, K.; Santangelo, A.; Barragan, L.; Klochkov, D.; Ferrigno, C.; Rodriguez, J.; Kretschmar, P.; Suchy, S.; Marcu, D. M.;
2011-01-01
The Be/X-ray binary A0535+26 showed a giant outburst in December 2009 that reached approximately 5.14 Crab in thc 15-50 keV range. Unfortunately, due to Sun constraints it could not be observed by most X-ray satellites. The outburst was preceded by four weaker outbursts associated with the periastron passage of the neutron star. The fourth of them, in August 2009, presented a peculiar double-peaked light curve, with a first peak lasting about 9 days that reached a (15- 50 keV) flux of 440 mCrab. The tl ux then decreased to less than 220 mCrab, and increased again reaching 440 mCrab around the periastron. The outburst was monitored with INTEGRAL, RXTE, and Suzaku TOO observations. One orbital period (approximately 111 days) after the 2009 giant outburst, a new and unexpectedly bright outburst took place (approximately 1.4Crab in the 15-50 keV range). It was monitored with TOO observations with INTEGRAL, RXTE, Suzaku, and Swift. First results of the spectral and timing analysis of these observations are presented. with a specific focus on the cyclotron lines present in thc system and its variation with the mass accretion rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdán, Ákos; Van Weeren, Reinout J.; Kraft, Ralph P.
Although the energetic feedback from active galactic nuclei (AGNs) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of AGN heating remain elusive. Here, we study NGC 193—a nearby lenticular galaxy—based on X-ray (Chandra) and radio (Very Large Array and Giant Meter-wave Radio Telescope) observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced ∼78 Myr ago by a weakermore » AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and 4-8 times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help us to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers.« less
The HEPCloud Facility: elastic computing for High Energy Physics – The NOvA Use Case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuess, S.; Garzoglio, G.; Holzman, B.
The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a commonmore » interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 25 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This paper describes the Fermilab HEPCloud Facility and the challenges overcome for the CMS and NOvA communities.« less
NASA Technical Reports Server (NTRS)
Dib, Rim; Kaspi, Victoria M.; Scholz, Paul; Gavriil, Fotis P.
2012-01-01
We present the results of Rossi X-ray Timing Explorer (RXTE) and Swift monitoring observations of the magnetar 1E 1547.0-5408 following the pulsar's radiative outbursts in 2008 October and 2009 January. We report on a study of the evolution of the timing properties and the pulsed flux from 2008 October 4 through 2009 December 26. In our timing study, a phase-coherent analysis shows that for the first 29 days following the 2008 outburst, there was a very fast increase in the magnitude of the rotational frequency derivative upsilon-dot, such that upsilon-dot-dot was a factor of 60 larger than that reported in data from 2007. This upsilon-dot magnitude increase occurred in concert with the decay of the pulsed flux following the start of the 2008 event. Following the 2009 outburst, for the first 23 days, upsilon-dot-dot was consistent with zero, and upsilon-dot had returned to close to its 2007 value. In contrast to the 2008 event, the 2009 outburst showed a major increase in persistent flux, relatively little change in the pulsed flux, and sudden significant spectral hardening approx 15 days after the outburst. We show that, excluding the month following each of the outbursts, and because of the noise and the sparsity in the data, multiple plausible timing solutions fit the pulsar's frequency behavior. We note similarities in the behavior of 1E 1547.0-5408 following the 2008 outburst to that seen in the AXP 1E 1048.1-5937 following its 2001-2002 outburst and discuss this in terms of the magnetar model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dib, Rim; Kaspi, Victoria M.; Scholz, Paul
2012-03-20
We present the results of Rossi X-ray Timing Explorer and Swift monitoring observations of the magnetar 1E 1547.0-5408 following the pulsar's radiative outbursts in 2008 October and 2009 January. We report on a study of the evolution of the timing properties and the pulsed flux from 2008 October 4 through 2009 December 26. In our timing study, a phase-coherent analysis shows that for the first 29 days following the 2008 outburst, there was a very fast increase in the magnitude of the rotational frequency derivative {nu}-dot, such that {nu}-ddot was a factor of {approx}60 larger than that reported in datamore » from 2007. This {nu}-dot magnitude increase occurred in concert with the decay of the pulsed flux following the start of the 2008 event. Following the 2009 outburst, for the first 23 days, {nu}-ddot was consistent with zero, and {nu}-dot had returned to close to its 2007 value. In contrast to the 2008 event, the 2009 outburst showed a major increase in persistent flux, relatively little change in the pulsed flux, and sudden significant spectral hardening {approx}15 days after the outburst. We show that, excluding the month following each of the outbursts, and because of the noise and the sparsity in the data, multiple plausible timing solutions fit the pulsar's frequency behavior. We note similarities in the behavior of 1E 1547.0-5408 following the 2008 outburst to that seen in the AXP 1E 1048.1-5937 following its 2001-2002 outburst and discuss this in terms of the magnetar model.« less
Disc-jet Coupling in the 2009 Outburst of the Black Hole Candidate H1743-322
NASA Technical Reports Server (NTRS)
Miller-Jones, J. C. A.; Sivakoff, G. R.; Altamirano, D.; Coriat, M.; Corbel, S.; Dhawan, V.; Krimm, H. A.; Remillard, R. A.; Rupen, M. P.; Russell, D. M.;
2012-01-01
We present an intensive radio and X-ray monitoring campaign on the 2009 outburst of the Galactic black hole candidate X-ray binary H1743-322. With the high angular resolution of the Very Long Baseline Array, we resolve the jet ejection event and measure the proper motions of the jet ejecta relative to the position of the compact core jets detected at the beginning of the outburst. This allows us to accurately couple the moment when the jet ejection event occurred with X-ray spectral and timing signatures. We find that X-ray timing signatures are the best diagnostic of the jet ejection event in this outburst, which occurred as the X-ray variability began to decrease and the Type C quasi-periodic oscillations disappeared from the X-ray power density spectrum. However, this sequence of events does not appear to be replicated in all black hole X-ray binary outbursts, even within an individual source. In our observations of H1743-322, the ejection was contemporaneous with a quenching of the radio emission, prior to the start of the major radio flare. This contradicts previous assumptions that the onset of the radio flare marks the moment of ejection. The jet speed appears to vary between outbursts with a positive correlation outburst luminosity. The compact core radio jet reactivated on transition to the hard intermediate state at the end of the outburst and not when the source reached the low hard spectral state. Comparison with the known near-infrared behaviour of the compact jets suggests a gradual evolution of the compact jet power over a few days near beginning the and end of an outburst
RS Ophiuchi: The Gift that Keeps on Giving
NASA Astrophysics Data System (ADS)
Starrfield, S.
2008-12-01
RS Oph experienced its sixth recorded outburst in 2006 and was observed in virtually every wavelength region from hard X-rays to the radio. Each observation, especially those with instruments that have come online since its last outburst in 1985, provided new and exciting information about the explosion. As a result, some of us organized a second workshop on the RS Oph outburst and it was held in June 2007 at Keele University. I gave the lead off talk in which I presented a number of questions to be discussed during the workshop, a brief summary of what had been discovered in previous outbursts concentrating on the ultraviolet studies with IUE, and a few observations of the 2006 outburst concentrating on the results from Swift and HST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander
We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M {sub ⊙} and a 0.52 M {sub ⊙} WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ∼34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binarymore » merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin–orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen.« less
Properties of the Second Outburst of the Bursting Pulsar (GRO J1744-28) as Observed with BASTE
NASA Technical Reports Server (NTRS)
Woods, Peter M.; Kouveliotou, Chryssa; VanParadus, Jan; Briggs, Michael S.; Wilson, C. A.; Deal, Kim; Harmon, B. A.; Fishman, G. J.; Lewin, W. H. G.; Kommers, J.
1999-01-01
One year after its discovery, the Bursting Pulsar (GRO J1744-28) went into outburst again, displaying the hard X-ray bursts and pulsations that make this source unique. We report on BATSE (Burst and Transient Source Experiment) observations of both the persistent and burst emission for this second outburst and draw comparisons with the first. The second outburst was smaller than the first in both duration and peak luminosity. The persistent flux, burst peak flux, and burst fluence were all reduced in amplitude by a factor of approximately 1.7. Despite these differences, the two outbursts were very similar with respect to the burst occurrence rate, the durations and spectra of bursts, the absence of spectral evolution during bursts, and the evolution of the ratio alpha of average persistent to burst luminosity. Although no spectral evolution was found within individual bursts, we find evidence for a small (20%) variation of the spectral temperature during the course of the second outburst.
NASA Astrophysics Data System (ADS)
Wesołowski, M.; Gronkowski, P.
2018-07-01
In the present article, we propose a new method of mass estimation which is ejected from a nucleus of a comet during its outburst of brightness. The phenomena of cometary outburst are often reported for both periodic and parabolic comets. The outburst of a comet brightness is a sudden increase in its brightness greater than one magnitude, average by 2-5 mag. This should not be confused with explosions such as outbreak of a bomb. The essence of the phenomenon is only a sudden brightening of the comet. Long-term observations and studies of this phenomenon lead to the conclusion that the very probable direct cause of the many outbursts is the ejection of the some part of surface layer of a comet's nucleus and an increase in the rate of a sublimation (Hughes (1990), Gronkowski (2007), Gronkowski and Wesołowski (2015)). The purpose of this article is presentation of a new simple method of the estimation of the mass which is ejected from the comet's nucleus during considered phenomenon. To estimate the mass released during an outburst, different probable coefficients of extinction for cometary matter was assumed. The scattering cross-sections of cometary grains were precisely calculated on the basis of Mie's theory. This method was applied to the outburst of a hypothetical comet X/PC belonging to the Jupiter-family comets and to the case of the comet 17P/Holmes outburst in 2007.
Sub-second optical flaring in GX 339-4 during the 2017 outburst early rise
NASA Astrophysics Data System (ADS)
Gandhi, P.; Kotze, M. M.; Buckley, D. A. H.; Paice, J. A.; Altamirano, D.; Charles, P. A.; Russell, D. M.; Fabian, A. C.
2017-10-01
The black hole X-ray binary GX 339-4 has been caught at the early stage of a new outburst. According to optical monitoring, the outburst began between 2017-08-24 and 2017-09-14, presumably in the outer disc (ATel #10797).
NASA Technical Reports Server (NTRS)
Sreekumar, P.; Bertsch, D. L.; Bloom, S. D.; Hartman, R. C.; Lin, Y. C.; Mukherjee, R.; Thompson, D. J.
1999-01-01
Mrk 501 is the third TeV blazar with a known GeV component. Previous multiwavelength campaigns on Mrk 501 showed well correlated outbursts at x-ray and TeV energies with no significant activity at GeV energies. We present here new evidence suggesting GeV outbursts in Mrk 501 when the spectrum appears to be extremely hard. However, this outburst appears uncorrelated with emission at x-ray energies. The resulting spectral energy distribution suggests a sharp cut off in the high-energy emission beyond a few hundred GeV.
Giant planet migration during FU Orionis outbursts: 1D disc models
NASA Astrophysics Data System (ADS)
Dunhill, A. C.
2018-05-01
I present the results of semi-analytic calculations of migrating planets in young, outbursting circumstellar discs. Formed far out in the disc via gravitational fragmentation early on in its lifetime, these planets typically migrate at very slow rates and are therefore mostly expected to remain at large radii (such as is the case in HR 8799). I show that changes in the disc structure during FUor outbursts affect the planet's ability to maintain a gap and can allow a massive giant planet's semimajor axis to reduce by almost 5 per cent in a single outburst under the most optimistic conditions. Given that a single disc will likely undergo ˜10 such outbursts this process can significantly alter the expected radial distribution for GI-formed planets.
NASA Technical Reports Server (NTRS)
Hellier, C.; Mason, K. O.; Smale, A. P.; Corbet, R. H. D.; O'Donoghue, D.
1989-01-01
Photometry and red spectroscopy of the intermediate polar EX Hya in its rare outburst state are presented. Photometry during the declining phase of the July-August 1986 outburst shows the 67-min (spin) modulation to be present with similar characteristics to that in quiescence. In contrast, photometry from near the peak of the 1987 May outburst shows little evidence of the 67-min modulation, while spectroscopy obtained nearly simultaneously is similarly lacking in such evidence, despite its presence in quiescent spectroscopic data. Near the beginning of the May 1987 outburst the H alpha emission line develops a broad, high velocity base component whose velocity is modulated with the orbital cycle. The velocity and phase of the broad base component suggest that it is produced near the magnetosphere of the white dwarf at a point along the projected trajectory of the gas stream from the companion. The feature disappears later in the outburst and is not present during quiescence. It is suggested that the outbursts in EX Hya are caused by an increase in the rate of mass transfer from the companion, and that part of this enhanced mass-transfer stream skims over the top of the accretion disk to strike the magnetosphere directly. The interaction of the stream with the magnetosphere gives rise to the broad-base component observed.
Detection of outbursts and modeling of the activity during the summer of 2015 with Rosetta
NASA Astrophysics Data System (ADS)
Gicquel, Adeline; von Allmen, Paul; Hofstadter, Mark; MIRO, OSIRIS
2017-10-01
The ESA (European Space Agency) Rosetta spacecraft was launched on March 2, 2004 and reached comet 67P/Churyumov-Gerasimenko (67P) in August 2014.Close to perihelion in August 2015, a display of outbursts on 67P, known as the summer fireworks (Vincent et al. 2016), was observed with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) and the NAVCAM. Vincent et al. (2016) reported the detection of 34 outbursts with one on average every 2.4 nucleus rotations.In the case of the Microwave Instrument for the Rosetta Orbiter (MIRO), the most useful scan pattern for tracking gas abundance before, during, and after an outburst was a series of raster scans across the nucleus along the comet-Sun direction. We identified a spectral feature that is indicative of high velocity gas moving toward the spacecraft as being associated with outbursts. In this particular study, we will report the detection of 6 outbursts with MIRO during the summer of 2015. One of the outbursts detected by MIRO was not observed with OSIRIS or the NAVCAM. We will present results for the gas production rate, as obtained from the H216O emission line observed with MIRO and a numerical model of the radiative transfer in the coma.Our goal is to better understand the physics of outbursts and how the dust is lifted by the gas, by comparing model results to OSIRIS images (sensitive to the dust abundance) and MIRO spectra (sensitive to the gas abundance and velocity). We used a Collisionless Gas Simulation tool developed at JPL to study the gas flow close to the nucleus and the dust trajectories as determined by the three main forces acting on the grains: the drag force, gravity and the radiative pressure. Our main objective is to understand the mechanisms responsible for the outburst and the activity. Past studies have shown that outbursts are in fact a combination of both gas and dust, in which the active surface at the source of the outburst is believed to be approximately 10 times more active than the average rate found in the surrounding areas (Gicquel et al. 2017). Preliminary results show that the activity follows the insolation/illumination pattern.
EVENTS LEADING UP TO THE 2015 JUNE OUTBURST OF V404 CYG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardini, F.; Russell, D. M.; Koljonen, K. I. I.
2016-02-10
On 2015 June 15 the burst alert telescope (BAT) on board Swift detected an X-ray outburst from the black hole (BH) transient V404 Cyg. We monitored V404 Cyg for the last 10 years with the 2-m Faulkes Telescope North in three optical bands (V, R, and i′). We found that, one week prior to this outburst, the optical flux was 0.1–0.3 mag brighter than the quiescent orbital modulation, implying an optical precursor to the X-ray outburst. There is also a hint of a gradual optical decay (years) followed by a rise lasting two months prior to the outburst. We fortuitouslymore » obtained an optical spectrum of V404 Cyg 13 hr before the BAT trigger. This too was brighter than quiescence, and showed spectral lines typical of an accretion disk, with characteristic absorption features of the donor being much weaker. No He ii emission was detected, which would have been expected had the X-ray flux been substantially brightening. This, combined with the presence of intense Hα emission, about seven times the quiescent level, suggests that the disk entered the hot, outburst state before the X-ray outburst began. We propose that the outburst is produced by a viscous–thermal instability triggered close to the inner edge of a truncated disk. An X-ray delay of a week is consistent with the time needed to refill the inner region and hence move the inner edge of the disk inwards, allowing matter to reach the central BH, finally turning on the X-ray emission.« less
Simulation Experiment and Acoustic Emission Study on Coal and Gas Outburst
NASA Astrophysics Data System (ADS)
Li, Hui; Feng, Zengchao; Zhao, Dong; Duan, Dong
2017-08-01
A coal and gas outburst is an extreme hazard in underground mining. The present paper conducts a laboratory simulation of a coal and gas outburst combined with acoustic emission analysis. The experiment uses a three-dimensional stress loading system and a PCI-2 acoustic emission monitoring system. Furthermore, the development of a coal and gas outburst is numerically studied. The results demonstrate that the deformation and failure of a coal sample containing methane under three-dimensional stress involves four stages: initial compression, elastic deformation, plastic deformation and failure. The development of internal microscale fractures within a coal sample containing methane is reflected by the distribution of acoustic emission events. We observed that the deformation and failure zone for a coal sample under three-dimensional stress has an ellipsoid shape. Primary acoustic emission events are generated at the weak structural surface that compresses with ease due to the external ellipsoid-shaped stress. The number of events gradually increases until an outburst occurs. A mathematical model of the internal gas pressure and bulk stress is established through an analysis of the internal gas pressure and bulk stress of a coal sample, and it is useful for reproducing experimental results. The occurrence of a coal and gas outburst depends not only on the in situ stress, gas pressure and physical and mechanical characteristics of the coal mass but also on the free weak surface of the outburst outlet of the coal mass. It is more difficult for an outburst to occur from a stronger free surface.
Relation of Outbursts of Anger And Risk of Acute Myocardial Infarction
Mostofsky, Elizabeth; Maclure, Malcolm; Tofler, Geoffrey H; Muller, James E; Mittleman, Murray A
2013-01-01
The aim of this study was to explore the association between outbursts of anger and acute myocardial infarction (AMI) risk. Outbursts of anger are associated with an abrupt increase in cardiovascular events, but it remains unknown whether higher levels of anger intensity are associated with higher levels of AMI risk or whether potentially modifiable factors mitigate the short-term risk of AMI. We conducted a case-crossover analysis of 3886 participants from the multicenter Determinants of Myocardial Infarction Onset Study interviewed during index hospitalization for an AMI between 1989 and 1996. We compared the observed number and intensity of anger outbursts in the 2 hours preceding AMI symptom onset with its expected frequency based on each patient’s control information, defined as the number of anger outbursts in the past year. Among the 3886 participants in the Determinants of Myocardial Infarction Onset Study, 1484 (38%) reported outbursts of anger in the past year. The incidence rate of AMI onset was elevated 2.43-fold (95% confidence interval, 2.01–2.90) within 2 hours of an outburst of anger. The association was consistently stronger with increasing intensities of anger (p-trend <0.001). In conclusion, the risk of having an AMI is >2-fold higher following outbursts of anger compared to other times, and higher intensities of anger were associated with higher relative risks. Compared to non-users, regular beta-blocker users had a lower susceptibility to heart attacks triggered by anger, suggesting that some drugs may lower the risk from each episode of anger. PMID:23642509
Two peculiar fast transients in a strongly lensed host galaxy
NASA Astrophysics Data System (ADS)
Rodney, S. A.; Balestra, I.; Bradac, M.; Brammer, G.; Broadhurst, T.; Caminha, G. B.; Chirivı, G.; Diego, J. M.; Filippenko, A. V.; Foley, R. J.; Graur, O.; Grillo, C.; Hemmati, S.; Hjorth, J.; Hoag, A.; Jauzac, M.; Jha, S. W.; Kawamata, R.; Kelly, P. L.; McCully, C.; Mobasher, B.; Molino, A.; Oguri, M.; Richard, J.; Riess, A. G.; Rosati, P.; Schmidt, K. B.; Selsing, J.; Sharon, K.; Strolger, L.-G.; Suyu, S. H.; Treu, T.; Weiner, B. J.; Williams, L. L. R.; Zitrin, A.
2018-04-01
A massive galaxy cluster can serve as a magnifying glass for distant stellar populations, as strong gravitational lensing magnifies background galaxies and exposes details that are otherwise undetectable. In time-domain astronomy, imaging programmes with a short cadence are able to detect rapidly evolving transients, previously unseen by surveys designed for slowly evolving supernovae. Here, we describe two unusual transient events discovered in a Hubble Space Telescope programme that combined these techniques with high-cadence imaging on a field with a strong-lensing galaxy cluster. These transients were faster and fainter than any supernovae, but substantially more luminous than a classical nova. We find that they can be explained as separate eruptions of a luminous blue variable star or a recurrent nova, or as an unrelated pair of stellar microlensing events. To distinguish between these hypotheses will require clarification of the cluster lens models, along with more high-cadence imaging of the field that could detect related transient episodes. This discovery suggests that the intersection of strong lensing with high-cadence transient surveys may be a fruitful path for future astrophysical transient studies.
The Orbital Ephemeris of the Classical Nova RR Pictoris: Presence of a Third Body?
NASA Astrophysics Data System (ADS)
Vogt, N.; Schreiber, M. R.; Hambsch, F.-J.; Retamales, G.; Tappert, C.; Schmidtobreick, L.; Fuentes-Morales, I.
2017-01-01
The ex-nova RR Pic presents a periodic hump in its light curve which is considered to refer to its orbital period. By analyzing all available epochs of these hump maxima in the literature and then combining them with those from new light curves obtained in 2013 and 2014, we establish an unique cycle count scheme valid during the past 50 years and derive an ephemeris with the orbital period 0.145025959(15) days. The O—C diagram of this linear ephemeris reveals systematic deviations that could have different causes. One of them could be a light-travel-time effect caused by the presence of a hypothetical third body near the star/brown dwarf mass limit, with an orbital period of the order of 70 years. We also examine the difficulty of the problematic of detecting substellar or planetary companions of close red-dwarf white-dwarf binaries (including cataclysmic variables) and discuss other possible mechanisms responsible for the observed deviations in O—C. For RR Pic, we propose strategies to solve this question by new observations.
Hamilton-Jacobi theory in multisymplectic classical field theories
NASA Astrophysics Data System (ADS)
de León, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso; Vilariño, Silvia
2017-09-01
The geometric framework for the Hamilton-Jacobi theory developed in the studies of Cariñena et al. [Int. J. Geom. Methods Mod. Phys. 3(7), 1417-1458 (2006)], Cariñena et al. [Int. J. Geom. Methods Mod. Phys. 13(2), 1650017 (2015)], and de León et al. [Variations, Geometry and Physics (Nova Science Publishers, New York, 2009)] is extended for multisymplectic first-order classical field theories. The Hamilton-Jacobi problem is stated for the Lagrangian and the Hamiltonian formalisms of these theories as a particular case of a more general problem, and the classical Hamilton-Jacobi equation for field theories is recovered from this geometrical setting. Particular and complete solutions to these problems are defined and characterized in several equivalent ways in both formalisms, and the equivalence between them is proved. The use of distributions in jet bundles that represent the solutions to the field equations is the fundamental tool in this formulation. Some examples are analyzed and, in particular, the Hamilton-Jacobi equation for non-autonomous mechanical systems is obtained as a special case of our results.
The long-term post-outburst spin down and flux relaxation of magnetar swift J1822.3–1606
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholz, P.; Kaspi, V. M.; Cumming, A., E-mail: pscholz@physics.mcgill.ca
2014-05-01
The magnetar Swift J1822.3–1606 entered an outburst phase in 2011 July. Previous X-ray studies of its post-outburst rotational evolution yielded inconsistent measurements of the spin-inferred magnetic field. Here we present the timing behavior and flux relaxation from over two years of Swift, RXTE, and Chandra observations following the outburst. We find that the ambiguity in previous timing solutions was due to enhanced spin down that resembles an exponential recovery following a glitch at the outburst onset. After fitting out the effects of the recovery, we measure a long-term spin-down rate of ν-dot =(−3.0 ± 0.3)×10{sup −16} s{sup –2} which impliesmore » a dipolar magnetic field of 1.35 × 10{sup 13} G, lower than all previous estimates for this source. We also consider the post-outburst flux evolution, and fit it with both empirical and crustal cooling models. We discuss the flux relaxation in the context of both crustal cooling and magnetospheric relaxation models.« less
XTE J1946+274 = GRO J1944+26 Observations with RXTE and BATSE
NASA Technical Reports Server (NTRS)
Wilson, Colleen A.; Finger, Mark H.; Scott, D. Matthew
2000-01-01
XTE J1946+274 = GRO J1944+26 is a 15.8 second transient X-ray pulsar discovered simultaneously with the Rossi X-ray Timing Explorer (RXTE) and Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO) during an outburst in September 1998. Since its discovery, XTE J1946+274 has undergone 7 regularly spaced outbursts, that were observed with BATSE and the RXTE All-Sky Monitor (ASM). The pulse frequency and pulsed flux measurements with BATSE suggest that XTE J1946+274 is in an about 170 day orbit and is outbursting twice per orbit. The first outburst, which was brighter and longer than subsequent outbursts, was also observed with the RXTE Proportional Counter Array (PCA). We present histories of pulse frequency, pulsed flux, and total flux measured in the 20-50 keV band with BATSE and a history of the 2-10 keV total flux measured with the RXTE ASM. From the first outburst, we present energy and power spectra and pulse profiles from RXTE PCA observations.
The Spectroscopic Evolution of Nova Cygni 1992
NASA Astrophysics Data System (ADS)
Moro-Martin, A.; Garnavich, P. M.; Noriega-Crespo, A.; Alpert, A.
1996-12-01
Optical spectroscopic observations of Nova Cygni 1992 spanning 4 years are modeled in this study. The data were obtained primarily with the DAO 1.8m telescope and cover a wavelength range from ~ 3200 - 8000 Angstroms. The observations begin on May 92 (85 days after the outburst) and end on June 1996, i.e. during most of the optically thin evolutionary phase. The spectra were modeled in a relatively straightforward way by using the flux predicted by a photoionization code [1] for most of the emission lines (down to 0.1% of Hβ ) and transforming these numbers into a synthetic spectrum. There are, however, significant differences in the detailed procedure in comparison with similar works [2]. First, the photoionization models were run at a fixed abundance value for the most prominent elements (i.e. H, He, C, O, N, Ne, Fe, etc) over the entire time sequence. Second, the brightest lines, e.g. [Ne V], [Ne III], [O III] and the Balmer lines, were initially used as guide to match the observations. The rest of the spectra, which includes the fainter lines, were then directly predicted by the photoionization code. Considering the complicated structure of the shell [3], the lack of well defined values of its gas density and our limited knowledge of the time evolution of the surface temperature of the photoionization source, the comparison between models and observations agrees remarkably well. It was found that the time evolution of some of the Iron coronal lines, [Fe VII] 6087 Angstroms and [Fe X] 6374 Angstroms, closely follows that of the X-rays [4]. [1] Ferland, G.J 1993, CLOUDY, U. of Kentucky Dept. Phys & Astr. Internal Report. [2] Austin et al. 1992, AJ, 111, 869 [3] Paresce, Livio, Hack & Korista (1995) A&A, 299, 823 [4] Krautter et al. (1996), ApJ, 456, 788
The Progenitor and Remnant of the Helium Nova V445 Puppis
NASA Astrophysics Data System (ADS)
Goranskij, V.; Shugarov, S.; Zharova, A.; Kroll, P.; Barsukova, E. A.
2010-10-01
V445 Pup was a peculiar nova with no hydrogen spectral lines during the outburst. The spectrum contained strong emission lines of carbon, oxygen, calcium, sodium, and iron. We have performed digital processing of photographic images of the V445 Pup progenitor using astronomical plate archives. The brightness of the progenitor in the B band was 14.3m. It was a periodic variable star, its most probable period being 0.650654+/-0.000011 days. The light curve shape suggests that the progenitor was a common-envelope binary with a spot on the surface and variable surface brightness. The spectral energy distribution of the progenitor between 0.44 and 2.2 microns was similar to that of an A0V type star. After the explosion in 2001, the dust was formed in the ejecta, and the star became a strong infrared source. This resulted in the star's fading below 20m in the V band. Our CCD BVR observations acquired between 2003 and 2009 suggest that the dust absorption minimum finished in 2004, and the remnant reappeared at the level of 18.5m V. The dust dispersed but a star-like object was absent in frames taken in the K band with the VLT adaptive optics. Only expanding ejecta of the explosion were seen in these frames till March 2007. No reddened A0V type star reappeared in the spectral energy distribution. The explosion of V445 Pup in 2000 was a helium flash on the surface of a CO-type white dwarf. Taking into account the results of modern dynamic calculations, we discuss the possibility of a white-dwarf core detonation triggered by the helium flash and the observational evidence for it. Additionally, the common envelope of the system was lost in the explosion. Destruction in the system and mass loss from its components exclude the future SN Ia scenario for V445 Pup.
NASA Technical Reports Server (NTRS)
Friedjung, Michael
1993-01-01
One of the most important features of symbiotic stars is the coexistence of a cool spectral component that is apparently very similar to the spectrum of a cool giant, with at least one hot continuum, and emission lines from very different stages of ionization. The cool component dominates the infrared spectrum of S-type symbiotics; it tends to be veiled in this wavelength range by what appears to be excess emission in D-type symbiotics, this excess usually being attributed to circumstellar dust. The hot continuum (or continua) dominates the ultraviolet. X-rays have sometimes also been observed. Another important feature of symbiotic stars that needs to be explained is the variability. Different forms occur, some variability being periodic. This type of variability can, in a few cases, strongly suggest the presence of eclipses of a binary system. One of the most characteristic forms of variability is that characterizing the active phases. This basic form of variation is traditionally associated in the optical with the veiling of the cool spectrum and the disappearance of high-ionization emission lines, the latter progressively appearing (in classical cases, reappearing) later. Such spectral changes recall those of novae, but spectroscopic signatures of the high-ejection velocities observed for novae are not usually detected in symbiotic stars. However, the light curves of the 'symbiotic nova' subclass recall those of novae. We may also mention in this connection that radio observations (or, in a few cases, optical observations) of nebulae indicate ejection from symbiotic stars, with deviations from spherical symmetry. We shall give a historical overview of the proposed models for symbiotic stars and make a critical analysis in the light of the observations of symbiotic stars. We describe the empirical approach to models and use the observational data to diagnose the physical conditions in the symbiotics stars. Finally, we compare the results of this empirical approach with existing models and discuss unresolved problems requiring new observational and theoretical work.
Flux Relaxation after Two Outbursts of the Magnetar SGR 1627–41 and Possible Hard X-Ray Emission
NASA Astrophysics Data System (ADS)
An, Hongjun; Cumming, Andrew; Kaspi, Victoria M.
2018-05-01
We report on the long-term flux relaxation of the magnetar SGR 1627‑41 after its 2008 outburst, and evidence for hard X-ray excess measured with NuSTAR. We use new observations made with Chandra and XMM-Newton, and an archival NuSTAR observation, which add flux measurements at ∼2000 days into quiescence after the 2008 outburst. We find that the source flux has further declined since the last measurement made in 2011, ∼1000 days after the outburst in 2008. This trend is similar to the relaxation after the source’s 1998 outburst. We use crustal cooling models to reproduce the flux relaxation; if the whole surface of the star is heated in the outbursts, the modeling suggests that the 2008 outburst of SGR 1627‑41 deposited energy into the inner crust and that the core temperature of SGR 1627‑41 is low (T c ≲ 108 K), as previously suggested. On the other hand, if only a small fraction of the surface is heated or the temperature in the crust reached the melting temperature, relaxation at early times requires another emission mechanism. Finally, we report on evidence for hard X-ray emission in SGR 1627‑41 that follows the observational correlation suggested by Kaspi & Boydstun in magnetars.
The outburst duration and duty cycle of GRS1915+105
NASA Astrophysics Data System (ADS)
Deegan, Patrick; Combet, Céline; Wynn, Graham A.
2009-12-01
The extraordinarily long outburst of GRS1915+105 makes it one of the most remarkable low-mass X-ray binaries (LMXBs). It has been in a state of constant outburst since its discovery in 1992, an eruption which has persisted ~100 times longer than those of more typical LXMBs. The long orbital period of GRS1915+105 implies that it contains large and massive accretion disc which is able to fuel its extreme outburst. In this paper, we address the longevity of the outburst and quiescence phases of GRS1915+105 using smooth particle hydrodynamics (SPH) simulations of its accretion disc through many outburst cycles. Our model is set in the two-α framework and includes the effects of the thermoviscous instability, tidal torques, irradiation by central X-rays and wind mass loss. We explore the model parameter space and examine the impact of the various ingredients. We predict that the outburst of GRS1915+105 should last a minimum of 20yr and possibly up to ~100yr if X-ray irradiation is very significant. The predicted recurrence times are of the order of 104yr, making the X-ray duty cycle a few 0.1 per cent. Such a low duty cycle may mean that GRS1915+105 is not an anomaly among the more standard LMXBs and that many similar, but quiescent, systems could be present in the Galaxy.
XTE J1946+274 = GRO J1944+26: An Enigmatic Be/X-ray Binary
NASA Technical Reports Server (NTRS)
Wilson, Colleen A.; Finger, Mark H.; Coe, M. J.; Negueruela, Ignacio; Six, N. Frank (Technical Monitor)
2002-01-01
XTE J1946+274 = GRO J1944+26 is a 15.8-s Be/X-ray pulsar discovered simultaneously in 1998 September with the, Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) and the All-Sky Monitor (ASM) on the Rossi X-ray Timing Explorer (RXTE). Pulse timing analysis yielded an orbital period of 169.2 days, a moderate eccentricity of 0.33, and implied a mass function of 9.7 solar mass. We observed evidence for an accretion disk, a correlation between measured spin-up rate and flux, which was fitted to obtain a distance estimate of 9.2 +/- 1.0 kpc. XTE J1946+274 remained active from 1998 September - 2001 July, undergoing 13 outbursts that were not locked in orbital phase. Comparing RXTE PCA observations from the initial bright outburst in 1998 and the last pair of outburst in 2001, we found energy and intensity dependent pulse profile variations in both outbursts and hardening spectra with increasing intensity during the fainter 2001 outbursts. In 2001 July, optical H(alpha) observations indicate a density perturbation appeared in the Be disk as the X-ray outbursts ceased. We propose that the equatorial plane of the Be star is inclined with respect to the orbital plane in this system and that this inclination may produce the unusual outburst behavior of the system.
The properties of cross-correlation and spectra of the low-mass X-ray binary 4U 1608-52
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Ya-Juan; Yuan, Hai-Long; Dong, Yi-Qiao
With RXTE data, we analyzed the cross-correlation function between the soft and hard X-rays of the transient atoll source 4U 1608-52. We found anti-correlations in three outbursts occurred in 1998, 2002, and 2010, and we found significant time lags of several hundreds of seconds in the latter two outbursts. Our results show no correlation between the soft and hard X-rays in the extreme island state and a dominated positive correlation in the lower banana state. Anti-correlations are presented at the upper banana state for the outburst of 2010 and at the island and the lower left banana states for themore » other two outbursts. So far for atoll sources, the cross-correlation has been studied statistically only for 4U 1735-44, where anti-correlations showed up in the upper banana state. Here our investigation on 4U 1608-52 provides a similar result in its 2010 outburst. In addition, we notice that the luminosities in the upper banana of the 1998 and 2002 outbursts are about 1.5 times that of the 2010 outburst whose luminosity in the upper banana is close to that of 4U 1735-44. The results suggest that the states in the color-color diagram of a source could be correlated with the luminosity of the source. A further spectral analysis during the 2010 outburst is also shown, which suggests that the disk can be a little truncated in the upper banana. The feature on the upper banana is similar to the previous results of the flaring branch in Z sources.« less
[Violent outburst from teenagers in the pediatric emergency room: Complex cases].
Cohen, L; Gras-Le Guen, C; Fleury, J; Caldagues, E; Dreno, L; Picherot, G; Vabres, N
2017-12-01
Teenagers admitted to the emergency room for a violent attacks episode are increasingly numerous. The source of agitation is multifactorial for these teenagers, often with a complex course. They jeopardize hospital wards, which are often ill-suited for and overwhelmed during these outbursts. This study aims to identify and describe all the teenagers admitted to the hospital over 1 year for a violent outburst and discuss their management. Retrospective and descriptive study of teenagers admitted to the pediatric emergency department of the Nantes University Hospital for a violent outburst in 2015. During this 1-year study, 99 teenagers out of a total of 182 consultations were admitted for a violent outburst. We noted that 85% of them had a previous history of a violent outburst, 70% of them were seeing a psychologist, and 56% were followed by the child welfare services. Most of the outbursts took place at home and were hetero-aggressive. Upon arrival at the pediatric emergency ward, 90% of the teenagers had calmed down. The mean time spent in the emergency ward was 3h42min. Finally, 31% of the teenagers were hospitalized in the general pediatric unit, 14% in the children's psychiatric department, and 8% in the adult psychiatry ward. We observed a high proportion of complex cases in the teenagers admitted to our emergency department for a violent outburst. These teenagers in distress, with a complex previous history, illustrated the relation between violence against themselves and their own violent behavior toward others. Developing short-stay units for a temporary isolation could be an advantageous multidisciplinary approach to allow somatic, psychological, and social evaluation of these vulnerable patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Clinical Features of Young Children Referred for Impairing Temper Outbursts
Klein, Rachel G.; Angelosante, Aleta; Bar-Haim, Yair; Leibenluft, Ellen; Hulvershorn, Leslie; Dixon, Erica; Dodds, Alice; Spindel, Carrie
2013-01-01
Abstract Objective In light of the current controversy about whether severe temper outbursts are diagnostic of mania in young children, we conducted a study to characterize such children, focusing on mania and other mood disorders, emotion regulation, and parental psychiatric history. Methods Study participants included 51 5–9-year-old children with frequent, impairing outbursts (probands) and 24 non-referred controls without outbursts. Parents completed a lifetime clinical interview about their child, and rated their child's current mood and behavior. Teachers completed a behavior rating scale. To assess emotion regulation, children were administered the Balloons Game, which assesses emotion expressivity in response to frustration, under demands of high and low regulation. Parental lifetime diagnoses were ascertained in blind clinical interviews. Results No child had bipolar disorder, bipolar disorder not otherwise specified (NOS), or major depression (MDD). The most prevalent disorder was oppositional defiant disorder (88.2%), followed by attention-deficit/hyperactivity disorder (74.5%), anxiety disorders (49.0%), and non-MDD depressive disorders (33.3%). Eleven probands (21.6%) met criteria for severe mood dysregulation. During the Balloons Game, when there were no demands for self-regulation, children with severe outbursts showed reduced positive expressivity, and also showed significant deficits in controlling negative facial expressions when asked to do so. Anxiety disorders were the only diagnoses significantly elevated in probands' mothers. Conclusions Overall, young children with severe temper outbursts do not present with bipolar disorder. Rather, disruptive behavior disorders with anxiety and depressive mood are common. In children with severe outbursts, deficits in regulating emotional facial expressions may reflect deficits controlling negative affect. This work represents a first step towards elucidating mechanisms underlying severe outbursts in young children. PMID:24168713
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forman, W.; Jones, C.; Kraft, R.
M87, the active galaxy at the center of the Virgo cluster, is ideal for studying the interaction of a supermassive black hole (SMBH) with a hot, gas-rich environment. A deep Chandra observation of M87 exhibits an approximately circular shock front (13 kpc radius, in projection) driven by the expansion of the central cavity (filled by the SMBH with relativistic radio-emitting plasma) with projected radius ∼1.9 kpc. We combine constraints from X-ray and radio observations of M87 with a shock model to derive the properties of the outburst that created the 13 kpc shock. Principal constraints for the model are (1)more » the measured Mach number ( M ∼ 1.2), (2) the radius of the 13 kpc shock, and (3) the observed size of the central cavity/bubble (the radio-bright cocoon) that serves as the piston to drive the shock. We find that an outburst of ∼5 × 10{sup 57} erg that began about 12 Myr ago and lasted ∼2 Myr matches all the constraints. In this model, ∼22% of the energy is carried by the shock as it expands. The remaining ∼80% of the outburst energy is available to heat the core gas. More than half the total outburst energy initially goes into the enthalpy of the central bubble, the radio cocoon. As the buoyant bubble rises, much of its energy is transferred to the ambient thermal gas. For an outburst repetition rate of about 12 Myr (the age of the outburst), 80% of the outburst energy is sufficient to balance the radiative cooling.« less
2014–2015 MULTIPLE OUTBURSTS OF 15P/FINLAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiguro, Masateru; Kwon, Yuna Grace; Kim, Yoonyoung
Multiple outbursts of a Jupiter-family comet (JFC), 15P/Finlay, occurred from late 2014 to early 2015. We conducted an observation of the comet after the first outburst and subsequently witnessed another outburst on 2015 January 15.6–15.7. The gas, consisting mostly of C{sub 2} and CN, and dust particles expanded at speeds of 1110 ± 180 m s{sup −1} and 570 ± 40 m s{sup −1} at a heliocentric distance of 1.0 au. We estimated the maximum ratio of solar radiation pressure with respect to the solar gravity β {sub max} = 1.6 ± 0.2, which is consistent with porous dust particles composed of silicates and organics. We found thatmore » 10{sup 8}–10{sup 9} kg of dust particles (assumed to be 0.3 μ m–1 mm) were ejected through each outburst. Although the total mass is three orders of magnitude smaller than that of the 17P/Holmes event observed in 2007, the kinetic energy per unit mass (10{sup 4} J kg{sup −1}) is equivalent to the estimated values of 17P/Holmes and 332P/2010 V1 (Ikeya–Murakami), suggesting that the outbursts were caused by a similar physical mechanism. From a survey of cometary outbursts on the basis of voluntary reports, we conjecture that 15P/Finlay-class outbursts occur >1.5 times annually and inject dust particles from JFCs and Encke-type comets into interplanetary space at a rate of ∼10 kg s{sup −1} or more.« less
Two giant outbursts of V0332+53 observed with INTEGRAL
NASA Astrophysics Data System (ADS)
Ferrigno, Carlo; Ducci, Lorenzo; Bozzo, Enrico; Kretschmar, Peter; Kühnel, Matthias; Malacaria, Christian; Pottschmidt, Katja; Santangelo, Andrea; Savchenko, Volodymyr; Wilms, Jörn
2016-10-01
Context. In July 2015, the high-mass X-ray binary V0332+53 underwent a giant outburst, a decade after the previous one. V0332+53 hosts a strongly magnetized neutron star. During the 2004-2005 outburst, an anti-correlation between the centroid energy of its fundamental cyclotron resonance scattering features (CRSFs) and the X-ray luminosity was observed. Aims: The long (≈100 d) and bright (Lx ≈ 1038 erg s-1) 2015 outburst provided the opportunity to study the unique properties of the fundamental CRSF during another outburst and to study its dependence on the X-ray luminosity. Methods: The source was observed by the INTEGRAL satellite for ~330 ks. We exploit the spectral resolution at high energies of the SPectrometer on INTEGRAL (SPI) and the Joint European X-ray Monitors to characterize its spectral properties, focusing in particular on the CRSF-luminosity dependence. We complement the data of the 2015 outburst with those collected by SPI in 2004-2005, which have so far been left unpublished. Results: We find a highly significant anti-correlation of the centroid energy of the fundamental CRSF and the 3-100 keV luminosity of E1 ∝ -0.095(8)L37 keV. This trend is observed for both outbursts. We confirm the correlation between the width of the fundamental CRSF and the X-ray luminosity previously found in the JEM-X and IBIS dataset of the 2004-2005 outburst. By exploiting the RXTE/ASM and Swift/BAT monitoring data, we also report on the detection of a ~34 d modulation superimposed on the mean profiles and roughly consistent with the orbital period of the pulsar. We discuss possible interpretations of such variability.
NASA Astrophysics Data System (ADS)
Forman, W.; Churazov, E.; Jones, C.; Heinz, S.; Kraft, R.; Vikhlinin, A.
2017-08-01
M87, the active galaxy at the center of the Virgo cluster, is ideal for studying the interaction of a supermassive black hole (SMBH) with a hot, gas-rich environment. A deep Chandra observation of M87 exhibits an approximately circular shock front (13 kpc radius, in projection) driven by the expansion of the central cavity (filled by the SMBH with relativistic radio-emitting plasma) with projected radius ˜1.9 kpc. We combine constraints from X-ray and radio observations of M87 with a shock model to derive the properties of the outburst that created the 13 kpc shock. Principal constraints for the model are (1) the measured Mach number (M ˜ 1.2), (2) the radius of the 13 kpc shock, and (3) the observed size of the central cavity/bubble (the radio-bright cocoon) that serves as the piston to drive the shock. We find that an outburst of ˜5 × 1057 erg that began about 12 Myr ago and lasted ˜2 Myr matches all the constraints. In this model, ˜22% of the energy is carried by the shock as it expands. The remaining ˜80% of the outburst energy is available to heat the core gas. More than half the total outburst energy initially goes into the enthalpy of the central bubble, the radio cocoon. As the buoyant bubble rises, much of its energy is transferred to the ambient thermal gas. For an outburst repetition rate of about 12 Myr (the age of the outburst), 80% of the outburst energy is sufficient to balance the radiative cooling.
Systematic study of magnetar outbursts
NASA Astrophysics Data System (ADS)
Coti Zelati, F.; Rea, N.; Pons, J. A.; Campana, S.; Esposito, P.
2017-12-01
We present the results of the systematic study of all magnetar outbursts observed to date through a reanalysis of data acquired in about 1100 X-ray observations. We track the temporal evolution of the luminosity for all these events, model empirically their decays, and estimate the characteristic decay time-scales and the energy involved. We study the link between different parameters (maximum luminosity increase, outburst peak luminosities, quiescent X-ray and bolometric luminosities, energetics, decay time-scales, magnetic field, spin-down luminosity and age), and reveal several correlations between different quantities. We discuss our results in the framework of the models proposed to explain the triggering mechanism and evolution of magnetar outbursts. The study is complemented by the Magnetar Outburst Online Catalog (http://www.magnetars.ice.csic.es), an interactive database where the user can plot any combination of the parameters derived in this work and download all reduced data.
NOVA2-mediated RNA regulation is required for axonal pathfinding during development.
Saito, Yuhki; Miranda-Rottmann, Soledad; Ruggiu, Matteo; Park, Christopher Y; Fak, John J; Zhong, Ru; Duncan, Jeremy S; Fabella, Brian A; Junge, Harald J; Chen, Zhe; Araya, Roberto; Fritzsch, Bernd; Hudspeth, A J; Darnell, Robert B
2016-05-25
The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development. Corresponding axonal pathfinding defects were specific to NOVA2 deficiency: Nova2-/- but not Nova1-/- mice had agenesis of the corpus callosum, and axonal outgrowth defects specific to ventral motoneuron axons and efferent innervation of the cochlea. Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo.
Swift/BAT confirms the giant outburst of H 1417-624
NASA Astrophysics Data System (ADS)
Krimm, H. A.; Barthelmy, S. D.; Cummings, J. R.; Lien, A. Y.; Markwardt, C. B.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.; Ukwatta, T. N.
2018-04-01
The Swift/BAT transient monitor confirms the current outburst from the Be/X-ray binary pulsar, H 1417-624 ( = 2S 1417-624) (Nakajima et al., ATel #11479). In the BAT 15-50 keV energy band, the outburst began approximately on 20 March 2018 (MJD 57467) and the count rate has been steadily rising since that time.
First INTEGRAL and Swift Observations of a Giant Outburst of A 0535+26
NASA Technical Reports Server (NTRS)
Caballero, I.; Mueller, S.; Bordas, P.; Ferrigno, C.; Kuehnel, M.; Pottschmodt, K.; Kretschmar, P.; Wilms, J.; Kreykenbohm, I.; Santangelo, A.;
2012-01-01
The Be/X-ray binary A 0535+26 has shown three giant outbursts since 2005, after a long period of quiescence. The giant outbursts in 2005 (approx.5.2 Crab, 15-50 keY range) and 2009 (approx.5.6 Crab) could not be observed by most X-ray observatories due to Sun observing constraints. Finally, a giant outburst in February 2011, that reached a flux of approx.3.8 Crab, was monitored with INTEGRAL and Swift TOO observations. We present first results these observations, with a special focus on the cyclotron lines present in the X-ray spectrum of the source.
Long-Term Spectral and Timing Behavior of the Black Hole Candidate XTE J1908+094
NASA Technical Reports Server (NTRS)
Gogus, Ersin; Finger, Mark H.; Kouveliotou, Chryssa; Woods, Peter M.; Patel, Sandeep K.; Ruppen, Michael; Swank, Jean H.; Markwardt, Craig B.; VanDerKlis, Michiel
2004-01-01
We present the long-term X-ray light curves and detailed spectral and timing analyses of XTE J1908+094 using the Rossi X-Ray Timing Explorer Proportional Counter Array observations covering two outbursts in 2002 and early 2003. At the onset of the first outburst, the source was found in a spectrally low/hard state lasting for approx.40 days, followed by a 3 day long transition to the high/soft state. The source flux (in 2- 10 keV) reached approx.100 mcrab on 2002 April 6, then decayed rapidly. In power spectra, we detect strong band-limited noise and varying low- frequency quasi-periodic oscillations that evolved from approx.0.5 to approx.5 Hz during the initial low/hard state of the source. We find that the second outburst closely resembled the spectral evolution of the first. The X-ray transient s overall outburst characteristics led us to classify XTE J1908+094 as a black hole candidate. Here we also derive precise X-ray position of the source using Chandra observations that were performed during the decay phase of the first outburst and following the second outburst.
Very rare outburst of the symbiotic variable AG Peg
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2015-06-01
The symbiotic variable AG Peg is in outburst, the first one observed since its only known outburst, which occurred in 1860-1870. Currently at visual/V magnitude 7.2 (B=7.8), it is an excellent target for visual, PEP, CCD, and DSLR observers and spectroscopists. The current outburst began after 2015 May 27 UT (T. Markham, Leek, Staffordshire, England, from the BAAVSS online database) and was underway by June 13.90 (A. Kosa-Kiss, Salonta, Romania). AG Peg has a very interesting history. Regarding the 1860-1870 outburst, data collected by E. Zinner (Merrill, 1959, S&T, 18, 9, 490) show AG Peg slowly brightening from visual magnitude 9.2 in 1821 to 8.0 in 1855, then at 6.2 in 1860 and brightening to 6.0 in 1870, then in decline at 6.8 by 1903, and continuing to decline slowly ( 6.9 in 1907, 8.0 in 1920, 8.3 in 1940). Observations in the AAVSO International Database since July 1941 show that the decline has continued without interruption from an average magnitude of 7.7 to an average magnitude of 8.8-9.0 by mid-January 2015. The AAVSO data since 1941 also show the periodic 0.4-magnitude variations ( 825 days) that have been present since the 1920s. Thus, after taking about 10 years to brighten from its minimum magnitude of about 9 to its maximum magnitude of 6.0, and then fading gradually over 140-145 years, AG Peg is now in outburst again. There are no observations of the 1860-1870 outburst that show the outburst's beginning. This time, however, in 2015, the opportunity is here to follow the outburst itself closely and learn just what this system does during outburst. Observations in all bands and visual observations are strongly encouraged. AG Peg is bright enough to be a very good PEP target. For spectroscopists, AG Peg has an extremely complex spectrum that undergoes substantial changes and would make a very interesting target. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. Precise observing instructions and other details are given in the full Alert Notice.
NOVA2-mediated RNA regulation is required for axonal pathfinding during development
Saito, Yuhki; Miranda-Rottmann, Soledad; Ruggiu, Matteo; Park, Christopher Y; Fak, John J; Zhong, Ru; Duncan, Jeremy S; Fabella, Brian A; Junge, Harald J; Chen, Zhe; Araya, Roberto; Fritzsch, Bernd; Hudspeth, A J; Darnell, Robert B
2016-01-01
The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development. Corresponding axonal pathfinding defects were specific to NOVA2 deficiency: Nova2-/- but not Nova1-/- mice had agenesis of the corpus callosum, and axonal outgrowth defects specific to ventral motoneuron axons and efferent innervation of the cochlea. Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo. DOI: http://dx.doi.org/10.7554/eLife.14371.001 PMID:27223325
NASA Astrophysics Data System (ADS)
Rivinius, Th.; Baade, D.; Carciofi, A. C.
2016-09-01
Context. Classical Be stars have been established as pulsating stars. Space-based photometric monitoring missions contributed significantly to that result. However, whether Be stars are just rapidly rotating SPB or β Cep stars, or whether they have to be understood differently, remains debated in the view of their highly complex power spectra. Aims: Kepler data of three known Be stars are re-visited to establish their pulsational nature and assess the properties of additional, non-pulsational variations. The three program stars turned out to be one inactive Be star, one active, continuously outbursting Be star, and one Be star transiting from a non-outbursting into an outbursting phase, thus forming an excellent sample to distill properties of Be stars in the various phases of their life-cycle. Methods: The Kepler data was first cleaned from any long-term variability with Lomb-Scargle based pre-whitening. Then a Lomb-Scargle analysis of the remaining short-term variations was compared to a wavelet analysis of the cleaned data. This offers a new view on the variability, as it enables us to see the temporal evolution of the variability and phase relations between supposed beating phenomena, which are typically not visualized in a Lomb-Scargle analysis. Results: The short-term photometric variability of Be stars must be disentangled into a stellar and a circumstellar part. The stellar part is on the whole not different from what is seen in non-Be stars. However, some of the observed phenomena might be to be due to resonant mode coupling, a mechanism not typically considered for B-type stars. Short-term circumstellar variability comes in the form of either a group of relatively well-defined, short-lived frequencies during outbursts, which are called Štefl frequencies, and broad bumps in the power spectra, indicating aperiodic variability on a time scale similar to typical low-order g-mode pulsation frequencies, rather than true periodicity. Conclusions: From a stellar pulsation perspective, Be stars are rapidly rotating SPB stars, that is they pulsate in low order g-modes, even if the rapid rotation can project the observed frequencies into the traditional high-order p-mode regime above about 4 c/d. However, when a circumstellar disk is present, Be star power spectra are complicated by both cyclic, or periodic, and aperiodic circumstellar phenomena, possibly even dominating the power spectrum.
VLTI monitoring of the dust formation event of the Nova V1280 Scorpii
NASA Astrophysics Data System (ADS)
Chesneau, O.; Banerjee, D. P. K.; Millour, F.; Nardetto, N.; Sacuto, S.; Spang, A.; Wittkowski, M.; Ashok, N. M.; Das, R. K.; Hummel, C.; Kraus, S.; Lagadec, E.; Morel, S.; Petr-Gotzens, M.; Rantakyro, F.; Schöller, M.
2008-08-01
Context: We present the first high spatial-resolution monitoring of the dust-forming nova V1280 Sco, performed with the Very Large Telescope Interferometer (VLTI). Aims: These observations promise to improve the distance determination of such events and constrain the mechanisms leading to very efficient dust formation under the harsh physical conditions encountered in novae ejecta. Methods: Spectra and visibilities were regularly acquired between the onset of dust formation, 23 days after discovery (or 11 days after maximum), and day 145, using the beam-combiner instruments AMBER (near-IR) and MIDI (mid-IR). These interferometric observations were complemented by near-infrared data from the 1.2 m Mt. Abu Infrared Observatory, India. The observations are initially interpreted in terms of simple uniform models; however more complex models, probably involving a second shell, are required to explain data acquired following t=110 d after outburst. This behavior is in accordance with the light curve of V1280 Sco, which exhibits a secondary peak at about t=106 d, followed by a new, steep decline, suggesting a new dust-forming event. Spherical dust shell models generated with the DUSTY code are used to investigate the parameters of the main dust shell. Results: Using uniform disk models, these observations allow us to determine an apparent linear expansion rate for the dust shell of 0.35 ± 0.03 mas day-1 and the approximate ejection time of the matter in which dust formed of t_ejec = 10.5 ± 7 d, i.e. close to the maximum brightness. This information, combined with the expansion velocity of 500 ± 100 km s-1, implies a distance estimate of 1.6 ± 0.4 kpc. The sparse uv coverage does not enable deviations from spherical symmetry to be clearly discerned. The dust envelope parameters were determined. The dust mass generated was typically 2-8 × 10-9 M_⊙ day-1, with a probable peak in production at about 20 days after the detection of dust and another peak shortly after t=110 d, when the amount of dust in the shell was estimated as 2.2 × 10-7 M_⊙. Considering that the dust-forming event lasted at least 200-250 d, the mass of the ejected material is likely to have exceeded 10-4 M_⊙. The conditions for the formation of multiple shells of dust are also discussed. Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory under programs 278.D-5053, 279.D-5014 and 079.D-0415.
Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries
NASA Astrophysics Data System (ADS)
Weston, Jennifer Helen Seng; E-Nova Project
2017-01-01
In this dissertation, I use radio observations with the Karl G. Jansky Very Large Array (VLA) to reveal that colliding flows within the ejecta from nova explosions can lead to shocks that accelerate particles and produce radio synchrotron emission. In both novae V1723 Aql and V5589 Sgr, radio emission within the first one to two months deviated strongly from the classic thermal model for radio emission from novae. Three years of radio observations of V1723 Aql show that multiple outflows from the system collided to create non-thermal shocks with a brightness temperature of >106 K. After these shocks faded, the radio light curve became roughly consistent with an expanding thermal shell. However, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months. In the case of nova V5589 Sgr, I show that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. These findings have important implications for understanding how normal novae generate GeV gamma-rays.Additionally, I present VLA observations of the symbiotic star CH Cyg and two small surveys of symbiotic binaries. Radio observations of CH Cyg tie the ejection of a collimated jet to a change of state in the accretion disk, strengthening the link between bipolar outflows from accreting white dwarfs and other types of accreting compact objects. Next, I use a survey of eleven accretion-driven symbiotic binaries to determine that the radio brightness of a symbiotic system could potentially be used as an indicator of whether it is powered predominantly by shell burning on the surface of the white dwarf or by accretion. This survey also produces the first radio detections of seven of the target systems. In the second survey of seventeen symbiotic binaries, I spatially resolve extended radio emission in several systems for the first time. The results from these surveys provide some support for the model of radio emission where the red giant wind is photoionized by the white dwarf, and suggest that there may be a greater population of radio faint, accretion driven symbiotic systems.
SSM on AstroSat detects neutron star X-ray transient, Aql_X-1 in its outburst
NASA Astrophysics Data System (ADS)
Ramadevi, M. C.; Ravishankar, B. T.; Sarwade, Abhilash R.; Vaishali, S.; Hasan, Mohammed; Agarwal, Vivek Kumar; Baby, Blessy Elizabeth; Bhattacharya, Dipankar; Seetha, S.; Agarwal, Anil
2017-06-01
We report on the X-ray outburst of the neutron star X-ray source Aql X-1 as observed by SSM onboard AstroSat. Flux reported by SSM on its first observation of the source during this outburst on 01 June 2017 at 08:55 UT is about 820 milliCrab (2.24 +/- 0.02 photons/s-cm^2).
NASA Astrophysics Data System (ADS)
Lin, Zhong-Yi; Vincent, Jean-Baptiste; A'Hearn, Mike; Lara, Luisa; Knollenberg, Joerg; Ip, Wing-Huen; Osiris Team
2016-04-01
The OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) WAC and NAC camera onboard the ESA Rosetta spacecraft orbiting 67P/Churyumov-Gersimenko has captured a lot of outbursts since July, 2015. Most of their source regions were located at southern hemisphere of comet C-G. Including the March- and perihelion-outbursts, the detected events show a variety of morphological features (i.e. broad fan, collimated jet and so on). In this work, we investigate these events and characterize the physical properties, including the surface brightness profiles, ejected mass and speed if there were two or more images acquired by the same filter during the outburst timeframe.
NASA Astrophysics Data System (ADS)
Sreehari, H.; Nandi, Anuj; Radhika, D.; Iyer, Nirmal; Mandal, Samir
2018-02-01
We report on our attempt to understand the outbursting profile of Galactic Black Hole sources, keeping in mind the evolution of temporal and spectral features during the outburst. We present results of evolution of quasi-periodic oscillations, spectral states and possible connection with jet ejections during the outburst phase. Further, we attempt to connect the observed X-ray variabilities (i.e., `class'/`structured' variabilities, similar to GRS 1915+105) with spectral states of black hole sources. Towards these studies, we consider three black hole sources that have undergone single (XTE J1859+226), a few (IGR J17091-3624) and many (GX 339-4) outbursts since the start of RXTE era. Finally, we model the broadband energy spectra (3-150 keV) of different spectral states using RXTE and NuSTAR observations. Results are discussed in the context of two-component advective flow model, while constraining the mass of the three black hole sources.
The 2015 hard-state only outburst of GS 1354-64
NASA Astrophysics Data System (ADS)
Stiele, H.; Kong, A. K. H.
2016-07-01
Since its outburst in 1997, GS 1354-64 stayed in quiescence. In 2015 June, renewed activity of GS 1354-64 was observed. Based on our analysis of energy spectra and timing properties obtained from Swift/X-ray telescope monitoring data, we found that GS 1354-64 stayed in the hard state during the entire outburst. Such a hard state only (or `failed' outburst) has also been observed in 1997. In addition, we analysed an XMM-Newton observation taken on August 6th. We compared variability on long and short time-scales using covariance ratio and found that the ratio showed a decrease towards lower energies instead of the increase that has been found in other black hole X-ray binaries. There are now two sources (H1743-322 and GS 1354-64) that do not show an increase towards lower energies in their covariance ratio. Both sources have been observed during `failed' outbursts and showed photon indices much harder than what is usually observed in black hole X-ray binaries.
Protoplanetary Formation and the FU Orionis Outburst
NASA Technical Reports Server (NTRS)
Bodenheimer, P. H.
1996-01-01
The following three publications which reference the above grant from the NASA Origins of Solar Systems program are attached and form the final technical report for this project. The research involved comparisons of the spectral energy distributions of FU Orionis objects with theoretical models and associated studies of the structure of the outbursting accretion disks, as well as related studies on the effects of magnetic fields in disks, which will lead in the future to models of FU Orionis outbursts which include the effects of magnetic fields. The project was renewed under a new grant NAGW-4456, entitled 'Effects of FU Orionis Outbursts on Protoplanetary Disks'. Work now being prepared for publication deals more specifically with the issue of the effects of the outbursts on protoplanetary formation. Models of the spectral energy distribution of FU Orionis stars. A simple model of a buoyant magnetic dynamo in accretion disks and a numerical study of magnetic buoyancy in an accretion disk have been submitted.
NASA Astrophysics Data System (ADS)
Camero-Arranz, Ascension; Finger, M. H.; Wilson-Hodge, C.; Caballero, I.; Kretschmar, P.; Jenke, P. A.; Beklen, E.
2010-03-01
We present a long-term timing analysis of the accreting X-ray pulsar A 0535+26 using data from Fermi/GBM, RXTE and Swift/BAT. A new orbital ephemeris is obtained from normal outbursts experienced by this source since 2005, and a long-term pulse profile study is carried out. In this study we include results from the current outburst. This outburst is believed to be much larger than the previous ones.
After 23 years the yellow symbiotic star LT Del is again in outburst
NASA Astrophysics Data System (ADS)
Munari, U.; Ochner, P.; Dallaporta, S.; Belligoli, R.
2017-05-01
The ANS Collaboration photometric and spectroscopic monitoring of symbiotic stars has detected LT Del (= Hen 2-467 = PK 063-12.1 = StHa 179) in outburst. This is the first recorded outburst since the last one of 1994-1995, which was discovered by Passuello et al. (1994, IAUC 6065) and described by Arkhipova et al. (1995a, ALett 21, 339; 1995b, ALett 21, 391).
Recurrent Outbursts Revealed in 3XMM J031820.8-663034
NASA Astrophysics Data System (ADS)
Zhao, Hai-Hui; Weng, Shan-Shan; Wang, Jun-Xian
2018-06-01
3XMM J031820.8-663034, first detected by ROSAT in NGC 1313, is one of a few known transient ultraluminous X-ray sources (ULXs). In this paper, we present decades of X-ray data of this source from ROSAT, XMM-Newton, Chandra, and the Neil Gehrels Swift Observatory. We find that its X-ray emission experienced four outbursts since 1992, with a typical recurrent time ∼1800 days, an outburst duration ∼240–300 days, and a nearly constant peak X-ray luminosity ∼1.5 × 1039 erg s‑1. The upper limit of X-ray luminosity at the quiescent state is ∼5.6 × 1036 erg s‑1, and the total energy radiated during one outburst is ∼1046 erg. The spectra at the high luminosity states can be described with an absorbed disk blackbody, and the disk temperature increases with the X-ray luminosity. We compare its outburst properties with other known transient ULXs including ESO 243-49 HLX-1. As its peak luminosity only marginally puts it in the category of ULXs, we also compare it with normal transient black hole binaries. Our results suggest that the source is powered by an accreting massive stellar-mass black hole, and the outbursts are triggered by the thermal-viscous instability.
NASA Astrophysics Data System (ADS)
Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita
2017-08-01
We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways (TNRs) on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material. We use the results of the multi-dimensional studies of TNRs in white dwarfs, accreting only Solar matter, which show that sufficient core material is dredged-up by the TNR and then ejected by the explosion to agree with the observations of the ejecta abundances. We have also found that the initial 12C abundance is inversely proportional to the amount of material accreted prior to the TNR. Therefore, we first accrete Solar material and follow the evolution until a TNR occurs. Because the 12C abundance is significantly smaller then if we had initially mixed the accreting gas with the carbon-oxygen core, more matter takes part in the explosion than if we had begun the evolution with the mixed composition. We then instantaneously switch the composition to a mixture with either 25% core material or 50% core material (plus accreted material) and follow the resulting evolution of the TNR. We use our 1D, Lagrangian, hydrodynamic code: NOVA. We report on the results of these new simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Josè and Hernanz). We find that there are some white dwarf masses where significantly less mass is ejected than accreted during the Classical Nova event and, therefore, the white dwarf is growing in mass as a result of the accretion and in spite of the resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.
XTE J1946+274 = GRO J1944+26: An Enigmatic Be/X-Ray Binary
NASA Technical Reports Server (NTRS)
Wilson, Colleen A.; Finger, Mark H.; Coe, M. J.; Negueruela, Ignacio
2003-01-01
XTE J1946+274 = GRO J1944+26 is a 15.8 s Be/X-ray pulsar discovered simultaneously in 1998 September with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) and the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer (RXTE). Here we present new results from BATSE and RXTE including a pulse timing analysis, spectral analysis, and evidence for an accretion disk. Our pulse timing analysis yielded an orbital period of 169.2 days, a moderate eccentricity 0.33, and implied a mass function of 9.7 solar masses. We observed evidence for an accretion disk, a correlation between measured spin-up rate and flux, which was fitted to obtain a distance estimate of 9.5 +/- 2.9 kpc. XTE J1946+274 remained active from 1998 September to 2001 July, undergoing 13 outbursts that were not locked in orbital phase. Comparing RXTE Proportional Counter Array observations from the initial bright outburst in 1998 and the last pair of outbursts in 2001, we found energy and intensity-dependent pulse profile variations in both outbursts and hardening spectra with increasing intensity during the fainter 2001 outbursts. In 2001 July, optical H alpha observations indicated that a density perturbation appeared in the Be disk as the X-ray outbursts ceased. We propose that the equatorial plane of the Be star is inclined with respect to the orbital plane in this system and that this inclination may be a factor in the unusual outburst behavior of the system.
NASA Astrophysics Data System (ADS)
Younes, George; Kouveliotou, Chryssa; Jaodand, Amruta; Baring, Matthew G.; van der Horst, Alexander J.; Harding, Alice K.; Hessels, Jason W. T.; Gehrels, Neil; Gill, Ramandeep; Huppenkothen, Daniela; Granot, Jonathan; Göğüş, Ersin; Lin, Lin
2017-10-01
We analyzed broadband X-ray and radio data of the magnetar SGR J1935+2154 taken in the aftermath of its 2014, 2015, and 2016 outbursts. The source soft X-ray spectrum <10 keV is well described with a blackbody+power-law (BB+PL) or 2BB model during all three outbursts. Nuclear Spectroscopic Telescope Array observations revealed a hard X-ray tail, with a PL photon index Γ = 0.9, extending up to 50 keV, with flux comparable to the one detected <10 keV. Imaging analysis of Chandra data did not reveal small-scale extended emission around the source. Following the outbursts, the total 0.5-10 keV flux from SGR J1935+2154 increased in concordance to its bursting activity, with the flux at activation onset increasing by a factor of ˜7 following its strongest 2016 June outburst. A Swift/X-Ray Telescope observation taken 1.5 days prior to the onset of this outburst showed a flux level consistent with quiescence. We show that the flux increase is due to the PL or hot BB component, which increased by a factor of 25 compared to quiescence, while the cold BB component kT = 0.47 keV remained more or less constant. The 2014 and 2015 outbursts decayed quasi-exponentially with timescales of ˜40 days, while the stronger 2016 May and June outbursts showed a quick short-term decay with timescales of about four days. Our Arecibo radio observations set the deepest limits on the radio emission from a magnetar, with a maximum flux density limit of 14 μJy for the 4.6 GHz observations and 7 μJy for the 1.4 GHz observations. We discuss these results in the framework of the current magnetar theoretical models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, George; Kouveliotou, Chryssa; Van der Horst, Alexander J.
We analyzed broadband X-ray and radio data of the magnetar SGR J1935+2154 taken in the aftermath of its 2014, 2015, and 2016 outbursts. The source soft X-ray spectrum <10 keV is well described with a blackbody+power-law (BB+PL) or 2BB model during all three outbursts. Nuclear Spectroscopic Telescope Array observations revealed a hard X-ray tail, with a PL photon index Γ = 0.9, extending up to 50 keV, with flux comparable to the one detected <10 keV. Imaging analysis of Chandra data did not reveal small-scale extended emission around the source. Following the outbursts, the total 0.5–10 keV flux from SGRmore » J1935+2154 increased in concordance to its bursting activity, with the flux at activation onset increasing by a factor of ∼7 following its strongest 2016 June outburst. A Swift /X-Ray Telescope observation taken 1.5 days prior to the onset of this outburst showed a flux level consistent with quiescence. We show that the flux increase is due to the PL or hot BB component, which increased by a factor of 25 compared to quiescence, while the cold BB component kT = 0.47 keV remained more or less constant. The 2014 and 2015 outbursts decayed quasi-exponentially with timescales of ∼40 days, while the stronger 2016 May and June outbursts showed a quick short-term decay with timescales of about four days. Our Arecibo radio observations set the deepest limits on the radio emission from a magnetar, with a maximum flux density limit of 14 μ Jy for the 4.6 GHz observations and 7 μ Jy for the 1.4 GHz observations. We discuss these results in the framework of the current magnetar theoretical models.« less
NASA Astrophysics Data System (ADS)
Pojmański, G.
2004-10-01
The All Sky Automated Survey is a low cost project, the ultimate goal of which is detection and investigation of any kind of the photometric variability present all over the sky. The current system consists of 4 instruments covering 36x36, 9x9 (2 units) and 2x2 degrees, equipped with 2Kx2K CCDs, V,R,I standard filters and custom made automated mounts. All are working in Las Campanas Observatory, Chile in fully automated mode. In the ASAS-3 phase of the project we have been taking data at a rate of 1 measurement per 1-3 days for all available objects brighter than V=14, located south of δ=+28 deg. So far over 2 TB of images has been collected and analyzed, leading to a photometric light curve catalog of over 10 million sources. A preliminary search for variability revealed over 40,000 bright, variable sources (over 75 % were not previously known). Direct access to the data is available over the Internet: http://www.astrouw.edu.pl/˜ gp/asas. At present the ASAS Alert System is being tested. Events, like outbursts of CV's or Novae, eclipses etc. are reported within a few minutes after first detection. Due to large number of artifacts in these data raw events require verification, which can take up to 24 hours.
BALLERINA-Pirouettes in search of gamma burst sources
NASA Astrophysics Data System (ADS)
Brandt, Søren; Lund, Niels
1999-12-01
The cosmological origin of gamma-ray bursts (GRBs) has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large variability in properties, which have been indicated by the first handful of events. We are proposing BALLERINA, a small satellite to provide accurate gamma burst positions at a rate an order of magnitude larger than from Beppo-SAX. On the experimental side, it remains a challenge to ensure the earliest detection of the X-ray afterglow. The mission proposed here allows for the first time systematic studies of the soft X-ray emission in the time interval from only a few minutes after the onset of the burst to a few hours later. In addition to positions of GRBs with accuracy better than 1'reported to the ground within a few minutes of the burst, essential for follow-up work, BALLERINA will on its own provide observations in an uncharted region of parameter space. Secondary objectives of the BALLERINA mission includes observations of the earliest phases of the outbursts of X-ray novae and other X-ray transients. BALLERINA is one of four missions currently under study for the Danish Small Satellite Program. The selection will be announced in 1999 for a planned launch in 2002-2003.
Interferometry in the era of time-domain astronomy
NASA Astrophysics Data System (ADS)
Schaefer, Gail H.; Cassan, Arnaud; Gallenne, Alexandre; Roettenbacher, Rachael M.; Schneider, Jean
2018-04-01
The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.
Walder, J.S.; Driedger, C.L.
1994-01-01
Debris flows have caused rapid geomorphic change in several glacierized drainages on Mount Rainier, Washington. Nearly all of these flows began as glacial outburst floods, then transformed to debris flows by incorporating large masses of sediment in channel reaches where streams have incised proglacial sediments and stagnant glacier ice. This stagnant ice is a relic of advanced glacier positions achieved during the mid-nineteenth century Little Ice Age maximum and the readvance of the 1960's and 1970's. Debris flows have been especially important agents of geomorphic change along Tahoma Creek, which drains South Tahoma Glacier. Debris flows in Tahoma Creek valley have transported downstream about 107 m3 Of sediment since 1967, causing substantial aggradation and damage to roads and facilities in Mount Rainier National Park. The average denudation rate in the upper part of the Tahoma Creek drainage basin in the same period has been extraordinarily high: more than 20 millimeters per year, a value exceeded only rarely in basins affected by debris flows. However, little or none of this sediment has yet passed out of the Tahoma Creek drainage basin. Outburst floods from South Tahoma Glacier form by release of subglacially stored water. The volume of stored water discharged during a typical outburst flood would form a layer several tens of millimeters thick over the bed of the entire glacier, though it is more likely that large linked cavities account for most of the storage. Statistical analysis shows that outburst floods usually occur during periods of atypically hot or rainy weather in summer or early autumn, and that the probability of an outburst increases with temperature (a proxy measure of ablation rate) or rainfall rate. On the basis of these results, we suggest that outburst floods are triggered when rapid input of water to the glacier bed causes transient increase in water pressure, thereby destabilizing the linked-cavity system. The probabilistic nature of the relation between water-input rate and outburst-flood occurrence suggests that the connections between englacial conduits, basal cavities and main meltwater channels may vary temporally. The correlation between outburst floods and meteorological factors casts doubt on an earlier hypothesis that melting around geothermal vents triggers outburst floods from South Tahoma Glacier. The likelihood that outburst floods from South Tahoma Glacier will trigger debris flows should decrease with time, as the deeply incised reach of Tahoma Creek widens by normal slope processes and stagnant ice decays. Drawing analogies to the geomorphic evolution of a reach of Tahoma Creek first incised by an outburst flood in 1967, we suggest the present period of debris-flow activity along Tahoma Creek will last about 25 years, that is, until about the year 2010. Comparison of geomorphic change at Tahoma Creek to that in two other glacierized alphine basins indicates that debris-rich stagnant ice can be an importantsource of sediment to debris flows as long as floods are frequent or channel slope is great.
GX 339-4 Approaching Quiescence ?
NASA Astrophysics Data System (ADS)
Lewis, F.; Russell, D. M.
2009-10-01
The black hole X-ray binary (BHXB) GX 339-4 continues to fade in the optical, and has now reached its faintest optical flux since (at least) the start of its 2006-7 outburst (ATels #968, #1027). In this outburst, the source reached peak magnitude values of V ~ 15 and I ~ 14. On the decline of the outburst the source twice re-brightened for several months and displayed large amplitude variability (ATels #1586, #1588, #1945, #1954, #1960, #1962).
Definitive X-Ray Detection of the Class 0 Protostar HOPS 383
NASA Astrophysics Data System (ADS)
Grosso, Nicolas
2016-09-01
We have identified in the Chandra archive a possible pre-outburst X-ray counterpart to the protostar HOPS 383, the first and only Class 0 protostar thus far observed to undergo an accretion outburst. We propose ACIS-I and contemporaneous CT-4m near-IR observations to confirm and to identify the source of this X-ray emission and to measure the presumed increase in X-ray flux during the accretion outburst.
Measuring the cooling curve of magnetar Swift J1822.3-1606
NASA Astrophysics Data System (ADS)
Kaspi, Victoria
2012-10-01
Magnetars have been observed to increase their flux output by several orders of magnitude in outbursts. Following outbursts, they cool on timescales of months to years. We propose to observe the magnetar Swift J1822.3-1606 using XMM as the source approaches its quiescent state following the recent outburst in 2011. We will measure the flux and spectral properties of the source at two different epochs during AO12 in order to constrain the form of its flux decay. We will test a newly developed crustal cooling model and constrain the properties of the magnetar, such as the crust thickness and heat capacity, as well as the physics of the outburst, such as the location of energy deposition.
The Swift Supergiant Fast X-Ray Transients Project:. [A Review, New Results and Future Perspectives
NASA Technical Reports Server (NTRS)
Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Vercellone, S.; Bocchino, F.; Burrows, D. N.; Kennea, J. A.; Krimm, H. A.; Gehrels, N.;
2013-01-01
We present a review of the Supergiant Fast X-ray Transients (SFXT) Project, a systematic investigation of the properties of SFXTs with a strategy that combines Swift monitoring programs with outburst follow-up observations. This strategy has quickly tripled the available sets of broad-band data of SFXT outbursts, and gathered a wealth of out-of-outburst data, which have led us to a broad-band spectral characterization, an assessment of the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present some new observational results obtained through our outburst follow-ups, as fitting examples of the exceptional capabilities of Swift in catching bright flares and monitor them panchromatically.
Discovery of Classical Nova in NGC2403 : P60-NGC2403-090314
NASA Astrophysics Data System (ADS)
Kasliwal, M. M.; Cenko, S. B.; Ofek, E. O.; Quimby, R.; Rau, A.; Caltech, Kulkarni, S. R.
2009-03-01
On UT 2009 Mar 14.160, P60-FasTING (Palomar 60-inch Fast Transients In Nearby Galaxies) discovered an optical transient in NGC2403 at RA(J2000) = 07:36:35.00, DEC(J2000)=+65:40:20.8, offset from the nucleus by 101.0"W, 252.0"N. P60-NGC2403-090314 had a brightness of g = 20.6 +/- 0.1 at discovery. At peak, on Mar 15.147, the apparent g = 19.6 corresponded to Mg = -8.2, at the distance of NGC2403. It was not detected by P60 to g > 21.8 on Mar 2.164.
X-RAY OUTBURSTS OF ESO 243-49 HLX-1: COMPARISON WITH GALACTIC LOW-MASS X-RAY BINARY TRANSIENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zhen; Zhang, Wenda; Yu, Wenfei
2015-09-20
We studied the outburst properties of the hyper-luminous X-ray source ESO 243-49 HLX-1, using the full set of Swift monitoring observations. We quantified the increase in the waiting time, recurrence time, and e-folding rise timescale along the outburst sequence, and the corresponding decrease in outburst duration, total radiated energy, and e-folding decay timescale, which confirms previous findings. HLX-1 spends less and less time in outburst and more and more time in quiescence, but its peak luminosity remains approximately constant. We compared the HLX-1 outburst properties with those of bright Galactic low-mass X-ray binary transients (LMXBTs). Our spectral analysis strengthens themore » similarity between state transitions in HLX-1 and those in Galactic LMXBTs. We also found that HLX-1 follows the nearly linear correlations between the hard-to-soft state transition luminosity and the peak luminosity, and between the rate of change of X-ray luminosity during the rise phase and the peak luminosity, which indicates that the occurrence of the hard-to-soft state transition of HLX-1 is similar to those of Galactic LMXBTs during outbursts. We found that HLX-1 does not follow the correlations between total radiated energy and peak luminosity, and between total radiated energy and e-folding rise/decay timescales we had previously identified in Galactic LMXBTs. HLX-1 would follow those correlations if the distance were several hundreds of kiloparsecs. However, invoking a much closer distance for HLX-1 is not a viable solution to this problem, as it introduces other, more serious inconsistencies with the observations.« less
McNeil's Last Gasp: A Brief Post-Outburst Wind from V1647 Ori
NASA Astrophysics Data System (ADS)
Brittain, Sean D.; Simon, T.; Rettig, T. W.; Balsara, D.; Tilley, D.; Gibb, E.; Hinkle, K.; Troutman, M.
2007-05-01
We present new observations of the fundamental ro-vibrational CO spectra from V1647 Ori, the star whose recent outburst illuminated McNeil's Nebula. The spectra were acquired shortly after the luminosity of the source returned to its pre-outburst level (February 2006) and roughly one year later (December 2006 & February 2007). The CO lines evolved from centrally peaked emission lines during the outburst to P Cygni lines immediately following the outburst and back again to centrally peaked emission lines. We use a standard disk-magnetosphere interaction model to interpret the observations. The model predicts a decreasing truncation radius of the disk with increasing accretion rate. When the truncation radius of the disk moves radially inward or outward in response to changes in the accretion rate, the magnetic field must reorganize, leading to an enhanced reconnection rate. Such activity is expected to launch outflows, which have been observed at the onset and completion of the outburst of the system. We show that these trends are consistent with the fact that V1647 Ori produced a fast and hotter Hα outflow at the onset of the outburst whereas a slower, cooler CO outflow manifested itself as the system approached quiescence. This remarkable phenomenon provides further insight to how the disk and a stressed magnetosphere can generate disk driven winds. S.D.B. performed this work in part with support from the Michelson Fellowship Program. The data presented herein were obtained [in part] at the W.M. Keck Observatory and Gemini South Telescope. The Phoenix spectra were obtained as part of program GS-2006A-DD-1 and GS-2006B-DD-1.