On the structure and applications of the Bondi-Metzner-Sachs group
NASA Astrophysics Data System (ADS)
Alessio, Francesco; Esposito, Giampiero
This work is a pedagogical review dedicated to a modern description of the Bondi-Metzner-Sachs (BMS) group. Minkowski space-time has an interesting and useful group of isometries, but, for a generic space-time, the isometry group is simply the identity and hence provides no significant informations. Yet symmetry groups have important role to play in physics; in particular, the Poincaré group describing the isometries of Minkowski space-time plays a role in the standard definitions of energy-momentum and angular-momentum. For this reason alone it would seem to be important to look for a generalization of the concept of isometry group that can apply in a useful way to suitable curved space-times. The curved space-times that will be taken into account are the ones that suitably approach, at infinity, Minkowski space-time. In particular we will focus on asymptotically flat space-times. In this work, the concept of asymptotic symmetry group of those space-times will be studied. In the first two sections we derive the asymptotic group following the classical approach which was basically developed by Bondi, van den Burg, Metzner and Sachs. This is essentially the group of transformations between coordinate systems of a certain type in asymptotically flat space-times. In the third section the conformal method and the notion of “asymptotic simplicity” are introduced, following mainly the works of Penrose. This section prepares us for another derivation of the BMS group which will involve the conformal structure, and is thus more geometrical and fundamental. In the subsequent sections we discuss the properties of the BMS group, e.g. its algebra and the possibility to obtain as its subgroup the Poincaré group, as we may expect. The paper ends with a review of the BMS invariance properties of classical gravitational scattering discovered by Strominger, that are finding application to black hole physics and quantum gravity in the literature.
From classical to quantum mechanics: ``How to translate physical ideas into mathematical language''
NASA Astrophysics Data System (ADS)
Bergeron, H.
2001-09-01
Following previous works by E. Prugovečki [Physica A 91A, 202 (1978) and Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)] on common features of classical and quantum mechanics, we develop a unified mathematical framework for classical and quantum mechanics (based on L2-spaces over classical phase space), in order to investigate to what extent quantum mechanics can be obtained as a simple modification of classical mechanics (on both logical and analytical levels). To obtain this unified framework, we split quantum theory in two parts: (i) general quantum axiomatics (a system is described by a state in a Hilbert space, observables are self-adjoints operators, and so on) and (ii) quantum mechanics proper that specifies the Hilbert space as L2(Rn); the Heisenberg rule [pi,qj]=-iℏδij with p=-iℏ∇, the free Hamiltonian H=-ℏ2Δ/2m and so on. We show that general quantum axiomatics (up to a supplementary "axiom of classicity") can be used as a nonstandard mathematical ground to formulate physical ideas and equations of ordinary classical statistical mechanics. So, the question of a "true quantization" with "ℏ" must be seen as an independent physical problem not directly related with quantum formalism. At this stage, we show that this nonstandard formulation of classical mechanics exhibits a new kind of operation that has no classical counterpart: this operation is related to the "quantization process," and we show why quantization physically depends on group theory (the Galilei group). This analytical procedure of quantization replaces the "correspondence principle" (or canonical quantization) and allows us to map classical mechanics into quantum mechanics, giving all operators of quantum dynamics and the Schrödinger equation. The great advantage of this point of view is that quantization is based on concrete physical arguments and not derived from some "pure algebraic rule" (we exhibit also some limit of the correspondence principle). Moreover spins for particles are naturally generated, including an approximation of their interaction with magnetic fields. We also recover by this approach the semi-classical formalism developed by E. Prugovečki [Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)].
The application of network synthesis to repeating classical gamma-ray bursts
NASA Technical Reports Server (NTRS)
Hurley, K.; Kouveliotou, C.; Fishman, J.; Meegan, C.; Laros, J.; Klebesadel, R.
1995-01-01
It has been suggested that the Burst and Transient Source Experiment (BATSE) gamma-ray burst catalog contains several groups of bursts clustered in space or in space and time, which provide evidence that a substantial fraction of the classical gamma-ray burst sources repeat. Because many of the bursts in these groups are weak, they are not directly detected by the Ulysses GRB experiment. We apply the network synthesis method to these events to test the repeating burst hypothesis. Although we find no evidence for repeating sources, the method must be applied under more general conditions before reaching any definite conclusions about the existence of classical gamma-ray burst repeating sources.
Discrete-time Quantum Walks via Interchange Framework and Memory in Quantum Evolution
NASA Astrophysics Data System (ADS)
Dimcovic, Zlatko
One of the newer and rapidly developing approaches in quantum computing is based on "quantum walks," which are quantum processes on discrete space that evolve in either discrete or continuous time and are characterized by mixing of components at each step. The idea emerged in analogy with the classical random walks and stochastic techniques, but these unitary processes are very different even as they have intriguing similarities. This thesis is concerned with study of discrete-time quantum walks. The original motivation from classical Markov chains required for discrete-time quantum walks that one adds an auxiliary Hilbert space, unrelated to the one in which the system evolves, in order to be able to mix components in that space and then take the evolution steps accordingly (based on the state in that space). This additional, "coin," space is very often an internal degree of freedom like spin. We have introduced a general framework for construction of discrete-time quantum walks in a close analogy with the classical random walks with memory that is rather different from the standard "coin" approach. In this method there is no need to bring in a different degree of freedom, while the full state of the system is still described in the direct product of spaces (of states). The state can be thought of as an arrow pointing from the previous to the current site in the evolution, representing the one-step memory. The next step is then controlled by a single local operator assigned to each site in the space, acting quite like a scattering operator. This allows us to probe and solve some problems of interest that have not had successful approaches with "coined" walks. We construct and solve a walk on the binary tree, a structure of great interest but until our result without an explicit discrete time quantum walk, due to difficulties in managing coin spaces necessary in the standard approach. Beyond algorithmic interests, the model based on memory allows one to explore effects of history on the quantum evolution and the subtle emergence of classical features as "memory" is explicitly kept for additional steps. We construct and solve a walk with an additional correlation step, finding interesting new features. On the other hand, the fact that the evolution is driven entirely by a local operator, not involving additional spaces, enables us to choose the Fourier transform as an operator completely controlling the evolution. This in turn allows us to combine the quantum walk approach with Fourier transform based techniques, something decidedly not possible in classical computational physics. We are developing a formalism for building networks manageable by walks constructed with this framework, based on the surprising efficiency of our framework in discovering internals of a simple network that we so far solved. Finally, in line with our expectation that the field of quantum walks can take cues from the rich history of development of the classical stochastic techniques, we establish starting points for the work on non-Abelian quantum walks, with a particular quantum-walk analog of the classical "card shuffling," the walk on the permutation group. In summary, this thesis presents a new framework for construction of discrete time quantum walks, employing and exploring memoried nature of unitary evolution. It is applied to fully solving the problems of: A walk on the binary tree and exploration of the quantum-to-classical transition with increased correlation length (history). It is then used for simple network discovery, and to lay the groundwork for analysis of complex networks, based on combined power of efficient exploration of the Hilbert space (as a walk mixing components) and Fourier transformation (since we can choose this for the evolution operator). We hope to establish this as a general technique as its power would be unmatched by any approaches available in the classical computing. We also looked at the promising and challenging prospect of walks on non-Abelian structures by setting up the problem of "quantum card shuffling," a quantum walk on the permutation group. Relation to other work is thoroughly discussed throughout, along with examination of the context of our work and overviews of our current and future work.
Space-time topology and quantum gravity.
NASA Astrophysics Data System (ADS)
Friedman, J. L.
Characteristic features are discussed of a theory of quantum gravity that allows space-time with a non-Euclidean topology. The review begins with a summary of the manifolds that can occur as classical vacuum space-times and as space-times with positive energy. Local structures with non-Euclidean topology - topological geons - collapse, and one may conjecture that in asymptotically flat space-times non-Euclidean topology is hiden from view. In the quantum theory, large diffeos can act nontrivially on the space of states, leading to state vectors that transform as representations of the corresponding symmetry group π0(Diff). In particular, in a quantum theory that, at energies E < EPlanck, is a theory of the metric alone, there appear to be ground states with half-integral spin, and in higher-dimensional gravity, with the kinematical quantum numbers of fundamental fermions.
Classical space-times from the S-matrix
NASA Astrophysics Data System (ADS)
Neill, Duff; Rothstein, Ira Z.
2013-12-01
We show that classical space-times can be derived directly from the S-matrix for a theory of massive particles coupled to a massless spin two particle. As an explicit example we derive the Schwarzchild space-time as a series in GN. At no point of the derivation is any use made of the Einstein-Hilbert action or the Einstein equations. The intermediate steps involve only on-shell S-matrix elements which are generated via BCFW recursion relations and unitarity sewing techniques. The notion of a space-time metric is only introduced at the end of the calculation where it is extracted by matching the potential determined by the S-matrix to the geodesic motion of a test particle. Other static space-times such as Kerr follow in a similar manner. Furthermore, given that the procedure is action independent and depends only upon the choice of the representation of the little group, solutions to Yang-Mills (YM) theory can be generated in the same fashion. Moreover, the squaring relation between the YM and gravity three point functions shows that the seeds that generate solutions in the two theories are algebraically related. From a technical standpoint our methodology can also be utilized to calculate quantities relevant for the binary inspiral problem more efficiently then the more traditional Feynman diagram approach.
NASA Astrophysics Data System (ADS)
Raine, D. J.; Heller, M.
Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics; Copernican kinematics; Newtonian dynamics; the space-time of classical dynamics; classical space-time in the presence of gravity; the space-time of special relativity; the space-time of general relativity; solutions and problems in general relativity; Mach's principle and the dynamics of space-time; theories of inertial mass; the integral formation of general relativity; and the frontiers of relativity (e.g., unified field theories and quantum gravity).
Classical dynamics on curved Snyder space
NASA Astrophysics Data System (ADS)
Ivetić, B.; Meljanac, S.; Mignemi, S.
2014-05-01
We study the classical dynamics of a particle in nonrelativistic Snyder-de Sitter space. We show that for spherically symmetric systems, parameterizing the solutions in terms of an auxiliary time variable, which is a function only of the physical time and of the energy and angular momentum of the particles, one can reduce the problem to the equivalent one in classical mechanics. We also discuss a relativistic extension of these results, and a generalization to the case in which the algebra is realized in flat space.
Classical closure theory and Lam's interpretation of epsilon-RNG
NASA Technical Reports Server (NTRS)
Zhou, YE
1995-01-01
Lam's phenomenological epsilon-renormalization group (RNG) model is quite different from the other members of that group. It does not make use of the correspondence principle and the epsilon-expansion procedure. We demonstrate that Lam's epsilon-RNG model is essentially the physical space version of the classical closure theory in spectral space and consider the corresponding treatment of the eddy viscosity and energy backscatter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raine, D.J.; Heller, M.
1981-01-01
Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics Copernican kinematics Newtonian dynamics the space-time of classical dynamics classical space-time in the presence of gravity the space-time of special relativity the space-time of general relativity solutions and problems in generalmore » relativity Mach's principle and the dynamics of space-time theories of inertial mass the integral formation of general relativity and the frontiers of relativity (e.g., unified field theories and quantum gravity).« less
Quantum dressing orbits on compact groups
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Šťovíček, Pavel
1993-02-01
The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decompositon in the general case. Quantum dressing orbits are described explicitly as *-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible *-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient “coherent states” are introduced and a correspondence between classical and quantum observables is given.
On the geometry of the space-time and motion of the spinning bodies
NASA Astrophysics Data System (ADS)
Trenčevski, Kostadin
2013-03-01
In this paper an alternative theory about space-time is given. First some preliminaries about 3-dimensional time and the reasons for its introduction are presented. Alongside the 3-dimensional space (S) the 3-dimensional space of spatial rotations (SR) is considered independently from the 3-dimensional space. Then it is given a model of the universe, based on the Lie groups of real and complex orthogonal 3 × 3 matrices in this 3+3+3-dimensional space. Special attention is dedicated for introduction and study of the space S × SR, which appears to be isomorphic to SO(3,ℝ) × SO(3,ℝ) or S 3 × S 3. The influence of the gravitational acceleration to the spinning bodies is considered. Some important applications of these results about spinning bodies are given, which naturally lead to violation of Newton's third law in its classical formulation. The precession of the spinning axis is also considered.
Faithful actions of locally compact quantum groups on classical spaces
NASA Astrophysics Data System (ADS)
Goswami, Debashish; Roy, Sutanu
2017-07-01
We construct examples of locally compact quantum groups coming from bicrossed product construction, including non-Kac ones, which can faithfully and ergodically act on connected classical (noncompact) smooth manifolds. However, none of these actions can be isometric in the sense of Goswami (Commun Math Phys 285(1):141-160, 2009), leading to the conjecture that the result obtained by Goswami and Joardar (Rigidity of action of compact quantum groups on compact, connected manifolds, 2013. arXiv:1309.1294) about nonexistence of genuine quantum isometry of classical compact connected Riemannian manifolds may hold in the noncompact case as well.
Space-time models based on random fields with local interactions
NASA Astrophysics Data System (ADS)
Hristopulos, Dionissios T.; Tsantili, Ivi C.
2016-08-01
The analysis of space-time data from complex, real-life phenomena requires the use of flexible and physically motivated covariance functions. In most cases, it is not possible to explicitly solve the equations of motion for the fields or the respective covariance functions. In the statistical literature, covariance functions are often based on mathematical constructions. In this paper, we propose deriving space-time covariance functions by solving “effective equations of motion”, which can be used as statistical representations of systems with diffusive behavior. In particular, we propose to formulate space-time covariance functions based on an equilibrium effective Hamiltonian using the linear response theory. The effective space-time dynamics is then generated by a stochastic perturbation around the equilibrium point of the classical field Hamiltonian leading to an associated Langevin equation. We employ a Hamiltonian which extends the classical Gaussian field theory by including a curvature term and leads to a diffusive Langevin equation. Finally, we derive new forms of space-time covariance functions.
Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?
NASA Astrophysics Data System (ADS)
Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.
2017-07-01
It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.
NASA Astrophysics Data System (ADS)
Sokolov, Valentin V.; Zhirov, Oleg V.; Kharkov, Yaroslav A.
The extraordinary complexity of classical trajectories of typical nonlinear systems that manifest stochastic behavior is intimately connected with exponential sensitivity to small variations of initial conditions and/or weak external perturbations. In rigorous terms, such classical systems are characterized by positive algorithmic complexity described by the Lyapunov exponent or, alternatively, by the Kolmogorov-Sinai entropy. The said implies that, in spite of the fact that, formally, any however complex trajectory of a perfectly isolated (closed) system is unique and differentiable for any certain initial conditions and the motion is perfectly reversible, it is impractical to treat that sort of classical systems as closed ones. Inevitably, arbitrary weak influence of an environment crucially impacts the dynamics. This influence, that can be considered as a noise, rapidly effaces the memory of initial conditions and turns the motion into an irreversible random process. In striking contrast, the quantum mechanics of the classically chaotic systems exhibit much weaker sensitivity and strong memory of the initial state. Qualitatively, this crucial difference could be expected in view of a much simpler structure of quantum states as compared to the extraordinary complexity of random and unpredictable classical trajectories. However the very notion of trajectories is absent in quantum mechanics so that the concept of exponential instability seems to be irrelevant in this case. The problem of a quantitative measure of complexity of a quantum state of motion, that is a very important and nontrivial issue of the theory of quantum dynamical chaos, is the one of our concern. With such a measure in hand, we quantitatively analyze the stability and reversibility of quantum dynamics in the presence of external noise. To solve this problem we point out that individual classical trajectories are of minor interest if the motion is chaotic. Properties of all of them are alike in this case and rather the behavior of their manifolds carries really valuable information. Therefore the phase-space methods and, correspondingly, the Liouville form of the classical mechanics become the most adequate. It is very important that, opposite to the classical trajectories, the classical phase space distribution and the Liouville equation have direct quantum analogs. Hence, the analogy and difference of classical and quantum dynamics can be traced by comparing the classical (W(c)(I,θ;t)) and quantum (Wigner function W(I,θ;t)) phase space distributions both expressed in identical phase-space variables but ruled by different(!) linear equations. The paramount property of the classical dynamical chaos is the exponentially fast structuring of the system's phase space on finer and finer scales. On the contrary, degree of structuring of the corresponding Wigner function is restricted by the quantization of the phase space. This makes Wigner function more coarse and relatively "simple" as compared to its classical counterpart. Fourier analysis affords quite suitable ground for analyzing complexity of a phase space distribution, that is equally valid in classical and quantum cases. We demonstrate that the typical number of Fourier harmonics is indeed a relevant measure of complexity of states of motion in both classical as well as quantum cases. This allowed us to investigate in detail and introduce a quantitative measure of sensitivity to an external noisy environment and formulate the conditions under which the quantum motion remains reversible. It turns out that while the mean number of harmonics of the classical phase-space distribution of a non-integrable system grows with time exponentially during the whole time of the motion, the time of exponential upgrowth of this number in the case of the corresponding quantum Wigner function is restricted only to the Ehrenfest interval 0 < t < tE - just the interval within which the Wigner function still satisfies the classical Liouville equation. We showed that the number of harmonics increases beyond this interval algebraically. This fact gains a crucial importance when the Ehrenfest time is so short that the exponential regime has no time to show up. Under this condition the quantum motion turns out to be quite stable and reversible.
Semiclassical propagator of the Wigner function.
Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis
2006-02-24
Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.
On the dynamical and geometrical symmetries of Keplerian motion
NASA Astrophysics Data System (ADS)
Wulfman, Carl E.
2009-05-01
The dynamical symmetries of classical, relativistic and quantum-mechanical Kepler systems are considered to arise from geometric symmetries in PQET phase space. To establish their interconnection, the symmetries are related with the aid of a Lie-algebraic extension of Dirac's correspondence principle, a canonical transformation containing a Cunningham-Bateman inversion, and a classical limit involving a preliminary canonical transformation in ET space. The Lie-algebraic extension establishes the conditions under which the uncertainty principle allows the local dynamical symmetry of a quantum-mechanical system to be the same as the geometrical phase-space symmetry of its classical counterpart. The canonical transformation converts Poincaré-invariant free-particle systems into ISO(3,1) invariant relativistic systems whose classical limit produces Keplerian systems. Locally Cartesian relativistic PQET coordinates are converted into a set of eight conjugate position and momentum coordinates whose classical limit contains Fock projective momentum coordinates and the components of Runge-Lenz vectors. The coordinate systems developed via the transformations are those in which the evolution and degeneracy groups of the classical system are generated by Poisson-bracket operators that produce ordinary rotation, translation and hyperbolic motions in phase space. The way in which these define classical Keplerian symmetries and symmetry coordinates is detailed. It is shown that for each value of the energy of a Keplerian system, the Poisson-bracket operators determine two invariant functions of positions and momenta, which together with its regularized Hamiltonian, define the manifold in six-dimensional phase space upon which motions evolve.
New variables for classical and quantum gravity in all dimensions: I. Hamiltonian analysis
NASA Astrophysics Data System (ADS)
Bodendorfer, N.; Thiemann, T.; Thurn, A.
2013-02-01
Loop quantum gravity (LQG) relies heavily on a connection formulation of general relativity such that (1) the connection Poisson commutes with itself and (2) the corresponding gauge group is compact. This can be achieved starting from the Palatini or Holst action when imposing the time gauge. Unfortunately, this method is restricted to D + 1 = 4 spacetime dimensions. However, interesting string theories and supergravity theories require higher dimensions and it would therefore be desirable to have higher dimensional supergravity loop quantizations at one’s disposal in order to compare these approaches. In this series of papers we take first steps toward this goal. The present first paper develops a classical canonical platform for a higher dimensional connection formulation of the purely gravitational sector. The new ingredient is a different extension of the ADM phase space than the one used in LQG which does not require the time gauge and which generalizes to any dimension D > 1. The result is a Yang-Mills theory phase space subject to Gauß, spatial diffeomorphism and Hamiltonian constraint as well as one additional constraint, called the simplicity constraint. The structure group can be chosen to be SO(1, D) or SO(D + 1) and the latter choice is preferred for purposes of quantization.
Information transport in classical statistical systems
NASA Astrophysics Data System (ADS)
Wetterich, C.
2018-02-01
For "static memory materials" the bulk properties depend on boundary conditions. Such materials can be realized by classical statistical systems which admit no unique equilibrium state. We describe the propagation of information from the boundary to the bulk by classical wave functions. The dependence of wave functions on the location of hypersurfaces in the bulk is governed by a linear evolution equation that can be viewed as a generalized Schrödinger equation. Classical wave functions obey the superposition principle, with local probabilities realized as bilinears of wave functions. For static memory materials the evolution within a subsector is unitary, as characteristic for the time evolution in quantum mechanics. The space-dependence in static memory materials can be used as an analogue representation of the time evolution in quantum mechanics - such materials are "quantum simulators". For example, an asymmetric Ising model on a Euclidean two-dimensional lattice represents the time evolution of free relativistic fermions in two-dimensional Minkowski space.
Three-dimensional dualities with bosons and fermions
NASA Astrophysics Data System (ADS)
Benini, Francesco
2018-02-01
We propose new infinite families of non-supersymmetric IR dualities in three space-time dimensions, between Chern-Simons gauge theories (with classical gauge groups) with both scalars and fermions in the fundamental representation. In all cases we study the phase diagram as we vary two relevant couplings, finding interesting lines of phase transitions. In various cases the dualities lead to predictions about multi-critical fixed points and the emergence of IR quantum symmetries. For unitary groups we also discuss the coupling to background gauge fields and the map of simple monopole operators.
BFV-BRST analysis of the classical and quantum q-deformations of the sl(2) algebra
NASA Astrophysics Data System (ADS)
Dayi, O. F.
1994-01-01
BFV--BRST charge for q-deformed algebras is not unique. Different constructions of it in the classical as well as in the quantum phase space for the $q$-deformed algebra sl_q(2) are discussed. Moreover, deformation of the phase space without deforming the generators of sl(2) is considered. $\\hbar$-q-deformation of the phase space is shown to yield the Witten's second deformation. To study the BFV--BRST cohomology problem when both the quantum phase space and the group are deformed, a two parameter deformation of sl(2) is proposed, and its BFV-BRST charge is given.
Target space pseudoduality in supersymmetric sigma models on symmetric spaces
NASA Astrophysics Data System (ADS)
Sarisaman, Mustafa
We discuss the target space pseudoduality in supersymmetric sigma models on symmetric spaces. We first consider the case where sigma models based on real compact connected Lie groups of the same dimensionality and give examples using three dimensional models on target spaces. We show explicit construction of nonlocal conserved currents on the pseudodual manifold. We then switch the Lie group valued pseudoduality equations to Lie algebra valued ones, which leads to an infinite number of pseudoduality equations. We obtain an infinite number of conserved currents on the tangent bundle of the pseudo-dual manifold. Since pseudoduality imposes the condition that sigma models pseudodual to each other are based on symmetric spaces with opposite curvatures (i.e. dual symmetric spaces), we investigate pseudoduality transformation on the symmetric space sigma models in the third chapter. We see that there can be mixing of decomposed spaces with each other, which leads to mixings of the following expressions. We obtain the pseudodual conserved currents which are viewed as the orthonormal frame on the pullback bundle of the tangent space of G˜ which is the Lie group on which the pseudodual model based. Hence we obtain the mixing forms of curvature relations and one loop renormalization group beta function by means of these currents. In chapter four, we generalize the classical construction of pseudoduality transformation to supersymmetric case. We perform this both by component expansion method on manifold M and by orthonormal coframe method on manifold SO( M). The component method produces the result that pseudoduality transformation is not invertible at all points and occurs from all points on one manifold to only one point where riemann normal coordinates valid on the second manifold. Torsion of the sigma model on M must vanish while it is nonvanishing on M˜, and curvatures of the manifolds must be constant and the same because of anticommuting grassmann numbers. We obtain the similar results with the classical case in orthonormal coframe method. In case of super WZW sigma models pseudoduality equations result in three different pseudoduality conditions; flat space, chiral and antichiral pseudoduality. Finally we study the pseudoduality transformations on symmetric spaces using two different methods again. These two methods yield similar results to the classical cases with the exception that commuting bracket relations in classical case turns out to be anticommuting ones because of the appearance of grassmann numbers. It is understood that constraint relations in case of non-mixing pseudoduality are the remnants of mixing pseudoduality. Once mixing terms are included in the pseudoduality the constraint relations disappear.
A Construction of Rigid Analytic Cohomology Classes for Split Reductive Algebraic Groups
NASA Astrophysics Data System (ADS)
Graham, Bonita Lynn
The cohomology groups H1(Gamma 0(N), Vk) completely describe the space of classical cusp forms of weight k and level N. We study a generalization, Hn(Gamma, Vlambda), where some algebraic group G plays a role analogous to that of GL2 in the classical case. Ash and Stevens proved that certain classes in Hn(Gamma, Vlambda) may be lifted through the natural map rho lambda : Hn(Gamma, D lambda) → Hn(Gamma, Vlambda) to overconvergent classes in H n(Gamma, Dlambda). Pollack and Pollack were able to prove this result constructively in the case of G = GL3, by providing a filtration on the distribution space D?. We construct a general filtration FilN D lambda, for a split reductive algebraic group G. Using this filtration, we are able to lift classes in Hn(Gamma, Vlambda) to the finite dimensional spaces H n(Gamma, Dlambda / FilN Dlambda). These lifts approximate the lifts into Hn(Gamma, Dlambda ) and improve as N → infinity.
Asymptotic symmetries and electromagnetic memory
NASA Astrophysics Data System (ADS)
Pasterski, Sabrina
2017-09-01
Recent investigations into asymptotic symmetries of gauge theory and gravity have illuminated connections between gauge field zero-mode sectors, the corresponding soft factors, and their classically observable counterparts — so called "memories". Namely, low frequency emissions in momentum space correspond to long time integrations of the corre-sponding radiation in position space. Memory effect observables constructed in this manner are non-vanishing in typical scattering processes, which has implications for the asymptotic symmetry group. Here we complete this triad for the case of large U(1) gauge symmetries at null infinity. In particular, we show that the previously studied electromagnetic memory effect, whereby the passage of electromagnetic radiation produces a net velocity kick for test charges in a distant detector, is the position space observable corresponding to th Weinberg soft photon pole in momentum space scattering amplitudes.
Discovery of a New Photometric Sub-class of Faint and Fast Classical Novae
NASA Astrophysics Data System (ADS)
Kasliwal, M. M.; Cenko, S. B.; Kulkarni, S. R.; Ofek, E. O.; Quimby, R.; Rau, A.
2011-07-01
We present photometric and spectroscopic follow-up of a sample of extragalactic novae discovered by the Palomar 60 inch telescope during a search for "Fast Transients In Nearest Galaxies" (P60-FasTING). Designed as a fast cadence (1 day) and deep (g < 21 mag) survey, P60-FasTING was particularly sensitive to short-lived and faint optical transients. The P60-FasTING nova sample includes 10 novae in M 31, 6 in M 81, 3 in M 82, 1 in NGC 2403, and 1 in NGC 891. This significantly expands the known sample of extragalactic novae beyond the Local Group, including the first discoveries in a starburst environment. Surprisingly, our photometry shows that this sample is quite inconsistent with the canonical maximum-magnitude-rate-of-decline (MMRD) relation for classical novae. Furthermore, the spectra of the P60-FasTING sample are indistinguishable from classical novae. We suggest that we have uncovered a sub-class of faint and fast classical novae in a new phase space in luminosity-timescale of optical transients. Thus, novae span two orders of magnitude in both luminosity and time. Perhaps the MMRD, which is characterized only by the white dwarf mass, was an oversimplification. Nova physics appears to be characterized by a relatively rich four-dimensional parameter space in white dwarf mass, temperature, composition, and accretion rate.
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
NASA Astrophysics Data System (ADS)
Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min
1990-12-01
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Geometry, topology, and string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varadarajan, Uday
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
NASA Astrophysics Data System (ADS)
Igenberlina, Alua; Matin, Dauren; Turgumbayev, Mendybay
2017-09-01
In this paper, deviations of the partial sums of a multiple Fourier-Walsh series of a function in the metric L1(Qk) on a dyadic group are investigated. This estimate plays an important role in the study of equivalent normalizations in this space by means of a difference, oscillation, and best approximation by polynomials in the Walsh system. The classical classical Besov space and its equivalent normalizations are set forth in the well-known monographs of Nikolsky S.M., Besov O.V., Ilyin V.P., Triebel H.; in the works of Kazakh scientists such as Amanov T.I., Mynbaev K.T., Otelbaev M.O., Smailov E.S.. The Besov spaces on the dyadic group and the Vilenkin groups in the one-dimensional case are considered in works by Ombe H., Bloom Walter R, Fournier J., Onneweer C.W., Weyi S., Jun Tateoka.
Quantum Speed Limits across the Quantum-to-Classical Transition
NASA Astrophysics Data System (ADS)
Shanahan, B.; Chenu, A.; Margolus, N.; del Campo, A.
2018-02-01
Quantum speed limits set an upper bound to the rate at which a quantum system can evolve. Adopting a phase-space approach, we explore quantum speed limits across the quantum-to-classical transition and identify equivalent bounds in the classical world. As a result, and contrary to common belief, we show that speed limits exist for both quantum and classical systems. As in the quantum domain, classical speed limits are set by a given norm of the generator of time evolution.
Is the local linearity of space-time inherited from the linearity of probabilities?
NASA Astrophysics Data System (ADS)
Müller, Markus P.; Carrozza, Sylvain; Höhn, Philipp A.
2017-02-01
The appearance of linear spaces, describing physical quantities by vectors and tensors, is ubiquitous in all of physics, from classical mechanics to the modern notion of local Lorentz invariance. However, as natural as this seems to the physicist, most computer scientists would argue that something like a ‘local linear tangent space’ is not very typical and in fact a quite surprising property of any conceivable world or algorithm. In this paper, we take the perspective of the computer scientist seriously, and ask whether there could be any inherently information-theoretic reason to expect this notion of linearity to appear in physics. We give a series of simple arguments, spanning quantum information theory, group representation theory, and renormalization in quantum gravity, that supports a surprising thesis: namely, that the local linearity of space-time might ultimately be a consequence of the linearity of probabilities. While our arguments involve a fair amount of speculation, they have the virtue of being independent of any detailed assumptions on quantum gravity, and they are in harmony with several independent recent ideas on emergent space-time in high-energy physics.
Geometrization of quantum physics
NASA Astrophysics Data System (ADS)
Ol'Khov, O. A.
2009-12-01
It is shown that the Dirac equation for free particle can be considered as a description of specific distortion of the space euclidean geometry (space topological defect). This approach is based on possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such concept explains all so called “strange” properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There is no any particles a priori, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device.
The Strange World of Classical Physics
ERIC Educational Resources Information Center
Green, David
2010-01-01
We have heard many times that the commonsense world of classical physics was shattered by Einstein's revelation of the laws of relativity. This is certainly true; the shift from our everyday notions of time and space to those revealed by relativity is one of the greatest stretches the mind can make. What is seldom appreciated is that the laws of…
Mixed semiclassical-classical propagators for the Wigner phase space representation
NASA Astrophysics Data System (ADS)
Koda, Shin-ichi
2016-04-01
We formulate mixed semiclassical-classical (SC-Cl) propagators by adding a further approximation to the phase-space SC propagators, which have been formulated in our previous paper [S. Koda, J. Chem. Phys. 143, 244110 (2015)]. We first show that the stationary phase approximation over the operation of the phase-space van Vleck propagator on initial distribution functions results in the classical mechanical time propagation. Then, after dividing the degrees of freedom (DOFs) of the total system into the semiclassical DOFs and the classical DOFs, the SC-Cl van Vleck propagator and the SC-Cl Herman-Kluk (HK) propagator are derived by performing the stationary phase approximation only with respect to the classical DOFs. These SC-Cl propagators are naturally decomposed to products of the phase-space SC propagators and the classical mechanical propagators when the system does not have any interaction between the semiclassical and the classical DOFs. In addition, we also numerically compare the original phase-space HK (full HK) propagator and the SC-Cl HK propagator in terms of accuracy and efficiency to find that the accuracy of the SC-Cl HK propagator can be comparable to that of the full HK propagator although the latter is more accurate than the former in general. On the other hand, we confirm that the convergence speed of the SC-Cl HK propagator is faster than that of the full HK propagator. The present numerical tests indicate that the SC-Cl HK propagator can be more accurate than the full HK propagator when they use a same and finite number of classical trajectories due to the balance of the accuracy and the efficiency.
Mixed semiclassical-classical propagators for the Wigner phase space representation.
Koda, Shin-Ichi
2016-04-21
We formulate mixed semiclassical-classical (SC-Cl) propagators by adding a further approximation to the phase-space SC propagators, which have been formulated in our previous paper [S. Koda, J. Chem. Phys. 143, 244110 (2015)]. We first show that the stationary phase approximation over the operation of the phase-space van Vleck propagator on initial distribution functions results in the classical mechanical time propagation. Then, after dividing the degrees of freedom (DOFs) of the total system into the semiclassical DOFs and the classical DOFs, the SC-Cl van Vleck propagator and the SC-Cl Herman-Kluk (HK) propagator are derived by performing the stationary phase approximation only with respect to the classical DOFs. These SC-Cl propagators are naturally decomposed to products of the phase-space SC propagators and the classical mechanical propagators when the system does not have any interaction between the semiclassical and the classical DOFs. In addition, we also numerically compare the original phase-space HK (full HK) propagator and the SC-Cl HK propagator in terms of accuracy and efficiency to find that the accuracy of the SC-Cl HK propagator can be comparable to that of the full HK propagator although the latter is more accurate than the former in general. On the other hand, we confirm that the convergence speed of the SC-Cl HK propagator is faster than that of the full HK propagator. The present numerical tests indicate that the SC-Cl HK propagator can be more accurate than the full HK propagator when they use a same and finite number of classical trajectories due to the balance of the accuracy and the efficiency.
The Fate of Visible Features of Invisible Elements
Herzog, Michael H.; Otto, Thomas U.; Ögmen, Haluk
2012-01-01
To investigate the integration of features, we have developed a paradigm in which an element is rendered invisible by visual masking. Still, the features of the element are visible as part of other display elements presented at different locations and times (sequential metacontrast). In this sense, we can “transport” features non-retinotopically across space and time. The features of the invisible element integrate with features of other elements if and only if the elements belong to the same spatio-temporal group. The mechanisms of this kind of feature integration seem to be quite different from classical mechanisms proposed for feature binding. We propose that feature processing, binding, and integration occur concurrently during processes that group elements into wholes. PMID:22557985
Quantum to classical transition in the Hořava-Lifshitz quantum cosmology
NASA Astrophysics Data System (ADS)
Bernardini, A. E.; Leal, P.; Bertolami, O.
2018-02-01
A quasi-Gaussian quantum superposition of Hořava-Lifshitz (HL) stationary states is built in order to describe the transition of the quantum cosmological problem to the related classical dynamics. The obtained HL phase-space superposed Wigner function and its associated Wigner currents describe the conditions for the matching between classical and quantum phase-space trajectories. The matching quantum superposition parameter is associated to the total energy of the classical trajectory which, at the same time, drives the engendered Wigner function to the classical stationary regime. Through the analysis of the Wigner flows, the quantum fluctuations that distort the classical regime can be quantified as a measure of (non)classicality. Finally, the modifications to the Wigner currents due to the inclusion of perturbative potentials are computed in the HL quantum cosmological context. In particular, the inclusion of a cosmological constant provides complementary information that allows for connecting the age of the Universe with the overall stiff matter density profile.
2007-05-25
KENNEDY SPACE CENTER, FLA. -- Following the debut of its new attraction, Shuttle Launch Experience, on May 26, the Kennedy Space Center Visitor Complex treated guests to a concert by the instrumental group Mannheim Steamroller, seen here. Known for its digital-classic-rock style, Mannheim Steamroller recorded sound from the last space shuttle liftoff at Kennedy Space Center, and has incorporated it into its music. Photo credit: NASA/George Shelton
2007-05-25
KENNEDY SPACE CENTER, FLA. -- Following the debut of its new attraction, Shuttle Launch Experience, on May 26, the Kennedy Space Center Visitor Complex treated guests to a concert by the instrumental group Mannheim Steamroller, seen here. Mannheim Steamroller, known for its digital-classic-rock style, recorded sound from the last space shuttle liftoff at Kennedy Space Center, and has incorporated it into its music. Photo credit: NASA/George Shelton
2007-05-25
KENNEDY SPACE CENTER, FLA. -- Following the debut of its new attraction, Shuttle Launch Experience, on May 26, the Kennedy Space Center Visitor Complex treated guests to a concert by the instrumental group Mannheim Steamroller, seen here. Known for its digital-classic-rock style, Mannheim Steamroller recorded sound from the last space shuttle liftoff at Kennedy Space Center, and has incorporated it into its music. Photo credit: NASA/George Shelton
A round trip from Caldirola to Bateman systems
NASA Astrophysics Data System (ADS)
Guerrero, J.; López-Ruiz, F. F.; Aldaya, V.; Cossío, F.
2011-03-01
For the quantum Caldirola-Kanai Hamiltonian, describing a quantum damped harmonic oscillator, a couple of constant of motion operators generating the Heisenberg algebra can be found. The inclusion in this algebra, in a unitary manner, of the standard time evolution generator , which is not a constant of motion, requires a non-trivial extension of this basic algebra and the physical system itself, which now includes a new dual particle. This enlarged algebra, when exponentiated, leads to a group, named the Bateman group, which admits unitary representations with support in the Hilbert space of functions satisfying the Schrodinger equation associated with the quantum Bateman Hamiltonian, either as a second order differential operator as well as a first order one. The classical Bateman Hamiltonian describes a dual system of a damped (losing energy) particle and a dual (gaining energy) particle. The classical Bateman system has a solution submanifold containing the trajectories of the original system as a submanifold. When restricted to this submanifold, the Bateman dual classical Hamiltonian leads to the Caldirola-Kanai Hamiltonian for a single damped particle. This construction can also be done at the quantum level, and the Caldirola-Kanai Hamiltonian operator can be derived from the Bateman Hamiltonian operator when appropriate constraints are imposed.
Quantum space and quantum completeness
NASA Astrophysics Data System (ADS)
Jurić, Tajron
2018-05-01
Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.
Low-energy laser in the treatment of alopecia of the scalp
NASA Astrophysics Data System (ADS)
Ciuchita, Tavi; Usurelu, Mircea; Antipa, Ciprian
1997-12-01
The authors tried to verify the efficacy of low energy laser (LEL) in scalp alopecia. Sixty patients were divided in two groups: A) laser group, 33 patients treated with both LEL and classical therapy; B) control group, 27 patients treated only with classical therapy, Before, during and after treatment, historical samples were done. For the group A the results were rather superior but in a twice shorter time shorter time than group B. The maintenance of the good results needed classical therapy for a long period. We conclude that LEL therapy could have a useful complementary method for the treatment of scalp alopecia.
NASA Astrophysics Data System (ADS)
Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie
2018-03-01
Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.
Boeyens, Jan C.A.; Levendis, Demetrius C.
2012-01-01
Molecular symmetry is intimately connected with the classical concept of three-dimensional molecular structure. In a non-classical theory of wave-like interaction in four-dimensional space-time, both of these concepts and traditional quantum mechanics lose their operational meaning, unless suitably modified. A required reformulation should emphasize the importance of four-dimensional effects like spin and the symmetry effects of space-time curvature that could lead to a fundamentally different understanding of molecular symmetry and structure in terms of elementary number theory. Isolated single molecules have no characteristic shape and macro-biomolecules only develop robust three-dimensional structure in hydrophobic response to aqueous cellular media. PMID:22942753
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasliwal, M. M.; Kulkarni, S. R.; Ofek, E. O.
We present photometric and spectroscopic follow-up of a sample of extragalactic novae discovered by the Palomar 60 inch telescope during a search for 'Fast Transients In Nearest Galaxies' (P60-FasTING). Designed as a fast cadence (1 day) and deep (g < 21 mag) survey, P60-FasTING was particularly sensitive to short-lived and faint optical transients. The P60-FasTING nova sample includes 10 novae in M 31, 6 in M 81, 3 in M 82, 1 in NGC 2403, and 1 in NGC 891. This significantly expands the known sample of extragalactic novae beyond the Local Group, including the first discoveries in a starburstmore » environment. Surprisingly, our photometry shows that this sample is quite inconsistent with the canonical maximum-magnitude-rate-of-decline (MMRD) relation for classical novae. Furthermore, the spectra of the P60-FasTING sample are indistinguishable from classical novae. We suggest that we have uncovered a sub-class of faint and fast classical novae in a new phase space in luminosity-timescale of optical transients. Thus, novae span two orders of magnitude in both luminosity and time. Perhaps the MMRD, which is characterized only by the white dwarf mass, was an oversimplification. Nova physics appears to be characterized by a relatively rich four-dimensional parameter space in white dwarf mass, temperature, composition, and accretion rate.« less
Quantum Oscillations Can Prevent the Big Bang Singularity in an Einstein-Dirac Cosmology
NASA Astrophysics Data System (ADS)
Finster, Felix; Hainzl, Christian
2010-01-01
We consider a spatially homogeneous and isotropic system of Dirac particles coupled to classical gravity. The dust and radiation dominated closed Friedmann-Robertson-Walker space-times are recovered as limiting cases. We find a mechanism where quantum oscillations of the Dirac wave functions can prevent the formation of the big bang or big crunch singularity. Thus before the big crunch, the collapse of the universe is stopped by quantum effects and reversed to an expansion, so that the universe opens up entering a new era of classical behavior. Numerical examples of such space-times are given, and the dependence on various parameters is discussed. Generically, one has a collapse after a finite number of cycles. By fine-tuning the parameters we construct an example of a space-time which satisfies the dominant energy condition and is time-periodic, thus running through an infinite number of contraction and expansion cycles.
Time Reparametrization Group and the Long Time Behavior in Quantum Glassy Systems
NASA Astrophysics Data System (ADS)
Kennett, Malcolm P.; Chamon, Claudio
2001-02-01
We study the long time dynamics of a quantum version of the Sherrington-Kirkpatrick model. Time reparametrizations of the dynamical equations have a parallel with renormalization group transformations; in this language the long time behavior of this model is controlled by a reparametrization group ( RpG) fixed point of the classical dynamics. The irrelevance of quantum terms in the dynamical equations in the aging regime explains the classical nature of the out of equilibrium fluctuation-dissipation relation.
Generalized Ehrenfest Relations, Deformation Quantization, and the Geometry of Inter-model Reduction
NASA Astrophysics Data System (ADS)
Rosaler, Joshua
2018-03-01
This study attempts to spell out more explicitly than has been done previously the connection between two types of formal correspondence that arise in the study of quantum-classical relations: one the one hand, deformation quantization and the associated continuity between quantum and classical algebras of observables in the limit \\hbar → 0, and, on the other, a certain generalization of Ehrenfest's Theorem and the result that expectation values of position and momentum evolve approximately classically for narrow wave packet states. While deformation quantization establishes a direct continuity between the abstract algebras of quantum and classical observables, the latter result makes in-eliminable reference to the quantum and classical state spaces on which these structures act—specifically, via restriction to narrow wave packet states. Here, we describe a certain geometrical re-formulation and extension of the result that expectation values evolve approximately classically for narrow wave packet states, which relies essentially on the postulates of deformation quantization, but describes a relationship between the actions of quantum and classical algebras and groups over their respective state spaces that is non-trivially distinct from deformation quantization. The goals of the discussion are partly pedagogical in that it aims to provide a clear, explicit synthesis of known results; however, the particular synthesis offered aspires to some novelty in its emphasis on a certain general type of mathematical and physical relationship between the state spaces of different models that represent the same physical system, and in the explicitness with which it details the above-mentioned connection between quantum and classical models.
Characterizing quantum channels with non-separable states of classical light
NASA Astrophysics Data System (ADS)
Ndagano, Bienvenu; Perez-Garcia, Benjamin; Roux, Filippus S.; McLaren, Melanie; Rosales-Guzman, Carmelo; Zhang, Yingwen; Mouane, Othmane; Hernandez-Aranda, Raul I.; Konrad, Thomas; Forbes, Andrew
2017-04-01
High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Paradoxically, the channel tomography itself is not possible without a working link. Here we overcome this problem with a robust approach to characterize quantum channels by means of classical light. Using free-space communication in a turbulent atmosphere as an example, we show that the state evolution of classically entangled degrees of freedom is equivalent to that of quantum entangled photons, thus providing new physical insights into the notion of classical entanglement. The analysis of quantum channels by means of classical light in real time unravels stochastic dynamics in terms of pure state trajectories, and thus enables precise quantum error correction in short- and long-haul optical communication, in both free space and fibre.
Tunneling time in space fractional quantum mechanics
NASA Astrophysics Data System (ADS)
Hasan, Mohammad; Mandal, Bhabani Prasad
2018-02-01
We calculate the time taken by a wave packet to travel through a classically forbidden region of space in space fractional quantum mechanics. We obtain the close form expression of tunneling time from a rectangular barrier by stationary phase method. We show that tunneling time depends upon the width b of the barrier for b → ∞ and therefore Hartman effect doesn't exist in space fractional quantum mechanics. Interestingly we found that the tunneling time monotonically reduces with increasing b. The tunneling time is smaller in space fractional quantum mechanics as compared to the case of standard quantum mechanics. We recover the Hartman effect of standard quantum mechanics as a special case of space fractional quantum mechanics.
Stochastic solution to quantum dynamics
NASA Technical Reports Server (NTRS)
John, Sarah; Wilson, John W.
1994-01-01
The quantum Liouville equation in the Wigner representation is solved numerically by using Monte Carlo methods. For incremental time steps, the propagation is implemented as a classical evolution in phase space modified by a quantum correction. The correction, which is a momentum jump function, is simulated in the quasi-classical approximation via a stochastic process. The technique, which is developed and validated in two- and three- dimensional momentum space, extends an earlier one-dimensional work. Also, by developing a new algorithm, the application to bound state motion in an anharmonic quartic potential shows better agreement with exact solutions in two-dimensional phase space.
Quantum groups, roots of unity and particles on quantized Anti-de Sitter space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinacker, Harold
1997-05-23
Quantum groups in general and the quantum Anti-de Sitter group U q(so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin ≥ 1, "naive" representations are unitarizable only after factoring out a subspace of "pure gauges", as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore,more » the author identifies a remarkable element Q in the center of U q(g), which plays the role of a BRST operator in the case of U q(so(2,3)) at roots of unity, for any spin ≥ 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere and on Anti-de Sitter space is studied as well. The author gives a conjecture how Q can be used in general to analyze the structure of indecomposable representations, and to define a new, completely reducible associative (tensor) product of representations at roots of unity, which generalizes the standard "truncated" tensor product as well as many-particle representations.« less
NASA Astrophysics Data System (ADS)
Lusanna, Luca; Pauri, Massimo
2014-08-01
If the classical structure of space-time is assumed to define an a priori scenario for the formulation of quantum theory (QT), the coordinate representation of the solutions of the Schroedinger equation of a quantum system containing one ( N) massive scalar particle has a preferred status. Let us consider all of the solutions admitting a multipolar expansion of the probability density function (and more generally of the Wigner function) around a space-time trajectory to be properly selected. For every normalized solution there is a privileged trajectory implying the vanishing of the dipole moment of the multipolar expansion: it is given by the expectation value of the position operator . Then, the special subset of solutions which satisfy Ehrenfest's Theorem (named thereby Ehrenfest monopole wave functions (EMWF)), have the important property that this privileged classical trajectory is determined by a closed Newtonian equation of motion where the effective force is the Newtonian force plus non-Newtonian terms (of order ħ 2 or higher) depending on the higher multipoles of the probability distribution ρ. Note that the superposition of two EMWFs is not an EMWF, a result to be strongly hoped for, given the possible unwanted implications concerning classical spatial perception. These results can be extended to N-particle systems in such a way that, when N classical trajectories with all the dipole moments vanishing and satisfying Ehrenfest theorem are associated with the normalized wave functions of the N-body system, we get a natural transition from the 3 N-dimensional configuration space to the space-time. Moreover, these results can be extended to relativistic quantum mechanics. Consequently, in suitable states of N quantum particle which are EMWF, we get the "emergence" of corresponding "classical particles" following Newton-like trajectories in space-time. Note that all this holds true in the standard framework of quantum mechanics, i.e. assuming, in particular, the validity of Born's rule and the individual system interpretation of the wave function (no ensemble interpretation). These results are valid without any approximation (like ħ → 0, big quantum numbers, etc.). Moreover, we do not commit ourselves to any specific ontological interpretation of quantum theory (such as, e.g., the Bohmian one). We will argue that, in substantial agreement with Bohr's viewpoint, the macroscopic description of the preparation, certain intermediate steps and the detection of the final outcome of experiments involving massive particles are dominated by these classical "effective" trajectories. This approach can be applied to the point of view of de-coherence in the case of a diagonal reduced density matrix ρ red (an improper mixture) depending on the position variables of a massive particle and of a pointer. When both the particle and the pointer wave functions appearing in ρ red are EMWF, the expectation value of the particle and pointer position variables becomes a statistical average on a classical ensemble. In these cases an improper quantum mixture becomes a classical statistical one, thus providing a particular answer to an open problem of de-coherence about the emergence of classicality.
Classical integrable defects as quasi Bäcklund transformations
NASA Astrophysics Data System (ADS)
Doikou, Anastasia
2016-10-01
We consider the algebraic setting of classical defects in discrete and continuous integrable theories. We derive the ;equations of motion; on the defect point via the space-like and time-like description. We then exploit the structural similarity of these equations with the discrete and continuous Bäcklund transformations. And although these equations are similar they are not exactly the same to the Bäcklund transformations. We also consider specific examples of integrable models to demonstrate our construction, i.e. the Toda chain and the sine-Gordon model. The equations of the time (space) evolution of the defect (discontinuity) degrees of freedom for these models are explicitly derived.
Mukherjee, Subhendu; Nagar, Shuchi; Mullick, Sanchita; Mukherjee, Arup; Saha, Achintya
2008-01-01
Considering the worth of developing non-steroidal estrogen analogs, the present study explores the pharmacophore features of arylbenzothiophene derivatives for inhibitory activity to MCF-7 cells using classical QSAR and 3D space modeling approaches. The analysis shows that presence of phenolic hydroxyl group and ketonic linkage in the basic side chain of 2-arylbenzothiophene core of raloxifene derivatives are crucial. Additionally piperidine ring connected through ether linkage is favorable for inhibition of breast cancer cell line. These features for inhibitory activity are also highlighted through 3D space modeling approach that explored importance of critical inter features distance among HB-acceptor lipid, hydrophobic and HB-donor features in the arylbenzothiophene scaffold for activity.
Time-dependent wave splitting and source separation
NASA Astrophysics Data System (ADS)
Grote, Marcus J.; Kray, Marie; Nataf, Frédéric; Assous, Franck
2017-02-01
Starting from classical absorbing boundary conditions, we propose a method for the separation of time-dependent scattered wave fields due to multiple sources or obstacles. In contrast to previous techniques, our method is local in space and time, deterministic, and avoids a priori assumptions on the frequency spectrum of the signal. Numerical examples in two space dimensions illustrate the usefulness of wave splitting for time-dependent scattering problems.
The Wigner distribution and 2D classical maps
NASA Astrophysics Data System (ADS)
Sakhr, Jamal
2017-07-01
The Wigner spacing distribution has a long and illustrious history in nuclear physics and in the quantum mechanics of classically chaotic systems. In this paper, a novel connection between the Wigner distribution and 2D classical mechanics is introduced. Based on a well-known correspondence between the Wigner distribution and the 2D Poisson point process, the hypothesis that typical pseudo-trajectories of a 2D ergodic map have a Wignerian nearest-neighbor spacing distribution (NNSD) is put forward and numerically tested. The standard Euclidean metric is used to compute the interpoint spacings. In all test cases, the hypothesis is upheld, and the range of validity of the hypothesis appears to be robust in the sense that it is not affected by the presence or absence of: (i) mixing; (ii) time-reversal symmetry; and/or (iii) dissipation.
DIFFEOMORPHIC SURFACE FLOWS: A NOVEL METHOD OF SURFACE EVOLUTION*
Zhang, Sirong; Younes, Laurent; Zweck, John; Ratnanather, J. Tilak
2009-01-01
We describe a new class of surface flows, diffeomorphic surface flows, induced by restricting diffeomorphic flows of the ambient Euclidean space to a surface. Different from classical surface PDE flows such as mean curvature flow, diffeomorphic surface flows are solutions of integro-differential equations in a group of diffeomorphisms. They have the potential advantage of being both topology-invariant and singularity free, which can be useful in computational anatomy and computer graphics. We first derive the Euler–Lagrange equation of the elastic energy for general diffeomorphic surface flows, which can be regarded as a smoothed version of the corresponding classical surface flows. Then we focus on diffeomorphic mean curvature flow. We prove the short-time existence and uniqueness of the flow, and study the long-time existence of the flow for surfaces of revolution. We present numerical experiments on synthetic and cortical surfaces from neuroimaging studies in schizophrenia and auditory disorders. Finally we discuss unresolved issues and potential applications. PMID:20016768
INFORMATION-THEORETIC INEQUALITIES ON UNIMODULAR LIE GROUPS
Chirikjian, Gregory S.
2010-01-01
Classical inequalities used in information theory such as those of de Bruijn, Fisher, Cramér, Rao, and Kullback carry over in a natural way from Euclidean space to unimodular Lie groups. These are groups that possess an integration measure that is simultaneously invariant under left and right shifts. All commutative groups are unimodular. And even in noncommutative cases unimodular Lie groups share many of the useful features of Euclidean space. The rotation and Euclidean motion groups, which are perhaps the most relevant Lie groups to problems in geometric mechanics, are unimodular, as are the unitary groups that play important roles in quantum computing. The extension of core information theoretic inequalities defined in the setting of Euclidean space to this broad class of Lie groups is potentially relevant to a number of problems relating to information gathering in mobile robotics, satellite attitude control, tomographic image reconstruction, biomolecular structure determination, and quantum information theory. In this paper, several definitions are extended from the Euclidean setting to that of Lie groups (including entropy and the Fisher information matrix), and inequalities analogous to those in classical information theory are derived and stated in the form of fifteen small theorems. In all such inequalities, addition of random variables is replaced with the group product, and the appropriate generalization of convolution of probability densities is employed. An example from the field of robotics demonstrates how several of these results can be applied to quantify the amount of information gained by pooling different sensory inputs. PMID:21113416
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oberreuter, Johannes M., E-mail: johannes.oberreuter@theorie.physik.uni-goettingen.de; Homrighausen, Ingo; Kehrein, Stefan
We study the time evolution of entanglement in a new quantum version of the Kac ring, where two spin chains become dynamically entangled by quantum gates, which are used instead of the classical markers. The features of the entanglement evolution are best understood by using knowledge about the behavior of an ensemble of classical Kac rings. For instance, the recurrence time of the quantum many-body system is twice the length of the chain and “thermalization” only occurs on time scales much smaller than the dimension of the Hilbert space. The model thus elucidates the relation between the results of measurementsmore » in quantum and classical systems: While in classical systems repeated measurements are performed over an ensemble of systems, the corresponding result is obtained by measuring the same quantum system prepared in an appropriate superposition repeatedly.« less
a Classical Isodual Theory of Antimatter and its Prediction of Antigravity
NASA Astrophysics Data System (ADS)
Santilli, Ruggero Maria
An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatment of matter and antimatter in due time, and as the classical foundations of an axiomatically consistent inclusion of gravitation in unified gauge theories recently appeared elsewhere, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with corresponding formulations at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is antiautomorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also antiautomorphic (and more generally, antiisomorphic), yet it is applicable beginning at the classical level and then persists at the quantum level where it becomes equivalent to charge conjugation. We therefore present, apparently for the first time, the classical isodual theory of antimatter, we identify the physical foundations of the theory as being the novel isodual Galilean, special and general relativities, and we show the compatibility of the theory with all available classical experimental data on antimatter. We identify the classical foundations of the prediction of antigravity for antimatter in the field of matter (or vice-versa) without any claim on its validity, and defer its resolution to specifically identified experiments. We identify the novel, classical, isodual electromagnetic waves which are predicted to be emitted by antimatter, the so-called space-time machine based on a novel non-Newtonian geometric propulsion, and other implications of the theory. We also introduce, apparently for the first time, the isodual space and time inversions and show that they are nontrivially different than the conventional ones, thus offering a possibility for the future resolution whether far away galaxies and quasars are made up of matter or of antimatter. The paper ends with the indication that the studies are at their first infancy, and indicates some of the open problems. To avoid a prohibitive length, the paper is restricted to the classical treatment, while studies on operator profiles are treated elsewhere.
Principles of Discrete Time Mechanics
NASA Astrophysics Data System (ADS)
Jaroszkiewicz, George
2014-04-01
1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osovski, Shmuel; Moiseyev, Nimrod
The recent pioneering experiments of the [Nature 412, 52 (2001)] and [Science, 293, 274 (2001)] groups have demonstrated the dynamical tunneling of cold atoms interacting with standing electromagnetic waves. It has been shown [Phys. Rev. Lett. 89, 253201 (2002)], that the tunneling oscillations observed in these experiments correspondingly stems from two- and three-Floquet quantum state mechanism and can be controlled by varying the experimental parameters. The question where are the fingerprints of the classical chaotic dynamics in a quantum dynamical process which is controlled by 2 or 3 quantum states remains open. Our calculations show that although the effective ({Dirac_h}/2{pi})more » associated with the two experiments is large, and the quantum system is far from its semiclassical limit, the quantum Floquet-Bloch quasienergy states still can be classified as regular and chaotic states. In both experiments the quantum and the classical phase-space entropies are quite similar, although the classical phase space is a mixed regular-chaotic space. It is also shown that as the wave packet which is initially localized at one of the two inner regular islands oscillates between them through the chaotic sea, it accumulates a random phase which causes the decay of the amplitude of the oscillating mean momentum,
, as measured in both experiments. The extremely high sensitivity of the rate of decay of the oscillations of
to the very small changes in the population of different Floquet-Bloch states, is another type of fingerprint of chaos in quantum dynamics that presumably was measured in the NIST and AUSTIN experiments for the first time.« less
Quantum fluctuating geometries and the information paradox
NASA Astrophysics Data System (ADS)
Eyheralde, Rodrigo; Campiglia, Miguel; Gambini, Rodolfo; Pullin, Jorge
2017-12-01
We study Hawking radiation on the quantum space-time of a collapsing null shell. We use the geometric optics approximation as in Hawking’s original papers to treat the radiation. The quantum space-time is constructed by superposing the classical geometries associated with collapsing shells with uncertainty in their position and mass. We show that there are departures from thermality in the radiation even though we are not considering a back reaction. One recovers the usual profile for the Hawking radiation as a function of frequency in the limit where the space-time is classical. However, when quantum corrections are taken into account, the profile of the Hawking radiation as a function of time contains information about the initial state of the collapsing shell. More work will be needed to determine whether all the information can be recovered. The calculations show that non-trivial quantum effects can occur in regions of low curvature when horizons are involved, as is proposed in the firewall scenario, for instance.
Quantum correlations with no causal order
Oreshkov, Ognyan; Costa, Fabio; Brukner, Časlav
2012-01-01
The idea that events obey a definite causal order is deeply rooted in our understanding of the world and at the basis of the very notion of time. But where does causal order come from, and is it a necessary property of nature? Here, we address these questions from the standpoint of quantum mechanics in a new framework for multipartite correlations that does not assume a pre-defined global causal structure but only the validity of quantum mechanics locally. All known situations that respect causal order, including space-like and time-like separated experiments, are captured by this framework in a unified way. Surprisingly, we find correlations that cannot be understood in terms of definite causal order. These correlations violate a 'causal inequality' that is satisfied by all space-like and time-like correlations. We further show that in a classical limit causal order always arises, which suggests that space-time may emerge from a more fundamental structure in a quantum-to-classical transition. PMID:23033068
Scaling properties of the two-dimensional randomly stirred Navier-Stokes equation.
Mazzino, Andrea; Muratore-Ginanneschi, Paolo; Musacchio, Stefano
2007-10-05
We inquire into the scaling properties of the 2D Navier-Stokes equation sustained by a force field with Gaussian statistics, white noise in time, and with a power-law correlation in momentum space of degree 2 - 2 epsilon. This is at variance with the setting usually assumed to derive Kraichnan's classical theory. We contrast accurate numerical experiments with the different predictions provided for the small epsilon regime by Kraichnan's double cascade theory and by renormalization group analysis. We give clear evidence that for all epsilon, Kraichnan's theory is consistent with the observed phenomenology. Our results call for a revision in the renormalization group analysis of (2D) fully developed turbulence.
Geometric Theory of Reduction of Nonlinear Control Systems
NASA Astrophysics Data System (ADS)
Elkin, V. I.
2018-02-01
The foundations of a differential geometric theory of nonlinear control systems are described on the basis of categorical concepts (isomorphism, factorization, restrictions) by analogy with classical mathematical theories (of linear spaces, groups, etc.).
Projective limits of state spaces II. Quantum formalism
NASA Astrophysics Data System (ADS)
Lanéry, Suzanne; Thiemann, Thomas
2017-06-01
In this series of papers, we investigate the projective framework initiated by Kijowski (1977) and Okołów (2009, 2014, 2013), which describes the states of a quantum theory as projective families of density matrices. A short reading guide to the series can be found in Lanéry (2016). After discussing the formalism at the classical level in a first paper (Lanéry, 2017), the present second paper is devoted to the quantum theory. In particular, we inspect in detail how such quantum projective state spaces relate to inductive limit Hilbert spaces and to infinite tensor product constructions (Lanéry, 2016, subsection 3.1) [1]. Regarding the quantization of classical projective structures into quantum ones, we extend the results by Okołów (2013), that were set up in the context of linear configuration spaces, to configuration spaces given by simply-connected Lie groups, and to holomorphic quantization of complex phase spaces (Lanéry, 2016, subsection 2.2) [1].
Quantum phase space with a basis of Wannier functions
NASA Astrophysics Data System (ADS)
Fang, Yuan; Wu, Fan; Wu, Biao
2018-02-01
A quantum phase space with Wannier basis is constructed: (i) classical phase space is divided into Planck cells; (ii) a complete set of Wannier functions are constructed with the combination of Kohn’s method and Löwdin method such that each Wannier function is localized at a Planck cell. With these Wannier functions one can map a wave function unitarily onto phase space. Various examples are used to illustrate our method and compare it to Wigner function. The advantage of our method is that it can smooth out the oscillations in wave functions without losing any information and is potentially a better tool in studying quantum-classical correspondence. In addition, we point out that our method can be used for time-frequency analysis of signals.
Generalized Kähler geometry and current algebras in classical N=2 superconformal WZW model
NASA Astrophysics Data System (ADS)
Parkhomenko, S. E.
2018-04-01
I examine the Generalized Kähler (GK) geometry of classical N = (2, 2) superconformal WZW model on a compact group and relate the right-moving and left-moving Kac-Moody superalgebra currents to the GK geometry data using biholomorphic gerbe formulation and Hamiltonian formalism. It is shown that the canonical Poisson homogeneous space structure induced by the GK geometry of the group manifold is crucial to provide N = (2, 2) superconformal σ-model with the Kac-Moody superalgebra symmetries. Then, the biholomorphic gerbe geometry is used to prove that Kac-Moody superalgebra currents are globally defined.
From black holes to quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, N.
1987-01-01
Since modern physics now deals simultaneously with quantum theory, general relativity, cosmology and elementary particle physics, this volume caters to the need for a book of such a wide scope of interest. Aspects of grand unification, the thermodynamics of space-time, the loss of quantum coherence and the problem of time are expertly treated within a unified presentation. Contents: Introduction; The Global Structure of Space-time in the Classical Theory of General Relativity; Connection between the Structure of the Space-time and the Propagation of Quantum Fields; The Different Approaches to Quantization; Outlook and Conclusions.
The energy-momentum tensor(s) in classical gauge theories
Blaschke, Daniel N.; Gieres, François; Reboud, Méril; ...
2016-07-12
We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. In conclusion, the relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.
Nedorezov, L V
2015-01-01
A stochastic model of migrations on a lattice and with discrete time is considered. It is assumed that space is homogenous with respect to its properties and during one time step every individual (independently of local population numbers) can migrate to nearest nodes of lattice with equal probabilities. It is also assumed that population size remains constant during certain time interval of computer experiments. The following variants of estimation of encounter rate between individuals are considered: when for the fixed time moments every individual in every node of lattice interacts with all other individuals in the node; when individuals can stay in nodes independently, or can be involved in groups in two, three or four individuals. For each variant of interactions between individuals, average value (with respect to space and time) is computed for various values of population size. The samples obtained were compared with respective functions of classic models of isolated population dynamics: Verhulst model, Gompertz model, Svirezhev model, and theta-logistic model. Parameters of functions were calculated with least square method. Analyses of deviations were performed using Kolmogorov-Smirnov test, Lilliefors test, Shapiro-Wilk test, and other statistical tests. It is shown that from traditional point of view there are no correspondence between the encounter rate and functions describing effects of self-regulatory mechanisms on population dynamics. Best fitting of samples was obtained with Verhulst and theta-logistic models when using the dataset resulted from the situation when every individual in the node interacts with all other individuals.
Multi-team dynamics and distributed expertise in imission operations.
Caldwell, Barrett S
2005-06-01
The evolution of space exploration has brought an increased awareness of the social and socio-technical issues associated with team performance and task coordination, both for the onboard astronauts and in mission control. Spaceflight operations create a unique environment in which to address classic group dynamics topics including communication, group process, knowledge development and sharing, and time-critical task performance. Mission operations in the early years of the 21st century have developed into a set of complex, multi-team task settings incorporating multiple mission control teams and flight crews interacting in novel ways. These more complex operational settings help highlight the emergence of a new paradigm of distributed supervisory coordination, and the need to consider multiple dimensions of expertise being supported and exchanged among team members. The creation of new mission profiles with very long-duration time scales (months, rather than days) for the International Space Station, as well as planned exploration missions to the Moon and Mars, emphasize fundamental distinctions from the 40 yr from Mercury to the Space Shuttle. Issues in distributed expertise and information flow in mission control settings from two related perspectives are described. A general conceptual view of knowledge sharing and task synchronization is presented within the context of the mission control environment. This conceptual presentation is supplemented by analysis of quasi-experimental data collected from actual flight controllers at NASA-Johnson Space Center, Houston, TX.
Quantum Correlations in Nonlocal Boson Sampling.
Shahandeh, Farid; Lund, Austin P; Ralph, Timothy C
2017-09-22
Determination of the quantum nature of correlations between two spatially separated systems plays a crucial role in quantum information science. Of particular interest is the questions of if and how these correlations enable quantum information protocols to be more powerful. Here, we report on a distributed quantum computation protocol in which the input and output quantum states are considered to be classically correlated in quantum informatics. Nevertheless, we show that the correlations between the outcomes of the measurements on the output state cannot be efficiently simulated using classical algorithms. Crucially, at the same time, local measurement outcomes can be efficiently simulated on classical computers. We show that the only known classicality criterion violated by the input and output states in our protocol is the one used in quantum optics, namely, phase-space nonclassicality. As a result, we argue that the global phase-space nonclassicality inherent within the output state of our protocol represents true quantum correlations.
NASA Technical Reports Server (NTRS)
Clements, Keith; Wall, John
2017-01-01
The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.
NASA Technical Reports Server (NTRS)
Clements, Keith; Wall, John
2017-01-01
The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.
Xu, Jiajie; Chen, Chao; Zheng, Chuanming; Wang, Kejing; Shang, Jinbiao; Fang, Xianhua; Ge, Minghua; Tan, Zhuo
2016-04-01
The present study aimed to discuss the advantage of the application of a cervical low incision for functional neck dissection in patients with thyroid papillary carcinoma. The study was a retrospective analysis of 87 thyroid papillary carcinoma patients; cervical low incision in the functional neck dissection was applied for 47 cases and the classic 'L' incision was applied for 40 cases. The different integrity, surgical time, blood loss and the aesthetic property of the incision were compared between the cervical low incision and the classic 'L' incision for lateral neck dissection of thyroid cancer. The postoperative pathological diagnosis was that the average total amount and the region II lymph nodes of the unilateral neck dissection were 33 and 10 for the cervical low incision group, and 32 and 11 for the classic 'L' incision group, respectively (P>0.05). The average unilateral neck dissection times were 87 and 58 min for the cervical low incision group and the classic 'L' incision group, respectively (P<0.05). The blood loss of the cervical low incision group was 67 ml, while the loss for the classic 'L' incision group was 61 ml (P>0.05). The postoperative incision of the cervical low incision group was smaller and more concealing. Additionally, the cosmetic deformities were milder for an inconspicuous cervical scar, and the sensation was improved for the patients in comparison with the classic 'L' incision group. These results suggest that the application of cervical low incision for functional neck dissection in thyroid papillary carcinoma patients aids in reducing postoperative complications, without increasing recurrence rates. Therefore, the classic 'L' incision can be replaced by the cervical low incision.
XU, JIAJIE; CHEN, CHAO; ZHENG, CHUANMING; WANG, KEJING; SHANG, JINBIAO; FANG, XIANHUA; GE, MINGHUA; TAN, ZHUO
2016-01-01
The present study aimed to discuss the advantage of the application of a cervical low incision for functional neck dissection in patients with thyroid papillary carcinoma. The study was a retrospective analysis of 87 thyroid papillary carcinoma patients; cervical low incision in the functional neck dissection was applied for 47 cases and the classic ‘L’ incision was applied for 40 cases. The different integrity, surgical time, blood loss and the aesthetic property of the incision were compared between the cervical low incision and the classic ‘L’ incision for lateral neck dissection of thyroid cancer. The postoperative pathological diagnosis was that the average total amount and the region II lymph nodes of the unilateral neck dissection were 33 and 10 for the cervical low incision group, and 32 and 11 for the classic ‘L’ incision group, respectively (P>0.05). The average unilateral neck dissection times were 87 and 58 min for the cervical low incision group and the classic ‘L’ incision group, respectively (P<0.05). The blood loss of the cervical low incision group was 67 ml, while the loss for the classic ‘L’ incision group was 61 ml (P>0.05). The postoperative incision of the cervical low incision group was smaller and more concealing. Additionally, the cosmetic deformities were milder for an inconspicuous cervical scar, and the sensation was improved for the patients in comparison with the classic ‘L’ incision group. These results suggest that the application of cervical low incision for functional neck dissection in thyroid papillary carcinoma patients aids in reducing postoperative complications, without increasing recurrence rates. Therefore, the classic ‘L’ incision can be replaced by the cervical low incision. PMID:27073645
Representation of solution for fully nonlocal diffusion equations with deviation time variable
NASA Astrophysics Data System (ADS)
Drin, I. I.; Drin, S. S.; Drin, Ya. M.
2018-01-01
We prove the solvability of the Cauchy problem for a nonlocal heat equation which is of fractional order both in space and time. The representation formula for classical solutions for time- and space- fractional partial differential operator Dat + a2 (-Δ) γ/2 (0 <= α <= 1, γ ɛ (0, 2]) and deviation time variable is given in terms of the Fox H-function, using the step by step method.
2017-01-01
We study the G-strand equations that are extensions of the classical chiral model of particle physics in the particular setting of broken symmetries described by symmetric spaces. These equations are simple field theory models whose configuration space is a Lie group, or in this case a symmetric space. In this class of systems, we derive several models that are completely integrable on finite dimensional Lie group G, and we treat in more detail examples with symmetric space SU(2)/S1 and SO(4)/SO(3). The latter model simplifies to an apparently new integrable nine-dimensional system. We also study the G-strands on the infinite dimensional group of diffeomorphisms, which gives, together with the Sobolev norm, systems of 1+2 Camassa–Holm equations. The solutions of these equations on the complementary space related to the Witt algebra decomposition are the odd function solutions. PMID:28413343
Understanding squeezing of quantum states with the Wigner function
NASA Technical Reports Server (NTRS)
Royer, Antoine
1994-01-01
The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.
Wigner phase space distribution via classical adiabatic switching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Amartya; Makri, Nancy; Department of Physics, University of Illinois, 1110 W. Green Street, Urbana, Illinois 61801
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if themore » perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.« less
NASA Astrophysics Data System (ADS)
Tian, X.; Zhang, Y.
2018-03-01
Herglotz variational principle, in which the functional is defined by a differential equation, generalizes the classical ones defining the functional by an integral. The principle gives a variational principle description of nonconservative systems even when the Lagrangian is independent of time. This paper focuses on studying the Noether's theorem and its inverse of a Birkhoffian system in event space based on the Herglotz variational problem. Firstly, according to the Herglotz variational principle of a Birkhoffian system, the principle of a Birkhoffian system in event space is established. Secondly, its parametric equations and two basic formulae for the variation of Pfaff-Herglotz action of a Birkhoffian system in event space are obtained. Furthermore, the definition and criteria of Noether symmetry of the Birkhoffian system in event space based on the Herglotz variational problem are given. Then, according to the relationship between the Noether symmetry and conserved quantity, the Noether's theorem is derived. Under classical conditions, Noether's theorem of a Birkhoffian system in event space based on the Herglotz variational problem reduces to the classical ones. In addition, Noether's inverse theorem of the Birkhoffian system in event space based on the Herglotz variational problem is also obtained. In the end of the paper, an example is given to illustrate the application of the results.
Wigner's quantum phase-space current in weakly-anharmonic weakly-excited two-state systems
NASA Astrophysics Data System (ADS)
Kakofengitis, Dimitris; Steuernagel, Ole
2017-09-01
There are no phase-space trajectories for anharmonic quantum systems, but Wigner's phase-space representation of quantum mechanics features Wigner current J . This current reveals fine details of quantum dynamics —finer than is ordinarily thought accessible according to quantum folklore invoking Heisenberg's uncertainty principle. Here, we focus on the simplest, most intuitive, and analytically accessible aspects of J. We investigate features of J for bound states of time-reversible, weakly-anharmonic one-dimensional quantum-mechanical systems which are weakly-excited. We establish that weakly-anharmonic potentials can be grouped into three distinct classes: hard, soft, and odd potentials. We stress connections between each other and the harmonic case. We show that their Wigner current fieldline patterns can be characterised by J's discrete stagnation points, how these arise and how a quantum system's dynamics is constrained by the stagnation points' topological charge conservation. We additionally show that quantum dynamics in phase space, in the case of vanishing Planck constant ℏ or vanishing anharmonicity, does not pointwise converge to classical dynamics.
The Pursuit of Quantum Gravity
NASA Astrophysics Data System (ADS)
Dewitt-Morette, Cecile
2012-03-01
Why is it so difficult to make a Quantum Theory of Gravitation? What is the key idea of quantum physics? What is the key idea of Einstein theory of gravitation? I have selected three (simple) problems that can be solved and are relevant to these issues: 1. The nonanalyticity of semi classical approximations (or the sex life of the male moth) 2. The Pin Group (or the implication of the quantum phase in particle physics) 3. Spacetime is Space x Time (or the deflection of light by the Sun) Conclusion: La joie de l'ame est dans l'action Lyautey (or astronomical observations)
Power of the Poincaré group: elucidating the hidden symmetries in focal conic domains.
Alexander, Gareth P; Chen, Bryan Gin-Ge; Matsumoto, Elisabetta A; Kamien, Randall D
2010-06-25
Focal conic domains are typically the "smoking gun" by which smectic liquid crystalline phases are identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time, difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which exploits a hidden Poincaré symmetry revealed only by viewing the smectic layers as projections from one-higher dimension. We use this perspective to shed light upon several classic focal conic textures, including the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.
Branched Hamiltonians and supersymmetry
Curtright, Thomas L.; Zachos, Cosmas K.
2014-03-21
Some examples of branched Hamiltonians are explored both classically and in the context of quantum mechanics, as recently advocated by Shapere and Wilczek. These are in fact cases of switchback potentials, albeit in momentum space, as previously analyzed for quasi-Hamiltonian chaotic dynamical systems in a classical setting, and as encountered in analogous renormalization group flows for quantum theories which exhibit RG cycles. In conclusion, a basic two-worlds model, with a pair of Hamiltonian branches related by supersymmetry, is considered in detail.
NASA Technical Reports Server (NTRS)
Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael
2017-01-01
We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.
Lifelong Learning Tendencies of Prospective Teachers
ERIC Educational Resources Information Center
Cetin, Saban; Cetin, Filiz
2017-01-01
Stunning developments in this era have brought different meanings in both educational conditions and time and space in education. Developing technologies have made education applicable everywhere. In other words, education has been taken outside of the known space (classic school walls). Individuals' constant innovation has caused the development…
Can a quantum state over time resemble a quantum state at a single time?
NASA Astrophysics Data System (ADS)
Horsman, Dominic; Heunen, Chris; Pusey, Matthew F.; Barrett, Jonathan; Spekkens, Robert W.
2017-09-01
The standard formalism of quantum theory treats space and time in fundamentally different ways. In particular, a composite system at a given time is represented by a joint state, but the formalism does not prescribe a joint state for a composite of systems at different times. If there were a way of defining such a joint state, this would potentially permit a more even-handed treatment of space and time, and would strengthen the existing analogy between quantum states and classical probability distributions. Under the assumption that the joint state over time is an operator on the tensor product of single-time Hilbert spaces, we analyse various proposals for such a joint state, including one due to Leifer and Spekkens, one due to Fitzsimons, Jones and Vedral, and another based on discrete Wigner functions. Finding various problems with each, we identify five criteria for a quantum joint state over time to satisfy if it is to play a role similar to the standard joint state for a composite system: that it is a Hermitian operator on the tensor product of the single-time Hilbert spaces; that it represents probabilistic mixing appropriately; that it has the appropriate classical limit; that it has the appropriate single-time marginals; that composing over multiple time steps is associative. We show that no construction satisfies all these requirements. If Hermiticity is dropped, then there is an essentially unique construction that satisfies the remaining four criteria.
General Relativity without paradigm of space-time covariance, and resolution of the problem of time
NASA Astrophysics Data System (ADS)
Soo, Chopin; Yu, Hoi-Lai
2014-01-01
The framework of a theory of gravity from the quantum to the classical regime is presented. The paradigm shift from full space-time covariance to spatial diffeomorphism invariance, together with clean decomposition of the canonical structure, yield transparent physical dynamics and a resolution of the problem of time. The deep divide between quantum mechanics and conventional canonical formulations of quantum gravity is overcome with a Schrödinger equation for quantum geometrodynamics that describes evolution in intrinsic time. Unitary time development with gauge-invariant temporal ordering is also viable. All Kuchar observables become physical; and classical space-time, with direct correlation between its proper times and intrinsic time intervals, emerges from constructive interference. The framework not only yields a physical Hamiltonian for Einstein's theory, but also prompts natural extensions and improvements towards a well behaved quantum theory of gravity. It is a consistent canonical scheme to discuss Horava-Lifshitz theories with intrinsic time evolution, and of the many possible alternatives that respect 3-covariance (rather than the more restrictive 4-covariance of Einstein's theory), Horava's "detailed balance" form of the Hamiltonian constraint is essentially pinned down by this framework. Issues in quantum gravity that depend on radiative corrections and the rigorous definition and regularization of the Hamiltonian operator are not addressed in this work.
Diffeomorphisms as symplectomorphisms in history phase space: Bosonic string model
NASA Astrophysics Data System (ADS)
Kouletsis, I.; Kuchař, K. V.
2002-06-01
The structure of the history phase space G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G includes the time map
FAST TRACK COMMUNICATION: General approach to \\mathfrak {SU}(n) quasi-distribution functions
NASA Astrophysics Data System (ADS)
Klimov, Andrei B.; de Guise, Hubert
2010-10-01
We propose an operational form for the kernel of a mapping between an operator acting in a Hilbert space of a quantum system with an \\mathfrak {SU}(n) symmetry group and its symbol in the corresponding classical phase space. For symmetric irreps of \\mathfrak {SU}(n) , this mapping is bijective. We briefly discuss complications that will occur in the general case.
NASA Technical Reports Server (NTRS)
Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael
2017-01-01
We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.
NASA Technical Reports Server (NTRS)
Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael
2017-01-01
We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.
Limb Lengthening and Then Insertion of an Intramedullary Nail: A Case-matched Comparison
Kleinman, Dawn; Fragomen, Austin T.; Ilizarov, Svetlana
2008-01-01
Distraction osteogenesis is an effective method for lengthening, deformity correction, and treatment of nonunions and bone defects. The classic method uses an external fixator for both distraction and consolidation leading to lengthy times in frames and there is a risk of refracture after frame removal. We suggest a new technique: lengthening and then nailing (LATN) technique in which the frame is used for gradual distraction and then a reamed intramedullary nail inserted to support the bone during the consolidation phase, allowing early removal of the external fixator. We performed a retrospective case-matched comparison of patients lengthened with LATN (39 limbs in 27 patients) technique versus the classic (34 limbs in 27 patients). The LATN group wore the external fixator for less time than the classic group (12 versus 29 weeks). The LATN group had a lower external fixation index (0.5 versus 1.9) and a lower bone healing index (0.8 versus 1.9) than the classic group. LATN confers advantages over the classic method including shorter times needed in external fixation, quicker bone healing, and protection against refracture. There are also advantages over the lengthening over a nail and internal lengthening nail techniques. Level of Evidence: Level III, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18800209
q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans.
Golkov, Vladimir; Dosovitskiy, Alexey; Sperl, Jonathan I; Menzel, Marion I; Czisch, Michael; Samann, Philipp; Brox, Thomas; Cremers, Daniel
2016-05-01
Numerous scientific fields rely on elaborate but partly suboptimal data processing pipelines. An example is diffusion magnetic resonance imaging (diffusion MRI), a non-invasive microstructure assessment method with a prominent application in neuroimaging. Advanced diffusion models providing accurate microstructural characterization so far have required long acquisition times and thus have been inapplicable for children and adults who are uncooperative, uncomfortable, or unwell. We show that the long scan time requirements are mainly due to disadvantages of classical data processing. We demonstrate how deep learning, a group of algorithms based on recent advances in the field of artificial neural networks, can be applied to reduce diffusion MRI data processing to a single optimized step. This modification allows obtaining scalar measures from advanced models at twelve-fold reduced scan time and detecting abnormalities without using diffusion models. We set a new state of the art by estimating diffusion kurtosis measures from only 12 data points and neurite orientation dispersion and density measures from only 8 data points. This allows unprecedentedly fast and robust protocols facilitating clinical routine and demonstrates how classical data processing can be streamlined by means of deep learning.
Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrennikov, Andrei
2010-08-15
One of the crucial differences between mathematical models of classical and quantum mechanics (QM) is the use of the tensor product of the state spaces of subsystems as the state space of the corresponding composite system. (To describe an ensemble of classical composite systems, one uses random variables taking values in the Cartesian product of the state spaces of subsystems.) We show that, nevertheless, it is possible to establish a natural correspondence between the classical and the quantum probabilistic descriptions of composite systems. Quantum averages for composite systems (including entangled) can be represented as averages with respect to classical randommore » fields. It is essentially what Albert Einstein dreamed of. QM is represented as classical statistical mechanics with infinite-dimensional phase space. While the mathematical construction is completely rigorous, its physical interpretation is a complicated problem. We present the basic physical interpretation of prequantum classical statistical field theory in Sec. II. However, this is only the first step toward real physical theory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livine, Etera R.
We introduce the set of framed (convex) polyhedra with N faces as the symplectic quotient C{sup 2N}//SU(2). A framed polyhedron is then parametrized by N spinors living in C{sup 2} satisfying suitable closure constraints and defines a usual convex polyhedron plus extra U(1) phases attached to each face. We show that there is a natural action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any (framed) polyhedron onto any other with the same total (boundary) area. This identifies the space of framed polyhedra to the Grassmannian space U(N)/ (SU(2)×U(N−2)).more » We show how to write averages of geometrical observables (polynomials in the faces' area and the angles between them) over the ensemble of polyhedra (distributed uniformly with respect to the Haar measure on U(N)) as polynomial integrals over the unitary group and we provide a few methods to compute these integrals systematically. We also use the Itzykson-Zuber formula from matrix models as the generating function for these averages and correlations. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners (or, in other words, SU(2)-invariant states in tensor products of irreducible representations). The total boundary area as well as the individual face areas are quantized as half-integers (spins), and the Hilbert spaces for fixed total area form irreducible representations of U(N). We define semi-classical coherent intertwiner states peaked on classical framed polyhedra and transforming consistently under U(N) transformations. And we show how the U(N) character formula for unitary transformations is to be considered as an extension of the Itzykson-Zuber to the quantum level and generates the traces of all polynomial observables over the Hilbert space of intertwiners. We finally apply the same formalism to two dimensions and show that classical (convex) polygons can be described in a similar fashion trading the unitary group for the orthogonal group. We conclude with a discussion of the possible (deformation) dynamics that one can define on the space of polygons or polyhedra. This work is a priori useful in the context of discrete geometry but it should hopefully also be relevant to (loop) quantum gravity in 2+1 and 3+1 dimensions when the quantum geometry is defined in terms of gluing of (quantized) polygons and polyhedra.« less
Analysis of Spattering Activity at Halema'uma'u in 2015
NASA Astrophysics Data System (ADS)
Mintz, Bianca G.
The classical explosive basaltic eruption spectrum is traditionally defined by the following end member eruption styles: Hawaiian and Strombolian. The field use of high-speed cameras has enabled volcanologists to make improved quantifications and more accurate descriptions of these classical eruptions styles and to quantify previously undecipherable activity (including activity on the basaltic eruption spectrum between the two defined end members). Explosive activity in 2015 at the free surface of the Halema'uma'u lava lake at Kilauea exhibited features of both sustained (Hawaiian) fountaining and transient (Strombolian) explosivity. Most of this activity is internally triggered by the internal rise of decoupled gas bubbles from below the lake's surface, but external triggering via rock falls, was also observed. Here I identify three styles of bubble bursting and spattering eruptive activity (isolated events, clusters of events, and prolonged episodes) at the lava lake, and distinguished them based on their temporal and spatial distributions. Isolated events are discrete single bubble bursts that persist for a few tenths of seconds to seconds and are separated by repose periods of similar or longer time scales. Cluster of events are closely spaced, repeated events grouped around a narrow point source, which persist for seconds to minutes. Prolonged episodes are groupings of numerous events closely linked in space and time that persist for tens of minutes to hours. Analysis of individual events from high-speed camera images indicates that they are made up of up to three phases: the bubble ascent phase, the bursting and pyroclast ejection phase, and the drain back (and rebound) phase. Based on the numerical parameters established in this study, the 2015 activity was relatively weak (i.e., of low intensity) but still falls in a region between those of continuous Hawaiian fountains and impulsive, short-lived Strombolian explosions, in terms of duration.
ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.
2018-07-01
We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved space-times. In this paper, we assume the background space-time to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local time-stepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed space-times. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.
Rigorous RG Algorithms and Area Laws for Low Energy Eigenstates in 1D
NASA Astrophysics Data System (ADS)
Arad, Itai; Landau, Zeph; Vazirani, Umesh; Vidick, Thomas
2017-11-01
One of the central challenges in the study of quantum many-body systems is the complexity of simulating them on a classical computer. A recent advance (Landau et al. in Nat Phys, 2015) gave a polynomial time algorithm to compute a succinct classical description for unique ground states of gapped 1D quantum systems. Despite this progress many questions remained unsolved, including whether there exist efficient algorithms when the ground space is degenerate (and of polynomial dimension in the system size), or for the polynomially many lowest energy states, or even whether such states admit succinct classical descriptions or area laws. In this paper we give a new algorithm, based on a rigorously justified RG type transformation, for finding low energy states for 1D Hamiltonians acting on a chain of n particles. In the process we resolve some of the aforementioned open questions, including giving a polynomial time algorithm for poly( n) degenerate ground spaces and an n O(log n) algorithm for the poly( n) lowest energy states (under a mild density condition). For these classes of systems the existence of a succinct classical description and area laws were not rigorously proved before this work. The algorithms are natural and efficient, and for the case of finding unique ground states for frustration-free Hamiltonians the running time is {\\tilde{O}(nM(n))} , where M( n) is the time required to multiply two n × n matrices.
Two-stream instability with time-dependent drift velocity
Qin, Hong; Davidson, Ronald C.
2014-06-26
The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.
Tensor network states in time-bin quantum optics
NASA Astrophysics Data System (ADS)
Lubasch, Michael; Valido, Antonio A.; Renema, Jelmer J.; Kolthammer, W. Steven; Jaksch, Dieter; Kim, M. S.; Walmsley, Ian; García-Patrón, Raúl
2018-06-01
The current shift in the quantum optics community towards experiments with many modes and photons necessitates new classical simulation techniques that efficiently encode many-body quantum correlations and go beyond the usual phase-space formulation. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. We extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments.
NASA Astrophysics Data System (ADS)
Sagkrioti, E.; Sfetsos, K.; Siampos, K.
2018-05-01
We study the renormalization group equations of the fully anisotropic λ-deformed CFTs involving the direct product of two current algebras at different levels k1,2 for general semi-simple groups. The exact, in the deformation parameters, β-function is found via the effective action of the quantum fluctuations around a classical background as well as from gravitational techniques. Furthermore, agreement with known results for symmetric couplings and/or for equal levels, is demonstrated. We study in detail the two coupling case arising by splitting the group into a subgroup and the corresponding coset manifold which consistency requires to be either a symmetric-space one or a non-symmetric Einstein-space.
Linear canonical transformations of coherent and squeezed states in the Wigner phase space
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Noz, Marilyn E.
1988-01-01
It is shown that classical linear canonical transformations are possible in the Wigner phase space. Coherent and squeezed states are shown to be linear canonical transforms of the ground-state harmonic oscillator. It is therefore possible to evaluate the Wigner functions for coherent and squeezed states from that for the harmonic oscillator. Since the group of linear canonical transformations has a subgroup whose algebraic property is the same as that of the (2+1)-dimensional Lorentz group, it may be possible to test certain properties of the Lorentz group using optical devices. A possible experiment to measure the Wigner rotation angle is discussed.
Stochastic inflation in phase space: is slow roll a stochastic attractor?
NASA Astrophysics Data System (ADS)
Grain, Julien; Vennin, Vincent
2017-05-01
An appealing feature of inflationary cosmology is the presence of a phase-space attractor, ``slow roll'', which washes out the dependence on initial field velocities. We investigate the robustness of this property under backreaction from quantum fluctuations using the stochastic inflation formalism in the phase-space approach. A Hamiltonian formulation of stochastic inflation is presented, where it is shown that the coarse-graining procedure—where wavelengths smaller than the Hubble radius are integrated out—preserves the canonical structure of free fields. This means that different sets of canonical variables give rise to the same probability distribution which clarifies the literature with respect to this issue. The role played by the quantum-to-classical transition is also analysed and is shown to constrain the coarse-graining scale. In the case of free fields, we find that quantum diffusion is aligned in phase space with the slow-roll direction. This implies that the classical slow-roll attractor is immune to stochastic effects and thus generalises to a stochastic attractor regardless of initial conditions, with a relaxation time at least as short as in the classical system. For non-test fields or for test fields with non-linear self interactions however, quantum diffusion and the classical slow-roll flow are misaligned. We derive a condition on the coarse-graining scale so that observational corrections from this misalignment are negligible at leading order in slow roll.
NASA Technical Reports Server (NTRS)
Defacio, Brian; Kim, S.-H.; Vannevel, A.
1994-01-01
The squeezed states or Bogoliubov transformations and wavelets are applied to two problems in nonrelativistic statistical mechanics: the dielectric response of liquid water, epsilon(q-vector,w), and the bubble formation in water during insonnification. The wavelets are special phase-space windows which cover the domain and range of L(exp 1) intersection of L(exp 2) of classical causal, finite energy solutions. The multiresolution of discrete wavelets in phase space gives a decomposition into regions of time and scales of frequency thereby allowing the renormalization group to be applied to new systems in addition to the tired 'usual suspects' of the Ising models and lattice gasses. The Bogoliubov transformation: squeeze transformation is applied to the dipolaron collective mode in water and to the gas produced by the explosive cavitation process in bubble formation.
Affine Kac-Moody symmetric spaces related with A1^{(1)}, A2^{(1)},} A2^{(2)}
NASA Astrophysics Data System (ADS)
Nayak, Saudamini; Pati, K. C.
2014-08-01
Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A1^{(1)}, A2^{(1)}, A2^{(2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.
Phase space explorations in time dependent density functional theory
NASA Astrophysics Data System (ADS)
Rajam, Aruna K.
Time dependent density functional theory (TDDFT) is one of the useful tools for the study of the dynamic behavior of correlated electronic systems under the influence of external potentials. The success of this formally exact theory practically relies on approximations for the exchange-correlation potential which is a complicated functional of the co-ordinate density, non-local in space and time. Adiabatic approximations (such as ALDA), which are local in time, are most commonly used in the increasing applications of the field. Going beyond ALDA, has been proved difficult leading to mathematical inconsistencies. We explore the regions where the theory faces challenges, and try to answer some of them via the insights from two electron model systems. In this thesis work we propose a phase-space extension of the TDDFT. We want to answer the challenges the theory is facing currently by exploring the one-body phase-space. We give a general introduction to this theory and its mathematical background in the first chapter. In second chapter, we carryout a detailed study of instantaneous phase-space densities and argue that the functionals of distributions can be a better alternative to the nonlocality issue of the exchange-correlation potentials. For this we study in detail the interacting and the non-interacting phase-space distributions for Hookes atom model. The applicability of ALDA-based TDDFT for the dynamics in strongfields can become severely problematic due to the failure of single-Slater determinant picture.. In the third chapter, we analyze how the phase-space distributions can shine some light into this problem. We do a comparative study of Kohn-Sham and interacting phase-space and momentum distributions for single ionization and double ionization systems. Using a simple model of two-electron systems, we have showed that the momentum distribution computed directly from the exact KS system contains spurious oscillations: a non-classical description of the essentially classical two-electron dynamics. In Time dependent density matrix functional theory (TDDMFT), the evolution scheme of the 1RDM (first order reduced density matrix) contains second-order reduced density matrix (2RDM), which has to be expressed in terms of 1RDMs. Any non-correlated approximations (Hartree-Fock) for 2RDM would fail to capture the natural occupations of the system. In our fourth chapter, we show that by applying the quasi-classical and semi-classical approximations one can capture the natural occupations of the excited systems. We study a time-dependent Moshinsky atom model for this. The fifth chapter contains a comparative work on the existing non-local exchange-correlation kernels that are based on current density response frame work and the co-moving frame work. We show that the two approaches though coinciding with each other in linear response regime, actually turn out to be different in non-linear regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Bong
1993-09-01
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaoticmore » nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.« less
Can Indian classical instrumental music reduce pain felt during venepuncture?
Balan, Rajiv; Bavdekar, S B; Jadhav, Sandhya
2009-05-01
Local anesthetic agent is not usually used to reduce pain experienced by children undergoing venepuncture. This study was undertaken to determine comparative efficacy of local anesthetic cream, Indian classical instrumental music and placebo, in reducing pain due to venepuncture in children. Children aged 5-12 yr requiring venepuncture were enrolled in a prospective randomized clinical trial conducted at a tertiary care center. They were randomly assigned to 3 groups: local anesthetic (LA), music or placebo (control) group. Eutactic mixture of local anesthetic agents (EMLA) and Indian classical instrumental music (raaga-Todi) were used in the first 2 groups, respectively. Pain was assessed independently by parent, patient, investigator and an independent observer at the time of insertion of the cannula (0 min) and at 1- and 5 min after the insertion using a Visual Analog Scale (VAS). Kruskal- Wallis and Mann-Whitney U tests were used to assess the difference amongst the VAS scores. Fifty subjects were enrolled in each group. Significantly higher VAS scores were noted in control (placebo) group by all the categories of observers (parent, patient, investigator, independent observer) at all time points. The VAS scores obtained in LA group were lowest at all time points. However, the difference between VAS scores in LA group were significantly lower than those in music group only at some time-points and with some categories of observers (parent: 1 min; investigator: 0-, 1-, 5 min and independent observer: 5 min). Pain experienced during venepuncture can be significantly reduced by using EMLA or Indian classical instrumental music. The difference between VAS scores with LA and music is not always significant. Hence, the choice between EMLA and music could be dictated by logistical factors.
Invariant Connections in Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Hanusch, Maximilian
2016-04-01
Given a group {G}, and an abelian {C^*}-algebra {A}, the antihomomorphisms {Θ\\colon G→ {Aut}(A)} are in one-to-one with those left actions {Φ\\colon G× {Spec}(A)→ {Spec}(A)} whose translation maps {Φ_g} are continuous; whereby continuities of {Θ} and {Φ} turn out to be equivalent if {A} is unital. In particular, a left action {φ\\colon G × X→ X} can be uniquely extended to the spectrum of a {C^*}-subalgebra {A} of the bounded functions on {X} if {φ_g^*(A)subseteq A} holds for each {gin G}. In the present paper, we apply this to the framework of loop quantum gravity. We show that, on the level of the configuration spaces, quantization and reduction in general do not commute, i.e., that the symmetry-reduced quantum configuration space is (strictly) larger than the quantized configuration space of the reduced classical theory. Here, the quantum-reduced space has the advantage to be completely characterized by a simple algebraic relation, whereby the quantized reduced classical space is usually hard to compute.
Wigner flow reveals topological order in quantum phase space dynamics.
Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg
2013-01-18
The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.
Surprising structures hiding in Penrose’s future null infinity
NASA Astrophysics Data System (ADS)
Newman, Ezra T.
2017-07-01
Since the late1950s, almost all discussions of asymptotically flat (Einstein-Maxwell) space-times have taken place in the context of Penrose’s null infinity, I+. In addition, almost all calculations have used the Bondi coordinate and tetrad systems. Beginning with a known asymptotically flat solution to the Einstein-Maxwell equations, we show first, that there are other natural coordinate systems, near I+, (analogous to light-cones in flat-space) that are based on (asymptotically) shear-free null geodesic congruences (analogous to the flat-space case). Using these new coordinates and their associated tetrad, we define the complex dipole moment, (the mass dipole plus i times angular momentum), from the l = 1 harmonic coefficient of a component of the asymptotic Weyl tensor. Second, from this definition, from the Bianchi identities and from the Bondi-Sachs mass and linear momentum, we show that there exists a large number of results—identifications and dynamics—identical to those of classical mechanics and electrodynamics. They include, among many others, {P}=M{v}+..., {L}= {r} × {P} , spin, Newton’s second law with the rocket force term (\\dotM v) and radiation reaction, angular momentum conservation and others. All these relations take place in the rather mysterious H-space rather than in space-time. This leads to the enigma: ‘why do these well known relations of classical mechanics take place in H-space?’ and ‘What is the physical meaning of H-space?’
NASA Astrophysics Data System (ADS)
Barreto, A. B.; Pucheu, M. L.; Romero, C.
2018-02-01
We consider scalar–tensor theories of gravity defined in Weyl integrable space-time and show that for time-lapse extended Robertson–Walker metrics in the ADM formalism a class of Weyl transformations corresponding to change of frames induce canonical transformations between different representations of the phase space. In this context, we discuss the physical equivalence of two distinct Weyl frames at the classical level.
Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in ϕ4-Theory
NASA Astrophysics Data System (ADS)
Finster, Felix; Tolksdorf, Jürgen
2012-05-01
Solutions of the classical ϕ4-theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a "classical measurement process" in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.
Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; ...
2015-02-26
A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q = 0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a sub-group). They can also havemore » ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. In conclusion, our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.« less
The value of SPaCE in delivering patient feedback.
Clapham, Laura; Allan, Laura; Stirling, Kevin
2016-02-01
The use of simulated patients (SPs) within undergraduate medical curricula is an established and valued learning opportunity. Within the context of simulation, it is imperative to capture feedback from all participants within the simulation activity. The Simulated Patient Candidate Evaluation (SPaCE) tool was developed to deliver SP feedback following a simulation activity. SpaCE is a closed feedback tool that allows SPs to rate a student's performance, using a five-point Likert scale, in three domains: attitude; interaction skills; and management. This research study examined the value of the SPaCE tool and how it contributes to the overall feedback that a student receives. Classical test theory was used to determine the reliability of the SPaCE tool. An evaluation of all SP responses was conducted to observe trends in scoring patterns for each question. Qualitative data were collected via a free-text questionnaire and subsequent focus group discussion. It is imperative to capture feedback from all participants within the simulation activity Classical test theory determined that the SPaCE tool had a reliability co-efficient of 0.89. A total of 13 SPs replied to the questionnaire. A thematic analysis of all questionnaire data identified that the SPaCE tool provides a structure that allows patient feedback to be given effectively following a simulation activity. These themes were discussed further with six SPs who attended the subsequent focus group session. The SPaCE tool has been shown to be a reliable closed feedback tool that allows SPs to discriminate between students, based on their performance. The next stage in the development of the SPaCE tool is to test the wider applicability of this feedback tool. © 2015 John Wiley & Sons Ltd.
On a canonical quantization of 3D Anti de Sitter pure gravity
NASA Astrophysics Data System (ADS)
Kim, Jihun; Porrati, Massimo
2015-10-01
We perform a canonical quantization of pure gravity on AdS 3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,{R})× SL(2,{R}) . We first quantize the theory canonically on an asymptotically AdS space -which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kähler quantization of Teichmüller space. After explicitly computing the Kähler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,{R}) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous spectrum and a lower bound on operator dimensions. A projection defined by topology changing amplitudes in Euclidean gravity is proposed. It defines an invariant subspace that allows for a dual interpretation in terms of a Liouville CFT. Problems and features of the CFT dual are assessed and a new definition of the Hilbert space, exempt from those problems, is proposed in the case of highly-curved AdS 3.
Noncommutative Translations and *-PRODUCT Formalism
NASA Astrophysics Data System (ADS)
Daszkiewicz, Marcin; Lukierski, Jerzy; Woronowicz, Mariusz
2008-09-01
We consider the noncommutative space-times with Lie-algebraic noncommutativity (e.g. κ-deformed Minkowski space). In the framework with classical fields we extend the *-product in order to represent the noncommutative translations in terms of commutative ones. We show the translational invariance of noncommutative bilinear action with local product of noncommutative fields. The quadratic noncommutativity is also briefly discussed.
Unitals and ovals of symmetric block designs in LDPC and space-time coding
NASA Astrophysics Data System (ADS)
Andriamanalimanana, Bruno R.
2004-08-01
An approach to the design of LDPC (low density parity check) error-correction and space-time modulation codes involves starting with known mathematical and combinatorial structures, and deriving code properties from structure properties. This paper reports on an investigation of unital and oval configurations within generic symmetric combinatorial designs, not just classical projective planes, as the underlying structure for classes of space-time LDPC outer codes. Of particular interest are the encoding and iterative (sum-product) decoding gains that these codes may provide. Various small-length cases have been numerically implemented in Java and Matlab for a number of channel models.
Event-by-Event Study of Space-Time Dynamics in Flux-Tube Fragmentation
Wong, Cheuk-Yin
2017-05-25
In the semi-classical description of the flux-tube fragmentation process for hadron production and hadronization in high-energymore » $e^+e^-$ annihilations and $pp$ collisions, the rapidity-space-time ordering and the local conservation laws of charge, flavor, and momentum provide a set of powerful tools that may allow the reconstruction of the space-time dynamics of quarks and mesons in exclusive measurements of produced hadrons, on an event-by-event basis. We propose procedures to reconstruct the space-time dynamics from event-by-event exclusive hadron data to exhibit explicitly the ordered chain of hadrons produced in a flux tube fragmentation. As a supplementary tool, we infer the average space-time coordinates of the $q$-$$\\bar q$$ pair production vertices from the $$\\pi^-$$ rapidity distribution data obtained by the NA61/SHINE Collaboration in $pp$ collisions at $$\\sqrt{s}$$ = 6.3 to 17.3 GeV.« less
Event-by-Event Study of Space-Time Dynamics in Flux-Tube Fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Cheuk-Yin
In the semi-classical description of the flux-tube fragmentation process for hadron production and hadronization in high-energymore » $e^+e^-$ annihilations and $pp$ collisions, the rapidity-space-time ordering and the local conservation laws of charge, flavor, and momentum provide a set of powerful tools that may allow the reconstruction of the space-time dynamics of quarks and mesons in exclusive measurements of produced hadrons, on an event-by-event basis. We propose procedures to reconstruct the space-time dynamics from event-by-event exclusive hadron data to exhibit explicitly the ordered chain of hadrons produced in a flux tube fragmentation. As a supplementary tool, we infer the average space-time coordinates of the $q$-$$\\bar q$$ pair production vertices from the $$\\pi^-$$ rapidity distribution data obtained by the NA61/SHINE Collaboration in $pp$ collisions at $$\\sqrt{s}$$ = 6.3 to 17.3 GeV.« less
Space-Time Crystal and Space-Time Group
NASA Astrophysics Data System (ADS)
Xu, Shenglong; Wu, Congjun
2018-03-01
Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D +1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1 +1 D ) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2 +1 D , nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D +1 )-dimensional space-time crystal.
Space-Time Crystal and Space-Time Group.
Xu, Shenglong; Wu, Congjun
2018-03-02
Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D+1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1+1D) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2+1D, nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D+1)-dimensional space-time crystal.
Detection of non-classical space-time correlations with a novel type of single-photon camera.
Just, Felix; Filipenko, Mykhaylo; Cavanna, Andrea; Michel, Thilo; Gleixner, Thomas; Taheri, Michael; Vallerga, John; Campbell, Michael; Tick, Timo; Anton, Gisela; Chekhova, Maria V; Leuchs, Gerd
2014-07-14
During the last decades, multi-pixel detectors have been developed capable of registering single photons. The newly developed hybrid photon detector camera has a remarkable property that it has not only spatial but also temporal resolution. In this work, we apply this device to the detection of non-classical light from spontaneous parametric down-conversion and use two-photon correlations for the absolute calibration of its quantum efficiency.
Stochastic inflation in phase space: is slow roll a stochastic attractor?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grain, Julien; Vennin, Vincent, E-mail: julien.grain@ias.u-psud.fr, E-mail: vincent.vennin@port.ac.uk
An appealing feature of inflationary cosmology is the presence of a phase-space attractor, ''slow roll'', which washes out the dependence on initial field velocities. We investigate the robustness of this property under backreaction from quantum fluctuations using the stochastic inflation formalism in the phase-space approach. A Hamiltonian formulation of stochastic inflation is presented, where it is shown that the coarse-graining procedure—where wavelengths smaller than the Hubble radius are integrated out—preserves the canonical structure of free fields. This means that different sets of canonical variables give rise to the same probability distribution which clarifies the literature with respect to this issue.more » The role played by the quantum-to-classical transition is also analysed and is shown to constrain the coarse-graining scale. In the case of free fields, we find that quantum diffusion is aligned in phase space with the slow-roll direction. This implies that the classical slow-roll attractor is immune to stochastic effects and thus generalises to a stochastic attractor regardless of initial conditions, with a relaxation time at least as short as in the classical system. For non-test fields or for test fields with non-linear self interactions however, quantum diffusion and the classical slow-roll flow are misaligned. We derive a condition on the coarse-graining scale so that observational corrections from this misalignment are negligible at leading order in slow roll.« less
Differential calculus on quantized simple lie groups
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1991-07-01
Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ∈ ℝ are also discussed.
Lipschitz and Besov spaces in quantum calculus
NASA Astrophysics Data System (ADS)
Nemri, Akram; Selmi, Belgacem
2016-08-01
The purpose of this paper is to investigate the harmonic analysis on the time scale 𝕋q, q ∈ (0, 1) to introduce q-weighted Besov spaces subspaces of Lp(𝕋 q) generalizing the classical one. Further, using an example of q-weighted wα,β(.; q) which is introduced and studied. We give a new characterization of the q-Besov space using q-Poisson kernel and the g1 Littlewood-Paley operator.
Patané, Ivan; Farnè, Alessandro; Frassinetti, Francesca
2016-01-01
A large literature has documented interactions between space and time suggesting that the two experiential domains may share a common format in a generalized magnitude system (ATOM theory). To further explore this hypothesis, here we measured the extent to which time and space are sensitive to the same sensorimotor plasticity processes, as induced by classical prismatic adaptation procedures (PA). We also exanimated whether spatial-attention shifts on time and space processing, produced through PA, extend to stimuli presented beyond the immediate near space. Results indicated that PA affected both temporal and spatial representations not only in the near space (i.e., the region within which the adaptation occurred), but also in the far space. In addition, both rightward and leftward PA directions caused opposite and symmetrical modulations on time processing, whereas only leftward PA biased space processing rightward. We discuss these findings within the ATOM framework and models that account for PA effects on space and time processing. We propose that the differential and asymmetrical effects following PA may suggest that temporal and spatial representations are not perfectly aligned.
Decoherence can relax cosmic acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markkanen, Tommi
In this work we investigate the semi-classical backreaction for a quantised conformal scalar field and classical vacuum energy. In contrast to the usual approximation of a closed system, our analysis includes an environmental sector such that a quantum-to-classical transition can take place. We show that when the system decoheres into a mixed state with particle number as the classical observable de Sitter space is destabilized, which is observable as a gradually decreasing Hubble rate. In particular we show that at late times this mechanism can drive the curvature of the Universe to zero and has an interpretation as the decaymore » of the vacuum energy demonstrating that quantum effects can be relevant for the fate of the Universe.« less
Berry phase and Hannay's angle in a quantum-classical hybrid system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H. D.; Wu, S. L.; Yi, X. X.
2011-06-15
The Berry phase, which was discovered more than two decades ago, provides very deep insight into the geometric structure of quantum mechanics. Its classical counterpart, Hannay's angle, is defined if closed curves of action variables return to the same curves in phase space after a time evolution. In this paper we study the Berry phase and Hannay's angle in a quantum-classical hybrid system under the Born-Oppenheimer approximation. By the term quantum-classical hybrid system, we mean a composite system consists of a quantum subsystem and a classical subsystem. The effects of subsystem-subsystem couplings on the Berry phase and Hannay's angle aremore » explored. The results show that the Berry phase has been changed sharply by the couplings, whereas the couplings have a small effect on the Hannay's angle.« less
NASA Astrophysics Data System (ADS)
Oberlack, Martin; Nold, Andreas; Sanjon, Cedric Wilfried; Wang, Yongqi; Hau, Jan
2016-11-01
Classical hydrodynamic stability theory for laminar shear flows, no matter if considering long-term stability or transient growth, is based on the normal-mode ansatz, or, in other words, on an exponential function in space (stream-wise direction) and time. Recently, it became clear that the normal mode ansatz and the resulting Orr-Sommerfeld equation is based on essentially three fundamental symmetries of the linearized Euler and Navier-Stokes equations: translation in space and time and scaling of the dependent variable. Further, Kelvin-mode of linear shear flows seemed to be an exception in this context as it admits a fourth symmetry resulting in the classical Kelvin mode which is rather different from normal-mode. However, very recently it was discovered that most of the classical canonical shear flows such as linear shear, Couette, plane and round Poiseuille, Taylor-Couette, Lamb-Ossen vortex or asymptotic suction boundary layer admit more symmetries. This, in turn, led to new problem specific non-modal ansatz functions. In contrast to the exponential growth rate in time of the modal-ansatz, the new non-modal ansatz functions usually lead to an algebraic growth or decay rate, while for the asymptotic suction boundary layer a double-exponential growth or decay is observed.
Relativity Based on Physical Processes Rather Than Space-Time
NASA Astrophysics Data System (ADS)
Giese, Albrecht
2013-09-01
Physicists' understanding of relativity and the way it is handled is at present dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity, which explains the origin of mass without the use of the Higgs mechanism, based on the finiteness of the speed of light, and which provides the classical results for particle properties that are currently only accessible through quantum mechanics.
Self-synchronization for spread spectrum audio watermarks after time scale modification
NASA Astrophysics Data System (ADS)
Nadeau, Andrew; Sharma, Gaurav
2014-02-01
De-synchronizing operations such as insertion, deletion, and warping pose significant challenges for watermarking. Because these operations are not typical for classical communications, watermarking techniques such as spread spectrum can perform poorly. Conversely, specialized synchronization solutions can be challenging to analyze/ optimize. This paper addresses desynchronization for blind spread spectrum watermarks, detected without reference to any unmodified signal, using the robustness properties of short blocks. Synchronization relies on dynamic time warping to search over block alignments to find a sequence with maximum correlation to the watermark. This differs from synchronization schemes that must first locate invariant features of the original signal, or estimate and reverse desynchronization before detection. Without these extra synchronization steps, analysis for the proposed scheme builds on classical SS concepts and allows characterizes the relationship between the size of search space (number of detection alignment tests) and intrinsic robustness (continuous search space region covered by each individual detection test). The critical metrics that determine the search space, robustness, and performance are: time-frequency resolution of the watermarking transform, and blocklength resolution of the alignment. Simultaneous robustness to (a) MP3 compression, (b) insertion/deletion, and (c) time-scale modification is also demonstrated for a practical audio watermarking scheme developed in the proposed framework.
Renormalization of the Lattice Heavy Quark Classical Velocity
NASA Astrophysics Data System (ADS)
Mandula, Jeffrey E.; Ogilvie, Michael C.
1996-03-01
In the lattice formulation of the Heavy Quark Effective Theory (LHQET), the "classical velocity" v becomes renormalized. The origin of this renormalization is the reduction of Lorentz (or O(4)) invariance to (hyper)cubic invariance. The renormalization is finite and depends on the form of the decretization of the reduced heavy quark Dirac equation. For the Forward Time — Centered Space discretization, the renormalization is computed both perturbatively, to one loop, and non-perturbatively using two ensembles of lattices, one at β = 5.7 and the other at β = 6.1 The estimates agree, and indicate that for small classical velocities, ν→ is reduced by about 25-30%.
Commutators associated with Schrödinger operators on the nilpotent Lie group.
Ni, Tianzhen; Liu, Yu
2017-01-01
Assume that G is a nilpotent Lie group. Denote by [Formula: see text] the Schrödinger operator on G , where Δ is the sub-Laplacian, the nonnegative potential W belongs to the reverse Hölder class [Formula: see text] for some [Formula: see text] and D is the dimension at infinity of G . Let [Formula: see text] be the Riesz transform associated with L . In this paper we obtain some estimates for the commutator [Formula: see text] for [Formula: see text], where [Formula: see text] is a function space which is larger than the classical Lipschitz space.
On the substructure of the cosmological constant
NASA Astrophysics Data System (ADS)
Dvali, G.; Gomez, C.; Zell, S.
We summarize the findings of our paper arXiv:1701.08776 [hep-th]. We start by defining the quantum break-time. Once one understands a classical solution as expectation value of an underlying quantum state, it emerges as time-scale after which the true quantum evolution departs from the classical mean field evolution. We apply this idea to de Sitter space. Following earlier work, we construct a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as coherent quantum state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all semi-classical calculations in de Sitter, such as thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the (1/N)-effects of back reaction to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: Older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.
Continuous time quantum random walks in free space
NASA Astrophysics Data System (ADS)
Eichelkraut, Toni; Vetter, Christian; Perez-Leija, Armando; Christodoulides, Demetrios; Szameit, Alexander
2014-05-01
We show theoretically and experimentally that two-dimensional continuous time coherent random walks are possible in free space, that is, in the absence of any external potential, by properly tailoring the associated initial wave function. These effects are experimentally demonstrated using classical paraxial light. Evidently, the usage of classical beams to explore the dynamics of point-like quantum particles is possible since both phenomena are mathematically equivalent. This in turn makes our approach suitable for the realization of random walks using different quantum particles, including electrons and photons. To study the spatial evolution of a wavefunction theoretically, we consider the one-dimensional paraxial wave equation (i∂z +1/2 ∂x2) Ψ = 0 . Starting with the initially localized wavefunction Ψ (x , 0) = exp [ -x2 / 2σ2 ] J0 (αx) , one can show that the evolution of such Gaussian-apodized Bessel envelopes within a region of validity resembles the probability pattern of a quantum walker traversing a uniform lattice. In order to generate the desired input-field in our experimental setting we shape the amplitude and phase of a collimated light beam originating from a classical HeNe-Laser (633 nm) utilizing a spatial light modulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, Saudamini, E-mail: anumama.nayak07@gmail.com; Pati, K. C., E-mail: kcpati@nitrkl.ac.in
Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A{sub 1}{sup (1)},A{sub 2}{sup (1)},A{sub 2}{sup (2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.
NASA Astrophysics Data System (ADS)
Hur, Gwang-Ok
The -kicked rotor is a paradigm of quantum chaos. Its realisation with clouds of cold atoms in pulsed optical lattices demonstrated the well-known quantum chaos phenomenon of 'dynamical localisation'. In those experi ments by several groups world-wide, the £-kicks were applied at equal time intervals. However, recent theoretical and experimental work by the cold atom group at UCL Monteiro et al 2002, Jonckheere et al 2003, Jones et al 2004 showed that novel quantum and classical dynamics arises if the atomic cloud is pulsed with repeating sequences of unequally spaced kicks. In Mon teiro et al 2002 it was found that the energy absorption rates depend on the momentum of the atoms relative to the optical lattice hence a type of chaotic ratchet was proposed. In Jonckheere et al and Jones et al, a possible mechanism for selecting atoms according to their momenta (velocity filter) was investigated. The aim of this thesis was to study the properties of the underlying eigen values and eigenstates. Despite the unequally-spaced kicks, these systems are still time-periodic, so we in fact investigated the Floquet states, which are eigenstates of U(T), the one-period time evolution operator. The Floquet states and corresponding eigenvalues were obtained by diagonalising a ma trix representation of the operator U(T). It was found that the form of the eigenstates enables us to analyse qual itatively the atomic momentum probability distributions, N(p) measured experimentally. In particular, the momentum width of the individual eigen states varies strongly with < p > as expected from the theoretical and ex- perimental results obtained previously. In addition, at specific < p > close to values which in the experiment yield directed motion (ratchet transport), the probability distribution of the individual Floquet states is asymmetric, mirroring the asymmetric N(p) measured in clouds of cesium atoms. In the penultimate chapter, the spectral fluctuations (eigenvalue statis tics) are investigated for one particular system, the double-delta kicked rotor. We computed Nearest Neighbour Spacing (NNS) distributions as well as the number variances (E2 statistics). We find that even in regimes where the corresponding classical dynamics are fully chaotic, the statistics are, unex pectedly, intermediate between fully chaotic (GOE) and fully regular (Pois- son). It is argued that they are analogous to the critical statistics seen in the Anderson metal-insulator transition.
Travellers' diarrhoea: Impact of TD definition and control group design on study results.
Lääveri, Tinja; Pakkanen, Sari H; Kirveskari, Juha; Kantele, Anu
2018-02-02
Travellers' diarrhoea (TD) is a common health problem among visitors to the (sub)tropics. Much research deals with aetiology, prevention, and post-infection sequalae, yet the data may not allow comparisons due to incompatible definitions of TD and No TD control groups. The impact of defining TD and No TD control groups was explored by revisiting our recent data. We set up two TD groups: classical TD i.e. ≥3 loose or liquid stools/day and WHO TD (diarrhoea as defined by the WHO) i.e. any diarrhoea, and four No TD groups by TD definition and timing (no classical/WHO TD during travel, no ongoing classical/WHO TD). TD was recorded for 37% versus 65% of subjects when using classical versus WHO definitions, respectively; the proportions of the various pathogens proved similar. The strictest criterion for the No TD control group (no WHO TD during travel) yielded pathogens among 61% and the least strict (no ongoing classical TD) among 73% of the travellers; the differences were greatest for enteroaggregative Escherichia coli and Campylobacter. Definition of TD and control group design substantially impact on TD study results. The WHO definition yields more cases, but the pathogen selection is similar by both definitions. Design of the No TD control group was found critical: only those remaining asymptomatic throughout the journey should be included. Copyright © 2018 Elsevier Ltd. All rights reserved.
Space-Group Symmetries Generate Chaotic Fluid Advection in Crystalline Granular Media
NASA Astrophysics Data System (ADS)
Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.
2018-01-01
The classical connection between symmetry breaking and the onset of chaos in dynamical systems harks back to the seminal theory of Noether [Transp. Theory Statist. Phys. 1, 186 (1918), 10.1080/00411457108231446]. We study the Lagrangian kinematics of steady 3D Stokes flow through simple cubic and body-centered cubic (bcc) crystalline lattices of close-packed spheres, and uncover an important exception. While breaking of point-group symmetries is a necessary condition for chaotic mixing in both lattices, a further space-group (glide) symmetry of the bcc lattice generates a transition from globally regular to globally chaotic dynamics. This finding provides new insights into chaotic mixing in porous media and has significant implications for understanding the impact of symmetries upon generic dynamical systems.
NASA Astrophysics Data System (ADS)
Boscheri, Walter; Dumbser, Michael
2014-10-01
In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.
NASA Astrophysics Data System (ADS)
Jordan, Andrew Noble
2002-09-01
In this dissertation, we study the quantum mechanics of classically chaotic dynamical systems. We begin by considering the decoherence effects a quantum chaotic system has on a simple quantum few state system. Typical time evolution of a quantum system whose classical limit is chaotic generates structures in phase space whose size is much smaller than Planck's constant. A naive application of Heisenberg's uncertainty principle indicates that these structures are not physically relevant. However, if we take the quantum chaotic system in question to be an environment which interacts with a simple two state quantum system (qubit), we show that these small phase-space structures cause the qubit to generically lose quantum coherence if and only if the environment has many degrees of freedom, such as a dilute gas. This implies that many-body environments may be crucial for the phenomenon of quantum decoherence. Next, we turn to an analysis of statistical properties of time correlation functions and matrix elements of quantum chaotic systems. A semiclassical evaluation of matrix elements of an operator indicates that the dominant contribution will be related to a classical time correlation function over the energy surface. For a highly chaotic class of dynamics, these correlation functions may be decomposed into sums of Ruelle resonances, which control exponential decay to the ergodic distribution. The theory is illustrated both numerically and theoretically on the Baker map. For this system, we are able to isolate individual Ruelle modes. We further consider dynamical systems whose approach to ergodicity is given by a power law rather than an exponential in time. We propose a billiard with diffusive boundary conditions, whose classical solution may be calculated analytically. We go on to compare the exact solution with an approximation scheme, as well calculate asympotic corrections. Quantum spectral statistics are calculated assuming the validity of the Again, Altshuler and Andreev ansatz. We find singular behavior of the two point spectral correlator in the limit of small spacing. Finally, we analyse the effect that slow decay to ergodicity has on the structure of the quantum propagator, as well as wavefunction localization. We introduce a statistical quantum description of systems that are composed of both an orderly region and a random region. By averaging over the random region only, we find that measures of localization in momentum space semiclassically diverge with the dimension of the Hilbert space. We illustrate this numerically with quantum maps and suggest various other systems where this behavior should be important.
The Camassa-Holm equation as an incompressible Euler equation: A geometric point of view
NASA Astrophysics Data System (ADS)
Gallouët, Thomas; Vialard, François-Xavier
2018-04-01
The group of diffeomorphisms of a compact manifold endowed with the L2 metric acting on the space of probability densities gives a unifying framework for the incompressible Euler equation and the theory of optimal mass transport. Recently, several authors have extended optimal transport to the space of positive Radon measures where the Wasserstein-Fisher-Rao distance is a natural extension of the classical L2-Wasserstein distance. In this paper, we show a similar relation between this unbalanced optimal transport problem and the Hdiv right-invariant metric on the group of diffeomorphisms, which corresponds to the Camassa-Holm (CH) equation in one dimension. Geometrically, we present an isometric embedding of the group of diffeomorphisms endowed with this right-invariant metric in the automorphisms group of the fiber bundle of half densities endowed with an L2 type of cone metric. This leads to a new formulation of the (generalized) CH equation as a geodesic equation on an isotropy subgroup of this automorphisms group; On S1, solutions to the standard CH thus give radially 1-homogeneous solutions of the incompressible Euler equation on R2 which preserves a radial density that has a singularity at 0. An other application consists in proving that smooth solutions of the Euler-Arnold equation for the Hdiv right-invariant metric are length minimizing geodesics for sufficiently short times.
Simulation of wave packet tunneling of interacting identical particles
NASA Astrophysics Data System (ADS)
Lozovik, Yu. E.; Filinov, A. V.; Arkhipov, A. S.
2003-02-01
We demonstrate a different method of simulation of nonstationary quantum processes, considering the tunneling of two interacting identical particles, represented by wave packets. The used method of quantum molecular dynamics (WMD) is based on the Wigner representation of quantum mechanics. In the context of this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These classical trajectories obey Hamiltonian-like equations, where the effective potential consists of the usual classical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term is calculated using local distribution of trajectories in phase space, therefore, classical trajectories are not independent, contrary to classical molecular dynamics. The developed WMD method takes into account the influence of exchange and interaction between particles. The role of direct and exchange interactions in tunneling is analyzed. The tunneling times for interacting particles are calculated.
Exactly solvable quantum cosmologies from two killing field reductions of general relativity
NASA Astrophysics Data System (ADS)
Husain, Viqar; Smolin, Lee
1989-11-01
An exact and, possibly, general solution to the quantum constraints is given for the sector of general relativity containing cosmological solutions with two space-like, commuting, Killing fields. The dynamics of these model space-times, which are known as Gowdy space-times, is formulated in terms of Ashtekar's new variables. The quantization is done by using the recently introduced self-dual and loop representations. On the classical phase space we find four explicit physical observables, or constants of motion, which generate a GL(2) symmetry group on the space of solutions. In the loop representations we find that a complete description of the physical state space, consisting of the simultaneous solutions to all of the constraints, is given in terms of the equivalence classes, under Diff(S1), of a pair of densities on the circle. These play the same role that the link classes play in the loop representation solution to the full 3+1 theory. An infinite dimensional algebra of physical observables is found on the physical state space, which is a GL(2) loop algebra. In addition, by freezing the local degrees of freedom of the model, we find a finite dimensional quantum system which describes a set of degenerate quantum cosmologies on T3 in which the length of one of the S1's has gone to zero, while the area of the remaining S1×S1 is quantized in units of the Planck area. The quantum kinematics of this sector of the model is identical to that of a one-plaquette SU(2) lattice gauge theory.
Relational evolution of effectively interacting group field theory quantum gravity condensates
NASA Astrophysics Data System (ADS)
Pithis, Andreas G. A.; Sakellariadou, Mairi
2017-03-01
We study the impact of effective interactions onto relationally evolving group field theory (GFT) condensates based on real-valued fields. In a first step we show that a free condensate configuration in an isotropic restriction settles dynamically into a low-spin configuration of the quantum geometry. This goes hand in hand with the accelerated and exponential expansion of its volume, as well as the vanishing of its relative uncertainty which suggests the classicalization of the quantum geometry. The dynamics of the emergent space can then be given in terms of the classical Friedmann equations. In contrast to models based on complex-valued fields, solutions avoiding the singularity problem can only be found if the initial conditions are appropriately chosen. We then turn to the analysis of the influence of effective interactions on the dynamics by studying in particular the Thomas-Fermi regime. In this context, at the cost of fine-tuning, an epoch of inflationary expansion of quantum geometric origin can be implemented. Finally, and for the first time, we study anisotropic GFT condensate configurations and show that such systems tend to isotropize quickly as the value of the relational clock grows. This paves the way to a more systematic investigation of anisotropies in the context of GFT condensate cosmology.
The Noncommutative Doplicher-Fredenhagen-Roberts-Amorim Space
NASA Astrophysics Data System (ADS)
Abreu, Everton M. C.; Mendes, Albert C. R.; Oliveira, Wilson; Zangirolami, Adriano O.
2010-10-01
This work is an effort in order to compose a pedestrian review of the recently elaborated Doplicher, Fredenhagen, Roberts and Amorim (DFRA) noncommutative (NC) space which is a minimal extension of the DFR space. In this DRFA space, the object of noncommutativity (θμν) is a variable of the NC system and has a canonical conjugate momentum. Namely, for instance, in NC quantum mechanics we will show that θij (i,j=1,2,3) is an operator in Hilbert space and we will explore the consequences of this so-called ''operationalization''. The DFRA formalism is constructed in an extended space-time with independent degrees of freedom associated with the object of noncommutativity θμν. We will study the symmetry properties of an extended x+θ space-time, given by the group P', which has the Poincaré group P as a subgroup. The Noether formalism adapted to such extended x+θ (D=4+6) space-time is depicted. A consistent algebra involving the enlarged set of canonical operators is described, which permits one to construct theories that are dynamically invariant under the action of the rotation group. In this framework it is also possible to give dynamics to the NC operator sector, resulting in new features. A consistent classical mechanics formulation is analyzed in such a way that, under quantization, it furnishes a NC quantum theory with interesting results. The Dirac formalism for constrained Hamiltonian systems is considered and the object of noncommutativity θij plays a fundamental role as an independent quantity. Next, we explain the dynamical spacetime symmetries in NC relativistic theories by using the DFRA algebra. It is also explained about the generalized Dirac equation issue, that the fermionic field depends not only on the ordinary coordinates but on θμν as well. The dynamical symmetry content of such fermionic theory is discussed, and we show that its action is invariant under P'. In the last part of this work we analyze the complex scalar fields using this new framework. As said above, in a first quantized formalism, θμν and its canonical momentum πμν are seen as operators living in some Hilbert space. In a second quantized formalism perspective, we show an explicit form for the extended Poincaré generators and the same algebra is generated via generalized Heisenberg relations. We also consider a source term and construct the general solution for the complex scalar fields using the Green function technique.
Shipman, Judith; McGrath, Laura
2016-10-01
The practice of reading and discussing literature in groups is long established, stretching back into classical antiquity. Although benefits of therapeutic reading groups have been highlighted, research into participants' perceptions of these groups has been limited. To explore the experiences of those attending therapeutic reading groups, considering the role of both the group, and the literature itself, in participants' ongoing experiences of distress. Eleven participants were recruited from two reading groups in the South-East of England. One focus group was run, and eight individuals self-selected for individual interviews. The data were analysed together using a thematic analysis drawing on dialogical theories. Participants described the group as an anchor, which enabled them to use fiction to facilitate the discussion of difficult emotional topics, without referring directly to personal experience. Two aspects of this process are explored in detail: the use of narratives as transportation, helping to mitigate the intensity of distress; and using fiction to explore possibilities, alternative selves and lives. For those who are interested and able, reading groups offer a relatively de-stigmatised route to exploring and mediating experiences of distress. Implications in the present UK funding environment are discussed.
NASA Astrophysics Data System (ADS)
García-Vela, A.
2000-05-01
A definition of a quantum-type phase-space distribution is proposed in order to represent the initial state of the system in a classical dynamics simulation. The central idea is to define an initial quantum phase-space state of the system as the direct product of the coordinate and momentum representations of the quantum initial state. The phase-space distribution is then obtained as the square modulus of this phase-space state. The resulting phase-space distribution closely resembles the quantum nature of the system initial state. The initial conditions are sampled with the distribution, using a grid technique in phase space. With this type of sampling the distribution of initial conditions reproduces more faithfully the shape of the original phase-space distribution. The method is applied to generate initial conditions describing the three-dimensional state of the Ar-HCl cluster prepared by ultraviolet excitation. The photodissociation dynamics is simulated by classical trajectories, and the results are compared with those of a wave packet calculation. The classical and quantum descriptions are found in good agreement for those dynamical events less subject to quantum effects. The classical result fails to reproduce the quantum mechanical one for the more strongly quantum features of the dynamics. The properties and applicability of the phase-space distribution and the sampling technique proposed are discussed.
Cao, Le; Wei, Bing
2014-08-25
Finite-difference time-domain (FDTD) algorithm with a new method of plane wave excitation is used to investigate the RCS (Radar Cross Section) characteristics of targets over layered half space. Compare with the traditional excitation plane wave method, the calculation memory and time requirement is greatly decreased. The FDTD calculation is performed with a plane wave incidence, and the RCS of far field is obtained by extrapolating the currently calculated data on the output boundary. However, methods available for extrapolating have to evaluate the half space Green function. In this paper, a new method which avoids using the complex and time-consuming half space Green function is proposed. Numerical results show that this method is in good agreement with classic algorithm and it can be used in the fast calculation of scattering and radiation of targets over layered half space.
Fundamental Principles of Classical Mechanics: a Geometrical Perspectives
NASA Astrophysics Data System (ADS)
Lam, Kai S.
2014-07-01
Classical mechanics is the quantitative study of the laws of motion for oscopic physical systems with mass. The fundamental laws of this subject, known as Newton's Laws of Motion, are expressed in terms of second-order differential equations governing the time evolution of vectors in a so-called configuration space of a system (see Chapter 12). In an elementary setting, these are usually vectors in 3-dimensional Euclidean space, such as position vectors of point particles; but typically they can be vectors in higher dimensional and more abstract spaces. A general knowledge of the mathematical properties of vectors, not only in their most intuitive incarnations as directed arrows in physical space but as elements of abstract linear vector spaces, and those of linear operators (transformations) on vector spaces as well, is then indispensable in laying the groundwork for both the physical and the more advanced mathematical - more precisely topological and geometrical - concepts that will prove to be vital in our subject. In this beginning chapter we will review these properties, and introduce the all-important related notions of dual spaces and tensor products of vector spaces. The notational convention for vectorial and tensorial indices used for the rest of this book (except when otherwise specified) will also be established...
Poisson structure on a space with linear SU(2) fuzziness
NASA Astrophysics Data System (ADS)
Khorrami, Mohammad; Fatollahi, Amir H.; Shariati, Ahmad
2009-07-01
The Poisson structure is constructed for a model in which spatial coordinates of configuration space are noncommutative and satisfy the commutation relations of a Lie algebra. The case is specialized to that of the group SU(2), for which the counterpart of the angular momentum as well as the Euler parametrization of the phase space are introduced. SU(2)-invariant classical systems are discussed, and it is observed that the path of particle can be obtained by the solution of a first-order equation, as the case with such models on commutative spaces. The examples of free particle, rotationally invariant potentials, and specially the isotropic harmonic oscillator are investigated in more detail.
The weight hierarchies and chain condition of a class of codes from varieties over finite fields
NASA Technical Reports Server (NTRS)
Wu, Xinen; Feng, Gui-Liang; Rao, T. R. N.
1996-01-01
The generalized Hamming weights of linear codes were first introduced by Wei. These are fundamental parameters related to the minimal overlap structures of the subcodes and very useful in several fields. It was found that the chain condition of a linear code is convenient in studying the generalized Hamming weights of the product codes. In this paper we consider a class of codes defined over some varieties in projective spaces over finite fields, whose generalized Hamming weights can be determined by studying the orbits of subspaces of the projective spaces under the actions of classical groups over finite fields, i.e., the symplectic groups, the unitary groups and orthogonal groups. We give the weight hierarchies and generalized weight spectra of the codes from Hermitian varieties and prove that the codes satisfy the chain condition.
Koopman Operator Framework for Time Series Modeling and Analysis
NASA Astrophysics Data System (ADS)
Surana, Amit
2018-01-01
We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.
On the geometry of inhomogeneous quantum groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschieri, Paolo
1998-01-01
The author gives a pedagogical introduction to the differential calculus on quantum groups by stressing at all stages the connection with the classical case. He further analyzes the relation between differential calculus and quantum Lie algebra of left (right) invariant vectorfields. Equivalent definitions of bicovariant differential calculus are studied and their geometrical interpretation is explained. From these data he constructs and analyzes the space of vectorfields, and naturally introduces a contraction operator and a Lie derivative. Their properties are discussed.
Quantum break-time of de Sitter
NASA Astrophysics Data System (ADS)
Dvali, Gia; Gómez, César; Zell, Sebastian
2017-06-01
The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/N-effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.
Asymptotic Analysis of the Ponzano-Regge Model with Non-Commutative Metric Boundary Data
NASA Astrophysics Data System (ADS)
Oriti, Daniele; Raasakka, Matti
2014-06-01
We apply the non-commutative Fourier transform for Lie groups to formulate the non-commutative metric representation of the Ponzano-Regge spin foam model for 3d quantum gravity. The non-commutative representation allows to express the amplitudes of the model as a first order phase space path integral, whose properties we consider. In particular, we study the asymptotic behavior of the path integral in the semi-classical limit. First, we compare the stationary phase equations in the classical limit for three different non-commutative structures corresponding to the symmetric, Duflo and Freidel-Livine-Majid quantization maps. We find that in order to unambiguously recover discrete geometric constraints for non-commutative metric boundary data through the stationary phase method, the deformation structure of the phase space must be accounted for in the variational calculus. When this is understood, our results demonstrate that the non-commutative metric representation facilitates a convenient semi-classical analysis of the Ponzano-Regge model, which yields as the dominant contribution to the amplitude the cosine of the Regge action in agreement with previous studies. We also consider the asymptotics of the SU(2) 6j-symbol using the non-commutative phase space path integral for the Ponzano-Regge model, and explain the connection of our results to the previous asymptotic results in terms of coherent states.
Symplectic evolution of Wigner functions in Markovian open systems.
Brodier, O; Almeida, A M Ozorio de
2004-01-01
The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian. If the system also interacts with the environment through Lindblad operators that are complex linear functions of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which does not depend on the initial pure state. We observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy. We finally discuss the possibility of recovering the initial state.
Relation between random walks and quantum walks
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Falkner, Stefan; Portugal, Renato
2015-05-01
Based on studies of four specific networks, we conjecture a general relation between the walk dimensions dw of discrete-time random walks and quantum walks with the (self-inverse) Grover coin. In each case, we find that dw of the quantum walk takes on exactly half the value found for the classical random walk on the same geometry. Since walks on homogeneous lattices satisfy this relation trivially, our results for heterogeneous networks suggest that such a relation holds irrespective of whether translational invariance is maintained or not. To develop our results, we extend the renormalization-group analysis (RG) of the stochastic master equation to one with a unitary propagator. As in the classical case, the solution ρ (x ,t ) in space and time of this quantum-walk equation exhibits a scaling collapse for a variable xdw/t in the weak limit, which defines dw and illuminates fundamental aspects of the walk dynamics, e.g., its mean-square displacement. We confirm the collapse for ρ (x ,t ) in each case with extensive numerical simulation. The exact values for dw themselves demonstrate that RG is a powerful complementary approach to study the asymptotics of quantum walks that weak-limit theorems have not been able to access, such as for systems lacking translational symmetries beyond simple trees.
Time Domain Stability Margin Assessment Method
NASA Technical Reports Server (NTRS)
Clements, Keith
2017-01-01
The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.
Time-Domain Stability Margin Assessment
NASA Technical Reports Server (NTRS)
Clements, Keith
2016-01-01
The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.
NASA Astrophysics Data System (ADS)
Austin, Rickey W.
In Einstein's theory of Special Relativity (SR), one method to derive relativistic kinetic energy is via applying the classical work-energy theorem to relativistic momentum. This approach starts with a classical based work-energy theorem and applies SR's momentum to the derivation. One outcome of this derivation is relativistic kinetic energy. From this derivation, it is rather straight forward to form a kinetic energy based time dilation function. In the derivation of General Relativity a common approach is to bypass classical laws as a starting point. Instead a rigorous development of differential geometry and Riemannian space is constructed, from which classical based laws are derived. This is in contrast to SR's approach of starting with classical laws and applying the consequences of the universal speed of light by all observers. A possible method to derive time dilation due to Newtonian gravitational potential energy (NGPE) is to apply SR's approach to deriving relativistic kinetic energy. It will be shown this method gives a first order accuracy compared to Schwarzschild's metric. The SR's kinetic energy and the newly derived NGPE derivation are combined to form a Riemannian metric based on these two energies. A geodesic is derived and calculations compared to Schwarzschild's geodesic for an orbiting test mass about a central, non-rotating, non-charged massive body. The new metric results in high accuracy calculations when compared to Einsteins General Relativity's prediction. The new method provides a candidate approach for starting with classical laws and deriving General Relativity effects. This approach mimics SR's method of starting with classical mechanics when deriving relativistic equations. As a compliment to introducing General Relativity, it provides a plausible scaffolding method from classical physics when teaching introductory General Relativity. A straight forward path from classical laws to General Relativity will be derived. This derivation provides a minimum first order accuracy to Schwarzschild's solution to Einstein's field equations.
Relativistic and noise effects on multiplayer Prisoners' dilemma with entangling initial states
NASA Astrophysics Data System (ADS)
Goudarzi, H.; Rashidi, S. S.
2017-11-01
Three-players Prisoners' dilemma (Alice, Bob and Colin) is studied in the presence of a single collective environment effect as a noise. The environmental effect is coupled with final states by a particular form of Kraus operators K_0 and K_1 through amplitude damping channel. We introduce the decoherence parameter 0≤p≤1 to the corresponding noise matrices, in order to controling the rate of environment influence on payoff of each players. Also, we consider the Unruh effect on the payoff of player, who is located at a noninertial frame. We suppose that two players (Bob and Colin) are in Rindler region I from Minkowski space-time, and move with same uniform acceleration (r_b=r_c) and frequency mode. The game is begun with the classical strategies cooperation ( C) and defection ( D) accessible to each player. Furthermore, the players are allowed to access the quantum strategic space ( Q and M). The quantum entanglement is coupled with initial classical states by the parameter γ \\in [0,π /2]. Using entangled initial states by exerting an unitary operator \\hat{J} as entangling gate, the quantum game (competition between Prisoners, as a three-qubit system) is started by choosing the strategies from classical or quantum strategic space. Arbitrarily chosen strategy by each player can lead to achieving profiles, which can be considered as Nash equilibrium or Pareto optimal. It is shown that in the presence of noise effect, choosing quantum strategy Q results in a winning payoff against the classical strategy D and, for example, the strategy profile ( Q, D, C) is Pareto optimal. We find that the unfair miracle move of Eisert from quantum strategic space is an effective strategy for accelerated players in decoherence mode (p=1) of the game.
Efficiency optimization of a fast Poisson solver in beam dynamics simulation
NASA Astrophysics Data System (ADS)
Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula
2016-01-01
Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.
Combinatorial quantisation of the Euclidean torus universe
NASA Astrophysics Data System (ADS)
Meusburger, C.; Noui, K.
2010-12-01
We quantise the Euclidean torus universe via a combinatorial quantisation formalism based on its formulation as a Chern-Simons gauge theory and on the representation theory of the Drinfel'd double DSU(2). The resulting quantum algebra of observables is given by two commuting copies of the Heisenberg algebra, and the associated Hilbert space can be identified with the space of square integrable functions on the torus. We show that this Hilbert space carries a unitary representation of the modular group and discuss the role of modular invariance in the theory. We derive the classical limit of the theory and relate the quantum observables to the geometry of the torus universe.
ERIC Educational Resources Information Center
Ruckle, L. J.; Belloni, M.; Robinett, R. W.
2012-01-01
The biharmonic oscillator and the asymmetric linear well are two confining power-law-type potentials for which complete bound-state solutions are possible in both classical and quantum mechanics. We examine these problems in detail, beginning with studies of their trajectories in position and momentum space, evaluation of the classical probability…
NASA Astrophysics Data System (ADS)
Qin, Shanlin; Liu, Fawang; Turner, Ian W.
2018-03-01
The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yumin; Lum, Kai-Yew; Wang Qingguo
In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less
NASA Astrophysics Data System (ADS)
Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew
2009-03-01
In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.
Jamshidzad, Maryam; Maghsoudipour, Maryam; Zakerian, Seyed Abolfazl; Bakhshi, Enayatollah; Coh, Paul
2018-06-26
People are interested in music. In this study, we assessed the impact of music type on objective performance. We distributed 64 medical science students in Tehran into four groups: Iranian pop music, traditional music, Mozart's classical music and control groups. All participants performed the two-arm coordination test once without music and once with music (except for the control group), with an interval of 1 week. In the music groups, music was playing during the performance of the test. Participants were categorized as either introverted or extroverted and were distributed equally in the groups. There was a significant decrease of test time in the second trial, observed in all music groups, and no significant difference identified in the control group. The traditional music group had less difference of mean time compared to the pop music group. The differences in the traditional and classical groups were not significantly different. In the music groups, both extroverted and introverted students decreased their test time significantly after music intervention, but extroverted students decreased more. Listening to music would enhance the speed of performance. Music with a higher tempo, such as pop music, increased the speed more.
NASA Astrophysics Data System (ADS)
Salisbury, Donald; Renn, Jürgen; Sundermeyer, Kurt
2016-02-01
Classical background independence is reflected in Lagrangian general relativity through covariance under the full diffeomorphism group. We show how this independence can be maintained in a Hamilton-Jacobi approach that does not accord special privilege to any geometric structure. Intrinsic space-time curvature-based coordinates grant equal status to all geometric backgrounds. They play an essential role as a starting point for inequivalent semiclassical quantizations. The scheme calls into question Wheeler’s geometrodynamical approach and the associated Wheeler-DeWitt equation in which 3-metrics are featured geometrical objects. The formalism deals with variables that are manifestly invariant under the full diffeomorphism group. Yet, perhaps paradoxically, the liberty in selecting intrinsic coordinates is precisely as broad as is the original diffeomorphism freedom. We show how various ideas from the past five decades concerning the true degrees of freedom of general relativity can be interpreted in light of this new constrained Hamiltonian description. In particular, we show how the Kuchař multi-fingered time approach can be understood as a means of introducing full four-dimensional diffeomorphism invariants. Every choice of new phase space variables yields new Einstein-Hamilton-Jacobi constraining relations, and corresponding intrinsic Schrödinger equations. We show how to implement this freedom by canonical transformation of the intrinsic Hamiltonian. We also reinterpret and rectify significant work by Dittrich on the construction of “Dirac observables.”
Three examples of quantum dynamics on the half-line with smooth bouncing
NASA Astrophysics Data System (ADS)
Almeida, C. R.; Bergeron, H.; Gazeau, J.-P.; Scardua, A. C.
2018-05-01
This article is an introductory presentation of the quantization of the half-plane based on affine coherent states (ACS). The half-plane carries a natural affine symmetry, i.e. it is a homogeneous space for the 1d-affine group, and it is viewed as the phase space for the dynamics of a positive physical quantity evolving with time. Its affine symmetry is preserved due to the covariance of this type of quantization. We promote the interest of such a procedure for transforming a classical model into a quantum one, since the singularity at the origin is systematically removed, and the arbitrariness of boundary conditions for the Schrödinger operator can be easily overcome. We explain some important mathematical aspects of the method. Three elementary examples of applications are presented, the quantum breathing of a massive sphere, the quantum smooth bouncing of a charged sphere, and a smooth bouncing of "dust" sphere as a simple model of quantum Newtonian cosmology.
A Classical Science Transformed.
ERIC Educational Resources Information Center
Kovalevsky, Jean
1979-01-01
Describes how satellites and other tools of space technology have transformed classical geodesy into the science of space geodynamics. The establishment and the activities of the French Center for Geodynamic and Astronomical Research Studies (CERGA) are also included. (HM)
Systematic dimensionality reduction for continuous-time quantum walks of interacting fermions
NASA Astrophysics Data System (ADS)
Izaac, J. A.; Wang, J. B.
2017-09-01
To extend the continuous-time quantum walk (CTQW) to simulate P distinguishable particles on a graph G composed of N vertices, the Hamiltonian of the system is expanded to act on an NP-dimensional Hilbert space, in effect, simulating the multiparticle CTQW on graph G via a single-particle CTQW propagating on the Cartesian graph product G□P. The properties of the Cartesian graph product have been well studied, and classical simulation of multiparticle CTQWs are common in the literature. However, the above approach is generally applied as is when simulating indistinguishable particles, with the particle statistics then applied to the propagated NP state vector to determine walker probabilities. We address the following question: How can we modify the underlying graph structure G□P in order to simulate multiple interacting fermionic CTQWs with a reduction in the size of the state space? In this paper, we present an algorithm for systematically removing "redundant" and forbidden quantum states from consideration, which provides a significant reduction in the effective dimension of the Hilbert space of the fermionic CTQW. As a result, as the number of interacting fermions in the system increases, the classical computational resources required no longer increases exponentially for fixed N .
Decomposition of the polynomial kernel of arbitrary higher spin Dirac operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eelbode, D., E-mail: David.Eelbode@ua.ac.be; Raeymaekers, T., E-mail: Tim.Raeymaekers@UGent.be; Van der Jeugt, J., E-mail: Joris.VanderJeugt@UGent.be
2015-10-15
In a series of recent papers, we have introduced higher spin Dirac operators, which are generalisations of the classical Dirac operator. Whereas the latter acts on spinor-valued functions, the former acts on functions taking values in arbitrary irreducible half-integer highest weight representations for the spin group. In this paper, we describe how the polynomial kernel spaces of such operators decompose in irreducible representations of the spin group. We will hereby make use of results from representation theory.
Orthogonal polynomials, Laguerre Fock space, and quasi-classical asymptotics
NASA Astrophysics Data System (ADS)
Engliš, Miroslav; Ali, S. Twareque
2015-07-01
Continuing our earlier investigation of the Hermite case [S. T. Ali and M. Engliš, J. Math. Phys. 55, 042102 (2014)], we study an unorthodox variant of the Berezin-Toeplitz quantization scheme associated with Laguerre polynomials. In particular, we describe a "Laguerre analogue" of the classical Fock (Segal-Bargmann) space and the relevant semi-classical asymptotics of its Toeplitz operators; the former actually turns out to coincide with the Hilbert space appearing in the construction of the well-known Barut-Girardello coherent states. Further extension to the case of Legendre polynomials is likewise discussed.
NASA Astrophysics Data System (ADS)
Gábor Hatvani, István; Kern, Zoltán; Leél-Őssy, Szabolcs; Demény, Attila
2018-01-01
Uneven spacing is a common feature of sedimentary paleoclimate records, in many cases causing difficulties in the application of classical statistical and time series methods. Although special statistical tools do exist to assess unevenly spaced data directly, the transformation of such data into a temporally equidistant time series which may then be examined using commonly employed statistical tools remains, however, an unachieved goal. The present paper, therefore, introduces an approach to obtain evenly spaced time series (using cubic spline fitting) from unevenly spaced speleothem records with the application of a spectral guidance to avoid the spectral bias caused by interpolation and retain the original spectral characteristics of the data. The methodology was applied to stable carbon and oxygen isotope records derived from two stalagmites from the Baradla Cave (NE Hungary) dating back to the late 18th century. To show the benefit of the equally spaced records to climate studies, their coherence with climate parameters is explored using wavelet transform coherence and discussed. The obtained equally spaced time series are available at https://doi.org/10.1594/PANGAEA.875917.
Renormalization of the unitary evolution equation for coined quantum walks
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Li, Shanshan; Portugal, Renato
2017-03-01
We consider discrete-time evolution equations in which the stochastic operator of a classical random walk is replaced by a unitary operator. Such a problem has gained much attention as a framework for coined quantum walks that are essential for attaining the Grover limit for quantum search algorithms in physically realizable, low-dimensional geometries. In particular, we analyze the exact real-space renormalization group (RG) procedure recently introduced to study the scaling of quantum walks on fractal networks. While this procedure, when implemented numerically, was able to provide some deep insights into the relation between classical and quantum walks, its analytic basis has remained obscure. Our discussion here is laying the groundwork for a rigorous implementation of the RG for this important class of transport and algorithmic problems, although some instances remain unresolved. Specifically, we find that the RG fixed-point analysis of the classical walk, which typically focuses on the dominant Jacobian eigenvalue {λ1} , with walk dimension dw\\text{RW}={{log}2}{λ1} , needs to be extended to include the subdominant eigenvalue {λ2} , such that the dimension of the quantum walk obtains dw\\text{QW}={{log}2}\\sqrt{{λ1}{λ2}} . With that extension, we obtain analytically previously conjectured results for dw\\text{QW} of Grover walks on all but one of the fractal networks that have been considered.
Schmiedt, Hanno; Schlemmer, Stephan; Yurchenko, Sergey N.; Yachmenev, Andrey
2017-01-01
We report a new semi-classical method to compute highly excited rotational energy levels of an asymmetric-top molecule. The method forgoes the idea of a full quantum mechanical treatment of the ro-vibrational motion of the molecule. Instead, it employs a semi-classical Green's function approach to describe the rotational motion, while retaining a quantum mechanical description of the vibrations. Similar approaches have existed for some time, but the method proposed here has two novel features. First, inspired by the path integral method, periodic orbits in the phase space and tunneling paths are naturally obtained by means of molecular symmetry analysis. Second, the rigorous variational method is employed for the first time to describe the molecular vibrations. In addition, we present a new robust approach to generating rotational energy surfaces for vibrationally excited states; this is done in a fully quantum-mechanical, variational manner. The semi-classical approach of the present work is applied to calculating the energies of very highly excited rotational states and it reduces dramatically the computing time as well as the storage and memory requirements when compared to the fullly quantum-mechanical variational approach. Test calculations for excited states of SO2 yield semi-classical energies in very good agreement with the available experimental data and the results of fully quantum-mechanical calculations. PMID:28000807
History of Artificial Gravity. Chapter 3
NASA Technical Reports Server (NTRS)
Clement, Gilles; Bukley, Angie; Paloski, William
2006-01-01
This chapter reviews the past and current projects on artificial gravity during space missions. The idea of a rotating wheel-like space station providing artificial gravity goes back in the writings of Tsiolkovsky, Noordung, and Wernher von Braun. Its most famous fictional representation is in the film 2001: A Space Odyssey, which also depicts spin-generated artificial gravity aboard a space station and a spaceship bound for Jupiter. The O Neill-type space colony provides another classic illustration of this technique. A more realistic approach to rotating the space station is to provide astronauts with a smaller centrifuge contained within a spacecraft. The astronauts would go into it for a workout, and get their gravity therapeutic dose for a certain period of time, daily or a few times a week. This simpler concept is current being tested during ground-based studies in several laboratories around the world.
Aniseikonia quantification: error rate of rule of thumb estimation.
Lubkin, V; Shippman, S; Bennett, G; Meininger, D; Kramer, P; Poppinga, P
1999-01-01
To find the error rate in quantifying aniseikonia by using "Rule of Thumb" estimation in comparison with proven space eikonometry. Study 1: 24 adult pseudophakic individuals were measured for anisometropia, and astigmatic interocular difference. Rule of Thumb quantification for prescription was calculated and compared with aniseikonia measurement by the classical Essilor Projection Space Eikonometer. Study 2: parallel analysis was performed on 62 consecutive phakic patients from our strabismus clinic group. Frequency of error: For Group 1 (24 cases): 5 ( or 21 %) were equal (i.e., 1% or less difference); 16 (or 67% ) were greater (more than 1% different); and 3 (13%) were less by Rule of Thumb calculation in comparison to aniseikonia determined on the Essilor eikonometer. For Group 2 (62 cases): 45 (or 73%) were equal (1% or less); 10 (or 16%) were greater; and 7 (or 11%) were lower in the Rule of Thumb calculations in comparison to Essilor eikonometry. Magnitude of error: In Group 1, in 10/24 (29%) aniseikonia by Rule of Thumb estimation was 100% or more greater than by space eikonometry, and in 6 of those ten by 200% or more. In Group 2, in 4/62 (6%) aniseikonia by Rule of Thumb estimation was 200% or more greater than by space eikonometry. The frequency and magnitude of apparent clinical errors of Rule of Thumb estimation is disturbingly large. This problem is greatly magnified by the time and effort and cost of prescribing and executing an aniseikonic correction for a patient. The higher the refractive error, the greater the anisometropia, and the worse the errors in Rule of Thumb estimation of aniseikonia. Accurate eikonometric methods and devices should be employed in all cases where such measurements can be made. Rule of thumb estimations should be limited to cases where such subjective testing and measurement cannot be performed, as in infants after unilateral cataract surgery.
Quantum and classical chaos in kicked coupled Jaynes-Cummings cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayward, A. L. C.; Greentree, Andrew D.
2010-06-15
We consider two Jaynes-Cummings cavities coupled periodically with a photon hopping term. The semiclassical phase space is chaotic, with regions of stability over some ranges of the parameters. The quantum case exhibits dynamic localization and dynamic tunneling between classically forbidden regions. We explore the correspondence between the classical and quantum phase space and propose an implementation in a circuit QED system.
Correlation functions from a unified variational principle: Trial Lie groups
NASA Astrophysics Data System (ADS)
Balian, R.; Vénéroni, M.
2015-11-01
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie-Poisson structure. At second order, the variational expression for two-time correlation functions separates-as does its exact counterpart-the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.
Zhao, Ji-Zong; Wang, Shuo; Zhang, Mao-Zhi; Wang, Lei; Wang, Rong; Tang, Ya-Juan
2009-01-06
To explore the feasibility and value of trans-fissure approaches in brain surgery through individually designed craniotomy. Ninety patients with intracranial space-occupying lesions, 47 males and 58 females, aged (43 +/- 14) (1 - 68), were treated by individualized trans-fissure approach surgeries. Linear scalp incision or "horseshoe shape" scalp incision were designed to perform the operation, with a bone flap 3 - 4 cm in diameter. The shortest approach to reach the lesion was decided under the guidance of neuro-navigation and real-time B-mode ultrasonography. Then the lesions were removed through natural cortical fissures. Another 79 patients with intracranial space-occupying lesions, 53 males and 51 females, aged (42 +/- 11) (15 -73), undergoing classical surgeries in the same period were used as control group. The average operation time, size of bone flap, amount of blood loss, hospitalization time, and hospitalization cost were compared between these 2 groups. The operation time of the individually designed trans-fissure approach group was (3.1 +/- 1.6) hours (1.33 - 10.83 hours), significantly shorter than that of the control group [(4.8 +/- 1.9) hrs, P < 0.05]. The amount of blood loss of the individually designed trans-fissure approach group was (173 +/- 168) ml (20 m - 500 ml), significantly less than that of the control group [(410 +/- 61) ml, P < 0.01]. The size of bone flap of the individually designed trans-fissure approach group was (12 +/- 5) cm2 [(1 - 25) cm2], significantly smaller than that of the control group [(20. +/- 9) cm2, P < 0.01]. Four of the 90 patients of the individually designed trans-fissure approach group received retransfusion, compared to 15 in the control group, during operation. No infection or other significant complications occurred after operation in the individually designed trans-fissure approach group. The hospitalization time of the individually designed trans-fissure approach group was (20 +/- 6) days (9 - 39 days), significantly shorter than that of the control group [(24 +/- 7) days, P < 0.01]. The average hospitalization cost of the individually designed trans-fissure approach group was (23171 +/- 7280) yuan RMB; significantly lower than that of the control group [(28096 +/- 10822) yuan, P < 0.01]. One of the land markers of minimally invasive neurosurgery, individualized trans-fissure approach has been proved to be an effective minimally invasive approach that leads to better outcome and fewer complications after operation.
Multiscale time-dependent density functional theory: Demonstration for plasmons.
Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J
2017-08-07
Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.
Compactified Vacuum in Ten Dimensions.
NASA Astrophysics Data System (ADS)
Wurmser, Daniel
1987-09-01
Since the 1920's, theories which unify gravity with the other fundamental forces have called for more than the four observed dimensions of space-time. According to such a theory, the vacuum consists of flat four-dimensional space-time described by the Minkowski metric M ^4 and a "compactified" space B. The dimensions of B are small, and the space can only be observed at distance scales smaller than the present experimental limit. These theories have had serious difficulties. The equations of gravity severely restrict the possible choices for the space B. The allowed spaces are complicated and difficult to study. The vacuum is furthermore unstable in the sense that a small perturbation causes the compactified dimensions to expand indefinitely. There is an addition a semi-classical argument which implies that the compactified vacuum be annihilated by virtual black holes. It follows that a universe with compactified extra dimensions could not have survived to the present. These results were derived by applying the equations of general relativity to spaces of more than four dimensions. The form of these equations was assumed to be unchanged by an increase in the number of dimensions. Recently, it has been proposed that gravity in more than four dimensions may involve terms of higher order in the curvature as well as the linear terms present in ordinary general relativity. I illustrate the effect of such terms by considering the example B = S^6 where S ^6 is the six-dimensional sphere. Only when the extra terms are included is this choice of the compactified space allowed. I explore the effect of a small perturbation on such a vacuum. The ten-dimensional spherically symmetric potential is examined, and I determine conditions under which the formation of virtual black holes is forbidden. The example M^4 times S^6 is still plagued by the semi -classical instability, but this result does not hold in general. The requirement that virtual black holes be forbidden provides a test for any theory which predicts a compactified vacuum.
The Weyl law for contractive maps
NASA Astrophysics Data System (ADS)
Spina, Maria E.; Rivas, Alejandro M. F.; Carlo, Gabriel
2013-11-01
We find an empirical Weyl law followed by the eigenvalues of contractive maps. An important property is that it is mainly insensitive to the dimension of the corresponding invariant classical set, the strange attractor. The usual explanation for the fractal Weyl law emergence in scattering systems (i.e., having a projective opening) is based on the classical phase space distributions evolved up to the quantum to classical correspondence (Ehrenfest) time. In the contractive case this reasoning fails to describe it. Instead, we conjecture that the support for this behavior is essentially given by the strong non-orthogonality of the eigenvectors of the contractive superoperator. We test the validity of the Weyl law and this conjecture on two paradigmatic systems, the dissipative baker and kicked top maps.
Role of social interactions in dynamic patterns of resource patches and forager aggregation.
Tania, Nessy; Vanderlei, Ben; Heath, Joel P; Edelstein-Keshet, Leah
2012-07-10
The dynamics of resource patches and species that exploit such patches are of interest to ecologists, conservation biologists, modelers, and mathematicians. Here we consider how social interactions can create unique, evolving patterns in space and time. Whereas simple prey taxis (with consumable prey) promotes spatial uniform distributions, here we show that taxis in producer-scrounger groups can lead to pattern formation. We consider two types of foragers: those that search directly ("producers") and those that exploit other foragers to find food ("scroungers" or exploiters). We show that such groups can sustain fluctuating spatiotemporal patterns, akin to "waves of pursuit." Investigating the relative benefits to the individuals, we observed conditions under which either strategy leads to enhanced success, defined as net food consumption. Foragers that search for food directly have an advantage when food patches are localized. Those that seek aggregations of group mates do better when their ability to track group mates exceeds the foragers' food-sensing acuity. When behavioral switching or reproductive success of the strategies is included, the relative abundance of foragers and exploiters is dynamic over time, in contrast with classic models that predict stable frequencies. Our work shows the importance of considering two-way interaction--i.e., how food distribution both influences and is influenced by social foraging and aggregation of predators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benini, Marco, E-mail: mbenini87@gmail.com, E-mail: mbenini@uni-potsdam.de
Being motivated by open questions in gauge field theories, we consider non-standard de Rham cohomology groups for timelike compact and spacelike compact support systems. These cohomology groups are shown to be isomorphic respectively to the usual de Rham cohomology of a spacelike Cauchy surface and its counterpart with compact support. Furthermore, an analog of the usual Poincaré duality for de Rham cohomology is shown to hold for the case with non-standard supports as well. We apply these results to find optimal spaces of linear observables for analogs of arbitrary degree k of both the vector potential and the Faraday tensor.more » The term optimal has to be intended in the following sense: The spaces of linear observables we consider distinguish between different configurations; in addition to that, there are no redundant observables. This last point in particular heavily relies on the analog of Poincaré duality for the new cohomology groups.« less
Micro-Macro Duality and Space-Time Emergence
NASA Astrophysics Data System (ADS)
Ojima, Izumi
2011-03-01
The microscopic origin of space-time geometry is explained on the basis of an emergence process associated with the condensation of infinite number of microscopic quanta responsible for symmetry breakdown, which implements the basic essence of "Quantum-Classical Correspondence" and of the forcing method in physical and mathematical contexts, respectively. From this viewpoint, the space-time dependence of physical quantities arises from the "logical extension" [8] to change "constant objects" into "variable objects" by tagging the order parameters associated with the condensation onto "constant objects"; the logical direction here from a value y to a domain variable x (to materialize the basic mechanism behind the Gel'fand isomorphism) is just opposite to that common in the usual definition of a function ƒ : x⟼ƒ(x) from its domain variable x to a value y = ƒ(x).
NASA Astrophysics Data System (ADS)
Gaudeau de Gerlicz, Claude; Sechpine, Pierre; Bobola, Philippe; Antoine, Mathias
The knowledge about hidden variables in physics, (Bohr's-Schrödinger theories) and their developments, boundaries seem more and more fuzzy at physical scales. Also some other new theories give to both time and space as much fuzziness. The classical theory, (school of Copenhagen's) and also Heisenberg and Louis de Broglie give us the idea of a dual wave and particle parts such the way we observe. Thus, the Pondichery interpretation recently developed by Cramer and al. gives to the time part this duality. According Cramer, there could be a little more to this duality, some late or advanced waves of time that have been confirmed and admitted as possible solutions with the Maxwell's equations. We developed here a possible pattern that could matched in the sequence between Space and both retarded and advanced time wave in the "Cramer handshake" in locality of the present when the observation is made everything become local.
Real time visualization of quantum walk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, Akihide; Hamada, Shinji; Sekino, Hideo
2014-02-20
Time evolution of quantum particles like electrons is described by time-dependent Schrödinger equation (TDSE). The TDSE is regarded as the diffusion equation of electrons with imaginary diffusion coefficients. And the TDSE is solved by quantum walk (QW) which is regarded as a quantum version of a classical random walk. The diffusion equation is solved in discretized space/time as in the case of classical random walk with additional unitary transformation of internal degree of freedom typical for quantum particles. We call the QW for solution of the TDSE a Schrödinger walk (SW). For observation of one quantum particle evolution under amore » given potential in atto-second scale, we attempt a successive computation and visualization of the SW. Using Pure Data programming, we observe the correct behavior of a probability distribution under the given potential in real time for observers of atto-second scale.« less
Ince, Ilker; Arı, Muhammet Ali; Sulak, Muhammet Mustafa; Aksoy, Mehmet
There are different ultrasound probe positions used for internal jugular venous catheter placement. Also, in-plane or out of plane needle approach may be used for catheterization. Transverse short-axis classic approach is the most popular performed approach in literature. "Syringe-Free" is a new described technique that is performed with oblique long-axis approach. We aimed to compare performance of these two approaches. This study was conducted as a prospective and randomized study. 80 patients were included the study and divided into two groups that were named Group C (transverse short-axis classic approach) and Group SF (oblique long-axis syringe-free approach) by a computer-generated randomization. The primary outcome was mean time that guidewire is seen in the internal jugular vein (performing time). The secondary outcomes were to compare number of needle pass, number of skin puncture and complications between two groups. Demographic and hemodynamic data were not significantly different. The mean performing time was 54.9±19.1s in Group C and 43.9±15.8s in Group SF. Significant differences were found between the groups (p=0.006). Mean number of needle pass was 3.2(±2.1) in Group C and 2.1(±1.6) in Group SF. There were statistically significant differences between two groups (p=0.002). The number of skin puncture was 1.6(±0.8) and 1.2(±0.5) in Group C and SF, respectively (p=0.027). "Syringe-Free" technique has lower performing time, number of needle pass and skin puncture. Also, it allows to follow progress of guide-wire under continuous ultrasound visualization and the procedure does not need assistance during catheter insertion. Namely, "Syringe-Free" is effective, safe and fast technique that may be used to place internal jugular venous catheter. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
On non-autonomous dynamical systems
NASA Astrophysics Data System (ADS)
Anzaldo-Meneses, A.
2015-04-01
In usual realistic classical dynamical systems, the Hamiltonian depends explicitly on time. In this work, a class of classical systems with time dependent nonlinear Hamiltonians is analyzed. This type of problems allows to find invariants by a family of Veronese maps. The motivation to develop this method results from the observation that the Poisson-Lie algebra of monomials in the coordinates and momenta is clearly defined in terms of its brackets and leads naturally to an infinite linear set of differential equations, under certain circumstances. To perform explicit analytic and numerical calculations, two examples are presented to estimate the trajectories, the first given by a nonlinear problem and the second by a quadratic Hamiltonian with three time dependent parameters. In the nonlinear problem, the Veronese approach using jets is shown to be equivalent to a direct procedure using elliptic functions identities, and linear invariants are constructed. For the second example, linear and quadratic invariants as well as stability conditions are given. Explicit solutions are also obtained for stepwise constant forces. For the quadratic Hamiltonian, an appropriated set of coordinates relates the geometric setting to that of the three dimensional manifold of central conic sections. It is shown further that the quantum mechanical problem of scattering in a superlattice leads to mathematically equivalent equations for the wave function, if the classical time is replaced by the space coordinate along a superlattice. The mathematical method used to compute the trajectories for stepwise constant parameters can be applied to both problems. It is the standard method in quantum scattering calculations, as known for locally periodic systems including a space dependent effective mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Błaszak, Maciej, E-mail: blaszakm@amu.edu.pl; Domański, Ziemowit, E-mail: ziemowit@amu.edu.pl
In the paper is presented an invariant quantization procedure of classical mechanics on the phase space over flat configuration space. Then, the passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. An explicit form of position and momentum operators as well as their appropriate ordering in arbitrary curvilinear coordinates is demonstrated. Finally, the extension of presented formalism onto non-flat case and related ambiguities of the process of quantization are discussed. -- Highlights: •An invariant quantization procedure of classical mechanics on the phase space over flat configuration space is presented. •The passage tomore » an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. •Explicit form of position and momentum operators and their appropriate ordering in curvilinear coordinates is shown. •The invariant form of Hamiltonian operators quadratic and cubic in momenta is derived. •The extension of presented formalism onto non-flat case and related ambiguities of the quantization process are discussed.« less
NASA Technical Reports Server (NTRS)
Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash
2003-01-01
Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.
Quantum Dynamics and a Semiclassical Description of the Photon.
ERIC Educational Resources Information Center
Henderson, Giles
1980-01-01
Uses computer graphics and nonstationary, superposition wave functions to reveal the dynamic quantum trajectories of several molecular and electronic transitions. These methods are then coupled with classical electromagnetic theory to provide a conceptually clear picture of the emission process and emitted radiation localized in time and space.…
Classical Dynamics of Fullerenes
NASA Astrophysics Data System (ADS)
Sławianowski, Jan J.; Kotowski, Romuald K.
2017-06-01
The classical mechanics of large molecules and fullerenes is studied. The approach is based on the model of collective motion of these objects. The mixed Lagrangian (material) and Eulerian (space) description of motion is used. In particular, the Green and Cauchy deformation tensors are geometrically defined. The important issue is the group-theoretical approach to describing the affine deformations of the body. The Hamiltonian description of motion based on the Poisson brackets methodology is used. The Lagrange and Hamilton approaches allow us to formulate the mechanics in the canonical form. The method of discretization in analytical continuum theory and in classical dynamics of large molecules and fullerenes enable us to formulate their dynamics in terms of the polynomial expansions of configurations. Another approach is based on the theory of analytical functions and on their approximations by finite-order polynomials. We concentrate on the extremely simplified model of affine deformations or on their higher-order polynomial perturbations.
Nonuniform dependence on initial data for compressible gas dynamics: The periodic Cauchy problem
NASA Astrophysics Data System (ADS)
Keyfitz, B. L.; Tığlay, F.
2017-11-01
We start with the classic result that the Cauchy problem for ideal compressible gas dynamics is locally well posed in time in the sense of Hadamard; there is a unique solution that depends continuously on initial data in Sobolev space Hs for s > d / 2 + 1 where d is the space dimension. We prove that the data to solution map for periodic data in two dimensions although continuous is not uniformly continuous.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Monroy, J.A., E-mail: antosan@gmail.com; Quimbay, C.J., E-mail: cjquimbayh@unal.edu.co; Centro Internacional de Fisica, Bogota D.C.
In the context of a semiclassical approach where vectorial gauge fields can be considered as classical fields, we obtain exact static solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time, for the cases n=1,2,3. As an application of the results obtained for the case n=3, we consider the solutions for the anti-de Sitter and Schwarzschild metrics. We show that these solutions have a confining behavior and can be considered as a first step in the study of the corrections of the spectra of quarkonia in a curved background. Since the solutions that we find in this work aremore » valid also for the group U(1), the case n=2 is a description of the (2+1) electrodynamics in the presence of a point charge. For this case, the solution has a confining behavior and can be considered as an application of the planar electrodynamics in a curved space-time. Finally we find that the solution for the case n=1 is invariant under a parity transformation and has the form of a linear confining solution. - Highlights: Black-Right-Pointing-Pointer We study exact static confining solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time. Black-Right-Pointing-Pointer The solutions found are a first step in the study of the corrections on the spectra of quarkonia in a curved background. Black-Right-Pointing-Pointer A expression for the confinement potential in low dimensionality is found.« less
NASA Astrophysics Data System (ADS)
Ariki, Taketo
2018-02-01
A hyperfluid model is constructed on the basis of its action entirely free from external constraints, regarding the hyperfluid as a self-consistent classical field. Intrinsic hypermomentum is no longer a supplemental variable given by external constraints, but arises purely from the diffeomorphism covariance of dynamical field. The field-theoretic approach allows natural classification of a hyperfluid on the basis of its symmetry group and corresponding homogeneous space; scalar, spinor, vector, and tensor fluids are introduced as simple examples. Apart from phenomenological constraints, the theory predicts the hypermomentum exchange of fluid via field-theoretic interactions of various classes; fluid–fluid interactions, minimal and non-minimal SU(n) -gauge couplings, and coupling with metric-affine gravity are all successfully formulated within the classical regime.
Survival probability of a truncated radial oscillator subject to periodic kicks
NASA Astrophysics Data System (ADS)
Tanabe, Seiichi; Watanabe, Shinichi; Saif, Farhan; Matsuzawa, Michio
2002-03-01
Classical and quantum survival probabilities are compared for a truncated radial oscillator undergoing impulsive interactions with periodic laser pulses represented here as kicks. The system is truncated in the sense that the harmonic potential is made valid only within a finite range; the rest of the space is treated as a perfect absorber. Exploring extended values of the parameters of this model [Phys. Rev. A 63, 052721 (2001)], we supplement discussions on classical and quantum features near resonances. The classical system proves to be quasi-integrable and preserves phase-space area despite the momentum transfered by the kicks, exhibiting simple yet rich phase-space features. A geometrical argument reveals quantum-classical correspondence in the locations of minima in the paired survival probabilities while the ``ionization'' rates differ due to quantum tunneling.
Shainker, Scott A.; Raghuraman, Nandini; Modest, Anna M.; Schnettler, William T.; Hacker, Michele R.; Ralston, Steven J.
2016-01-01
Objective To evaluate the association between cesarean wound complications and thickness of the subcutaneous space within the anterior abdomen at the midtrimester fetal anatomical survey. Methods In this case-control study, cases were identified using an ICD9 code for wound complications of cesarean delivery. For each case, we identified the woman with the next consecutive midtrimester ultrasound who had a cesarean delivery without a wound complication, matched on age and race, as the control. A blinded investigator measured subcutaneous space at three distinct suprapubic levels in the midsagital plane. Results Of 7228 women with a cesarean delivery, 123 (1.7%) had a wound complication. Seventy-nine cases were eligible. Midline suprapubic subcutaneous thickness did not differ between cases and controls at the superior, middle or inferior locations (p ≥ 0.35). Body mass index was moderately correlated with ultrasound-derived measurements (r≥ 0.63; p<0.001). The incidence of vertical skin incision, stapled skin closure and classical hysterotomy differed between groups (p≤ 0.046). There was no significant increase in wound complication risk with increasing subcutaneous space thickness, even after adjustment (p≥ 0.34). Conclusion Prenatal ultrasound can quantify the subcutaneous space. Vertical skin incision, stapled wound closure, and a classical hysterotomy were associated with cesarean wound complication, but midtrimester subcutaneous thickness was not. PMID:25302863
Quantum gravity in timeless configuration space
NASA Astrophysics Data System (ADS)
Gomes, Henrique
2017-12-01
On the path towards quantum gravity we find friction between temporal relations in quantum mechanics (QM) (where they are fixed and field-independent), and in general relativity (where they are field-dependent and dynamic). This paper aims to attenuate that friction, by encoding gravity in the timeless configuration space of spatial fields with dynamics given by a path integral. The framework demands that boundary conditions for this path integral be uniquely given, but unlike other approaches where they are prescribed—such as the no-boundary and the tunneling proposals—here I postulate basic principles to identify boundary conditions in a large class of theories. Uniqueness arises only if a reduced configuration space can be defined and if it has a profoundly asymmetric fundamental structure. These requirements place strong restrictions on the field and symmetry content of theories encompassed here; shape dynamics is one such theory. When these constraints are met, any emerging theory will have a Born rule given merely by a particular volume element built from the path integral in (reduced) configuration space. Also as in other boundary proposals, Time, including space-time, emerges as an effective concept; valid for certain curves in configuration space but not assumed from the start. When some such notion of time becomes available, conservation of (positive) probability currents ensues. I show that, in the appropriate limits, a Schrödinger equation dictates the evolution of weakly coupled source fields on a classical gravitational background. Due to the asymmetry of reduced configuration space, these probabilities and currents avoid a known difficulty of standard WKB approximations for Wheeler DeWitt in minisuperspace: the selection of a unique Hamilton–Jacobi solution to serve as background. I illustrate these constructions with a simple example of a full quantum gravitational theory (i.e. not in minisuperspace) for which the formalism is applicable, and give a formula for calculating gravitational semi-classical relative probabilities in it.
Space-time wiring specificity supports direction selectivity in the retina
Zlateski, Aleksandar; Lee, Kisuk; Richardson, Mark; Turaga, Srinivas C.; Purcaro, Michael; Balkam, Matthew; Robinson, Amy; Behabadi, Bardia F.; Campos, Michael; Denk, Winfried; Seung, H. Sebastian
2014-01-01
How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, we reconstructed Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an online community of “citizen neuroscientists.” Based on quantitative analyses of contact area and branch depth in the retina, we found evidence that one BC type prefers to wire with a SAC dendrite near the SAC soma, while another BC type prefers to wire far from the soma. The near type is known to lag the far type in time of visual response. A mathematical model shows how such “space-time wiring specificity” could endow SAC dendrites with receptive fields that are oriented in space-time and therefore respond selectively to stimuli that move in the outward direction from the soma. PMID:24805243
Space-time wiring specificity supports direction selectivity in the retina.
Kim, Jinseop S; Greene, Matthew J; Zlateski, Aleksandar; Lee, Kisuk; Richardson, Mark; Turaga, Srinivas C; Purcaro, Michael; Balkam, Matthew; Robinson, Amy; Behabadi, Bardia F; Campos, Michael; Denk, Winfried; Seung, H Sebastian
2014-05-15
How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, here we reconstruct Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an online community of 'citizen neuroscientists'. On the basis of quantitative analyses of contact area and branch depth in the retina, we find evidence that one BC type prefers to wire with a SAC dendrite near the SAC soma, whereas another BC type prefers to wire far from the soma. The near type is known to lag the far type in time of visual response. A mathematical model shows how such 'space-time wiring specificity' could endow SAC dendrites with receptive fields that are oriented in space-time and therefore respond selectively to stimuli that move in the outward direction from the soma.
Quantum break-time of de Sitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvali, Gia; Gómez, César; Zell, Sebastian, E-mail: georgi.dvali@physik.uni-muenchen.de, E-mail: cesar.gomez@uam.es, E-mail: sebastian.zell@campus.lmu.de
The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. Themore » mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S -matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/ N -effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N . We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10{sup 100} years old in its entire classical history.« less
Quantum-mechanical analysis of low-gain free-electron laser oscillators
NASA Astrophysics Data System (ADS)
Fares, H.; Yamada, M.; Chiadroni, E.; Ferrario, M.
2018-05-01
In the previous classical theory of the low-gain free-electron laser (FEL) oscillators, the electron is described as a point-like particle, a delta function in the spatial space. On the other hand, in the previous quantum treatments, the electron is described as a plane wave with a single momentum state, a delta function in the momentum space. In reality, an electron must have statistical uncertainties in the position and momentum domains. Then, the electron is neither a point-like charge nor a plane wave of a single momentum. In this paper, we rephrase the theory of the low-gain FEL where the interacting electron is represented quantum mechanically by a plane wave with a finite spreading length (i.e., a wave packet). Using the concepts of the transformation of reference frames and the statistical quantum mechanics, an expression for the single-pass radiation gain is derived. The spectral broadening of the radiation is expressed in terms of the spreading length of an electron, the relaxation time characterizing the energy spread of electrons, and the interaction time. We introduce a comparison between our results and those obtained in the already known classical analyses where a good agreement between both results is shown. While the correspondence between our results and the classical results are shown, novel insights into the electron dynamics and the interaction mechanism are presented.
NASA Astrophysics Data System (ADS)
Gu, Shi-Jian
2009-10-01
Super Mario is imprisoned by a demon in a finite potential well on his way to save Princess Peach. He can escape from the well with the help of a flight of magic stairs floating in the space. However, the hateful demon may occasionally check his status. At that time, he has to make a judgement of either jumping to the inside ground immediately in order to avoid the discovery of his escape intention, or speeding up his escape process. Therefore, if the demon checks him too frequently such that there is no probability for him to reach the top of the barrier, he will be always inside the well, then a classical Zeno effect occurs. On the other hand, if the time interval between two subsequent checks is large enough such that he has a higher probability of being beyond the demon's controllable range already, then the demon's check actually speeds up his escape and a classical anti-Zeno effect takes place.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Poh Kam; Kosaka, Wataru; Oikawa, Shun-ichi
We have solved the Heisenberg equation of motion for the time evolution of the position and momentum operators for a non-relativistic spinless charged particle in the presence of a weakly non-uniform electric and magnetic field. It is shown that the drift velocity operator obtained in this study agrees with the classical counterpart, and that, using the time dependent operators, the variances in position and momentum grow with time. The expansion rate of variance in position and momentum are dependent on the magnetic gradient scale length, however, independent of the electric gradient scale length. In the presence of a weakly non-uniformmore » electric and magnetic field, the theoretical expansion rates of variance expansion are in good agreement with the numerical analysis. It is analytically shown that the variance in position reaches the square of the interparticle separation, which is the characteristic time much shorter than the proton collision time of plasma fusion. After this time, the wavefunctions of the neighboring particles would overlap, as a result, the conventional classical analysis may lose its validity. The broad distribution of individual particle in space means that their Coulomb interactions with other particles become weaker than that expected in classical mechanics.« less
Reachable Sets for Multiple Asteroid Sample Return Missions
2005-12-01
reduce the number of feasible asteroid targets. Reachable sets are defined in a reduced classical orbital element space. The boundary of this...Reachable sets are defined in a reduced classical orbital element space. The boundary of this reduced space is obtained by extremizing a family of...aliasing problems. Other coordinate elements , such as equinoctial elements , can provide a set of singularity-free slowly changing variables, but
Constraining de Sitter Space in String Theory.
Kutasov, David; Maxfield, Travis; Melnikov, Ilarion; Sethi, Savdeep
2015-08-14
We argue that the heterotic string does not have classical vacua corresponding to de Sitter space-times of dimension four or higher. The same conclusion applies to type II vacua in the absence of Ramond-Ramond fluxes. Our argument extends prior supergravity no-go results to regimes of high curvature. We discuss the interpretation of the heterotic result from the perspective of dual type II orientifold constructions. Our result suggests that the genericity arguments used in string landscape discussions should be viewed with caution.
Parallel Implementation of a High Order Implicit Collocation Method for the Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules; Halem, Milton (Technical Monitor)
2000-01-01
We combine a high order compact finite difference approximation and collocation techniques to numerically solve the two dimensional heat equation. The resulting method is implicit arid can be parallelized with a strategy that allows parallelization across both time and space. We compare the parallel implementation of the new method with a classical implicit method, namely the Crank-Nicolson method, where the parallelization is done across space only. Numerical experiments are carried out on the SGI Origin 2000.
Semiclassical approximations in the coherent-state representation
NASA Technical Reports Server (NTRS)
Kurchan, J.; Leboeuf, P.; Saraceno, M.
1989-01-01
The semiclassical limit of the stationary Schroedinger equation in the coherent-state representation is analyzed simultaneously for the groups W1, SU(2), and SU(1,1). A simple expression for the first two orders for the wave function and the associated semiclassical quantization rule is obtained if a definite choice for the classical Hamiltonian and expansion parameter is made. The behavior of the modulus of the wave function, which is a distribution function in a curved phase space, is studied for the three groups. The results are applied to the quantum triaxial rotor.
Ensemble Sampling vs. Time Sampling in Molecular Dynamics Simulations of Thermal Conductivity
Gordiz, Kiarash; Singh, David J.; Henry, Asegun
2015-01-29
In this report we compare time sampling and ensemble averaging as two different methods available for phase space sampling. For the comparison, we calculate thermal conductivities of solid argon and silicon structures, using equilibrium molecular dynamics. We introduce two different schemes for the ensemble averaging approach, and show that both can reduce the total simulation time as compared to time averaging. It is also found that velocity rescaling is an efficient mechanism for phase space exploration. Although our methodology is tested using classical molecular dynamics, the ensemble generation approaches may find their greatest utility in computationally expensive simulations such asmore » first principles molecular dynamics. For such simulations, where each time step is costly, time sampling can require long simulation times because each time step must be evaluated sequentially and therefore phase space averaging is achieved through sequential operations. On the other hand, with ensemble averaging, phase space sampling can be achieved through parallel operations, since each ensemble is independent. For this reason, particularly when using massively parallel architectures, ensemble sampling can result in much shorter simulation times and exhibits similar overall computational effort.« less
Uğraş, Gülay Altun; Yıldırım, Güven; Yüksel, Serpil; Öztürkçü, Yusuf; Kuzdere, Mustafa; Öztekin, Seher Deniz
2018-05-01
The purpose of this study was to determine effect of three different types of music on patients' preoperative anxiety. This randomized controlled trial included 180 patients who were randomly divided into four groups. While the control group didn't listen to music, the experimental groups respectively listened to natural sounds, Classical Turkish or Western Music for 30 min. The State Anxiety Inventory (STAI-S), systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR) and cortisol levels were checked. The post-music STAI-S, SBP, DBP, HR and cortisol levels of the patients in music groups were significantly lower than pre-music time. All types of music decreased STAI-S, SBP, and cortisol levels; additionally natural sounds reduced DBP; Classical Turkish Music also decreased DBP, and HR. All types of music had an effect on reducing patients' preoperative anxiety, and listening to Classical Turkish Music was particularly the most effective one. Copyright © 2018 Elsevier Ltd. All rights reserved.
A discrete classical space-time could require 6 extra-dimensions
NASA Astrophysics Data System (ADS)
Guillemant, Philippe; Medale, Marc; Abid, Cherifa
2018-01-01
We consider a discrete space-time in which conservation laws are computed in such a way that the density of information is kept bounded. We use a 2D billiard as a toy model to compute the uncertainty propagation in ball positions after every shock and the corresponding loss of phase information. Our main result is the computation of a critical time step above which billiard calculations are no longer deterministic, meaning that a multiverse of distinct billiard histories begins to appear, caused by the lack of information. Then, we highlight unexpected properties of this critical time step and the subsequent exponential evolution of the number of histories with time, to observe that after certain duration all billiard states could become possible final states, independent of initial conditions. We conclude that if our space-time is really a discrete one, one would need to introduce extra-dimensions in order to provide supplementary constraints that specify which history should be played.
Quantization of Simple Parametrized Systems
NASA Astrophysics Data System (ADS)
Ruffini, Giulio
1995-01-01
I study the canonical formulation and quantization of some simple parametrized systems using Dirac's formalism and the Becchi-Rouet-Stora-Tyutin (BRST) extended phase space method. These systems include the parametrized particle and minisuperspace. Using Dirac's formalism I first analyze for each case the construction of the classical reduced phase space. There are two separate features of these systems that may make this construction difficult: (a) Because of the boundary conditions used, the actions are not gauge invariant at the boundaries. (b) The constraints may have a disconnected solution space. The relativistic particle and minisuperspace have such complicated constraints, while the non-relativistic particle displays only the first feature. I first show that a change of gauge fixing is equivalent to a canonical transformation in the reduced phase space, thus resolving the problems associated with the first feature above. Then I consider the quantization of these systems using several approaches: Dirac's method, Dirac-Fock quantization, and the BRST formalism. In the cases of the relativistic particle and minisuperspace I consider first the quantization of one branch of the constraint at the time and then discuss the backgrounds in which it is possible to quantize simultaneously both branches. I motivate and define the inner product, and obtain, for example, the Klein-Gordon inner product for the relativistic case. Then I show how to construct phase space path integral representations for amplitudes in these approaches--the Batalin-Fradkin-Vilkovisky (BFV) and the Faddeev path integrals --from which one can then derive the path integrals in coordinate space--the Faddeev-Popov path integral and the geometric path integral. In particular I establish the connection between the Hilbert space representation and the range of the lapse in the path integrals. I also examine the class of paths that contribute in the path integrals and how they affect space-time covariance, concluding that it is consistent to take paths that move forward in time only when there is no electric field. The key elements in this analysis are the space-like paths and the behavior of the action under the non-trivial ( Z_2) element of the reparametrization group.
Fuzzy Euclidean wormholes in de Sitter space
NASA Astrophysics Data System (ADS)
Chen, Pisin; Hu, Yao-Chieh; Yeom, Dong-han
2017-07-01
We investigate Euclidean wormholes in Einstein gravity with a massless scalar field in de Sitter space. Euclidean wormholes are possible due to the analytic continuation of the time as well as complexification of fields, where we need to impose the classicality after the Wick-rotation to the Lorentzian signatures. For some parameters, wormholes are preferred than Hawking-Moss instantons, and hence wormholes can be more fundamental than Hawking-Moss type instantons. Euclidean wormholes can be interpreted in three ways: (1) classical big bounce, (2) either tunneling from a small to a large universe or a creation of a collapsing and an expanding universe from nothing, and (3) either a transition from a contracting to a bouncing phase or a creation of two expanding universes from nothing. These various interpretations shed some light on challenges of singularities. In addition, these will help to understand tensions between various kinds of quantum gravity theories.
Fuzzy Euclidean wormholes in de Sitter space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; Hu, Yao-Chieh; Yeom, Dong-han, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: r04244003@ntu.edu.tw, E-mail: innocent.yeom@gmail.com
We investigate Euclidean wormholes in Einstein gravity with a massless scalar field in de Sitter space. Euclidean wormholes are possible due to the analytic continuation of the time as well as complexification of fields, where we need to impose the classicality after the Wick-rotation to the Lorentzian signatures. For some parameters, wormholes are preferred than Hawking-Moss instantons, and hence wormholes can be more fundamental than Hawking-Moss type instantons. Euclidean wormholes can be interpreted in three ways: (1) classical big bounce, (2) either tunneling from a small to a large universe or a creation of a collapsing and an expanding universemore » from nothing, and (3) either a transition from a contracting to a bouncing phase or a creation of two expanding universes from nothing. These various interpretations shed some light on challenges of singularities. In addition, these will help to understand tensions between various kinds of quantum gravity theories.« less
Quasiclassical analysis of Bloch oscillations in non-Hermitian tight-binding lattices
NASA Astrophysics Data System (ADS)
Graefe, E. M.; Korsch, H. J.; Rush, A.
2016-07-01
Many features of Bloch oscillations in one-dimensional quantum lattices with a static force can be described by quasiclassical considerations for example by means of the acceleration theorem, at least for Hermitian systems. Here the quasiclassical approach is extended to non-Hermitian lattices, which are of increasing interest. The analysis is based on a generalised non-Hermitian phase space dynamics developed recently. Applications to a single-band tight-binding system demonstrate that many features of the quantum dynamics can be understood from this classical description qualitatively and even quantitatively. Two non-Hermitian and PT-symmetric examples are studied, a Hatano-Nelson lattice with real coupling constants and a system with purely imaginary couplings, both for initially localised states in space or in momentum. It is shown that the time-evolution of the norm of the wave packet and the expectation values of position and momentum can be described in a classical picture.
Fuzzy Euclidean wormholes in de Sitter space
Chen, Pisin; Hu, Yao-Chieh; Yeom, Dong-han
2017-07-03
Here, we investigate Euclidean wormholes in Einstein gravity with a massless scalar field in de Sitter space. Euclidean wormholes are possible due to the analytic continuation of the time as well as complexification of fields, where we need to impose the classicality after the Wick-rotation to the Lorentzian signatures. Furthermore, we prefer wormholes for some parameters, rather than Hawking-Moss instantons, and hence wormholes can be more fundamental than Hawking-Moss type instantons. Euclidean wormholes can be interpreted in three ways: (1) classical big bounce, (2) either tunneling from a small to a large universe or a creation of a collapsing andmore » an expanding universe from nothing, and (3) either a transition from a contracting to a bouncing phase or a creation of two expanding universes from nothing. These various interpretations shed some light on challenges of singularities. In addition, these will help to understand tensions between various kinds of quantum gravity theories.« less
Fuzzy Euclidean wormholes in de Sitter space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; Hu, Yao-Chieh; Yeom, Dong-han
Here, we investigate Euclidean wormholes in Einstein gravity with a massless scalar field in de Sitter space. Euclidean wormholes are possible due to the analytic continuation of the time as well as complexification of fields, where we need to impose the classicality after the Wick-rotation to the Lorentzian signatures. Furthermore, we prefer wormholes for some parameters, rather than Hawking-Moss instantons, and hence wormholes can be more fundamental than Hawking-Moss type instantons. Euclidean wormholes can be interpreted in three ways: (1) classical big bounce, (2) either tunneling from a small to a large universe or a creation of a collapsing andmore » an expanding universe from nothing, and (3) either a transition from a contracting to a bouncing phase or a creation of two expanding universes from nothing. These various interpretations shed some light on challenges of singularities. In addition, these will help to understand tensions between various kinds of quantum gravity theories.« less
Quantum metabolism explains the allometric scaling of metabolic rates.
Demetrius, Lloyd; Tuszynski, J A
2010-03-06
A general model explaining the origin of allometric laws of physiology is proposed based on coupled energy-transducing oscillator networks embedded in a physical d-dimensional space (d = 1, 2, 3). This approach integrates Mitchell's theory of chemi-osmosis with the Debye model of the thermal properties of solids. We derive a scaling rule that relates the energy generated by redox reactions in cells, the dimensionality of the physical space and the mean cycle time. Two major regimes are found corresponding to classical and quantum behaviour. The classical behaviour leads to allometric isometry while the quantum regime leads to scaling laws relating metabolic rate and body size that cover a broad range of exponents that depend on dimensionality and specific parameter values. The regimes are consistent with a range of behaviours encountered in micelles, plants and animals and provide a conceptual framework for a theory of the metabolic function of living systems.
Koda, Shin-ichi
2015-12-28
We formulate various semiclassical propagators for the Wigner phase space representation from a unified point of view. As is shown in several studies, the Moyal equation, which is an equation of motion for the Wigner distribution function, can be regarded as the Schrödinger equation of an extended Hamiltonian system where its "position" and "momentum" correspond to the middle point of two points of the original phase space and the difference between them, respectively. Then we show that various phase-space semiclassical propagators can be formulated just by applying existing semiclassical propagators to the extended system. As a result, a phase space version of the Van Vleck propagator, the initial-value Van Vleck propagator, the Herman-Kluk propagator, and the thawed Gaussian approximation are obtained. In addition, we numerically compare the initial-value phase-space Van Vleck propagator, the phase-space Herman-Kluk propagator, and the classical mechanical propagation as approximation methods for the time propagation of the Wigner distribution function in terms of both accuracy and convergence speed. As a result, we find that the convergence speed of the Van Vleck propagator is far slower than others as is the case of the Hilbert space, and the Herman-Kluk propagator keeps its accuracy for a long period compared with the classical mechanical propagation while the convergence speed of the latter is faster than the former.
Exact, E = 0, classical and quantum solutions for general power-law oscillators
NASA Technical Reports Server (NTRS)
Nieto, Michael Martin; Daboul, Jamil
1995-01-01
For zero energy, E = 0, we derive exact, classical and quantum solutions for all power-law oscillators with potentials V(r) = -gamma/r(exp nu), gamma greater than 0 and -infinity less than nu less than infinity. When the angular momentum is non-zero, these solutions lead to the classical orbits (p(t) = (cos mu(phi(t) - phi(sub 0)t))(exp 1/mu) with mu = nu/2 - 1 does not equal 0. For nu greater than 2, the orbits are bound and go through the origin. We calculate the periods and precessions of these bound orbits, and graph a number of specific examples. The unbound orbits are also discussed in detail. Quantum mechanically, this system is also exactly solvable. We find that when nu is greater than 2 the solutions are normalizable (bound), as in the classical case. Further, there are normalizable discrete, yet unbound, states. They correspond to unbound classical particles which reach infinity in a finite time. Finally, the number of space dimensions of the system can determine whether or not an E = 0 state is bound. These and other interesting comparisons to the classical system will be discussed.
Intrinsic measurement errors for the speed of light in vacuum
NASA Astrophysics Data System (ADS)
Braun, Daniel; Schneiter, Fabienne; Fischer, Uwe R.
2017-09-01
The speed of light in vacuum, one of the most important and precisely measured natural constants, is fixed by convention to c=299 792 458 m s-1 . Advanced theories predict possible deviations from this universal value, or even quantum fluctuations of c. Combining arguments from quantum parameter estimation theory and classical general relativity, we here establish rigorously the existence of lower bounds on the uncertainty to which the speed of light in vacuum can be determined in a given region of space-time, subject to several reasonable restrictions. They provide a novel perspective on the experimental falsifiability of predictions for the quantum fluctuations of space-time.
Introduction of a Classical Level in Quantum Theory
NASA Astrophysics Data System (ADS)
Prosperi, G. M.
2016-11-01
In an old paper of our group in Milano a formalism was introduced for the continuous monitoring of a system during a certain interval of time in the framework of a somewhat generalized approach to quantum mechanics (QM). The outcome was a distribution of probability on the space of all the possible continuous histories of a set of quantities to be considered as a kind of coarse grained approximation to some ordinary quantum observables commuting or not. In fact the main aim was the introduction of a classical level in the context of QM, treating formally a set of basic quantities, to be considered as beables in the sense of Bell, as continuously taken under observation. However the effect of such assumption was a permanent modification of the Liouville-von Neumann equation for the statistical operator by the introduction of a dissipative term which is in conflict with basic conservation rules in all reasonable models we had considered. Difficulties were even encountered for a relativistic extension of the formalism. In this paper I propose a modified version of the original formalism which seems to overcome both difficulties. First I study the simple models of an harmonic oscillator and a free scalar field in which a coarse grain position and a coarse grained field respectively are treated as beables. Then I consider the more realistic case of spinor electrodynamics in which only certain coarse grained electric and magnetic fields are introduced as classical variables and no matter related quantities.
NASA Astrophysics Data System (ADS)
Chumakova, Lyubov; Rzeznik, Andrew; Rosales, Rodolfo R.
2017-11-01
In many dispersive/conservative wave problems, waves carry energy outside of the domain of interest and never return. Inside the domain of interest, this wave leakage acts as an effective dissipation mechanism, causing solutions to decay. In classical geophysical fluid dynamics problems this scenario occurs in the troposphere, if one assumes a homogeneous stratosphere. In this talk we present several classic GFD problems, where we seek the solution in the troposphere alone. Assuming that upward propagating waves that reach the stratosphere never return, we demonstrate how classic baroclinic modes become leaky, with characteristic decay time-scales that can be calculated. We also show how damping due to wave leakage changes the classic baroclinic instability problem in the presence of shear. This presentation is a part of a joint project. The mathematical approach used here relies on extending the classical concept of group velocity to leaky waves with complex wavenumber and frequency, which will be presented at this meeting by A. Rzeznik in the talk ``Group Velocity for Leaky Waves''. This research is funded by the Royal Soc. of Edinburgh, Scottish Government, and NSF.
Classicalization by phase space measurements
NASA Astrophysics Data System (ADS)
Bolaños, Marduk
2018-05-01
This article provides an illustration of the measurement approach to the quantum–classical transition suitable for beginning graduate students. As an example, we apply this framework to a quantum system with a general quadratic Hamiltonian, and obtain the exact solution of the dynamics for an arbitrary measurement strength using phase space methods.
Bethea, Jane; Makki, Sophia; Gray, Steve; MacGregor, Vanessa; Ladhani, Shamez
2016-06-16
In England and Wales, meningococcal disease caused by group W has historically been associated with outbreaks of disease among travellers to high-risk countries. Following a large outbreak associated with travel to the Hajj in 2000, the number of cases declined and, in 2008, only 19 laboratory-confirmed cases were identified nationally. In 2013, in the East Midlands region of England, eight cases of meningococcal disease caused by this serogroup were recorded, compared with six from 2011 to 2012. To explore this further, data for all cases with a date of onset between 1 January 2011 and 31 December 2013 were collected. Data collected included geographical location, clinical presentation and outcome. Fourteen cases were identified; two died as a result of their illness and two developed long-term health problems. No commonality in terms of geographical location, shared space or activities was identified, suggesting that group W is circulating endemically with local transmission. Clinical presentation was variable. Half presented with symptoms not typical of a classical meningococcal disease, including two cases of cellulitis, which may have implications for clinicians, in terms of timely identification and treatment, and public health specialists, for offering timely antibiotic chemoprophylaxis to close contacts. This article is copyright of The Authors, 2016.
Introducing the Dimensional Continuous Space-Time Theory
NASA Astrophysics Data System (ADS)
Martini, Luiz Cesar
2013-04-01
This article is an introduction to a new theory. The name of the theory is justified by the dimensional description of the continuous space-time of the matter, energy and empty space, that gathers all the real things that exists in the universe. The theory presents itself as the consolidation of the classical, quantum and relativity theories. A basic equation that describes the formation of the Universe, relating time, space, matter, energy and movement, is deduced. The four fundamentals physics constants, light speed in empty space, gravitational constant, Boltzmann's constant and Planck's constant and also the fundamentals particles mass, the electrical charges, the energies, the empty space and time are also obtained from this basic equation. This theory provides a new vision of the Big-Bang and how the galaxies, stars, black holes and planets were formed. Based on it, is possible to have a perfect comprehension of the duality between wave-particle, which is an intrinsic characteristic of the matter and energy. It will be possible to comprehend the formation of orbitals and get the equationing of atomics orbits. It presents a singular comprehension of the mass relativity, length and time. It is demonstrated that the continuous space-time is tridimensional, inelastic and temporally instantaneous, eliminating the possibility of spatial fold, slot space, worm hole, time travels and parallel universes. It is shown that many concepts, like dark matter and strong forces, that hypothetically keep the cohesion of the atomics nucleons, are without sense.
Continuous-spin mixed-symmetry fields in AdS(5)
NASA Astrophysics Data System (ADS)
Metsaev, R. R.
2018-05-01
Free mixed-symmetry continuous-spin fields propagating in AdS(5) space and flat R(4,1) space are studied. In the framework of a light-cone gauge formulation of relativistic dynamics, we build simple actions for such fields. The realization of relativistic symmetries on the space of light-cone gauge mixed-symmetry continuous-spin fields is also found. Interrelations between constant parameters entering the light-cone gauge actions and eigenvalues of the Casimir operators of space-time symmetry algebras are obtained. Using these interrelations and requiring that the field dynamics in AdS(5) be irreducible and classically unitary, we derive restrictions on the constant parameters and eigenvalues of the second-order Casimir operator of the algebra.
Operator Formulation of Classical Mechanics.
ERIC Educational Resources Information Center
Cohn, Jack
1980-01-01
Discusses the construction of an operator formulation of classical mechanics which is directly concerned with wave packets in configuration space and is more similar to that of convential quantum theory than other extant operator formulations of classical mechanics. (Author/HM)
The physics, performance and predictions of the PEGASES ion-ion thruster
NASA Astrophysics Data System (ADS)
Aanesland, Ane
2014-10-01
Electric propulsion (EP) is now used systematically in space applications (due to the fuel and lifetime economy) to the extent that EP is now recognized as the next generation space technology. The uses of EP systems have though been limited to attitude control of GEO-stationary satellites and scientific missions. Now, the community envisages the use of EP for a variety of other applications as well; such as orbit transfer maneuvers, satellites in low altitudes, space debris removal, cube-sat control, challenging scientific missions close to and far from earth etc. For this we need a platform of EP systems providing much more variety in performance than what classical Hall and Gridded thrusters can provide alone. PEGASES is a gridded thruster that can be an alternative for some new applications in space, in particular for space debris removal. Unlike classical ion thrusters, here positive and negative ions are alternately accelerated to produce thrust. In this presentation we will look at the fundamental aspects of PEGASES. The emphasis will be put on our current understanding, obtained via analytical models, PIC simulations and experimental measurements, of the alternate extraction and acceleration process. We show that at low grid bias frequencies (10 s of kHz), the system can be described as a sequence of negative and positive ions accelerated as packets within a classical DC mode. Here secondary electrons created in the downstream chamber play an important role in the beam space charge compensation. At higher frequencies (100 s of kHz) the transit time of the ions in the grid gap becomes comparable to the bias period, leading to an ``AC acceleration mode.'' Here the beam is fully space charge compensated and the ion energy and current are functions of the applied frequency and waveform. A generalization of the Child-Langmuir space charge limited law is developed for pulsed voltages and allows evaluating the optimal parameter space and performance of PEGASES. This work received financial state aid managed by the Agence Nationale de la Recherche under the reference ANR-2011-BS09-40 (EPIC) and ANR-11-IDEX-0004-02 (Plas@Par).
Classification of Animal Movement Behavior through Residence in Space and Time.
Torres, Leigh G; Orben, Rachael A; Tolkova, Irina; Thompson, David R
2017-01-01
Identification and classification of behavior states in animal movement data can be complex, temporally biased, time-intensive, scale-dependent, and unstandardized across studies and taxa. Large movement datasets are increasingly common and there is a need for efficient methods of data exploration that adjust to the individual variability of each track. We present the Residence in Space and Time (RST) method to classify behavior patterns in movement data based on the concept that behavior states can be partitioned by the amount of space and time occupied in an area of constant scale. Using normalized values of Residence Time and Residence Distance within a constant search radius, RST is able to differentiate behavior patterns that are time-intensive (e.g., rest), time & distance-intensive (e.g., area restricted search), and transit (short time and distance). We use grey-headed albatross (Thalassarche chrysostoma) GPS tracks to demonstrate RST's ability to classify behavior patterns and adjust to the inherent scale and individuality of each track. Next, we evaluate RST's ability to discriminate between behavior states relative to other classical movement metrics. We then temporally sub-sample albatross track data to illustrate RST's response to less resolved data. Finally, we evaluate RST's performance using datasets from four taxa with diverse ecology, functional scales, ecosystems, and data-types. We conclude that RST is a robust, rapid, and flexible method for detailed exploratory analysis and meta-analyses of behavioral states in animal movement data based on its ability to integrate distance and time measurements into one descriptive metric of behavior groupings. Given the increasing amount of animal movement data collected, it is timely and useful to implement a consistent metric of behavior classification to enable efficient and comparative analyses. Overall, the application of RST to objectively explore and compare behavior patterns in movement data can enhance our fine- and broad- scale understanding of animal movement ecology.
Puller, Christian; Rieke, Fred; Neitz, Jay; Neitz, Maureen
2015-01-01
At early stages of visual processing, receptive fields are typically described as subtending local regions of space and thus performing computations on a narrow spatial scale. Nevertheless, stimulation well outside of the classical receptive field can exert clear and significant effects on visual processing. Given the distances over which they occur, the retinal mechanisms responsible for these long-range effects would certainly require signal propagation via active membrane properties. Here the physiology of a wide-field amacrine cell—the wiry cell—in macaque monkey retina is explored, revealing receptive fields that represent a striking departure from the classic structure. A single wiry cell integrates signals over wide regions of retina, 5–10 times larger than the classic receptive fields of most retinal ganglion cells. Wiry cells integrate signals over space much more effectively than predicted from passive signal propagation, and spatial integration is strongly attenuated during blockade of NMDA spikes but integration is insensitive to blockade of NaV channels with TTX. Thus these cells appear well suited for contributing to the long-range interactions of visual signals that characterize many aspects of visual perception. PMID:26133804
Role of social interactions in dynamic patterns of resource patches and forager aggregation
Tania, Nessy; Vanderlei, Ben; Heath, Joel P.; Edelstein-Keshet, Leah
2012-01-01
The dynamics of resource patches and species that exploit such patches are of interest to ecologists, conservation biologists, modelers, and mathematicians. Here we consider how social interactions can create unique, evolving patterns in space and time. Whereas simple prey taxis (with consumable prey) promotes spatial uniform distributions, here we show that taxis in producer–scrounger groups can lead to pattern formation. We consider two types of foragers: those that search directly (“producers”) and those that exploit other foragers to find food (“scroungers” or exploiters). We show that such groups can sustain fluctuating spatiotemporal patterns, akin to “waves of pursuit.” Investigating the relative benefits to the individuals, we observed conditions under which either strategy leads to enhanced success, defined as net food consumption. Foragers that search for food directly have an advantage when food patches are localized. Those that seek aggregations of group mates do better when their ability to track group mates exceeds the foragers’ food-sensing acuity. When behavioral switching or reproductive success of the strategies is included, the relative abundance of foragers and exploiters is dynamic over time, in contrast with classic models that predict stable frequencies. Our work shows the importance of considering two-way interaction—i.e., how food distribution both influences and is influenced by social foraging and aggregation of predators. PMID:22745167
Quantum localization for a kicked rotor with accelerator mode islands.
Iomin, A; Fishman, S; Zaslavsky, G M
2002-03-01
Dynamical localization of classical superdiffusion for the quantum kicked rotor is studied in the semiclassical limit. Both classical and quantum dynamics of the system become more complicated under the conditions of mixed phase space with accelerator mode islands. Recently, long time quantum flights due to the accelerator mode islands have been found. By exploration of their dynamics, it is shown here that the classical-quantum duality of the flights leads to their localization. The classical mechanism of superdiffusion is due to accelerator mode dynamics, while quantum tunneling suppresses the superdiffusion and leads to localization of the wave function. Coupling of the regular type dynamics inside the accelerator mode island structures to dynamics in the chaotic sea proves increasing the localization length. A numerical procedure and an analytical method are developed to obtain an estimate of the localization length which, as it is shown, has exponentially large scaling with the dimensionless Planck's constant (tilde)h<1 in the semiclassical limit. Conditions for the validity of the developed method are specified.
Computing quantum discord is NP-complete
NASA Astrophysics Data System (ADS)
Huang, Yichen
2014-03-01
We study the computational complexity of quantum discord (a measure of quantum correlation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum discord in a quantum system of moderate size is not possible in practice. As by-products, some entanglement measures (namely entanglement cost, entanglement of formation, relative entropy of entanglement, squashed entanglement, classical squashed entanglement, conditional entanglement of mutual information, and broadcast regularization of mutual information) and constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic results are directly applicable in common randomness distillation, quantum state merging, entanglement distillation, superdense coding, and quantum teleportation; they may offer significant insights into quantum information processing. Moreover, we prove the NP-completeness of two typical problems: linear optimization over classical states and detecting classical states in a convex set, providing evidence that working with classical states is generically computationally intractable.
Eternal non-Markovianity: from random unitary to Markov chain realisations.
Megier, Nina; Chruściński, Dariusz; Piilo, Jyrki; Strunz, Walter T
2017-07-25
The theoretical description of quantum dynamics in an intriguing way does not necessarily imply the underlying dynamics is indeed intriguing. Here we show how a known very interesting master equation with an always negative decay rate [eternal non-Markovianity (ENM)] arises from simple stochastic Schrödinger dynamics (random unitary dynamics). Equivalently, it may be seen as arising from a mixture of Markov (semi-group) open system dynamics. Both these approaches lead to a more general family of CPT maps, characterized by a point within a parameter triangle. Our results show how ENM quantum dynamics can be realised easily in the laboratory. Moreover, we find a quantum time-continuously measured (quantum trajectory) realisation of the dynamics of the ENM master equation based on unitary transformations and projective measurements in an extended Hilbert space, guided by a classical Markov process. Furthermore, a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) representation of the dynamics in an extended Hilbert space can be found, with a remarkable property: there is no dynamics in the ancilla state. Finally, analogous constructions for two qubits extend these results from non-CP-divisible to non-P-divisible dynamics.
Self-similarity and self-inversion of quasicrystals
NASA Astrophysics Data System (ADS)
Madison, A. E.
2014-08-01
The discovery of quasicrystals played a revolutionary role in the condensed matter science and forced to renounce the dogma of the classical crystallography that the regular filling of the space by identical blocks is reduced solely to the Fedorov space groups. It is shown that aperiodic crystals, apart from the similarity, exhibit the self-inversion property. In a broadened sense, the self-inversion implies the possible composition of the inversion with translations, rotations, and homothety, whereas pure reflection by itself in a circle can be absent as an independent symmetry element. It is demonstrated that the symmetry of aperiodic tilings is described by Schottky groups (which belong to a particular type of Kleinian groups generated by the linear fractional Möbius transformations); in the theory of aperiodic crystals, the Schottky groups play the same role that the Fedorov groups play in the theory of crystal lattices. The local matching rules for the Penrose fractal tiling are derived, the problem of choice of the fundamental region of the group of motions of a quasicrystal is discussed, and the relation between the symmetry of aperiodic tilings and the symmetry of constructive fractals is analyzed.
NASA Astrophysics Data System (ADS)
Knudsen, Steven; Golubovic, Leonardo
Prospects to build Space Elevator (SE) systems have become realistic with ultra-strong materials such as carbon nano-tubes and diamond nano-threads. At cosmic length-scales, space elevators can be modeled as polymer like floppy strings of tethered mass beads. A new venue in SE science has emerged with the introduction of the Rotating Space Elevator (RSE) concept supported by novel algorithms discussed in this presentation. An RSE is a loopy string reaching into outer space. Unlike the classical geostationary SE concepts of Tsiolkovsky, Artsutanov, and Pearson, our RSE exhibits an internal rotation. Thanks to this, objects sliding along the RSE loop spontaneously oscillate between two turning points, one of which is close to the Earth whereas the other one is in outer space. The RSE concept thus solves a major problem in SE technology which is how to supply energy to the climbers moving along space elevator strings. The investigation of the classical and statistical mechanics of a floppy string interacting with objects sliding along it required development of subtle computational algorithms described in this presentation
NASA Astrophysics Data System (ADS)
Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung
2017-09-01
Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.
Hilt, Pauline M.; Delis, Ioannis; Pozzo, Thierry; Berret, Bastien
2018-01-01
The modular control hypothesis suggests that motor commands are built from precoded modules whose specific combined recruitment can allow the performance of virtually any motor task. Despite considerable experimental support, this hypothesis remains tentative as classical findings of reduced dimensionality in muscle activity may also result from other constraints (biomechanical couplings, data averaging or low dimensionality of motor tasks). Here we assessed the effectiveness of modularity in describing muscle activity in a comprehensive experiment comprising 72 distinct point-to-point whole-body movements during which the activity of 30 muscles was recorded. To identify invariant modules of a temporal and spatial nature, we used a space-by-time decomposition of muscle activity that has been shown to encompass classical modularity models. To examine the decompositions, we focused not only on the amount of variance they explained but also on whether the task performed on each trial could be decoded from the single-trial activations of modules. For the sake of comparison, we confronted these scores to the scores obtained from alternative non-modular descriptions of the muscle data. We found that the space-by-time decomposition was effective in terms of data approximation and task discrimination at comparable reduction of dimensionality. These findings show that few spatial and temporal modules give a compact yet approximate representation of muscle patterns carrying nearly all task-relevant information for a variety of whole-body reaching movements. PMID:29666576
Microseed matrix screening for optimization in protein crystallization: what have we learned?
D'Arcy, Allan; Bergfors, Terese; Cowan-Jacob, Sandra W; Marsh, May
2014-09-01
Protein crystals obtained in initial screens typically require optimization before they are of X-ray diffraction quality. Seeding is one such optimization method. In classical seeding experiments, the seed crystals are put into new, albeit similar, conditions. The past decade has seen the emergence of an alternative seeding strategy: microseed matrix screening (MMS). In this strategy, the seed crystals are transferred into conditions unrelated to the seed source. Examples of MMS applications from in-house projects and the literature include the generation of multiple crystal forms and different space groups, better diffracting crystals and crystallization of previously uncrystallizable targets. MMS can be implemented robotically, making it a viable option for drug-discovery programs. In conclusion, MMS is a simple, time- and cost-efficient optimization method that is applicable to many recalcitrant crystallization problems.
Microseed matrix screening for optimization in protein crystallization: what have we learned?
D’Arcy, Allan; Bergfors, Terese; Cowan-Jacob, Sandra W.; Marsh, May
2014-01-01
Protein crystals obtained in initial screens typically require optimization before they are of X-ray diffraction quality. Seeding is one such optimization method. In classical seeding experiments, the seed crystals are put into new, albeit similar, conditions. The past decade has seen the emergence of an alternative seeding strategy: microseed matrix screening (MMS). In this strategy, the seed crystals are transferred into conditions unrelated to the seed source. Examples of MMS applications from in-house projects and the literature include the generation of multiple crystal forms and different space groups, better diffracting crystals and crystallization of previously uncrystallizable targets. MMS can be implemented robotically, making it a viable option for drug-discovery programs. In conclusion, MMS is a simple, time- and cost-efficient optimization method that is applicable to many recalcitrant crystallization problems. PMID:25195878
NASA Astrophysics Data System (ADS)
Difilippo, Felix C.
2012-09-01
Within the context of general relativity theory we calculate, analytically, scattering signatures around a gravitational singularity: angular and time distributions of scattered massive objects and photons and the time and space modulation of Doppler effects. Additionally, the scattering and absorption cross sections for the gravitational interactions are calculated. The results of numerical simulations of the trajectories are compared with the analytical results.
Comparison between an Alternative and the Classic Definition of Chronic Bronchitis in COPDGene
Crapo, James; Zhao, Huaqing; Jones, Paul W.; Silverman, Edwin K.; Comellas, Alejandro; Make, Barry J.; Criner, Gerard J.
2015-01-01
Rationale: Previous studies on chronic bronchitis (CB) have used varying definitions. Objectives: We sought to compare an alternative CB definition, using the St. George’s Respiratory Questionnaire (SGRQ), a commonly used assessment tool, with the classic definition and to investigate if it had independent or additive value. Methods: We analyzed data from 4,513 subjects from Global Initiative for Chronic Obstructive Lung Disease groups 1 to 4 in the COPDGene cohort. We compared the classic definition of CB with the SGRQ definition, defined by their answers to the questions about both cough and phlegm. We compared the Classic CB+ versus CB− groups, and the SGRQ CB+ and CB− groups. We also analyzed the cohort split into four groups: Classic CB+/SGRQ CB+, Classic CB+/SGRQ CB−, Classic CB−/SGRQ CB+, Classic CB−/SGRQ CB−. Measurements and Main Results: A total of 26.1% subjects were Classic CB+, whereas 39.9% were SGRQ CB+. When the SGRQ definition was compared with the Classic CB definition, using this as the gold standard, the SGRQ CB definition had a sensitivity and specificity of 0.87 and 0.77, respectively. The SGRQ CB+ and Classic CB+ groups were strikingly similar, with more respiratory symptoms and exacerbations, worse lung function, and greater airway wall thickness. In addition, the Classic CB+/SGRQ CB+, Classic CB+/SGRQ CB−, and Classic CB−/SGRQ CB+ groups shared similar characteristics as well. Conclusions: The SGRQ CB definition identifies more subjects with chronic cough and sputum who share a similar phenotype identified by the Classic CB definition. The addition of the SGRQ CB definition to the classic one can be used to identify more patients with chronic obstructive pulmonary disease at risk for poor outcomes. PMID:25575351
Quantum key distribution with 1.25 Gbps clock synchronization.
Bienfang, J; Gross, A; Mink, A; Hershman, B; Nakassis, A; Tang, X; Lu, R; Su, D; Clark, Charles; Williams, Carl; Hagley, E; Wen, Jesse
2004-05-03
We have demonstrated the exchange of sifted quantum cryptographic key over a 730 meter free-space link at rates of up to 1.0 Mbps, two orders of magnitude faster than previously reported results. A classical channel at 1550 nm operates in parallel with a quantum channel at 845 nm. Clock recovery techniques on the classical channel at 1.25 Gbps enable quantum transmission at up to the clock rate. System performance is currently limited by the timing resolution of our silicon avalanche photodiode detectors. With improved detector resolution, our technique will yield another order of magnitude increase in performance, with existing technology.
Local U(2,2) symmetry in relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Finster, Felix
1998-12-01
Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.
Maria Montessori's Cosmic Vision, Cosmic Plan, and Cosmic Education
ERIC Educational Resources Information Center
Grazzini, Camillo
2013-01-01
This classic position of the breadth of Cosmic Education begins with a way of seeing the human's interaction with the world, continues on to the grandeur in scale of time and space of that vision, then brings the interdependency of life where each growing human becomes a participating adult. Mr. Grazzini confronts the laws of human nature in…
LOBSTER: new space x-ray telescopes
NASA Astrophysics Data System (ADS)
Hudec, R.; Sveda, L.; Pína, L.; Inneman, A.; Semencova, V.; Skulinova, M.
2017-11-01
The LOBSTER telescopes are based on the optical arrangement of the lobster eye. The main difference from classical X-ray space telescopes in wide use is the very large field of view while the use of optics results in higher efficiency if compared with detectors without optics. Recent innovative technologies have enabled to design, to develop and to test first prototypes. They will provide deep sensitive survey of the sky in X-rays for the first time which is essential for both long-term monitoring of celestial high-energy sources as well as in understanding transient phenomena. The technology is now ready for applications in space.
Intestinal Malrotation and Volvulus in Neonates: Laparoscopy Versus Open Laparotomy.
Ferrero, Luisa; Ahmed, Yosra Ben; Philippe, Paul; Reinberg, Olivier; Lacreuse, Isabelle; Schneider, Anne; Moog, Raphael; Gomes-Ferreira, Cindy; Becmeur, François
2017-03-01
Intestinal malrotations with midgut volvulus are surgical emergencies that can lead to life-threatening intestinal necrosis. This study evaluates the feasibility and the outcomes of laparoscopic treatment of midgut volvulus compared with classic open Ladd's procedure in neonates. The medical records of all neonates with diagnosis of malrotation and volvulus, who underwent surgery between January 1993 and January 2014, were reviewed. We considered the group of neonates laparoscopically treated (Group A, n = 20) and we compared it with an equal number of neonates treated with the classical open Ladd's procedure (Group B, n = 20). The median age at surgery was 8.4 days and the mean weight was 3.340 kg. The suspicion of volvulus was documented by plain abdominal radiograph, upper gastrointestinal contrast study, and/or ultrasound scanning of the mesenteric vessels. All the patients were treated according to the Ladd's procedure. Conversion to an open procedure was necessary in 25% of the patients. The mean operative time was 80 minutes (28-190 minutes) in Group A and 61 minutes (40-130 minutes) in Group B (P = .04). The median time to full diet (P = .02) and hospital stay (P = .04) was better in Group A. Rehospitalization because of recurrence of occlusive symptoms occurred in 30% of patients in Group A (n = 6) and in 40% of patients in Group B (n = 8). Among these, all the 6 patients of Group A underwent redo surgery for additional division of Ladd's bands or debridement; instead in Group B, 4 of 8 patients underwent open redo surgery. Laparoscopic exploration is the procedure of choice in case of suspicion of intestinal malrotation and volvulus. Laparoscopic treatment is feasible and safe even in neonatal age without additional risks compared with classical open Ladd's procedure.
NASA Astrophysics Data System (ADS)
Kreymer, E. L.
2018-06-01
The model of Euclidean space with imaginary time used in sub-hadron physics uses only part of it since this part is isomorphic to Minkowski space and has the velocity limit 0 ≤ ||v Ei|| ≤ 1. The model of four-dimensional Euclidean space with real time (E space), in which 0 ≤ ||v E|| ≤ ∞ is investigated. The vectors of this space have E-invariants, equal or analogous to the invariants of Minkowski space. All relations between physical quantities in E-space, after they are mapped into Minkowski space, satisfy the principles of SRT and are Lorentz-invariant, and the velocity of light corresponds to infinite velocity. Results obtained in the model are different from the physical laws in Minkowski space. Thus, from the model of the Lagrangian mechanics of quarks in a centrally symmetric attractive potential it follows that the energy-mass of a quark decreases with increase of the velocity and is equal to zero for v = ∞. This made it possible to establish the conditions of emission and absorption of gluons by quarks. The effect of emission of gluons by high-energy quarks was discovered experimentally significantly earlier. The model describes for the first time the dynamic coupling of the masses of constituent and current quarks and reveals new possibilities in the study of intrahardon space. The classical trajectory of the oscillation of quarks in protons is described.
Group theoretical methods and wavelet theory: coorbit theory and applications
NASA Astrophysics Data System (ADS)
Feichtinger, Hans G.
2013-05-01
Before the invention of orthogonal wavelet systems by Yves Meyer1 in 1986 Gabor expansions (viewed as discretized inversion of the Short-Time Fourier Transform2 using the overlap and add OLA) and (what is now perceived as) wavelet expansions have been treated more or less at an equal footing. The famous paper on painless expansions by Daubechies, Grossman and Meyer3 is a good example for this situation. The description of atomic decompositions for functions in modulation spaces4 (including the classical Sobolev spaces) given by the author5 was directly modeled according to the corresponding atomic characterizations by Frazier and Jawerth,6, 7 more or less with the idea of replacing the dyadic partitions of unity of the Fourier transform side by uniform partitions of unity (so-called BUPU's, first named as such in the early work on Wiener-type spaces by the author in 19808). Watching the literature in the subsequent two decades one can observe that the interest in wavelets "took over", because it became possible to construct orthonormal wavelet systems with compact support and of any given degree of smoothness,9 while in contrast the Balian-Low theorem is prohibiting the existence of corresponding Gabor orthonormal bases, even in the multi-dimensional case and for general symplectic lattices.10 It is an interesting historical fact that* his construction of band-limited orthonormal wavelets (the Meyer wavelet, see11) grew out of an attempt to prove the impossibility of the existence of such systems, and the final insight was that it was not impossible to have such systems, and in fact quite a variety of orthonormal wavelet system can be constructed as we know by now. Meanwhile it is established wisdom that wavelet theory and time-frequency analysis are two different ways of decomposing signals in orthogonal resp. non-orthogonal ways. The unifying theory, covering both cases, distilling from these two situations the common group theoretical background lead to the theory of coorbit spaces,12, 13 established by the author jointly with K. Gröchenig. Starting from an integrable and irreducible representation of some locally compact group (such as the "ax+b"-group or the Heisenberg group) one can derive families of Banach spaces having natural atomic characterizations, or alternatively a continuous transform associated to it. So at the end function spaces of locally compact groups come into play, and their generic properties help to explain why and how it is possible to obtain (nonorthogonal) decompositions. While unification of these two groups was one important aspect of the approach given in the late 80th, it was also clear that this approach allows to formulate and exploit the analogy to Banach spaces of analytic functions invariant under the Moebius group have been at the heart in this context. Recent years have seen further new instances and generalizations. Among them shearlets or the Blaschke product should be mentioned here, and the increased interest in the connections between wavelet theory and complex analysis. The talk will try to summarize a few of the general principles which can be derived from the general theory, but also highlight the difference between the different groups and signal expansions arising from corresponding group representations. There is still a lot more to be done, also from the point of view of applications and the numerical realization of such non-orthogonal expansions.
Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect
NASA Astrophysics Data System (ADS)
Novitski, Roman; Scheuer, Jacob; Steinberg, Ben Z.
2013-02-01
We present two unconditionally stable finite-difference time-domain (FDTD) methods for modeling the Sagnac effect in rotating optical microsensors. The methods are based on the implicit Crank-Nicolson scheme, adapted to hold in the rotating system reference frame—the rotating Crank-Nicolson (RCN) methods. The first method (RCN-2) is second order accurate in space whereas the second method (RCN-4) is fourth order accurate. Both methods are second order accurate in time. We show that the RCN-4 scheme is more accurate and has better dispersion isotropy. The numerical results show good correspondence with the expression for the classical Sagnac resonant frequency splitting when using group refractive indices of the resonant modes of a microresonator. Also we show that the numerical results are consistent with the perturbation theory for the rotating degenerate microcavities. We apply our method to simulate the effect of rotation on an entire Coupled Resonator Optical Waveguide (CROW) consisting of a set of coupled microresonators. Preliminary results validate the formation of a rotation-induced gap at the center of a transfer function of a CROW.
Theories of Matter, Space and Time; Classical theories
NASA Astrophysics Data System (ADS)
Evans, N.; King, S. F.
2017-12-01
This book and its sequel ('Theories of Matter Space and Time: Quantum Theories') are taken from third and fourth year undergraduate Physics courses at Southampton University, UK. The aim of both books is to move beyond the initial courses in classical mechanics, special relativity, electromagnetism, and quantum theory to more sophisticated views of these subjects and their interdependence. The goal is to guide undergraduates through some of the trickier areas of theoretical physics with concise analysis while revealing the key elegance of each subject. The first chapter introduces the key areas of the principle of least action, an alternative treatment of Newtownian dynamics, that provides new understanding of conservation laws. In particular, it shows how the formalism evolved from Fermat's principle of least time in optics. The second introduces special relativity leading quickly to the need and form of four-vectors. It develops four-vectors for all kinematic variables and generalize Newton's second law to the relativistic environment; then returns to the principle of least action for a free relativistic particle. The third chapter presents a review of the integral and differential forms of Maxwell's equations before massaging them to four-vector form so that the Lorentz boost properties of electric and magnetic fields are transparent. Again, it then returns to the action principle to formulate minimal substitution for an electrically charged particle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balian, R., E-mail: roger.balian@cea.fr; Vénéroni, M.
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces themore » original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.« less
A new visco-elasto-plastic model via time-space fractional derivative
NASA Astrophysics Data System (ADS)
Hei, X.; Chen, W.; Pang, G.; Xiao, R.; Zhang, C.
2018-02-01
To characterize the visco-elasto-plastic behavior of metals and alloys we propose a new constitutive equation based on a time-space fractional derivative. The rheological representative of the model can be analogous to that of the Bingham-Maxwell model, while the dashpot element and sliding friction element are replaced by the corresponding fractional elements. The model is applied to describe the constant strain rate, stress relaxation and creep tests of different metals and alloys. The results suggest that the proposed simple model can describe the main characteristics of the experimental observations. More importantly, the model can also provide more accurate predictions than the classic Bingham-Maxwell model and the Bingham-Norton model.
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie
2010-01-01
Stress rupture failure of Carbon Composite Overwrapped Pressure Vessels (COPVs) is of serious concern to Science Mission and Constellation programs since there are a number of COPVs on board space vehicles with stored gases under high pressure for long durations of time. It has become customary to establish the reliability of these vessels using the so called classic models. The classical models are based on Weibull statistics fitted to observed stress rupture data. These stochastic models cannot account for any additional damage due to the complex pressure-time histories characteristic of COPVs being supplied for NASA missions. In particular, it is suspected that the effects of proof test could significantly reduce the stress rupture lifetime of COPVs. The focus of this paper is to present an analytical appraisal of a model that incorporates damage due to proof test. The model examined in the current paper is based on physical mechanisms such as micromechanics based load sharing concepts coupled with creep rupture and Weibull statistics. For example, the classic model cannot accommodate for damage due to proof testing which every flight vessel undergoes. The paper compares current model to the classic model with a number of examples. In addition, several applications of the model to current ISS and Constellation program issues are also examined.
A position-dependent mass harmonic oscillator and deformed space
NASA Astrophysics Data System (ADS)
da Costa, Bruno G.; Borges, Ernesto P.
2018-04-01
We consider canonically conjugated generalized space and linear momentum operators x^ q and p^ q in quantum mechanics, associated with a generalized translation operator which produces infinitesimal deformed displacements controlled by a deformation parameter q. A canonical transformation (x ^ ,p ^ ) →(x^ q,p^ q ) leads the Hamiltonian of a position-dependent mass particle in usual space to another Hamiltonian of a particle with constant mass in a conservative force field of the deformed space. The equation of motion for the classical phase space (x, p) may be expressed in terms of the deformed (dual) q-derivative. We revisit the problem of a q-deformed oscillator in both classical and quantum formalisms. Particularly, this canonical transformation leads a particle with position-dependent mass in a harmonic potential to a particle with constant mass in a Morse potential. The trajectories in phase spaces (x, p) and (xq, pq) are analyzed for different values of the deformation parameter. Finally, we compare the results of the problem in classical and quantum formalisms through the principle of correspondence and the WKB approximation.
Classical and quantum cosmology of minimal massive bigravity
NASA Astrophysics Data System (ADS)
Darabi, F.; Mousavi, M.
2016-10-01
In a Friedmann-Robertson-Walker (FRW) space-time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger-Wheeler-DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle-Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.
NASA Technical Reports Server (NTRS)
Curreri, Peter A.; Nall, Mark
2013-01-01
The cost of energy is humanity's economic exchange rate with the universe. Space solar power is the first great step that our technological species has to utilize the energy of its star. The classic Peter Glaser Solar Power Satellite, SPS, and later designs collect a large area of solar energy in space and beam it back to Earth for use in the electric grid, but even with optimistic launch costs and technology innovation a clear economic path is not evident using Earth launch of SPS. O Neill in 1969 solved the transportation costs problem by a model that uses lunar and asteroid materials to build SPS and locates the labor force permanently in space (O Neill free space habitats). This solution closes the economics and predicts large profits after 17-35 years. However the costs of time have up to now prevented this solution. We discuss a strategy to move forward in SPS with the motivations to stop global warming and prevent human selfextinction. There are near term steps that can be taken that place us on this path forward. First, we must reevaluate the technologies for the classic model and update the parameters to current technology. As technological capability continues to increase exponentially, we need to understand when the monetary potential energy hills are small as the technology gets larger. But the chance for self-extinction, if humanity remains in a single vulnerable habitat, also increased exponentially with time. The path forward is to identify investment points while assessing the risks of non-action.
Late-time spectra and type Ia supernova models: New clues from the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Ruiz-Lapuente, P.; Kirshner, R. P.; Phillips, M. M.; Challis, P. M.; Schmidt, B. P.; Filippenko, A. V.; Wheeler, J. C.
1995-01-01
Calculated late-time spectra of two classical hydrodynamical models for Type Ia supernovae (deflagration model W7 of Nomoto, Thielemann, & Yokoi, and delayed detonation model DD4 of Woosley & Weaver) are compared with observations of SN 1992A and other spectroscopically normal SNe Ia. An important new piece of information is provided by observations done with the Hubble Space Telescope (HST) which cover the ultraviolet range at the nebular phase of a SN Ia: SN 1992A in NGC 1380. For the first time a picture of SN Ia emission from the ultraviolet through the optical is obtained at these phases. Predictions of the classical model (W7 and DD4) are compared with the observed spectrum of SN 1992A and with the optical spectra of SN 1989M in NGC 4579 and SN 1990N in NGC 4639 at similar epochs. The absolute B and V magnitudes of the models are also estimated at these late phases. Taken at face value the nebular spectra of these 'classical' models are more consistent with the long extragalactic distance scale, pointing to distances to NGC 4579 around 21 +/- 3 Mpc and a slightly larger distance, 22 +/- 3 Mpc, to NGC 4639, on the back side of the Virgo Cluster. However, the calculated Fe(+3) luminosity as predicted from the models exceeds the observed limit from the HST data of SN 1992A. Other differences in the ratios of the line intensities between calculated and observed spectra, show some disagreement with the observed spectra at the nebular phases. They may not be the best choice for spectroscopically normal SNe Ia, and their use as an independent calibration of the extragalactic distance scale should be viewed with caution.
Combinatorial operad actions on cochains
NASA Astrophysics Data System (ADS)
Berger, Clemens; Fresse, Benoit
2004-07-01
A classical E-infinity operad is formed by the bar construction of the symmetric groups. Such an operad has been introduced by M. Barratt and P. Eccles in the context of simplicial sets in order to have an analogue of the Milnor FK-construction for infinite loop spaces. The purpose of this paper is to prove that the associative algebra structure on the normalized cochain complex of a simplicial set extends to the structure of an algebra over the Barratt-Eccles operad. We also prove that differential graded algebras over the Barratt-Eccles operad form a closed model category. Similar results hold for the normalized Hochschild cochain complex of an associative algebra. More precisely, the Hochschild cochain complex is acted on by a suboperad of the Barratt-Eccles operad which is equivalent to the classical little squares operad.
Classical and special relativity in four steps
NASA Astrophysics Data System (ADS)
Browne, K. M.
2018-03-01
The most fundamental and pedagogically useful path to the space-time transformations of both classical and special relativity is to postulate the principle of relativity, derive the generalised or Ignatowsky transformation which contains both, then apply two different second postulates that give either the Galilean or Lorentz transformation. What is new here is (a) a simple two-step derivation of the Ignatowsky transformation, (b) a second postulate of universal time which yields the Galilean transformation, and (c) a different second postulate of finite universal lightspeed to give the Lorentz transformation using a simple Ignatowsky transformation of a light wave. This method demonstrates that the fundamental difference between Galilean and Lorentz transformations is not that lightspeed is universal (which is true for both) but whether the model requires lightspeed to be infinite or finite (as once mentioned by Einstein).
Classical geometry to quantum behavior correspondence in a virtual extra dimension
NASA Astrophysics Data System (ADS)
Dolce, Donatello
2012-09-01
In the Lorentz invariant formalism of compact space-time dimensions the assumption of periodic boundary conditions represents a consistent semi-classical quantization condition for relativistic fields. In Dolce (2011) [18] we have shown, for instance, that the ordinary Feynman path integral is obtained from the interference between the classical paths with different winding numbers associated with the cyclic dynamics of the field solutions. By means of the boundary conditions, the kinematical information of interactions can be encoded on the relativistic geometrodynamics of the boundary, see Dolce (2012) [8]. Furthermore, such a purely four-dimensional theory is manifestly dual to an extra-dimensional field theory. The resulting correspondence between extra-dimensional geometrodynamics and ordinary quantum behavior can be interpreted in terms of AdS/CFT correspondence. By applying this approach to a simple Quark-Gluon-Plasma freeze-out model we obtain fundamental analogies with basic aspects of AdS/QCD phenomenology.
Quantum no-scale regimes in string theory
NASA Astrophysics Data System (ADS)
Coudarchet, Thibaut; Fleming, Claude; Partouche, Hervé
2018-05-01
We show that in generic no-scale models in string theory, the flat, expanding cosmological evolutions found at the quantum level can be attracted to a "quantum no-scale regime", where the no-scale structure is restored asymptotically. In this regime, the quantum effective potential is dominated by the classical kinetic energies of the no-scale modulus and dilaton. We find that this natural preservation of the classical no-scale structure at the quantum level occurs when the initial conditions of the evolutions sit in a subcritical region of their space. On the contrary, supercritical initial conditions yield solutions that have no analogue at the classical level. The associated intrinsically quantum universes are sentenced to collapse and their histories last finite cosmic times. Our analysis is done at 1-loop, in perturbative heterotic string compactified on tori, with spontaneous supersymmetry breaking implemented by a stringy version of the Scherk-Schwarz mechanism.
On classical de Sitter and Minkowski solutions with intersecting branes
NASA Astrophysics Data System (ADS)
Andriot, David
2018-03-01
Motivated by the connection of string theory to cosmology or particle physics, we study solutions of type II supergravities having a four-dimensional de Sitter or Minkowski space-time, with intersecting D p -branes and orientifold O p -planes. Only few such solutions are known, and we aim at a better characterisation. Modulo a few restrictions, we prove that there exists no classical de Sitter solution for any combination of D 3/ O 3 and D 7/ O 7, while we derive interesting constraints for intersecting D 5/ O 5 or D 6/ O 6, or combinations of D 4/ O 4 and D 8/ O 8. Concerning classical Minkowski solutions, we understand some typical features, and propose a solution ansatz. Overall, a central information appears to be the way intersecting D p / O p overlap each other, a point we focus on.
The Potential of Education for Creating Mutual Trust: Schools as Sites for Deliberation
ERIC Educational Resources Information Center
Englund, Tomas
2011-01-01
Is it possible to look at schools as spaces for encounters? Could schools contribute to a deliberative mode of communication in a manner better suited to our own time and to areas where different cultures meet? Inspired primarily by classical (Dewey) and modern (Habermas) pragmatists, I turn to Seyla Benhabib, posing the question whether she…
Two-layer symbolic representation for stochastic models with phase-type distributed events
NASA Astrophysics Data System (ADS)
Longo, Francesco; Scarpa, Marco
2015-07-01
Among the techniques that have been proposed for the analysis of non-Markovian models, the state space expansion approach showed great flexibility in terms of modelling capacities.The principal drawback is the explosion of the state space. This paper proposes a two-layer symbolic method for efficiently storing the expanded reachability graph of a non-Markovian model in the case in which continuous phase-type distributions are associated with the firing times of system events, and different memory policies are considered. At the lower layer, the reachability graph is symbolically represented in the form of a set of Kronecker matrices, while, at the higher layer, all the information needed to correctly manage event memory is stored in a multi-terminal multi-valued decision diagram. Such an information is collected by applying a symbolic algorithm, which is based on a couple of theorems. The efficiency of the proposed approach, in terms of memory occupation and execution time, is shown by applying it to a set of non-Markovian stochastic Petri nets and comparing it with a classical explicit expansion algorithm. Moreover, a comparison with a classical symbolic approach is performed whenever possible.
Klimkiewicz, Paulina; Klimkiewicz, Robert; Jankowska, Agnieszka; Kubsik, Anna; Widłak, Patrycja; Łukasiak, Adam; Janczewska, Katarzyna; Kociuga, Natalia; Nowakowski, Tomasz; Woldańska-Okońska, Marta
2018-01-01
Introduction: In this article, the authors focused on the symptoms of ischemic stroke and the effect of neurorehabilitation methods on the functional status of patients after ischemic stroke. The aim of the study was to evaluate and compare the functional status of patients after ischemic stroke with improved classic kinesiotherapy, classic kinesiotherapy and NDT-Bobath and classic kinesiotherapy and PNF. Materials and methods: The study involved 120 patients after ischemic stroke. Patients were treated in the Department of Rehabilitation and Physical Medicine USK of Medical University in Lodz. Patients were divided into 3 groups of 40 people. Group 1 was rehabilitated by classical kinesiotherapy. Group 2 was rehabilitated by classic kinesiotherapy and NTD-Bobath. Group 3 was rehabilitated by classical kinesiotherapy and PNF. In all patient groups, magnetostimulation was performed using the Viofor JPS System. The study was conducted twice: before treatment and immediately after 5 weeks after the therapy. The effects of applied neurorehabilitation methods were assessed on the basis of the Rivermead Motor Assessment (RMA). Results: In all three patient groups, functional improvement was achieved. However, a significantly higher improvement was observed in patients in the second group, enhanced with classical kinesitherapy and NDT-Bobath. Conclusions: The use of classical kinesiotherapy combined with the NDT-Bobath method is noticeably more effective in improving functional status than the use only classical kinesiotherapy or combination of classical kinesiotherapy and PNF patients after ischemic stroke.
NASA Astrophysics Data System (ADS)
Kovchegov, Yuri V.; Wu, Bin
2018-03-01
To understand the dynamics of thermalization in heavy ion collisions in the perturbative framework it is essential to first find corrections to the free-streaming classical gluon fields of the McLerran-Venugopalan model. The corrections that lead to deviations from free streaming (and that dominate at late proper time) would provide evidence for the onset of isotropization (and, possibly, thermalization) of the produced medium. To find such corrections we calculate the late-time two-point Green function and the energy-momentum tensor due to a single 2 → 2 scattering process involving two classical fields. To make the calculation tractable we employ the scalar φ 4 theory instead of QCD. We compare our exact diagrammatic results for these quantities to those in kinetic theory and find disagreement between the two. The disagreement is in the dependence on the proper time τ and, for the case of the two-point function, is also in the dependence on the space-time rapidity η: the exact diagrammatic calculation is, in fact, consistent with the free streaming scenario. Kinetic theory predicts a build-up of longitudinal pressure, which, however, is not observed in the exact calculation. We conclude that we find no evidence for the beginning of the transition from the free-streaming classical fields to the kinetic theory description of the produced matter after a single 2 → 2 rescattering.
Quantization of noncompact coverings and its physical applications
NASA Astrophysics Data System (ADS)
Ivankov, Petr
2018-02-01
A rigorous algebraic definition of noncommutative coverings is developed. In the case of commutative algebras this definition is equivalent to the classical definition of topological coverings of locally compact spaces. The theory has following nontrivial applications: • Coverings of continuous trace algebras, • Coverings of noncommutative tori, • Coverings of the quantum SU(2) group, • Coverings of foliations, • Coverings of isospectral deformations of Spin - manifolds. The theory supplies the rigorous definition of noncommutative Wilson lines.
Compare Complication of Classic versus Patent Hemostasis in Transradial Coronary Angiography.
Roghani, Farshad; Tajik, Mohammad Nasim; Khosravi, Alireza
2017-01-01
Coronary artery disease (CAD) is multifactorial disease, in which thrombotic occlusion and calcification occur usually. New strategies have been made for diagnosis and treatment of CAD, such as transradial catheterization. Hemostasis could be done in two approaches: traditional and patent. Our aim is to find the best approach with lowest complication. In a comparative study, 120 patients were recruited and divided randomly into two subgroups, including traditional group (60 patients; 24 females, 36 males; mean age: 64.35 ± 10.56 years) and patent group (60 patients; 28 females, 32 males; mean age: 60.15 ± 8.92 years). All demographic data including age, gender, body mass index, and CAD-related risk factors (smoking, diabetes, hypertension) and technical data including the number of catheters, procedure duration, and hemostatic compression time and clinical outcomes (radial artery occlusion [RAO], hematoma, bleeding) were collected. Data were analyzed by SPSS version 16. Our findings revealed that the incidence of RAO was significantly lower in patent groups compared with traditional group ( P = 0.041). Furthermore, the difference incidence of RAO was higher in early occlusion compare with late one ( P = 0.041). Moreover, there were significant relationship between some factors in patients of traditional group with occlusion (gender [ P = 0.038], age [ P = 0.031], diabetes mellitus [ P = 0.043], hemostatic compression time [ P = 0.036]) as well as in patent group (age [ P = 0.009], hypertension [ P = 0.035]). Our findings showed that RAO, especially type early is significantly lower in patent method compared classic method; and patent hemostasis is the safest method and good alternative for classical method.
Global Gauge Anomalies in Two-Dimensional Bosonic Sigma Models
NASA Astrophysics Data System (ADS)
Gawȩdzki, Krzysztof; Suszek, Rafał R.; Waldorf, Konrad
2011-03-01
We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma models with a Wess-Zumino term in the action. Such a term is related to a background closed 3-form H on the target space. More exactly, the sigma-model Feynman amplitudes of classical fields are associated to a bundle gerbe with connection of curvature H over the target space. Under conditions that were unraveled more than twenty years ago, the classical amplitudes may be coupled to the topologically trivial gauge fields of the symmetry group in a way which assures infinitesimal gauge invariance. We show that the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge anomalies that we fully classify. The general results are illustrated on the example of the WZW and the coset models of conformal field theory. The latter are shown to be inconsistent in the presence of global anomalies. We introduce a notion of equivariant gerbes that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge fields, including the ones in non-trivial principal bundles. Obstructions to the existence of equivariant gerbes and their classification are discussed. The choice of different equivariant structures on the same bundle gerbe gives rise to a new type of discrete-torsion ambiguities in the gauged amplitudes. An explicit construction of gerbes equivariant with respect to the adjoint symmetries over compact simply connected simple Lie groups is given.
Classical and low-light-level detection and pulse characterization using optical-frequency mixers
NASA Astrophysics Data System (ADS)
Langrock, Carsten
2007-12-01
Classical all-optical signal processing for telecommunication applications greatly benefits from the availability of highly efficient optical frequency (OF) mixers, the optical analogue of radio-frequency mixers used in RF signal processing. The OF mixers presented in this dissertation are based on reverse-proton-exchange (RPE) periodically-poled lithium niobate (PPLN) waveguides, one of the most efficient and versatile material systems in the field of nonlinear optics to date. Taking advantage of fabrication technologies developed in Prof. Martin Fejer's group over the past two decades, we expand the range of applications for these OF mixers to low-light-level signal detection and pulse characterization. We demonstrate high-speed high-efficiency single-photon counting at telecommunication wavelengths, used for the implementation of record-breaking quantum-key distribution systems, which allow unconditionally secure data transfer. In collaboration with researchers at the MIT Lincoln Laboratory, we also show that the very same technology can be used to achieve an order of magnitude improvement in the sensitivity of classical few-photon free-space communication links based on pulse-position modulation. These extremely sensitive receivers (1 photon/bit) are being developed to facilitate deep-space communication over several hundred million kilometers between Mars and Earth. OF mixers can also be used to fully characterize, potentially weak, ultrashort pulses, as well as time-magnify segments of ultra-high-speed data streams to be detected in real time by conventional streak cameras and oscilloscopes. We will present a novel implementation of both collinear autocorrelation as well as parametric temporal imaging (in collaboration with the Lawrence Livermore National Laboratory) based on mode-multiplexing in integrated asymmetric Y-junctions in combination with linearly-chirped apodized quasi-phasematching gratings. For the first time, background-free autocorrelation, frequency-resolved optical gating, and temporal imaging can be realized in single-polarization-guiding collinear waveguide structures at sub-60-aJ (400 photons/pulse) levels. Recently, guided-wave OF mixers have also become important for precision metrology applications based on frequency-comb generation (FCG) (i.e. optical ruler) using ultrashort pulses. The most compact and energy efficient FCG systems use fiber lasers. In collaboration with IMRA America, Inc., we demonstrate that RPE PPLN waveguides can be used to implement fully integrated fiber-laser-based FCG systems taking advantage of unprecedented octave-spanning spectral broadening of the input pulses in combination with simultaneous phase sensing inside the same waveguide.
Report of the Colloquium on the Classics in Education, 1965.
ERIC Educational Resources Information Center
Else, Gerald F., Ed.
This is the report of an international meeting on the Classics, conducted August 1965 in London, England. Resolutions adopted by the Colloquium, minutes of group sessions, papers, and national reports on the state of classical education are presented. Group sessions discuss the teaching of classical languages, classical literatures, and ancient…
NASA Astrophysics Data System (ADS)
Shara, Michael M.; Doyle, Trisha F.; Lauer, Tod R.; Zurek, David; Neill, J. D.; Madrid, Juan P.; Mikołajewska, Joanna; Welch, D. L.; Baltz, Edward A.
2016-11-01
The Hubble Space Telescope has imaged the central part of M87 over a 10 week span, leading to the discovery of 32 classical novae (CNe) and nine fainter, likely very slow, and/or symbiotic novae. In this first paper of a series, we present the M87 nova finder charts, and the light and color curves of the novae. We demonstrate that the rise and decline times, and the colors of M87 novae are uncorrelated with each other and with position in the galaxy. The spatial distribution of the M87 novae follows the light of the galaxy, suggesting that novae accreted by M87 during cannibalistic episodes are well-mixed. Conservatively using only the 32 brightest CNe we derive a nova rate for M87: {363}-45+33 novae yr‑1. We also derive the luminosity-specific classical nova rate for this galaxy, which is {7.88}-2.6+2.3 {yr}}-1/{10}10 {L}ȯ {,}K. Both rates are 3–4 times higher than those reported for M87 in the past, and similarly higher than those reported for all other galaxies. We suggest that most previous ground-based surveys for novae in external galaxies, including M87, miss most faint, fast novae, and almost all slow novae near the centers of galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory
NASA Astrophysics Data System (ADS)
Riello, Aldo
2018-01-01
I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.
Projective loop quantum gravity. I. State space
NASA Astrophysics Data System (ADS)
Lanéry, Suzanne; Thiemann, Thomas
2016-12-01
Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski to describe quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces. Beside the physical motivations for this approach, it could help designing a quantum state space holding the states we need. In a latter work by Okolów, the description of a theory of Abelian connections within this framework was developed, an important insight being to use building blocks labeled by combinations of edges and surfaces. The present work generalizes this construction to an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This involves refining the definition of the label set, as well as deriving explicit formulas to relate the Hilbert spaces attached to different labels. If the gauge group happens to be compact, we also have at our disposal the well-established Ashtekar-Lewandowski Hilbert space, which is defined as an inductive limit using building blocks labeled by edges only. We then show that the quantum state space presented here can be thought as a natural extension of the space of density matrices over this Hilbert space. In addition, it is manifest from the classical counterparts of both formalisms that the projective approach allows for a more balanced treatment of the holonomy and flux variables, so it might pave the way for the development of more satisfactory coherent states.
NASA Astrophysics Data System (ADS)
Bowman, Dominic M.; Kurtz, Donald W.
2018-05-01
The δ Sct stars are a diverse group of intermediate-mass pulsating stars located on and near the main sequence within the classical instability strip in the Hertzsprung-Russell diagram. Many of these stars are hybrid stars pulsating simultaneously with pressure and gravity modes that probe the physics at different depths within a star's interior. Using two large ensembles of δ Sct stars observed by the Kepler Space Telescope, the instrumental biases inherent to Kepler mission data and the statistical properties of these stars are investigated. An important focus of this work is an analysis of the relationships between the pulsational and stellar parameters, and their distribution within the classical instability strip. It is found that a non-negligible fraction of main-sequence δ Sct stars exist outside theoretical predictions of the classical instability boundaries, which indicates the necessity of a mass-dependent mixing length parameter to simultaneously explain low and high radial order pressure modes in δ Sct stars within the Hertzsprung-Russell diagram. Furthermore, a search for regularities in the amplitude spectra of these stars is also presented, specifically the frequency difference between pressure modes of consecutive radial order. In this work, it is demonstrated that an ensemble-based approach using space photometry from the Kepler mission is not only plausible for δ Sct stars, but that it is a valuable method for identifying the most promising stars for mode identification and asteroseismic modelling. The full scientific potential of studying δ Sct stars is as yet unrealized. The ensembles discussed in this paper represent a high-quality data set for future studies of rotation and angular momentum transport inside A and F stars using asteroseismology.
NASA Astrophysics Data System (ADS)
Cusimano, N.; Gerardo-Giorda, L.
2018-06-01
Classical models of electrophysiology do not typically account for the effects of high structural heterogeneity in the spatio-temporal description of excitation waves propagation. We consider a modification of the Monodomain model obtained by replacing the diffusive term of the classical formulation with a fractional power of the operator, defined in the spectral sense. The resulting nonlocal model describes different levels of tissue heterogeneity as the fractional exponent is varied. The numerical method for the solution of the fractional Monodomain relies on an integral representation of the nonlocal operator combined with a finite element discretisation in space, allowing to handle in a natural way bounded domains in more than one spatial dimension. Numerical tests in two spatial dimensions illustrate the features of the model. Activation times, action potential duration and its dispersion throughout the domain are studied as a function of the fractional parameter: the expected peculiar behaviour driven by tissue heterogeneities is recovered.
Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Julian; Kaiser, Dustin; Engel, Volker
2016-05-07
Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion ismore » treated on the same footing.« less
NASA Astrophysics Data System (ADS)
Dvoretskaya, Olga A.; Kondratenko, Peter S.
2009-04-01
We study the transport of impurity particles on a comb structure in the presence of advection. The main body concentration and asymptotic concentration distributions are obtained. Seven different transport regimes occur on the comb structure with finite teeth: classical diffusion, advection, quasidiffusion, subdiffusion, slow classical diffusion, and two kinds of slow advection. Quasidiffusion deserves special attention. It is characterized by a linear growth of the mean-square displacement. However, quasidiffusion is an anomalous transport regime. We established that a change in transport regimes in time leads to a change in regimes in space. Concentration tails have a cascade structure, namely, consisting of several parts.
Nácul, Miguel Prestes; Cavazzola, Leandro Totti; Loureiro, Marcelo de Paula; Bonin, Eduardo Aimoré; Ferreira, Paulo Roberto Walter
2015-09-01
To evaluate a new, low-cost, reusable balloon trocar device for dissection of the preperitoneal space during endoscopic surgery. Twenty swine (weight: 15-37 kg) were randomized to two groups, according to whether the preperitoneal space was created with a new balloon device manufactured by Bhio-Supply (group B) or with the commercially available OMSPDB 1000® balloon device manufactured by Covidien (group C). Quality and size of the created preperitoneal space, identification of anatomic structures, balloon dissection time, total procedure time, balloon resistance and internal pressure after insufflation with 300 mL of ambient air, balloon-related complications, and procedure cost were assessed. No significant differences in dissection time, total procedure time, or size of the created preperitoneal space were found between the groups. Balloons in group B had a significantly higher internal pressure compared to balloons in group C. None of the balloons ruptured during the experiment. Three animals in group C had balloon-related peritoneal lacerations. Despite a higher individual device cost, group B had a lower procedure cost over the entire experiment. The new balloon device is not inferior to the commercially available device in terms of the safety and effectiveness for creating a preperitoneal space in swine.
Phase Transitions and Scaling in Systems Far from Equilibrium
NASA Astrophysics Data System (ADS)
Täuber, Uwe C.
2017-03-01
Scaling ideas and renormalization group approaches proved crucial for a deep understanding and classification of critical phenomena in thermal equilibrium. Over the past decades, these powerful conceptual and mathematical tools were extended to continuous phase transitions separating distinct nonequilibrium stationary states in driven classical and quantum systems. In concordance with detailed numerical simulations and laboratory experiments, several prominent dynamical universality classes have emerged that govern large-scale, long-time scaling properties both near and far from thermal equilibrium. These pertain to genuine specific critical points as well as entire parameter space regions for steady states that display generic scale invariance. The exploration of nonstationary relaxation properties and associated physical aging scaling constitutes a complementary potent means to characterize cooperative dynamics in complex out-of-equilibrium systems. This review describes dynamic scaling features through paradigmatic examples that include near-equilibrium critical dynamics, driven lattice gases and growing interfaces, correlation-dominated reaction-diffusion systems, and basic epidemic models.
A comparative study of upwind and MacCormack schemes for CAA benchmark problems
NASA Technical Reports Server (NTRS)
Viswanathan, K.; Sankar, L. N.
1995-01-01
In this study, upwind schemes and MacCormack schemes are evaluated as to their suitability for aeroacoustic applications. The governing equations are cast in a curvilinear coordinate system and discretized using finite volume concepts. A flux splitting procedure is used for the upwind schemes, where the signals crossing the cell faces are grouped into two categories: signals that bring information from outside into the cell, and signals that leave the cell. These signals may be computed in several ways, with the desired spatial and temporal accuracy achieved by choosing appropriate interpolating polynomials. The classical MacCormack schemes employed here are fourth order accurate in time and space. Results for categories 1, 4, and 6 of the workshop's benchmark problems are presented. Comparisons are also made with the exact solutions, where available. The main conclusions of this study are finally presented.
Study of pulsations of chemically peculiar a stars
NASA Astrophysics Data System (ADS)
Sachkov, M. E.
2014-01-01
Rapidly oscillating chemically peculiar A stars (roAp) pulsate in high-overtone, low degree p-modes and form a sub-group of chemically peculiar magnetic A stars (Ap). Until recently, the classical asteroseismic research, i.e., frequency analysis, of these stars was based on photometric observations both ground-based and space-based. Significant progress has been achieved by obtaining uninterrupted, ultra-high precision data from the MOST, COROT, and Kepler satellites. Over the last ten years, a real breakthrough was achieved in the study of roAp stars due to the time-resolved, high spectral resolution spectroscopic observations. Unusual pulsational characteristics of these stars, caused by the interaction between propagating pulsationwaves and strong stratification of chemical elements, provide an opportunity to study the upper roAp star atmosphere in more detail than is possible for any star but the Sun, using spectroscopic data. In this paper the results of recent pulsation studies of these stars are reviewed.
Stevens, Andreas; Schwarz, Jürgen; Schwarz, Benedikt; Ruf, Ilona; Kolter, Thomas; Czekalla, Joerg
2002-03-01
Novel and classic neuroleptics differ in their effects on limbic striatal/nucleus accumbens (NA) and prefrontal cortex (PFC) dopamine turnover, suggesting differential effects on implicit and explicit learning as well as on anhedonia. The present study investigates whether such differences can be demonstrated in a naturalistic sample of schizophrenic patients. Twenty-five inpatients diagnosed with DSM-IV schizophrenic psychosis and treated for at least 14 days with the novel neuroleptic olanzapine were compared with 25 schizophrenics taking classic neuroleptics and with 25 healthy controls, matched by age and education level. PFC/NA-dependent implicit learning was assessed by a serial reaction time task (SRTT) and compared with cerebellum-mediated classical eye-blink conditioning and explicit visuospatial memory. Anhedonia was measured with the Snaith-Hamilton-Pleasure Scale (SHAPS). Implicit (SRTT) and psychomotor speed, but not explicit (visuospatial) learning were superior in the olanzapine-treated group as compared to the patients on classic neuroleptics. Compared to healthy controls, olanzapine-treated schizophrenics showed similar implicit learning, but reduced explicit (visuospatial) memory performance. Acquisition of eyeblink conditioning was not different between the three groups. There was no difference with regard to anhedonia and SANS scores between the patients. Olanzapine seems to interfere less with unattended learning and motor speed than classical neuroleptics. In daily life, this may translate into better adaptation to a rapidly changing environment. The effects seem specific, as in explicit learning and eyeblink conditioning no difference to classic NL was found.
Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel
2015-12-15
The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.
Invariant classification of second-order conformally flat superintegrable systems
NASA Astrophysics Data System (ADS)
Capel, J. J.; Kress, J. M.
2014-12-01
In this paper we continue the work of Kalnins et al in classifying all second-order conformally-superintegrable (Laplace-type) systems over conformally flat spaces, using tools from algebraic geometry and classical invariant theory. The results obtained show, through Stäckel equivalence, that the list of known nondegenerate superintegrable systems over three-dimensional conformally flat spaces is complete. In particular, a seven-dimensional manifold is determined such that each point corresponds to a conformal class of superintegrable systems. This manifold is foliated by the nonlinear action of the conformal group in three dimensions. Two systems lie in the same conformal class if and only if they lie in the same leaf of the foliation. This foliation is explicitly described using algebraic varieties formed from representations of the conformal group. The proof of these results rely heavily on Gröbner basis calculations using the computer algebra software packages Maple and Singular.
Recurrence theorems: A unified account
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, David, E-mail: david.wallace@balliol.ox.ac.uk
I discuss classical and quantum recurrence theorems in a unified manner, treating both as generalisations of the fact that a system with a finite state space only has so many places to go. Along the way, I prove versions of the recurrence theorem applicable to dynamics on linear and metric spaces and make some comments about applications of the classical recurrence theorem in the foundations of statistical mechanics.
Classical and quantum dynamics in an inverse square potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillaumín-España, Elisa, E-mail: ege@correo.azc.uam.mx; Núñez-Yépez, H. N., E-mail: nyhn@xanum.uam.mx; Salas-Brito, A. L., E-mail: asb@correo.azc.uam.mx
2014-10-15
The classical motion of a particle in a 3D inverse square potential with negative energy, E, is shown to be geodesic, i.e., equivalent to the particle's free motion on a non-compact phase space manifold irrespective of the sign of the coupling constant. We thus establish that all its classical orbits with E < 0 are unbounded. To analyse the corresponding quantum problem, the Schrödinger equation is solved in momentum space. No discrete energy levels exist in the unrenormalized case and the system shows a complete “fall-to-the-center” with an energy spectrum unbounded by below. Such behavior corresponds to the non-existence ofmore » bound classical orbits. The symmetry of the problem is SO(3) × SO(2, 1) corroborating previously obtained results.« less
A new time domain random walk method for solute transport in 1-D heterogeneous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banton, O.; Delay, F.; Porel, G.
A new method to simulate solute transport in 1-D heterogeneous media is presented. This time domain random walk method (TDRW), similar in concept to the classical random walk method, calculates the arrival time of a particle cloud at a given location (directly providing the solute breakthrough curve). The main advantage of the method is that the restrictions on the space increments and the time steps which exist with the finite differences and random walk methods are avoided. In a homogeneous zone, the breakthrough curve (BTC) can be calculated directly at a given distance using a few hundred particles or directlymore » at the boundary of the zone. Comparisons with analytical solutions and with the classical random walk method show the reliability of this method. The velocity and dispersivity calculated from the simulated results agree within two percent with the values used as input in the model. For contrasted heterogeneous media, the random walk can generate high numerical dispersion, while the time domain approach does not.« less
NASA Astrophysics Data System (ADS)
Schleich, Wolfgang P.
2001-04-01
Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.
Gauge interaction as periodicity modulation
NASA Astrophysics Data System (ADS)
Dolce, Donatello
2012-06-01
The paper is devoted to a geometrical interpretation of gauge invariance in terms of the formalism of field theory in compact space-time dimensions (Dolce, 2011) [8]. In this formalism, the kinematic information of an interacting elementary particle is encoded on the relativistic geometrodynamics of the boundary of the theory through local transformations of the underlying space-time coordinates. Therefore gauge interactions are described as invariance of the theory under local deformations of the boundary. The resulting local variations of the field solution are interpreted as internal transformations. The internal symmetries of the gauge theory turn out to be related to corresponding space-time local symmetries. In the approximation of local infinitesimal isometric transformations, Maxwell's kinematics and gauge invariance are inferred directly from the variational principle. Furthermore we explicitly impose periodic conditions at the boundary of the theory as semi-classical quantization condition in order to investigate the quantum behavior of gauge interaction. In the abelian case the result is a remarkable formal correspondence with scalar QED.
Aeroacoustics Computation for Nearly Fully Expanded Supersonic Jets Using the CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Hultgren, Lennart S.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.
2000-01-01
In this paper, the space-time conservation element solution element (CE/SE) method is tested in the classical axisymmetric jet instability problem, rendering good agreement with the linear theory. The CE/SE method is then applied to numerical simulations of several nearly fully expanded axisymmetric jet flows and their noise fields and qualitative agreement with available experimental and theoretical results is demonstrated.
Spaced education activates students in a theoretical radiological science course: a pilot study.
Nkenke, Emeka; Vairaktaris, Elefterios; Bauersachs, Anne; Eitner, Stephan; Budach, Alexander; Knipfer, Christian; Stelzle, Florian
2012-05-23
The present study aimed at determining if the addition of spaced education to traditional face-to-face lectures increased the time students kept busy with the learning content of a theoretical radiological science course. The study comprised two groups of 21 third-year dental students. The students were randomly assigned to a "traditional group" and a "spaced education group". Both groups followed a traditional face-to-face course. The intervention in the spaced education group was performed in way that these students received e-mails with a delay of 14 days to each face-to-face lecture. These e-mails contained multiple choice questions on the learning content of the lectures. The students returned their answers to the questions also by e-mail. On return they received an additional e-mail that included the correct answers and additional explanatory material.All students of both groups documented the time they worked on the learning content of the different lectures before a multiple choice exam was held after the completion of the course. All students of both groups completed the TRIL questionnaire (Trierer Inventar zur Lehrevaluation) for the evaluation of courses at university after the completion of the course. The results for the time invested in the learning content and the results of the questionnaire for the two groups were compared using the Mann-Whitney-U test. The spaced education group spent significantly more time (216.2 ± 123.9 min) on keeping busy with the learning content compared to the traditional group (58.4 ± 94.8 min, p < .0005). The spaced education group rated the didactics of the course significantly better than the traditional group (p = .034). The students of the spaced education group also felt that their needs were fulfilled significantly better compared to the traditional group as far as communication with the teacher was concerned (p = .022). Adding spaced education to a face-to-face theoretical radiological science course activates students in a way that they spend significantly more time on keeping busy with the learning content.
NASA Astrophysics Data System (ADS)
Cai, Xiaofeng; Guo, Wei; Qiu, Jing-Mei
2018-02-01
In this paper, we develop a high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for nonlinear Vlasov-Poisson (VP) simulations without operator splitting. In particular, we combine two recently developed novel techniques: one is the high order non-splitting SLDG transport method (Cai et al. (2017) [4]), and the other is the high order characteristics tracing technique proposed in Qiu and Russo (2017) [29]. The proposed method with up to third order accuracy in both space and time is locally mass conservative, free of splitting error, positivity-preserving, stable and robust for large time stepping size. The SLDG VP solver is applied to classic benchmark test problems such as Landau damping and two-stream instabilities for VP simulations. Efficiency and effectiveness of the proposed scheme is extensively tested. Tremendous CPU savings are shown by comparisons between the proposed SL DG scheme and the classical Runge-Kutta DG method.
Linear dynamics of classical spin as Mobius transformation
Galda, Alexey; Vinokur, Valerii Ð.
2017-04-26
Though the overwhelming majority of natural processes occur far from the equilibrium, general theoretical approaches to non-equilibrium phase transitions remain scarce. Recent breakthroughs introduced a description of open dissipative systems in terms of non-Hermitian quantum mechanics enabling the identification of a class of non-equilibrium phase transitions associated with the loss of combined parity (reflection) and time-reversal symmetries. Here we report that the time evolution of a single classical spin (e.g. monodomain ferromagnet) governed by the Landau-Lifshitz-Gilbert-Slonczewski equation in the absence of magnetic anisotropy terms is described by a Mobius transformation in complex stereographic coordinates. We identify the parity-time symmetry-breaking phasemore » transition occurring in spin-transfer torque-driven linear spin systems as a transition between hyperbolic and loxodromic classes of Mobius transformations, with the critical point of the transition corresponding to the parabolic transformation. However, this establishes the understanding of non-equilibrium phase transitions as topological transitions in configuration space.« less
Symmetries and Invariants of Twisted Quantum Algebras and Associated Poisson Algebras
NASA Astrophysics Data System (ADS)
Molev, A. I.; Ragoucy, E.
We construct an action of the braid group BN on the twisted quantized enveloping algebra U q'( {o}N) where the elements of BN act as automorphisms. In the classical limit q → 1, we recover the action of BN on the polynomial functions on the space of upper triangular matrices with ones on the diagonal. The action preserves the Poisson bracket on the space of polynomials which was introduced by Nelson and Regge in their study of quantum gravity and rediscovered in the mathematical literature. Furthermore, we construct a Poisson bracket on the space of polynomials associated with another twisted quantized enveloping algebra U q'( {sp}2n). We use the Casimir elements of both twisted quantized enveloping algebras to reproduce and construct some well-known and new polynomial invariants of the corresponding Poisson algebras.
Influence of classical and rock music on red blood cell rheological properties in rats.
Erken, Gulten; Bor Kucukatay, Melek; Erken, Haydar Ali; Kursunluoglu, Raziye; Genc, Osman
2008-01-01
A number of studies have reported physiological effects of music. Different types of music have been found to induce different alterations. Although some physiological and psychological parameters have been demonstrated to be influenced by music, the effect of music on hemorheological parameters such as red blood cell (RBC) deformability and aggregation are unknown. This study aimed at investigating the effects of classical and rock music on hemorheological parameters in rats. Twenty-eight rats were divided into four groups: the control, noise-applied, and the classical music- and rock music-applied groups. Taped classical or rock music were played repeatedly for 1 hour a day for 2 weeks and 95-dB machine sound was applied to the noise-applied rats during the same period. RBC deformability and aggregation were measured using an ektacytometer. RBC deformability was found to be increased in the classical music group. Exposure to both classical and rock music resulted in a decrement in erythrocyte aggregation, but the decline in RBC aggregation was of a higher degree of significance in the classical music group. Exposure to noise did not have any effect on the parameters studied. The results of this study indicate that the alterations in hemorheological parameters were more pronounced in the classical music group compared with the rock music group.
NASA Astrophysics Data System (ADS)
Malpathak, Shreyas; Ma, Xinyou; Hase, William L.
2018-04-01
In a previous UB3LYP/6-31G* direct dynamics simulation, non-Rice-Ramsperger-Kassel-Marcus (RRKM) unimolecular dynamics was found for vibrationally excited 1,2-dioxetane (DO); [R. Sun et al., J. Chem. Phys. 137, 044305 (2012)]. In the work reported here, these dynamics are studied in more detail using the same direct dynamics method. Vibrational modes of DO were divided into 4 groups, based on their characteristic motions, and each group excited with the same energy. To compare with the dynamics of these groups, an additional group of trajectories comprising a microcanonical ensemble was also simulated. The results of these simulations are consistent with the previous study. The dissociation probability, N(t)/N(0), for these excitation groups were all different. Groups A, B, and C, without initial excitation in the O-O stretch reaction coordinate, had a time lag to of 0.25-1.0 ps for the first dissociation to occur. Somewhat surprisingly, the C-H stretch Group A and out-of-plane motion Group C excitations had exponential dissociation probabilities after to, with a rate constant ˜2 times smaller than the anharmonic RRKM value. Groups B and D, with excitation of the H-C-H bend and wag, and ring bend and stretch modes, respectively, had bi-exponential dissociation probabilities. For Group D, with excitation localized in the reaction coordinate, the initial rate constant is ˜7 times larger than the anharmonic RRKM value, substantial apparent non-RRKM dynamics. N(t)/N(0) for the random excitation trajectories was non-exponential, indicating intrinsic non-RRKM dynamics. For the trajectory integration time of 13.5 ps, 9% of these trajectories did not dissociate in comparison to the RRKM prediction of 0.3%. Classical power spectra for these trajectories indicate they have regular intramolecular dynamics. The N(t)/N(0) for the excitation groups are well described by a two-state coupled phase space model. From the intercept of N(t)/N(0) with random excitation, the anharmonic correction to the RRKM rate constant is approximately a factor of 1.5.
Pair production in classical Stueckelberg-Horwitz-Piron electrodynamics
NASA Astrophysics Data System (ADS)
Land, Martin
2015-05-01
We calculate pair production from bremsstrahlung as a classical effect in Stueckelberg-Horwitz electrodynamics. In this framework, worldlines are traced out dynamically through the evolution of events xμ(τ) parameterized by a chronological time τ that is independent of the spacetime coordinates. These events, defined in an unconstrained 8D phase space, interact through five τ-dependent gauge fields induced by the event evolution. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. In particular, the total mass-energy-momentum of particles and fields is conserved, but the mass-shell constraint is lifted from individual interacting events, so that the Feynman-Stueckelberg interpretation of pair creation/annihilation is implemented in classical mechanics. We consider a three-stage interaction which when parameterized by the laboratory clock x0 appears as (1) particle-1 scatters on a heavy nucleus to produce bremsstrahlung, (2) the radiation field produces a particle/antiparticle pair, (3) the antiparticle is annihilated with particle-2 in the presence of a second heavy nucleus. When parameterized in chronological time τ, the underlying process develops as (1) particle-2 scatters on the second nucleus and begins evolving backward in time with negative energy, (2) particle-1 scatters on the first nucleus and releases bremsstrahlung, (3) particle-2 absorbs radiation which returns it to forward time evolution with positive energy.
Universality in quantum chaos and the one-parameter scaling theory.
García-García, Antonio M; Wang, Jiao
2008-02-22
The one-parameter scaling theory is adapted to the context of quantum chaos. We define a generalized dimensionless conductance, g, semiclassically and then study Anderson localization corrections by renormalization group techniques. This analysis permits a characterization of the universality classes associated to a metal (g-->infinity), an insulator (g-->0), and the metal-insulator transition (g-->g(c)) in quantum chaos provided that the classical phase space is not mixed. According to our results the universality class related to the metallic limit includes all the systems in which the Bohigas-Giannoni-Schmit conjecture holds but automatically excludes those in which dynamical localization effects are important. The universality class related to the metal-insulator transition is characterized by classical superdiffusion or a fractal spectrum in low dimensions (d < or = 2). Several examples are discussed in detail.
NASA Astrophysics Data System (ADS)
Zhou, Hang
Quantum walks are the quantum mechanical analogue of classical random walks. Discrete-time quantum walks have been introduced and studied mostly on the line Z or higher dimensional space Zd but rarely defined on graphs with fractal dimensions because the coin operator depends on the position and the Fourier transform on the fractals is not defined. Inspired by its nature of classical walks, different quantum walks will be defined by choosing different shift and coin operators. When the coin operator is uniform, the results of classical walks will be obtained upon measurement at each step. Moreover, with measurement at each step, our results reveal more information about the classical random walks. In this dissertation, two graphs with fractal dimensions will be considered. The first one is Sierpinski gasket, a degree-4 regular graph with Hausdorff dimension of df = ln 3/ ln 2. The second is the Cantor graph derived like Cantor set, with Hausdorff dimension of df = ln 2/ ln 3. The definitions and amplitude functions of the quantum walks will be introduced. The main part of this dissertation is to derive a recursive formula to compute the amplitude Green function. The exiting probability will be computed and compared with the classical results. When the generation of graphs goes to infinity, the recursion of the walks will be investigated and the convergence rates will be obtained and compared with the classical counterparts.
Invariant Poisson-Nijenhuis structures on Lie groups and classification
NASA Astrophysics Data System (ADS)
Ravanpak, Zohreh; Rezaei-Aghdam, Adel; Haghighatdoost, Ghorbanali
We study right-invariant (respectively, left-invariant) Poisson-Nijenhuis structures (P-N) on a Lie group G and introduce their infinitesimal counterpart, the so-called r-n structures on the corresponding Lie algebra 𝔤. We show that r-n structures can be used to find compatible solutions of the classical Yang-Baxter equation (CYBE). Conversely, two compatible r-matrices from which one is invertible determine an r-n structure. We classify, up to a natural equivalence, all r-matrices and all r-n structures with invertible r on four-dimensional symplectic real Lie algebras. The result is applied to show that a number of dynamical systems which can be constructed by r-matrices on a phase space whose symmetry group is Lie group a G, can be specifically determined.
NASA Astrophysics Data System (ADS)
Korovin, Iakov S.; Tkachenko, Maxim G.
2018-03-01
In this paper we present a heuristic approach, improving the efficiency of methods, used for creation of efficient architecture of water distribution networks. The essence of the approach is a procedure of search space reduction the by limiting the range of available pipe diameters that can be used for each edge of the network graph. In order to proceed the reduction, two opposite boundary scenarios for the distribution of flows are analysed, after which the resulting range is further narrowed by applying a flow rate limitation for each edge of the network. The first boundary scenario provides the most uniform distribution of the flow in the network, the opposite scenario created the net with the highest possible flow level. The parameters of both distributions are calculated by optimizing systems of quadratic functions in a confined space, which can be effectively performed with small time costs. This approach was used to modify the genetic algorithm (GA). The proposed GA provides a variable number of variants of each gene, according to the number of diameters in list, taking into account flow restrictions. The proposed approach was implemented to the evaluation of a well-known test network - the Hanoi water distribution network [1], the results of research were compared with a classical GA with an unlimited search space. On the test data, the proposed trip significantly reduced the search space and provided faster and more obvious convergence in comparison with the classical version of GA.
Anderson localization and Mott insulator phase in the time domain
Sacha, Krzysztof
2015-01-01
Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169
NASA Astrophysics Data System (ADS)
Başkal, Sibel
2015-11-01
This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.
Hermite polynomials and quasi-classical asymptotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, S. Twareque, E-mail: twareque.ali@concordia.ca; Engliš, Miroslav, E-mail: englis@math.cas.cz
2014-04-15
We study an unorthodox variant of the Berezin-Toeplitz type of quantization scheme, on a reproducing kernel Hilbert space generated by the real Hermite polynomials and work out the associated quasi-classical asymptotics.
Paul, Amit K; Hase, William L
2016-01-28
A zero-point energy (ZPE) constraint model is proposed for classical trajectory simulations of unimolecular decomposition and applied to CH4* → H + CH3 decomposition. With this model trajectories are not allowed to dissociate unless they have ZPE in the CH3 product. If not, they are returned to the CH4* region of phase space and, if necessary, given additional opportunities to dissociate with ZPE. The lifetime for dissociation of an individual trajectory is the time it takes to dissociate with ZPE in CH3, including multiple possible returns to CH4*. With this ZPE constraint the dissociation of CH4* is exponential in time as expected for intrinsic RRKM dynamics and the resulting rate constant is in good agreement with the harmonic quantum value of RRKM theory. In contrast, a model that discards trajectories without ZPE in the reaction products gives a CH4* → H + CH3 rate constant that agrees with the classical and not quantum RRKM value. The rate constant for the purely classical simulation indicates that anharmonicity may be important and the rate constant from the ZPE constrained classical trajectory simulation may not represent the complete anharmonicity of the RRKM quantum dynamics. The ZPE constraint model proposed here is compared with previous models for restricting ZPE flow in intramolecular dynamics, and connecting product and reactant/product quantum energy levels in chemical dynamics simulations.
Quantum computation in the analysis of hyperspectral data
NASA Astrophysics Data System (ADS)
Gomez, Richard B.; Ghoshal, Debabrata; Jayanna, Anil
2004-08-01
Recent research on the topic of quantum computation provides us with some quantum algorithms with higher efficiency and speedup compared to their classical counterparts. In this paper, it is our intent to provide the results of our investigation of several applications of such quantum algorithms - especially the Grover's Search algorithm - in the analysis of Hyperspectral Data. We found many parallels with Grover's method in existing data processing work that make use of classical spectral matching algorithms. Our efforts also included the study of several methods dealing with hyperspectral image analysis work where classical computation methods involving large data sets could be replaced with quantum computation methods. The crux of the problem in computation involving a hyperspectral image data cube is to convert the large amount of data in high dimensional space to real information. Currently, using the classical model, different time consuming methods and steps are necessary to analyze these data including: Animation, Minimum Noise Fraction Transform, Pixel Purity Index algorithm, N-dimensional scatter plot, Identification of Endmember spectra - are such steps. If a quantum model of computation involving hyperspectral image data can be developed and formalized - it is highly likely that information retrieval from hyperspectral image data cubes would be a much easier process and the final information content would be much more meaningful and timely. In this case, dimensionality would not be a curse, but a blessing.
Guan, Ying; Ding, Xi-Feng; Wang, Wen-Jing; Guo, Xi-Hua; Zhu, Yan-Ying
2008-02-01
The contents of various elements in the fourth generation Belamcanda chinensis (L.) DC. with space mutagenesis breeding were analyzed and characterized. X-ray fluorescence spectrum analysis (XRF) and powder X-ray diffraction (PXRD) were applied jointly. It was found that the content of K element in the space flight mutagenesis increases 1.03 and 0.31 times, Mg enhances 1.44 and 0.06 times, but Al reduces 38.5% and 85.5% respectively compared to the contents in the ground group and the comparison group, while those of Ca, Mn and Fe enhance 0.95, 0.30 and 0.29 times respectively contrasted to the ground group. Besides, there was discovered the crystal of whewellite in the Belamcanda chinensis (L.) DC. and the content in the ground group is less than that of the outer space and the outer space group, which in turn is less than that of the comparison group. It is concluded that the contents of mineral elements indispensable to body in the space group are closer or superior to the comparison, group as compared to the ground group. In the present paper, a quick and simple appraising method is offered, which may be of great significance to the popularization of the planting outer space Chinese traditional medicine to filtrate more excellent breed and set up norm of quality appraisal.
Compare Complication of Classic versus Patent Hemostasis in Transradial Coronary Angiography
Roghani, Farshad; Tajik, Mohammad Nasim; Khosravi, Alireza
2017-01-01
Background: Coronary artery disease (CAD) is multifactorial disease, in which thrombotic occlusion and calcification occur usually. New strategies have been made for diagnosis and treatment of CAD, such as transradial catheterization. Hemostasis could be done in two approaches: traditional and patent. Our aim is to find the best approach with lowest complication. Materials and Methods: In a comparative study, 120 patients were recruited and divided randomly into two subgroups, including traditional group (60 patients; 24 females, 36 males; mean age: 64.35 ± 10.56 years) and patent group (60 patients; 28 females, 32 males; mean age: 60.15 ± 8.92 years). All demographic data including age, gender, body mass index, and CAD-related risk factors (smoking, diabetes, hypertension) and technical data including the number of catheters, procedure duration, and hemostatic compression time and clinical outcomes (radial artery occlusion [RAO], hematoma, bleeding) were collected. Data were analyzed by SPSS version 16. Results: Our findings revealed that the incidence of RAO was significantly lower in patent groups compared with traditional group (P = 0.041). Furthermore, the difference incidence of RAO was higher in early occlusion compare with late one (P = 0.041). Moreover, there were significant relationship between some factors in patients of traditional group with occlusion (gender [P = 0.038], age [P = 0.031], diabetes mellitus [P = 0.043], hemostatic compression time [P = 0.036]) as well as in patent group (age [P = 0.009], hypertension [P = 0.035]). Conclusion: Our findings showed that RAO, especially type early is significantly lower in patent method compared classic method; and patent hemostasis is the safest method and good alternative for classical method. PMID:29387670
Molecular symmetry with quaternions.
Fritzer, H P
2001-09-01
A new and relatively simple version of the quaternion calculus is offered which is especially suitable for applications in molecular symmetry and structure. After introducing the real quaternion algebra and its classical matrix representation in the group SO(4) the relations with vectors in 3-space and the connection with the rotation group SO(3) through automorphism properties of the algebra are discussed. The correlation of the unit quaternions with both the Cayley-Klein and the Euler parameters through the group SU(2) is presented. Besides rotations the extension of quaternions to other important symmetry operations, reflections and the spatial inversion, is given. Finally, the power of the quaternion calculus for molecular symmetry problems is revealed by treating some examples applied to icosahedral symmetry.
Alexandra, Proshchina; Anastasia, Kharlamova; Valeriy, Barabanov; Victoria, Gulimova; Sergey, Saveliev
2017-01-01
The aim of this study was to estimate the effects of long-term space flights on neuronal and glial cells of the vestibular cerebellum of C57/BL6N mice and thick-toed geckos (Chondrodactylus turnery GRAY, 1864). The cerebella from 26 mice and 13 geckos were used in this study. Ten mice and five geckos were flown aboard the BION-M1 biosatellite. The other animals were used as controls. We used immunohistochemical techniques and classical histological method to reveal cell types in the vestibular cerebellum. Nonspecific pathomorphological changes in the Purkinje cells (such as chromatolysis, vacuolization and hyperchromatosis) were observed in the flight groups. However, these changes are reversible and were also found in some neurons in the control groups. In addition, as the vestibular cerebellum is an evolutionarily stable structure, thick-toed geckos may be a useful model for space flight studies on the vertebrate cerebellum. Copyright © 2016 Elsevier B.V. All rights reserved.
Cosmological evolution as squeezing: a toy model for group field cosmology
NASA Astrophysics Data System (ADS)
Adjei, Eugene; Gielen, Steffen; Wieland, Wolfgang
2018-05-01
We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application.
Twitchett, Emily A; Angioi, Manuela; Koutedakis, Yiannis; Wyon, Matthew
2011-03-01
Research has indicated that classical ballet dancers tend to have lower fitness levels and increased injury rates compared to other athletes with similar workloads. The aim of the current study was to examine the effects of a specifically tailored fitness training programme on the incidence of injury and the aesthetic quality of performance of classical ballet dancers compared to a control group. Proficiency in performance was evaluated at the beginning and end of the intervention period for both groups through a 4-min dance sequence using previously ratified marking criteria. The intervention group (n = 8) partook in a weekly 1-hr training session that included aerobic interval training, circuit training, and whole body vibration. All dancers' performance proficiency scores increased from pre-intervention testing to post-intervention. The intervention group's overall performance scores demonstrated a significantly greater increase (p = 0.03) than the equivalent for the control group. It was concluded that supplementary fitness training has a positive effect on aspects related to aesthetic dance performance as studied herein; further research is recommended on a larger and more varied sample. Practical applications from this study suggest that supplemental training should be part of a ballet dancer's regime, and minimal intervention time is required to have observable effects.
XQ-NLM: Denoising Diffusion MRI Data via x-q Space Non-Local Patch Matching.
Chen, Geng; Wu, Yafeng; Shen, Dinggang; Yap, Pew-Thian
2016-10-01
Noise is a major issue influencing quantitative analysis in diffusion MRI. The effects of noise can be reduced by repeated acquisitions, but this leads to long acquisition times that can be unrealistic in clinical settings. For this reason, post-acquisition denoising methods have been widely used to improve SNR. Among existing methods, non-local means (NLM) has been shown to produce good image quality with edge preservation. However, currently the application of NLM to diffusion MRI has been mostly focused on the spatial space (i.e., the x -space), despite the fact that diffusion data live in a combined space consisting of the x -space and the q -space (i.e., the space of wavevectors). In this paper, we propose to extend NLM to both x -space and q -space. We show how patch-matching, as required in NLM, can be performed concurrently in x-q space with the help of azimuthal equidistant projection and rotation invariant features. Extensive experiments on both synthetic and real data confirm that the proposed x-q space NLM (XQ-NLM) outperforms the classic NLM.
Sleep Does Not Promote Solving Classical Insight Problems and Magic Tricks
Schönauer, Monika; Brodt, Svenja; Pöhlchen, Dorothee; Breßmer, Anja; Danek, Amory H.; Gais, Steffen
2018-01-01
During creative problem solving, initial solution attempts often fail because of self-imposed constraints that prevent us from thinking out of the box. In order to solve a problem successfully, the problem representation has to be restructured by combining elements of available knowledge in novel and creative ways. It has been suggested that sleep supports the reorganization of memory representations, ultimately aiding problem solving. In this study, we systematically tested the effect of sleep and time on problem solving, using classical insight tasks and magic tricks. Solving these tasks explicitly requires a restructuring of the problem representation and may be accompanied by a subjective feeling of insight. In two sessions, 77 participants had to solve classical insight problems and magic tricks. The two sessions either occurred consecutively or were spaced 3 h apart, with the time in between spent either sleeping or awake. We found that sleep affected neither general solution rates nor the number of solutions accompanied by sudden subjective insight. Our study thus adds to accumulating evidence that sleep does not provide an environment that facilitates the qualitative restructuring of memory representations and enables problem solving. PMID:29535620
Massless spinning particle and null-string on AdS d : projective-space approach
NASA Astrophysics Data System (ADS)
Uvarov, D. V.
2018-07-01
The massless spinning particle and the tensionless string models on an AdS d background in the projective-space realization are proposed as constrained Hamiltonian systems. Various forms of particle and string Lagrangians are derived and classical mechanics is studied including the Lax-type representation of the equations of motion. After that, the transition to the quantum theory is discussed. The analysis of potential anomalies in the tensionless string model necessitates the introduction of ghosts and BRST charge. It is shown that a quantum BRST charge is nilpotent for any d if coordinate-momentum ordering for the phase-space bosonic variables, Weyl ordering for the fermions and cb () ordering for the ghosts is chosen, while conformal reparametrizations and space-time dilatations turn out to be anomalous for ordering in terms of positive and negative Fourier modes of the phase-space variables and ghosts.
Classical and Quantum-Mechanical State Reconstruction
ERIC Educational Resources Information Center
Khanna, F. C.; Mello, P. A.; Revzen, M.
2012-01-01
The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…
Redundant Information and the Quantum-Classical Transition
ERIC Educational Resources Information Center
Riedel, Charles Jess
2012-01-01
A state selected at random from the Hilbert space of a many-body system is overwhelmingly likely to exhibit highly non-classical correlations. For these typical states, half of the environment must be measured by an observer to determine the state of a given subsystem. The objectivity of classical reality--the fact that multiple observers can each…
Dynamical Symmetries in Classical Mechanics
ERIC Educational Resources Information Center
Boozer, A. D.
2012-01-01
We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…
Positive contraction mappings for classical and quantum Schrödinger systems
NASA Astrophysics Data System (ADS)
Georgiou, Tryphon T.; Pavon, Michele
2015-03-01
The classical Schrödinger bridge seeks the most likely probability law for a diffusion process, in path space, that matches marginals at two end points in time; the likelihood is quantified by the relative entropy between the sought law and a prior. Jamison proved that the new law is obtained through a multiplicative functional transformation of the prior. This transformation is characterised by an automorphism on the space of endpoints probability measures, which has been studied by Fortet, Beurling, and others. A similar question can be raised for processes evolving in a discrete time and space as well as for processes defined over non-commutative probability spaces. The present paper builds on earlier work by Pavon and Ticozzi and begins by establishing solutions to Schrödinger systems for Markov chains. Our approach is based on the Hilbert metric and shows that the solution to the Schrödinger bridge is provided by the fixed point of a contractive map. We approach, in a similar manner, the steering of a quantum system across a quantum channel. We are able to establish existence of quantum transitions that are multiplicative functional transformations of a given Kraus map for the cases where the marginals are either uniform or pure states. As in the Markov chain case, and for uniform density matrices, the solution of the quantum bridge can be constructed from the fixed point of a certain contractive map. For arbitrary marginal densities, extensive numerical simulations indicate that iteration of a similar map leads to fixed points from which we can construct a quantum bridge. For this general case, however, a proof of convergence remains elusive.
NASA Astrophysics Data System (ADS)
Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.
2017-09-01
Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.
Interacting vector fields in relativity without relativity
NASA Astrophysics Data System (ADS)
Anderson, Edward; Barbour, Julian
2002-06-01
Barbour, Foster and Ó Murchadha have recently developed a new framework, called here the 3-space approach, for the formulation of classical bosonic dynamics. Neither time nor a locally Minkowskian structure of spacetime are presupposed. Both arise as emergent features of the world from geodesic-type dynamics on a space of three-dimensional metric-matter configurations. In fact gravity, the universal light-cone and Abelian gauge theory minimally coupled to gravity all arise naturally through a single common mechanism. It yields relativity - and more - without presupposing relativity. This paper completes the recovery of the presently known bosonic sector within the 3-space approach. We show, for a rather general ansatz, that 3-vector fields can interact among themselves only as Yang-Mills fields minimally coupled to gravity.
Grassmann matrix quantum mechanics
Anninos, Dionysios; Denef, Frederik; Monten, Ruben
2016-04-21
We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less
Semiclassical theory of electronically nonadiabatic transitions in molecular collision processes
NASA Technical Reports Server (NTRS)
Lam, K. S.; George, T. F.
1979-01-01
An introductory account of the semiclassical theory of the S-matrix for molecular collision processes is presented, with special emphasis on electronically nonadiabatic transitions. This theory is based on the incorporation of classical mechanics with quantum superposition, and in practice makes use of the analytic continuation of classical mechanics into the complex space of time domain. The relevant concepts of molecular scattering theory and related dynamical models are described and the formalism is developed and illustrated with simple examples - collinear collision of the A+BC type. The theory is then extended to include the effects of laser-induced nonadiabatic transitions. Two bound continuum processes collisional ionization and collision-induced emission also amenable to the same general semiclassical treatment are discussed.
Quantum no-singularity theorem from geometric flows
NASA Astrophysics Data System (ADS)
Alsaleh, Salwa; Alasfar, Lina; Faizal, Mir; Ali, Ahmed Farag
2018-04-01
In this paper, we analyze the classical geometric flow as a dynamical system. We obtain an action for this system, such that its equation of motion is the Raychaudhuri equation. This action will be used to quantize this system. As the Raychaudhuri equation is the basis for deriving the singularity theorems, we will be able to understand the effects and such a quantization will have on the classical singularity theorems. Thus, quantizing the geometric flow, we can demonstrate that a quantum space-time is complete (nonsingular). This is because the existence of a conjugate point is a necessary condition for the occurrence of singularities, and we will be able to demonstrate that such conjugate points cannot occur due to such quantum effects.
Interference in the classical probabilistic model and its representation in complex Hilbert space
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei Yu.
2005-10-01
The notion of a context (complex of physical conditions, that is to say: specification of the measurement setup) is basic in this paper.We show that the main structures of quantum theory (interference of probabilities, Born's rule, complex probabilistic amplitudes, Hilbert state space, representation of observables by operators) are present already in a latent form in the classical Kolmogorov probability model. However, this model should be considered as a calculus of contextual probabilities. In our approach it is forbidden to consider abstract context independent probabilities: “first context and only then probability”. We construct the representation of the general contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function (in particular, Schrödinger's dynamics) can be considered as Hilbert space projections of a realistic dynamics in a “prespace”. The basic condition for representing of the prespace-dynamics is the law of statistical conservation of energy-conservation of probabilities. In general the Hilbert space projection of the “prespace” dynamics can be nonlinear and even irreversible (but it is always unitary). Methods developed in this paper can be applied not only to quantum mechanics, but also to classical statistical mechanics. The main quantum-like structures (e.g., interference of probabilities) might be found in some models of classical statistical mechanics. Quantum-like probabilistic behavior can be demonstrated by biological systems. In particular, it was recently found in some psychological experiments.
Grewe, Oliver; Nagel, Frederik; Kopiez, Reinhard; Altenmüller, Eckart
2007-11-01
Most people are able to identify basic emotions expressed in music and experience affective reactions to music. But does music generally induce emotion? Does it elicit subjective feelings, physiological arousal, and motor reactions reliably in different individuals? In this interdisciplinary study, measurement of skin conductance, facial muscle activity, and self-monitoring were synchronized with musical stimuli. A group of 38 participants listened to classical, rock, and pop music and reported their feelings in a two-dimensional emotion space during listening. The first entrance of a solo voice or choir and the beginning of new sections were found to elicit interindividual changes in subjective feelings and physiological arousal. Quincy Jones' "Bossa Nova" motivated movement and laughing in more than half of the participants. Bodily reactions such as "goose bumps" and "shivers" could be stimulated by the "Tuba Mirum" from Mozart's Requiem in 7 of 38 participants. In addition, the authors repeated the experiment seven times with one participant to examine intraindividual stability of effects. This exploratory combination of approaches throws a new light on the astonishing complexity of affective music listening.
NASA Astrophysics Data System (ADS)
Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito
2017-10-01
The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.
Anomaly-free cosmological perturbations in effective canonical quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrau, Aurelien; Bojowald, Martin; Kagan, Mikhail
2015-05-01
This article lays out a complete framework for an effective theory of cosmological perturbations with corrections from canonical quantum gravity. Since several examples exist for quantum-gravity effects that change the structure of space-time, the classical perturbative treatment must be rethought carefully. The present discussion provides a unified picture of several previous works, together with new treatments of higher-order perturbations and the specification of initial states.
Compensated Crystal Assemblies for Type-II Entangled Photon Generation in Quantum Cluster States
2010-03-01
in quantum computational architectures that operate by principles entirely distinct from any based on classical physics. In contrast with other...of the SPDC spectral function, to enable applications in regions that have not been accessible with other methods. Quantum Information and Computation ...Eliminating frequency and space-time correlations in multi-photon states, PRA 64, 063815, 2001 [2]A. Zeilinger et.al. Experimental One-way computing
Particle localization, spinor two-valuedness, and Fermi quantization of tensor systems
NASA Technical Reports Server (NTRS)
Reifler, Frank; Morris, Randall
1994-01-01
Recent studies of particle localization shows that square-integrable positive energy bispinor fields in a Minkowski space-time cannot be physically distinguished from constrained tensor fields. In this paper we generalize this result by characterizing all classical tensor systems, which admit Fermi quantization, as those having unitary Lie-Poisson brackets. Examples include Euler's tensor equation for a rigid body and Dirac's equation in tensor form.
De sitter space and perpetuum mobile
NASA Astrophysics Data System (ADS)
Akhmedov, Emil T.; Buividovich, P. V.; Singleton, Douglas A.
2012-04-01
The general arguments that any interacting nonconformal classical field theory in de Sitter space leads to the possibility of constructing a perpetuum mobile is given. The arguments are based on the observation that massive free falling particles can radiate other massive particles on the classical level as seen by the free falling observer. The intensity of the radiation process is not zero even for particles with any finite mass, i.e., with a wavelength which is within causal domain. Hence, we conclude that either de Sitter space cannot exist eternally or that one can build a perpetuum mobile.
De sitter space and perpetuum mobile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhmedov, Emil T.; Buividovich, P. V.; Singleton, Douglas A.
2012-04-15
The general arguments that any interacting nonconformal classical field theory in de Sitter space leads to the possibility of constructing a perpetuum mobile is given. The arguments are based on the observation that massive free falling particles can radiate other massive particles on the classical level as seen by the free falling observer. The intensity of the radiation process is not zero even for particles with any finite mass, i.e., with a wavelength which is within causal domain. Hence, we conclude that either de Sitter space cannot exist eternally or that one can build a perpetuum mobile.
Linear and Non-linear Information Flows In Rainfall Field
NASA Astrophysics Data System (ADS)
Molini, A.; La Barbera, P.; Lanza, L. G.
The rainfall process is the result of a complex framework of non-linear dynamical in- teractions between the different components of the atmosphere. It preserves the com- plexity and the intermittent features of the generating system in space and time as well as the strong dependence of these properties on the scale of observations. The understanding and quantification of how the non-linearity of the generating process comes to influence the single rain events constitute relevant research issues in the field of hydro-meteorology, especially in those applications where a timely and effective forecasting of heavy rain events is able to reduce the risk of failure. This work focuses on the characterization of the non-linear properties of the observed rain process and on the influence of these features on hydrological models. Among the goals of such a survey is the research of regular structures of the rainfall phenomenon and the study of the information flows within the rain field. The research focuses on three basic evo- lution directions for the system: in time, in space and between the different scales. In fact, the information flows that force the system to evolve represent in general a connection between the different locations in space, the different instants in time and, unless assuming the hypothesis of scale invariance is verified "a priori", the different characteristic scales. A first phase of the analysis is carried out by means of classic statistical methods, then a survey of the information flows within the field is devel- oped by means of techniques borrowed from the Information Theory, and finally an analysis of the rain signal in the time and frequency domains is performed, with par- ticular reference to its intermittent structure. The methods adopted in this last part of the work are both the classic techniques of statistical inference and a few procedures for the detection of non-linear and non-stationary features within the process starting from measured data.
Sabetkish, Shabnam; Kajbafzadeh, Abdol-Mohammad; Sabetkish, Nastaran
2015-10-01
To present the feasibility of no skin incision orchiopexy in children with concomitant hypospadias and undescended testis (UDT) by a single subcoronal incision technique. To introduce the creation of subdartos muscle scrotal pouch with no scrotal skin incision. From one thousand and twenty-one children with hypospadias, 61 patients presented with concomitant palpable UDT and hypospadias. In group I (N = 34) single subcoronal incision with no scrotal skin incision was applied. In group II (N = 27), multi-incision technique was applied for classical orchiopexy and hypospadias surgery. For hypospadias reconstruction, all patients had classical subcoronal and para urethral plate incision with penile skin degloving according to the location of urethral meatus. Early and late complications, surgical time, hospital stay, and cosmetic results were recorded. Children with unilateral UDT and hypospadias had one incision in group I and three skin incisions in group II. Patients with bilateral UDT had one incision in group I and five skin incisions in group II. The operation time was significantly shorter in group I (93 ± 11 min) compared with group II (138 ± 17 min) (P = 0.03). Both groups were operated as day care basis; however, the hospital stay was slightly longer in group II (group I = 12 ± 2 h, vs group II = 16 ± 3 h) (P = 0.07). All testes were satisfactorily positioned into the bottom of the scrotum without development of any testicular atrophy. Single subcoronal penile skin incision is a feasible, safe, and cosmetically satisfactory technique in patients with hypospadias and concomitant UDT. Reduced postoperative pain, better objective cosmetic results, shorter operative time and comfortable post-operative period are the most significant advantages of this approach. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosales-Zarate, Laura E. C.; Drummond, P. D.
We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. Themore » preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.« less
Cosmic acceleration from M theory on twisted spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupane, Ishwaree P.; Wiltshire, David L.
2005-10-15
In a recent paper [I. P. Neupane and D. L. Wiltshire, Phys. Lett. B 619, 201 (2005).] we have found a new class of accelerating cosmologies arising from a time-dependent compactification of classical supergravity on product spaces that include one or more geometric twists along with nontrivial curved internal spaces. With such effects, a scalar potential can have a local minimum with positive vacuum energy. The existence of such a minimum generically predicts a period of accelerated expansion in the four-dimensional Einstein conformal frame. Here we extend our knowledge of these cosmological solutions by presenting new examples and discuss themore » properties of the solutions in a more general setting. We also relate the known (asymptotic) solutions for multiscalar fields with exponential potentials to the accelerating solutions arising from simple (or twisted) product spaces for internal manifolds.« less
Bowman, A; Scottish Spca; Dowell, F J; Evans, N P
2015-05-01
On admission to rescue and rehoming centres dogs are faced with a variety of short- and long-term stressors including novelty, spatial/social restriction and increased noise levels. Animate and inanimate environmental enrichment techniques have been employed within the kennel environment in an attempt to minimise stress experienced by dogs. Previous studies have shown the potential physiological and psychological benefits of auditory stimulation, particularly classical music, within the kennel environment. This study determined the physiological/psychological changes that occur when kennelled dogs are exposed to long-term (7 days) auditory stimulation in the form of classical music through assessment of effects on heart rate variability (HRV), salivary cortisol and behaviour. The study utilised a cross over design in which two groups were exposed to two consecutive 7 day treatments; silence (control) and classical music (test). Group A was studied under silent conditions followed by 7 days of test conditions during which a fixed classical music playlist was played from 10:00-16:30 h. Group B received treatment in the reverse order. Results showed that auditory stimulation induced changes in HRV and behavioural data indicative of reduced stress levels in dogs in both groups (salivary cortisol data did not show any consistent patterns of change throughout the study). Specifically, there was a significant increase in HRV parameters such as μRR, STDRR, RMSSD, pNN50, RRTI, SD1 and SD2 and a significant decrease in μHR and LF/HF from the first day of silence (S1) to the first day of music (M1). Similarly, examination of behavioural data showed that dogs in both groups spent significantly more time sitting/lying and silent and less time standing and barking during auditory stimulation. General Regression Analysis (GRA) of the change in HRV parameters from S1 to M1 revealed that male dogs responded better to auditory stimulation relative to female. Interestingly, HRV and behavioural data collected on the seventh day of music (M2) was similar to that collected on S1 suggesting that the calming effects of music are lost within the 7 days of exposure. A small '9-Day' study was conducted in attempt to determine the time-scale in which dogs become habituated to classical music and examination of the results suggests that this occurs within as soon as the second day of exposure. The results of this study show the potential of auditory stimulation as a highly effective environmental enrichment technique for kennelled dogs. However, the results also indicate the requirement for further investigations into the way in which auditory stimulation should be incorporated within the daily kennel management regime in order to harness the full physiological and psychological benefits of music. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sumin, M. I.
2015-06-01
A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.
NASA Astrophysics Data System (ADS)
Rastorguev, A. S.; Utkin, N. D.; Chumak, O. V.
2017-08-01
Agekyan's λ-factor that allows for the effect of multiplicity of stellar encounters with large impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters, is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was shown previously byKandrup using a different, more complex approach. In this case, the expressions for the diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence of two characteristic length scales inherent in the stellar medium.
Near-field limits on the role of faint galaxies in cosmic reionization
NASA Astrophysics Data System (ADS)
Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea
2014-09-01
Reionizing the Universe with galaxies appears to require significant star formation in low-mass haloes at early times, while local dwarf galaxy counts tell us that star formation has been minimal in small haloes around us today. Using simple models and the ELVIS simulation suite, we show that reionization scenarios requiring appreciable star formation in haloes with Mvir ≈ 108 M⊙ at z = 8 are in serious tension with galaxy counts in the Local Group. This tension originates from the seemingly inescapable conclusion that 30-60 haloes with Mvir > 108 M⊙ at z = 8 will survive to be distinct bound satellites of the Milky Way at z = 0. Reionization models requiring star formation in such haloes will produce dozens of bound galaxies in the Milky Way's virial volume today (and 100-200 throughout the Local Group), each with ≳105 M⊙ of old stars (≳13 Gyr). This exceeds the stellar mass function of classical Milky Way satellites today, even without allowing for the (significant) post-reionization star formation observed in these galaxies. One possible implication of these findings is that star formation became sharply inefficient in haloes smaller than ˜109 M⊙ at early times, implying that the high-z luminosity function must break at magnitudes brighter than is often assumed (at MUV ≃ -14). Our results suggest that the James Webb Space Telescope (and possibly even the Hubble Space Telescope with the Frontier Fields) may realistically detect the faintest galaxies that drive reionization. It remains to be seen how these results can be reconciled with the most sophisticated simulations of early galaxy formation at present, which predict substantial star formation in Mvir ˜ 108 M⊙ haloes during the epoch of reionization.
The Evolution of Universe as Splitting of the ``Non Existing'' and Space-Time Expansion
NASA Astrophysics Data System (ADS)
Nassikas, A. A.
2010-09-01
The purpose of this paper is to show that the creation of Universe can be regarded as a splitting process of the ``non existing'', ``where'' there is no space-time and that the expansion of Universe is due to the compatibility between the stochastic-quantum space-time created and the surrounding ``non existing''. In this way it is not required that space time should pre-exist in contrast, as it can be shown, to the Universe creation from vacuum theory. The present point of view can be derived on the basis of a Minimum Contradictions Physics according to which stochastic-quantum space-time is matter itself; there are (g)-mass and (em)-charge space-time which interact-communicate through photons [(g) or (em) particles with zero rest mass]. This point of view is compatible to the present knowledge of CERN and Fermi Lab experiments as well as to the neutron synthesis according to Rutherford, experimentally verified and theoretically explained through Hadronic Mechanics by R. M. Santilli. On the basis of the Minimum Contradictions Physics a quantum gravity formula is derived which implies either positive or negative gravitational acceleration; thus, bodies can be attracted while Universe can be expanded. Minimum Contradictions Physics, under certain simplifications, is compatible to Newton Mechanics, Relativity Theory and QM. This physics is compatible to language through which it is stated. On this basis the physical laws are the principles of language i.e.: the Classical Logic, the Sufficient Reason Principle the Communication Anterior-Posterior Axiom and the Claim for Minimum Contradictions; according to a theorem contradictions cannot be vanished.
Earth observation taken by the Expedition 28 crew
2011-08-22
ISS028-E-028782 (22 Aug. 2011) --- This panoramic view of recently-formed Hurricane Irene was acquired by the crew of the International Space Station early Monday afternoon from a point over the coastal waters of Venezuela. At the time Irene was packing winds of 80mph and was just north of the Mona Passage between Hispaniola and Puerto Rico. Although no eye was visible at this time, the storm was strengthening and exhibited the size and structure of a classic ?Cape Verde? hurricane as it tracked west-northwestward towards the southern Bahamas.
Generalized heat-transport equations: parabolic and hyperbolic models
NASA Astrophysics Data System (ADS)
Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio
2018-03-01
We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.
Is music enriching for group-housed captive chimpanzees (Pan troglodytes)?
Wallace, Emma K; Altschul, Drew; Körfer, Karoline; Benti, Benjamin; Kaeser, Amanda; Lambeth, Susan; Waller, Bridget M; Slocombe, Katie E
2017-01-01
Many facilities that house captive primates play music for animal enrichment or for caregiver enjoyment. However, the impact on primates is unknown as previous studies have been inconclusive. We conducted three studies with zoo-housed chimpanzees (Pan troglodytes) and one with group-housed chimpanzees at the National Centre for Chimpanzee Care to investigate the effects of classical and pop/rock music on various variables that may be indicative of increased welfare. Study one compared the behaviour and use of space of 18 animals when silence, classical or pop/rock music was played into one of several indoor areas. Overall, chimpanzees did not actively avoid the area when music was playing but were more likely to exit the area when songs with higher beats per minute were broadcast. Chimpanzees showed significantly fewer active social behaviours when music, rather than silence, was playing. They also tended to be more active and engage in less abnormal behaviour during the music but there was no change to either self-grooming or aggression between music and silent conditions. The genre of music had no differential effects on the chimpanzees' use of space and behaviour. In the second study, continuous focal observations were carried out on three individuals with relatively high levels of abnormal behaviour. No differences in behaviour between music and silence periods were found in any of the individuals. The final two studies used devices that allowed chimpanzees to choose if they wanted to listen to music of various types or silence. Both studies showed that there were no persistent preferences for any type of music or silence. When taken together, our results do not suggest music is enriching for group-housed captive chimpanzees, but they also do not suggest that music has a negative effect on welfare.
Is music enriching for group-housed captive chimpanzees (Pan troglodytes)?
Wallace, Emma K.; Altschul, Drew; Körfer, Karoline; Benti, Benjamin; Kaeser, Amanda; Lambeth, Susan; Waller, Bridget M.; Slocombe, Katie E.
2017-01-01
Many facilities that house captive primates play music for animal enrichment or for caregiver enjoyment. However, the impact on primates is unknown as previous studies have been inconclusive. We conducted three studies with zoo-housed chimpanzees (Pan troglodytes) and one with group-housed chimpanzees at the National Centre for Chimpanzee Care to investigate the effects of classical and pop/rock music on various variables that may be indicative of increased welfare. Study one compared the behaviour and use of space of 18 animals when silence, classical or pop/rock music was played into one of several indoor areas. Overall, chimpanzees did not actively avoid the area when music was playing but were more likely to exit the area when songs with higher beats per minute were broadcast. Chimpanzees showed significantly fewer active social behaviours when music, rather than silence, was playing. They also tended to be more active and engage in less abnormal behaviour during the music but there was no change to either self-grooming or aggression between music and silent conditions. The genre of music had no differential effects on the chimpanzees’ use of space and behaviour. In the second study, continuous focal observations were carried out on three individuals with relatively high levels of abnormal behaviour. No differences in behaviour between music and silence periods were found in any of the individuals. The final two studies used devices that allowed chimpanzees to choose if they wanted to listen to music of various types or silence. Both studies showed that there were no persistent preferences for any type of music or silence. When taken together, our results do not suggest music is enriching for group-housed captive chimpanzees, but they also do not suggest that music has a negative effect on welfare. PMID:28355212
Quantum and classical optics-emerging links
NASA Astrophysics Data System (ADS)
Eberly, J. H.; Qian, Xiao-Feng; Qasimi, Asma Al; Ali, Hazrat; Alonso, M. A.; Gutiérrez-Cuevas, R.; Little, Bethany J.; Howell, John C.; Malhotra, Tanya; Vamivakas, A. N.
2016-06-01
Quantum optics and classical optics are linked in ways that are becoming apparent as a result of numerous recent detailed examinations of the relationships that elementary notions of optics have with each other. These elementary notions include interference, polarization, coherence, complementarity and entanglement. All of them are present in both quantum and classical optics. They have historic origins, and at least partly for this reason not all of them have quantitative definitions that are universally accepted. This makes further investigation into their engagement in optics very desirable. We pay particular attention to effects that arise from the mere co-existence of separately identifiable and readily available vector spaces. Exploitation of these vector-space relationships are shown to have unfamiliar theoretical implications and new options for observation. It is our goal to bring emerging quantum-classical links into wider view and to indicate directions in which forthcoming and future work will promote discussion and lead to unified understanding.
The space shuttle payload planning working groups: Executive summaries
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of a space shuttle payload planning group session are presented. The purpose of the workshop is: (1) to provide guidance for the design and development of the space shuttle and the spacelab and (2) to plan a space science and applications program for the 1980 time period. Individual groups were organized to cover the various space sciences, applications, technologies, and life sciences. Summaries of the reports submitted by the working groups are provided.
NASA Astrophysics Data System (ADS)
Tsuda, Shin-Ichi; Nakano, Yuta; Watanabe, Satoshi
2017-11-01
Recently, several studies using Molecular Dynamics (MD) simulation have been conducted for investigation of Ostwald ripening of cavitation bubbles in a finite space. The previous studies focused a characteristic length of bubbles as one of the spatially-averaged quantities, but each bubble behavior was not been investigated in detail. The objective of this study is clarification of the characteristics of each bubble behavior in Ostwald ripening, and we conducted MD simulation of a Lennard-Jones fluid in a semi-confined space. As a result, the time dependency of the characteristic length of bubbles as a spatially-averaged quantity suggested that the driving force of the Ostwald ripening is Evaporation/Condensation (EC) across liquid-vapor surface, which is the same result as the previous works. The radius change of the relatively larger bubbles also showed the same tendency to a classical EC model. However, the sufficiently smaller bubbles than the critical size, e.g., the bubbles just before collapsing, showed a different characteristic from the classical EC model. Those smaller bubbles has a tendency to be limited by mechanical non-equilibrium in which viscosity of liquid is dominant rather than by EC across liquid-vapor surface. This work was supported by JSPS KAKENHI Grant Number JP16K06085.
Liu, Jian; Miller, William H
2007-06-21
It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be expressed, without approximation, in the same form as the linearized approximation of the semiclassical initial value representation (LSC-IVR), or classical Wigner model, for the correlation function [cf. Eq. (2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the Wigner functions corresponding to the two operators. The difference is that the trajectories involved in the LSC-IVR evolve classically, i.e., according to the classical equations of motion, while in the exact theory they evolve according to generalized equations of motion that are derived here. Approximations to the exact equations of motion are then introduced to achieve practical methods that are applicable to complex (i.e., large) molecular systems. Four such methods are proposed in the paper--the full Wigner dynamics (full WD) and the second order WD based on "Wigner trajectories" [H. W. Lee and M. D. Scully, J. Chem. Phys. 77, 4604 (1982)] and the full Donoso-Martens dynamics (full DMD) and the second order DMD based on "Donoso-Martens trajectories" [A. Donoso and C. C. Martens, Phys. Rev. Lett. 8722, 223202 (2001)]--all of which can be viewed as generalizations of the original LSC-IVR method. Numerical tests of the four versions of this new approach are made for two anharmonic model problems, and for each the momentum autocorrelation function (i.e., operators linear in coordinate or momentum operators) and the force autocorrelation function (nonlinear operators) have been calculated. These four new approximate treatments are indeed seen to be significant improvements to the original LSC-IVR approximation.
Space-time measurements of oceanic sea states
NASA Astrophysics Data System (ADS)
Fedele, Francesco; Benetazzo, Alvise; Gallego, Guillermo; Shih, Ping-Chang; Yezzi, Anthony; Barbariol, Francesco; Ardhuin, Fabrice
2013-10-01
Stereo video techniques are effective for estimating the space-time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. We present an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea and near the southern seashore of the Crimean peninsula, in the Black Sea. We use classical epipolar techniques to reconstruct the sea surface from the stereo pairs sequentially in time, viz. a sequence of spatial snapshots. We also present a variational approach that exploits the entire data image set providing a global space-time imaging of the sea surface, viz. simultaneous reconstruction of several spatial snapshots of the surface in order to guarantee continuity of the sea surface both in space and time. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics at a point in time that agrees well with probabilistic models. In particular, WASS stereo imaging is able to capture typical features of the wave surface, especially the crest-to-trough asymmetry due to second order nonlinearities, and the observed shape of large waves are fairly described by theoretical models based on the theory of quasi-determinism (Boccotti, 2000). Further, we investigate space-time extremes of the observed stationary sea states, viz. the largest surface wave heights expected over a given area during the sea state duration. The WASS analysis provides the first experimental proof that a space-time extreme is generally larger than that observed in time via point measurements, in agreement with the predictions based on stochastic theories for global maxima of Gaussian fields.
Jaeger, Johannes; Irons, David; Monk, Nick
2008-10-01
Positional specification by morphogen gradients is traditionally viewed as a two-step process. A gradient is formed and then interpreted, providing a spatial metric independent of the target tissue, similar to the concept of space in classical mechanics. However, the formation and interpretation of gradients are coupled, dynamic processes. We introduce a conceptual framework for positional specification in which cellular activity feeds back on positional information encoded by gradients, analogous to the feedback between mass-energy distribution and the geometry of space-time in Einstein's general theory of relativity. We discuss how such general relativistic positional information (GRPI) can guide systems-level approaches to pattern formation.
Controlling lightwave in Riemann space by merging geometrical optics with transformation optics.
Liu, Yichao; Sun, Fei; He, Sailing
2018-01-11
In geometrical optical design, we only need to choose a suitable combination of lenses, prims, and mirrors to design an optical path. It is a simple and classic method for engineers. However, people cannot design fantastical optical devices such as invisibility cloaks, optical wormholes, etc. by geometrical optics. Transformation optics has paved the way for these complicated designs. However, controlling the propagation of light by transformation optics is not a direct design process like geometrical optics. In this study, a novel mixed method for optical design is proposed which has both the simplicity of classic geometrical optics and the flexibility of transformation optics. This mixed method overcomes the limitations of classic optical design; at the same time, it gives intuitive guidance for optical design by transformation optics. Three novel optical devices with fantastic functions have been designed using this mixed method, including asymmetrical transmissions, bidirectional focusing, and bidirectional cloaking. These optical devices cannot be implemented by classic optics alone and are also too complicated to be designed by pure transformation optics. Numerical simulations based on both the ray tracing method and full-wave simulation method are carried out to verify the performance of these three optical devices.
NASA Astrophysics Data System (ADS)
Jones, R.
Today the consensus view is that thought and mind is a combination of processes like memory, generalization, comparison, deduction, organization, analogy, etc. performed by classical computational machinery. (R. Jones, Trans. Kansas Acad. Sci., vol. 109, #3/4, 2006) But I believe quantum mechanics is a more plausible dualist theory of reality. (R. Jones, Bull. Am. Phys. Soc., vol. 5, 2011) In a quantum computer the processing (thinking) takes place either in computers in Everett's many worlds or else in the many dimensional Hilbert space. (Depending upon your interpretation of QM.) If our brains were quantum computers then there might be a world of mind which is distinct from the physical world that our bodies occupy. (4 space) This is much like the spirit-body dualism of Descartes and others. My own view is that thought and mind are classical phenomena (see www.robert-w-jones.com, philosopher, theory of thought and mind) but it would be interesting to run an artificial intelligence like my A.S.A. H. on a quantum computer. Might this produce, for the first time, a hypermind in its own universe?
A quantum-classical theory with nonlinear and stochastic dynamics
NASA Astrophysics Data System (ADS)
Burić, N.; Popović, D. B.; Radonjić, M.; Prvanović, S.
2014-12-01
The method of constrained dynamical systems on the quantum-classical phase space is utilized to develop a theory of quantum-classical hybrid systems. Effects of the classical degrees of freedom on the quantum part are modeled using an appropriate constraint, and the interaction also includes the effects of neglected degrees of freedom. Dynamical law of the theory is given in terms of nonlinear stochastic differential equations with Hamiltonian and gradient terms. The theory provides a successful dynamical description of the collapse during quantum measurement.
New perspectives for "non-classical" molecules: heavy [1.1.1]propellanes of group 14.
Nied, Dominik; Breher, Frank
2011-07-01
Heavy analogues of hydrocarbons intrigue chemists for a number of reasons, not least because they are often fundamentally different from their carbon counterparts and have remained a challenge for both experimentalists and theoreticians for a long time. The appealing properties of [1.1.1]propellanes of group 14 consisting of inverted tetrahedral bridgehead atoms can mainly be attributed to the particular bonding between the latter. More than 20 years after the first member of this family has been published, several contributions to this area have impressively extended the spectrum of these so-called main-group biradicaloids. Still in its infancy, further perspectives for these "non-classical" molecules are now arising. In this tutorial review, early findings and recent developments in this area are presented. Particular attention is drawn on the relationship of unusual structures and unusual reactivities of main-group element compounds in general and in particular of heavy propellane scaffolds of group 14.
Experimental Constraints of the Exotic Shearing of Space-Time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Jonathan William
2016-08-01
The Holometer program is a search for rst experimental evidence that space-time has quantum structure. The detector consists of a pair of co-located 40-m power-recycled interferometers whose outputs are read out synchronously at 50 MHz, achieving sensitivity to spatiallycorrelated uctuations in dierential position on time scales shorter than the light-crossing time of the instruments. Unlike gravitational wave interferometers, which time-resolve transient geometrical disturbances in the spatial background, the Holometer is searching for a universal, stationary quantization noise of the background itself. This dissertation presents the nal results of the Holometer Phase I search, an experiment congured for sensitivity to exoticmore » coherent shearing uctuations of space-time. Measurements of high-frequency cross-spectra of the interferometer signals obtain sensitivity to spatially-correlated eects far exceeding any previous measurement, in a broad frequency band extending to 7.6 MHz, twice the inverse light-crossing time of the apparatus. This measurement is the statistical aggregation of 2.1 petabytes of 2-byte dierential position measurements obtained over a month-long exposure time. At 3 signicance, it places an upper limit on the coherence scale of spatial shear two orders of magnitude below the Planck length. The result demonstrates the viability of this novel spatially-correlated interferometric detection technique to reach unprecedented sensitivity to coherent deviations of space-time from classicality, opening the door for direct experimental tests of theories of relational quantum gravity.« less
Theoretical investigation of the electron capture and loss processes in the collisions of He2+ + Ne.
Hong, Xuhai; Wang, Feng; Jiao, Yalong; Su, Wenyong; Wang, Jianguo; Gou, Bingcong
2013-08-28
Based on the time-dependent density functional theory, a method is developed to study ion-atom collision dynamics, which self-consistently couples the quantum mechanical description of electron dynamics with the classical treatment of the ion motion. Employing real-time and real-space method, the coordinate space translation technique is introduced to allow one to focus on the region of target or projectile depending on the actual concerned process. The benchmark calculations are performed for the collisions of He(2+) + Ne, and the time evolution of electron density distribution is monitored, which provides interesting details of the interaction dynamics between the electrons and ion cores. The cross sections of single and many electron capture and loss have been calculated in the energy range of 1-1000 keV/amu, and the results show a good agreement with the available experiments over a wide range of impact energies.
Expanding Trauma through Space and Time: Mapping the Rhetorical Strategies of Trauma Carrier Groups
ERIC Educational Resources Information Center
Degloma, Thomas
2009-01-01
In this article, I detail two rhetorical strategies that trauma carrier groups--including social movement organizations, professional mental health associations, and patient advocacy groups--use to expand the relevance of trauma and Post-Traumatic Stress Disorder (PTSD) through space and time: the social transmission of trauma and the social…
Quantum Model of a Charged Black Hole
NASA Astrophysics Data System (ADS)
Gladush, V. D.
A canonical approach for constructing of the classical and quantum description spherically-symmetric con guration gravitational and electromagnetic elds is considered. According to the sign of the square of the Kodama vector, space-time is divided into R-and T-regions. By virtue of the generalized Birkho theorem, one can choose coordinate systems such that the desired metric functions in the T-region depend on the time, and in the R-domain on the space coordinate. Then, the initial action for the con guration breaks up into terms describing the elds in the T- and R-regions with the time and space evolutionary variable, respectively. For these regions, Lagrangians of the con guration are constructed, which contain dynamic and non-dynamic degrees of freedom, leading to constrains. We concentrate our attention on dynamic T-regions. There are two additional conserved physical quantities: the charge and the total mass of the system. The Poisson bracket of the total mass with the Hamiltonian function vanishes in the weak sense. A classical solution of the eld equations in the con guration space (minisuperspace) is constructed without xing non-dynamic variable. In the framework of the canonical approach to the quantum mechanics of the system under consideration, physical states are found by solving the Hamiltonian constraint in the operator form (the DeWitt equation) for the system wave function Ψ. It also requires that Ψ is an eigenfunction of the operators of charge and total mass. For the symmetric of the mass operator the corresponding ordering of operators is carried out. Since the total mass operator commutes with the Hamiltonian in the weak sense, its eigenfunctions must be constructed in conjunction with the solution of the DeWitt equation. The consistency condition leads to the ansatz, with the help of which the solution of the DeWitt equation for the state Ψem with a defined total mass and charge is constructed, taking into account the regularity condition on the horizon. The mass and charge spectra of the con guration in this approach turn out to be continuous. It is interesting that formal quantization in the R-region with a space evolutionary coordinate leads to a similar result.
Aging dynamics of quantum spin glasses of rotors
NASA Astrophysics Data System (ADS)
Kennett, Malcolm P.; Chamon, Claudio; Ye, Jinwu
2001-12-01
We study the long time dynamics of quantum spin glasses of rotors using the nonequilibrium Schwinger-Keldysh formalism. These models are known to have a quantum phase transition from a paramagnetic to a spin-glass phase, which we approach by looking at the divergence of the spin-relaxation rate at the transition point. In the aging regime, we determine the dynamical equations governing the time evolution of the spin response and correlation functions, and show that all terms in the equations that arise solely from quantum effects are irrelevant at long times under time reparametrization group (RPG) transformations. At long times, quantum effects enter only through the renormalization of the parameters in the dynamical equations for the classical counterpart of the rotor model. Consequently, quantum effects only modify the out-of-equilibrium fluctuation-dissipation relation (OEFDR), i.e. the ratio X between the temperature and the effective temperature, but not the form of the classical OEFDR.
Multivariable Hermite polynomials and phase-space dynamics
NASA Technical Reports Server (NTRS)
Dattoli, G.; Torre, Amalia; Lorenzutta, S.; Maino, G.; Chiccoli, C.
1994-01-01
The phase-space approach to classical and quantum systems demands for advanced analytical tools. Such an approach characterizes the evolution of a physical system through a set of variables, reducing to the canonically conjugate variables in the classical limit. It often happens that phase-space distributions can be written in terms of quadratic forms involving the above quoted variables. A significant analytical tool to treat these problems may come from the generalized many-variables Hermite polynomials, defined on quadratic forms in R(exp n). They form an orthonormal system in many dimensions and seem the natural tool to treat the harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties of these polynomials and present some applications to physical problems.
On the Origin of Quantum Diffusion Coefficient and Quantum Potential
NASA Astrophysics Data System (ADS)
Gupta, Aseem
2016-03-01
Synchronizability of space and time experiences between different inhabitants of a spacetime is abstracted as a fundamental premise of Classical physics. Absence thereof i.e. desynchronization between space and time experiences of a system under study and the observer is then studied for a single dimension single particle system. Desynchronization fundamentally makes probability concepts enter physics ab-initio and not as secondary tools to deal with situations wherein incomplete information in situation following perfectly deterministic dynamics demands its introduction. Desynchronization model based on Poisson distribution of events vis-à-vis an observer, leads to expectation of particle's motion as a Brownian motion deriving Nelson's quantum diffusion coefficient naturally, without needing to postulate it. This model also incorporates physical effects akin to those of Bohm's Quantum Potential, again without needing any sub-quantum medium. Schrodinger's equation is shown to be derivable incorporating desynchronization only of space while Quantum Field Theory is shown to model desynchronization of time as well. Fundamental suggestion of the study is that it is desynchronization that is at the root of quantum phenomena rather than sub-micro scales of spacetime. Absence of possibility of synchronization between system's space and time and those of observer is studied. Mathematical modeling of desynchronized evolution explains some intriguing aspects of Quantum Mechanical theory.
Computing exponentially faster: implementing a non-deterministic universal Turing machine using DNA
Currin, Andrew; Korovin, Konstantin; Ababi, Maria; Roper, Katherine; Kell, Douglas B.; Day, Philip J.
2017-01-01
The theory of computer science is based around universal Turing machines (UTMs): abstract machines able to execute all possible algorithms. Modern digital computers are physical embodiments of classical UTMs. For the most important class of problem in computer science, non-deterministic polynomial complete problems, non-deterministic UTMs (NUTMs) are theoretically exponentially faster than both classical UTMs and quantum mechanical UTMs (QUTMs). However, no attempt has previously been made to build an NUTM, and their construction has been regarded as impossible. Here, we demonstrate the first physical design of an NUTM. This design is based on Thue string rewriting systems, and thereby avoids the limitations of most previous DNA computing schemes: all the computation is local (simple edits to strings) so there is no need for communication, and there is no need to order operations. The design exploits DNA's ability to replicate to execute an exponential number of computational paths in P time. Each Thue rewriting step is embodied in a DNA edit implemented using a novel combination of polymerase chain reactions and site-directed mutagenesis. We demonstrate that the design works using both computational modelling and in vitro molecular biology experimentation: the design is thermodynamically favourable, microprogramming can be used to encode arbitrary Thue rules, all classes of Thue rule can be implemented, and non-deterministic rule implementation. In an NUTM, the resource limitation is space, which contrasts with classical UTMs and QUTMs where it is time. This fundamental difference enables an NUTM to trade space for time, which is significant for both theoretical computer science and physics. It is also of practical importance, for to quote Richard Feynman ‘there's plenty of room at the bottom’. This means that a desktop DNA NUTM could potentially utilize more processors than all the electronic computers in the world combined, and thereby outperform the world's current fastest supercomputer, while consuming a tiny fraction of its energy. PMID:28250099
NASA Astrophysics Data System (ADS)
Phinyomark, A.; Hu, H.; Phukpattaranont, P.; Limsakul, C.
2012-01-01
The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier.
Event-driven Monte Carlo: Exact dynamics at all time scales for discrete-variable models
NASA Astrophysics Data System (ADS)
Mendoza-Coto, Alejandro; Díaz-Méndez, Rogelio; Pupillo, Guido
2016-06-01
We present an algorithm for the simulation of the exact real-time dynamics of classical many-body systems with discrete energy levels. In the same spirit of kinetic Monte Carlo methods, a stochastic solution of the master equation is found, with no need to define any other phase-space construction. However, unlike existing methods, the present algorithm does not assume any particular statistical distribution to perform moves or to advance the time, and thus is a unique tool for the numerical exploration of fast and ultra-fast dynamical regimes. By decomposing the problem in a set of two-level subsystems, we find a natural variable step size, that is well defined from the normalization condition of the transition probabilities between the levels. We successfully test the algorithm with known exact solutions for non-equilibrium dynamics and equilibrium thermodynamical properties of Ising-spin models in one and two dimensions, and compare to standard implementations of kinetic Monte Carlo methods. The present algorithm is directly applicable to the study of the real-time dynamics of a large class of classical Markovian chains, and particularly to short-time situations where the exact evolution is relevant.
NASA Astrophysics Data System (ADS)
Brading, Katherine; Castellani, Elena
2010-01-01
Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.
NASA Astrophysics Data System (ADS)
Brading, Katherine; Castellani, Elena
2003-12-01
Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.
Accessible Information Without Disturbing Partially Known Quantum States on a von Neumann Algebra
NASA Astrophysics Data System (ADS)
Kuramochi, Yui
2018-04-01
This paper addresses the problem of how much information we can extract without disturbing a statistical experiment, which is a family of partially known normal states on a von Neumann algebra. We define the classical part of a statistical experiment as the restriction of the equivalent minimal sufficient statistical experiment to the center of the outcome space, which, in the case of density operators on a Hilbert space, corresponds to the classical probability distributions appearing in the maximal decomposition by Koashi and Imoto (Phys. Rev. A 66, 022,318 2002). We show that we can access by a Schwarz or completely positive channel at most the classical part of a statistical experiment if we do not disturb the states. We apply this result to the broadcasting problem of a statistical experiment. We also show that the classical part of the direct product of statistical experiments is the direct product of the classical parts of the statistical experiments. The proof of the latter result is based on the theorem that the direct product of minimal sufficient statistical experiments is also minimal sufficient.
Static black holes with back reaction from vacuum energy
NASA Astrophysics Data System (ADS)
Ho, Pei-Ming; Matsuo, Yoshinori
2018-03-01
We study spherically symmetric static solutions to the semi-classical Einstein equation sourced by the vacuum energy of quantum fields in the curved space-time of the same solution. We found solutions that are small deformations of the Schwarzschild metric for distant observers, but without horizon. Instead of being a robust feature of objects with high densities, the horizon is sensitive to the energy–momentum tensor in the near-horizon region.
Schubert, R; Eickmeier, O; Garn, H; Baer, P C; Mueller, T; Schulze, J; Rose, M A; Rosewich, M; Renz, H; Zielen, S
2009-01-01
Cluster specific immunotherapy (SIT) is a modern form of allergen immunotherapy allowing safe administration of high allergen doses in a short time interval compared to classic SIT. In the current study, we investigated the safety profile and immunological effect of cluster SIT in children with allergic asthma due to house dust mite allergy. A total of 34 children (6-18 years) with allergic asthma were assigned to cluster (n = 22) or classic SIT (n = 12). To achieve a maintenance dose of allergen extract, cluster patients received 14 injections of house dust mite allergen within 6 weeks, whereas the classic SIT group received 14 injections within 14 weeks. Safety was monitored by recording adverse events. Immunogenicity was measured by specific IgG(Mite) and IgG4(Mite), by antibody-blocking properties on basophil activation, and by the T cell subset transcription factors Foxp3, T-bet, and GATA-3. There were no significant differences in local and systemic side effects between the two groups. In the cluster group, serum levels of specific IgG(Mite) (p < 0.001) and specific IgG4(Mite) (p < 0.001) significantly increased after 8 weeks, while it took 12 weeks in the classic SIT group. These data were confirmed by blocking CD63 expression as well as release of cysteinyl leukotrienes after in vitro basophil stimulation. No differences in transcription factor expression were found in the two groups. Cluster SIT is safe in children. Additionally, our data demonstrated an even more rapid induction of specific immune tolerance. Cluster SIT is an attractive alternative to conventional up-dosing schedules with fewer consultations for the patients. (c) 2008 S. Karger AG, Basel.
The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations
NASA Technical Reports Server (NTRS)
Bardi, Martino; Osher, Stanley
1991-01-01
Simple inequalities are presented for the viscosity solution of a Hamilton-Jacobi equation in N space dimensions when neither the initial data nor the Hamiltonian need be convex (or concave). The initial data are uniformly Lipschitz and can be written as the sum of a convex function in a group of variables and a concave function in the remaining variables, therefore including the nonconvex Riemann problem. The inequalities become equalities wherever a 'maxmin' equals a 'minmax', and thus a representation formula for this problem is obtained, generalizing the classical Hopi formulas.
Generic isolated horizons in loop quantum gravity
NASA Astrophysics Data System (ADS)
Beetle, Christopher; Engle, Jonathan
2010-12-01
Isolated horizons model equilibrium states of classical black holes. A detailed quantization, starting from a classical phase space restricted to spherically symmetric horizons, exists in the literature and has since been extended to axisymmetry. This paper extends the quantum theory to horizons of arbitrary shape. Surprisingly, the Hilbert space obtained by quantizing the full phase space of all generic horizons with a fixed area is identical to that originally found in spherical symmetry. The entropy of a large horizon remains one-quarter its area, with the Barbero-Immirzi parameter retaining its value from symmetric analyses. These results suggest a reinterpretation of the intrinsic quantum geometry of the horizon surface.
NASA Astrophysics Data System (ADS)
An, Xinliang; Wong, Willie Wai Yeung
2018-01-01
Many classical results in relativity theory concerning spherically symmetric space-times have easy generalizations to warped product space-times, with a two-dimensional Lorentzian base and arbitrary dimensional Riemannian fibers. We first give a systematic presentation of the main geometric constructions, with emphasis on the Kodama vector field and the Hawking energy; the construction is signature independent. This leads to proofs of general Birkhoff-type theorems for warped product manifolds; our theorems in particular apply to situations where the warped product manifold is not necessarily Einstein, and thus can be applied to solutions with matter content in general relativity. Next we specialize to the Lorentzian case and study the propagation of null expansions under the assumption of the dominant energy condition. We prove several non-existence results relating to the Yamabe class of the fibers, in the spirit of the black-hole topology theorem of Hawking–Galloway–Schoen. Finally we discuss the effect of the warped product ansatz on matter models. In particular we construct several cosmological solutions to the Einstein–Euler equations whose spatial geometry is generally not isotropic.
An explanation for the tiny value of the cosmological constant and the low vacuum energy density
NASA Astrophysics Data System (ADS)
Nassif, Cláudio
2015-09-01
The paper aims to provide an explanation for the tiny value of the cosmological constant and the low vacuum energy density to represent the dark energy. To accomplish this, we will search for a fundamental principle of symmetry in space-time by means of the elimination of the classical idea of rest, by including an invariant minimum limit of speed in the subatomic world. Such a minimum speed, unattainable by particles, represents a preferred reference frame associated with a background field that breaks down the Lorentz symmetry. The metric of the flat space-time shall include the presence of a uniform vacuum energy density, which leads to a negative pressure at cosmological length scales. Thus, the equation of state for the cosmological constant [ p(pressure) (energy density)] naturally emerges from such a space-time with an energy barrier of a minimum speed. The tiny values of the cosmological constant and the vacuum energy density will be successfully obtained, being in agreement with the observational results of Perlmutter, Schmidt and Riess.
Cowan, Cameron S; Sabharwal, Jasdeep; Wu, Samuel M
2016-09-01
Reverse correlation methods such as spike-triggered averaging consistently identify the spatial center in the linear receptive fields (RFs) of retinal ganglion cells (GCs). However, the spatial antagonistic surround observed in classical experiments has proven more elusive. Tests for the antagonistic surround have heretofore relied on models that make questionable simplifying assumptions such as space-time separability and radial homogeneity/symmetry. We circumvented these, along with other common assumptions, and observed a linear antagonistic surround in 754 of 805 mouse GCs. By characterizing the RF's space-time structure, we found the overall linear RF's inseparability could be accounted for both by tuning differences between the center and surround and differences within the surround. Finally, we applied this approach to characterize spatial asymmetry in the RF surround. These results shed new light on the spatiotemporal organization of GC linear RFs and highlight a major contributor to its inseparability. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
1995-06-06
The crew patch of STS-73, the second flight of the United States Microgravity Laboratory (USML-2), depicts the Space Shuttle Columbia in the vastness of space. In the foreground are the classic regular polyhedrons that were investigated by Plato and later Euclid. The Pythagoreans were also fascinated by the symmetrical three-dimensional objects whose sides are the same regular polygon. The tetrahedron, the cube, the octahedron, and the icosahedron were each associated with the Natural Elements of that time: fire (on this mission represented as combustion science); Earth (crystallography), air and water (fluid physics). An additional icon shown as the infinity symbol was added to further convey the discipline of fluid mechanics. The shape of the emblem represents a fifth polyhedron, a dodecahedron, which the Pythagoreans thought corresponded to a fifth element that represented the cosmos.
The construction of high-accuracy schemes for acoustic equations
NASA Technical Reports Server (NTRS)
Tang, Lei; Baeder, James D.
1995-01-01
An accuracy analysis of various high order schemes is performed from an interpolation point of view. The analysis indicates that classical high order finite difference schemes, which use polynomial interpolation, hold high accuracy only at nodes and are therefore not suitable for time-dependent problems. Thus, some schemes improve their numerical accuracy within grid cells by the near-minimax approximation method, but their practical significance is degraded by maintaining the same stencil as classical schemes. One-step methods in space discretization, which use piecewise polynomial interpolation and involve data at only two points, can generate a uniform accuracy over the whole grid cell and avoid spurious roots. As a result, they are more accurate and efficient than multistep methods. In particular, the Cubic-Interpolated Psuedoparticle (CIP) scheme is recommended for computational acoustics.
Torus as phase space: Weyl quantization, dequantization, and Wigner formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ligabò, Marilena, E-mail: marilena.ligabo@uniba.it
2016-08-15
The Weyl quantization of classical observables on the torus (as phase space) without regularity assumptions is explicitly computed. The equivalence class of symbols yielding the same Weyl operator is characterized. The Heisenberg equation for the dynamics of general quantum observables is written through the Moyal brackets on the torus and the support of the Wigner transform is characterized. Finally, a dequantization procedure is introduced that applies, for instance, to the Pauli matrices. As a result we obtain the corresponding classical symbols.
NASA Astrophysics Data System (ADS)
Koskinen, H. E.
2008-12-01
Plasma physics as the backbone of space physics is difficult and thus the space physics students need to have strong foundations in general physics, in particular in classical electrodynamics and thermodynamics, and master the basic mathematical tools for physicists. In many universities the number of students specializing in space physics at Master's and Doctoral levels is rather small and the students may have quite different preferences ranging from experimental approach to hard-core space plasma theory. This poses challenges in building up a study program that has both the variety and depth needed to motivate the best students to choose this field. At the University of Helsinki we require all beginning space physics students, regardless whether they enter the field as Master's or Doctoral degree students, to take a one-semester package consisting of plasma physics and its space applications. However, some compromises are necessary. For example, it is not at all clear, how thoroughly Landau damping should be taught at the first run or how deeply should the intricacies of collisionless reconnection be discussed. In both cases we have left the details to an optional course in advanced space physics, even with the risk that the student's appreciation of, e.g., reconnection may remain at the level of a magic wand. For learning experimental work, data analysis or computer simulations we have actively pursued arrangements for the Master's degree students to get a summer employments in active research groups, which usually lead to the Master's theses. All doctoral students are members of research groups and participate in experimental work, data analysis, simulation studies or theory development, or any combination of these. We emphasize strongly "learning by doing" all the way from the weekly home exercises during the lecture courses to the PhD theses which in Finland consist typically of 4-6 peer-reviewed articles with a comprehensive introductory part.
Wang, Feng; Hong, Xuhai; Wang, Jian; Kim, Kwang S
2011-04-21
Recently we developed a theoretical model of ion-atom collisions, which was made on the basis of a time-dependent density functional theory description of the electron dynamics and a classical treatment of the heavy particle motion. Taking advantage of the real-space grid method, we introduce a "coordinate space translation" technique to allow one to focus on a certain space of interest such as the region around the projectile or the target. Benchmark calculations are given for collisions between proton and oxygen over a wide range of impact energy. To extract the probability of charge transfer, the formulation of Lüdde and Dreizler [J. Phys. B 16, 3973 (1983)] has been generalized to ensemble-averaging application in the particular case of O((3)P). Charge transfer total cross sections are calculated, showing fairly good agreements between experimental data and present theoretical results.
Topology Change and the Unity of Space
NASA Astrophysics Data System (ADS)
Callender, Craig; Weingard, Robert
Must space be a unity? This question, which exercised Aristotle, Descartes and Kant, is a specific instance of a more general one; namely, can the topology of physical space change with time? In this paper we show how the discussion of the unity of space has been altered but survives in contemporary research in theoretical physics. With a pedagogical review of the role played by the Euler characteristic in the mathematics of relativistic spacetimes, we explain how classical general relativity (modulo considerations about energy conditions) allows virtually unrestrained spatial topology change in four dimensions. We also survey the situation in many other dimensions of interest. However, topology change comes with a cost: a famous theorem by Robert Geroch shows that, for many interesting types of such change, transitions of spatial topology imply the existence of closed timelike curves or temporal non-orientability. Ways of living with this theorem and of evading it are discussed.
Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium
NASA Technical Reports Server (NTRS)
Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter
2013-01-01
This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.
NASA Astrophysics Data System (ADS)
Wang, Lusheng; Yang, Yong; Lin, Guohui
Finding the closest object for a query in a database is a classical problem in computer science. For some modern biological applications, computing the similarity between two objects might be very time consuming. For example, it takes a long time to compute the edit distance between two whole chromosomes and the alignment cost of two 3D protein structures. In this paper, we study the nearest neighbor search problem in metric space, where the pair-wise distance between two objects in the database is known and we want to minimize the number of distances computed on-line between the query and objects in the database in order to find the closest object. We have designed two randomized approaches for indexing metric space databases, where objects are purely described by their distances with each other. Analysis and experiments show that our approaches only need to compute O(logn) objects in order to find the closest object, where n is the total number of objects in the database.
Integrated control-system design via generalized LQG (GLQG) theory
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.
1989-01-01
Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.
Guédon, Yann; d'Aubenton-Carafa, Yves; Thermes, Claude
2006-03-01
The most commonly used models for analysing local dependencies in DNA sequences are (high-order) Markov chains. Incorporating knowledge relative to the possible grouping of the nucleotides enables to define dedicated sub-classes of Markov chains. The problem of formulating lumpability hypotheses for a Markov chain is therefore addressed. In the classical approach to lumpability, this problem can be formulated as the determination of an appropriate state space (smaller than the original state space) such that the lumped chain defined on this state space retains the Markov property. We propose a different perspective on lumpability where the state space is fixed and the partitioning of this state space is represented by a one-to-many probabilistic function within a two-level stochastic process. Three nested classes of lumped processes can be defined in this way as sub-classes of first-order Markov chains. These lumped processes enable parsimonious reparameterizations of Markov chains that help to reveal relevant partitions of the state space. Characterizations of the lumped processes on the original transition probability matrix are derived. Different model selection methods relying either on hypothesis testing or on penalized log-likelihood criteria are presented as well as extensions to lumped processes constructed from high-order Markov chains. The relevance of the proposed approach to lumpability is illustrated by the analysis of DNA sequences. In particular, the use of lumped processes enables to highlight differences between intronic sequences and gene untranslated region sequences.
Connected Text Reading and Differences in Text Reading Fluency in Adult Readers
Wallot, Sebastian; Hollis, Geoff; van Rooij, Marieke
2013-01-01
The process of connected text reading has received very little attention in contemporary cognitive psychology. This lack of attention is in parts due to a research tradition that emphasizes the role of basic lexical constituents, which can be studied in isolated words or sentences. However, this lack of attention is in parts also due to the lack of statistical analysis techniques, which accommodate interdependent time series. In this study, we investigate text reading performance with traditional and nonlinear analysis techniques and show how outcomes from multiple analyses can used to create a more detailed picture of the process of text reading. Specifically, we investigate reading performance of groups of literate adult readers that differ in reading fluency during a self-paced text reading task. Our results indicate that classical metrics of reading (such as word frequency) do not capture text reading very well, and that classical measures of reading fluency (such as average reading time) distinguish relatively poorly between participant groups. Nonlinear analyses of distribution tails and reading time fluctuations provide more fine-grained information about the reading process and reading fluency. PMID:23977177
Voxel inversion of airborne electromagnetic data for improved model integration
NASA Astrophysics Data System (ADS)
Fiandaca, Gianluca; Auken, Esben; Kirkegaard, Casper; Vest Christiansen, Anders
2014-05-01
Inversion of electromagnetic data has migrated from single site interpretations to inversions including entire surveys using spatial constraints to obtain geologically reasonable results. Though, the model space is usually linked to the actual observation points. For airborne electromagnetic (AEM) surveys the spatial discretization of the model space reflects the flight lines. On the contrary, geological and groundwater models most often refer to a regular voxel grid, not correlated to the geophysical model space, and the geophysical information has to be relocated for integration in (hydro)geological models. We have developed a new geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which then allows for informing directly geological/hydrogeological models. The new voxel model space defines the soil properties (like resistivity) on a set of nodes, and the distribution of the soil properties is computed everywhere by means of an interpolation function (e.g. inverse distance or kriging). Given this definition of the voxel model space, the 1D forward responses of the AEM data are computed as follows: 1) a 1D model subdivision, in terms of model thicknesses, is defined for each 1D data set, creating "virtual" layers. 2) the "virtual" 1D models at the sounding positions are finalized by interpolating the soil properties (the resistivity) in the center of the "virtual" layers. 3) the forward response is computed in 1D for each "virtual" model. We tested the new inversion scheme on an AEM survey carried out with the SkyTEM system close to Odder, in Denmark. The survey comprises 106054 dual mode AEM soundings, and covers an area of approximately 13 km X 16 km. The voxel inversion was carried out on a structured grid of 260 X 325 X 29 xyz nodes (50 m xy spacing), for a total of 2450500 inversion parameters. A classical spatially constrained inversion (SCI) was carried out on the same data set, using 106054 spatially constrained 1D models with 29 layers. For comparison, the SCI inversion models have been gridded on the same grid of the voxel inversion. The new voxel inversion and the classic SCI give similar data fit and inversion models. The voxel inversion decouples the geophysical model from the position of acquired data, and at the same time fits the data as well as the classic SCI inversion. Compared to the classic approach, the voxel inversion is better suited for informing directly (hydro)geological models and for sequential/Joint/Coupled (hydro)geological inversion. We believe that this new approach will facilitate the integration of geophysics, geology and hydrology for improved groundwater and environmental management.
The Institution of Sociological Theory in Canada.
Guzman, Cinthya; Silver, Daniel
2018-02-01
Using theory syllabi and departmental data collected for three academic years, this paper investigates the institutional practice of theory in sociology departments across Canada. In particular, it examines the position of theory within the sociological curriculum, and how this varies among universities. Taken together, our analyses indicate that theory remains deeply institutionalized at the core of sociological education and Canadian sociologists' self-understanding; that theorists as a whole show some coherence in how they define themselves, but differ in various ways, especially along lines of region, intellectual background, and gender; that despite these differences, the classical versus contemporary heuristic largely cuts across these divides, as does the strongly ingrained position of a small group of European authors as classics of the discipline as a whole. Nevertheless, who is a classic remains an unsettled question, alternatives to the "classical versus contemporary" heuristic do exist, and theorists' syllabi reveal diverse "others" as potential candidates. Our findings show that the field of sociology is neither marked by universal agreement nor by absolute division when it comes to its theoretical underpinnings. To the extent that they reveal a unified field, the findings suggest that unity lies more in a distinctive form than in a distinctive content, which defines the space and structure of the field of sociology. © 2018 Canadian Sociological Association/La Société canadienne de sociologie.
NASA Astrophysics Data System (ADS)
Thiebaut, C.; Perraud, L.; Delvit, J. M.; Latry, C.
2016-07-01
We present an on-board satellite implementation of a gradient-based (optical flows) algorithm for the shifts estimation between images of a Shack-Hartmann wave-front sensor on extended landscapes. The proposed algorithm has low complexity in comparison with classical correlation methods which is a big advantage for being used on-board a satellite at high instrument data rate and in real-time. The electronic board used for this implementation is designed for space applications and is composed of radiation-hardened software and hardware. Processing times of both shift estimations and pre-processing steps are compatible of on-board real-time computation.
Quantum revival for elastic waves in thin plate
NASA Astrophysics Data System (ADS)
Dubois, Marc; Lefebvre, Gautier; Sebbah, Patrick
2017-05-01
Quantum revival is described as the time-periodic reconstruction of a wave packet initially localized in space and time. This effect is expected in finite-size systems which exhibit commensurable discrete spectrum such as the infinite quantum well. Here, we report on the experimental observation of full and fractional quantum revival for classical waves in a two dimensional cavity. We consider flexural waves propagating in thin plates, as their quadratic dispersion at low frequencies mimics the dispersion relation of quantum systems governed by Schrödinger equation. Time-dependent excitation and measurement are performed at ultrasonic frequencies and reveal a periodic reconstruction of the initial elastic wave packet.
Özdemir, Ülkü; Taşcı, Sultan; Yıldızhan, Esra; Aslan, Süheyla; Eser, Bülent
2018-05-18
Bone marrow aspiration is a painful procedure. In addition, the anxiety experienced during the procedure can affect the pain felt during the procedure. This study was conducted as a randomized controlled study to determine the effect of classical Turkish music on pain severity and anxiety levels in patients undergoing bone marrow aspiration and biopsy. The study was performed in an oncology hospital with a total of 30 patients, of whom 14 were in the intervention group and 16 were in the control group. All underwent bone marrow aspiration and biopsy for the first time. Ethics committee approval, institutional permission, and the study participants' written informed consent were obtained. Data were collected using patient information forms and follow-up charts, the Visual Analog Scale, and the State Anxiety Inventory. It was determined that the scores gathered from the State Anxiety Inventory during the first follow-up increased in the second follow-up in both the intervention and control groups, and this increase was statistically significant in the intervention group (p < .05). The mean pain severity scores of the patients undergoing the procedure were significantly lower in the intervention group than in the control group (p < .05). This study found that classical Turkish music reduced the severity of pain but increased the levels of anxiety in patients undergoing bone marrow aspiration and biopsy. Copyright © 2018 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
Chemical evolution in space--a source of prebiotic molecules.
Greenberg, J M
1983-01-01
In Laboratory Astrophysics at Leiden University a laboratory analog for following the chemical evolution of interstellar dust in space shows that the dust contains the bulk of organic material in the universe. We follow the photoprocessing of low temperature (10 K) mixtures of ices subjected to vacuum ultraviolet radiation in simulation of interstellar conditions. The most important, but necessary, difference is in the time scales for photo-processing. One hour in the laboratory is equivalent to one thousand years in low density regions of space and as much as, or greater than, ten thousand to one million years in the depths of dense molecular clouds. The ultimate product of photoprocessing of grain material in the laboratory is a complex nonvolatile residue which is yellow in color and soluble in water and methanol. The molecular weight is greater than the mid-hundreds. The infrared absorption spectra indicate the presence of carboxylic acid and amino groups resembling those of other molecules of presumably prebiological significance produced by more classical methods. One of our residues, when subjected to high resolution mass spectroscopy gave a mass of 82 corresponding to C4H6H2 after release of CO2 and trace ammounts of urea suggesting amino pyroline rings. The deposit of prebiotic dust molecules occurred as many as 5 times in the first 500-700 million years on a primitive Earth by accretion during the passage of the solar system through a dense interstellar cloud. The deposition rate during each passage is estimated to be between 10(9) and 10(10) g per year during the million or so years of each passage; i.e., a total deposition of 1O(9)-10(10) metric tons of complex organic material per passage.
Schizotypal Perceptual Aberrations of Time: Correlation between Score, Behavior and Brain Activity
Arzy, Shahar; Mohr, Christine; Molnar-Szakacs, Istvan; Blanke, Olaf
2011-01-01
A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances – including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS) similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum. PMID:21267456
NASA Astrophysics Data System (ADS)
Van de Put, Maarten L.; Sorée, Bart; Magnus, Wim
2017-12-01
The Wigner-Liouville equation is reformulated using a spectral decomposition of the classical force field instead of the potential energy. The latter is shown to simplify the Wigner-Liouville kernel both conceptually and numerically as the spectral force Wigner-Liouville equation avoids the numerical evaluation of the highly oscillatory Wigner kernel which is nonlocal in both position and momentum. The quantum mechanical evolution is instead governed by a term local in space and non-local in momentum, where the non-locality in momentum has only a limited range. An interpretation of the time evolution in terms of two processes is presented; a classical evolution under the influence of the averaged driving field, and a probability-preserving quantum-mechanical generation and annihilation term. Using the inherent stability and reduced complexity, a direct deterministic numerical implementation using Chebyshev and Fourier pseudo-spectral methods is detailed. For the purpose of illustration, we present results for the time-evolution of a one-dimensional resonant tunneling diode driven out of equilibrium.
Relativistic Newtonian dynamics
NASA Astrophysics Data System (ADS)
Friedman, Yaakov; Mendel Steiner, Joseph
2017-05-01
A new Relativistic Newtonian Dynamics (RND) for motion under a conservative force capable to describe non-classical behavior in astronomy is proposed. The rotor experiments using Mössbauer spectroscopy with synchrotron radiation, described in the paper, indicate the influence of non-gravitational acceleration or potential energy on time. Similarly, the observed precession of Mercury and the periastron advance of binaries can be explained by the influence of gravitational potential energy on spacetime. The proposed RND incorporates the influence of potential energy on spacetime in Newton’s dynamics. The effect of this influence on time intervals, space increments and velocities is described explicitly by the use of the concept of escape trajectory. For an attracting conservative static potential we derived the RND energy conservation and the dynamics equation for motion of objects with non-zero mass and for massless particles. These equations are subsequently simplified for motion under a central force. Without the need to curve spacetime, this model predicts accurately the four non-classical observations in astronomy used to test the General Relativity.
Global Classical Solutions for MHD System
NASA Astrophysics Data System (ADS)
Casella, E.; Secchi, P.; Trebeschi, P.
In this paper we study the equations of magneto-hydrodynamics for a 2D incompressible ideal fluid in the exterior domain and in the half-plane. We prove the existence of a global classical solution in Hölder spaces, by applying Shauder fixed point theorem.
Mapping quantum-classical Liouville equation: projectors and trajectories.
Kelly, Aaron; van Zon, Ramses; Schofield, Jeremy; Kapral, Raymond
2012-02-28
The evolution of a mixed quantum-classical system is expressed in the mapping formalism where discrete quantum states are mapped onto oscillator states, resulting in a phase space description of the quantum degrees of freedom. By defining projection operators onto the mapping states corresponding to the physical quantum states, it is shown that the mapping quantum-classical Liouville operator commutes with the projection operator so that the dynamics is confined to the physical space. It is also shown that a trajectory-based solution of this equation can be constructed that requires the simulation of an ensemble of entangled trajectories. An approximation to this evolution equation which retains only the Poisson bracket contribution to the evolution operator does admit a solution in an ensemble of independent trajectories but it is shown that this operator does not commute with the projection operators and the dynamics may take the system outside the physical space. The dynamical instabilities, utility, and domain of validity of this approximate dynamics are discussed. The effects are illustrated by simulations on several quantum systems.
Ren, Yongxiong; Liu, Cong; Pang, Kai; Zhao, Jiapeng; Cao, Yinwen; Xie, Guodong; Li, Long; Liao, Peicheng; Zhao, Zhe; Tur, Moshe; Boyd, Robert W; Willner, Alan E
2017-12-01
We experimentally demonstrate spatial multiplexing of an orbital angular momentum (OAM)-encoded quantum channel and a classical Gaussian beam with a different wavelength and orthogonal polarization. Data rates as large as 100 MHz are achieved by encoding on two different OAM states by employing a combination of independently modulated laser diodes and helical phase holograms. The influence of OAM mode spacing, encoding bandwidth, and interference from the co-propagating Gaussian beam on registered photon count rates and quantum bit error rates is investigated. Our results show that the deleterious effects of intermodal crosstalk effects on system performance become less important for OAM mode spacing Δ≥2 (corresponding to a crosstalk value of less than -18.5 dB). The use of OAM domain can additionally offer at least 10.4 dB isolation besides that provided by wavelength and polarization, leading to a further suppression of interference from the classical channel.
NASA Astrophysics Data System (ADS)
Sokolovski, D.; Connor, J. N. L.
1990-12-01
The wave-packet simulation (WPS) method for calculating the time a tunneling particle spends inside a one-dimensional potential barrier is reexamined using the Feynman path-integral technique. Following earlier work by Sokolovski and Baskin [Phys. Rev. A 36, 4604 (1987)], the tunneling (or traversal) time tTpack is defined as a matrix element of a classical nonlocal functional between two states that represent the initial and transmitted wave packets. These states do not lie on the same orbit in Hilbert space; as a result, tTpack is complex-valued. It is shown that RetTpack reduces to the standard WPS result, tTphase, for conditions similar to those employed in the conventional WPS analysis. Similarly, ImtTpack is shown to contain information about the energy dependence of the transmission probability. Under semiclassical conditions, ImtTpack reduces to the well-known Wentzel-Kramers-Brillouin expression for the tunneling time. It is shown there are different definitions for the traversal time of a classical moving object, whose size is comparable to the width of the region of interest. In the quantum case, these different definitions correspond to different ways of analyzing the WPS experiment. The path-integral approach demonstrates that the tunneling-time problem is one of understanding the physical significance of complex-valued off-orbit matrix elements of an operator or functional. The physical content of complex-valued tunneling times is discussed. It is emphasized that the use of complex tunneling times includes real-time approaches as a special case. Nevertheless, there is a limitation in the description of tunneling experiments using tunneling times, whether real or complex. The path-integral approach does not supply a universal traversal time, analogous to a classical time, that can be used in quantum situations. It is demonstrated that the often expressed hope of finding a well-defined and universal real tunneling time is erroneous.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienert, Matthias, E-mail: lienert@math.lmu.de
2015-04-15
The question how to Lorentz transform an N-particle wave function naturally leads to the concept of a so-called multi-time wave function, i.e., a map from (space-time){sup N} to a spin space. This concept was originally proposed by Dirac as the basis of relativistic quantum mechanics. In such a view, interaction potentials are mathematically inconsistent. This fact motivates the search for new mechanisms for relativistic interactions. In this paper, we explore the idea that relativistic interaction can be described by boundary conditions on the set of coincidence points of two particles in space-time. This extends ideas from zero-range physics to amore » relativistic setting. We illustrate the idea at the simplest model which still possesses essential physical properties like Lorentz invariance and a positive definite density: two-time equations for massless Dirac particles in 1 + 1 dimensions. In order to deal with a spatio-temporally non-trivial domain, a necessity in the multi-time picture, we develop a new method to prove existence and uniqueness of classical solutions: a generalized version of the method of characteristics. Both mathematical and physical considerations are combined to precisely formulate and answer the questions of probability conservation, Lorentz invariance, interaction, and antisymmetry.« less
Device-Independent Tests of Classical and Quantum Dimensions
NASA Astrophysics Data System (ADS)
Gallego, Rodrigo; Brunner, Nicolas; Hadley, Christopher; Acín, Antonio
2010-12-01
We address the problem of testing the dimensionality of classical and quantum systems in a “black-box” scenario. We develop a general formalism for tackling this problem. This allows us to derive lower bounds on the classical dimension necessary to reproduce given measurement data. Furthermore, we generalize the concept of quantum dimension witnesses to arbitrary quantum systems, allowing one to place a lower bound on the Hilbert space dimension necessary to reproduce certain data. Illustrating these ideas, we provide simple examples of classical and quantum dimension witnesses.
Microgravity combustion science: Progress, plans, and opportunities
NASA Technical Reports Server (NTRS)
1992-01-01
An earlier overview is updated which introduced the promise of microgravity combustion research and provided a brief survey of results and then current research participants, the available set of reduced gravity facilities, and plans for experimental capabilities in the space station era. Since that time, several research studies have been completed in drop towers and aircraft, and the first space based combustion experiments since Skylab have been conducted on the Shuttle. The microgravity environment enables a new range of experiments to be performed since buoyancy induced flows are nearly eliminated, normally obscured forces and flows may be isolated, gravitational settling or sedimentation is nearly eliminated, and larger time or length scales in experiments are feasible. In addition to new examinations of classical problems, (e.g., droplet burning), current areas of interest include soot formation and weak turbulence, as influenced by gravity.
Revisiting special relativity: a natural algebraic alternative to Minkowski spacetime.
Chappell, James M; Iqbal, Azhar; Iannella, Nicolangelo; Abbott, Derek
2012-01-01
Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension [Formula: see text], with the unit imaginary producing the correct spacetime distance [Formula: see text], and the results of Einstein's then recently developed theory of special relativity, thus providing an explanation for Einstein's theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary [Formula: see text], with the Clifford bivector [Formula: see text] for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis [Formula: see text] and [Formula: see text]. We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton's scattering formula, and a simple formulation of Dirac's and Maxwell's equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane.
Revisiting Special Relativity: A Natural Algebraic Alternative to Minkowski Spacetime
Chappell, James M.; Iqbal, Azhar; Iannella, Nicolangelo; Abbott, Derek
2012-01-01
Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension , with the unit imaginary producing the correct spacetime distance , and the results of Einstein’s then recently developed theory of special relativity, thus providing an explanation for Einstein’s theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary , with the Clifford bivector for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis and . We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton’s scattering formula, and a simple formulation of Dirac’s and Maxwell’s equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane. PMID:23300566
Numerical simulation of the geodynamo reaches Earth's core dynamical regime
NASA Astrophysics Data System (ADS)
Aubert, J.; Gastine, T.; Fournier, A.
2016-12-01
Numerical simulations of the geodynamo have been successful at reproducing a number of static (field morphology) and kinematic (secular variation patterns, core surface flows and westward drift) features of Earth's magnetic field, making them a tool of choice for the analysis and retrieval of geophysical information on Earth's core. However, classical numerical models have been run in a parameter regime far from that of the real system, prompting the question of whether we do get "the right answers for the wrong reasons", i.e. whether the agreement between models and nature simply occurs by chance and without physical relevance in the dynamics. In this presentation, we show that classical models succeed in describing the geodynamo because their large-scale spatial structure is essentially invariant as one progresses along a well-chosen path in parameter space to Earth's core conditions. This path is constrained by the need to enforce the relevant force balance (MAC or Magneto-Archimedes-Coriolis) and preserve the ratio of the convective overturn and magnetic diffusion times. Numerical simulations performed along this path are shown to be spatially invariant at scales larger than that where the magnetic energy is ohmically dissipated. This property enables the definition of large-eddy simulations that show good agreement with direct numerical simulations in the range where both are feasible, and that can be computed at unprecedented values of the control parameters, such as an Ekman number E=10-8. Combining direct and large-eddy simulations, large-scale invariance is observed over half the logarithmic distance in parameter space between classical models and Earth. The conditions reached at this mid-point of the path are furthermore shown to be representative of the rapidly-rotating, asymptotic dynamical regime in which Earth's core resides, with a MAC force balance undisturbed by viscosity or inertia, the enforcement of a Taylor state and strong-field dynamo action. We conclude that numerical modelling has advanced to a stage where it is possible to use models correctly representing the statics, kinematics and now the dynamics of the geodynamo. This opens the way to a better analysis of the geomagnetic field in the time and space domains.
Cavalié, Olivier; Vernotte, François
2016-04-01
The Allan variance was introduced 50 years ago for analyzing the stability of frequency standards. In addition to its metrological interest, it may be also considered as an estimator of the large trends of the power spectral density (PSD) of frequency deviation. For instance, the Allan variance is able to discriminate different types of noise characterized by different power laws in the PSD. The Allan variance was also used in other fields than time and frequency metrology: for more than 20 years, it has been used in accelerometry, geophysics, geodesy, astrophysics, and even finances. However, it seems that up to now, it has been exclusively applied for time series analysis. We propose here to use the Allan variance on spatial data. Interferometric synthetic aperture radar (InSAR) is used in geophysics to image ground displacements in space [over the synthetic aperture radar (SAR) image spatial coverage] and in time thanks to the regular SAR image acquisitions by dedicated satellites. The main limitation of the technique is the atmospheric disturbances that affect the radar signal while traveling from the sensor to the ground and back. In this paper, we propose to use the Allan variance for analyzing spatial data from InSAR measurements. The Allan variance was computed in XY mode as well as in radial mode for detecting different types of behavior for different space-scales, in the same way as the different types of noise versus the integration time in the classical time and frequency application. We found that radial Allan variance is the more appropriate way to have an estimator insensitive to the spatial axis and we applied it on SAR data acquired over eastern Turkey for the period 2003-2011. Spatial Allan variance allowed us to well characterize noise features, classically found in InSAR such as phase decorrelation producing white noise or atmospheric delays, behaving like a random walk signal. We finally applied the spatial Allan variance to an InSAR time series to detect when the geophysical signal, here the ground motion, emerges from the noise.
Cognitive Radios Exploiting Gray Spaces via Compressed Sensing
NASA Astrophysics Data System (ADS)
Wieruch, Dennis; Jung, Peter; Wirth, Thomas; Dekorsy, Armin; Haustein, Thomas
2016-07-01
We suggest an interweave cognitive radio system with a gray space detector, which is properly identifying a small fraction of unused resources within an active band of a primary user system like 3GPP LTE. Therefore, the gray space detector can cope with frequency fading holes and distinguish them from inactive resources. Different approaches of the gray space detector are investigated, the conventional reduced-rank least squares method as well as the compressed sensing-based orthogonal matching pursuit and basis pursuit denoising algorithm. In addition, the gray space detector is compared with the classical energy detector. Simulation results present the receiver operating characteristic at several SNRs and the detection performance over further aspects like base station system load for practical false alarm rates. The results show, that especially for practical false alarm rates the compressed sensing algorithm are more suitable than the classical energy detector and reduced-rank least squares approach.
Independent functions and the geometry of Banach spaces
NASA Astrophysics Data System (ADS)
Astashkin, Sergey V.; Sukochev, Fedor A.
2010-12-01
The main objective of this survey is to present the `state of the art' of those parts of the theory of independent functions which are related to the geometry of function spaces. The `size' of a sum of independent functions is estimated in terms of classical moments and also in terms of general symmetric function norms. The exposition is centred on the Rosenthal inequalities and their various generalizations and sharp conditions under which the latter hold. The crucial tool here is the recently developed construction of the Kruglov operator. The survey also provides a number of applications to the geometry of Banach spaces. In particular, variants of the classical Khintchine-Maurey inequalities, isomorphisms between symmetric spaces on a finite interval and on the semi-axis, and a description of the class of symmetric spaces with any sequence of symmetrically and identically distributed independent random variables spanning a Hilbert subspace are considered. Bibliography: 87 titles.
A Molecular–Structure Hypothesis
Boeyens, Jan C. A.
2010-01-01
The self-similar symmetry that occurs between atomic nuclei, biological growth structures, the solar system, globular clusters and spiral galaxies suggests that a similar pattern should characterize atomic and molecular structures. This possibility is explored in terms of the current molecular structure-hypothesis and its extension into four-dimensional space-time. It is concluded that a quantum molecule only has structure in four dimensions and that classical (Newtonian) structure, which occurs in three dimensions, cannot be simulated by quantum-chemical computation. PMID:21151437
Motion of gas in highly rarefied space
NASA Astrophysics Data System (ADS)
Chirkunov, Yu A.
2017-10-01
A model describing a motion of gas in a highly rarefied space received an unlucky number 13 in the list of the basic models of the motion of gas in the three-dimensional space obtained by L.V. Ovsyannikov. For a given initial pressure distribution, a special choice of mass Lagrangian variables leads to the system describing this motion for which the number of independent variables is less by one. Hence, there is a foliation of a highly rarefied gas with respect to pressure. In a strongly rarefied space for each given initial pressure distribution, all gas particles are localized on a two-dimensional surface that moves with time in this space We found some exact solutions of the obtained system that describe the processes taking place inside of the tornado. For this system we found all nontrivial conservation laws of the first order. In addition to the classical conservation laws the system has another conservation law, which generalizes the energy conservation law. With the additional condition we found another one generalized energy conservation law.
Correlation of etho-social and psycho-social data from "Mars-500" interplanetary simulation
NASA Astrophysics Data System (ADS)
Tafforin, Carole; Vinokhodova, Alla; Chekalina, Angelina; Gushin, Vadim
2015-06-01
Studies of social groups under isolation and confinement for the needs of space psychology were mostly limited by questionnaires completed with batteries of subjective tests, and they needed to be correlated with video recordings for objective analyses in space ethology. The aim of the present study is to identify crewmembers' behavioral profiles for better understanding group dynamics during a 520-day isolation and confinement of the international crew (n=6) participating to the "Mars-500" interplanetary simulation. We propose to correlate data from PSPA (Personal Self-Perception and Attitudes) computerized test, sociometric questionnaires and color choices test (Luscher test) used to measure anxiety levels, with data of video analysis during group discussion (GD) and breakfast time (BT). All the procedures were implemented monthly - GD, or twice a month - BT. Firstly, we used descriptive statistics for displaying quantitative subjects' behavioral profiles, supplied with a software based-solution: the Observer XT®. Secondly, we used Spearmen's nonparametric correlation analysis. The results show that for each subject, the level of non-verbal behavior ("visual interactions", "object interactions", "body interaction", "personal actions", "facial expressions", and "collateral acts") is higher than the level of verbal behavior ("interpersonal communication in Russian", and "interpersonal communication in English"). From the video analyses, dynamics profiles over months are different between the crewmembers. From the correlative analyses, we found highly negative correlations between anxiety and interpersonal communications; and between the sociometric parameter "popularity in leisure environment" and anxiety level. We also found highly significant positive correlations between the sociometric parameter "popularity in working environment" and interpersonal communications, and facial expressions; and between the sociometric parameter "popularity in leisure environment " and interpersonal communications, and facial expressions. As a whole, the findings show high importance of ethological investigations with video monitoring for assessment of group behavior in extreme environment. At the same time, correct interpretation of the video recording results requires their comparison with the results of classical socio-psychological methods. We discuss about the different approaches: objective vs. subjective; active vs. discursive; exhaustive vs. restrictive; descriptive vs. introspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, David B.; Drory, Niv; Fabricius, Maximilian H.
2009-05-20
We study star formation rates (SFRs) and stellar masses in bulges of nearby disk galaxies. For this we construct a new SFR indicator that linearly combines data from the Spitzer Space Telescope and the Galaxy Evolution Explorer. All bulges are found to be forming stars irrespective of bulge type (pseudobulge or classical bulge). At present-day SFR the median pseudobulge could have grown the present-day stellar mass in 8 Gyr. Classical bulges have the lowest specific SFR implying a growth times that are longer than a Hubble time, and thus the present-day SFR does not likely play a major role inmore » the evolution of classical bulges. In almost all galaxies in our sample the specific SFR (SFR per unit stellar mass) of the bulge is higher than that of the outer disk. This suggests that almost all galaxies are increasing their B/T through internal star formation. The SFR in pseudobulges correlates with their structure. More massive pseudobulges have higher SFR density, this is consistent with that stellar mass being formed by moderate, extended star formation. Bulges in late-type galaxies have similar SFRs as pseudobulges in intermediate-type galaxies, and are similar in radial size. However, they are deficient in mass; thus, they have much shorter growth times, {approx}2 Gyr. We identify a class of bulges that have nuclear morphology similar to pseudobulges, significantly lower specific SFR than pseudobulges, and are closer to classical bulges in structural parameter correlations. These are possibly composite objects, evolved pseudobulges or classical bulges experiencing transient, enhanced nuclear star formation. Our results are consistent with a scenario in which bulge growth via internal star formation is a natural, and near ubiquitous phenomenon in disk galaxies. Those galaxies with large classical bulges are not affected by the in situ bulge growth, likely because the majority of their stellar mass comes from some other phenomenon. Yet, those galaxies without a classical bulge, over long periods of extended star formation are able to growth a pseudobulge. Though cold accretion is not ruled out, for pseudobulge galaxies an addition of stellar mass from mergers or accretion is not required to explain the bulge mass. In this sense, galaxies with pseudobulges may very well be bulgeless (or 'quasi-bulgeless') galaxies, and galaxies with classical bulges are galaxies in which both internal evolution and hierarchical merging are responsible for the bulge mass by fractions that vary from galaxy to galaxy.« less
Topologies on quantum topoi induced by quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, Kunji
2013-07-15
In the present paper, we consider effects of quantization in a topos approach of quantum theory. A quantum system is assumed to be coded in a quantum topos, by which we mean the topos of presheaves on the context category of commutative subalgebras of a von Neumann algebra of bounded operators on a Hilbert space. A classical system is modeled by a Lie algebra of classical observables. It is shown that a quantization map from the classical observables to self-adjoint operators on the Hilbert space naturally induces geometric morphisms from presheaf topoi related to the classical system to the quantummore » topos. By means of the geometric morphisms, we give Lawvere-Tierney topologies on the quantum topos (and their equivalent Grothendieck topologies on the context category). We show that, among them, there exists a canonical one which we call a quantization topology. We furthermore give an explicit expression of a sheafification functor associated with the quantization topology.« less
Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set.
Klimenko, Kyrylo; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre
2016-08-22
Curation, standardization and data fusion of the antiviral information present in the ChEMBL public database led to the definition of a robust data set, providing an association of antiviral compounds to seven broadly defined antiviral activity classes. Generative topographic mapping (GTM) subjected to evolutionary tuning was then used to produce maps of the antiviral chemical space, providing an optimal separation of compound families associated with the different antiviral classes. The ability to pinpoint the specific spots occupied (responsibility patterns) on a map by various classes of antiviral compounds opened the way for a GTM-supported search for privileged structural motifs, typical for each antiviral class. The privileged locations of antiviral classes were analyzed in order to highlight underlying privileged common structural motifs. Unlike in classical medicinal chemistry, where privileged structures are, almost always, predefined scaffolds, privileged structural motif detection based on GTM responsibility patterns has the decisive advantage of being able to automatically capture the nature ("resolution detail"-scaffold, detailed substructure, pharmacophore pattern, etc.) of the relevant structural motifs. Responsibility patterns were found to represent underlying structural motifs of various natures-from very fuzzy (groups of various "interchangeable" similar scaffolds), to the classical scenario in medicinal chemistry (underlying motif actually being the scaffold), to very precisely defined motifs (specifically substituted scaffolds).
Branislav, Rajić; Milivoj, Dopsaj; Abella, Carlos Pablos; Deval, Vicente Caratalla; Siniša, Karišik
2013-01-01
Background: The aim of this study is to verify the effects of the combined and classic training of different isometric rates of force development (RFD) parameters of legs. Materials and Methods: Three groups of female athletes was tested: Experimental group (N = 12), classically trained group (N = 11), and control group (N = 20) of athletes. The isometric “standing leg extension” and “Rise on Toes” tests were conducted to evaluate the maximal force, time necessary time to reach it and the RFD analyzed at 100 ms, 180 ms, 250 ms from the onset, and 50-100% of its maximal result. Results: The maximal RFD of legs and calves are dominant explosive parameters. Special training enhanced the RFD of calves of GROUPSPEC at 100 ms (P = 0.05), at 180 ms (P = 0.039), at 250 ms (P = 0.039), at 50% of the Fmax (P = 0.031) and the Fmax (P = 0.05). Domination of GROUPSPEC toward GROUPCLASS and GROUPCONTROL is in case of legs at 100 ms (P = 0.04); at 180 ms (P = 0.04); at 250 ms (P = 0.00); at 50% of the Fmax (P = 0.01) and at the Fmax (P = 0.00); in case of calves at 100 ms (P = 0.07); 180 ms (P = 0.001); at 250 ms (P = 0.00); at 50% of the Fmax (P = 0.00) and at Fmax (P = 0.000). Conclusion: Dominant explosive factors are maximal RFD of leg extensors and calves, and legs at 250ms. Specific training enhanced explosiveness of calves of GROUPSPEC general and partial domination of GROUPSPEC by 87% over GROUPCLASS, and 35% over GROUPCONTROL. PMID:24497853
NASA Astrophysics Data System (ADS)
Ma, Zhisai; Liu, Li; Zhou, Sida; Naets, Frank; Heylen, Ward; Desmet, Wim
2017-03-01
The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stability-preserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam experimental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides a new way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.
Uttman, L; Bitzén, U; De Robertis, E; Enoksson, J; Johansson, L; Jonson, B
2012-10-01
Low tidal volume (V(T)), PEEP, and low plateau pressure (P(PLAT)) are lung protective during acute respiratory distress syndrome (ARDS). This study tested the hypothesis that the aspiration of dead space (ASPIDS) together with computer simulation can help maintain gas exchange at these settings, thus promoting protection of the lungs. ARDS was induced in pigs using surfactant perturbation plus an injurious ventilation strategy. One group then underwent 24 h protective ventilation, while control groups were ventilated using a conventional ventilation strategy at either high or low pressure. Pressure-volume curves (P(el)/V), blood gases, and haemodynamics were studied at 0, 4, 8, 16, and 24 h after the induction of ARDS and lung histology was evaluated. The P(el)/V curves showed improvements in the protective strategy group and deterioration in both control groups. In the protective group, when respiratory rate (RR) was ≈ 60 bpm, better oxygenation and reduced shunt were found. Histological damage was significantly more severe in the high-pressure group. There were no differences in venous oxygen saturation and pulmonary vascular resistance between the groups. The protective ventilation strategy of adequate pH or PaCO2 with minimal V(T), and high/safe P(PLAT) resulting in high PEEP was based on the avoidance of known lung-damaging phenomena. The approach is based upon the optimization of V(T), RR, PEEP, I/E, and dead space. This study does not lend itself to conclusions about the independent role of each of these features. However, dead space reduction is fundamental for achieving minimal V(T) at high RR. Classical physiology is applicable at high RR. Computer simulation optimizes ventilation and limiting of dead space using ASPIDS. Inspiratory P(el)/V curves recorded from PEEP or, even better, expiratory P(el)/V curves allow monitoring in ARDS.
Two-dimensional electromagnetic Child-Langmuir law of a short-pulse electron flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S. H.; Tai, L. C.; Liu, Y. L.
Two-dimensional electromagnetic particle-in-cell simulations were performed to study the effect of the displacement current and the self-magnetic field on the space charge limited current density or the Child-Langmuir law of a short-pulse electron flow with a propagation distance of {zeta} and an emitting width of W from the classical regime to the relativistic regime. Numerical scaling of the two-dimensional electromagnetic Child-Langmuir law was constructed and it scales with ({zeta}/W) and ({zeta}/W){sup 2} at the classical and relativistic regimes, respectively. Our findings reveal that the displacement current can considerably enhance the space charge limited current density as compared to the well-knownmore » two-dimensional electrostatic Child-Langmuir law even at the classical regime.« less
Gharaibeh, Saad; Amareen, Shadi
2016-05-01
Avian influenza subtype H9N2 is endemic in many countries in the Middle East. The reported prevalence of infection was variable between countries and ranged from 28.7% in Tunisia to 71% in Jordan. Several commercial killed whole-virus vaccine products are used as monovalent or bivalent mixed with Newcastle disease virus. Recently, we have noticed that many of the vaccinated broiler flocks did not show a production advantage over nonvaccinated flocks in the field. A new avian influenza field virus (H9N2) was isolated from these vaccinated and infected broiler flocks in 2013. This virus had 89.1% similarity of its hemagglutinin (HA) gene to the classical virus used for manufacturing the classical vaccine. Inactivated autogenous vaccine was manufactured from this new field isolate to investigate its serological response and protection in specific-pathogen-free (SPF) and breeder-male chickens compared to the classical vaccine. Oropharyngeal virus shedding of vaccinated breeder-male chickens was evaluated at 3, 9, 10, and 14 days postchallenge (DPC). Percentage of chickens shedding the virus at 3 DPC was 64%, 50%, and 64% in the classical vaccine group, autogenous vaccine group, and the control challenged group, respectively. At 7 DPC percentage of virus shedding was 42%, 7%, and 64% in the classical vaccine group, autogenous vaccine group, and the control challenged group, respectively. At 10 DPC only 9% of classical vaccine group was shedding the virus and there was no virus shedding in any of the groups at 14 DPC. There was statistical significance difference (P < 0.05) in shedding only at 7 DPC between the autogenous vaccine group and the other two groups. At 42 days of age (14 DPC), average body weight was 2.720, 2.745, 2.290, and 2.760 kg for the classical vaccine group, autogenous vaccine group, control challenged group, and control unchallenged group, respectively. Only the control challenged group had significantly (P < 0.05) lower average body weight. In another experiment, vaccinated SPF chicks had hemagglutination inhibition (HI) geometric mean titers (GMTs), with classical antigen, of 8.7 and 3.1 log 2 for classical and autogenous vaccine groups, respectively. When the autogenous antigen was used for HI, GMTs were 6.0 and 8.1 log 2, respectively. Both vaccines protected against body weight suppression after challenge. However, autogenous vaccine elicited significantly higher HI titer and reduced viral shedding at 7 DPC. In conclusion, it is important to revise the vaccine virus strains used in each region to protect against and control infection from new field strains. Further field experiments are needed to demonstrate the efficacy of new vaccines under field conditions.
A spectral hybridizable discontinuous Galerkin method for elastic-acoustic wave propagation
NASA Astrophysics Data System (ADS)
Terrana, S.; Vilotte, J. P.; Guillot, L.
2018-04-01
We introduce a time-domain, high-order in space, hybridizable discontinuous Galerkin (DG) spectral element method (HDG-SEM) for wave equations in coupled elastic-acoustic media. The method is based on a first-order hyperbolic velocity-strain formulation of the wave equations written in conservative form. This method follows the HDG approach by introducing a hybrid unknown, which is the approximation of the velocity on the elements boundaries, as the only globally (i.e. interelement) coupled degrees of freedom. In this paper, we first present a hybridized formulation of the exact Riemann solver at the element boundaries, taking into account elastic-elastic, acoustic-acoustic and elastic-acoustic interfaces. We then use this Riemann solver to derive an explicit construction of the HDG stabilization function τ for all the above-mentioned interfaces. We thus obtain an HDG scheme for coupled elastic-acoustic problems. This scheme is then discretized in space on quadrangular/hexahedral meshes using arbitrary high-order polynomial basis for both volumetric and hybrid fields, using an approach similar to the spectral element methods. This leads to a semi-discrete system of algebraic differential equations (ADEs), which thanks to the structure of the global conservativity condition can be reformulated easily as a classical system of first-order ordinary differential equations in time, allowing the use of classical explicit or implicit time integration schemes. When an explicit time scheme is used, the HDG method can be seen as a reformulation of a DG with upwind fluxes. The introduction of the velocity hybrid unknown leads to relatively simple computations at the element boundaries which, in turn, makes the HDG approach competitive with the DG-upwind methods. Extensive numerical results are provided to illustrate and assess the accuracy and convergence properties of this HDG-SEM. The approximate velocity is shown to converge with the optimal order of k + 1 in the L2-norm, when element polynomials of order k are used, and to exhibit the classical spectral convergence of SEM. Additional inexpensive local post-processing in both the elastic and the acoustic case allow to achieve higher convergence orders. The HDG scheme provides a natural framework for coupling classical, continuous Galerkin SEM with HDG-SEM in the same simulation, and it is shown numerically in this paper. As such, the proposed HDG-SEM can combine the efficiency of the continuous SEM with the flexibility of the HDG approaches. Finally, more complex numerical results, inspired from real geophysical applications, are presented to illustrate the capabilities of the method for wave propagation in heterogeneous elastic-acoustic media with complex geometries.
Analysis of delay reducing and fuel saving sequencing and spacing algorithms for arrival traffic
NASA Technical Reports Server (NTRS)
Neuman, Frank; Erzberger, Heinz
1991-01-01
The air traffic control subsystem that performs sequencing and spacing is discussed. The function of the sequencing and spacing algorithms is to automatically plan the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several algorithms are described and their statistical performance is examined. Sequencing brings order to an arrival sequence for aircraft. First-come-first-served sequencing (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the arriving traffic, gaps will remain in the sequence of aircraft. Delays are reduced by time-advancing the leading aircraft of each group while still preserving the FCFS order. Tightly spaced groups of aircraft remain with a mix of heavy and large aircraft. Spacing requirements differ for different types of aircraft trailing each other. Traffic is reordered slightly to take advantage of this spacing criterion, thus shortening the groups and reducing average delays. For heavy traffic, delays for different traffic samples vary widely, even when the same set of statistical parameters is used to produce each sample. This report supersedes NASA TM-102795 on the same subject. It includes a new method of time-advance as well as an efficient method of sequencing and spacing for two dependent runways.
q-Deformed Minkowski Algebra and Its Space-Time Lattice
NASA Astrophysics Data System (ADS)
Wess, J.
2Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6, D-80805 MünchenAbstract. We have asked how the Heisenberg relations of space and time change if we replace the Lorentz group by a q-deformed Lorentz group (Lorek et al. 1997).
Adiabatic Demagnetisation Refrigerators for Future Sub-Millimetre Space Missions
NASA Astrophysics Data System (ADS)
Hepburn, I. D.; Davenport, I.; Smith, A.
1995-10-01
Space worthy refrigeration capable of providing a 100 mK and below heat load sink for bolometric detectors will be required for the next generation of sub-millimetre space missions. Adiabatic demagnetisation refrigeration (ADR), being a gravity independent laboratory method for obtaining such temperatures, is a favourable technique for utilisation in space. We show that by considering a 3 salt pill refrigerator rather than the classic single salt pill design the space prohibitive laboratory ADR properties of high magnetic field (6 Tesla) and a<2 K environment (provided by a bath of liquid4He) can be alleviated, while maintaining a sufficient low temperature hold time and short recycle time. The additional salt pills, composed of Gadolinium Gallium Garnet (GGG) provide intermediate cooling stages, enabling operation from a 4 K environment provided by a single 4 K mechanical cooler, thereby providing consumable free operation. Such ADRs could operate with fields as low as 1 Tesla allowing the use of high temperature, mechanically cooled superconducting magnets and so effectively remove the risk of quenching. We discuss the possibility of increasing the hold time from 3 hours, for the model presented, to between 40 and 80 hours, plus reducing the number of salt pills to two, through the use of a more efficient Garnet. We believe the technical advances necessitated by the envisaged ADRs are minimal and conclude that such ADRs offer a long orbital life time, consumable free, high efficiency means of milli-Kelvin cooling, requiring relatively little laboratory development.
NASA Astrophysics Data System (ADS)
Melas, Evangelos
2017-07-01
The original Bondi-Metzner-Sachs (BMS) group B is the common asymptotic symmetry group of all asymptotically flat Lorentzian radiating 4-dim space-times. As such, B is the best candidate for the universal symmetry group of General Relativity (G.R.). In 1973, with this motivation, McCarthy classified all relativistic B-invariant systems in terms of strongly continuous irreducible unitary representations (IRS) of B. Here we introduce the analogue B(2, 1) of the BMS group B in 3 space-time dimensions. B(2, 1) itself admits thirty-four analogues both real in all signatures and in complex space-times. In order to find the IRS of both B(2, 1) and its analogues, we need to extend Wigner-Mackey's theory of induced representations. The necessary extension is described and is reduced to the solution of three problems. These problems are solved in the case where B(2, 1) and its analogues are equipped with the Hilbert topology. The extended theory is necessary in order to construct the IRS of both B and its analogues in any number d of space-time dimensions, d ≥3 , and also in order to construct the IRS of their supersymmetric counterparts. We use the extended theory to obtain the necessary data in order to construct the IRS of B(2, 1). The main results of the representation theory are as follows: The IRS are induced from "little groups" which are compact. The finite "little groups" are cyclic groups of even order. The inducing construction is exhaustive notwithstanding the fact that B(2, 1) is not locally compact in the employed Hilbert topology.
Stroop-interference effect in post-traumatic stress disorder.
Cui, Hong; Chen, Guoliang; Liu, Xiaohui; Shan, Moshui; Jia, Yanyan
2014-12-01
To investigate the conflict processing in posttraumatic stress disorder (PTSD) patients, we conducted the classical Stroop task by recording event-related potentials. Although the reaction time was overall slower for PTSD patients than healthy age-matched control group, the Stroop-interference effect of reaction time did not differ between the two groups. Compared with normal controls, the interference effects of N 2 and N 450 components were larger and the interference effect of slow potential component disappeared in PTSD. These data indicated the dysfunction of conflict processing in individuals with PTSD.
Stability and chaos in Kustaanheimo-Stiefel space induced by the Hopf fibration
NASA Astrophysics Data System (ADS)
Roa, Javier; Urrutxua, Hodei; Peláez, Jesús
2016-07-01
The need for the extra dimension in Kustaanheimo-Stiefel (KS) regularization is explained by the topology of the Hopf fibration, which defines the geometry and structure of KS space. A trajectory in Cartesian space is represented by a four-dimensional manifold called the fundamental manifold. Based on geometric and topological aspects classical concepts of stability are translated to KS language. The separation between manifolds of solutions generalizes the concept of Lyapunov stability. The dimension-raising nature of the fibration transforms fixed points, limit cycles, attractive sets, and Poincaré sections to higher dimensional subspaces. From these concepts chaotic systems are studied. In strongly perturbed problems, the numerical error can break the topological structure of KS space: points in a fibre are no longer transformed to the same point in Cartesian space. An observer in three dimensions will see orbits departing from the same initial conditions but diverging in time. This apparent randomness of the integration can only be understood in four dimensions. The concept of topological stability results in a simple method for estimating the time-scale in which numerical simulations can be trusted. Ideally, all trajectories departing from the same fibre should be KS transformed to a unique trajectory in three-dimensional space, because the fundamental manifold that they constitute is unique. By monitoring how trajectories departing from one fibre separate from the fundamental manifold a critical time, equivalent to the Lyapunov time, is estimated. These concepts are tested on N-body examples: the Pythagorean problem, and an example of field stars interacting with a binary.
Dimensional discontinuity in quantum communication complexity at dimension seven
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Pawłowski, Marcin; Żukowski, Marek; Bourennane, Mohamed
2017-02-01
Entanglement-assisted classical communication and transmission of a quantum system are the two quantum resources for information processing. Many information tasks can be performed using either quantum resource. However, this equivalence is not always present since entanglement-assisted classical communication is sometimes known to be the better performing resource. Here, we show not only the opposite phenomenon, that there exist tasks for which transmission of a quantum system is a more powerful resource than entanglement-assisted classical communication, but also that such phenomena can have a surprisingly strong dependence on the dimension of Hilbert space. We introduce a family of communication complexity problems parametrized by the dimension of Hilbert space and study the performance of each quantum resource. Under an additional assumption of a linear strategy for the receiving party, we find that for low dimensions the two resources perform equally well, whereas for dimension seven and above the equivalence is suddenly broken and transmission of a quantum system becomes more powerful than entanglement-assisted classical communication. Moreover, we find that transmission of a quantum system may even outperform classical communication assisted by the stronger-than-quantum correlations obtained from the principle of macroscopic locality.
Diffusion and related transport mechanisms in brain tissue
NASA Astrophysics Data System (ADS)
Nicholson, Charles
2001-07-01
Diffusion plays a crucial role in brain function. The spaces between cells can be likened to the water phase of a foam and many substances move within this complicated region. Diffusion in this interstitial space can be accurately modelled with appropriate modifications of classical equations and quantified from measurements based on novel micro-techniques. Besides delivering glucose and oxygen from the vascular system to brain cells, diffusion also moves informational substances between cells, a process known as volume transmission. Deviations from expected results reveal how local uptake, degradation or bulk flow may modify the transport of molecules. Diffusion is also essential to many therapies that deliver drugs to the brain. The diffusion-generated concentration distributions of well-chosen molecules also reveal the structure of brain tissue. This structure is represented by the volume fraction (void space) and the tortuosity (hindrance to diffusion imposed by local boundaries or local viscosity). Analysis of these parameters also reveals how the local geometry of the brain changes with time or under pathological conditions. Theoretical and experimental approaches borrow from classical diffusion theory and from porous media concepts. Earlier studies were based on radiotracers but the recent methods use a point-source paradigm coupled with micro-sensors or optical imaging of macromolecules labelled with fluorescent tags. These concepts and methods are likely to be applicable elsewhere to measure diffusion properties in very small volumes of highly structured but delicate material.
Higher spin gauge theory on fuzzy \\boldsymbol {S^4_N}
NASA Astrophysics Data System (ADS)
Sperling, Marcus; Steinacker, Harold C.
2018-02-01
We examine in detail the higher spin fields which arise on the basic fuzzy sphere S^4N in the semi-classical limit. The space of functions can be identified with functions on classical S 4 taking values in a higher spin algebra associated to \
Inhibition of quantum transport due to 'scars' of unstable periodic orbits
NASA Technical Reports Server (NTRS)
Jensen, R. V.; Sanders, M. M.; Saraceno, M.; Sundaram, B.
1989-01-01
A new quantum mechanism for the suppression of chaotic ionization of highly excited hydrogen atoms explains the appearance of anomalously stable states in the microwave ionization experiments of Koch et al. A novel phase-space representation of the perturbed wave functions reveals that the inhibition of quantum transport is due to the selective excitation of wave functions that are highly localized near unstable periodic orbits in the chaotic classical phase space. The 'scarred' wave functions provide a new basis for the quantum description of a variety of classically chaotic systems.
Coherent states for the quantum complete rigid rotor
NASA Astrophysics Data System (ADS)
Fontanari, Daniele; Sadovskií, Dmitrií A.
2018-07-01
Motivated by the possibility to describe orientations of quantum triaxial rigid rotors, such as molecules, with respect to both internal (body-fixed) and external (laboratory) frames, we go through the theory of coherent states and design the appropriate family of coherent states on T∗ SO(3) , the classical phase space of the freely rotating rigid body (the Euler top). We pay particular attention to the resolution of identity property in order to establish the explicit relation between the parameters of the coherent states and classical phase-space variables, actions and angles.
NASA Technical Reports Server (NTRS)
Barghouty, A. F.
2014-01-01
Accurate estimates of electroncapture cross sections at energies relevant to the modeling of the transport, acceleration, and interaction of energetic neutral atoms (ENA) in space (approximately few MeV per nucleon) and especially for multi-electron ions must rely on detailed, but computationally expensive, quantum-mechanical description of the collision process. Kuang's semi-classical approach is an elegant and efficient way to arrive at these estimates. Motivated by ENA modeling efforts for apace applications, we shall briefly present this approach along with sample applications and report on current progress.
Quantum cosmology of a Bianchi III LRS geometry coupled to a source free electromagnetic field
NASA Astrophysics Data System (ADS)
Karagiorgos, A.; Pailas, T.; Dimakis, N.; Terzis, Petros A.; Christodoulakis, T.
2018-03-01
We consider a Bianchi type III axisymmetric geometry in the presence of an electromagnetic field. A first result at the classical level is that the symmetry of the geometry need not be applied on the electromagnetic tensor Fμν the algebraic restrictions, implied by the Einstein field equations to the stress energy tensor Tμν, suffice to reduce the general Fμν to the appropriate form. The classical solution thus found contains a time dependent electric and a constant magnetic charge. The solution is also reachable from the corresponding mini-superspace action, which is strikingly similar to the Reissner-Nordstr{öm one. This points to a connection between the black hole geometry and the cosmological solution here found, which is the analog of the known correlation between the Schwarzschild and the Kantowski-Sachs metrics. The configuration space is drastically modified by the presence of the magnetic charge from a 3D flat to a 3D pp wave geometry. We map the emerging linear and quadratic classical integrals of motion, to quantum observables. Along with the Wheeler-DeWitt equation these observables provide unique, up to constants, wave functions. The employment of a Bohmian interpretation of these quantum states results in deterministic (semi-classical) geometries most of which are singularity free.
Ehrenfest dynamics is purity non-preserving: A necessary ingredient for decoherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, J. L.; Instituto de Biocomputacion y Fisica de Sistemas Complejos; Unidad Asociada IQFR-BIFI, Universidad de Zaragoza, Mariano Esquillor s/n, E-50018 Zaragoza
2012-08-07
We discuss the evolution of purity in mixed quantum/classical approaches to electronic nonadiabatic dynamics in the context of the Ehrenfest model. As it is impossible to exactly determine initial conditions for a realistic system, we choose to work in the statistical Ehrenfest formalism that we introduced in Alonso et al. [J. Phys. A: Math. Theor. 44, 396004 (2011)]. From it, we develop a new framework to determine exactly the change in the purity of the quantum subsystem along with the evolution of a statistical Ehrenfest system. In a simple case, we verify how and to which extent Ehrenfest statistical dynamicsmore » makes a system with more than one classical trajectory, and an initial quantum pure state become a quantum mixed one. We prove this numerically showing how the evolution of purity depends on time, on the dimension of the quantum state space D, and on the number of classical trajectories N of the initial distribution. The results in this work open new perspectives for studying decoherence with Ehrenfest dynamics.« less
The Fourth Law of Motion in Classical Mechanics and Electrodynamics
NASA Astrophysics Data System (ADS)
Pinheiro, Mario J.
2010-01-01
Newton's second law has limited scope of application when transient phenomena are at stake. We endeavor here to consider a modification of Newton's second law in order to take into account sudden change (surge) of angular momentum or linear momentum. It is shown that space react back according to a kind of induction law that is related to inertia, but also appears to give evidence of a "fluidic" nature of space itself. The back-reaction is quantified by the time rate of the angular momentum flux threading a surface, mass dependent, and bearing similarity to the quantum mechanics phase shift, present in the Aharonov-Bohm and Aharonov-Casher effects, thus giving evidence of the property of vacuum polarization, a phenomena which is relative to local space. It is formulated a kind of (qualitative) Lenz law that gives an explanation to precession.
Gülen, Güven; Akkaya, Taylan; Ozkan, Derya; Kaydul, Mehmet; Gözaydin, Orhan; Gümüş, Haluk
2012-01-01
The spring-loaded syringe is a loss of resistance syringe that provide a more objective sign that the epidural space has been entered compared with the traditional techniques. The aim of this study was to compare the time required to locate the epidural space and the backache incidence with the spring-loaded (SL), loss of resistance (LOR) and the hanging drop (HD) techniques for epidural blocks in patients undergoing transurethral resection procedure. Sixty patients undergoing transurethral resections were enrolled in the study. The patients were randomly assigned to one of three groups. Epidural block was performed in the first group with a spring-loaded syringe (n=20), in the second group with loss-of-resistance syringe (n=20), and in the third group with the hanging drop technique (n=20). The required time to locate the epidural space, the number of attempts, the incidence of dural puncture and the backache incidence were assessed during the procedure and for four weeks after the procedure in all patients. The required time to locate the epidural space was 29.1 ± 9.16 seconds in Group 1; 45.25 ± 19.58 seconds in Group 2, and 47.35 ± 11.42 seconds in Group 3 (p<0.001). In Group 1 this was significantly shorter than the other two groups. There was no significant difference in the number of attempts, the incidence of dural puncture and backache incidence between the three groups (p>0.05). The use of SL syringe was found to have a shorter time period to locate the epidural space when compared with the LOR syringe and hanging drop technique.
Sun, Yongke; Yang, Yuai; Zheng, Huanli; Xi, Dongmei; Lin, Mingxing; Zhang, Xiaomin; Yang, Linfu; Yan, Yulin; Chu, Xiaohui; Bi, Baoliang
2013-04-01
The objective of this study was to construct a recombinant adenovirus for future CSFV vaccines used in the pig industry for the reduction of losses involved in CSF outbreaks. The Erns and E2 genes of classical swine fever virus (CSFV), which encode the two main protective glycoproteins from the "Shimen" strain of CSFV, were combined and inserted into the replication-defective human adenovirus type-5 and named the rAd-Erns-E2. Nine pigs were randomly assigned to three treatment groups (three pigs in each group) including the rAd-Erns-E2, hAd-CMV control and DMEM control. Intramuscular vaccination with 2×10(6) TCID(50) of the rAd-Erns-E2 was administered two times with an interval of 21 days. At 42 days post inoculation, pigs in all groups were challenged with a lethal dose of 1×10(3) TCID(50) CSFV "Shimen" strain. Observation of clinical signs was made and the existence of CSFV RNA was detected. Animals in the hAd-CMV and DMEM groups showed severe clinical CSF symptoms and were euthanized from 7 to 10 days after the challenge. However, no adverse clinical CSF signs were observed in vaccinated pigs after the administration of rAd-Erns-E2 and even after CSFV challenge. Neither CSFV RNA nor pathological changes were detected in the tissues of interest of the above vaccinated pigs. These results implied that the recombination adenovirus carrying the Erns-E2 genes could be used to prevent swine from classical swine fever. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Birth and Death of Redundancy in Decoherence and Quantum Darwinism
NASA Astrophysics Data System (ADS)
Riedel, Charles; Zurek, Wojciech; Zwolak, Michael
2012-02-01
Understanding the quantum-classical transition and the identification of a preferred classical domain through quantum Darwinism is based on recognizing high-redundancy states as both ubiquitous and exceptional. They are produced ubiquitously during decoherence, as has been demonstrated by the recent identification of very general conditions under which high-redundancy states develop. They are exceptional in that high-redundancy states occupy a very narrow corner of the global Hilbert space; states selected at random are overwelming likely to exhibit zero redundancy. In this letter, we examine the conditions and time scales for the transition from high-redundancy states to zero-redundancy states in many-body dynamics. We identify sufficient condition for the development of redundancy from product states and show that the destruction of redundancy can be accomplished even with highly constrained interactions.
The relativity revolution from the perspective of historical epistemology.
Renn, Jürgen
2004-12-01
This essay analyzes Einstein's relativity revolution as part of a long-term development of knowledge in which the knowledge system of classical physics was reorganized in a process of reflection, described here as a "Copernican process." This process led in 1905 to the introduction of fundamentally new concepts of space, time, matter, and radiation. On the basis of an extensive historical reconstruction, the heuristics of Einstein's creation of the general theory of relativity, completing the relativity revolution, is interpreted as a further transformation of the knowledge of classical physics, starting from conceiving gravitation as a borderline problem between field theory and mechanics. The essay thus provides an answer to the puzzle of how Einstein was able to create a theory capable of accounting for a wide range of phenomena that were discovered only much later.
Ghirardi-Rimini-Weber model with massive flashes
NASA Astrophysics Data System (ADS)
Tilloy, Antoine
2018-01-01
I introduce a modification of the Ghirardi-Rimini-Weber (GRW) model in which the flashes (or space-time collapse events) source a classical gravitational field. The resulting semiclassical theory of Newtonian gravity preserves the statistical interpretation of quantum states of matter in contrast with mean field approaches. It can be seen as a discrete version of recent proposals of consistent hybrid quantum classical theories. The model is in agreement with known experimental data and introduces new falsifiable predictions: (1) single particles do not self-interact, (2) the 1 /r gravitational potential of Newtonian gravity is cut off at short (≲10-7 m ) distances, and (3) gravity makes spatial superpositions decohere at a rate inversely proportional to that coming from the vanilla GRW model. Together, the last two predictions make the model experimentally falsifiable for all values of its parameters.
Conditional optimal spacing in exponential distribution.
Park, Sangun
2006-12-01
In this paper, we propose the conditional optimal spacing defined as the optimal spacing after specifying a predetermined order statistic. If we specify a censoring time, then the optimal inspection times for grouped inspection can be determined from this conditional optimal spacing. We take an example of exponential distribution, and provide a simple method of finding the conditional optimal spacing.
[Advantage investigation of totally laparoscopic modified Roux-en-Y reconstruction].
Liu, Tianzhou; Ma, Zhiming; Sun, Pengda; Li, Jinlong; Fang, Xuedong; Tong, Ti; Zhu, Jiaming
2016-01-01
To investigate the clinical advantage of the application of modified Roux-en-Y reconstruction after totally laparoscopic total gastrectomy. Clinical data of 36 patients who underwent totally laparoscopic total gastrectomy with Roux-en-Y reconstruction by one medical team for gastric adenocarcinoma between January 2014 and December 2014 in the Second Hospital of Jilin University were retrospectively analyzed. Patients were divided into classic Roux-en-Y group (CRY, 16 cases) and modified Roux-en-Y group (MRY, 20 cases) according to reconstructive methods. The data concerning the intraoperative and postoperative situation in two groups were compared. Operation was successfully completed in all the cases without conversion to laparotomy. Compared to CRY group, MRY group had shorter mean operative time [(260.9 ± 21.2) min vs. (287.9 ± 19.0) min, P=0.000], shorter mean reconstruction duration [(32.4 ± 9.2] min vs. (45.4 ± 13.2) min, P=0.001] and less intraoperative bleeding [(50.9 ± 23.5) ml vs. (67.0 ± 20.5) ml, P=0.000]. Jejunum mesentery dissection and jejunum resection were not necessary in MRY group. However, there were no significant differences in lymph nodes harvested, time to flatus, hospital stay and postoperative complications between two groups. As compared to classic Roux-en-Y reconstruction, the modified Roux-en-Y reconstruction can simplify the surgical procedures and achieve similar efficacy. It is feasible and safe, and worth further promotion in clinical practice.
A Third-Party E-Payment Protocol Based on Quantum Group Blind Signature
NASA Astrophysics Data System (ADS)
Zhang, Jian-Zhong; Yang, Yuan-Yuan; Xie, Shu-Cui
2017-09-01
A third-party E-payment protocol based on quantum group blind signature is proposed in this paper. Our E-payment protocol could protect user's anonymity as the traditional E-payment systems do, and also have unconditional security which the classical E-payment systems can not provide. To achieve that, quantum key distribution, one-time pad and quantum group blind signature are adopted in our scheme. Furthermore, if there were a dispute, the manager Trent can identify who tells a lie.
NASA Technical Reports Server (NTRS)
Lee, Kimyeong; Holman, Richard; Kolb, Edward W.
1987-01-01
Wilson-loop symmetry breaking is considered on a space-time of the form M4 x K, where M4 is a four-dimensional space-time and K is an internal space with nontrivial and finite fundamental group. It is shown in a simple model that the different vacua obtained by breaking a non-Abelian gauge group by Wilson loops are separated in the space of gauge potentials by a finite energy barrier. An interpolating gauge configuration is then constructed between these vacua and shown to have minimum energy. Finally some implications of this construction are discussed.
NASA Astrophysics Data System (ADS)
Tomita, Motohiro; Ogasawara, Masataka; Terada, Takuya; Watanabe, Takanobu
2018-04-01
We provide the parameters of Stillinger-Weber potentials for GeSiSn ternary mixed systems. These parameters can be used in molecular dynamics (MD) simulations to reproduce phonon properties and thermal conductivities. The phonon dispersion relation is derived from the dynamical structure factor, which is calculated by the space-time Fourier transform of atomic trajectories in an MD simulation. The phonon properties and thermal conductivities of GeSiSn ternary crystals calculated using these parameters mostly reproduced both the findings of previous experiments and earlier calculations made using MD simulations. The atomic composition dependence of these properties in GeSiSn ternary crystals obtained by previous studies (both experimental and theoretical) and the calculated data were almost exactly reproduced by our proposed parameters. Moreover, the results of the MD simulation agree with the previous calculations made using a time-independent phonon Boltzmann transport equation with complicated scattering mechanisms. These scattering mechanisms are very important in complicated nanostructures, as they allow the heat-transfer properties to be more accurately calculated by MD simulations. This work enables us to predict the phonon- and heat-related properties of bulk group IV alloys, especially ternary alloys.
An E-payment system based on quantum group signature
NASA Astrophysics Data System (ADS)
Xiaojun, Wen
2010-12-01
Security and anonymity are essential to E-payment systems. However, existing E-payment systems will easily be broken into soon with the emergence of quantum computers. In this paper, we propose an E-payment system based on quantum group signature. In contrast to classical E-payment systems, our quantum E-payment system can protect not only the users' anonymity but also the inner structure of customer groups. Because of adopting the two techniques of quantum key distribution, a one-time pad and quantum group signature, unconditional security of our E-payment system is guaranteed.
Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers
Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul
2016-01-01
Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice quality. PMID:27159498
Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers.
Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul
2016-01-01
Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice quality.
Statistical mechanics based on fractional classical and quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korichi, Z.; Meftah, M. T., E-mail: mewalid@yahoo.com
2014-03-15
The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.
Universal Local Symmetries and Nonsuperposition in Classical Mechanics
NASA Astrophysics Data System (ADS)
Gozzi, Ennio; Pagani, Carlo
2010-10-01
In the Hilbert space formulation of classical mechanics, pioneered by Koopman and von Neumann, there are potentially more observables than in the standard approach to classical mechanics. In this Letter, we show that actually many of those extra observables are not invariant under a set of universal local symmetries which appear once the Koopman and von Neumann formulation is extended to include the evolution of differential forms. Because of their noninvariance, those extra observables have to be removed. This removal makes the superposition of states in the Koopman and von Neumann formulation, and as a consequence also in classical mechanics, impossible.
The Space Motion of Leo I: The Mass of the Milky Way's Dark Matter Halo
NASA Astrophysics Data System (ADS)
Boylan-Kolchin, Michael; Bullock, James S.; Sohn, Sangmo Tony; Besla, Gurtina; van der Marel, Roeland P.
2013-05-01
We combine our Hubble Space Telescope measurement of the proper motion of the Leo I dwarf spheroidal galaxy (presented in a companion paper) with the highest resolution numerical simulations of Galaxy-size dark matter halos in existence to constrain the mass of the Milky Way's dark matter halo (M vir, MW). Despite Leo I's large Galactocentric space velocity (200 km s-1) and distance (261 kpc), we show that it is extremely unlikely to be unbound if Galactic satellites are associated with dark matter substructure, as 99.9% of subhalos in the simulations are bound to their host. The observed position and velocity of Leo I strongly disfavor a low-mass Milky Way: if we assume that Leo I is the least bound of the Milky Way's classical satellites, then we find that M vir, MW > 1012 M ⊙ at 95% confidence for a variety of Bayesian priors on M vir, MW. In lower mass halos, it is vanishingly rare to find subhalos at 261 kpc moving as fast as Leo I. Should an additional classical satellite be found to be less bound than Leo I, this lower limit on M vir, MW would increase by 30%. Imposing a mass-weighted ΛCDM prior, we find a median Milky Way virial mass of M vir, MW = 1.6 × 1012 M ⊙, with a 90% confidence interval of [1.0-2.4] × 1012 M ⊙. We also confirm a strong correlation between subhalo infall time and orbital energy in the simulations and show that proper motions can aid significantly in interpreting the infall times and orbital histories of satellites.
Motions in Taub-NUT-de Sitter spinning spacetime
NASA Astrophysics Data System (ADS)
Banu, Akhtara
2012-09-01
We investigate the geodesic motion of pseudo-classical spinning particles in the Taub-NUT-de Sitter spacetime. We obtain the conserved quantities from the solutions of the generalized Killing equations for spinning spaces. Applying the formalism the motion of a pseudo-classical Dirac fermion is analyzed on a cone and plane.
2013-01-01
Background Classical major histocompatibility complex (MHC) class II molecules play an essential role in presenting peptide antigens to CD4+ T lymphocytes in the acquired immune system. The non-classical class II DM molecule, HLA-DM in the case of humans, possesses critical function in assisting the classical MHC class II molecules for proper peptide loading and is highly conserved in tetrapod species. Although the absence of DM-like genes in teleost fish has been speculated based on the results of homology searches, it has not been definitively clear whether the DM system is truly specific for tetrapods or not. To obtain a clear answer, we comprehensively searched class II genes in representative teleost fish genomes and analyzed those genes regarding the critical functional features required for the DM system. Results We discovered a novel ancient class II group (DE) in teleost fish and classified teleost fish class II genes into three major groups (DA, DB and DE). Based on several criteria, we investigated the classical/non-classical nature of various class II genes and showed that only one of three groups (DA) exhibits classical-type characteristics. Analyses of predicted class II molecules revealed that the critical tryptophan residue required for a classical class II molecule in the DM system could be found only in some non-classical but not in classical-type class II molecules of teleost fish. Conclusions Teleost fish, a major group of vertebrates, do not possess the DM system for the classical class II peptide-loading and this sophisticated system has specially evolved in the tetrapod lineage. PMID:24279922
NASA Astrophysics Data System (ADS)
Wang, Changda; Chen, Xuejun; Wei, Peijun; Li, Yueqiu
2017-12-01
The reflection and transmission of elastic waves through a couple-stress elastic slab that is sandwiched between two couple-stress elastic half-spaces are studied in this paper. Because of the couple-stress effects, there are three types of elastic waves in the couple-stress elastic solid, two of which are dispersive. The interface conditions between two couple-stress solids involve the surface couple and rotation apart from the surface traction and displacement. The nontraditional interface conditions between the slab and two solid half-spaces are used to obtain the linear algebraic equation sets from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the energy fluxes carried by the various reflection and transmission waves are calculated numerically and the normal energy flux conservation is used to validate the numerical results. The special case, couple-stress elastic slab sandwiched by the classical elastic half-spaces, is also studied and compared with the situation that the classical elastic slab sandwiched by the classical elastic half-spaces. Incident longitudinal wave (P wave) and incident transverse wave (SV wave) are both considered. The influences of the couple-stress are mainly discussed based on the numerical results. It is found that the couple-stress mainly influences the transverse modes of elastic waves.
Fish utilisation of wetland nurseries with complex hydrological connectivity.
Davis, Ben; Johnston, Ross; Baker, Ronald; Sheaves, Marcus
2012-01-01
The physical and faunal characteristics of coastal wetlands are driven by dynamics of hydrological connectivity to adjacent habitats. Wetlands on estuary floodplains are particularly dynamic, driven by a complex interplay of tidal marine connections and seasonal freshwater flooding, often with unknown consequences for fish using these habitats. To understand the patterns and subsequent processes driving fish assemblage structure in such wetlands, we examined the nature and diversity of temporal utilisation patterns at a species or genus level over three annual cycles in a tropical Australian estuarine wetland system. Four general patterns of utilisation were apparent based on CPUE and size-structure dynamics: (i) classic nursery utlisation (use by recently settled recruits for their first year) (ii) interrupted peristence (iii) delayed recruitment (iv) facultative wetland residence. Despite the small self-recruiting 'facultative wetland resident' group, wetland occupancy seems largely driven by connectivity to the subtidal estuary channel. Variable connection regimes (i.e. frequency and timing of connections) within and between different wetland units (e.g. individual pools, lagoons, swamps) will therefore interact with the diversity of species recruitment schedules to generate variable wetland assemblages in time and space. In addition, the assemblage structure is heavily modified by freshwater flow, through simultaneously curtailing persistence of the 'interrupted persistence' group, establishing connectivity for freshwater spawned members of both the 'facultative wetland resident' and 'delayed recruitment group', and apparently mediating use of intermediate nursery habitats for marine-spawned members of the 'delayed recruitment' group. The diversity of utilisation pattern and the complexity of associated drivers means assemblage compositions, and therefore ecosystem functioning, is likely to vary among years depending on variations in hydrological connectivity. Consequently, there is a need to incorporate this diversity into understandings of habitat function, conservation and management.
Human behavioral research in space: quandaries for research subjects and researchers
NASA Technical Reports Server (NTRS)
Shepanek, Marc
2005-01-01
With the advent of long-duration spaceflight on board the International Space Station (ISS) and possible future missions beyond low Earth orbit (LEO) such as Mars, it is critical that those at NASA have a realistic assessment of the challenges that will face individuals on long-duration missions so that they can develop preventive and real-time countermeasures to behavioral health issues. While space travellers are very interested in having countermeasures to the deleterious effects of space missions, they have a powerful disincentive to participate in this research if they feel it could in any way negatively affect their flight status. The behavioral issues of isolation and confinement for extended-duration space missions are reviewed. Areas of basic and clinical behavioral research are listed. And the classical clinical model for research is not considered appropriate for the current configuration of the space program. The use of analogue environments and advanced statistical analysis are suggested as ways to address the limited spaceflight research opportunities. The challenge of research subject or patient confidentiality vs. mission safety and issues of personal flight status are addressed.
Modelling karst aquifer evolution in fractured, porous rocks
NASA Astrophysics Data System (ADS)
Kaufmann, Georg
2016-12-01
The removal of material in soluble rocks by physical and chemical dissolution is an important process enhancing the secondary porosity of soluble rocks. Depending on the history of the soluble rock, dissolution can occur either along fractures and bedding partings of the rock in the case of a telogenetic origin, or within the interconnected pore space in the case of eogenetic origin. In soluble rocks characterised by both fractures and pore space, dissolution in both flow compartments is possible. We investigate the dissolution of calcite both along fractures and within the pore space of a limestone rock by numerical modelling. The limestone rock is treated as fractured, porous aquifer, in which the hydraulic conductivity increases with time both for the fractures and the pore spaces. We show that enlargement of pore space by dissolution will accelerate the development of a classical fracture-dominated telogenetic karst aquifer, breakthrough occurs faster. In the case of a pore-controlled aquifer as in eogenetic rocks, enlargement of pores results in a front of enlarged pore spaces migrating into the karst aquifer, with more homogeneous enlargement around this dissolution front, and later breakthrough.
Human behavioral research in space: quandaries for research subjects and researchers.
Shepanek, Marc
2005-06-01
With the advent of long-duration spaceflight on board the International Space Station (ISS) and possible future missions beyond low Earth orbit (LEO) such as Mars, it is critical that those at NASA have a realistic assessment of the challenges that will face individuals on long-duration missions so that they can develop preventive and real-time countermeasures to behavioral health issues. While space travellers are very interested in having countermeasures to the deleterious effects of space missions, they have a powerful disincentive to participate in this research if they feel it could in any way negatively affect their flight status. The behavioral issues of isolation and confinement for extended-duration space missions are reviewed. Areas of basic and clinical behavioral research are listed. And the classical clinical model for research is not considered appropriate for the current configuration of the space program. The use of analogue environments and advanced statistical analysis are suggested as ways to address the limited spaceflight research opportunities. The challenge of research subject or patient confidentiality vs. mission safety and issues of personal flight status are addressed.
Pre-attentive auditory discrimination skill in Indian classical vocal musicians and non-musicians.
Sanju, Himanshu Kumar; Kumar, Prawin
2016-09-01
To test for pre-attentive auditory discrimination skills in Indian classical vocal musicians and non-musicians. Mismatch negativity (MMN) was recorded to test for pre-attentive auditory discrimination skills with a pair of stimuli of /1000 Hz/ and /1100 Hz/, with /1000 Hz/ as the frequent stimulus and /1100 Hz/ as the infrequent stimulus. Onset, offset and peak latencies were the considered latency parameters, whereas peak amplitude and area under the curve were considered for amplitude analysis. Exactly 50 participants, out of which the experimental group had 25 adult Indian classical vocal musicians and 25 age-matched non-musicians served as the control group, were included in the study. Experimental group participants had a minimum professional music experience in Indian classic vocal music of 10 years. However, control group participants did not have any formal training in music. Descriptive statistics showed better waveform morphology in the experimental group as compared to the control. MANOVA showed significantly better onset latency, peak amplitude and area under the curve in the experimental group but no significant difference in the offset and peak latencies between the two groups. The present study probably points towards the enhancement of pre-attentive auditory discrimination skills in Indian classical vocal musicians compared to non-musicians. It indicates that Indian classical musical training enhances pre-attentive auditory discrimination skills in musicians, leading to higher peak amplitude and a greater area under the curve compared to non-musicians.
Spatial distribution of GRBs and large scale structure of the Universe
NASA Astrophysics Data System (ADS)
Bagoly, Zsolt; Rácz, István I.; Balázs, Lajos G.; Tóth, L. Viktor; Horváth, István
We studied the space distribution of the starburst galaxies from Millennium XXL database at z = 0.82. We examined the starburst distribution in the classical Millennium I (De Lucia et al. (2006)) using a semi-analytical model for the genesis of the galaxies. We simulated a starburst galaxies sample with Markov Chain Monte Carlo method. The connection between the large scale structures homogenous and starburst groups distribution (Kofman and Shandarin 1998), Suhhonenko et al. (2011), Liivamägi et al. (2012), Park et al. (2012), Horvath et al. (2014), Horvath et al. (2015)) on a defined scale were checked too.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Yasunori; Salzetta, Nico; Sanches, Fabio
We study the Hilbert space structure of classical spacetimes under the assumption that entanglement in holographic theories determines semiclassical geometry. We show that this simple assumption has profound implications; for example, a superposition of classical spacetimes may lead to another classical spacetime. Despite its unconventional nature, this picture admits the standard interpretation of superpositions of well-defined semiclassical spacetimes in the limit that the number of holographic degrees of freedom becomes large. We illustrate these ideas using a model for the holographic theory of cosmological spacetimes.
Quantum information processing by a continuous Maxwell demon
NASA Astrophysics Data System (ADS)
Stevens, Josey; Deffner, Sebastian
Quantum computing is believed to be fundamentally superior to classical computing; however quantifying the specific thermodynamic advantage has been elusive. Experimentally motivated, we generalize previous minimal models of discrete demons to continuous state space. Analyzing our model allows one to quantify the thermodynamic resources necessary to process quantum information. By further invoking the semi-classical limit we compare the quantum demon with its classical analogue. Finally, this model also serves as a starting point to study open quantum systems.
NASA Technical Reports Server (NTRS)
Kelly, Bernard J.
2010-01-01
Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.
FAST TRACK COMMUNICATION: Quantum anomalies and linear response theory
NASA Astrophysics Data System (ADS)
Sela, Itamar; Aisenberg, James; Kottos, Tsampikos; Cohen, Doron
2010-08-01
The analysis of diffusive energy spreading in quantized chaotic driven systems leads to a universal paradigm for the emergence of a quantum anomaly. In the classical approximation, a driven chaotic system exhibits stochastic-like diffusion in energy space with a coefficient D that is proportional to the intensity ɛ2 of the driving. In the corresponding quantized problem the coherent transitions are characterized by a generalized Wigner time tɛ, and a self-generated (intrinsic) dephasing process leads to nonlinear dependence of D on ɛ2.
Influence of coexisting phases on the surface dilatational viscosity of Langmuir monolayers.
Lopez, Juan M; Vogel, Michael J; Hirsa, Amir H
2004-11-01
Monolayer hydrodynamics are usually described in terms of a Newtonian constitutive relationship. However, this macroscopic view fails to account for small-scale coexisting phase domains, which are generally present in the monolayer and appear to have profound macroscopic effects. Here, we provide direct evidence of these effects, consisting of Brewster angle microscopy images of the monolayer, space- and time-resolved interfacial velocity measurements, and comparisons with predictions based on the Navier-Stokes equations together with the classic model for a Newtonian interface.
Two-qubit correlations via a periodic plasmonic nanostructure
NASA Astrophysics Data System (ADS)
Iliopoulos, Nikos; Terzis, Andreas F.; Yannopapas, Vassilios; Paspalakis, Emmanuel
2016-02-01
We theoretically investigate the generation of quantum correlations by using two distant qubits in free space or mediated by a plasmonic nanostructure. We report both entanglement of formation as well as quantum discord and classical correlations. We have found that for proper initial state of the two-qubit system and distance between the two qubits we can produce quantum correlations taking significant value for a relatively large time interval so that it can be useful in quantum information and computation processes.
The uncertainty principle and quantum chaos
NASA Technical Reports Server (NTRS)
Chirikov, Boris V.
1993-01-01
The conception of quantum chaos is described in some detail. The most striking feature of this novel phenomenon is that all the properties of classical dynamical chaos persist here but, typically, on the finite and different time scales only. The ultimate origin of such a universal quantum stability is in the fundamental uncertainty principle which makes discrete the phase space and, hence, the spectrum of bounded quantum motion. Reformulation of the ergodic theory, as a part of the general theory of dynamical systems, is briefly discussed.
Two-qubit correlations via a periodic plasmonic nanostructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliopoulos, Nikos; Terzis, Andreas F.; Yannopapas, Vassilios
2016-02-15
We theoretically investigate the generation of quantum correlations by using two distant qubits in free space or mediated by a plasmonic nanostructure. We report both entanglement of formation as well as quantum discord and classical correlations. We have found that for proper initial state of the two-qubit system and distance between the two qubits we can produce quantum correlations taking significant value for a relatively large time interval so that it can be useful in quantum information and computation processes.
Tanaka, Kuniya; Murakami, Takashi; Matsuo, Kenichi; Hiroshima, Yukihiko; Endo, Itaru; Ichikawa, Yasushi; Taguri, Masataka; Koda, Keiji
2015-01-01
Although a 'liver-first' approach recently has been advocated in treating synchronous colorectal metastases, little is known about how results compare with those of the classical approach among patients with similar grades of liver metastases. Propensity-score matching was used to select study subjects. Oncologic outcomes were compared between 10 consecutive patients with unresectable advanced and aggressive synchronous colorectal liver metastases treated with the reverse strategy and 30 comparable classically treated patients. Numbers of recurrence sites and recurrent tumors irrespective of recurrence sites were greater in the reverse group then the classic group (p = 0.003 and p = 0.015, respectively). Rates of freedom from recurrence in the remaining liver and of freedom from disease also were poorer in the reverse group than in the classical group (p = 0.009 and p = 0.043, respectively). Among patients treated with 2-stage hepatectomy, frequency of microvascular invasion surrounding macroscopic metastases at second resection was higher in the reverse group than in the classical group (p = 0.011). Reverse approaches may be feasible in treating synchronous liver metastases, but that strategy should be limited to patients with less liver tumor burden. © 2015 S. Karger AG, Basel.
Deformation Theory and Physics Model Building
NASA Astrophysics Data System (ADS)
Sternheimer, Daniel
2006-08-01
The mathematical theory of deformations has proved to be a powerful tool in modeling physical reality. We start with a short historical and philosophical review of the context and concentrate this rapid presentation on a few interrelated directions where deformation theory is essential in bringing a new framework - which has then to be developed using adapted tools, some of which come from the deformation aspect. Minkowskian space-time can be deformed into Anti de Sitter, where massless particles become composite (also dynamically): this opens new perspectives in particle physics, at least at the electroweak level, including prediction of new mesons. Nonlinear group representations and covariant field equations, coming from interactions, can be viewed as some deformation of their linear (free) part: recognizing this fact can provide a good framework for treating problems in this area, in particular global solutions. Last but not least, (algebras associated with) classical mechanics (and field theory) on a Poisson phase space can be deformed to (algebras associated with) quantum mechanics (and quantum field theory). That is now a frontier domain in mathematics and theoretical physics called deformation quantization, with multiple ramifications, avatars and connections in both mathematics and physics. These include representation theory, quantum groups (when considering Hopf algebras instead of associative or Lie algebras), noncommutative geometry and manifolds, algebraic geometry, number theory, and of course what is regrouped under the name of M-theory. We shall here look at these from the unifying point of view of deformation theory and refer to a limited number of papers as a starting point for further study.
Time Operator in Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Khorasani, Sina
2017-07-01
It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.
Momentum signatures of the Anderson transition
NASA Astrophysics Data System (ADS)
Sanjib, Ghosh
This thesis explores for possible signatures of Anderson localization and the Anderson metal-insulator transition (MIT) in momentum space. We find that an initial plane-wave propagating in a disordered medium exhibits a diffusive background and two interference peaks, the coherent backscattering (CBS) and the coherent forward scattering (CFS) peaks in the momentum distribution. We show, the signatures of Anderson localization and the Anderson transition are encoded in the dynamical properties of the two interference peaks, CBS and CFS. We develop finite-time scaling theory for the angular width of the CBS peak and in the height of the CFS peak. We demonstrate how to extract properties like critical exponent, the mobility edge and signatures of multifractality from this finite-time analysis. These momentum space signatures of the Anderson transition are novel and they promise to be experimental observables for wide range of systems, from cold atoms to classical waves or any wave systems where the momentum distribution is accessible.
Monopole operators and Hilbert series of Coulomb branches of 3 d = 4 gauge theories
NASA Astrophysics Data System (ADS)
Cremonesi, Stefano; Hanany, Amihay; Zaffaroni, Alberto
2014-01-01
This paper addresses a long standing problem - to identify the chiral ring and moduli space (i.e. as an algebraic variety) on the Coulomb branch of an = 4 superconformal field theory in 2+1 dimensions. Previous techniques involved a computation of the metric on the moduli space and/or mirror symmetry. These methods are limited to sufficiently small moduli spaces, with enough symmetry, or to Higgs branches of sufficiently small gauge theories. We introduce a simple formula for the Hilbert series of the Coulomb branch, which applies to any good or ugly three-dimensional = 4 gauge theory. The formula counts monopole operators which are dressed by classical operators, the Casimir invariants of the residual gauge group that is left unbroken by the magnetic flux. We apply our formula to several classes of gauge theories. Along the way we make various tests of mirror symmetry, successfully comparing the Hilbert series of the Coulomb branch with the Hilbert series of the Higgs branch of the mirror theory.
Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation
NASA Astrophysics Data System (ADS)
Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien
2018-04-01
We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.
Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation
NASA Astrophysics Data System (ADS)
Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien
2018-06-01
We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.
Early Time Dynamics of Gluon Fields in High Energy Nuclear Collisions
NASA Astrophysics Data System (ADS)
Kapusta, Joseph I.; Chen, Guangyao; Fries, Rainer J.; Li, Yang
2016-12-01
Nuclei colliding at very high energy create a strong, quasi-classical gluon field during the initial phase of their interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions for the initial chromo-electric and chromo-magnetic fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for energy density and energy flow as well as for longitudinal and transverse pressure of this system. Our results are generally applicable if τ < 1 /Qs. The transverse energy flow of the gluon field exhibits hydrodynamic-like contributions that follow transverse gradients of the energy density. In addition, a rapidity-odd energy flow also emerges from the non-abelian analog of Gauss' Law and generates non-vanishing angular momentum of the field. We will discuss the space-time picture that emerges from our analysis and its implications for observables in heavy ion collisions.
De Sitter stability and coarse graining
NASA Astrophysics Data System (ADS)
Markkanen, T.
2018-02-01
We present a 4-dimensional back reaction analysis of de Sitter space for a conformally coupled scalar field in the presence of vacuum energy initialized in the Bunch-Davies vacuum. In contrast to the usual semi-classical prescription, as the source term in the Friedmann equations we use expectation values where the unobservable information hidden by the cosmological event horizon has been neglected i.e. coarse grained over. It is shown that in this approach the energy-momentum is precisely thermal with constant temperature despite the dilution from the expansion of space due to a flux of energy radiated from the horizon. This leads to a self-consistent solution for the Hubble rate, which is gradually evolving and at late times deviates significantly from de Sitter. Our results hence imply de Sitter space to be unstable in this prescription. The solution also suggests dynamical vacuum energy: the continuous flux of energy is balanced by the generation of negative vacuum energy, which accumulatively decreases the overall contribution. Finally, we show that our results admit a thermodynamic interpretation which provides a simple alternate derivation of the mechanism. For very long times the solutions coincide with flat space.
A Projective-to-Conformal Fefferman-Type Construction
NASA Astrophysics Data System (ADS)
Hammerl, Matthias; Sagerschnig, Katja; Šilhan, Josef; Taghavi-Chabert, Arman; Zádník, Vojtĕch
2017-10-01
We study a Fefferman-type construction based on the inclusion of Lie groups SL(n+1) into Spin(n+1,n+1). The construction associates a split-signature (n,n)-conformal spin structure to a projective structure of dimension n. We prove the existence of a canonical pure twistor spinor and a light-like conformal Killing field on the constructed conformal space. We obtain a complete characterisation of the constructed conformal spaces in terms of these solutions to overdetermined equations and an integrability condition on the Weyl curvature. The Fefferman-type construction presented here can be understood as an alternative approach to study a conformal version of classical Patterson-Walker metrics as discussed in recent works by Dunajski-Tod and by the authors. The present work therefore gives a complete exposition of conformal Patterson-Walker metrics from the viewpoint of parabolic geometry.
Quadratic time dependent Hamiltonians and separation of variables
NASA Astrophysics Data System (ADS)
Anzaldo-Meneses, A.
2017-06-01
Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.
New features in the structure of the classical Kuiper Belt
NASA Astrophysics Data System (ADS)
Gladman, Brett; Bannister, Michele T.; Alexandersen, Mike; Chen, Ying-Tung; Gwyn, Stephen; Kavelaars, J. J.; Petit, Jean-Marc; Volk, Kathryn; OSSOS Collaboration
2016-10-01
We report fascinating new dynamical structures emerging from a higher precision view of the classical Kuiper belt (the plentiful non-resonant orbits with semimajor axes in roughly the a=35-60 au range). The classical Kuiper Belt divides into multiple sub-populations: an 'inner' classical belt (a small group of non-resonant objects with a<39.4 au where the 3:2 resonance is located), an abundant 'main' classical belt (between the 3:2 and the 2:1 at a=47.4 au), and a difficult to study outer classical belt beyond the 2:1. We examine the dynamical structure, as precisely revealed in the detections from OSSOS (the Outer Solar System Origin's Survey); the data set is of superb quality in terms of orbital element and numbers of detections (Kavelaars et al, this meeting).The previous CFEPS survey showed that the main classical belt requires a complex dynamical substructure that goes beyond a simple 'hot versus cold' division based primarily on orbital inclination; the 'cold' inclination component requires two sub-components in the semimajor axis and perihelion distance q space (Petit et al 2011). CFEPS modelled this as a 'stirred' component present at all a=40-47 AU semimajor axes, with a dense superposed 'kernel' near a=44 AU at low eccentricity; the first OSSOS data release remained consistent with this (Bannister et al 2016). As with the main asteroid belt, as statistics and orbital quality improve we see additional significant substructure emerging in the classical belt's orbital distribution.OSSOS continues to add evidence that the cold stirred component extends smoothly beyond the 2:1 (Bannister et al 2016). Unexpectedly, the data also reveal the clear existence of a paucity of orbits just beyond the outer edge of the kernel; there are significantly fewer TNOs in the narrow semimajor axis band from a=44.5-45.0 AU. This may be related to the kernel population's creation, or it may be an independent feature created by planet migration as resonances moved in the primordial Kuiper Belt.
Resonance and decay phenomena lead to quantum mechanical time asymmetry
NASA Astrophysics Data System (ADS)
Bohm, A.; Bui, H. V.
2013-04-01
The states (Schrödinger picture) and observables (Heisenberg picture) in the standard quantum theory evolve symmetrically in time, given by the unitary group with time extending over -∞ < t < +∞. This time evolution is a mathematical consequence of the Hilbert space boundary condition for the dynamical differential equations. However, this unitary group evolution violates causality. Moreover, it does not solve an old puzzle of Wigner: How does one describe excited states of atoms which decay exponentially, and how is their lifetime τ related to the Lorentzian width Γ? These question can be answered if one replaces the Hilbert space boundary condition by new, Hardy space boundary conditions. These Hardy space boundary conditions allow for a distinction between states (prepared by a preparation apparatus) and observables (detected by a registration apparatus). The new Hardy space quantum theory is time asymmetric, i.e, the time evolution is given by the semigroup with t0 <= t < +∞, which predicts a finite "beginning of time" t0, where t0 is the ensemble of time at which each individual system has been prepared. The Hardy space axiom also leads to the new prediction: the width Γ and the lifetime τ are exactly related by τ = hslash/Γ.
NASA Astrophysics Data System (ADS)
Palmer, T. N.
2012-12-01
This essay discusses a proposal that draws together the three great revolutionary theories of 20th Century physics: quantum theory, relativity theory and chaos theory. Motivated by the Bohmian notion of implicate order, and what in chaos theory would be described as a strange attractor, the proposal attributes special ontological significance to certain non-computable, dynamically invariant state-space geometries for the universe as a whole. Studying the phenomenon of quantum interference, it is proposed to understand quantum wave-particle duality, and indeed classical electromagnetism, in terms of particles in space time and waves on this state space geometry. Studying the EPR experiment, the acausal constraints that this invariant geometry provides on spatially distant degrees of freedom, provides a way for the underlying dynamics to be consistent with the Bell theorem, yet be relativistically covariant ("nonlocality without nonlocality"). It is suggested that the physical basis for such non-computable geometries lies in properties of gravity with the information irreversibility implied by black hole no-hair theorems being crucial. In conclusion it is proposed that quantum theory may be emergent from an extended theory of gravity which is geometric not only in space time, but also in state space. Such a notion would undermine most current attempts to "quantise gravity".
NASA Astrophysics Data System (ADS)
Rapoport, Diego L.
2011-01-01
In this transdisciplinary article which stems from philosophical considerations (that depart from phenomenology—after Merleau-Ponty, Heidegger and Rosen—and Hegelian dialectics), we develop a conception based on topological (the Moebius surface and the Klein bottle) and geometrical considerations (based on torsion and non-orientability of manifolds), and multivalued logics which we develop into a unified world conception that surmounts the Cartesian cut and Aristotelian logic. The role of torsion appears in a self-referential construction of space and time, which will be further related to the commutator of the True and False operators of matrix logic, still with a quantum superposed state related to a Moebius surface, and as the physical field at the basis of Spencer-Brown's primitive distinction in the protologic of the calculus of distinction. In this setting, paradox, self-reference, depth, time and space, higher-order non-dual logic, perception, spin and a time operator, the Klein bottle, hypernumbers due to Musès which include non-trivial square roots of ±1 and in particular non-trivial nilpotents, quantum field operators, the transformation of cognition to spin for two-state quantum systems, are found to be keenly interwoven in a world conception compatible with the philosophical approach taken for basis of this article. The Klein bottle is found not only to be the topological in-formation for self-reference and paradox whose logical counterpart in the calculus of indications are the paradoxical imaginary time waves, but also a classical-quantum transformer (Hadamard's gate in quantum computation) which is indispensable to be able to obtain a complete multivalued logical system, and still to generate the matrix extension of classical connective Boolean logic. We further find that the multivalued logic that stems from considering the paradoxical equation in the calculus of distinctions, and in particular, the imaginary solutions to this equation, generates the matrix logic which supersedes the classical logic of connectives and which has for particular subtheories fuzzy and quantum logics. Thus, from a primitive distinction in the vacuum plane and the axioms of the calculus of distinction, we can derive by incorporating paradox, the world conception succinctly described above.
What is Quantum Mechanics? A Minimal Formulation
NASA Astrophysics Data System (ADS)
Friedberg, R.; Hohenberg, P. C.
2018-03-01
This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called "microscopic theory", applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen-Specker-Bell theorem and Gleason's theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.
Urns and Chameleons: two metaphors for two different types of measurements
NASA Astrophysics Data System (ADS)
Accardi, Luigi
2013-09-01
The awareness of the physical possibility of models of space, alternative with respect to the Euclidean one, begun to emerge towards the end of the 19-th century. At the end of the 20-th century a similar awareness emerged concerning the physical possibility of models of the laws of chance alternative with respect to the classical probabilistic models (Kolmogorov model). In geometry the mathematical construction of several non-Euclidean models of space preceded of about one century their applications in physics, which came with the theory of relativity. In physics the opposite situation took place. In fact, while the first example of non Kolmogorov probabilistic models emerged in quantum physics approximately one century ago, at the beginning of 1900, the awareness of the fact that this new mathematical formalism reflected a new mathematical model of the laws of chance had to wait until the early 1980's. In this long time interval the classical and the new probabilistic models were both used in the description and the interpretation of quantum phenomena and negatively interfered with each other because of the absence (for many decades) of a mathematical theory that clearly delimited the respective domains of application. The result of this interference was the emergence of the so-called the "paradoxes of quantum theory". For several decades there have been many different attempts to solve these paradoxes giving rise to what K. Popper baptized "the great quantum muddle": a debate which has been at the core of the philosophy of science for more than 50 years. However these attempts have led to contradictions between the two fundamental theories of the contemporary physical: the quantum theory and the theory of the relativity. Quantum probability identifies the reason of the emergence of non Kolmogorov models, and therefore of the so-called the paradoxes of quantum theory, in the difference between the notion of passive measurements like "reading pre-existent properties" (urn metaphor) and measurements consisting in reading "a response to an interaction" (chameleon metaphor). The non-trivial point is that one can prove that, while the urn scheme cannot lead to empirical data outside of classic probability, response based measurements can give rise to non classical statistics. The talk will include entirely classical examples of non classical statistics and potential applications to economic, sociological or biomedical phenomena.